
IBM WebSphere Application Server Network
Deployment, Version 5

Monitoring and Troublshooting

���

Note
Before using this information, be sure to read the general information under “Trademarks and service marks” on page v.

Compilation date: November 22, 2002

© Copyright International Business Machines Corporation 2002. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Trademarks and service marks v

Chapter 1. Welcome to Monitoring and
Troubleshooting 1

Chapter 2. Monitoring performance . . . 3
Performance Monitoring Infrastructure 3
Performance data organization 4

BeanModule data counters. 8
JDBC connection pool data counters 10
J2C connection pool data counters 11
Java Virtual Machine data counters 12
Object Request Broker data counters 13
Session data counters 13
Transaction data counters. 15
ThreadPool data counters. 16
Web application data counters 16
Workload Management data counters. 17
System data counters 18
Dynamic cache data counters 19

Performance data classification 20
Enabling PMI services through the administrative
console 22
Enabling performance data collection through the
administrative console 23

Performance monitoring service settings 23
Enabling performance monitoring services using the
command line 24
Enabling Java Virtual Machine Profiler Interface
data reporting 27

Java Virtual Machine Profiler Interface 27
Monitoring performance with Tivoli Performance
Viewer (formerly Resource Analyzer) 28

Tivoli Performance Viewer features 28
Starting the Tivoli Performance Viewer 33
Setting performance monitoring levels 33
Viewing summary reports 34
Changing the refresh rate of data retrieval . . . 35
Changing the display buffer size 35
Viewing and modifying performance chart data 35
Scaling the performance data chart display . . . 35
Refreshing data 36
Clearing values from tables and charts 36
Storing data to a log file 37
Replaying a performance data log file 38
Resetting counters to zero 38

Tivoli performance monitoring and management
solutions 39
Developing your own monitoring applications . . 39

Developing your own monitoring application
using Performance Monitoring Infrastructure
client 40
Developing your own monitoring applications
with Performance Monitoring Infrastructure
servlet 65

Accessing Performance Monitoring Infrastructure
data through the Java Management Extension
interface 68
Developing Performance Monitoring
Infrastructure interfaces (Version 4.0) 70

Third-party performance monitoring and
management solutions 71
Measuring data requests (Performance Monitoring
Infrastructure Request Metrics) 71

Performance Monitoring Infrastructure Request
Metrics 72
Application Response Measurement 72
Performance Monitoring Infrastructure Request
Metrics trace filters 73
Performance Monitoring Infrastructure Request
Metrics data output. 73
Configuring Request Metrics 74
Example: Generating trace records from PMI
Request Metrics 77

Performance: Resources for learning 78

Chapter 3. Tuning performance 81
Symptom table 81
Tuning basics 82

What influences tuning? 82
Types of tuning 83
Adjusting the queues in WebSphere Application
Server 84
Tuning Secure Sockets Layer. 90
Tuning Java memory 97
Solaris TCP parameters 102
Workload management topology 102
Number of connections to DB2 102

Individual performance parameters 103
Hardware 103
Operating system settings 104
The Web server. 107
The WebSphere Application Server process . . 111
Java Virtual Machines (JVMs) 118
EJB container 121
XML parser selection 121
Data sources. 121
Session management 126

Starting Windows NT or 2000 Performance
Monitor 127
Additional references 127

Chapter 4. Diagnosing and fixing
problems 129
Troubleshooting by task: what are you trying to
do? 129

Installing WebSphere Application Server . . . 129
Troubleshooting migration problems. 133
Troubleshooting code deployment and
installation problems 136

© Copyright IBM Corp. 2002 iii

Troubleshooting testing and first time run
problems 140
Troubleshooting application run-time and
management problems 183

Troubleshooting by component: what is not
working? 198

Installation component troubleshooting tips . . 198
Migration utility troubleshooting tips 199
Administration and Administrative Console
troubleshooting tips 200
Application Assembly Tool troubleshooting tips 201
Web Container troubleshooting tips 202
HTTP plugin component troubleshooting tips 202
HTTP session manager troubleshooting tips . . 204
Naming services component troubleshooting
tips 206
Messaging (JMS) component troubleshooting
tips 206
Universal Discovery, Description, and
Integration, Web Service, and SOAP components
troubleshooting tips 207
Enterprise bean and EJB container
troubleshooting tips 207
Security components troubleshooting tips . . . 208
JSP engine troubleshooting tips 219
Workload Management component
troubleshooting tips 220
Object Request Broker component
troubleshooting tips 224

Message reference 234

CORBA minor codes 235
Working with message logs 235

Viewing the JVM logs 236
Interpreting the JVM logs 237
Configuring the JVM logs 238
Process logs 241
Viewing the service log 241
Interpreting the service log 242
Configuring the service log 242
Configuration problem collection 243

Debugging with the Application Server Toolkit . . 244
Debugging WebSphere Application Server
applications 245
Debugging Service details 246

Working with trace 247
Enabling trace 247
Managing the application server trace service 249
Interpreting trace output 249
Trace service settings 251
Logging and tracing settings 253

Adding logging and tracing to your application 253
Programming with the JRas framework . . . 253

Working with troubleshooting tools 291
Collector Tool 291
First Failure Data Capture tool 293
Log Analyzer 294

Diagnosing and fixing problems: Resources for
learning 303
Obtaining help from IBM 304

iv IBM WebSphere Application Server Network Deployment, Version 5: Monitoring and Troublshooting

Trademarks and service marks

The following terms are trademarks of IBM Corporation in the United States, other
countries, or both:
v Everyplace
v iSeries
v IBM
v Redbooks
v ViaVoice
v WebSphere
v zSeries

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the
United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other company, product and service names may be trademarks or service marks of
others.

© Copyright IBM Corp. 2002 v

vi IBM WebSphere Application Server Network Deployment, Version 5: Monitoring and Troublshooting

Chapter 1. Welcome to Monitoring and Troubleshooting

To help identify application performance problems, the product collects
performance data, provides interfaces that allow external applications to monitor
the performance data, and provides tools to display performance data for analysis.

Similar capabilities are provided for problem determination, such as APIs and
graphical interfaces for collecting and analyzing trace and log data.

Performance Monitoring Infrastructure (PMI)

The product collects data on run-time and applications through the Performance
Monitoring Infrastructure (PMI), as described in (″ Performance Monitoring
Infrastructure ″). This infrastructure is compatible with and extends the JSR-077
specification.

PMI provides several types of interfaces to access performance data. A new JMX
API is introduced in this version, but the servlet and Java client interfaces are still
available for compatibility with Versions 3.5.5+ and 4.0+. These PMI interfaces are
used to create tools to help monitor and tune performance.

Performance data can be monitored and analyzed with:
v The Tivoli Performance Viewer (formerly called Resource Analyzer)
v Other Tivoli monitoring tools
v Your own or third-party-developed tools

The Tivoli Performance Viewer uses the PMI Java client to provide graphical
displays and summary reports of collected data. For more information, see
(″Monitoring performance with Tivoli Performance Viewer (formerly Resource
Analyzer)″).

Performance Monitoring Infrastructure (PMI) Request Metrics

IBM WebSphere Application Server also collects data by timing requests as they
travel through the product components. PMI Request Metrics logs time spent in
major components, such as Web container, Enterprise bean container, and database.
These data points are recorded in logs and can be written to Application Response
Time (ARM) agents used by Tivoli monitoring tools.

For more information about PMI Request Metrics, see (″Measuring data requests
(Performance Monitoring Infrastructure Request Metrics)″).

Problems - data and tools

The purpose of this section is to aid you in understanding why your enterprise
application, application server, or the product itself is not working and to help you
resolve the problem. Unlike performance tuning which focuses on solving
problems associated with slow processes and less-than-optimal performance,
problem determination focuses on finding solutions to functional problems.

The kind of problem you are encountering, and how much you already know
about it, determine what steps you should take to resolve it:

© Copyright IBM Corp. 2002 1

v For tips on investigating common problems organized according to tasks, see
(″Troubleshooting by task: what are you trying to do?″).

v If you already have an error message and want to quickly look up its
explanation and recommended response, see (″Message reference″).

v For help in knowing where to find product error and warning messages,
interpreting messages, and product log files, see (″Working with message logs″).

v Difficult problems may require the use of tracing, which exposes the low-level
flow of control and interactions between product components. For help in
understanding and using traces, see (″Working with trace″).

v For help in adding log and trace capability to your own application, see
(″Programming with the JRas framework″).

v For help in using product utilities to help you diagnose the problem, see
(″Working with troubleshooting tools″).

v To find out how to look up documented problems, common mistakes, product
prerequisites, and other problem-determination information on the product Web
site, or to obtain technical support from IBM, see (″Obtaining help from IBM″).

2 IBM WebSphere Application Server Network Deployment, Version 5: Monitoring and Troublshooting

Chapter 2. Monitoring performance

WebSphere Application Server collects data on run-time and applications through
the Performance Monitoring Infrastructure (PMI). Performance data can then be
monitored and analyzed with a variety of tools.

Steps for this task
1. Enable PMI services through the administrative console.

In order to monitor performance data through the PMI interfaces, you must
first enable the performance monitoring services through the administrative
console and restart the server.

2. Collect the data.
The monitoring levels that determine which data counters are enabled can be
set dynamically, without restarting the server. This can be done in one of three
ways:
a. Enable data collection through the administrative console.
b. Enable performance monitoring services through Tivoli Performance

Viewer (formerly Resource Analyzer).
c. Enable performance monitoring services using the command line.

3. Monitor and analyze performance data.
You can monitor and analyze data with several tools:
a. Monitor performance data with Tivoli Performance Viewer.

This tool is included with WebSphere Application Server.
b. Monitor performance data with other Tivoli monitoring tools.
c. Monitor performance data with user-developed monitoring tools.

Write your own applications to monitor performance data.
d. Monitor performance with third-party monitoring tools.

What to do next

WebSphere Application Server also collects data through PMI Request Metrics. This
feature times requests as they travel through WebSphere Application Server
components. For more information about PMI Request Metrics see “Measuring
data requests (Performance Monitoring Infrastructure Request Metrics)” on page 71.

Performance Monitoring Infrastructure
The Performance Monitoring Infrastructure (PMI) uses a client-server architecture.
The server collects performance data from various WebSphere Application Server
components. A client retrieves performance data from one or more servers and
processes the data.

As shown in the figure, the server collects PMI data in memory. This data consists
of counters such as servlet response time and data connection pool usage. The data
points are then retrieved using a Web client, Java client or JMX client. WebSphere
Application Server contains Tivoli Performance Viewer, a Java client which
displays and monitors performance data. See the topics Monitoring performance
with Tivoli Performance Viewer (formerly Resource Analyzer), Tivoli performance
monitoring and management solutions, Third-party performance monitoring and

© Copyright IBM Corp. 2002 3

management solutions, and Developing your own monitoring applications for
more information on monitoring tools.

Web
Client

PmiClient
Java

Client

Tivoli
Performance

Viewer

JMX Client
Java Client

PerfServlet

.PerfMBean
App Server

PMI
Client

Wrapper

J2EE client

.PerfMBean
App Server

RMI/IIOP
or

SOAP

JMX
Connector

Cell Manager

Performance
data
and

application
server

HTTP

The figure shows the overall PMI architecture. On the right side, the server
updates and keeps PMI data in memory. The left side displays a Web client, Java
client and JMX client retrieving the performance data.

Performance data organization
Performance Monitoring Infrastructure (PMI) provides server-side monitoring and
a client-side API to retrieve performance data. PMI maintains statistical data within
the entire WebSphere Application Server domain, including multiple nodes and
servers. Each node can contain one or more WebSphere Application Servers. Each
server organizes PMI data into modules and submodules.

4 IBM WebSphere Application Server Network Deployment, Version 5: Monitoring and Troublshooting

Instance

Counter

Enterprise beans

Bean1 Bean2

Server*

Node* PMI Client

Module

Resource
Analyzer

Methods

Avg Method RT

Avg Method RTNum DestroysGets Found Num Creates

Bean3

Hiearchy of data collections
used for performance reporting
to Resource Analyzer

Serve 2

Avg Method RT

EJB Module 1

entity stateful stateless

The Tivoli Performance Viewer, formerly the Resource Analyzer, organizes
performance data in a centralized hierarchy of the following objects:
v Node. A node represents a physical machine in the WebSphere Application

Server administrative domain.
v Server. A server is a functional unit that provides services to clients over a

network. No performance data is collected for the server itself.
v Module. A module represents one of the resource categories for which collected

data is reported to the performance viewer. Each module has a configuration file
in XML format. This file determines organization and lists a unique identifier for
each performance data in the module. Modules include enterprise beans, JDBC
connection pools, J2C connection pool, Java Virtual Machine (JVM) run time
(including Java Virtual Machine Profiler Interface (JVMPI)), servlet session
manager, thread pools, transaction manager, Web applications, Object Request
Broker (ORB), Workload Management (WLM), dynamic cache, and Web Services
Gateway (WSGW).

v Submodule. A submodule represents a fine granularity of a resource category
under the module. For example, ORB thread pool is a submodule of the thread
pool category. Submodules can contain other submodules.

v Counter. A counter is a data type used to hold performance information for
analysis. Each resource category (module) has an associated set of counters. The
data points within a module are queried and distinguished by the Mbean
ObjectNames or PerfDescriptors. Examples of counters include the number of
active enterprise beans, the time spent responding to a servlet request and the
number of kilobytes of available memory.

The Tivoli Performance Viewer allows users to view and manipulate the data for
counters. A particular counter type can appear in several modules. For example,
both the servlet and enterprise bean modules have a response time counter. In
addition, a counter type can have multiple instances within a module. For
example, in the figure above, both the Enterprise beans module and Bean1 have an
Avg Method RT counter.

Counters are enabled at the module level and can be enabled or disabled for
elements within the module. For example, in the figure, if the Enterprise beans

Chapter 2. Monitoring performance 5

module is enabled, its Avg Method RT counter is enabled by default. However,
you can then disable the Avg Method RT counter even when the rest of the
module counters are enabled. You can also, if desired, disable the Avg Method RT
counter for Bean1, but the aggregate response time reported for the whole module
will no longer include Bean1 data.

Each counter has a specified monitoring level: none, low, medium, high or
maximum. If the module is set to lower monitoring level than required by a
particular counter, that counter will not be enabled. Thus, if Bean1 has a medium
monitoring level, Gets Found and Num Destroys are enabled because they require
a low monitoring level. However, Avg Method RT is not enabled because it
requires a high monitoring level.

Data collection can affect performance of the application server. The impact
depends on the number of counters enabled, the type of counters enabled and the
monitoring level set for the counters.

ModuleTreeRoot

EJBModule

bean 1

webapp 1 webapp 2

bean 2 bean 3

methods

servlets

method 2

servlet 1 servlet 2

method 1

dataSource 1 dataSource 2

ConnPoolModule TranModule WebAppModule

The following PMI modules are available to provide statistical data:
v Enterprise bean module, enterprise bean, methods in a bean

Data counters for this category report load values, response times, and life cycle
activities for enterprise beans. Examples include the average number of active
beans and the number of times bean data is loaded or written to the database.
Information is provided for enterprise bean methods and the remote interfaces
used by an enterprise bean. Examples include the number of times a method is
called and the average response time for the method. In addition, the Tivoli
Performance Viewer reports information on the size and use of a bean objects
cache or enterprise bean object pool. Examples include the number of calls
attempting to retrieve an object from a pool and the number of times an object is
found available in the pool.

6 IBM WebSphere Application Server Network Deployment, Version 5: Monitoring and Troublshooting

v JDBC connection pools
Data counters for this category contain usage information about connection
pools for a database. Examples include the average size of the connection pool
or number of connections, the average number of threads waiting for a
connection, the average wait time in milliseconds for a connection, and the
average time the connection is in use.

v J2C connection pool
Data counters for this category contain usage information about the Java 2
Enterprise Edition (J2EE) Connector Architecture that enables enterprise beans to
connect and interact with procedural back-end systems, such as Customer
Information Control System (CICS), and Information Management System (IMS).
Examples include the number of managed connections or physical connections
and the total number of connections or connection handles.

v Java Virtual Machine API (JVM)
Data counters for this category contain memory used by a process as reported
by Java Virtual Machine (JVM) run time. Examples are the total memory
available and the amount of free memory for the JVM. JVM run time also
includes data from the Java Machine Profiler Interface (JVMPI). This data
provides detailed information about the JVM running the application server.

v Servlet session manager
Data counters for this category contain usage information for HTTP sessions.
Examples include the total number of accessed sessions, the average amount of
time it takes for a session to perform a request, and the average number of
concurrently active HTTP sessions.

v Thread pool
Data counters for this category contain information about the thread pools for
Object Request Broker (ORB) threads and the Web container pools used to
process HTTP requests. Examples include the number of threads created and
destroyed, the maximum number of pooled threads allowed, and the average
number of active threads in the pool.

v Java Transaction API (JTA)
Data counters for this category contain performance information for the
transaction manager. Examples include the average number of active
transactions, the average duration of transactions, and the average number of
methods per transaction.

v Web applications, servlet
Data counters for this category contain information for the selected server.
Examples include the number of loaded servlets, the average response time for
completed requests, and the number of requests for the servlet.

v Object Request Broker (ORB)
Data counters for this category contain information for the ORB. Examples
include the object reference lookup time, the total number of requests, and the
processing time for each interceptor.

v Web Services Gateway (WSGW)
Data counters for this category contain information for WSGW. Examples
include the number of synchronous and asynchronous requests and responses.

v System data
Data counters for this category contain information for a machine (node).
Examples include the CPU utilization and memory usage. Note that this
category is available at node level, which means it is only available at
NodeAgent in the multiple servers version.

Chapter 2. Monitoring performance 7

v Workload Management (WLM)
Data counters for this category contain information for workload management.
Examples include the number of requests, the number of updates and average
response time.

v Dynamic cache
Data counters for this category contain information for the dynamic cache
service. Examples include in memory cache size, number of invalidations and
number of hits and misses.

BeanModule data counters
Data counter definitions

Name Description Version Granularity Type Level

creates Number of times beans were
created

3.5.5
and
above

per home CountStatistic Low

removes Number of times beans were
removed

3.5.5
and
above

per home CountStatistic Low

passivates Number of times beans were
passivated (entity and stateful)

3.5.5
and
above

per home CountStatistic Low

activates Number of times beans were
activated (entity and stateful)

3.5.5
and
above

per home CountStatistic Low

persistence loads Number of times bean data
was loaded from persistent
storage (entity)

3.5.5
and
above

per home CountStatistic Low

persistence stores Number of times bean data
was stored in persistent
storage (entity)

3.5.5
and
above

per home CountStatistic Low

instantiations Number of times bean objects
were instantiated

3.5.5
and
above

per home CountStatistic Low

destroys Number of times bean objects
were freed

3.5.5
and
above

per home CountStatistic Low

Num Ready Beans Number of concurrently ready
beans (entity and session). This
counter was called concurrent
active in Versions 3.5.5+ and
4.0.

3.5.5
and
above

per home RangeStatistic High

concurrent live Number of concurrently live
beans

3.5.5
and
above

per home RangeStatistic High

avg method rsp time Average response time in
milliseconds on the bean
methods (home, remote, local)

3.5.5
and
above

per home TimeStatistic High

avg method rsp time
for create

Average time in milliseconds a
bean create call takes including
the time for the load if any

5.0 per home TimeStatistic Medium

8 IBM WebSphere Application Server Network Deployment, Version 5: Monitoring and Troublshooting

avg method rsp time
for load

Average time in milliseconds
for loading the bean data from
persistent storage (entity)

5.0 per home TimeStatistic Medium

avg method rsp time
for store

Average time in milliseconds
for storing the bean data to
persistent storage (entity)

5.0 per home TimeStatistic Medium

avg method rsp time
for remove

Average time in milliseconds a
bean entries call takes
including the time at the
database, if any

5.0 per home TimeStatistic Medium

total method calls total number of method calls 3.5.5
and
above

per home CountStatistic High

avg method rsp time
for activation

Average time in milliseconds a
beanActivate call takes
including the time at the
database, if any

5.0 per home TimeStatistic Medium

avg method rsp time
for passivation

Average time in milliseconds a
beanPassivate call takes
including the time at the
database, if any

5.0 per home TimeStatistic Medium

active methods Number of concurrently active
methods - num methods called
at the same time.

3.5.5
and
above

per home TimeStatistic High

Per method
invocations

Number of calls to the bean
methods (home, remote, local)

3.5.5
and
above

per
method/per
home

CountStatistic Max

Per method rsp time Average response time in
milliseconds on the bean
methods (home, remote, local)

3.5.5
and
above

per home TimeStatistic Max

Per method concurrent
invocations

Number of concurrent
invocations to call a method

5.0 per
method/per
home

RangeStatistic Max

getsFromPool Number of calls retrieving an
object from the pool(entity and
stateless)

3.5.5
and
above

per
home/object
pool

CountStatistic Low

getsFound Number of times a retrieve
found an object available in
the pool (entity and stateless)

3.5.5
and
above

per
home/object
pool

CountStatistic Low

returnsToPool Number of calls returning an
object to the pool (entity and
stateless)

3.5.5
and
above

per
home/object
pool

CountStatistic Low

returnsDiscarded Number of times the returning
object was discarded because
the pool was full (entity and
stateless)

3.5.5
and
above

per
home/object
pool

CountStatistic Low

drainsFromPool Number of times the daemon
found the pool was idle and
attempted to clean it (entity
and stateless)

3.5.5
and
above

per
home/object
pool

CountStatistic Low

avgDrainSize Average number of objects
discarded in each drain (entity
and stateless)

3.5.5
and
above

per
home/object
pool

TimeStatistic Medium

Chapter 2. Monitoring performance 9

avgPoolSize Number of objects in the pool
(entity and stateless)

3.5.5
and
above

per
home/object
pool

RangeStatistic High

messageCount Number of messages delivered
to the bean onMessage method
(message driven beans)

5.0 per type CountStatistic Low

messageBackoutCount Number of messages failed to
be delivered to the bean
onMessage method (message
driven beans)

5.0 per type CountStatistic Low

serverSessionWait Average time to obtain a
ServerSession from the pool
(message drive bean)

5.0 per type TimeStatistic Medium

serverSessionUsage Percentage of server session
pool in use (message driven)

5.0 per type RangeStatistic High

JDBC connection pool data counters
Data counter definitions

Name Description Version Granularity Type Level

creates Total number of connections
created

3.5.5
and
above

per connection
pool

CountStatistic Low

avg pool size Average pool size 3.5.5
and
above

per connection
pool

BoundedRangeStatistic High

free pool size Average free pool size 5.0 per connection
pool

BoundedRangeStatistic High

allocates Total number of connections
allocated

3.5.5
and
above

per connection
pool

CountStatistic Low

returns Total number of connections
returned

4.0 and
above

per connection
pool

CountStatistic Low

avg waiting threads Number of threads that are
currently waiting for a
connection

3.5.5
and
above

per connection
pool

RangeStatistic High

connection pool faults Total number of faults, such
as, timeouts, in connection
pool

3.5.5
and
above

per connection
pool

CountStatistic Low

destroys Number of times bean objects
were freed

3.5.5
and
above

per connection
pool

CountStatistic Low

avg wait time Average waiting time in
milliseconds until a connection
is granted

5.0 per connection
pool

TimeStatistic Medium

avg time in use Average time a connection is
used

5.0 per connection
pool

TimeStatistic Medium

percent used Average percent of the pool
that is in use

3.5.5
and
above

per connection
pool

RangeStatistic High

10 IBM WebSphere Application Server Network Deployment, Version 5: Monitoring and Troublshooting

percent maxed Average percent of the time
that all connections are in use

3.5.5
and
above

per connection
pool

RangeStatistic High

PreparedStmt cache
discard count

Total number of statements
discarded by the LRU
algorithm of the prepared
statement cache

4.0 and
above

per connection
pool

CountStatistic Low

Number managed
connections

Number of
ManagedConnection objects in
use

5.0 per connection
factory

CountStatistic Low

Number connections Current number of connection
objects in use

5.0 per connection
factory

CountStatistic Low

jdbcOperationTimer Amount of time in
milliseconds spent executing in
the JDBC driver

5.0 per data source TimeStatistic Medium

J2C connection pool data counters
Data counter definitions

Name Description Version Granularity Type Level

Number managed
connections

Number of
ManagedConnection objects in
use

5.0 per connection
factory

CountStatistic Low

Number connections Current number of connection
objects in use

5.0 per connection
factory

CountStatistic Low

Number managed
connections created

Total number of connections
created

5.0 per connection
factory

CountStatistic Low

Number managed
connections destroyed

Total number of connections
destroyed

5.0 per connection
factory

CountStatistic Low

Number managed
connections allocated

Total number of connections
allocated

5.0 per connection
factory

CountStatistic Low

Number managed
connections freed

Total number of connections
freed

5.0 per connection
factory

CountStatistic Low

faults Number of faults, such as
timeouts, in connection pool

5.0 per connection
factory

CountStatistic Low

free pool size Number of free connections in
the pool

5.0 per connection
factory

BoundedRangeStatistic High

pool size Pool size 5.0 per connection
factory

BoundedRangeStatistic High

concurrent waiters Average number of threads
concurrently waiting for a
connection

5.0 per connection
factory

RangeStatistic High

Percent used Average percent of the pool
that is in use

5.0 per connection
factory

RangeStatistic High

Percent maxed Average percent of the time
that all connections are in use

5.0 per connection
factory

RangeStatistic High

Average wait time Average waiting time in
milliseconds until a connection
is granted

5.0 per connection
factory

TimeStatistic Medium

Chapter 2. Monitoring performance 11

Average use time Average time in milliseconds
that connections are in use

5.0 per connection
factory

TimeStatistic Medium

Java Virtual Machine data counters
Data counter definitions

Name Description Version Granularity Type Level

Free memory Free memory in JVM run time 3.5.5
and
above

per Java
Virtual
Machine (JVM)

CountStatistic Low

Used memory Used memory in JVM run time 3.5.5
and
above

per JVM CountStatistic Low

Total memory Total memory in JVM run time 3.5.5
and
above

per JVM BoundedRangeStatistic High

Up time The amount of time the JVM is
running

5.0 per JVM CountStatistic Low

Number garbage
collection calls

Number of garbage collection
calls. This counter is not
available unless
-XrunpmiJvmpiProfiler is set
when starting the JVM.

4.0 and
above

per JVM CountStatistic Max

Average time between
garbage collection

Average garbage collection in
seconds between two garbage
collection. This counter is not
available unless
-XrunpmiJvmpiProfiler is set
when starting the JVM.

4.0 and
above

per JVM TimeStatistic Max

Average garbage
collection duration

Average duration of a garbage
collection. This counter is not
available unless
-XrunpmiJvmpiProfiler is set
when starting the JVM.

4.0 and
above

per JVM TimeStatistic Max

num waits for a lock Number of times that a thread
waits for a lock.This counter is
not available unless
-XrunpmiJvmpiProfiler is set
when starting the JVM.

4.0 and
above

per JVM CountStatistic Max

avg time waiting for
lock

Average time that a thread
waits for a lock. This counter
is not available unless
-XrunpmiJvmpiProfiler is set
when starting the JVM.

4.0 and
above

per JVM TimeStatistic Max

Number of objects
allocated

Number of objects allocated in
heap. This counter is not
available unless
-XrunpmiJvmpiProfiler is set
when starting the JVM.

4.0 and
above

per JVM CountStatistic Max

Number of objects
found

Number of objects in heap.
This counter is not available
unless -XrunpmiJvmpiProfiler
is set when starting the JVM.

4.0 and
above

per JVM CountStatistic Max

12 IBM WebSphere Application Server Network Deployment, Version 5: Monitoring and Troublshooting

Number of objects
freed

Number of objects freed in
heap. This counter is not
available unless
-XrunpmiJvmpiProfiler is set
when starting the JVM.

4.0 and
above

per JVM CountStatistic Max

Object Request Broker data counters
Data counter definitions

Name Description Version Granularity Type Level

referenceLookupTime The time (in milliseconds) to
look up an object reference
before method dispatch can be
carried out

5.0 Object Request
Broker (ORB)

TimeStatistic Medium

numRequest The total number of requests
sent to the ORB

5.0 ORB CountStatistic Low

concurrentRequests The number of requests that
are concurrently processed by
the ORB

5.0 ORB RangeStatistic High

processingTime The time (in milliseconds) it
takes a registered portable
interceptor to run

5.0 per interceptor TimeStatistic Medium

Session data counters
Data counter definitions

Name Description Version Granularity Type Level

createdSessions Number of sessions created 3.5.5
and
above

per web
application

CountStatistic Low

invalidatedSessions Number of sessions
invalidated

3.5.5
and
above

per web
application

CountStatistic Low

sessionLifeTime The average session lifetime 3.5.5
and
above

per web
application

TimeStatistic Medium

activeSessions The number of concurrently
active sessions. A session is
active if WebSphere is
currently processing a request
which uses that session.

3.5.5
and
above

per web
application

RangeStatistic High

liveSession The number of sessions that
are currently cached in
memory

5.0 and
above

per web
application

RangeStatistic High

NoRoomForNewSession Applies only to session in
memory with
AllowOverflow=false. The
number of times that a request
for a new session can not be
handled because it would
exceed the maximum session
count.

5.0 per Web
application

CountStatistic Low

Chapter 2. Monitoring performance 13

cacheDiscards Number of session objects that
have been forced out of the
cache. (An LRU algorithm
removes old entries to make
room for new sessions and
cache misses). Applicable only
for persistent sessions.

5.0 per Web
application

CountStatistic Low

externalReadTime Time (milliseconds) taken in
reading the session data from
persistent store. For multirow
sessions, the metrics are for
the attribute; for single row
sessions, the metrics are for
the whole session. Applicable
only for persistent sessions.
When using a JMS persistent
store, the user has the choice
of whether to serialize the data
being replicated. If they choose
not to serialize the data, the
counter will not be available.

5.0 per Web
application

TimeStatistic Medium

externalReadSize Size of session data read from
persistent store. Applicable
only for (serialized) persistent
sessions; similar to
externalReadTime above.

5.0 per Web
application

TimeStatistic Medium

externalWriteTime Time (milliseconds) taken to
write the session data from the
persistent store. Applicable
only for (serialized) persistent
sessions. Similar to
externalReadTime above.

5.0 per Web
application

TimeStatistic Medium

externalWriteSize Size of session data written to
persistent store. Applicable
only for (serialized) persistent
sessions. Similar to
externalReadTime above.

5.0 per Web
application

TimeStatistic Medium

affinityBreaks The number of requests
received for sessions that were
last accessed from another
Web application. This can
indicate failover processing or
a corrupt plug-in
configuration.

5.0 per Web
application

CountStatistic Low

serializableSessObjSize The size in bytes of (the
serializable attributes of)
in-memory sessions. Only
count session objects that
contain at least one serializable
attribute object. Note that a
session may contain some
attributes that are serializable
and some that are not. The
size in bytes is at a session
level.

5.0 per Web
application

TimeStatistic Max

14 IBM WebSphere Application Server Network Deployment, Version 5: Monitoring and Troublshooting

timeSinceLastActivated The time difference in
milliseconds between previous
and current access time
stamps. Does not include
session time out.

5.0 per Web
application

TimeStatistic Medium

invalidatedViaTimeout The number of requests for a
session that no CountStatistic
exists, presumeably because
the session timed out.

5.0 per Web
application

CountStatistic Low

attemptToActivateNot
ExistentSession

Number of requests for a
session that no longer exists,
presumeably because the
session timed out. Use this
counter to help determine if
the timeout is too short.

5.0 per Web
application

CountStatistic Low

Transaction data counters
Data counter definitions

Name Description Version Granularity Type Level

Number global
transactions begun

Total number of global
transactions begun on server

4.0 and
above

per transaction
manager/server

CountStatistic Low

Number global
transactions involved

Total number of global trans
involved on server (for
example, begun and imported)

4.0 and
above

per transaction
manager/server

CountStatistic Low

Number local
transactions begun

Total number of local
transactions begun on server

4.0 and
above

per transaction
manager/server

CountStatistic Low

Active global
transactions

Number of concurrently active
global transactions

3.5.5
and
above

per transaction
manager/server

CountStatistic Low

Active local
transactions

Number of concurrently active
local transactions

4.0 and
above

per transaction
manager/server

CountStatistic Low

Global transactions
duration

Average duration of global
transactions

3.5.5
and
above

per transaction
manager/server

TimeStatistic Medium

Local transaction
duration

Average duration of local
transactions

4.0 and
above

per transaction
manager/server

TimeStatistic Medium

Local transactions
before_completion time

Average duration of
before_completion for local
transactions

4.0 and
above

per transaction
manager or
server

TimeStatistic Medium

Global transaction
commit time

Average duration of commit
for global transactions

4.0 and
above

per transaction
manager/server

TimeStatistic Medium

Global transaction
prepare time

Average duration of prepare
for global transactions

4.0 and
above

per transaction
manager/server

TimeStatistic Medium

Local transaction
before_completion time

Average duration of
before_completion for local
transactions

4.0 and
above

per transaction
manager/server

TimeStatistic Medium

Local transaction
commit time

Average duration of commit
for local transactions

4.0 and
above

per transaction
manager/server

TimeStatistic Medium

Number global
transactions committed

Total number of global
transactions committed

3.5.5
and
above

per transaction
manager/server

CountStatistic Low

Chapter 2. Monitoring performance 15

Number of global
transactions rolled
back

Total number of global
transactions rolled back

3.5.5
and
above

per transaction
manager/server

CountStatistic Low

Number global
transactions optimized

Number of global transactions
converted to single phase for
optimization

4.0 and
above

per transaction
manager/server

CountStatistic Low

Number of local
transactions committed

Number of local transactions
committed

4.0 and
above

per transaction
manager/server

CountStatistic Low

Number of local
transactions rolled
back

Number of local transactions
rolled back

4.0 and
above

per transaction
manager/server

CountStatistic Low

Number of global
transactions timed out

Number of global transactions
timed out

4.0 and
above

per transaction
manager/server

CountStatistic Low

Number of local
transactions timed out

Number of local transactions
timed out

4.0 and
above

per transaction
manager/server

CountStatistic Low

ThreadPool data counters
Data counter definitions

Name Description Version Granularity Type Level

Thread creates Total number of threads
created

3.5.5
and
above

per thread pool CountStatistic Low

Thread destroys Total number of threads
destroyed

3.5.5
and
above

per thread pool CountStatistic Low

Active threads The number of concurrently
active threads

3.5.5
and
above

per thread pool RangeStatistic High

Pool size Average number of threads in
pool

3.5.5
and
above

per thread pool BoundedRangeStatistic High

Percent maxed Average percent of the time
that all threads are in use

3.5.5
and
above

per thread pool RangeStatistic High

Web application data counters
Data counter definitions

Name Description Version Granularity Type Level

numLoadedServlets Number of servlets that were
loaded

3.5.5
and
above

per Web
application

CountStatistic Low

numReloads Number of servlets that were
reloaded

3.5.5
and
above

per Web
application

CountStatistic Low

totalRequests Total number of requests a
servlet processed

3.5.5
and
above

per servlet CountStatistic Low

16 IBM WebSphere Application Server Network Deployment, Version 5: Monitoring and Troublshooting

concurrentRequests Number of requests that are
concurrently processed

3.5.5
and
above

per servlet RangeStatistic High

responseTime The response time, in
milliseconds, of a servlet
request

3.5.5
and
above

per servlet TimeStatistic Medium

numErrors Total number of errors in a
servlet or Java Server Page
(JSP)

3.5.5
and
above

per servlet CountStatistic Low

Workload Management data counters
Data counter definitions

Name Description Version Granularity Type Level

numIncomingRequests Total number of incoming
IIOP requests to an
application server

5.0 per server CountStatistic Low

numIncomingStrongAffinityRequests Number of incoming IIOP
requests to an application
server that are based on a
strong affinity. A strong
affinity request is defined as
a request that must be
serviced by this application
server because of a
dependency that resides on
the server. This request
could not successfully be
serviced on another
member in the server
cluster. In Version 5.0 ND
edition, transactional
affinity is the only example
of a strong affinity

5.0 per server CountStatistic Low

numIncomingNonAffinityRequests Number of incoming IIOP
requests to an application
server based on no affinity.
This request was sent to
this server based on
workload management
selection policies that were
decided in the Workload
Management (WLM) run
time of the client.

5.0 per server CountStatistic Low

numIncomingNonWLMObjectRequests Number of incoming IIOP
requests to an application
server that came from a
client that does not have the
WLM run time present or
where the object reference
on the client was flagged
not to participate in
workload management.

5.0 per server CountStatistic Low

Chapter 2. Monitoring performance 17

numServerClusterUpdates Number of times initial or
updated server cluster data
is sent to a server member
from the deployment
manager. This metric
determines how often
cluster information is being
propagated.

5.0 per server CountStatistic Low

numOfWLMClientServiced Number of WLM enabled
clients that have been
serviced by this application
server.

5.0 per server CountStatistic Low

numOfConcurrentRequests Number of remote IIOP
requests currently being
processed by this server

5.0 per server RangeStatistic High

serverResponseTime The response time (in
milliseconds) of IIOP
requests being serviced by
an application server. The
response time is calculated
based on the time the
request is received to the
time when the reply is sent
back out.

5.0 per server TimeStatistic Med-
ium

numOfOutgoingRequests The total number of
outgoing IIOP requests
being sent from a client to
an application server

5.0 per WLM CountStatistic Low

numClientClusterUpdates The number of times initial
or updated server cluster
data is sent to a WLM
enabled client from server
cluster member. Use this
metric to determine how
often cluster information is
being propagated.

5.0 per WLM CountStatistic Low

clientResponseTime The response time (in
milliseconds) of IIOP
requests being sent from a
client. The response time is
calculated based on the
time the request is sent
from the client to the time
the reply is received from
the server.

5.0 per WLM TimeStatistic Med-
ium

System data counters
Data counter definitions

Name Description Version Granularity Type Level

18 IBM WebSphere Application Server Network Deployment, Version 5: Monitoring and Troublshooting

percentCpuUsage The average system CPU
utilization taken over the time
interval since the last reading.
Because the first call is
required to perform
initialization, an invalid value
such as 0 will be returned. All
subsequent calls will return
the expected value. On SMP
machines, the value returned
will be the utilization averaged
over all CPUs.

5.0 per node CountStatistic Low

freeMemory The amount of real free
memory available on the
system. Real memory that is
not allocated is only a lower
bound on available real
memory, since many operating
systems take some of the
otherwise unallocated memory
and use it for additional I/O
buffering. The exact amount of
buffer memory which can be
freed up is dependent on both
the platform and the
application(s) running on it.

5.0 per node CountStatistic Low

avgCpuUsage The average percentCpuUsage
that is busy after the server is
started

5.0 per node TimeStatistic Medium

Dynamic cache data counters
Data counter definitions

Name Description Version Granularity Type Level

maxInMemoryCacheSize Maximum number of
in-memory cache entries

5.0 per server CountStatistic Low

inMemoryCacheSize Current number of
in-memory cache entries

5.0 per server CountStatistic Low

totalTimeoutInvalidation Aggregate of template
timeouts and disk timeouts

5.0 per server CountStatistic Low

hitsInMemory Requests for this cacheable
object served from memory

5.0 per template CountStatistic Low

hitsOnDisk Requests for this cacheable
object served from disk

5.0 per template CountStatistic Low

explicitInvalidations Total explicit invalidation
issued for this template

5.0 per template CountStatistic Low

lruInvalidations Cache entries evicted from
memory by a Least Recently
Used algorithm. These
entries are passivated to disk
if disk overflow is enabled.

5.0 per template CountStatistic Low

Chapter 2. Monitoring performance 19

timeoutInvalidations Cache entries evicted from
memory and/or disk
because their timeout has
expired

5.0 per template CountStatistic Low

Entries Current number of cache
entries created from this
template. Refers to the
per-template equivalent of
totalCacheSize.

5.0 per template CountStatistic Low

hitsRemove Requests for this cacheable
object served from other
Java Virtual Machines (JVM)
in the cluster

5.0 per template CountStatistic Low

Misses Requests for this cacheable
object that were not found in
the cache

5.0 per template CountStatistic Low

RequestFromClient Requests for this cacheable
object generated by
applications running on the
application server

5.0 per template CountStatistic Low

requestsFromJVM Requests for this cacheable
object generated by
cooperating caches in this
cluster

5.0 per template CountStatistic Low

explicitInvalidationsFromMemory Explicit invalidations
resulting in an entry being
removed from memory

5.0 per template CountStatistic Low

explicitInvalidationsFromDisk Explicit invalidations
resulting in an entry being
removed from disk

5.0 per template CountStatistic Low

explicitInvalidationsNoOp Explicit invalidations
received for this template
where no corresponding
entry exists

5.0 per template CountStatistic Low

explicitInvalidationsLocal Explicit invalidations
generated locally, either
programmatically or by a
cache policy

5.0 per template CountStatistic Low

explicitInvalidationsRemote Explicit invalidations
received from a cooperating
JVM in this cluster

5.0 per template CountStatistic Low

remoteCreations Entries received from
cooperating dynamic caches

5.0 per template CountStatistic Low

Performance data classification
Performance Monitoring Infrastructure provides server-side data collection and
client-side API to retrieve performance data. Performance data has two
components: static and dynamic.

The static component consists of a name, ID and other descriptive attributes to
identify the data. The dynamic component contains information that changes over
time, such as the current value of a counter and the time stamp associated with
that value.

20 IBM WebSphere Application Server Network Deployment, Version 5: Monitoring and Troublshooting

The PMI data can be one of the following statistical types defined in the JSR-077
specification:
v CountStatistic
v BoundaryStatistic
v RangeStatistic
v TimeStatistic
v BoundedRangeStatistic

In general, CountStatistic data require a low monitoring level and TimeStatistic data
require a medium monitoring level. RangeStatistic and BoundedRangeStatistic
require a high monitoring level.

There are a few counters that are exceptions to this rule. The average method
response time, the total method calls, and active methods counters require a high
monitoring level. The Java Virtual Machine Profiler Interface (JVMPI) counters,
SerializableSessObjSize, and data tracked for each individual method (method level
data) require a maximum monitoring level.

name: String
unit: String
descriptions: String
startTime: long

Statistic

count: long

CountStatistic

upperBound: long
lowerBound: long

highWaterMark: long
lowWaterMark: long

count: long
maxTime: long
minTime: long
totalTime: long
RequestRate: double

BoundaryStatistic RangeStatistic TimeStatistic

BoundedRangeStatistic

In previous versions, PMI data was classified with the following types:
v Numeric: Maps to CountStatistic in the JSR-077 specification. Holds a single

numeric value that can either be a long or a double. This data type is used to
keep track of simple numeric data, such as counts.

v Stat: Holds statistical data on a sample space, including the number of elements
in the sample set, their sum, and sum of squares. You can obtain the mean,
variance, and standard deviation of the mean from this data.

v Load: Maps to the RangeStatistic or BoundedRangeStatistic, based on JSR-077
specification. This data type keeps track of a level as a function of time,
including the current level, the time that level was reached, and the integral of
that level over time. From this data, you can obtain the time-weighted average
of that level. For example, this data type is used in the number of active threads
and the number of waiters in a queue.

Chapter 2. Monitoring performance 21

These PMI data types continue to be supported through the PMI API. Statistical
data types are supported through both the PMI API and Java Management
Extension (JMX) API.

The TimeStatistic type keeps tracking many counter samples and then returns the
total, count and average of the samples. An example of this is an average method
response time. Given the nature of this statistic type, it is also used to track
non-time related counters, like average read and write size. You can always call
getUnit method on the data configuration information to learn the unit for the
counter.

In order to reduce the monitoring overhead, numeric and stat data are not
synchronized. Since these data track the total and average, the extra accuracy is
generally not worth the performance cost. Load data is very sensitive, therefore,
load counters are always synchronized. In addition, when the monitoring level of a
module is set to max, all numeric data are also synchronized to guarantee accurate
values.

Enabling PMI services through the administrative console
In order to monitor performance data through the PMI interfaces, you must first
enable the performance monitoring services through the administrative console.

Steps for this task
1. Open the administrative console.
2. Click Servers > Application Servers in the console navigation tree.
3. Click server.
4. Click the Configuration tab.
5. Click Performance Monitoring Service.
6. Select the checkbox Startup.
7. (Optional) Select the PMI modules and levels to set the initial specification

level field.
8. Click Apply or OK.
9. Click Save.

10. Restart the application server.
The changes you make will not take affect until you restart the application
server.

What to do next

While you are in the Configuration tab, you can only update the settings located
in the Configuration tab. If you want to dynamically change the PMI level settings
when the application server is running, you have to click the Runtime tab in step
4, instead of the Configuration tab, and make the changes there.

22 IBM WebSphere Application Server Network Deployment, Version 5: Monitoring and Troublshooting

Enabling performance data collection through the administrative
console

To enable data collection in the administrative console, select the Performance
Monitoring Infrastructure (PMI) modules and levels that you want to monitor.

Steps for this task
1. Open the administrative console.
2. Click Servers > Application Servers in the console navigation tree.
3. Click server.
4. Click the Runtime tab.
5. Click Performance Monitoring Service.
6. Select the PMI modules and levels to set the initial specification level field.
7. Click Apply or OK.
8. Click Save.

What to do next

These changes will take effect immediately, but will not be persistent. Use the
Configuration tab for a persistent change. See Enabling PMI services through the
administrative console for more information about making a persistent change.

Performance monitoring service settings
Use this page to specify settings for performance monitoring, including enabling
performance monitoring, selecting the PMI module and setting monitoring levels.

To view this administrative console page, click Servers > Application Servers >
server > Performance Monitoring.

Startup
Specifies whether the application server attempts to start the specified service. If an
application server is started when the performance monitoring service is disabled,
you will have to restart the server in order to enable it.

Initial specification level
Specifies a Performance Monitoring Infrastructure (PMI) string that stores PMI
specification levels, for example module levels, for all components in the server.

Set the PMI specification levels by selecting the none, standard or custom checkbox.
If you choose none, all PMI modules are set to the none level. Choosing standard,
sets all PMI modules to high and enables all PMI data excluding the method level
data and JVMPI data. Choosing custom, gives you the option to change the level
for each individual PMI module. You can set the level to N, L, M, H or X (none,
low, medium, high and maximum). Note that you should not change the module
names.

Specifications
Specifies the PMI module and monitoring level that you have set.

Set the PMI specification levels by selecting the none, standard or custom checkbox.
If you choose none, all PMI modules are set to the none level. Choosing standard,
sets all PMI modules to high and enables all PMI data excluding the method level
data and JVMPI data. Choosing custom, gives you the option to change the level

Chapter 2. Monitoring performance 23

for each individual PMI module. You can set the level to N, L, M, H or X (none,
low, medium, high and maximum). Note that you should not change the module
names.

Enabling performance monitoring services using the command line
You can use the command line to enable performance monitoring services.

Steps for this task
1. Enable PMI services through the administrative console.

Make sure to restart the application server.
2. Run the wsadmin command.

Using wsadmin, you can invoke operations on Perf Mbean to obtain the PMI
data, set or obtain PMI monitoring levels and enable data counters.
The following operations in Perf MBean can be used in wsadmin:
/** Set instrumentation level using String format
* This should be used by scripting for an easy String processing
*/ The level STR is a list of moduleName=Level connected by ":".
public void setInstrumentationLevel(String levelStr, Boolean recursive);

/** Get instrumentation level in String for all the top level modules
* This should be used by scripting for an easy String processing
*/ public String getInstrumentationLevelString();

/** Return the PMI data in String
*
*/ public String getStatsString(ObjectName on, Boolean recursive);

/** Return the PMI data in String
* Used for PMI modules/submodules without direct MBean mappings.
* public String getStatsString(ObjectName on, String submoduleName,
*/ Boolean recursive);

/**
* Return the submodule names if any for the MBean
*/
public String listStatMemberNames(ObjectName on);

If an MBean is a StatisticProvider and if you pass its ObjectName to
getStatsString, you will get the Statistic data for that MBean. MBeans with the
following MBean types are statistic providers:
v DynaCache
v EJBModule
v EntityBean
v JDBCProvider
v J2CResourceAdapter
v JVM
v MessageDrivenBean
v ORB
v Server
v SessionManager
v StatefulSessionBean
v StatelessSessionBean
v SystemMetrics

24 IBM WebSphere Application Server Network Deployment, Version 5: Monitoring and Troublshooting

v ThreadPool
v TransactionService
v WebModule
v Servlet
v WLMAppServer
v WebServicesService
v WSGW

Usage scenario

The following are sample commands in wsadmin you can use to obtain PMI data:

Obtain the Perf MBean ObjectName
wsadmin>set perfName [$AdminControl completeObjectName type=Perf,*]
wsadmin>set perfOName [$AdminControl makeObjectName $perfName]

Invoke getInstrumentationLevelString operation

v use invoke since it has no parameter

wsadmin>$AdminControl invoke $perfName getInstrumentationLevelString

This command returns the following (split for publication):
beanModule=H:cacheModule=H:connectionPoolModule=H:j2cModule=H:jvmRuntimeModule=H:
orbPerfModule=H:servletSessionsModule=H:systemModule=H:threadPoolModule=H:
transactionModule=H:webAppModule=H

Note that you can change the level (n, l, m, h, x) in the above string and then pass
it to setInstrumentationLevel method.

Invoke setInstrumentationLevel operation

v set parameters (″pmi=l″ is the simple way to set all modules to the low level)
wsadmin>set params [java::new {java.lang.Object[]} 2]
wsadmin>$params set 0 [java::new java.lang.String pmi=l]
wsadmin>$params set 1 [java::new java.lang.Boolean true]

v set signatures
wsadmin>set sigs [java::new {java.lang.String[]} 2]
wsadmin>$sigs set 0 java.lang.String
wsadmin>$sigs set 1 java.lang.Boolean

v invoke the method: use invoke_jmx since it has parameter
wsadmin>$AdminControl invoke_jmx $perfOName setInstrumentationLevel $params $sigs

This command does not return anything.

Note that the PMI level string can be as simple as pmi=level (where level is n, l, m,
h, or x) or something like module1=level1:module2=level2:module3=level3 with the
same format shown in the string returned from getInstrumentationLevelString.

Invoke getStatsString(ObjectName, Boolean) operation As an example, JVM
MBean is used here.
v get MBean query string - e.g., JVM MBean

wsadmin>set jvmName [$AdminControl completeObjectName type=JVM,*]

v set parameters

Chapter 2. Monitoring performance 25

wsadmin>set params [java::new {java.lang.Object[]} 2]
wsadmin>$params set 0 [$AdminControl makeObjectName $jvmName]
wsadmin>$params set 1 [java::new java.lang.Boolean true]

v set signatures
wsadmin>set sigs [java::new {java.lang.String[]} 2]
wsadmin>$sigs set 0 javax.management.ObjectName wsadmin>$sigs set 1 java.lang.Boolean

v invoke method
wsadmin>$AdminControl invoke_jmx $perfOName getStatsString $params $sigs

This command returns the following:
{Description jvmRuntimeModule.desc} {Descriptor {{Node wenjianpc} {Server server
1} {Module jvmRuntimeModule} {Name jvmRuntimeModule} {Type MODULE}}} {Level 7} {
Data {{{Id 4} {Descriptor {{Node wenjianpc} {Server server1} {Module jvmRuntimeM
odule} {Name jvmRuntimeModule} {Type DATA}}} {PmiDataInfo {{Name jvmRuntimeModul
e.upTime} {Id 4} {Description jvmRuntimeModule.upTime.desc} {Level 1} {Comment {
The amount of time in seconds the JVM has been running}} {SubmoduleName null} {T
ype 2} {Unit unit.second} {Resettable false}}} {Time 1033670422282} {Value {Coun
t 638} }} {{Id 3} {Descriptor {{Node wenjianpc} {Server server1} {Module jvmRunt
imeModule} {Name jvmRuntimeModule} {Type DATA}}} {PmiDataInfo {{Name jvmRuntimeM
odule.usedMemory} {Id 3} {Description jvmRuntimeModule.usedMemory.desc} {Level 1
} {Comment {Used memory in JVM runtime}} {SubmoduleName null} {Type 2} {Unit uni
t.kbyte} {Resettable false}}} {Time 1033670422282} {Value {Count 66239} }} {{Id
2} {Descriptor {{Node wenjianpc} {Server server1} {Module jvmRuntimeModule} {Nam
e jvmRuntimeModule} {Type DATA}}} {PmiDataInfo {{Name jvmRuntimeModule.freeMemor
y} {Id 2} {Description jvmRuntimeModule.freeMemory.desc} {Level 1} {Comment {Fre
e memory in JVM runtime}} {SubmoduleName null} {Type 2} {Unit unit.kbyte} {Reset
table false}}} {Time 1033670422282} {Value {Count 34356} }} {{Id 1} {Descriptor
{{Node wenjianpc} {Server server1} {Module jvmRuntimeModule} {Name jvmRuntimeMod
ule} {Type DATA}}} {PmiDataInfo {{Name jvmRuntimeModule.totalMemory} {Id 1} {Des
cription jvmRuntimeModule.totalMemory.desc} {Level 7} {Comment {Total memory in
JVM runtime}} {SubmoduleName null} {Type 5} {Unit unit.kbyte} {Resettable false}
}} {Time 1033670422282} {Value {Current 100596} {LowWaterMark 38140} {HighWaterM
ark 100596} {MBean 38140.0} }}}}

Invoke getStatsString(ObjectName, String, Boolean) operation

v get MBean query string - for example, server MBean (split for publication)
wsadmin>set mySrvName

[$AdminControl completeObjectName type=Server,name=server1,node=wenjianpc,*]

v set parameters
wsadmin>set params [java::new {java.lang.Object[]} 3]
wsadmin>$params set 0 [$AdminControl makeObjectName $mySrvName]
wsadmin>$params set 1 [java::new java.lang.String beanModule]
wsadmin>$params set 2 [java::new java.lang.Boolean true]

v set signatures
wsadmin>set sigs [java::new {java.lang.String[]} 3]
wsadmin>$sigs set 0 javax.management.ObjectName
wsadmin>$sigs set 1 java.lang.String
wsadmin>$sigs set 2 java.lang.Boolean

v invoke method
wsadmin>$AdminControl invoke_jmx $perfOName getStatsString $params $sigs

This command returns all the beans within the BeanModule hierarchy.

Note that this method is used to get stats data for the PMI modules that do not
have direct MBean mappings.

Invoke listStatMemberNames operation

v get MBean queryString - for example, Server (split for publication)

26 IBM WebSphere Application Server Network Deployment, Version 5: Monitoring and Troublshooting

wsadmin>set mySrvName
[$AdminControl completeObjectName type=Server,name=server1,node=wenjianpc,*]

v set parameter
wsadmin>set params [java::new {java.lang.Object[]} 1]
wsadmin>$params set 0 [$AdminControl makeObjectName $mySrvName]

v set signatures
wsadmin>set sigs [java::new {java.lang.String[]} 1]
wsadmin>$sigs set 0 javax.management.ObjectName
wsadmin>$AdminControlinvoke_jmx $perfOName listStatMemberNames $params $sigs

This command returns the PMI module and submodule names, which have no
direct MBean mapping. The names are separated by a space ″ ″. You can then use
the name as the String parameter in getStatsString method, for example (split for
publication):
beanModule connectionPoolModule j2cModule servletSessionsModule threadPoolModule
webAppModule

Enabling Java Virtual Machine Profiler Interface data reporting
To enable Java Virtual Machine Profiler Interface (JVMPI) data reporting for each
individual application server:

Steps for this task
1. Open the administrative console.
2. Click Servers > Application Servers in the console navigation tree.
3. Click the application server for which JVMPI needs to be enabled.
4. Click Process Definition

5. Click the Java Virtual Machine.
6. Type -XrunpmiJvmpiProfiler in the genericJvmArguments field.
7. Set the JVM level to MAX.
8. Click Apply or OK.
9. Click Save.

10. Start the application server, or restart the application server if it is currently
running.

11. Refresh the Tivoli Performance Viewer if you are using it.

Java Virtual Machine Profiler Interface
The Tivoli Performance Viewer leverages a Java Virtual Machine Profiler Interface
(JVMPI) to enable more comprehensive performance analysis. This profiling tool
enables the collection of information, such as data about garbage collection, and
the Java virtual machine (JVM) API that runs the application server.

JVMPI is a two-way function call interface between the JVM API and an in-process
profiler agent. The JVM API notifies the profiler agent of various events, such as
heap allocations and thread starts. The profiler agent can activate or deactivate
specific event notifications, based on the needs of the profiler.

JVMPI supports partial profiling by enabling the user to choose which types of
profiling information to collect and to select certain subsets of the time during
which the JVM API is active. JVMPI moderately increases the performance impact.

This function is available on the Windows, AIX, and Solaris platforms.

Chapter 2. Monitoring performance 27

Monitoring performance with Tivoli Performance Viewer (formerly
Resource Analyzer)

The Resource Analyzer has been renamed Tivoli Performance Viewer.

Tivoli Performance Viewer is a Graphical User Interface (GUI) performance
monitor for WebSphere Application Server.

Monitor and analyze the data with Tivoli Performance Viewer with these tasks:

Steps for this task
1. Start the Tivoli Performance Viewer.
2. Set monitoring levels.
3. View summary reports.
4. (Optional) Store data to a log file.
5. (Optional) Replay a performance data log file.
6. (Optional) View and modify performance chart data.
7. (Optional) Scale the performance data chart display.
8. (Optional) Refresh data.
9. (Optional) Clear values from tables and charts.

10. (Optional) Reset counters to zero.

Tivoli Performance Viewer features
Tivoli Performance Viewer is a Java client which retrieves the Performance
Monitoring Infrastructure (PMI) data from an application server and displays it in
a variety of formats.

You can do the following tasks with the Tivoli Performance Viewer:
v View data in real time
v Record current data in a log, and replay the log later
v View data in chart form, allowing visual comparison of multiple counters. Each

counter can be scaled independently to enable meaningful graphs.
v View data in tabular form
v Compare data for single resources to aggregate data across a node

To minimize the performance impact, Tivoli Performance Viewer polls the server at
an interval set by the user. All data manipulations are done in the Tivoli
Performance Viewer client, which can be run on a separate machine, further
reducing the impact.

The Tivoli Performance Viewer graphical user interface includes the following:
v Resource selection panel
v Data monitoring panel
v Menu bar
v Toolbar icons
v Node icons
v Status bar

28 IBM WebSphere Application Server Network Deployment, Version 5: Monitoring and Troublshooting

1

1
2
3

- Resource Selection Panel
- Counter Selection panel
- Viewing Counter (chart and table views)

3

2

Layout of the console

The performance viewer main window consists of two panels: the Resource
Selection panel and the Data Monitoring panel. The Resource Selection panel,
located on the left, provides a view of resources for which performance data can be
displayed. The Data Monitoring panel, located on the right, displays numeric and
statistical data for the resources that are highlighted (selected) in the Resource
Selection panel.

You can adjust the width of the Resource Selection and Data Monitoring panels by
dragging the split bar left or right. You can rearrange the order of the table
columns in the Data Monitoring panel by dragging the column heading left or
right. You can also adjust the width of the columns by dragging the edge of the
column left or right.

Resource selection panel

The Resource Selection panel provides a hierarchical (tree) view of resources and
the types of performance data available for those resources. Use this panel to select
which resources to monitor and to start and stop data retrieval for those resources.

The Resource Selection panel displays resources and associated resource categories
in an indented tree outline. Clicking the plus (+) and minus (-) symbols expands
and collapses the tree to reveal the categories for the various resource instances.
The resource tree can also be navigated by using the up and down arrow keys to
cycle through the branches and by using the left and right arrow keys to expand
and collapse the tree of resources. Resource instances can be expanded to reveal
the instances they contain, if applicable. For example, when a EJB JAR instance is
expanded, the enterprise bean instances in the EJB JAR are revealed. The Data
Monitoring panel automatically displays the appropriate selection of counters for
any objects highlighted in the Resource Selection panel.

Chapter 2. Monitoring performance 29

The first level of the hierarchy includes all nodes (machines) in the administrative
domain, followed by all application servers on the node. Below each application
server, all resource categories are listed. If the enterprise beans category is
expanded, all EJB JAR instances in the server are displayed. Next, all enterprise
bean instances appear below the EJB JAR in the hierarchy. Then, a methods
resource is associated with each bean. Clicking an individual bean or EJB JAR
instance causes its corresponding counters to be displayed in the Data Monitoring
panel. For enterprise beans, the counters displayed depend on whether the bean is
an entity bean or a session bean. For EJB JARs, the counters are aggregate counters
for all enterprise beans in the EJB JARs. See Performance data organization for
more information.

Data monitoring panel

The Data Monitoring panel enables the selection of multiple counters and displays
the resulting performance data for the currently selected resource. It contains two
panels: the Viewing Counter panel above and the Counter Selection panel below.

Counter selection panel

The Counter Selection panel shows the counters available for the resource
performance category selection.

Two factors determine the list of available counters in the Counter Selection panel:
v Only counters associated with the resource that is selected in the Resource

Selection panel are displayed.
v Only counters having impact cost ratings within or below the instrumentation or

monitoring level that is set for that resource in the administrative domain are
displayed.

The first three counters shown for each resource performance category are selected
by default. All counters can be selected or deselected, and the resulting output,
shown in the top panel, automatically reflects the selection.

The columns in the Counter Selection panel supply the following information for
each counter:
v Name. The names of the counters that are available for selection with this

resource.
v Description. A brief description of the function of each counter.
v Value. The value for the counter, displayed according to the display mode in

effect. Values are actual values (not scaled values used for the chart, if
applicable).

v Select. A check box that indicates whether a counter is to be reflected in the
chart. To hide data, clear the check box. The column representing that counter is
then removed from the View Data window, and the graphic display for that
counter is removed from the View Chart window.

v Scale. A value indicating whether data has been scaled (amplified or
diminished) from its actual value to fit on the chart. This value is reflected only
in the View Chart window.
The value for the Scale column can be set manually by editing the value of the
Scale field. See Scaling the chart display manually for information on manually
setting the scale.

Viewing Counter panel

30 IBM WebSphere Application Server Network Deployment, Version 5: Monitoring and Troublshooting

When a counter on the list in the Counter Selection panel is selected, the statistics
gathered from that counter are displayed in the Viewing Counter panel at the top
of the Data Monitoring panel.

The View Data window shows the counter’s output in table format; the View Chart
window displays a graph with time represented on the x-axis and the performance
value represented on the y-axis. One or more performance counters can be
simultaneously graphed on a single chart. The chart plots data from n data points,
where n is the current table size (number of rows).

Display of multiple resources and aggregate data

When a single resource is selected in the Resource Selection panel, the Data
Monitoring panel displays a choice of a table view or a chart view. If multiple
resources are selected, the Data Monitoring panel displays a single data sheet for
viewing summary information for the selected resources. The data sheet displays
the tables for all objects of similar type for the selected resources. For example, if
three servlet instances are selected, the data sheet displays a table of counter values
for all the servlets. By default, the display buffer size is set to 40 rows,
corresponding to the values of the last 40 data points retrieved.

The performance viewer provides aggregate data at the module level. If aggregate
data is available for a group, it is displayed in the Data Monitoring panel. For
example, for each enterprise bean home interface, counters track the number of
active enterprise beans of that home. Each EJB JAR has an aggregate value that is
the sum of all the enterprise beans in that EJB JAR. The enterprise beans resource
category (module) within the application server has an aggregate value that is the
sum of all enterprise beans in all EJB JARs.

Menu bar

The menu bar contains the following options:
v File menu. Used to change to current mode (from logging mode), to open an

existing log file, and to exit from the performance viewer. The File menu
contains the following items:
– Refresh. Queries the administrative server for any newly started resources

since data retrieval began or for additional counters to report. This operation
is also recursive over all components subordinate to the selected resources.
Tivoli Performance Viewer refreshes data every 10 seconds. When changing
the refresh rate, you must use an integer greater than or equal to 1.

– Current Activity. Resumes the display of real-time data in tables and charts.
This menu option is used to stop viewing data from a log file and return to
viewing real-time data.

– Log. Displays a dialog box for specifying the name and location of an existing
log file to be replayed.

– Exit. Closes the performance viewer. If you made changes to the
instrumentation levels of any resources during the session, a dialog box opens
to ask whether you want to save the changed settings before closing the tool.

v Logging menu. Provides On and Off options that are used to start and stop
recording data in a log file. If you start a new log file and specify the same file
name, the file is overwritten.

v Setting menu. Used to start and stop the reporting of data, and to clear and
refresh data. The Setting menu contains the following items:

Chapter 2. Monitoring performance 31

– Clear Buffer. Deletes the values currently displayed in tables and charts. For
example, after stopping a counter, you can use this operation to remove the
remaining data from a table.

– Reset to Zero. Resets cumulative counters of the selected performance group
back to zero.

– View Data As. Specifies how counter values are displayed. You can choose
whether to display absolute values, changes in values, or rates of change.
How data is displayed differs slightly depending on where you are viewing
data. The choices follow:
- Raw Value. Displays the absolute value. If the counter represents load data,

such as the average number of connections in a database pool, then the
Tivoli Performance Viewer displays the current value followed by the
average. For example, 18 (avg:5).

- Change in Value. Displays the change in the current value from the
previous value.

- Rate of Change. Displays the ratio change/(T1 - T2), where change is the
change in the current value from the previous value, T1 is the time when
the current value was retrieved and T2 is the time when the previous value
was retrieved.

– Log Replay. Includes Rewind Stop Play Fast Forward .

Note that right-clicking a resource in the Resource Selection panel displays a
menu that provides the following options: Refresh, Clear Buffer, and Reset to
Zero.

v Help menu. Provides information for users.

Toolbar icons

Toolbar icons provide shortcuts to frequently used commands. The toolbar includes
the following icons:
v Refresh. Updates data and structures for the selected resources. That is, it polls

the administrative server to retrieve new information about additional counters
to display or new servers recently added to the domain.

v Clear Buffer. Deletes the values currently displayed in all tables and charts.
v Reset to Zero. Resets the counters.

Node icons

In the Resource Selection panel, the color of the node icon indicates the current
state and availability of the application server in the domain.
v Green—The resource is running and available.
v Red—The resource is stopped.

Status bar

The status bar across the bottom of the performance viewer window dynamically
displays the current state of the reporting values. The following state information
is reported in the status bar:
v The current setting for the refresh rate
v The buffer size in use in the current Viewing Counter panel
v The display mode in use in the current Viewing Counter panel
v The current state of the logging setting

32 IBM WebSphere Application Server Network Deployment, Version 5: Monitoring and Troublshooting

Starting the Tivoli Performance Viewer
An alternative way to collect data is to use the Tivoli Performance Viewer, a
Graphical User Interface (GUI) performance monitor shipped with WebSphere
Application Server.

Steps for this task
1. Enable PMI services through the administrative console.
2. Start the Tivoli Performance Viewer.

This can be done in two ways:
a. Start performance monitoring from the command line.

Go to the <product_installation_directory/bin directory and run the
tperfviewer script.
You can specify the host and port in Windows NT and 2000 environments
as:
tperfviewer.bat host_name port_number connector_type

or

On the AIX and other UNIX platforms, use
tperfviewer.sh host_name port_number connector_type

for example:
tperfviewer.bat localhost 8879 SOAP

Connector_type can be either SOAP or RMI.

8879 is the default ND port for SOAP connector.

9809 is the default ND port for RMI connector
b.

Click Start > Programs > IBM WebSphere > Application Server v.50 >
Tivoli Performance Viewer.
Tivoli Performance Viewer detects which package of WebSphere Application
Server you are using and connects using the default Remote Method
Invocation (RMI) connector port. If the connection fails, a dialog is
displayed to provide new connection parameters.
You can connect to a remote host or a different port number, by using the
command line to start the performance viewer.

3. Adjust the data collection settings.
Refer to the instructions in Setting performance monitoring levels.

Setting performance monitoring levels
Before you begin

The monitoring settings determine which counters are enabled. Changes made to
the settings from Tivoli Performance Viewer affect all applications using the
Performance Monitoring Infrastructure (PMI) data.

To view monitoring settings:

Steps for this task

Chapter 2. Monitoring performance 33

1. Choose the Data Collection icon on the Resource Selection panel.
This selection provides two options on the Counter Selection panel. Choose the
Current Activity option to view and change monitoring settings. Alternatively,
use File> Current Activity to view the monitoring settings.

2. Set monitoring levels by choosing one of the following options:
v None: Provides no data collection
v Standard: Enables data collection for all modules except enterprise bean

method level data
v Custom: Allows customized settings for each module

These options apply to an entire application server.
3. (Optional) Fine tune the monitoring level settings.

a. Click Specify.
This sets the monitoring level to custom.

b. Select a monitoring level.
For each resource, choose a monitoring level of None, Low, Medium, High
or Maximum. The dial icon will change to represent this level. Note: The
instrumentation level is set recursively to all elements below the selected
resource. You can override this by setting the levels for children AFTER
setting their parents.

4. Click OK.
5. Click Apply.

Results

If the instrumentation level excludes a counter, that counter does not appear in the
tables and charts of the performance viewer. For example, when the
instrumentation level is set to low, the thread pool size is not displayed because
that counter requires a level of high.

Note that monitoring levels can also be set through the administrative console. See
Enabling performance data collection through the administrative console for more
information.

Viewing summary reports
Before you begin

Summary reports are available for each application server. Before viewing reports,
make sure data counters are enabled and monitoring levels are set properly.

The standard monitoring level will enable all reports except the report on
enterprise bean methods. To enable enterprise bean method reports, use the custom
monitoring setting and set the monitoring level to Max for the enterprise bean
module.

To view the summary reports:

Steps for this task
1. Click the application server icon in the navigation tree.
2. Click the appropriate column header to sort the columns in the report.

34 IBM WebSphere Application Server Network Deployment, Version 5: Monitoring and Troublshooting

Changing the refresh rate of data retrieval
Before you begin

By default, the Tivoli Performance Viewer retrieves data every 10 seconds.

To change the rate at which data is retrieved:

Steps for this task
1. Click Setting > Set Refresh Rate.
2. Type a positive integer representing the number of seconds in the Set Refresh

Rate dialog box.
3. Click OK.

Changing the display buffer size
To change the size of the buffer and the number of rows displayed:

Steps for this task
1. Click Setting > Set Buffer Size.
2. Type the number of rows to display in the Set Buffer Size dialog box.
3. Click OK.

Viewing and modifying performance chart data
Before you begin

The View Chart tab displays a graph with time as the x-axis and the performance
value as the y-axis.

To view data in a chart:

Steps for this task
1. Click a resource in the Resource Selection panel.
2. Click the View Chart tab in the Data Monitoring panel.

Negative results display as zero (0). If necessary, you can set the scaling factors
by typing directly in the scale field. See Scaling the performance data chart
display for more information.

Scaling the performance data chart display
You can manually adjust the scale for counters so that the graphic displays enable
meaningful comparisons between graphs of different counters. Follow these steps
to manually adjust the scale:

Steps for this task
1. Double-click the Scale column for the counter that you want to modify.
2. Type the desired value in the field for the Scale value.

The View Chart display immediately reflects the change in the scaling factor.

Results

The possible values for the Scale field range from 0 to 100 and show the following
relationships:

Chapter 2. Monitoring performance 35

v A value equal to 1 indicates that the value is the actual value. The value
represents the default setting.

v A value greater than 1 indicates that the variable value is amplified by the factor
shown. For example, a scale setting of 1.5 means that the the variable is graphed
as one and one-half times their actual values.

v A value less than 1 indicates that the variable value is decreased by the factor
shown. For example, a scale setting of .5 means that the the variable is graphed
as one-half its actual values.

Scaling only applies to the graphed values.

Refreshing data
The refresh operation is a local, not global, operation that applies only to selected
resources. The refresh operation is recursive; all subordinate or children resources
refresh when a selected resource refreshes. To refresh data:

Steps for this task
1. Click one or more resources in the Resource Selection panel.
2. Click File > Refresh. Alternatively, click the Refresh icon or right-click the

resource and select Refresh.

Performance data refresh behavior
New performance data can become available in either of the following situations:
v An administrator uses the console to change the instrumentation level for a

resource (for example, from medium to high).
v An administrator uses the console to add a new resource (for example, an

enterprise bean or a servlet) to the run time.

In both cases, if the resource in question is already polled by the Tivoli
Performance Viewer or the parent of the resource is being polled, the system is
automatically refreshed. If more counters are added for a group that the
performance viewer is already polling, the performance viewer automatically adds
the counters to the table or chart views. If the parent of the newly added resource
is polled, the new resource is detected automatically and added to the Resource
Selection tree. You can refresh the Resource Selection tree, or parts of it, by
selecting the appropriate node and clicking the Refresh icon, or by right-clicking a
resource and choosing Refresh.

When an application server runs, the performance viewer tree automatically
updates the server local structure, including its containers and enterprise beans, to
reflect changes on the server. However, if a stopped server starts after the
performance viewer starts, a manual refresh operation is required so that the
server structure accurately reflects in the Resource Selection tree.

Clearing values from tables and charts
Before you begin

Selecting Clear Values removes remaining data from a table or chart. You can then
begin populating the table or chart with new data.

To clear the values currently displayed:

Steps for this task

36 IBM WebSphere Application Server Network Deployment, Version 5: Monitoring and Troublshooting

1. Click one or more resources in the Resource Selection panel.
2. Click Setting > Clear Values. Alternatively, right-click the resource and select

Clear Values

Storing data to a log file
You can save all data reported by the Tivoli Performance Viewer in a log file and
write the data in binary format (serialized Java objects) or XML format.

To start recording data:

Steps for this task
1. Click Logging > On or click the Logging icon.
2. Specify the name, location, and format type of the log file in the Save dialog

box.
The Files of type field allows an extension of *.perf for binary files or *.xml
for XML format. The XML format provides a flexibility that enables analysis by
using third-party tools.

3. Click OK.

What to do next

To stop logging, click Logging > Off or click the Logging icon.

Performance data log file
An example of the performance data log file format is below.

Location

By default, this file is written to:
product_installation_root/logs/ra_mmdd_hhmm.xml

where mmdd=month and date, and hhmm=hour and minute

Usage Notes

This read-write data file is created by Tivoli Performance Viewer and provides data
collected by the performance viewer. The log file is not updated, but remains
available for you to replay the collected data. The performance data log file does
not have an effect on the WebSphere environment.

Example
<?xml version="1.0"?>
<RALog version="5.0">
<RAGroupSnapshot time="1019743202343" numberGroups="1">

<CpdCollection name="root/peace/Default Server/jvmRuntimeModule" level="7">
<CpdData name="root/peace/Default Server/jvmRuntimeModule/jvmRuntimeModule.total/Memory"

id="1">
<CpdLong value="39385600" time="1.019743203334E12"/>
</CpdData>
<CpdData name="root/peace/Default Server/jvmRuntimeModule/jvmRuntimeModule.freeMemory"

id="2">
<CpdLong value="4815656" time="1.019743203334E12"/>
</CpdData>
<CpdData name="root/peace/Default Server/jvmRuntimeModule/jvmRuntimeModule.usedMemory"

id="3">
<CpdLong value="34569944" time="1.019743203334E12"/>

Chapter 2. Monitoring performance 37

</CpdData>
</CpdCollection>
</RAGroupSnapshot>
</RALog>

Replaying a performance data log file
Before you begin

You can replay both binary and XML logs by using the Tivoli Performance Viewer.

To replay a log file, do the following:

Steps for this task
1. Click Data Collection in the navigation tree.
2. Click the Log radio button in the Performance data from field.
3. Click Browse to locate the file that you want to replay or type the file

pathname in the Log field.
4. Click Apply.
5. Play the log by using the Play icon or click Setting > Log Replay > Play.

Results

By default, the data replays at the same rate it was collected or written to the log.
If data is collected every minute, it displays every minute. You can choose Fast
Forward mode in which the log replays without simulating the refresh interval. To
Fast Forward, use the button in the tool bar or click Setting > Log Replay > Fast
Forward.

To rewind a log file, click Setting > Log Replay > Rewind or use the Rewind icon
in the toolbar.

While replaying the log, you can choose different groups to view by selecting them
in the Resource Selection pane. You can also view the data in either of the views
available in the tabbed Data Monitoring panel.

You can stop and resume the log at any point. However, you cannot replay data in
reverse.

Resetting counters to zero
Some counters report relative values based on how much the value has changed
since the counter was enabled. The Reset to Zero operation resets those counters
so that they will report changes in values since the reset operation. This operation
will also clear the buffer for the selected resources. See Clearing values from tables
and charts for more information about clearing the buffer for selected resources.
Counters based on absolute values can not be reset and will not be affected by the
Reset to Zero operation.

To reset the start time for calculating relative counters:

Steps for this task
1. Click one or more resources in the Resource Selection panel.
2. Click Setting > Reset to Zero. Alternatively, right-click the resource and click

Reset to Zero.

38 IBM WebSphere Application Server Network Deployment, Version 5: Monitoring and Troublshooting

Tivoli performance monitoring and management solutions
Tivoli offers the complete IBM solution for managing the extended WebSphere
environment. For precise viewing of performance metrics, users can start with the
Tivoli Performance Viewer, a complimentary tool shipped with WebSphere
Application Server.

Tivoli also provides on-going production monitoring tools described below. For
more information about Tivoli’s solutions for WebSphere Application Server, see
“Performance: Resources for learning” on page 78.

IBM Tivoli Monitoring for Web Infrastructure (ITMf WI). Provides best-practice
monitoring of the key elements of WebSphere Application Server. This is the
inside-out view, enabling administrators to quickly address problems before they
impact end-users. Using Tivoli’s advanced monitoring technology and predefined
WebSphere best-practices, this tool quickly identifies problems, notifies appropriate
personnel, and provides a solution. All monitoring data is displayed real-time with
a health console displaying non-stop data. This same information can be uploaded
to a common data warehouse for historical reporting.

IBM Tivoli Monitoring for Transaction Performance (ITMTP). Provides a unique
monitoring perspective from that of the end-user. This is the outside-in view that
verifies that end-to-end components provide a positive end-user experience. ITMTP
monitors performance of actual and synthetic transactions, as well as verifying that
the content delivered meets predefined guidelines.

Transaction performance includes total round trip response time, network latency,
back-end response time and page render time. Additional granularity of
transaction detail on the back-end is provided through Application Response
Measurement instrumentation.

The ITM and ITMTP function by providing Web site performance monitoring,
alerting customers to end user response time issues.

The ability to quickly find performance issues is key to maintaining a high
performance Web site. This WebSphere Application Server release and the new
ITMTP release combine to provide a new feature for analyzing performance
problems. Using Synthetic Transaction Investigator (STI) from ITMTP, you can save
key transactions and replay them later. ITMTP also collects the data provided by
PMI Request Metrics through the Application Response Measurement (ARM)
interface and correlates this information with the originating STI transaction. In the
ITMTP real-time browser, the STI information links to the servlet and the
enterprise bean response time data. The details regarding the overall transaction
response time and response time for individual WebSphere Application Server
components provide the ability to quickly identify performance problems.

Tivoli provides additional products for monitoring other key elements of the
extended environment. For more information about Tivoli’s solutions for
WebSphere Application Server, see “Performance: Resources for learning” on
page 78.

Developing your own monitoring applications
Before you begin

Chapter 2. Monitoring performance 39

You can use the Performance Monitoring Infrastructure (PMI) interfaces to develop
your own applications to collect and display performance information.

There are three such interfaces - a Java Machine Extension (JMX)-based interface, a
PMI client interface, and a servlet interface. All three interfaces return the same
underlying data. The JMX interface is accessible through the AdminClient tool. The
PMI client interface is a Java interface that works with Version 3.5.5 and above.
The servlet interface is perhaps the simplest, requiring minimal programming, as
the output is XML.

Steps for this task
1. Developing your own monitoring application using Performance Monitoring

Infrastructure client
2. Developing your own monitoring applications with PMI servlet
3. Running your new monitoring applications
4. Accessing Performance Monitoring Infrastructure data through the Java

Management Extension interface.
5. Developing Performance Monitoring Infrastructure interfaces (Version 4.0)

Developing your own monitoring application using
Performance Monitoring Infrastructure client

The following is the programming model for Performance Monitoring
Infrastructure (PMI) client:

Steps for this task
1. Create an instance of PmiClient.

This is used for all subsequent method calls.
2. Call the listNodes() and listServers(nodeName) methods to find all the nodes

and servers in the WebSphere Application Server domain.
The PMI client provides two sets of methods: one set in Version 5.0 and the
other set inherited from Version 4.0. You can only use one set of methods. Do
not mix them together.

3. Call listMBeans and listStatMembers to get all the available MBeans and
MBeanStatDescriptors.

4. Call the getStats method to get the Stats object for the PMI data.
5. (Optional) The client can also call setStatLevel or getStatLevel to set and get the

monitoring level. Use the MBeanLevelSpec objects to set monitoring levels.

What to do next

If you prefer to use the Version 4.0 version of the interface, the model is
essentially the same, but the object types are different:

1. Create an instance of PmiClient.
2. Call the listNodes() and listServers(nodeName) methods to find all the nodes

and servers in the WebSphere Application Server domain.
3. Call listMembers to get all the perfDescriptor objects.
4. Use the PMI client’s get or gets method to get CpdCollection objects. These

contain snapshots of performance data from the server. The same structure is
maintained and its update method is used to refresh the data.

5. (Optional) The client can also call setInstrumentationLevel or
getInstrumentationLevel to set and get the monitoring level.

40 IBM WebSphere Application Server Network Deployment, Version 5: Monitoring and Troublshooting

Performance Monitoring Infrastructure client
A Performance Monitoring Infrastructure (PMI) client is an application that
receives PMI data from servers and processes this data.

You can use the PMI client package to write WebSphere Application Server clients
that collect and display PMI data from servers.

Clients can be graphical user interfaces (GUIs) that display performance data in
real-time, applications that monitor performance data and trigger different events
according to the current values of the data, or any other application that needs to
receive and process performance data.

Performance Monitoring Infrastructure client interface
The data provided by the Performance Monitoring Infrastructure (PMI) client
interface is documented here. Access to the data is provided in a hierarchical
structure. Descending from the object are node information objects, module
information objects, CpdCollection objects and CpdData objects. Using Version 5.0,
you will get Stats and Statistic objects. The node and server information objects
contain no performance data, only static information.

Web
Client

PmiClient
Java

Client

Tivoli
Performance

Viewer

JMX Client
Java Client

PerfServlet

.PerfMBean
App Server

PMI
Client

Wrapper

J2EE client

.PerfMBean
App Server

RMI/IIOP
or

SOAP

JMX
Connector

Cell Manager

Performance
data
and

application
server

HTTP

Each time a client retrieves performance data from a server, the data is returned in
a subset of this structure; the form of the subset depends on the data retrieved.
You can update the entire structure with new data, or update only part of the tree,
as needed.

The JMX statistic data model is supported, as well as the existing CPD data model
from Version 4.0. When you retrieve performance data using the Version 5.0 PMI
client API, you get the Stats object, which includes Statistic objects and optional
sub-Stats objects. When you use the Version 4.0 PMI client API to collect
performance data, you get the CpdCollection object, which includes the CpdData
objects and optional sub-CpdCollection objects.

Chapter 2. Monitoring performance 41

The following are additional Performance Monitoring Infrastructure (PMI)
interfaces:
v BoundaryStatistic
v BoundedRangeStatistic
v CountStatistic
v MBeanStatDescriptor
v MBeanLevelSpec
v New Methods in PmiClient
v RangeStatistic
v Stats
v Statistic
v TimeStatistic

The following PMI interfaces introduced in Version 4.0 are also supported:
v CpdCollection
v CpdData
v CpdEventListener and CpdEvent
v CpdFamily class
v CpdValue

– CpdLong
– CpdStat
– CpdLoad

v PerfDescriptor
v PmiClient class

The CpdLong maps to CountStatistic; CpdStat maps to Time Statistic;
CpdCollection maps to Stats; and CpdLoad maps to RangeStatistic and
BoundedRangeStatistic.

Note: Version 4.0 PmiClient APIs are supported in this version, however, there are
some changes. The data hierarchy is changed in some PMI modules, notably the
enterprise bean module and HTTP sessions module. If you have an existing
PmiClient application, and you want to run it against Version 5.0, you might have
to update the PerfDescriptor(s) based on the new PMI data hierarchy. Also, the
getDataName and getDataId methods in PmiClient are changed to be non-static
methods in order to support multiple WebSphere Application Server versions. You
might have to update your existing application which uses these two methods.

Using Version 5.0 PMI API in Version 3.5.5+ and Version 4.0.x
For Version 3.5.5+, follow these instructions:

Steps for this task
1. Make configuration changes.

For PMI to interact correctly with Version 3.5.x application servers, you must
upgrade both the Version 3.5.x run time environment and the PMI JAR files to
the levels specified below. In addition, you must prepend the repository.jar,
ejs.jar, and ujc.jar files from the upgraded Version 3.5.x run time
environment to the PMI client’s run time classpath.
a. Change the Version 3.5.x run time environment.

Ensure the Version 3.5 environment is Version 3.5.5 or later.

42 IBM WebSphere Application Server Network Deployment, Version 5: Monitoring and Troublshooting

b. Change the PMI client’s run time or development environment.
Both the Version 5.0 PMI client and the Version 4.02 client can work with
the Version 3.5.5+ WebSphere Application Server.
Copy the repository.jar, ujc.jar and ejs.jar files from the
<WebSphere_35_installation_root>/lib directory to each machine from
which a PMI client is run.
Prepend the Version 3.5.5+ repository.jar, ujc.jar and ejs.jar files to the
PMI client’s run time classpath.

2. Copy the XML configuration files from Version 4.0.2+.
a. Get the perf.jar file from Version 4.0.
b. Append the perf.jar file to the classpath of the Version 5.0 PMI client.

Note: Ensure the Version 5.0 pmi.jar file and pmiclient.jar files come
before the Version 4.0 perf.jar file.

3. Make programmatic changes.
A new constructor for PmiClient allows a client to monitor Version 3.5.5 or later
application servers. The new constructor takes three string parameters:
hostName, serverName, and version.
public PmiClient(String host, String port, String version)

Using this constructor with ″EPM″ as the third parameter creates a PmiClient
that can retrieve data from Version 3.5.5+ application servers.
PmiClient pmiClnt = new PmiClient(hostName, portNumber, "EPM")

What to do next

Use Version 4.0 PmiClient API to write your own client application with
WebSphere Application Server Version 4.0 and 3.5.5+. See the example code for
using Version 4.0 API in Example: Performance Monitoring Infrastructure client
(Version 4.0).

To run a Version 5.0 PMI client with a Version 4.0 server, the instructions are
similar, except in substep 2 of step 1, you need to copy the repository.jar and
ujc.jar files from a WebSphere Application Server, Version 4.0, installation.

Example: Performance Monitoring Infrastructure client (Version
4.0)
The following is a list of example Performance Monitoring Infrastructure (PMI)
client code from Version 4.0:
/**
* This is a sample code to show how to use PmiClient to collect PMI data.
* You will need to use adminconsole to set instrumentation level (a level other
* than NONE) first.
*
* <p>
* End-to-end code path in 4.0:
* PmiTester -> PmiClient -> AdminServer -> appServer
*/

package com.ibm.websphere.pmi;

import com.ibm.websphere.pmi.*;
import com.ibm.websphere.pmi.server.*;
import com.ibm.websphere.pmi.client.*;
import com.ibm.ws.pmi.server.*;
import com.ibm.ws.pmi.perfServer.*;

Chapter 2. Monitoring performance 43

import com.ibm.ws.pmi.server.modules.*;
import com.ibm.ws.pmi.wire.*;
import java.util.ArrayList;

/**
* Sample code to use PmiClient API (old API in 4.0) and get CpdData/CpdCollection objects.
*
*/
public class PmiTester implements PmiConstants {

/** a test driver:
* @param args[0] - node name
* @param args[1] - port number, optional, default is 2809
* @param args[2] - connector type, default is RMI
* @param args[3] - verion (AE, AEs, WAS50), default is WAS50
*
*/
public static void main(String[] args) {

String hostName = null;
String portNumber = "2809";
String connectorType = "RMI";
String version = "WAS50";

if (args.length < 1) {
System.out.println("Usage: <host> [<port>] [<connectorType>] [<version>]");
return;

}

if(args.length >= 1)
hostName = args[0];

if(args.length >= 2)
portNumber = args[1];

if (args.length >=3)
connectorType = args[2];

if (args.length >=4)
version = args[3];

try {
PmiClient pmiClnt = new PmiClient(hostName, portNumber, version, false,

connectorType);

// uncomment it if you want debug info
//pmiClnt.setDebug(true);

// get all the node PerfDescriptor in the domain
PerfDescriptor[] nodePds = pmiClnt.listNodes();

if(nodePds == null) {
System.out.println("no nodes");
return;

}

// get the first node
String nodeName = nodePds[0].getName();
System.out.println("after listNodes: " + nodeName);

//list all the servers on the node
PerfDescriptor[] serverPds = pmiClnt.listServers(nodePds[0].getName());
if(serverPds == null || serverPds.length == 0) {

System.out.println("NO app server in node");
return;

}

// print out all the servers on that node
for(int j=0; j<serverPds.length; j++) {

System.out.println("server " + j + ": " + serverPds[j].getName());

44 IBM WebSphere Application Server Network Deployment, Version 5: Monitoring and Troublshooting

}

for(int j=0; j<serverPds.length; j++) {
System.out.println("server " + j + ": " + serverPds[j].getName());

// Option: you can call createPerfLevelSpec
// and then setInstrumentationLevel to set the level
// for each server if you want.
// For example, to set all the modules to be LEVEL_HIGH for the server j,
// uncomment the following.
// PerfLevelSpec[] plds = new PerfLevelSpec[1];
// plds[0] = pmiClnt.createPerfLevelSpec(null, LEVEL_HIGH);
// pmiClnt.setInstrumentationLevel(serverPds[j].getNodeName(),
// serverPds[j].getServerName(), plds, true);

// First, list the PerfDescriptor in the server
PerfDescriptor[] myPds = pmiClnt.listMembers(serverPds[j]);

// check returned PerfDescriptor
if(myPds == null) {

System.out.println("null from listMembers");
continue;

}

// you can add the pds in which you are interested to PerfDescriptorList
PerfDescriptorList pdList = new PerfDescriptorList();
for(int i=0; i<myPds.length; i++) {

// Option 1: you can recursively call listMembers for each myPds
// and find the one you are interested. You can call listMembers
// until individual data level and after that level
// you will null from listMembers.
// e.g., PerfDescriptor[] nextPds = pmiClnt.listMembers(myPds[i]);

// Option 2: you can filter these pds before adding to pdList
System.out.println("add to pdList: " + myPds[i].getModuleName());
pdList.addDescriptor(myPds[i]);
if(i % 2 == 0)

pmiClnt.add(myPds[i]);
}

// call gets method to get the CpdCollection[] corresponding to pdList
CpdCollection[] cpdCols = pmiClnt.gets(pdList, true);

if(cpdCols == null) {
// check error
if(pmiClnt.getErrorCode() >0)

System.out.println(pmiClnt.getErrorMessage());
continue;

}

for(int i=0; i<cpdCols.length; i++) {
// simple print them
//System.out.println(cpdCols[i].toString());

// Or call processCpdCollection to get each data
processCpdCollection(cpdCols[i], "");

}

// Or call gets() method to add the CpdCollection[]
// for whatever there by calling pmiClnt.add().
System.out.println("\n\n\n ---- get data using gets(true) ----- ");
cpdCols = pmiClnt.gets(true);

if(cpdCols == null) {
// check error
if(pmiClnt.getErrorCode() >0)

System.out.println(pmiClnt.getErrorMessage());

Chapter 2. Monitoring performance 45

continue;
}

for(int i=0; i<cpdCols.length; i++) {
// simple print out the whole collection
System.out.println(cpdCols[i].toString());

// Option: refer processCpdCollection to get each data
}

}

}
catch(Exception ex) {

System.out.println("Exception calling CollectorAE");
ex.printStackTrace();

}
}

/**
* show the methods to retrieve individual data
*/
private static void processCpdCollection(CpdCollection cpdCol, String indent) {

CpdData[] dataList = cpdCol.dataMembers();
String myindent = indent;

System.out.println("\n" + myindent + "--- CpdCollection " +
cpdCol.getDescriptor().getName() + " ---");

myindent += " ";
for(int i=0; i<dataList.length; i++) {

if (dataList[i] == null)
continue;

// if you want to get static info like name, description, etc
PmiDataInfo dataInfo = dataList[i].getPmiDataInfo();
// call getName(), getDescription() on dataInfo;

CpdValue cpdVal = dataList[i].getValue();
if(cpdVal.getType() == TYPE_STAT) {

CpdStat cpdStat = (CpdStat)cpdVal;
double mean = cpdStat.mean();
double sumSquares = cpdStat.sumSquares();
int count = cpdStat.count();
double total = cpdStat.total();
System.out.println(myindent + "CpdData id=" + dataList[i].getId()

+ " type=stat mean=" + mean);
// you can print more values like sumSquares, count,etc here

}
else if(cpdVal.getType() == TYPE_LOAD) {

CpdLoad cpdLoad = (CpdLoad)cpdVal;
long time = cpdLoad.getTime();
double mean = cpdLoad.mean();
double currentLevel = cpdLoad.getCurrentLevel();
double integral = cpdLoad.getIntegral();
double timeWeight = cpdLoad.getWeight();
System.out.println(myindent + "CpdData id=" + dataList[i].getId()

+ " type=load mean=" + mean + " currentLevel="
+ currentLevel);

// you can print more values like sumSquares, count,etc here
}
else if(cpdVal.getType() == TYPE_LONG) {

CpdValue cpdLong = (CpdValue)cpdVal;
long value = (long)cpdLong.getValue();
System.out.println(myindent + "CpdData id=" + dataList[i].getId()

+ " type=long value=" + value);
}
else if(cpdVal.getType() == TYPE_DOUBLE) {

CpdValue cpdDouble = (CpdValue)cpdVal;

46 IBM WebSphere Application Server Network Deployment, Version 5: Monitoring and Troublshooting

double value = cpdDouble.getValue();
System.out.println(myindent + "CpdData id=" + dataList[i].getId()

+ " type=double value=" + value);
}
else if(cpdVal.getType() == TYPE_INT) {

CpdValue cpdInt = (CpdValue)cpdVal;
int value = (int)cpdInt.getValue();
System.out.println(myindent + "CpdData id=" + dataList[i].getId()

+ " type=int value=" + value);
}

}

// recursively go through the subcollection
CpdCollection[] subCols = cpdCol.subcollections();
for(int i=0; i<subCols.length; i++) {

processCpdCollection(subCols[i], myindent);
}

}

/**
* show the methods to navigate CpdCollection
*/
private static void report(CpdCollection col) {

System.out.println("\n\n");
if(col==null) {

System.out.println("report: null CpdCollection");
return;

}
System.out.println("report - CpdCollection ");
printPD(col.getDescriptor());
CpdData[] dataMembers = col.dataMembers();
if(dataMembers != null) {

System.out.println("report CpdCollection: dataMembers is "
+ dataMembers.length);

for(int i=0; i<dataMembers.length; i++) {
CpdData data = dataMembers[i];
printPD(data.getDescriptor());

}
}
CpdCollection[] subCollections = col.subcollections();
if(subCollections != null) {

for(int i=0; i<subCollections.length; i++) {
report(subCollections[i]);

}
}

}

private static void printPD(PerfDescriptor pd) {
System.out.println(pd.getFullName());

}

}

Example: Performance Monitoring Infrastructure client with new
data structure
The following is example code using Performance Monitoring Infrastructure (PMI)
client with the new data structure:
package com.ibm.websphere.pmi;

import com.ibm.websphere.pmi.stat.*;
import com.ibm.websphere.pmi.client.*;
import com.ibm.websphere.management.*;
import com.ibm.websphere.management.exception.*;
import java.util.*;
import javax.management.*;
import java.io.*;

Chapter 2. Monitoring performance 47

/**
* Sample code to use PmiClient API (new JMX-based API in 5.0)
* and get Statistic/Stats objects.
*/

public class PmiClientTest implements PmiConstants {

static PmiClient pmiClnt = null;
static String nodeName = null;
static String serverName = null;
static String portNumber = null;
static String connectorType = null;
static boolean success = true;

/**
* @param args[0] host
* @param args[1] portNumber, optional, default is 2809
* @param args[2] connectorType, optional, default is RMI connector
* @param args[3]serverName, optional, default is the first server found
*/
public static void main(String[] args) {

try {

if(args.length > 1) {
System.out.println("Parameters: host [portNumber]

[connectorType] [serverName]");
return;

}

// parse arguments and create an instance of PmiClient
nodeName = args[0];

if (args.length > 1)
portNumber = args[1];

if (args.length > 2)
connectorType = args[2];

// create an PmiClient object
pmiClnt = new PmiClient(nodeName, portNumber, "WAS50", false, connectorType);

// Uncomment it if you want to debug any problem
//pmiClnt.setDebug(true);

// update nodeName to be the real host name
nodeName = pmiClnt.getConnectedHost();
System.out.println("use node " + nodeName);

if (args.length == 4)
serverName = args[3];

else { // find the server you want to get PMI data
// get all servers on this node
PerfDescriptor[] allservers = pmiClnt.listServers(nodeName);
if (allservers == null || allservers.length == 0) {

System.out.println("No server is found on node " + nodeName);
System.exit(1);

}

// get the first server on the list.
// You may want to get a different server
serverName = allservers[0].getName();
System.out.println("Choose server " + serverName);

}

48 IBM WebSphere Application Server Network Deployment, Version 5: Monitoring and Troublshooting

// get all MBeans
ObjectName[] onames = pmiClnt.listMBeans(nodeName, serverName);

// Cache the MBeans we are interested
ObjectName perfOName = null;
ObjectName serverOName = null;
ObjectName wlmOName = null;
ObjectName ejbOName = null;
ObjectName jvmOName = null;
ArrayList myObjectNames = new ArrayList(10);

// get the MBeans we are interested in
if(onames != null) {

System.out.println("Number of MBeans retrieved= " + onames.length);
AttributeList al;
ObjectName on;
for(int i=0; i<onames.length; i++) {

on = onames[i];
String type = on.getKeyProperty("type");

// make sure PerfMBean is there.
// Then randomly pick up some MBeans for the test purpose
if(type != null && type.equals("Server"))

serverOName = on;
else if(type != null && type.equals("Perf"))

perfOName = on;
else if(type != null && type.equals("WLM")) {

wlmOName = on;
}
else if(type != null && type.equals("EntityBean")) {

ejbOName = on;

// add all the EntityBeans to myObjectNames
myObjectNames.add(ejbOName); // add to the list

}
else if(type != null && type.equals("JVM")) {

jvmOName = on;
}

}

// set monitoring level for SERVER MBean
testSetLevel(serverOName);

// get Stats objects
testGetStats(myObjectNames);

// if you know the ObjectName(s)
testGetStats2(new ObjectName[]{jvmOName, ejbOName});

// assume you are only interested in a server data in WLM MBean,
// then you will need to use StatDescriptor and MBeanStatDescriptor
// Note that wlmModule is only available in ND version
StatDescriptor sd = new StatDescriptor(new String[]

{"wlmModule.server"});
MBeanStatDescriptor msd = new MBeanStatDescriptor(wlmOName, sd);
Stats wlmStat = pmiClnt.getStats(nodeName, serverName, msd, false);
if (wlmStat != null)

System.out.println("\n\n WLM server data\n\n + "
+ wlmStat.toString());

else
System.out.println("\n\n No WLM server data is availalbe.");

// how to find all the MBeanStatDescriptors
testListStatMembers(serverOName);

// how to use update method
testUpdate(jvmOName, false, true);

Chapter 2. Monitoring performance 49

}
else {

System.out.println("No ObjectNames returned from Query");
}

}
catch(Exception e) {

new AdminException(e).printStackTrace();
System.out.println("Exception = " +e);
e.printStackTrace();
success = false;

}

if(success)
System.out.println("\n\n All tests are passed");

else
System.out.println("\n\n Some tests are failed. Check for the exceptions");

}

/**
* construct an array from the ArrayList
*/
private static MBeanStatDescriptor[] getMBeanStatDescriptor(ArrayList msds) {

if(msds == null || msds.size() == 0)
return null;

MBeanStatDescriptor[] ret = new MBeanStatDescriptor[msds.size()];
for(int i=0; i<ret.length; i++)

if(msds.get(i) instanceof ObjectName)
ret[i] = new MBeanStatDescriptor((ObjectName)msds.get(i));

else
ret[i] = (MBeanStatDescriptor)msds.get(i);

return ret;
}

/**
* Sample code to navigate and display the data value from the Stats object.
*/
private static void processStats(Stats stat) {

processStats(stat, "");
}

/**
* Sample code to navigate and display the data value from the Stats object.
*/
private static void processStats(Stats stat, String indent) {

if(stat == null) return;

System.out.println("\n\n");

// get name of the Stats
String name = stat.getName();
System.out.println(indent + "stats name=" + name);

// Uncomment the following lines to list all the data names
/*
String[] dataNames = stat.getStatisticNames();
for (int i=0; i<dataNames.length; i++)

System.out.println(indent + " " + "data name=" + dataNames[i]);
System.out.println("\n");
*/

// list all datas
com.ibm.websphere.management.statistics.Statistic[] allData =

stat.getStatistics();

50 IBM WebSphere Application Server Network Deployment, Version 5: Monitoring and Troublshooting

// cast it to be PMI’s Statistic type so that we can have get more
Statistic[] dataMembers = (Statistic[])allData;
if(dataMembers != null) {

for(int i=0; i<dataMembers.length; i++) {
System.out.print(indent + " " + "data name="

+ PmiClient.getNLSValue(dataMembers[i].getName())
+ ", description="
+ PmiClient.getNLSValue(dataMembers[i].getDescription())
+ ", unit="
+ PmiClient.getNLSValue(dataMembers[i].getUnit())
+ ", startTime=" + dataMembers[i].getStartTime()
+ ", lastSampleTime="
+ dataMembers[i].getLastSampleTime());

if(dataMembers[i].getDataInfo().getType() == TYPE_LONG) {
System.out.println(", count="

+ ((CountStatisticImpl)dataMembers[i]).getCount());
}
else if(dataMembers[i].getDataInfo().getType() == TYPE_STAT) {

TimeStatisticImpl data = (TimeStatisticImpl)dataMembers[i];
System.out.println(", count=" + data.getCount()

+ ", total=" + data.getTotal()
+ ", mean=" + data.getMean()
+ ", min=" + data.getMin()
+ ", max=" + data.getMax());

}
else if(dataMembers[i].getDataInfo().getType() == TYPE_LOAD) {

RangeStatisticImpl data = (RangeStatisticImpl)dataMembers[i];
System.out.println(", current=" + data.getCurrent()

+ ", lowWaterMark=" + data.getLowWaterMark()
+ ", highWaterMark=" + data.getHighWaterMark()
+ ", integral=" + data.getIntegral()
+ ", avg=" + data.getMean());

}
}

}

// recursively for sub-stats
Stats[] substats = (Stats[])stat.getSubStats();
if(substats == null || substats.length == 0)

return;
for(int i=0; i<substats.length; i++) {

processStats(substats[i], indent + " ");
}

}

/**
* test set level and verify using get level
*/
private static void testSetLevel(ObjectName mbean) {

System.out.println("\n\n testSetLevel\n\n");
try {

// set instrumentation level to be high for the mbean
MBeanLevelSpec spec = new MBeanLevelSpec(mbean, null,

PmiConstants.LEVEL_HIGH);
pmiClnt.setStatLevel(nodeName, serverName, spec, true);
System.out.println("after setInstrumentaionLevel high on server MBean\n\n");

// get all instrumentation levels
MBeanLevelSpec[] mlss = pmiClnt.getStatLevel(nodeName, serverName,

mbean, true);

if(mlss == null)
System.out.println("error: null from getInstrumentationLevel");

else {
for(int i=0; i<mlss.length; i++)

if(mlss[i] != null) {

Chapter 2. Monitoring performance 51

// get the ObjectName, StatDescriptor,
// and level out of MBeanStatDescriptor
int mylevel = mlss[i].getLevel();
ObjectName myMBean = mlss[i].getObjectName();
StatDescriptor mysd = mlss[i].getStatDescriptor();// may be null
// Uncomment it to print all the mlss
//System.out.println("mlss " + i + ":, " + mlss[i].toString());

}
}

}
catch(Exception ex) {

new AdminException(ex).printStackTrace();
ex.printStackTrace();
System.out.println("Exception in testLevel");
success = false;

}
}

/**
* Use listStatMembers method
*/
private static void testListStatMembers(ObjectName mbean) {

System.out.println("\n\ntestListStatMembers \n");
// listStatMembers and getStats
// From server MBean until the bottom layer.
try {

MBeanStatDescriptor[] msds = pmiClnt.listStatMembers(nodeName, serverName,
mbean);

if(msds == null) return;
System.out.println(" listStatMembers for server MBean, num members

(i.e. top level modules) is " + msds.length);

for(int i=0; i<msds.length; i++) {
if(msds[i] == null) continue;

// get the fields out of MBeanStatDescriptor if you need them
ObjectName myMBean = msds[i].getObjectName();
StatDescriptor mysd = msds[i].getStatDescriptor(); // may be null

// uncomment if you want to print them out
//System.out.println(msds[i].toString());

}

for(int i=0; i<msds.length; i++) {
if(msds[i] == null) continue;
System.out.println("\n\nlistStatMembers for msd=" + msds[i].toString());
MBeanStatDescriptor[] msds2 = pmiClnt.listStatMembers(nodeName,

serverName, msds[i]);

// you get msds2 at the second layer now and
// the listStatMembers can be called recursively
// until it returns now.

}

}
catch(Exception ex) {

new AdminException(ex).printStackTrace();
ex.printStackTrace();
System.out.println("Exception in testListStatMembers");
success = false;

}

}

/**

52 IBM WebSphere Application Server Network Deployment, Version 5: Monitoring and Troublshooting

* Test getStats method
*/
private static void testGetStats(ArrayList mbeans) {

System.out.println("\n\n testgetStats\n\n");
try {

Stats[] mystats = pmiClnt.getStats(nodeName, serverName,
getMBeanStatDescriptor(mbeans), true);

// navigate each of the Stats object and get/display the value
for(int k=0; k<mystats.length; k++) {

processStats(mystats[k]);
}

}
catch(Exception ex) {

new AdminException(ex).printStackTrace();
ex.printStackTrace();
System.out.println("exception from testGetStats");
success = false;

}
}

/**
* Test getStats method
*/
private static void testGetStats2(ObjectName[] mbeans) {

System.out.println("\n\n testGetStats2\n\n");
try {

Stats[] statsArray = pmiClnt.getStats(nodeName, serverName, mbeans, true);

// You can call toString to simply display all the data
if(statsArray != null) {

for(int k=0; k<statsArray.length; k++)
System.out.println(statsArray[k].toString());

}
else

System.out.println("null stat");
}
catch(Exception ex) {

new AdminException(ex).printStackTrace();
ex.printStackTrace();
System.out.println("exception from testGetStats2");
success = false;

}
}

/**
* test update method
*/
private static void testUpdate(ObjectName oName, boolean keepOld,

boolean recursiveUpdate) {
System.out.println("\n\n testUpdate\n\n");
try {

// set level to be NONE
MBeanLevelSpec spec = new MBeanLevelSpec(oName, null,

PmiConstants.LEVEL_NONE);
pmiClnt.setStatLevel(nodeName, serverName, spec, true);

// get data now - one is non-recursive and the other is recursive
Stats stats1 = pmiClnt.getStats(nodeName, serverName, oName, false);
Stats stats2 = pmiClnt.getStats(nodeName, serverName, oName, true);

// set level to be HIGH
spec = new MBeanLevelSpec(oName, null, PmiConstants.LEVEL_HIGH);
pmiClnt.setStatLevel(nodeName, serverName, spec, true);

Chapter 2. Monitoring performance 53

Stats stats3 = pmiClnt.getStats(nodeName, serverName, oName, true);
System.out.println("\n\n stats3 is");
processStats(stats3);

stats1.update(stats3, keepOld, recursiveUpdate);
System.out.println("\n\n update stats1");
processStats(stats1);

stats2.update(stats3, keepOld, recursiveUpdate);
System.out.println("\n\n update stats2");
processStats(stats2);

}
catch(Exception ex) {

System.out.println("\n\n Exception in testUpdate");
ex.printStackTrace();
success = false;

}

}

}

Example: Administering Java Management Extension-based
interface
Examples

The following is example code directly using Java Management Extension (JMX)
API:
package com.ibm.websphere.pmi;

import com.ibm.websphere.management.AdminClient;
import com.ibm.websphere.management.AdminClientFactory;
import com.ibm.websphere.management.exception.ConnectorException;
import com.ibm.websphere.management.exception.InvalidAdminClientTypeException;
import com.ibm.websphere.management.exception.*;

import java.util.*;
import javax.management.*;
import com.ibm.websphere.pmi.*;
import com.ibm.websphere.pmi.client.*;
import com.ibm.websphere.pmi.stat.*;

/**
* Sample code to use AdminClient API directly to get PMI data from PerfMBean
* and individual MBeans which support getStats method.
*/

public class PmiJmxTest implements PmiConstants {

private AdminClient ac = null;
private ObjectName perfOName = null;
private ObjectName serverOName = null;
private ObjectName wlmOName = null;
private ObjectName jvmOName = null;
private ObjectName orbtpOName = null;
private boolean failed = false;
private PmiModuleConfig[] configs = null;

/**
* Creates a new test object
* (Need a default constructor for the testing framework)
*/
public PmiJmxTest() {
}

54 IBM WebSphere Application Server Network Deployment, Version 5: Monitoring and Troublshooting

/**
* @param args[0] host
* @param args[1] port, optional, default is 2809
* @param args[2] connectorType, optional, default is RMI connector
*
*/
public static void main(String[] args) {

PmiJmxTest instance = new PmiJmxTest();

// parse arguments and create AdminClient object
instance.init(args);

// navigate all the MBean ObjectNames and cache those we are interested
instance.getObjectNames();

// set level, get data, display data
instance.doTest();

// test for EJB data
instance.testEJB();

// how to use JSR77 getStats method for individual MBean other than PerfMBean
instance.testJSR77Stats();

}

/**
* parse args and getAdminClient
*/
public void init(String[] args) {

try {
String host = null;
String port = "2809";
String connector = "RMI";
if(args.length < 1) {

System.err.println("ERROR: Usage: PmiJmxTest <host>
[<port>] [<connector>]");

System.exit(2);
}
else {

host = args[0];

if (args.length > 1)
port = args[1];

if (args.length > 2)
connector = args[2];

}

if(host == null) {
host = "localhost";

}
if(port == null) {

port = "2809";
}
if (connector == null) {

connector = AdminClient.CONNECTOR_TYPE_RMI;
}
System.out.println("host=" + host + " , port=" + port + ", connector="

+ connector);

//---
// Get the ac object for the AppServer
//---
System.out.println("main: create the adminclient");

Chapter 2. Monitoring performance 55

ac = getAdminClient(host, port, connector);

} catch (Exception ex) {
failed = true;
new AdminException(ex).printStackTrace();
ex.printStackTrace();

}
}

/**
* get AdminClient using the given host, port, and connector
*/
public AdminClient getAdminClient(String hostStr, String portStr, String connector) {

System.out.println("getAdminClient: host=" + hostStr + " , portStr=" + portStr);
AdminClient ac = null;
java.util.Properties props = new java.util.Properties();
props.put(AdminClient.CONNECTOR_TYPE, connector);
props.put(AdminClient.CONNECTOR_HOST, hostStr);
props.put(AdminClient.CONNECTOR_PORT, portStr);
try {

ac = AdminClientFactory.createAdminClient(props);
}
catch(Exception ex) {

failed = true;
new AdminException(ex).printStackTrace();
System.out.println("getAdminClient: exception");

}
return ac;

}

/**
* get all the ObjectNames.
*/
public void getObjectNames() {

try {

//---
// Get a list of object names
//---
javax.management.ObjectName on = new javax.management.ObjectName("WebSphere:*");

//---
// get all objectnames for this server
//---
Set objectNameSet= ac.queryNames(on, null);

//---
// get the object names that we care about: Perf, Server,
// JVM, WLM (only applicable in ND)
//---
if(objectNameSet != null) {

Iterator i = objectNameSet.iterator();
while (i.hasNext()) {

on = (ObjectName)i.next();
String type = on.getKeyProperty("type");

// uncomment it if you want to print the ObjectName for each MBean
// System.out.println("\n\n" + on.toString());

// find the MBeans we are interested
if(type != null && type.equals("Perf")) {

System.out.println("\nMBean: perf =" + on.toString());
perfOName = on;

}
if(type != null && type.equals("Server")) {

56 IBM WebSphere Application Server Network Deployment, Version 5: Monitoring and Troublshooting

System.out.println("\nMBean: Server =" + on.toString());
serverOName = on;

}
if(type != null && type.equals("JVM")) {

System.out.println("\nMBean: jvm =" + on.toString());
jvmOName = on;

}
if(type != null && type.equals("WLMAppServer")) {

System.out.println("\nmain: WLM =" + on.toString());
wlmOName = on;

}
if(type != null && type.equals("ThreadPool")) {

String name = on.getKeyProperty("name");
if (name.equals("ORB.thread.pool"))

System.out.println("\nMBean: ORB ThreadPool ="
+ on.toString());

orbtpOName = on;
}

}
}
else {

System.err.println("main: ERROR: no object names found");
System.exit(2);

}

// You must have Perf MBean in order to get PMI data.
if (perfOName == null) {

System.err.println("main: cannot get PerfMBean. Make sure PMI is enabled");
System.exit(3);

}
}
catch(Exception ex) {

failed = true;
new AdminException(ex).printStackTrace();
ex.printStackTrace();

}

}

/**
* Some sample code to set level, get data, and display data.
*/
public void doTest() {

try {
// first get all the configs - used to set static info for Stats
// Note: server only returns the value and time info.
// No description, unit, etc is returned with PMI data
// to reduce communication cost.
// You have to call setConfig to bind the static info and
// Stats data later.
configs = (PmiModuleConfig[])ac.invoke(perfOName, "getConfigs", null, null);

// print out all the PMI modules and matching mbean types
for (int i=0; i<configs.length; i++)

System.out.println("config: moduleName=" + configs[i].getShortName() + ",

// set the instrumentation level for the server
setInstrumentationLevel(serverOName, null, PmiConstants.LEVEL_HIGH);

// example to use StatDescriptor.
// Note WLM module is only available in ND.
StatDescriptor sd = new StatDescriptor(new String[] {"wlmModule.server"});
setInstrumentationLevel(wlmOName, sd, PmiConstants.LEVEL_HIGH);

// example to getInstrumentationLevel
MBeanLevelSpec[] mlss = getInstrumentationLevel(wlmOName, sd, true);
// you can call getLevel(), getObjectName(), getStatDescriptor() on mlss[i]

Chapter 2. Monitoring performance 57

// get data for the server
Stats stats = getStatsObject(serverOName, true);
System.out.println(stats.toString());

// get data for WLM server submodule
stats = getStatsObject(wlmOName, sd, true);
if (stats == null)

System.out.println("Cannot get Stats for WLM data");
else

System.out.println(stats.toString());

// get data for JVM MBean
stats = getStatsObject(jvmOName, true);
processStats(stats);

// get data for multiple MBeans
ObjectName[] onames = new ObjectName[]{orbtpOName, jvmOName};
Object[] params = new Object[]{onames, new Boolean(true)};
String[] signature = new String[]{"[Ljavax.management.ObjectName;",

"java.lang.Boolean"};
Stats[] statsArray = (Stats[])ac.invoke(perfOName, "getStatsArray",

params, signature);
// you can call toString or processStats on statsArray[i]

if (!failed)
System.out.println("All tests passed");

else
System.out.println("Some tests failed");

}
catch(Exception ex) {

new AdminException(ex).printStackTrace();
ex.printStackTrace();

}
}

/**
* Sample code to get level
*/
protected MBeanLevelSpec[] getInstrumentationLevel(ObjectName on, StatDescriptor sd,

boolean recursive) {
if (sd == null)

return getInstrumentationLevel(on, recursive);
System.out.println("\ntest getInstrumentationLevel\n");
try {

Object[] params = new Object[2];
params[0] = new MBeanStatDescriptor(on, sd);
params[1] = new Boolean(recursive);
String[] signature=

new String[]{ "com.ibm.websphere.pmi.stat.MBeanStatDescriptor",
"java.lang.Boolean"};

MBeanLevelSpec[] mlss = (MBeanLevelSpec[])ac.invoke(perfOName,
"getInstrumentationLevel", params, signature);

return mlss;
}
catch(Exception e) {

new AdminException(e).printStackTrace();
System.out.println("getInstrumentationLevel: Exception Thrown");
return null;

}
}

/**
* Sample code to get level
*/
protected MBeanLevelSpec[] getInstrumentationLevel(ObjectName on, boolean recursive {

58 IBM WebSphere Application Server Network Deployment, Version 5: Monitoring and Troublshooting

if (on == null)
return null;

System.out.println("\ntest getInstrumentationLevel\n");
try {

Object[] params = new Object[]{on, new Boolean(recursive)};
String[] signature= new String[]{ "javax.management.ObjectName",

"java.lang.Boolean"};
MBeanLevelSpec[] mlss = (MBeanLevelSpec[])ac.invoke(perfOName,

"getInstrumentationLevel", params, signature);
return mlss;

}
catch(Exception e) {

new AdminException(e).printStackTrace();
failed = true;
System.out.println("getInstrumentationLevel: Exception Thrown");
return null;

}
}

/**
* Sample code to set level
*/
protected void setInstrumentationLevel(ObjectName on, StatDescriptor sd, int level) {

System.out.println("\ntest setInstrumentationLevel\n");
try {

Object[] params = new Object[2];
String[] signature = null;
MBeanLevelSpec[] mlss = null;
params[0] = new MBeanLevelSpec(on, sd, level);
params[1] = new Boolean(true);

signature= new String[]{ "com.ibm.websphere.pmi.stat.MBeanLevelSpec",
"java.lang.Boolean"};

ac.invoke(perfOName, "setInstrumentationLevel", params, signature);
}
catch(Exception e) {

failed = true;
new AdminException(e).printStackTrace();
System.out.println("setInstrumentationLevel: FAILED: Exception Thrown");

}
}

/**
* Sample code to get a Stats object
*/
public Stats getStatsObject(ObjectName on, StatDescriptor sd, boolean recursive) {

if (sd == null)
return getStatsObject(on, recursive);

System.out.println("\ntest getStatsObject\n");
try {

Object[] params = new Object[2];
params[0] = new MBeanStatDescriptor(on, sd); //construct MBeanStatDescriptor
params[1] = new Boolean(recursive);
String[] signature =

new String[] { "com.ibm.websphere.pmi.stat.MBeanStatDescriptor",
"java.lang.Boolean"};

Stats stats = (Stats)ac.invoke(perfOName, "getStatsObject",
params, signature);

if (stats == null) return null;

// find the PmiModuleConfig and bind it with the data
String type = on.getKeyProperty("type");
if (type.equals(MBeanTypeList.SERVER_MBEAN))

setServerConfig(stats);

Chapter 2. Monitoring performance 59

else
stats.setConfig(findConfig(on));

return stats;

} catch(Exception e) {
failed = true;
new AdminException(e).printStackTrace();
System.out.println("getStatsObject: Exception Thrown");
return null;

}
}

/**
* Sample code to get a Stats object
*/
public Stats getStatsObject(ObjectName on, boolean recursive) {

if (on == null)
return null;

System.out.println("\ntest getStatsObject\n");

try {
Object[] params = new Object[]{on, new Boolean(recursive)};
String[] signature = new String[] { "javax.management.ObjectName",

"java.lang.Boolean"};
Stats stats = (Stats)ac.invoke(perfOName, "getStatsObject",

params, signature);

// find the PmiModuleConfig and bind it with the data
String type = on.getKeyProperty("type");
if (type.equals(MBeanTypeList.SERVER_MBEAN))

setServerConfig(stats);
else

stats.setConfig(findConfig(on));

return stats;

} catch(Exception e) {
failed = true;
new AdminException(e).printStackTrace();
System.out.println("getStatsObject: Exception Thrown");
return null;

}
}

/**
* Sample code to navigate and get the data value from the Stats object.
*/
private void processStats(Stats stat) {

processStats(stat, "");
}

/**
* Sample code to navigate and get the data value from the Stats and Statistic object.
*/
private void processStats(Stats stat, String indent) {

if(stat == null) return;

System.out.println("\n\n");

// get name of the Stats
String name = stat.getName();
System.out.println(indent + "stats name=" + name);

// list data names
String[] dataNames = stat.getStatisticNames();

60 IBM WebSphere Application Server Network Deployment, Version 5: Monitoring and Troublshooting

for (int i=0; i<dataNames.length; i++)
System.out.println(indent + " " + "data name=" + dataNames[i]);

System.out.println("");

// list all datas
com.ibm.websphere.management.statistics.Statistic[] allData =

stat.getStatistics();

// cast it to be PMI’s Statistic type so that we can have get more
// Also show how to do translation.
Statistic[] dataMembers = (Statistic[])allData;
if(dataMembers != null) {

for(int i=0; i<dataMembers.length; i++) {
System.out.print(indent + " " + "data name="

+ PmiClient.getNLSValue(dataMembers[i].getName())
+ ", description="
+ PmiClient.getNLSValue(dataMembers[i].getDescription())
+ ", startTime=" + dataMembers[i].getStartTime()
+ ", lastSampleTime="
+ dataMembers[i].getLastSampleTime());

if(dataMembers[i].getDataInfo().getType() == TYPE_LONG) {
System.out.println(", count="

+ ((CountStatisticImpl)dataMembers[i]).getCount());
}
else if(dataMembers[i].getDataInfo().getType() == TYPE_STAT) {

TimeStatisticImpl data = (TimeStatisticImpl)dataMembers[i];
System.out.println(", count=" + data.getCount()

+ ", total=" + data.getTotal()
+ ", mean=" + data.getMean()
+ ", min=" + data.getMin()
+ ", max=" + data.getMax());

}
else if(dataMembers[i].getDataInfo().getType() == TYPE_LOAD) {

RangeStatisticImpl data = (RangeStatisticImpl)dataMembers[i];
System.out.println(", current=" + data.getCurrent()

+ ", integral=" + data.getIntegral()
+ ", avg=" + data.getMean()
+ ", lowWaterMark=" + data.getLowWaterMark()
+ ", highWaterMark=" + data.getHighWaterMark());

}
}

}

// recursively for sub-stats
Stats[] substats = (Stats[])stat.getSubStats();
if(substats == null || substats.length == 0)

return;
for(int i=0; i<substats.length; i++) {

processStats(substats[i], indent + " ");
}

}

/**
* Get PmiModuleConfig based on MBean ObjectName
*/
public PmiModuleConfig findConfig(ObjectName on) {

if (on == null) return null;

String type = on.getKeyProperty("type");
System.out.println("findConfig: mbean type =" + type);

for (int i=0; i<configs.length ; i++) {

if (configs[i].getMbeanType().equals(type))
return configs[i];

}
System.out.println("Error: cannot find the config");

Chapter 2. Monitoring performance 61

return null;

}

/**
* Get PmiModuleConfig based on PMI module name */
public PmiModuleConfig findConfig(String moduleName) {

if (moduleName == null) return null;

for (int i=0; i<configs.length ; i++) {

if (configs[i].getShortName().equals(moduleName))
return configs[i];

}
System.out.println("Error: cannot find the config");
return null;

}

/**
* The Stats object returned from server does not have static config info.
* You have to set it on client side.
*/
public void setServerConfig(Stats stats) {

if(stats == null) return;
if(stats.getType() != TYPE_SERVER) return;

PmiModuleConfig config = null;

Stats[] statList = stats.getSubStats();
if (statList == null || statList.length == 0)

return;
Stats oneStat = null;
for(int i=0; i<statList.length; i++) {

oneStat = statList[i];
if (oneStat == null) continue;
config = findConfig(oneStat.getName());
if(config != null)

oneStat.setConfig(config);
else

System.out.println("Error: get null config for " + oneStat.getName());
}

}

/**
* sample code to show how to get a specific MBeanStatDescriptor
*/
public MBeanStatDescriptor getStatDescriptor(ObjectName oName, String name) {

try {
Object[] params = new Object[]{serverOName};
String[] signature= new String[]{"javax.management.ObjectName"};
MBeanStatDescriptor[] msds = (MBeanStatDescriptor[])ac.invoke(perfOName,

"listStatMembers", params, signature);
if (msds == null)

return null;
for (int i=0; i<msds.length; i++) {

if (msds[i].getName().equals(name))
return msds[i];

}
return null;

}
catch(Exception e) {

new AdminException(e).printStackTrace();
System.out.println("listStatMembers: Exception Thrown");
return null;

}

62 IBM WebSphere Application Server Network Deployment, Version 5: Monitoring and Troublshooting

}

/**
* sample code to show you how to navigate MBeanStatDescriptor via listStatMembers
*/
public MBeanStatDescriptor[] listStatMembers(ObjectName mName) {

if (mName == null)
return null;

try {
Object[] params = new Object[]{mName};
String[] signature= new String[]{"javax.management.ObjectName"};
MBeanStatDescriptor[] msds = (MBeanStatDescriptor[])ac.invoke(perfOName,

"listStatMembers", params, signature);
if (msds == null)

return null;
for (int i=0; i<msds.length; i++) {

MBeanStatDescriptor[] msds2 = listStatMembers(msds[i]);
}
return null;

}
catch(Exception e) {

new AdminException(e).printStackTrace();
System.out.println("listStatMembers: Exception Thrown");
return null;

}

}

/**
* Sample code to get MBeanStatDescriptors
*/
public MBeanStatDescriptor[] listStatMembers(MBeanStatDescriptor mName) {

if (mName == null)
return null;

try {
Object[] params = new Object[]{mName};
String[] signature=

new String[]{"com.ibm.websphere.pmi.stat.MBeanStatDescriptor"};
MBeanStatDescriptor[] msds = (MBeanStatDescriptor[])ac.invoke(perfOName,

"listStatMembers", params, signature);
if (msds == null)

return null;
for (int i=0; i<msds.length; i++) {

MBeanStatDescriptor[] msds2 = listStatMembers(msds[i]);
// you may recursively call listStatMembers until find the one you want

}
return msds;

}
catch(Exception e) {

new AdminException(e).printStackTrace();
System.out.println("listStatMembers: Exception Thrown");
return null;

}

}

/**
* sample code to get PMI data from beanModule
*/
public void testEJB() {

// This is the MBeanStatDescriptor for Enterprise EJB
MBeanStatDescriptor beanMsd = getStatDescriptor(serverOName,

PmiConstants.BEAN_MODULE);

Chapter 2. Monitoring performance 63

if (beanMsd == null)
System.out.println("Error: cannot find beanModule");

// get the Stats for module level only since recursive is false
Stats stats = getStatsObject(beanMsd.getObjectName(),

beanMsd.getStatDescriptor(), false);
// pass true if you wannt data from individual beans

// find the avg method RT
TimeStatisticImpl rt =

(TimeStatisticImpl)stats.getStatistic(EJBStatsImpl.METHOD_RT);
System.out.println("rt is " + rt.getMean());

try {
java.lang.Thread.sleep(5000);

} catch (Exception ex) {
ex.printStackTrace();

}

// get the Stats again
Stats stats2 = getStatsObject(beanMsd.getObjectName(),

beanMsd.getStatDescriptor(), false);
// pass true if you wannt data from individual beans

// find the avg method RT
TimeStatisticImpl rt2 =

(TimeStatisticImpl)stats2.getStatistic(EJBStatsImpl.METHOD_RT);
System.out.println("rt2 is " + rt2.getMean());

// calculate the difference between this time and last time.
TimeStatisticImpl deltaRt = (TimeStatisticImpl)rt2.delta(rt);
System.out.println("deltaRt is " + rt.getMean());

}

/**
* Sample code to show how to call getStats on StatisticProvider MBean directly.
*/
public void testJSR77Stats() {

// first, find the MBean ObjectName you are interested.
// Refer method getObjectNames for sample code.

// assume we want to call getStats on JVM MBean to get statistics
try {

com.ibm.websphere.management.statistics.JVMStats stats =
(com.ibm.websphere.management.statistics.JVMStats)
ac.invoke(jvmOName, "getStats", null, null);

System.out.println("\n get data from JVM MBean");

if (stats == null) {
System.out.println("WARNING: getStats on JVM MBean returns null");

} else {

// first, link with the static info if you care
((Stats)stats).setConfig(findConfig(jvmOName));

// print out all the data if you want
//System.out.println(stats.toString());

// navigate and get the data in the stats object
processStats((Stats)stats);

// call JSR77 methods on JVMStats to get the related data
com.ibm.websphere.management.statistics.CountStatistic upTime =

stats.getUpTime();

64 IBM WebSphere Application Server Network Deployment, Version 5: Monitoring and Troublshooting

com.ibm.websphere.management.statistics.BoundedRangeStatistic
heapSize = stats.getHeapSize();

if (upTime != null)
System.out.println("\nJVM up time is " + upTime.getCount());

if (heapSize != null)
System.out.println("\nheapSize is " + heapSize.getCurrent());

}
} catch (Exception ex) {

ex.printStackTrace();
new AdminException(ex).printStackTrace();

}
}

}

Developing your own monitoring applications with
Performance Monitoring Infrastructure servlet

Before you begin

The performance servlet uses the Performance Monitor Interface (PMI)
infrastructure to retrieve the performance information from WebSphere Application
Server. This is the same infrastructure used by the Tivoli Performance Viewer and
is subject to the same restrictions on the availability of data as the performance
viewer

The performance servlet .ear file perfServletApp.ear is located in the
install_root directory.

The performance servlet is deployed exactly as any other servlet. To use it, follow
these steps:

Steps for this task
1. Deploy the servlet on a single application server instance within the domain.
2. After the servlet deploys, you can invoke it to retrieve performance data for the

entire domain.
Invoke the performance servlet by accessing the following default URL:
http://hostname/wasPerfTool/servlet/perfservlet

Results

The performance servlet provides performance data output as an XML document,
as described by the provided document type definition (DTD). The output
structure provided is called leaves. The paths that lead to the leaves provide the
context of the data. See Performance Monitoring Infrastructure (PMI) servlet for
more information about the PMI servlet output.

Performance Monitoring Infrastructure servlet
The Performance Monitoring Infrastructure (PMI) servlet is used for simple
end-to-end retrieval of performance data that any tool, provided by either IBM or a
third-party vendor, can handle.

The PMI servlet provides a way to use an HTTP request to query the performance
metrics for an entire WebSphere Application Server administrative domain.
Because the servlet provides the performance data through HTTP, issues such as
firewalls are trivial to resolve.

Chapter 2. Monitoring performance 65

The performance servlet provides the performance data output as an XML
document, as described in the provided document type description (DTD). In the
XML structure, the leaves of the structure provide the actual observations of
performance data and the paths to the leaves that provide the context. There are
three types of leaves or output formats within the XML structure:
v PerfNumericInfo
v PerfStatInfo
v PerfLoadInfo

PerfNumericInfo.When each invocation of the performance servlet retrieves the
performance values from Performance Monitoring Infrastructure (PMI), some of
the values are raw counters that record the number of times a specific event occurs
during the lifetime of the server. If a performance observation is of the type
PerfNumericInfo, the value represents the raw count of the number of times this
event has occurred since the server started. This information is important to note
because the analysis of a single document of data provided by the performance
servlet might not be useful for determining the current load on the system. To
determine the load during a specific interval of time, it might be necessary to
apply simple statistical formulas to the data in two or more documents provided
during this interval. The PerfNumericInfo type has the following attributes:
v time—Specifies the time when the observation was collected (Java

System.currentTimeMillis)
v uid—Specifies the PMI identifier for the observation
v val—Specifies the raw counter value

The following document fragment represents the number of loaded servlets. The
path providing the context of the observation is not shown.
<numLoadedServlets>

<PerfNumericData time="988162913175" uid="pmi1" val="132"/>
</numLoadedServlets>

PerfStatInfo.When each invocation of the performance servlet retrieves the
performance values from PMI, some of the values are stored as statistical data.
Statistical data records the number of occurrences of a specific event, as the
PerfNumericInfo type does. In addition, this type has sum of squares, mean, and
total for each observation. This value is relative to when the server started.

The PerfStatInfo type has the following attributes:
v time—Specifies the time the observation was collected (Java

System.currentTimeMillis)
v uid—Specifies the PMI identifier for this observation
v num—Specifies the number of observations
v sum_of_squares—Specifies the sum of the squares of the observations
v total—Specifies the sum of the observations
v mean—Specifies the mean (total number) for this counter

The following fragment represents the response time of an object. The path
providing the context of the observation is not shown:
<responseTime>

<PerfStatInfo mean="1211.5" num="5" sum_of_squares="3256265.0"
time="9917644193057" total="2423.0" uid="pmi13"/>
</responseTime>

66 IBM WebSphere Application Server Network Deployment, Version 5: Monitoring and Troublshooting

PerfLoadInfo.When each invocation of the performance servlet retrieves the
performance values from PMI, some of the values are stored as a load. Loads
record values as a function of time; they are averages. This value is relative to
when the server started.

The PerfLoadInfo type has the following attributes:
v time—Specifies the time when the observation was collected (Java

System.currentTimeMillis)
v uid—Specifies the PMI identifier for this observation
v currentValue—Specifies the current value for this counter
v integral—Specifies the time-weighted sum
v timeSinceCreate—Specifies the elapsed time in milliseconds since this data was

created in the server
v mean—Specifies time-weighted mean (integral/timeSinceCreate) for this counter

The following fragment represents the number of concurrent requests. The path
providing the context of the observation is not shown:
<poolSize>

<PerfLoadInfo currentValue="1.0" integral="534899.0" mean="0.9985028962051592"
time="991764193057" timeSinceCreate="535701.0" uid="pmi5"
</poolSize>

When the performance servlet is first initialized, it retrieves the list of nodes and
servers located within the domain in which it is deployed. Because the collection of
this data is expensive, the performance servlet holds this information as a cached
list. If a new node is added to the domain or a new server is started, the
performance servlet does not automatically retrieve the information about the
newly created element. To force the servlet to refresh its configuration, you must
add the refreshConfig parameter to the invocation as follows:
http://hostname/wasPerfTool/servlet/perfservletrefreshConfig=true

By default, the performance servlet collects all of the performance data across a
WebSphere domain. However, it is possible to limit the data returned by the servlet
to either a specific node, server, or PMI module.
v Node.The servlet can limit the information it provides to a specific host by using

the node parameter. For example, to limit the data collection to the node rjones,
invoke the following URL:
http://hostname/wasPerfTool/servlet/perfservletNode=rjones

v Server.The servlet can limit the information it provides to a specific server by
using the server parameter. For example, in order to limit the data collection to
the TradeApp server on all nodes, invoke the following URL:
http://hostname/wasPerfTool/servlet/perfservletServer=TradeApp

To limit the data collection to the TradeApp server located on the host rjones,
invoke the following URL:
http://hostname/wasPerfTool/servlet/perfservletNode=rjones&Server=TradeApp

v Module.The servlet can limit the information it provides to a specific PMI
module by using the module parameter. You can request multiple modules from
the following Web site:
http://hostname/wasPerfTool/servlet/perfservletModule=beanModule+jvmRuntimeModule

For example, to limit the data collection to the beanModule on all servers and
nodes, invoke the following URL:

Chapter 2. Monitoring performance 67

http://hostname/wasPerfTool/servlet/perfservletModule=beanModule

To limit the data collection to the beanModule on the server TradeApp on the
node rjones, invoke the following URL (split for publication):
http://hostname/wasPerfTool/servlet/perfservletNode=rjones

&Server=TradeApp&Module=beanModule>

Accessing Performance Monitoring Infrastructure data
through the Java Management Extension interface

Before you begin

WebSphere Application Server allows you to invoke methods on MBeans through
the AdminClient Java Management Extension (JMX) interface. You can use
AdminClient API to get Performance Monitoring Infrastructure (PMI) data by
using either PerfMBean or individual MBeans.See information about using
individual MBeans at bottom of this article.

Individual MBeans provide the basic getStats method as specified in JSR-077, while
PerfMBean provides WebSphere Application Server PMI extensions for more
flexibility and administration.

See ″Developing an administrative client program″ (not in this document) for more
information on AdminClient JMX.

After the performance monitoring service is enabled and the application server is
started or restarted, a PerfMBean is located in each application server giving access
to PMI data. To use PerfMBean:

Steps for this task
1. Create an instance of AdminClient.

When using AdminClient API, you need to first create an instance of
AdminClient by passing the host name, port number and connector type.
The example code is:

AdminClient ac = null;
java.util.Properties props = new java.util.Properties();
props.put(AdminClient.CONNECTOR_TYPE, connector);
props.put(AdminClient.CONNECTOR_HOST, host);
props.put(AdminClient.CONNECTOR_PORT, port);
try {

ac = AdminClientFactory.createAdminClient(props);
}
catch(Exception ex) {

failed = true;
new AdminException(ex).printStackTrace();
System.out.println("getAdminClient: exception");

}

2. Use AdminClient to query the MBean ObjectNames
Once you get the AdminClient instance, you can call queryNames to get a list
of MBean ObjectNames depending on your query string. To get all the
ObjectNames, you can use the following example code. If you have a specified
query string, you will get a subset of ObjectNames.

javax.management.ObjectName on = new javax.management.ObjectName("WebSphere:*");
Set objectNameSet= ac.queryNames(on, null);

// you can check properties like type, name, and process
// to find a specified ObjectName

68 IBM WebSphere Application Server Network Deployment, Version 5: Monitoring and Troublshooting

After you get all the ObjectNames, you can use the following example code to
get all the node names:

HashSet nodeSet = new HashSet();
for(Iterator i = objectNameSet.iterator(); i.hasNext(); on =

(ObjectName)i.next()) {
String type = on.getKeyProperty("type");
if(type != null && type.equals("Server")) {

nodeSet.add(servers[i].getKeyProperty("node"));
}

}

Note, this will only return nodes that are started.

To list running servers on the node, you can either check the node name and
type for all the ObjectNames or use the following example code:

StringBuffer oNameQuery= new StringBuffer(41);
oNameQuery.append("WebSphere:*");
oNameQuery.append(",type=").append("Server");
oNameQuery.append(",node=").append(mynode);

oSet= ac.queryNames(new ObjectName(oNameQuery.toString()), null);
Iterator i = objectNameSet.iterator ();

while (i.hasNext ()) {
on=(objectName) i.next();
String process= on[i].getKeyProperty("process");
serversArrayList.add(process);
}

3. Get the PerfMBean ObjectName for the application server from which you
want to get PMI data.
Use this example code:

for(Iterator i = objectNameSet.iterator(); i.hasNext(); on = (ObjectName)i.next()) {
// First make sure the node name and server name is what you want
// Second, check if the type is Perf

String type = on.getKeyProperty("type");
String node = on.getKeyProperty("node");
String process= on.getKeyProperty("process");

if (type.equals("Perf") && node.equals(mynode)
&& server.equals(myserver)) {

perfOName = on;
}

}

4. Invoke operations on PerfMBean through the AdminClient.
Once you get the PerfMBean(s) in the application server from which you want
to get PMI data, you can invoke the following operations on the PerfMBean
through AdminClient API:
- setInstrumentationLevel: set the instrmentation level

params[0] = new MBeanLevelSpec(objectName, optionalSD, level);
params[1] = new Boolean(true);
signature= new String[]{ "com.ibm.websphere.pmi.stat.MBeanLevelSpec",

"java.lang.Boolean"};
ac.invoke(perfOName, "setInstrumentationLevel", params, signature);

- getInstrumentationLevel: get the instrumentation level
Object[] params = new Object[2];
params[0] = new MBeanStatDescriptor(objectName, optionalSD);
params[1] = new Boolean(recursive);
String[] signature=

new String[]{ "com.ibm.websphere.pmi.stat.MBeanStatDescriptor",
"java.lang.Boolean"};

MBeanLevelSpec[] mlss = (MBeanLevelSpec[])ac.invoke(perfOName,
"getInstrumentationLevel", params, signature);

Chapter 2. Monitoring performance 69

- getConfigs: get PMI static config info for all the MBeans
configs = (PmiModuleConfig[])ac.invoke(perfOName, "getConfigs", null, null);

- getConfig: get PMI static config info for a specific MBean
ObjectName[] params = {objectName};
String[] signature= { "javax.management.ObjectName" };

config = (PmiModuleConfig)ac.invoke(perfOName, "getConfig",
params, signature);

- getStatsObject: you can use either ObjectName or MBeanStatDescriptor
Object[] params = new Object[2];
params[0] = objectName; // either ObjectName or or MBeanStatDescriptor
params[1] = new Boolean(recursive);
String[] signature = new String[] { "javax.management.ObjectName",

"java.lang.Boolean"};
Stats stats = (Stats)ac.invoke(perfOName, "getStatsObject",

params, signature);

Note: The returned data only have dynamic information (value and time stamp).
See PmiJmxTest.java for additional code to link the configuration
information with the returned data.

- getStatsArray: you can use either ObjectName or MBeanStatDescriptor
ObjectName[] onames = new ObjectName[]{objectName1, objectName2};
Object[] params = new Object[]{onames, new Boolean(true)};
String[] signature = new String[]{"[Ljavax.management.ObjectName;",

"java.lang.Boolean"};
Stats[] statsArray = (Stats[])ac.invoke(perfOName, "getStatsArray",

params, signature);

Note: The returned data only have dynamic information (value and time stamp).
See PmiJmxTest.java for additional code to link the configuration
information with the returned data.

- listStatMembers: navigate the PMI module trees

Object[] params = new Object[]{mName};
String[] signature= new String[]{"javax.management.ObjectName"};
MBeanStatDescriptor[] msds = (MBeanStatDescriptor[])ac.invoke(perfOName,

"listStatMembers", params, signature);

or,

Object[] params = new Object[]{mbeanSD};
String[] signature=

new String[]{"com.ibm.websphere.pmi.stat.MBeanStatDescriptor"};
MBeanStatDescriptor[] msds = (MBeanStatDescriptor[])ac.invoke(perfOName,

"listStatMembers", params, signature);

v To use an individual MBean: You need to get the AdminClient instance and
the ObjectName for the individual MBean. Then you can simply invoke the
no-arg operation getStats() on the MBean.

Developing Performance Monitoring Infrastructure interfaces
(Version 4.0)

Before you begin

The Version 4.0 APIs are supported in this release, however, some data hierarchy
changes have occurred in the PMI modules, including the enterprise bean and
HTTP sessions modules. If you have an existing PmiClient application and you
want to run it against Version 5.0, you might have to update the PerfDescriptor(s)
based on the new PMI data hierarchy.

70 IBM WebSphere Application Server Network Deployment, Version 5: Monitoring and Troublshooting

The getDataName and getDataId methods in PmiClient have also changed. They
are now non-static methods in order to support multiple WebSphere Application
Server versions. You might have to update your existing application which uses
these two methods.

This section discusses the use of the Performance Monitoring Infrastructure (PMI)
client interfaces in applications. The basic steps in the programming model follow:

Steps for this task
1. Retrieve an initial collection or snapshot of performance data from the server.

A client uses the CpdCollection interface to retrieve an initial collection or
snapshot from the server. This snapshot, which is called Snapshot in this
example, is provided in a hierarchical structure as described in data
organization and hierarchy, and contains the current values of all performance
data collected by the server. The snapshot maintains the same structure
throughout the lifetime of the CpdCollection instance.

2. Process and display the data as specified.
The client processes and displays the data as specified. Processing and display
objects, for example, filters and GUIs, can register as CpdEvent listeners to data
of interest. The listener works only within the same Java virtual machine (JVM).
When the client receives updated data, all listeners are notified.

3. Display the new CpdCollection instance through the hierarchy.
When the client receives new or changed data, the client can simply display the
new CpdCollection instance through its hierarchy. When it is necessary to
update the Snapshot collection, the client can use the update method to update
Snapshot with the new data.
Snapshot.update(S1);
// ...later...
Snapshot.update(S2);

Results

Steps 2 and 3 are repeated through the lifetime of the client.

Third-party performance monitoring and management solutions
Several other companies provide performance monitoring, problem determination
and management solutions that can be used with WebSphere Application Server.

These products use WebSphere Application Server interfaces, including
Performance Monitoring Infrastructure (PMI), Java Management Extensions (JMX),
and PMI Request Metrics Application Response Measurement (ARM).

See Performance: Resources for learning for a link to IBM business partners
providing monitoring solutions for WebSphere Application Server.

Measuring data requests (Performance Monitoring Infrastructure
Request Metrics)

Performance Monitoring Infrastructure (PMI) Request Metrics collects data by
timing requests as they travel through WebSphere Application Server components.
This data helps to identify run time and application problems. PMI Request
Metrics logs the time spent at major points, such as the Web container, enterprise

Chapter 2. Monitoring performance 71

bean container and database. These points are recorded in logs and can be written
to Application Response Measurement (ARM) agents used by Tivoli monitoring
tools.

If you plan to run in a production environment, plan to filter by IP address - a
specific IP address using a synthetic transaction generator. If you choose to enable
request metrics, but not filter by a specific IP address, performance can be
impacted significantly.

Learn more about Request Metrics by reviewing this section, including:
v Detailed explanation about Request Metrics
v Request Metrics process and filters
v Types and format of output you will be reading
v Configuring Request Metrics

Performance Monitoring Infrastructure Request Metrics
Performance Monitoring Infrastructure (PMI) Request Metrics helps identify run
time and application performance problems by capturing process hop response
times in multi-tiered applications and recording the data in system logs.

For requests that start from either an HTTP or enterprise bean remote requests,
Request Metrics captures response times for the initiating request and any related
downstream enterprise bean invocations and Java Database Connectivity (JDBC)
calls. Request Metrics also provides the same information on process hop response
time through the Application Response Measurement (ARM) interface.

When active, Request Metrics compares each incoming request to a set of known
filters. If the request matches any filter with a trace level greater than
TRACE_NONE, trace records are generated for that request.

Typically, requests enter the system and create processes that fan out across several
nodes within a distributed system. Each process can further fan out and call other
processes. When the processes fan out, trace records are generated for each process.
Then, these trace records can be correlated together to build a sequence diagram of
the response times for the request. The processes are only recorded if they are
generated through a remote enterprise bean call.

Application Response Measurement
Application Response Measurement (ARM) is an Open Group standard composed
of a set of interfaces implemented by an ARM agent that provides information on
elapsed time for process hops.

WebSphere Application Server does not provide an ARM agent, but can be used
with agents conforming to the ARM 2.0 standard. Contact your ARM agent
provider for information on whether their ARM agent is supported with
WebSphere Application Server.

See Performance: Resources for learning for more information about the ARM
specifications.

72 IBM WebSphere Application Server Network Deployment, Version 5: Monitoring and Troublshooting

Performance Monitoring Infrastructure Request Metrics trace
filters

When Performance Monitoring Infrastructure (PMI) Request Metrics is active, trace
filters control which requests get traced. The data is recorded to the system log file
StdOut and can be used for real-time and historical analysis.

Incoming HTTP requests

For HTTP requests arriving at a WebSphere Application Server it is possible to
filter on the URI and client IP address.
v Client IP address filters. Requests are filtered based on a known IP address.

You can specify a mask for an IP address using the asterisk (*). If used, the
asterisk must always be the last character of the mask, for example 127.0.0.*,
127.0.*, 127*. For performance reasons, the pattern matches character by
character, until either an asterisk is found in the filter, a mismatch occurs, or the
filters are found as an exact match.

v URI filters. Requests are filtered, based on the URI of the incoming HTTP
request. The rules for pattern matching are the same as for matching client IP
address filters.

v Filter combinations.If both URI and Client IP address filters are active, then
Request Metrics requires a match for both filter types. If neither is active, all
requests are considered a match.

Incoming enterprise bean requests

v Enterprise bean method name filters. Requests are filtered based on the full
name of the enterprise bean method. As with IP address and URI filters, you can
use the asterisk (*) to provide a mask. The asterisk must always be the last
character of a filter pattern.

Performance Monitoring Infrastructure Request Metrics data
output

The trace record format for Performance Monitoring Infrastructure (PMI) Request
Metrics data output follows:
PMRM0003I: parent:ver=n,ip=n.n.n.n,time=nnnnnnnnnn,pid=nnnn,reqid=nnnnnn,event=nnnn
- current:ver=n,ip=n.n.n.n,time=nnnnnnnnnn,pid=nnnn,reqid=nnnnnn,event=nnnn

type=TTT detail=some_detail_information elapsed=nnnn

The trace record format is composed of two correlators: a parent correlator and
current correlator. The parent correlator represents the upstream request and the
current correlator represents the current operation. If the parent and current
correlators are the same, then the record represents an operation that occurred as it
entered WebSphere Application Server.

To correlate trace records for a particular request, collect records with a message ID
of PMRM0003I from the appropriate server logs. Records are correlated by
matching current correlators to parent correlators. The logical tree can be created
by connecting the current correlators of parent trace records to the parent
correlators of child records. This tree shows the progression of the request across
the server cluster.

The parent correlator is denoted by the comma separating fields following the
keyword ″parent:″. Likewise, the current correlator is denoted by the comma
separating fields following ″current:″.

Chapter 2. Monitoring performance 73

The fields of both parent and current correlators are as follows:
v ver: The version of the correlator. For convenience, it is duplicated in both the

parent and current correlators.
v ip: The IP address of the node of the application server that generated the

correlator.
v pid: The process ID of the application server that generated the correlator.
v time: The start time of the application server process that generated the

correlator.
v reqid: An ID assigned to the request by Request Metrics, unique to the

application server process.
v event: An event ID assigned to differentiate the actual trace events.

The information following the parent and current correlators describes the trace
event. The elapsed field shows the elapsed time for the operation described in the
type and detail fields. The elapsed time includes the time for all operations having
parent correlators equal to the current correlator of the trace record being
examined.

The type and detail fields are described as follows:
v Universal Resource Identifier (URI): The trace record was generated by a Web

component. The URI is the name of the URI used to invoke the request.
v Enterprise bean: The fully qualified package and method name of the enterprise

bean
v Java Database Connectivity (JDBC): The values select, update, insert or delete

for prepared statements. For non-prepared statements, the full statement can
appear.

Configuring Request Metrics
Before you begin

You can enable Request Metrics without enabling Application Response
Measurement (ARM).

To configure Request Metrics, you will need to access the Configuration tab in the
administrative console. To access the Configuration tab , click Problem
Determination > PMI Request Metrics from the administrative console navigation
tree.

Tasks included in configuring Request Metrics:

Steps for this task
1. Enable Request Metrics.
2. (Optional) Enable Application Response Measurement (ARM).
3. (Optional) Enable Request Metrics filters.
4. Add and remove Request Metrics filters.
5. Set the trace level in Request Metrics.

Enabling Performance Monitoring Infrastructure Request Metrics
When enabled, Performance Monitoring Infrastructure (PMI) Request Metrics
captures response times for the initiating request and any related downstream
enterprise bean invocations and Java Database Connectivity (JDBC) calls. Then,
Request Metrics compares each incoming request to a set of known filters.

74 IBM WebSphere Application Server Network Deployment, Version 5: Monitoring and Troublshooting

Steps for this task
1. Open the administrative console.
2. Click Problem Determination > PMI Request Metrics in the console

navigation tree.
3. Select the check box in the enable field under the Configuration tab.
4. Click Apply or OK.
5. Click Save.

Enabling Application Response Measurement

Before you begin

Before enabling Application Response Measurement (ARM), install an appropriate
ARM implementation on all WebSphere Application Server nodes. Refer to the
appropriate ARM implementation documentation. Verify with your ARM agent
provider that Request Metrics is supported by the ARM agent implementation.
ARM support is dependent on Request Metrics support.

You can learn more about ARM agents in Performance: Resources for Learning.

Steps for this task
1. Install the appropriate ARM implementation

a. Change the startup command for the application servers to include the
following:
-Dcom.ibm.websphere.pmi.reqmetrics.ARMIMPL=ARMIMPLNAME

ARM support is dependent on Request Metrics support. If enabled, and an
appropriate ARM implementation is defined to the server run times, then
the ARM implementation is called as requests enter WebSphere Application
Server processes and when Java Database Connectivity (JDBC) calls are
made, using EJB 2.0 data sources.

2. Open the administrative console.
3. Click Problem Determination > PMI Request Metrics in the console

navigation tree.
4. Select the check box in the enableARM field.
5. Click Apply or OK.
6. Click Save.

Enabling Performance Monitoring Infrastructure Request Metrics
filters
Performance Monitoring Infrastructure (PMI) Request Metrics compares each
incoming request to a set of known filters, but you need to enable these filters.

Steps for this task
1. Open the administrative console.
2. Click Problem Determination > PMI Request Metrics in the administrative

console navigation tree.
3. Click filters.
4. Click filter type.
5. Select the check box in the enable field under the Configuration tab.
6. Click Apply or OK.
7. Click Save.

Chapter 2. Monitoring performance 75

You can enable or disable a filter group. If the group is enabled, you can enable
or disable individual filters.

Adding and removing Performance Monitoring Infrastructure Request Metrics:
filters

To add or remove Performance Monitoring Infrastructure (PMI) Request Metrics
filters:

Steps for this task
1. Open the administrative console.
2. Click Problem Determination > PMI Request Metrics in the console

navigation tree.
3. Click filters.
4. Click New.
5. Choose a filter type from the drop down box in the type field under the

Configuration tab.
6. (Optional) Select the check box in the enable field to enable the filter.
7. Click Apply or OK.
8. Click Save.

Individual filters are composed of an indicator and an IP address. Use the
indicator to determine whether the individual filter is active. The IP address is
composed of a standard dotted IP address.

Setting the trace level in Performance Monitoring Infrastructure
Request Metrics
To set the trace level to generate records:

Steps for this task
1. Open the administrative console.
2. Click Problem Determination > PMI Request Metrics in the administrative

console navigation tree.
3. Find traceLevel in the Configuration tab.
4. Select the desired trace level from the drop down list box.

To set the Request Metrics trace level to generate records, make sure the trace
level is set to a value greater than NONE.

5. Click Apply or OK.
6. Click Save.

Performance Monitoring Infrastructure Request Metrics
configuration settings
Use this page to enable Performance Monitoring Infrastructure (PMI) Request
Metrics, enable Request Metrics Application Response Measurement (ARM), and
set trace levels.

To view this administrative console page, click Problem Determination > PMI
Request Metrics.

enable: Enables PMI Request Metrics.

When disabled, the Request Metrics function is disabled.

enableARM: Enables PMI Request Metrics to call an underlying ARM agent.

76 IBM WebSphere Application Server Network Deployment, Version 5: Monitoring and Troublshooting

Before enabling ARM, install an appropriate ARM implementation on all
WebSphere Application Server nodes. Verify with your ARM agent provider that
Request Metrics is supported by the ARM agent implementation. ARM support is
dependent on Request Metrics support.

traceLevel: Specifies how much trace data to accumulate for a given request.

Including one of the following: NONE - no trace; HOPS - only accumulates on
major process hops; PERF_DEBUG - enables additional information over hops, but
is not as performance intensive as DEBUG; DEBUG - full detailed trace.

PMIRMFilter collection: Use this page to view a list of Performance Monitoring
Infrastructure (PMI) Request Metrics filters.

To view this administrative console page, click Problem Determination > PMI
Request Metrics > filters.

type: Specifies the type of request metrics filter.

enable: Specifies whether this filter is enabled.

PMIRM filter settings: Use this page to specify filters that define whether or not
trace is enabled for the request as it moves through WebSphere Application Server.

To view this administrative console page, click Problem Determination > PMI
Request Metrics > filters > filter.

type: Specifies the type of Request Metrics filter.

enable: Specifies whether this filter is enabled.

Filter value collection: Use this page to specify the values for client IP, URI or
EJB Request Metrics filters.

To view this administrative console page, click Problem Determination > PMI
Request Metrics > filters > filter > filterValues.

value: Specifies a URI value or IP name based on the type of filter.

For example, for URI filters, the value might be ″/servlet/snoop″.

enable: Specifies whether a filter value is enabled.

Filter value settings: Use this page to specify the values for client IP, URI or EJB
Request Metrics filters.

To view this administrative console page, click Problem Determination > PMI
Request Metrics > filters > filter > filterValues > filter_value.

value: Specifies a URI value or IP name based on the type of filter.

For example, for URI filters, the value can be ″/servlet/snoop″.

enable: Specifies whether this filter value is enabled.

Example: Generating trace records from PMI Request Metrics
Examples

Chapter 2. Monitoring performance 77

Use HitCount enterprise bean /webapp/examples/hitcount?source=EJB where the
servlet is deployed on one machine - 192.168.0.1, and the enterprise bean
Increment.jar file is deployed on a second machine - 192.168.0.2.

In this example, both machines are used as clients.

To illustrate the use of client IP filtering, one client IP filter (192.168.0.2) is defined
and enabled. This action allows tracing of requests originating from the enterprise
bean machine through http://192.168.0.1/webapp/examples/hitcount?source=EJB.
However, requests originating from this machine are not traced since the client IP
address is not in the filter list.

By only creating a client IP filter, any request from that client IP address is
effectively traced. This tool can be effective for locating performance problems with
systems under load. If the normal load is originating from other IP addresses, then
their requests are not traced. By using the defined client IP address to generate
requests, you can see performance bottlenecks at the various hops by comparing
the trace records of the loaded system to trace records from a non-loaded run. This
ability can help focus tuning efforts to the correct node and process within a
complex deployment environment.

Make sure Request Metrics is enabled using the administrative console. Also, make
sure the trace level is set to at least Tricepses. Using the configuration listed above,
send a request through the HitCount servlet from the enterprise bean machine
http://192.168.0.1/webapp/examples/hitcount?source=EJB.

In this example, at least two trace records are generated:
v A trace record for the servlet execution will appear on 192.168.0.1
v A trace record for the increment bean method invocation will appear on

192.168.0.2

The trace record appearing on 192.168.0.1 should appear very similar to the
following:
PMRM0003I: parent:ver=1,ip=192.168.0.1,time=1016556186102,pid=884,reqid=40,event=0

- current:ver=1,ip=192.168.0.1,time=1016556186102,pid=884,reqid=40,event=1
type=URI detail=/webapp/examples/hitcount elapsed=60

The trace record appearing on 192.168.0.2 should appear very similar to the
following:
PMRM0003I: parent:ver=1,ip=192.168.0.1,time=1016556186102,pid=884,reqid=40,event=1

- current:ver=1,ip=192.168.0.2,time=1016556122505,pid=9321,reqid=40,event=1
type=EJB detail=com.ibm.websphere.examples.Inc.IncBean.increment elapsed=40

Performance: Resources for learning
Use the following links to find relevant supplemental information about
Performance. The information resides on IBM and non-IBM Internet sites, whose
sponsors control the technical accuracy of the information.

These links are provided for convenience. Often, the information is not specific to
the IBM WebSphere Application Server product, but is useful for understanding
the product. When possible, links are provided to technical papers and Redbooks
that supplement the broad coverage of the release documentation with in-depth
examinations of particular product areas. The following sections are covered in this
reference:

78 IBM WebSphere Application Server Network Deployment, Version 5: Monitoring and Troublshooting

View links to additional information about:
v Performance Monitoring Infrastructure (PMI) Request Metrics
v Monitoring performance with third-party tools

Performance Monitoring Infrastructure (PMI) Request Metrics

v Systems Management: Application Response Measurement (ARM)
(http://www.opengroup.org/publications/catalog/c807.htm)
The Open Group ARM specifications.

Monitoring performance with third-party tools

v Enterprise Web Application Management (http://www-
3.ibm.com/software/webservers/pw/dhtml/wsperformance/performance_bpsolutions.html)
WebSphere Performance Management Business Partner Solution Finder
Find a list of IBM’s business partners that offer performance monitoring tools
compliant with WebSphere Application Server.

Chapter 2. Monitoring performance 79

http://www.opengroup.org/publications/catalog/c807.htm
http://www-3.ibm.com/software/webservers/pw/dhtml/wsperformance/performance_bpsolutions.html

80 IBM WebSphere Application Server Network Deployment, Version 5: Monitoring and Troublshooting

Chapter 3. Tuning performance

Symptom table
Take a shortcut into tuning by reviewing the symptom table. The table is designed
for easy access to symptoms and a quick link to tuning information related to that
symptom. The table contains the following types of information:
v The symptom

The left column lists symptoms and descriptions. The symptoms can be specific
or general.

v Additional information
The right column lists a link that leads to additional information about the
symptom.

Symptom Additional information

Throughput and response time are
undesirable.

Processor speed

AIX: Memory allocation error
Solaris: Too many files open

AIX file descriptors (ulimit) or Solaris file descriptors
(ulimit)

Solaris: The server stalls during
peak periods, responses take
minutes, processor utilization
remains high with all activity in the
system processes, and netstat
shows many sockets are open to
port 80 in CLOSE_WAIT or
FIN_WAIT_2 state.

Solaris tcp_time_wait_interval and Solaris
tcp_fin_wait_2_flush_interval

Windows NT or 2000: Netstat
shows too many sockets are in
TIME_WAIT.

Windows NT or 2000 TcpTimedWaitDelay

Throughput is undesirable and the
application server priority has not
been adjusted.

Adjusting the operating system priority of the
WebSphere Application Server process

Under load, client requests do not
arrive at the Web server because
they time out or are rejected.

For IBM HTTP Server on Windows NT, see
ListenBackLog

Windows NT or 2000: WebSphere
Application Server performance
decreased after an application
server from another vendor was
installed.

Microsoft Internet Information Server (IIS) properties

Tivoli Performance Viewer Percent
Maxed Metric indicates that the
Web container thread pool is too
small.

Thread pool

Netstat shows too many
TIME_WAIT state sockets for port
9080.

MaxKeepAliveConnections, MaxKeepAliveRequests

Too much disk input/output occurs
due to paging.

Heap size settings

© Copyright IBM Corp. 2002 81

Tivoli Performance Viewer’s
Percent Used Metric for a data
source connection pool indicates
the pool size is too large.

Connection pool size

Tivoli Performance Viewer’s
Prepared Statement Cache Discards
Metric indicates the data source
prepared statement cache size is too
small.

Prepared statement cache size

Too much disk input/output occurs
due to DB2 writing log records.

DB2 MinCommit

Tivoli Performance Viewer Percent
Maxed Metric indicates the Object
Request Broker thread pool is too
small.

Queuing and enterprise beans

Tivoli Performance Viewer Java
Virtual Machine Profiler Interface
(JVMPI) indicates over-utilization of
objects when too much time is
being spent in garbage collection.

Detecting over-utilization of objects

Tivoli Performance Viewer Used
Memory Metric shows memory
leaks and Java displays an Out of
Memory exception.

Detecting memory leaks

Throughput, response time and
scalability are undesirable.

If the application permits, exploit dynamic fragment
caching

Tuning basics
This tuning guide describes tuning improvements for WebSphere Application
Server through general recommendations and a description of specific tuning
methodologies. Hints and tips on the various factors and variables in the tuning
guide can help to enhance performance.

Use the tuning guide, along with its examples and resources, to expand your
tuning experience. Tuning is an ongoing learning process. Results can vary
depending on the configuration and application, and thus, might differ from those
in presented in this guide.

What influences tuning?
The following are are parameters that can affect the performance of WebSphere
Application Server:
v The application being used
v Hardware capacity and settings
v Operating system settings
v Web server
v WebSphere application server process
v Java Virtual Machine (JVM)
v Database

82 IBM WebSphere Application Server Network Deployment, Version 5: Monitoring and Troublshooting

Each parameter has its own tuning options, varying in importance and impact.
Each parameter is explained in detail in the Individual Performance Parameters
section of this document.

For convenience, this document also describes procedures for setting parameters in
other products. Because these products can change, consider these descriptions as
suggestions.

Types of tuning
The two types of tuning are application tuning and parameter tuning.

Although application tuning sometimes offers the greatest tuning improvements,
this document focuses on tuning individual performance parameters and the
interactions between them.

The (WebSphere Application Server Development Best Practices for Performance
and Scalability) whitepaper, addresses application tuning by describing
development best practices for Web applications containing servlets, Java Server
Pages (JSP) files, Java Database Connectivity (JDBC), and enterprise applications
containing enterprise bean components.

Parameter tuning
Parameter tuning is the art of changing WebSphere Application Server settings
with the goal of improving performance. The values suggested in this document
are general guidelines. The optimal settings for your environment can vary
significantly. In addition, remember that after tuning one bottleneck away, you can
encounter another, unrelated bottleneck. If so, you might not experience the
performance improvement until both bottlenecks have been removed.

This section discusses two kinds of tuning parameters:
v Tuning parameters with high performance results
v Tuning parameters for avoiding failure

Tuning parameters with high performance results: These parameters are a subset
of all other parameters and have an important effect on performance. Because
these parameters are application-dependent, the appropriate settings for the
application and environment might be different.

The following table lists various high performance-enhancing tuning parameters:

Adjusting WebSphere Application Server system queues

Application assembly performance checklist

Using pass-by-value versus pass-by-reference (NoLocalCopies)

Adjusting Solaris TCP parameters

Tuning Java memory

Adjusting MaxRequestsPerChild: on Linux with IBM HTTP Server

Adjusting connection pool size

Adjusting prepared statement cache size

Web server configuration reload interval

Tuning parameters for avoiding failures: Tuning the following parameters can
help to prevent functional problems:

Chapter 3. Tuning performance 83

Number of connections to DB2: To establish more connections than DB2 sets up by default

Allow thread allocation beyond maximum has been selected and the system is overloaded
because too many threads are allocated.

Using TCP Sockets for DB2 on Linux: For local databases

Connection pool size: Ensure enough connections for transaction processing with Entity
EJBs and for avoiding deadlock.

Adjusting the queues in WebSphere Application Server
WebSphere Application Server has a series of interrelated components that must be
harmoniously tuned to support the custom needs of your end-to-end e-business
application. These adjustments help the system achieve maximum throughput
while maintaining the overall stability of the system.

Queuing network
WebSphere Application Server establishes a queuing network, which is a group of
interconnected queues that represent various components. These queues include
the network, Web server, Web container, EJB container, data source, and possibly a
connection manager to a custom back-end system. Each of these resources
represents a queue of requests waiting to use that resource.

Servlet
Engine

Web
Server

EJB
Container

Network

clients

Data
Source

WebSphere Queuing Network

DB

The WebSphere queues are load-dependent resources. The average service time of
a request depends on the number of concurrent clients.

Closed queues: Most of the queues that make up the queuing network are closed
queues. A closed queue places a limit on the maximum number of requests present
in the queue, while an open queue has no limit.

A closed queue allows for tight management of system resources. For example, the
Web container’s thread pool setting controls the size of the Web container queue. If
the average servlet running in a Web container creates 10MB of objects during each
request, then a value of 100 for thread pools would limit the memory consumed by
the Web container to 1GB.

In a closed queue, requests can be either active or waiting. An active request is
either doing work or waiting for a response from a downstream queue. For
example, an active request in the Web server is either doing work (such as
retrieving static HTML) or waiting for a request to complete in the Web container.
A waiting request is waiting to become active. The request remains in the waiting
state until one of the active requests leaves the queue.

All Web servers supported by WebSphere Application Server are closed queues, as
are WebSphere Application Server data sources. Web containers can be configured
as either open or closed queues. In general, it is best to make them closed queues.

84 IBM WebSphere Application Server Network Deployment, Version 5: Monitoring and Troublshooting

EJB containers are open queues; if there are no threads available in the pool, a new
one will be created for the duration of the request.

If enterprise beans are being called by servlets, the Web container limits the
number of total concurrent requests into an EJB container, because the Web
container also has a limit. This is true only if enterprise beans are called from the
servlet thread of execution. Nothing prevents you from creating threads and
bombarding the EJB container with requests. Thus, servlets should not create their
own work threads.

Queue settings in WebSphere Application Server: The following outlines the
various queue settings:
v IBM HTTP Server: MaxClients (for UNIX) and ThreadsPerChild (for Windows

NT or 2000)
v Web container

– Thread pool
– MaxKeepAliveConnections
– MaxKeepAliveRequests

v Object Request Broker thread pool size
v Connection pool size
v Prepared statement cache size

Determining the settings
The following section outlines a methodology for configuring the WebSphere
Application Server queues. The dynamics of an individual system can be
dramatically changed by moving resources, for example, moving the database
server onto another machine, or providing more powerful resources, for example a
faster set of CPUs with more memory. Thus, you can adjust the tuning parameters
to a specific configuration of the production environment.

Queuing before WebSphere: The first rule of tuning is to minimize the number
of requests in WebSphere Application Server queues. In general, requests should
wait in the network (in front of the Web server), rather than waiting in WebSphere
Application Server. This configuration allows only those requests that are ready to
be processed to enter the queuing network. To accomplish this, specify that the
queues furthest upstream (closest to the client) are slightly larger, and that the
queues further downstream (furthest from the client) are progressively smaller.

Web Server
(N = 75)

ServletEngine
(N = 60)

DataSource
(N = 25)

Network
Arriving Requests

Waiting Requests Waiting Requests Waiting Requests

Arriving Requests Arriving Requests
Arriving
Requests

DB
2525

25
5075200

125

clients UpStream Queuing

The queues in this example queuing network become progressively smaller as
work flows downstream. When 200 client requests arrive at the Web server, 125
requests remain queued in the network because the Web server is set to handle 75
concurrent clients. As the 75 requests pass from the Web server to the Web

Chapter 3. Tuning performance 85

container, 25 remain queued in the Web server and the remaining 50 are handled
by the Web container. This process progresses through the data source until 25 user
requests arrive at the final destination, the database server. Because there is work
waiting to enter a component at each point upstream, no component in this system
must wait for work to arrive. The bulk of the requests wait in the network, outside
of WebSphere Application Server. This type of configuration adds stability, because
no component is overloaded. The Edge Server can be used to direct waiting users
to other servers in a WebSphere Application Server cluster.

Drawing a throughput curve
You can use a test case that represents the full spirit of the production application
by either exercising all meaningful code paths or using the production application.
Run a set of experiments to determine when the system capabilities are fully
stressed (the saturation point). Conduct these tests after most of the bottlenecks
have been removed from the application. The typical goal of these tests is to drive
CPUs to near 100% utilization.

Start the initial baseline experiment with large queues. This allows maximum
concurrency through the system. For example, start the first experiment with a
queue size of 100 at each of the servers in the queuing network: Web server, Web
container and data source.

Next, begin a series of experiments to plot a throughput curve, increasing the
concurrent user load after each experiment. For example, perform experiments
with 1 user, 2 users, 5, 10, 25, 50, 100, 150 and 200 users. After each run, record the
throughput (requests per second) and response times (seconds per request).

The curve resulting from the baseline experiments should resemble the typical
throughput curve shown as follows:

Throughput curve

Saturation point

light load zone heavy load zone
buckle
zone

T
h

ro
u

g
h

p
u

t
(r

eq
u

es
ts

/s
ec

)

Concurrent Users

CBA
0

10

20

30

40

50

60

The throughput of WebSphere Application Server is a function of the number of
concurrent requests present in the total system. Section A, the light load zone,
shows that as the number of concurrent user requests increases, the throughput
increases almost linearly with the number of requests. This reflects that, at light
loads, concurrent requests face very little congestion within the WebSphere

86 IBM WebSphere Application Server Network Deployment, Version 5: Monitoring and Troublshooting

Application Server system queues. At some point, congestion starts to develop and
throughput increases at a much lower rate until it reaches a saturation point that
represents the maximum throughput value, as determined by some bottleneck in
the WebSphere Application Server system. The most manageable type of bottleneck
occurs when the CPUs of the WebSphere Application Server machines become
fully utilized. This is desirable because a CPU bottleneck can be fixed by adding
additional or more powerful CPUs.

In the heavy load zone or Section B, as the concurrent client load increases,
throughput remains relatively constant. However, the response time increases
proportionally to the user load. That is, if the user load is doubled in the heavy
load zone, the response time doubles. At some point, represented by Section C, the
buckle zone, one of the system components becomes exhausted. At this point,
throughput starts to degrade. For example, the system might enter the buckle zone
when the network connections at the Web server exhaust the limits of the network
adapter or if the requests exceed operating system limits for file handles.

If the saturation point is reached by driving CPU utilization close to 100%, you can
move on to the next step. If the saturation CPU occurs before system utilization
reaches 100%, there is likely another bottleneck that is being aggravated by the
application. For example, the application might be creating Java objects causing
excessive garbage collection bottlenecks in Java.

There are two ways to manage application bottlenecks: remove the bottleneck or
clone the bottleneck. The best way to manage a bottleneck is to remove it. You can
use a Java-based application profiler, such as WebSphere Studio Application
Developer (WSAD), Performance Trace Data Visualizer(PTDV), Optimizeit, JProbe
or Jinsight to examine overall object utilization.

Queue adjustments: The number of concurrent users at the throughput saturation
point represents the maximum concurrency of the application. For example, if the
application saturated WebSphere Application Server at 50 users, 48 users might
give best combination of throughput and response time. This value is called the
Max Application Concurrency value. Max Application Concurrency becomes the
preferred value for adjusting the WebSphere Application Server system queues.
Remember, it is desirable for most users to wait in the network; therefore, queue
sizes should increase when moving downstream farther from the client. For
example, given a Max Application Concurrency value of 48, start with system
queues at the following values: Web server 75, Web container 50, data source 45.
Perform a set of additional experiments adjusting these values slightly higher and
lower to find the best settings.

The Tivoli Performance Viewer can be used to determine the number of concurrent
users through the Servlet Engine Thread Pool Concurrently Active Threads metric.

In IBM performance experiments, throughput has increased by 10-15% when the
Web container transport maximum keep-alive are adjusted to match the maximum
number of Web container threads.

Adjusting queue settings for access patterns: In many cases, only a fraction of
the requests passing through one queue enters the next queue downstream. In a
site with many static pages, many requests are fulfilled at the Web server and are
not passed to the Web container. In this circumstance, the Web server queue can be
significantly larger than the Web container queue. In the previous section, the Web

Chapter 3. Tuning performance 87

server queue was set to 75 rather than closer to the value of Max Application
Concurrency. Similar adjustments need to be made when different components
have different execution times.

For example, in an application that spends 90% of its time in a complex servlet and
only 10% making a short JDBC query, on average 10% of the servlets are using
database connections at any time, so the database connection queue can be
significantly smaller than the Web container queue. Conversely, if much of a servlet
execution time is spent making a complex query to a database, consider increasing
the queue values at both the Web container and the data source. Always monitor
the CPU and memory utilization for both the WebSphere Application Server and
the database servers to ensure the CPU or memory are not being saturated.

Queuing and enterprise beans
Method invocations to enterprise beans are only queued for remote clients, making
the method call. An example of a remote client is an EJB client running in a
separate Java Virtual Machine (another address space) from the enterprise bean. In
contrast, no queuing occurs if the EJB client (either a servlet or another enterprise
bean) is installed in the same JVM that the EJB method runs on and the same
thread of execution as the EJB client.

Remote enterprise beans communicate by using the RMI/IIOP protocol. Method
invocations initiated over RMI/IIOP are processed by a server-side ORB. The
thread pool acts as a queue for incoming requests. However, if a remote method
request is issued and there are no more available threads in the thread pool, a new
thread is created. After the method request completes the thread is destroyed.
Therefore, when the ORB is used to process remote method requests, the EJB
container is an open queue, due to the use of unbounded threads. The following
illustration depicts the two queuing options of enterprise beans.

EJB Queuing
WebSphere Application Server

REMOTE WebSphere
Application Server

WebSphere Application Server

REMOTE WebSphere
Application Server

I. Request queued
in the Servlet Engine
Threads

II. Request queued
in the ORB Thread Pool

Servlet Engine

EJB Client

Servlet

Servlet Engine

EJB ContainerEJB Container

ORB Thread PoolORB Thread Pool

EJB Client

Servlet

88 IBM WebSphere Application Server Network Deployment, Version 5: Monitoring and Troublshooting

When configuring the thread pool, it is important to understand the calling
patterns of the EJB client. If a servlet is making a small number of calls to remote
enterprise beans and each method call is relatively quick, consider setting the
number of threads in the ORB thread pool to a value lower than the Web container
thread pool size value.

Longer-lived

Short-lived

Longer-lived

Short-lived

EJB callsEJB calls

EJB callsEJB calls

Servlet service()

Servlet service()

Servlet service()

Servlet service()

BEGIN

BEGIN

END

END

execution timeline

execution timeline

Remote Call

Remote Call Remote Call

Remote Call

Tivoli Performance Viewer shows a metric called percent maxed used to determine
how much of the time all of the configured threads are in use. If this value is
consistently in the double-digits, then the ORB could be a bottleneck and the
number of threads should be increased.

The degree to which the ORB thread pool value needs to be increased is a function
of the number of simultaneous servlets (that is, clients) calling enterprise beans
and the duration of each method call. If the method calls are longer or the
applications spend a lot of time in the ORB, consider making the ORB thread pool
size equal to the Web container size. If the servlet makes only short-lived or quick
calls to the ORB, servlets can potentially reuse the same ORB thread. In this case,
the ORB thread pool can be small, perhaps even one-half of the thread pool size
setting of the Web container.

Queuing and clustering
The capabilities for cloning application servers can be a valuable asset in
configuring highly scalable production environments. This is especially true when
the application is experiencing bottlenecks that are preventing full CPU utilization
of Symmetric Multiprocessing (SMP) servers. When adjusting the WebSphere
Application Server system queues in clustered configurations, remember that when
a server is added to a cluster, the server downstream receives twice the load.

Chapter 3. Tuning performance 89

Web
Server

Servlet
Engine

Servlet
Engine

Network

clients

Data
Source

Clustering and Queuing

Two Web container clones are located between a Web server and a data source. It
is assumed the Web server, servlet engines and data source (but not the database)
are all running on a single SMP server. Given these constraints, the following
queue considerations need to be made:
v Web server queue settings can be doubled to ensure ample work is distributed

to each Web container.
v Web container thread pools can be reduced to avoid saturating a system

resource such as CPU or another resource that the servlets are using.
v The data source can be reduced to avoid saturating the database server.
v Java heap parameters can be reduced for each instance of the application server.

For versions of the JVM shipped with WebSphere Application Server, it is crucial
that the heap from all JVMs remain in physical memory. Therefore, if a cluster of
four JVMs are running on a system, enough physical memory must be available
for all four heaps.

Tuning Secure Sockets Layer
The following are two types of Secure Socket Layer (SSL) performance:
v Handshake
v Bulk encryption/decryption

Overview of handshake and bulk encryption and decryption
When an SSL connection is established, an SSL handshake occurs. After a
connection is made, SSL performs bulk encryption and decryption for each
read-write. The performance cost of an SSL handshake is much larger than that of
bulk encryption and decryption.

How to enhance SSL performance
In order to enhance SSL performance, the number of individual SSL connections
and handshakes must be decreased.

Decreasing the number of connections increases performance for secure
communication through SSL connections, as well as non-secure communication
through simple TCP connections. One way to decrease individual SSL connections
is to use a browser that supports HTTP 1.1. Decreasing individual SSL connections
could be impossible for some users if they cannot upgrade to HTTP 1.1.

Another common approach is to decrease the number of connections (both TCP
and SSL) between two WebSphere Application Server components. The following
guidelines help to ensure the HTTP transport of the application server is
configured so that the Web server plug-in does not repeatedly reopen new
connections to the application server:

90 IBM WebSphere Application Server Network Deployment, Version 5: Monitoring and Troublshooting

v The maximum number of keep-alives should be, at minimum, as large as the
maximum number of requests per thread of the Web server (or maximum
number of processes for IHS on UNIX). In other words, make sure the Web
server plug-in is capable of obtaining a keep-alive connection for every possible
concurrent connection to the application server. Otherwise, the application server
will close the connection after a single request has been processed. Also, the
maximum number of threads in the Web container thread pool should be larger
than the maximum number of keep-alives, in order to prevent the Web container
threads from being consumed with keep-alive connections.

v The maximum number of requests per keep-alive connection can also be
increased. The default value is 100, which means the application server will
close the connection from the plug-in after 100 requests. The plug-in would then
have to open a new connection. The purpose of this parameter is to prevent
denial of service attacks when connecting to the application server and
continuously send requests in order to tie up threads in the application server.

v Use a hardware accelerator if the system performs several SSL handshakes.
Hardware accelerators currently supported by WebSphere Application Server
only increase the SSL handshake performance, not the bulk
encryption/decryption. An accelerator typically only benefits the Web server
because Web server connections are short-lived. All other SSL connections in
WebSphere Application Server are long-lived.

v Use an alternative cipher suite with better performance.
The performance of a cipher suite is different with software and hardware. Just
because a cipher suite performs better in software does not mean a cipher suite
will perform better with hardware. Some algorithms are typically inefficient in
hardware (for example, DES and 3DES), however, specialized hardware can
provide efficient implementations of these same algorithms.
The performance of bulk encryption and decryption is affected by the cipher
suite used for an individual SSL connection.The following chart displays the
performance of each cipher suite. The test software calculating the data was IBM
JSSE for both the client and server software, which used no crypto hardware
support. The test did not include the time to establish a connection, but only the
time to transmit data through an established connection. Therefore, the data
reveals the relative SSL performance of various cipher suites for long running
connections.
Before establishing a connection, the client enabled a single cipher suite for each
test case. After the connection was established, the client timed how long it took
to write an integer to the server and for the server to write the specified number
of bytes back to the client. Varying the amount of data had negligible effects on
the relative performance of the cipher suites.

Chapter 3. Tuning performance 91

0

100

200

300

400

SSL_R8A_WITH_RC4_128_MD6
SSL_R8A_WITH_RC4_128_SHA
SSL_R8A_WITH_DE8_CBC_SHA
SSL_R8A_WITH_8DE8_EDE_CBC_SHA
SSL_DHE_R8A_WITH_DE8_CBC_SHA
SSL_DHE_R8A_WITH_8DE8_EDE_CBC_SHA
SSL_DHE_D88_WITH_DE8_CBC_SHA
SSL_DHE_D8_WITH_8DE8_EDE_CBC_SHA
SSL_R8A_EXPORT_WITH_RC4_40_MD5
SSL_R8A_EXPORT_WITH_DE840_CBC_SHA
SSL_R8A_EXPORT_WITH_RC2_CBC_40_MD5
SSL_DHE_T8A_EXPORT_WITH_DE840_CBC_SHA
SSL_DHE_D88_EXPORT_WITH_DE840_CBC_SHA
SSL_RSA_WITH_NULL_MDS
SSL_RSA_WITH_NULL_SHA
NONE(TCP/ no SSL

An analysis of the above data reveals the following:
– Bulk encryption performance is only affected by what follows the WITH in

the cipher suite name. This is expected since the portion before the WITH
identifies the algorithm used only during the SSL handshake.

– MD5 and SHA are the two hash algorithms used to provide data integrity.
MD5 is 25% faster than SHA, however, SHA is more secure than MD5.

– DES and RC2 are slower than RC4. Triple DES is the most secure, but the
performance cost is high when using only software.

– The cipher suite providing the best performance while still providing privacy
is SSL_RSA_WITH_RC4_128_MD5. Even though
SSL_RSA_EXPORT_WITH_RC4_40_MD5 is cryptographically weaker than
RSA_WITH_RC4_128_MD5, the performance for bulk encryption is the same.
Therefore, as long as the SSL connection is a long-running connection, the
difference in the performance of high and medium security levels is
negligible. It is recommended that a security level of high be used, instead of
medium, for all components participating in communication only among
WebSphere Application Server products. Make sure that the connections are
long running connections.

Application assembly performance checklist Application assembly tools are
used to assemble J2EE components and modules into J2EE applications.
Generally, this consists of defining application components and their attributes
including enterprise beans, servlets and resource references. Many of these
application configuration settings and attributes play an important role in the
runtime performance of the deployed application. The most important
parameters and advice for finding optimal settings follow:
– Enterprise bean modules

- Entity EJBs - Bean cache
- Method extensions - Isolation level
- Method extensions - Access intent
- Container transactions

– Web module

92 IBM WebSphere Application Server Network Deployment, Version 5: Monitoring and Troublshooting

- Web application - Distributable
- Web application - Reload interval
- Web application - Reload enabled
- Web application - Web components - Load on startup

Enterprise bean modules
Note that although WebSphere Application Server 5.0 also supports EJB 2.0, the
following information refers to EJB 1.1 settings.

Entity EJBs - Bean cache: WebSphere Application Server provides significant
flexibility in the management of database data with Entity EJBs. The Entity EJBs
Activate At and Load At configuration settings specify how and when to load and
cache data from the corresponding database row data of an enterprise bean. These
configuration settings provide the capability to specify enterprise bean commit
options A, B or C, as specified in the EJB 1.1 specification.

Guide: The Activate At and Load At settings are detailed below along with
specific settings to achieve each of the enterprise bean commit options A, B and C.

Commit option A provides maximum enterprise bean performance by caching
database data outside of the transaction scope. Generally, commit option A is only
applicable where the EJB container has exclusive access to the given database.
Otherwise, data integrity is compromised. Commit option B provides more
aggressive caching of entity EJB object instances, which can result in improved
performance over commit option C, but also results in greater memory usage.
Commit option C is the most common real-world configuration for Entity EJBs.
v Bean cache - Activate At This setting specifies the point at which an enterprise

bean is activated and placed in the cache. Removal from the cache and
passivation are also governed by this setting. Valid values are Once and
Transaction. Once indicates that the bean is activated when it is first accessed in
the server process, and passivated (and removed from the cache) at the
discretion of the container, for example, when the cache becomes full.
Transaction indicates that the bean is activated at the start of a transaction and
passivated (and removed from the cache) at the end of the transaction. The
default value is Transaction.

v Bean cache - Load At This setting specifies when the bean loads its state from
the database. The value of this property implies whether the container has
exclusive or shared access to the database. Valid values are Activation and
Transaction. Activation indicates the bean is loaded when it is activated and
implies that the container has exclusive access to the database. Transaction
indicates that the bean is loaded at the start of a transaction and implies that the
container has shared access to the database. The default is Transaction.
The settings of the Activate At and Load At properties govern which commit
options are used.
– For commit option A (exclusive database access), use Activate At = Once and

Load At = Activation. This option reduces database input/output by
avoiding calls to the ejbLoad function, but serializes all transactions accessing
the bean instance. Option A can increase memory usage by maintaining more
objects in the cache, but can provide better response time if bean instances are
not generally accessed concurrently by multiple transactions.

– For commit option B (shared database access), use Activate At = Once and
Load At = Transaction. Option B can increase memory usage by maintaining
more objects in the cache. However, because each transaction creates its own
copy of an object, there can be multiple copies of an instance in memory at

Chapter 3. Tuning performance 93

any given time (one per transaction), requiring the database be accessed at
each transaction. If an enterprise bean contains a significant number of calls
to the ejbActivate function, using option B can be beneficial because the
required object is already in the cache. Otherwise, this option does not
provide significant benefit over option A.

– For commit option C (shared database access), use Activate At = Transaction
and Load At = Transaction. This option can reduce memory usage by
maintaining fewer objects in the cache, however, there can be multiple copies
of an instance in memory at any given time (one per transaction). This option
can reduce transaction contention for enterprise bean instances that are
accessed concurrently but not updated.

Method extensions - Isolation level: WebSphere Application Server enterprise
bean method extensions provide settings to specify the level of transactional
isolation used when accessing data. The valid values are:
v Serializable
v Repeatable Read
v Read Committed
v Read Uncommitted

Guide: Defined below, isolation level settings specify various degrees of runtime
data integrity provided by the corresponding database. First, choose a setting that
meets data integrity requirements for the given application and specific database
characteristics.

Isolation level also plays an important role in performance. Higher isolation levels
reduce performance by increasing row locking and database overhead while
reducing data access concurrency. Various databases provide different behavior
with respect to the isolation settings. In general, Repeatable Read is an appropriate
setting for DB2 databases. Read Committed is generally used for Oracle. Oracle
does not support Repeatable Read and will translate this setting to the highest
isolation level serializable.

Isolation level can be specified at the bean or method level. Therefore, it is possible
to configure different isolation settings for various methods. This is an advantage
when some methods require higher isolation than others, and can be used to
achieve maximum performance while maintaining integrity requirements.
However, isolation cannot change between method calls within a single enterprise
bean transaction. A runtime exception will be thrown in this case.

Isolation levels: Serializable
This level prohibits the following types of reads:
v Dirty reads: A transaction reads a database row containing uncommitted

changes from a second transaction.
v Nonrepeatable reads: One transaction reads a row, a second transaction changes

the same row, and the first transaction rereads the row and gets a different
value.

v Phantom reads: One transaction reads all rows that satisfy an SQL WHERE
condition, a second transaction inserts a row that also satisfies the WHERE
condition, and the first transaction applies the same WHERE condition and gets
the row inserted by the second transaction.

94 IBM WebSphere Application Server Network Deployment, Version 5: Monitoring and Troublshooting

Repeatable Read
This level prohibits dirty reads and nonrepeatable reads, but it allows phantom
reads.

Read Committed
This level prohibits dirty reads, but allows nonrepeatable reads and phantom
reads.

Read Uncommitted
This level allows dirty reads, nonrepeatable reads, and phantom reads.

The container uses the transaction isolation level attribute as follows:
v Session beans and entity beans with bean-managed persistence (BMP).

For each database connection used by the bean, the container sets the transaction
isolation level at the start of each transaction unless the bean explicitly sets the
isolation level on the connection.

v Entity beans with container-managed persistence (CMP).
The container generates database access code that implements the specified
isolation level.

Method extensions - Access intent: WebSphere Application Server enterprise
bean method extensions provide settings to specify individual enterprise bean
methods as read-only. This setting denotes whether the method can update entity
attribute data (or invoke other methods that can update data in the same
transaction).

Guide: By default, all enterprise bean methods are assumed to be “update”
methods. This results in EJB Entity data always being persisted back to the
database at the close of the enterprise bean transaction. Marking enterprise
methods as Access Intent Read that do not update entity attributes, provides a
significant performance improvement by allowing the WebSphere Application
Server EJB container to skip the unnecessary database update.

A behavior for “finder” methods for CMP Entity EJBs is available. By default,
WebSphere Application Server will invoke a “Select for Update” query for CMP
enterprise bean finder methods such as findByPrimaryKey. This exclusively locks
the database row for the duration of the enterprise bean transaction. However, if
the enterprise bean finder method has been marked as Access Intent Read, the
container will not issue the “For Update” on the select resulting in only a read lock
on the database row.

Container transactions: The container transaction properties specifies how the
container manages transaction scopes when delegating invocation to the enterprise
bean individual business method. The legal values are:
v Never
v Mandatory
v Requires New
v Required
v Supports
v Not Supported
v Bean Managed

Chapter 3. Tuning performance 95

Guide: Container transaction attribute can be specified individually for one or
more enterprise bean methods. Enterprise bean methods not requiring transactional
behavior can be configured as Supports to reduce container transaction
management overhead.

Legal values: Never
This legal value directs the container to invoke bean methods without a transaction
context. If the client invokes a bean method from within a transaction context, the
container throws the java.rmi.RemoteException exception.

If the client invokes a bean method from outside a transaction context, the
container behaves in the same way as if the Not Supported transaction attribute
was set. The client must call the method without a transaction context.

Mandatory
This legal value directs the container to always invoke the bean method within the
transaction context associated with the client. If the client attempts to invoke the
bean method without a transaction context, the container throws the
javax.jts.TransactionRequiredException exception to the client. The transaction
context is passed to any enterprise bean object or resource accessed by an
enterprise bean method.

Enterprise bean clients that access these entity beans must do so within an existing
transaction. For other enterprise beans, the enterprise bean or bean method must
implement the Bean Managed value or use the Required or Requires New value.
For non-enterprise bean EJB clients, the client must invoke a transaction by using
the javax.transaction.UserTransaction interface.

Requires New
This legal value directs the container to always invoke the bean method within a
new transaction context, regardless of whether the client invokes the method
within or outside a transaction context. The transaction context is passed to any
enterprise bean objects or resources that are used by this bean method.

Required
This legal value directs the container to invoke the bean method within a
transaction context. If a client invokes a bean method from within a transaction
context, the container invokes the bean method within the client transaction
context. If a client invokes a bean method outside a transaction context, the
container creates a new transaction context and invokes the bean method from
within that context. The transaction context is passed to any enterprise bean objects
or resources that are used by this bean method.

Supports
This legal value directs the container to invoke the bean method within a
transaction context if the client invokes the bean method within a transaction. If
the client invokes the bean method without a transaction context, the container
invokes the bean method without a transaction context. The transaction context is
passed to any enterprise bean objects or resources that are used by this bean
method.

Not Supported
This legal value directs the container to invoke bean methods without a transaction
context. If a client invokes a bean method from within a transaction context, the
container suspends the association between the transaction and the current thread
before invoking the method on the enterprise bean instance. The container then

96 IBM WebSphere Application Server Network Deployment, Version 5: Monitoring and Troublshooting

resumes the suspended association when the method invocation returns. The
suspended transaction context is not passed to any enterprise bean objects or
resources that are used by this bean method.

Bean Managed
This value notifies the container that the bean class directly handles transaction
demarcation. This property can be specified only for session beans, not for
individual bean methods.

Web module

Web application - Distributable: The distributable flag for J2EE Web applications
specifies that the Web application is programmed to be deployed in a distributed
servlet container.

Guide: Web applications should be marked as distributable if, and only if, they
will be deployed in a WebSphere Application Server cluster or cloned environment.

Web application - Reload interval: Reload interval specifies a time interval, in
seconds, in which the Web application file system is scanned for updated files,
such as servlet class files or JSPs.

Guide: Reload interval can be defined at different levels for various application
components. Generally, the reload interval specifies the time the application server
will wait between checks to see if dependent files have been updated and need to
be reloaded. Checking file system time stamps is an expensive operation and
should be reduced. The default of 3 seconds is good for a test environment,
because the Web site can be updated without restarting the application server. In
production environments, checking a few times a day is a more common setting.

Web application - Reloading enabled: This specifies whether file reloading is
enabled.

Web application - Web components - Load on startup: Indicates whether a
servlet is to be loaded at the startup of the Web application. The default is false.

Guide: Many servlets perform resource allocation and other up-front processing
in the servlet init() method. These initialization routines can be costly at runtime.
By specifying Load on startup for these servlets, processing takes place when the
application server is started. This avoids runtime delays, which can be encountered
on a servlets initial access.

Tuning Java memory
The following section focuses on tuning Java memory. Enterprise applications
written in Java involves complex object relationships and utilize large numbers of
objects. Although Java automatically manages memory associated with an object’s
life cycle, understanding the application’s usage patterns for objects is important.
In particular, ensure the following:
v The application is not over-utilizing objects
v The application is not leaking objects (that is, memory)
v The Java heap parameters are set to handle the use of objects

Understanding the effect of garbage collection is necessary to apply these
management techniques.

Chapter 3. Tuning performance 97

The garbage collection bottleneck
Examining Java garbage collection can give insight into how the application is
utilizing memory. Garbage collection is a Java strength. By taking the burden of
memory management away from the application writer, Java applications are more
robust than applications written in languages that do not provide garbage
collection. This robustness applies as long as the application is not abusing objects.
Garbage collection normally consumes anywhere from 5 to 20% of the total
execution time of a properly functioning application. If not managed, garbage
collection can be one of the biggest bottlenecks for an application, especially when
running on SMP server machines.

The garbage collection gauge
You can use garbage collection to evaluate application performance health. By
monitoring garbage collection during the execution of a fixed workload, users gain
insight as to whether the application is over-utilizing objects. Garbage collection
can even be used to detect the presence of memory leaks.

Use the garbage collection and heap statistics in Tivoli Performance Viewer to
evaluate application performance health. By monitoring garbage collection,
memory leaks and overly-used objects can be detected.

For this type of investigation, set the minimum and maximum heap sizes to the
same value. Choose a representative, repetitive workload that matches production
usage as closely as possible, user errors included. Allowing the application to run
several minutes until the application state stabilizes is important.

To ensure meaningful statistics, run the fixed workload until the state of the
application is steady. Reaching this state usually takes several minutes.

Detecting over-utilization of objects
To see if the application is overusing objects, look in Tivoli Performance Viewer at
the counters for the JVMPI profiler. The average time between garbage collection
calls should be 5 to 6 times the average duration of a single garbage collection. If
not, the application is spending more than 15% of its time in garbage collection.
Also, look at the numbers of freed, allocated and moved objects.

If the information indicates a garbage collection bottleneck, there are two ways to
clear the bottleneck. The most cost-effective way is to optimize the application is to
implement object caches and pools. Use a Java profiler to determine which objects
to target. If the application cannot be optimized, adding memory, processors and
clones might help. Additional memory allows each clone to maintain a reasonable
heap size. Additional processors allow the clones to run in parallel.

Detecting memory leaks
Memory leaks in Java are a dangerous contributor to garbage collection
bottlenecks. Memory leaks are more damaging than memory overuse, because a
memory leak ultimately leads to system instability. Over time, garbage collection
occurs more frequently until finally the heap is exhausted and Java fails with a
fatal Out of Memory exception. Memory leaks occur when an unneeded object has
references that are never deleted. This most commonly occurs in collection classes,
such as Hashtable, because the table itself always has a reference to the object,
even after real references have been deleted.

High workload often causes many applications to crash immediately after being
deployed in the production environment. This situation is especially true for
leaking applications where the high workload accelerates the magnification of the
leakage and a memory allocation failure occurs.

98 IBM WebSphere Application Server Network Deployment, Version 5: Monitoring and Troublshooting

Memory leak testing relates to magnifying numbers. Memory leaks are measured
in terms of the amount of bytes or kilobytes that cannot be garbage collected. The
delicate task is to differentiate these amounts from the expected sizes of useful and
unusable memory. This task is achieved more easily if the numbers are magnified,
resulting in larger gaps and easy identification of inconsistencies. The following is
a list of important conclusions about memory leaks:
v Long-running test

Memory leak problems can manifest only after a period of time, therefore,
memory leaks are found when during long-running tests. Short runs can lead to
false alarms. One of the problems in Java is whether to say that a memory leak
is occurring when memory usage has seemingly increased either abruptly or
monotonically in a given period. These kind of increases can be valid, and the
objects created can be referenced at a much later time. In other words, how do
you differentiate the delayed use of objects from completely unused objects? By
running applications long enough, you will get a higher confidence for whether
the delayed use of objects is actually occurring. Because of this, memory leak
testing cannot be integrated with some other types of tests, such as functional
testing, that occur earlier in the process. However, tests such as stress or
durability tests can be integrated.

v System test
Some memory leak problems occur only when different components of a big
project are combined and executed. Interfaces between components can produce
known or unknown side-effects. System test is a good opportunity to make these
conditions happen.

v Repetitive test
In many cases, memory leak problems occur by successive repetitions of the
same test case. The goal of memory leak testing is to establish a big gap between
unusable memory and used memory in terms of their relative sizes. By repeating
the same scenario over and over again, the gap is multiplied in a very
progressive way. This testing helps if the amount of leaks caused by an
execution of a test case is so minimal that it could hardly be noticed in one run.
Repetitive tests can be used at the system level or module level. The advantage
with modular testing is better control. When a module is designed to keep the
private module without creating external side effects such as memory usage,
testing for memory leaks can be much easier. First, the memory usage before
running the module is recorded. Then, a fixed set of test cases are run
repeatedly. At the end of the test run, the current memory usage is recorded and
checked for significant changes. Remember, garbage collection must be forced
when recording the actual memory usage by inserting System.gc() in the module
where you want garbage collection to occur or using a profiling tool forcing the
event to occur.

v Concurrency test
Some memory leak problems can occur only when there are several threads
running in the application. Unfortunately, synchronization points are very
susceptible to producing memory leaks because of the added complication in the
program logic. Careless programming can lead to references being kept or
unreleased. The incident of memory leaks is often facilitated or accelerated by
increased concurrency in the system. The most common way to increase
concurrency is to increase the number of clients in the test driver.

Consider the following when choosing which test cases to use for memory leak
testing:
v A good test case exercises areas of the application where objects are created.

Most of the time, knowledge of the application is required. A description of the

Chapter 3. Tuning performance 99

scenario can suggest creation of data spaces, such as adding a new record,
creating an HTTP session, performing a transaction and searching a record.

v Look at areas where collections of objects are being used. Typically, memory
leaks are composed of objects of the same class. Also, collection classes such as
Vector and Hashtable are common places where references to objects are
implicitly stored by calling corresponding insertion methods. For example, the
get method of a Hashtable object does not remove its reference to the object
being retrieved.

Tivoli Performance Viewer helps to find memory leaks. For best results, repeat
experiments with increasing duration, like 1000, 2000, and 4000-page requests. The
Tivoli Performance Viewer graph of used memory should have a sawtooth shape.
Each drop on the graph corresponds to a garbage collection. There is a memory
leak if one of the following occurs:
v The amount of memory used immediately after each garbage collection increases

significantly. The sawtooth pattern will look more like a staircase.
v The sawtooth pattern has an irregular shape

Also, look at the difference between the number of objects allocated and the
number of objects freed. If the gap between the two increases over time, there is a
memory leak.

If heap consumption indicates a possible leak during a heavy workload (the
application server is consistently near 100% CPU utilization), yet the heap appears
to recover during a subsequent lighter or near-idle workload, this is an indication
of heap fragmentation. Heap fragmentation can occur when the JVM is able to free
sufficient objects to satisfy memory allocation requests during garbage collection
cycles, but the JVM does not have the time to compact small free memory areas in
the heap into larger contiguous spaces.

Another form of heap fragmentation occurs when small objects (less than 512
bytes) are freed. The objects are freed, but the storage is not recovered, resulting in
memory fragmentation.

Heap fragmentation can be avoided by turning on the -Xcompactgc flag in the
JVM advanced settings command line arguments. The -Xcompactgc ensures that
each garbage collection cycle eliminates fragmentation, but this setting has a small
performance penalty.

Java heap parameters
The Java heap parameters also influence the behavior of garbage collection.
Increasing the heap size allows more objects to be created. Because a large heap
takes longer to fill, the application runs longer before a garbage collection occurs.
However, a larger heap also takes longer to compact and causes garbage collection
to take longer.

For performance analysis, the initial and maximum heap sizes should be equal:
When tuning a production system where the working set size of the Java
application is not understood, a good starting value is to let the initial heap size be
25% of the maximum heap size. The JVM will then try to adapt the size of the
heap to the working set size of the application.

100 IBM WebSphere Application Server Network Deployment, Version 5: Monitoring and Troublshooting

Varying Java Heap Settings
-ms256M, -mx256M

-ms128M, -mx128M

-ms64M, -mx64M

Time spent in Garbage Collection

Time spent in Garbage Collection

Time spent in Garbage Collection

Time

Time

C
P

U
%

C
P

U
%

C
P

U
%

Time

0

0

0

20

20

20

40

40

40

60

60

60

80

80

80

100

100

100

Processor #1

Processor #2

Processor #1

Processor #2

Processor #1

Processor #2

The illustration represents three CPU profiles, each running a fixed workload with
varying Java heap settings. In the middle profile, the initial and maximum heap
size are set to 128MB. Four garbage collections occur. The total time in garbage
collection is about 15% of the total run. When the heap parameters are doubled to
256MB, as in the top profile, the length of the work time increases between
garbage collections. Only three garbage collections, but the length of each garbage
collection is also increased. In the third profile, the heap size is reduced to 64MB
and exhibits the opposite affect. With a smaller heap, both the time between
garbage collections and time for each garbage collection are shorter. For all three
configurations, the total time in garbage collection is approximately 15%. This
example illustrates an important concept about the Java heap and its relationship
to object utilization. There is always a cost for garbage collection in Java
applications.

Run a series of test experiments that vary the Java heap settings. For example, run
experiments with 128MB, 192MB, 256MB, and 320MB. During each experiment,
monitor the total memory usage. If you expand the heap too aggressively, paging
can occur. (Use the vmstat command or the Windows NT or 2000 Performance
Monitor to check for paging.) If paging occurs, reduce the size of the heap or add
more memory to the system. When all the runs are finished, compare the following
statistics :
v Number of garbage collection calls
v Average duration of a single garbage collection call
v Ratio between the length of a single garbage collection call and the average time

between calls

If the application is not over-utilizing objects and has no memory leaks, state of
steady memory utilization is reached. Garbage collection also occurs less frequently
and for short durations.

If the heap free time settles at 85% or more, consider decreasing the maximum
heap size values because the application server and the application are
under-utilizing the memory allocated for heap.

Chapter 3. Tuning performance 101

Solaris TCP parameters
v Short description: Tuning these parameters has a significant performance impact

for Solaris. StartupServer.sh sets these:

Solaris tcp_time_wait_interval
Solaris tcp_fin_wait_2_flush_interval
Solaris tcp_keepalive_interval

Many other TCP parameters exist and can affect performance in your
environment. For more information about tuning the TCP/IP Stack, see the Web
site (Tuning your TCP/IP Stack and More).

v When to try these parameters: Try these parameters when you are using
WebSphere Application Server on Solaris.
Before the three TCP parameters were changed, the server stalled during certain
peak periods. The netstat command showed that many sockets open to port 80
were in the state CLOSE_WAIT or FIN_WAIT_2.

Workload management topology
v Short description: WebSphere Application Server provides various Workload

Management (WLM) topologies. The following two topologies (name Topology
A and B) are examples of workload being sent from one machine:
– Topology A contains a Web server and a WebSphere Application Server

plug-in to a cluster of WebSphere Application Servers. Each cluster member
contains a Web container and EJB container.

– Topology B includes a Web server, a plug-in, and one Web container to a
cluster of EJB containers.

In both topologies, the Object Request Broker pass-by-reference is selected and
the backend database is on a dedicated machine.

v When to try adjusting: Topology A has an advantage because the Web container
and EJB container are running in a single JVM. In Topology B, the Object
Request Broker pass-by-reference option is ignored between the Web container
cluster member and the EJB container member. In Topology A, the EJB container
uses the same thread passed from the Web container. In other words, the request
does not have to be passed from one thread in one JVM to another thread in
another JVM.
Also, if the processor utilization of the cluster member machines is near 100%
CPU utilization, additional members could be added. If the Web server box is
not running at capacity and the Web container processing is not heavy, try
freeing the processor on the other members by moving to Topology B.

v Actual benefit: Throughput for Topology A can improve performance from
10-20% more than Topology B. This performance increase can be seen using the
J2EE benchmark Trade, which is included with this release.

v Recommended value: In the test environment, Topology A had the advantage,
however, many factors related to the application and environment can influence
results.

Number of connections to DB2
v Recommended value: When configuring the data source settings for the

databases, ensure the DB2 MaxAppls setting is greater than the maximum

102 IBM WebSphere Application Server Network Deployment, Version 5: Monitoring and Troublshooting

number of connections for the data source. If you are planning to establish
clones, the MaxAppls setting needs to be the maximum number of connections
multiplied by the number of clones.
The same relationship applies to the session manager number of connections.
The MaxAppls setting must be at least as high as the number of connections. If
you are using the same database for session and data sources, MaxAppls needs
to be the sum of the number of connection settings for the session manager and
the data sources.
MaxAppls = (# of connections set for data source + # of connections in session
manager) x # of clones
After calculating the MaxAppls settings for the WAS database and each of the
application databases, ensure that the MaxAgents setting for DB2 is equal to or
greater than the sum of all of the MaxAppls.

MaxAgents = sum of MaxAppls for all databases

v Related parameters: See DB2 MaxAppls and DB2 MaxAgents

Individual performance parameters
As mentioned previously, tuning various system components strongly affects on
the performance of WebSphere Application Server. This section discusses how to
set the parameters of individual components in order to bring the system to an
optimum level of usage.

Hardware
This section discusses considerations for selecting and configuring the hardware on
which the application servers will run.

Processor speed
v Short description: Ideally, other bottlenecks have been removed where the

processor is waiting on events like input/output and application concurrency. In
this case, increasing the processor speed often helps throughput and response
times.

System memory
v Short description: Increasing memory to prevent the system from paging

memory to disk is likely to improve performance.
Allow at least 256MB memory for each processor.

v When to try adjusting: Try adjusting the parameter when the system is paging
(and processor utilization is low because of the paging).

v Recommended value: The minimum value is 512MB.

Networks
v Short description: Run network cards and network switches at full duplex.

Running at half duplex decreases performance.
Verify the network speed can accommodate the required throughput. Make sure
that 100MB is in use on 10/100 Ethernet networks.

See the white paper (WebSphere Application Server Admin Best Practices for
Performance and Scalability) for more information regarding hostname resolution
on the administrative client host.

Chapter 3. Tuning performance 103

Operating system settings
This section discusses considerations for tuning the operating systems in the server
environment.

Windows NT or 2000 TCP/IP parameters

Windows NT or 2000 TcpTimedWaitDelay:

v Short description: Determines the time that must elapse before TCP can release
a closed connection and reuse its resources. This interval between closure and
release is known as the TIME_WAIT state or 2MSL (twice the maximum segment
lifetime) state. During this time, reopening the connection to the client and
server cost less than establishing a new connection. Reducing the value of this
entry allows TCP to release closed connections faster, providing more resources
for new connections.

v When to try adjusting: If the application running requires rapid release and
creation of new connections, and there is a low throughput due to many
connections sitting in TIME_WAIT.

v How to view or set:

1. Using the regedit command, access
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\
Services\TCPIP\Parameters and create a new REG_DWORD named
TcpTimedWaitDelay.

2. Set the value to decimal 30, which is Hex 0x0000001e.
3. Restart the system.
4. By using the netstat command, you will be able to see that there are fewer

connections in TIME_WAIT.
v Default value: 0xF0 (240 seconds = 4 minutes)
v Recommended value: The minimum value of 0x1E (30 seconds).
v Related parameters: Windows NT or 2000 MaxUserPort

Windows NT or 2000 MaxUserPort:

v Short description: Determines the highest port number TCP can assign when an
application requests an available user port from the system.

v How to view or set:

1. Using the regedit command, access
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\
Services\TCPIP\Parameters and create a new REG_DWORD named
MaxUserPort.

2. Restart the system.
v Recommended value: At least decimal 32768.
v Related parameters: Windows NT or 2000 TCP/IP parameters

Note:These two parameters should be used together when tuning WebSphere
Application Server on a Windows NT or 2000 operating system.

AIX (4.3.3 and 5.1)

AIX file descriptors (ulimit):

v Short description: Specifies the number of open files permitted.
v When to try adjusting: The default setting is typically sufficient for most

applications. If the value set for this parameter is too low, a Memory allocation

104 IBM WebSphere Application Server Network Deployment, Version 5: Monitoring and Troublshooting

error is displayed. This error occurs when a cluster of four clones are run on a
S80 24-way and the ulimit value needs to be changed to unlimited.

v How to view or set: Check the UNIX reference pages on ulimit for the syntax
for different shells. For the KornShell shell (ksh), to set ulimit to 2000, issue the
following command:

ulimit -n 2000

For large SMP machines with clones, issue the following command:
ulimit -unlimited

Use the command ulimit -a to display the current values for all limitations on
system resources.

v Default value: For AIX, the default setting is 2000.

Solaris Operating Environment

Solaris file descriptors (ulimit):

v Short description: Specifies the number of open files permitted.
v When to try adjusting: If the value of this parameter is too low, a Too many

files open error displays in the WebSphere Application Server stderr.log.
v How to view or set: Check the UNIX reference pages on ulimit for the syntax

for different shells. For KornShell (ksh) the command is:
ulimit -n 1024

Use ulimit -a to display the current values for all limitations on system
resources.

v Default value: The WebSphere Application Server startupServer.sh script sets
this parameter to 1024 if its value is less than 1024.

Solaris TCP_TIME_WAIT_INTERVAL:

v Short description: This parameter tells TCP how long to keep closed connection
control blocks. After the applications complete the TCP connection, the control
blocks are kept for the specified time.

v When to try adjusting: When high connection rates occur, a large backlog of the
TCP connections build up and can slow server performance.
The server can stall during certain peak periods. If this occurs, The netstat
command will show that many of the sockets opened to port 80 were in the
CLOSE_WAIT or FIN_WAIT_2 state. Visible delays have occurred for up to four
minutes, during which the server did not send any responses, but CPU
utilization stayed high, with all of the activity in system processes.

v How to view or set: Use the get command to determine the current interval and
the set command to specify an interval of 60 seconds. For example:

ndd -get /dev/tcp tcp_time_wait_interval
ndd -set /dev/tcp tcp_time_wait_interval 60000

v Default value: The Solaris default time wait interval is 2400000 milliseconds.
v Recommended value: The TCP_TIME_WAIT_INTERVAL parameter can be set

as low as 30000 milliseconds. As a starting point, the WebSphere Application
Server startupServer.sh script sets it to 60000ms.

v Related parameters: See Solaris TCP parameters

Solaris TCP_FIN_WAIT_2_FLUSH_INTERVAL:

Chapter 3. Tuning performance 105

v Short description: The timer interval prohibiting a connection in FIN_WAIT_2 to
remain in that state.

v When to try adjusting: When high connection rates occur, a large backlog of
TCP connections accumulate and can slow server performance.
The server can stall during peak periods. Using the netstat command indicated
that many of the sockets opened to port 80 were in CLOSE_WAIT or
FIN_WAIT_2 state. Visible delays have occurred for as many as four minutes,
during which the server did not send any responses, but CPU utilization stayed
high, with all of the activity in system processes.

v How to view and set: Use the following commands to determine the current
interval or to set the interval to 67.5 seconds:

ndd -get /dev/tcp tcp_fin_wait_2_flush_interval
ndd -set /dev/tcp tcp_fin_wait_2_flush_interval 67500

v Default value: The Solaris default is 675000
v Recommended value: 67500
v Related parameters: See Solaris TCP parameters

Solaris TCP_KEEPALIVE_INTERVAL:

v Short description: The timer interval prohibiting an active connection from
staying in ESTABLISHED state if one of the peers never responds.

v When to try adjusting: If you are concerned with failed communications from
clients or peers, this value determines how long a connection will stay open.

v How to view or set: Use the following commands to determine the current
value or to set the value to 300 seconds:

ndd -get /dev/tcp tcp_keepalive_interval
ndd -set /dev/tcp tcp_keepalive_interval 300000

v Default value: 7200000
v Recommended Value: 300000
v Related parameters: See Solaris TCP parameters

Other Solaris TCP parameters: Customers have reported success with modifying
other Solaris TCP parameters, including the following:

tcp_conn_req_max_q
tcp_comm_hash_size
tcp_xmit_hiwat

Although significant performance differences have not been seen after raising these
settings, the system might benefit.
v Related parameters: See Solaris TCP parameters

Solaris kernel semsys:seminfo_semume:

v Short description: The semsys:seminfo_semume kernel tuning parameter limits
the Max Semaphore undo entries per process and needs to be greater than the
default (10 on Solaris 7). Because this setting specifies a maximum value, the
parameter does not cause any additional memory to be used unless it is needed.

v How to view or set: This value is displayed as SEMUME if the /usr/sbin/sysdef
command is run. There can possibly be an entry in the /etc/system file for this
tuning parameter.
Set via the /etc/system entry:

set semsys:seminfo_semume = 1024

v Default value: 10 on Solaris 7

106 IBM WebSphere Application Server Network Deployment, Version 5: Monitoring and Troublshooting

Solaris kernel semsys:seminfo_semopm:

v How to view or set: This setting is displayed SEMOPM if the /usr/sbin/sysdef
command is run. There can possibly be an entry in the /etc/system file for this
tuning parameter.
Set via the /etc/system entry:

semsys:seminfo_semopm = 200

Setting the virtual page size for WebSphere Application Server JVM to 64KB:

v How to view or set: The command is entered as follows:
chatr +pi64M +pd64M /opt/WebSphere/AppServer/java/bin/PA_RISC2.0/native_threads/java

The command output provides the current operating system characteristics of
the process executable.

v When to try adjusting:

v Default value:

The Web server
WebSphere Application Server provides plug-ins for several Web server brands and
versions. Each Web server operating system combination has specific tuning
parameters that affect the application performance.

This section discusses the performance tuning settings associated with the Web
servers.

Web server configuration reload interval
v Short description: WebSphere Application Server administration tracks a variety

of configuration information about WebSphere Application Server resources.
Some of this information, such as URIs pointing to WebSphere Application
Server resources, needs to be understood by the Web server. This configuration
data is pushed to the Web server through the WebSphere Application Server
plug-in at intervals specified by this parameter. Periodic updates allow new
servlet definitions to be added without having to restart any of the WebSphere
Application Server servers. However, the dynamic regeneration of this
configuration information is costly in terms of performance.

v When to try adjusting: In a stable production environment.
v How to view or set: This parameter, <RefreshInterval=xxxx>, where xxxx is the

number of seconds, is specified in the websphere_root/config/plug-in.xml file.
v Default value: The default reload interval is 60 seconds.

IBM HTTP Server (IHS) - AIX and Solaris
The IBM HTTP Server (IHS) is a multi-process, single-threaded server. For more
information about tuning IHS, see the Web page (Hints on Running a
high-performance Web server).

Sun ONE Web server, Enterprise Edition (formerly iPlanet) -
Solaris
The default configuration of the Sun ONE Web server, Enterprise Edition provides
a single-process, multi-threaded server.

Active threads

v Short description: After the server reaches the limit set with this parameter, the
server stops servicing new connections until it finishes old connections.

Chapter 3. Tuning performance 107

v When to try adjusting: If this setting is too low, the server can become throttled,
resulting in degraded response times.
To tell if the Web server is being throttled, consult its perfdump statistics. Look
at the following data:
– WaitingThreads count: If WaitingThreads count is getting close to zero, or is

zero, the server is not accepting new connections.
– BusyThreads count: If the WaitingThreads count is close to zero, or is zero,

BusyThreads is probably very close to its limit.
– ActiveThreads count: If ActiveThreads count close to its limit, the server is

probably limiting itself.
v How to view or set: Use the Maximum number of simultaneous requests

parameter in the Enterprise Server Manager interface to control the number of
active threads within Sun ONE Web server, Enterprise Edition. This setting
corresponds to the RqThrottle parameter in the magnus.conf file.

v Default value: 512

Microsoft Internet Information Server (IIS) - Windows NT or 2000
IIS permission properties

v Short description: The Web server has several properties that dramatically affect
the performance of the application server. The default settings are usually
acceptable. However, because other products can change the default settings
without user knowledge, make sure to check the IIS settings for the Home
Directory permissions of the Web server. The permissions should be set to Script
and not to Execute. If the permissions are set to Execute, no error messages are
returned, but the performance of WebSphere Application Server is decreased.

v How to view or set: To check or change these permissions perform the following
procedure in the Microsoft management console:
Select the Web site (usually default Web site). Right-click and select the
Properties option. Click the Home Directory tab.
To set the permissions of the Home Directory:
In the Application settings, ensure that the Script checkbox is selected in the
Permissions list and that the Execute checkbox is cleared.
Note: It might be necessary to check the permissions of the sePlugin:
Expand the Web server. Right-click the sePlugin and select Properties. Confirm
that the Execute permissions are set to Execute.

Number of expected hits per day

v Short description: This parameter controls the memory that IIS allocates for
connections.

v How to view or set: Using the performance window, set the parameter to More
than 100000 in the Web site properties panel of the Microsoft management
console.

v Default value: Fewer than 100000

ListenBackLog parameter

v Short description: If using IIS on Windows NT/2000, you are likely to
encounter failed connections under heavy load conditions (typically more than
100+ clients). This condition commonly results from IIS rejecting connections.
Alleviate the condition by using the ListenBackLog parameter to increase the
number of requests IIS keeps in its queue.

v When to try adjusting: If you intermittently experience being unable to locate
server error in a Netscape browser when running a heavy load, consider raising
this parameter.

108 IBM WebSphere Application Server Network Deployment, Version 5: Monitoring and Troublshooting

v How to view or set:
Use the operating system registry to set the ListenBackLog parameter. At a DOS
command prompt, issue the regedit command to access the registry. In the
registry window, locate the parameter in the following directory:
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\InetInfo\Parameters\
ListenBackLog Right-click the parameter to modify it. Adjust the setting
according to the server load.

v Default value: 25 (decimal)
v Recommended value: The ListenBackLog parameter can be set as high as 200

without negative impact on performance and an improvement in load handling.

MaxPoolThreads, PoolThreadLimit:

v Short description: MaxPoolThreads controls the number of threads per CPU in
the thread pool available for IIS to run Common Gateway Interface (CGI)
processes (each process takes one thread). PoolThreadLimit specifies the upper
limit for MaxPoolThreads. The default thread limit that IIS can create on a
machine is twice the number of MB in RAM on a machine (for example, a server
with 512MB of RAM is limited to 1024 threads).

v How to view or set: MaxPoolThreads and PoolThreadLimit are set using the
following registry entries:
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\InetInfo\Parameters\MaxPoolThreads
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\InetInfo\Parameters\PoolTheadLimit

MaxClients:

v Short description: The value of the MaxClients parameter can significantly
impact the application, particularly if too high. More is not always better. The
optimum value depends on the application.

v How to view or set: Edit the MaxClients directive in the IBM HTTP Server file
httpd.conf, located in the directory IBM HTTP Server_root_directory/conf.

v Default value: 150
v Related parameters: See Adjusting WebSphere Application Server system queues

MinSpareServers, MaxSpareServers, and StartServers:

v Short description: These settings affect the performance of the application. For
optimum performance, specify the same value for the MaxSpareServers and the
StartServers parameters. Specifying similar values reduces the CPU usage for
creating and destroying httpd processes. It also pre-allocates and maintains the
specified number of processes so that few processes are created and destroyed as
the load approaches the specified number of processes (based on
MinSpareServers).

v When to try adjusting:

v How to view or set: Edit the following directives in the file httpd.conf, located
in the directory IBM_HTTP_Server_root_directory/conf:
– MinSpareServers
– MaxSpareServers
– StartServers

v Default value:
– MinSpareServers 5
– MaxSpareServers 10
– StartServers 5

Chapter 3. Tuning performance 109

IBM HTTP Server - Linux

MaxRequestsPerChild:

v Short description: The MaxRequestsPerChild directive sets the limit on the
number of requests that an individual child server process handles. After the
number of requests reaches the value set for the MaxRequestsPerChild
parameter, the child process dies. If there are no known memory leaks with
Apache and Apache’s libraries, set this value to zero (0).

v When to try adjusting:
v How to view or set:

1. Edit the IBM HTTP server file httpd.conf located in the directory
IBM_HTTP_Server_root_directory/conf (see the MaxRequestsPerChild directive).

2. Change the value of the parameter.
3. Save the changes and restart the IBM HTTP server.

v Default value: 500

IBM HTTP Server - Windows NT or 2000
The IBM HTTP Server can be easily configured. The default settings are acceptable.

ThreadsPerChild:

v Short description: This parameter sets the number of concurrent threads
running at any one time within the IBM HTTP Server. Set this value to prevent
bottlenecks, allowing just enough traffic through to the application server.

v How to view or set:
1. Edit the IBM HTTP Server file httpd.conf located in the directory

IBM_HTTP_Server_root_directory/conf (see the ThreadsPerChild directive).
2. Change the value of the parameter.
3. Save the changes and restart the IBM HTTP server.

How to view thread utilization: Two ways to find how many threads are being
used under load are as follows:
1. Use the Windows NT or 2000 Performance Monitor:

To open, click Start > Programs > Administrative Tools > Performance
Monitor
In Performance Monitor, click Edit > Add to chart. Then set the following:
– Object: IBM HTTP Server
– Instance: Apache
– Counter: Waiting for connection
– To calculate the number of busy threads, subtract the number waiting

(Windows NT or 2000 Performance Monitor) from the total available
(ThreadsPerChild).

2. Use IBM HTTP Server server-status (this choice works on all platforms, not
just Windows NT or 2000)
Follow these steps to use IBM HTTP Server server-status:
a. Edit the IBM HTTP Server file httpd.conf as follows:

– Remove the comment character “#” from the following lines:
- #LoadModule status_module modules/ApacheModuleStatus.dll
- #<Location /server-status>
- #SetHandler server-status
- #</Location>

110 IBM WebSphere Application Server Network Deployment, Version 5: Monitoring and Troublshooting

b. Save the changes and restart the IBM HTTP server.
c. In a Web browser, go to the following URL and click Reload to update

status: http://yourhost/server-status. Alternatively, if the browser
supports refresh, go to http://yourhost/server-status?refresh=5 to refresh
every 5 seconds. You will see 5 requests currently being processed, 45 idle
servers.

v Default value: 50 (for IBM HTTP Server 1.3.26).
v Related parameters: See Adjusting WebSphere Application Server system queues

ListenBackLog:

v Short description: When several clients request connections to the IBM HTTP
Server, and all threads (see ThreadsPerChild) are being used, a queue exists to
hold additional client requests. The ListenBackLog directive sets the length of
this pending connections queue. However, if you are using the default Fast
Response Cache Accelerator (FRCA) feature, the ListenBackLog directive is not
used since FRCA has its own internal queue.

v How to view or set: For non-FRCA:
1. Edit IBM HTTP Server file httpd.conf.
2. Add or view the ListenBackLog directive.

v Default value: For HTTP Server 1.3.26:
1024 with FRCA enabled
511 with FRCA disabled (the default)

v Recommended value: Use the defaults.

The WebSphere Application Server process
Each WebSphere Application Server process has several parameters influencing
application performance. Each application server in WebSphere Application Server
is comprised of an EJB container and Web container.

Use the WebSphere Application Server administrative console to configure and
tune applications, Web containers, EJB containers, application servers and nodes in
the administrative domain.

Adjusting the operating system priority of the WebSphere
Application Server process
v Short description: Improving the operating system process priority of the

application server can help performance. On UNIX systems, a smaller setting
has a higher priority. For more information about process priorities, refer to the
following publications:
– For AIX, refer to the AIX Performance Tuning Guide, Versions 3.2 and 4

v When to try adjusting: Try adjusting the priority at any time.
v Actual benefit: By improving the priority of an application server, noticeable

improvements have been seen on AIX. Improvement has also been seen on
Solaris.

v How to view or set:

1. In the administrative console, select the application server you are tuning.
2. Click the Process Definition under Additional Properties.
3. Click Process Execution under Additional Properties.
4. Specify the value in the Process Priority field and click Apply.
5. Save the changes and restart the application server.

Chapter 3. Tuning performance 111

How to see parameter utilization: On UNIX, use the command ps -efl to see the
current process priority.

v Default value: 20
v Recommended value: 0

Web containers
To route servlet requests from the Web server to the Web containers, the product
establishes a transport queue between the Web server plug-in and each Web
container.

Thread pool:

v Short description: Use the maximum thread size parameter to specify the
maximum number of threads that can be pooled to handle requests sent to the
Web container. Requests are sent to the Web container through any of the HTTP
transports.

v How to view or set:
1. In the administrative console, select the application server you are tuning.
2. Click Servers > server > Web Container > Thread Pool.
3. Enter the desired maximum number of maximum threads in the Maximum

Size field.
4. Select or deselect the Growable Thread Pool checkbox. See Adjusting the

queues in WebSphere Application Server for more information.
5. Click Apply or OK.
6. Click Save.

Tivoli Performance Viewer displays a metric called Percent Maxed that
determines the amount of time that the configured threads are in use. If this
value is consistently in the double-digits, the Web container could be a
bottleneck and the number of threads should be increased.

v Default value: 50
Note: For Linux systems, the recommended value is 25.

v Related parameters: See Adjusting WebSphere Application Server’s system
queues and Prepared statement cache size

MaxKeepAliveConnections:

v Short description: This parameter describes the maximum number of concurrent
connections to the Web container that are allowed to be kept alive, that is, to be
processed in multiple requests. The Web server plug-in keeps connections open
to the application server as long as it can. However, if the value of this property
is too small, performance is negatively impacted because the plug-in has to open
a new connection for each request instead of sending multiple requests through
one connection. The application server might not accept a new connection under
a heavy load if there are too many sockets in TIME_WAIT state.
If all client requests are going through the Web server plug-in and there are
many TIME_WAIT state sockets for port 9080, the application server is closing
connections prematurely, which decreases performance. The application server
will close the connection from the plug-in, or from any client, for any of the
following reasons:
1. The client request was an HTTP 1.0 request when the Web server plug-in

always sends HTTP 1.1 requests.

112 IBM WebSphere Application Server Network Deployment, Version 5: Monitoring and Troublshooting

2. The maximum number of concurrent keep-alives was reached. A keep-alive
must be obtained only once for the life of a connection, that is, after the first
request is completed, but before the second request can be read.

3. The maximum number of requests for a connection was reached, preventing
denial of service attacks in which a client tries to hold on to a keep-alive
connection forever.

4. A time out occurred while waiting to read the next request or to read the
remainder of the current request.

v How to view or set:

1. Open the administrative console.
2. Click Servers > Application Servers > Web Container > HTTP Transports .
3. Click the port_number link in the Host column.
4. Click Custom Properties > New.
5. Enter the MaxKeepAliveConnections name in the Name field.
6. Enter the value in the Value field
7. Click Apply or OK.
8. Click Save.

v Recommended value: The value should be at least 90% of the maximum
number of threads in the Web container thread pool. If it is 100% of the
maximum number of threads in the Web container thread pool, all the threads
could be consumed by keep-alive connections leaving no threads available to
process new connections.

MaxKeepAliveRequests:

v Short description: The maximum number of requests allowed on a single
keep-alive connection. This parameter can help prevent denial of service attacks
when a client tries to hold on to a keep-alive connection. The Web server plug-in
keeps connections open to the application server as long as it can, providing
optimum performance.

v How to view or set:

1. Open the administrative console.
2. Click Servers > Application Servers server > Web Container > HTTP

Transports .
3. Click the port_number link in the Host column.
4. Click Custom Properties > New.
5. Enter the MaxKeepAliveRequests name in the Name field.
6. Enter the value in the Value field
7. Click Apply or OK.
8. Click Save.

v Recommended value: A good starting value is 100. If the application server
requests are received from the plug-in only, increase this parameter’s value.

URL invocation cache:

v Short description: The invocation cache holds information for mapping request
URLs to servlet resources.
A cache of the requested size is created for each thread. The number of threads
is determined by the Web container maximum thread size setting.

Chapter 3. Tuning performance 113

Note: A larger cache uses more of the Java heap, so you might need to increase
maximum Java heap size. For example, if each cache entry requires 2KB,
maximum thread size is set to 25, and the URL invocation cache size is 100; then
5MB of Java heap are required.

v When to try adjusting: If more than 50 unique URLs are actively being used
(each JSP is a unique URL), increase this parameter.

v How to view or set: The size of the cache can be specified for the application
server along with other JDK parameters by:
1. In the administrative console, click the application server you are tuning.
2. Click JVM Setting.
3. Click Add in the System Properties section.
4. Add the name invocationCacheSize and a value of 50.
5. Click Apply to ensure that the changes are saved.
6. Stop and restart the application server.

v Default value: 50
v Related parameters: See Heap size settings

Allow thread allocation beyond maximum
v Short description: When this option is selected, more Web container threads can

be allocated than specified in the maximum thread size field.
v How to view or set:

1. In the administrative console, select the application server you are tuning.
2. Click Web Container Service under Additional Properties.
3. Click Thread Pool under Additional Properties.
4. Select the checkbox Growable thread pool.
5. Click Apply to ensure the changes are saved.
6. Stop and restart the application server.

v Default value: The default value setting is “unchecked” (the thread pool can not
grow beyond the value specified for the maximum thread size).

v Recommended value: This option is intended to handle brief loads beyond the
configured maximum thread size. However, use caution when selecting this
option because too many threads can cause the system to overload.

Dynamic cache service: The dynamic cache service improves performance by
caching the output of servlets, commands and Java Server Pages (JSP) files.
WebSphere Application Server consolidates several caching activities, including
servlets, Web services, and WebSphere commands into one service called the
dynamic cache. These caching activities work together to improve application
performance, and share many configuration parameters, which are set in an
application server’s dynamic cache service.

The dynamic cache works within an application server Java Virtual Machine
(JVM), intercepting calls to cacheable objects, for example, through a servlet’s
service() method or a command’s execute() method, and either stores the object’s
output to or serves the object’s content from the dynamic cache. Because J2EE
applications have high read-write ratios and can tolerate small degrees of latency
in the currency of their data, the dynamic cache can create an opportunity for
significant gains in server response time, throughput, and scalability.

See the InfoCenter article (Improving performance through the dynamic cache
service) for more information.

114 IBM WebSphere Application Server Network Deployment, Version 5: Monitoring and Troublshooting

Security
This section discusses how various settings related to security affect performance.

Disabling security:

v Short description: Security is a global setting. When security is enabled,
performance can be decreased between 10-20%. Therefore, disable security when
not needed.

v How to view or set: In the administrative console, click Security > Global
Security. The checkboxes Enabled and Enforce Java 2 Security control global
security settings.

v Default value: By default, security is not enabled.

Fine-tune the security cache time out for the environment:

v Short description: If WebSphere Application Server security is enabled, the
security cache time out can influence performance. The time out parameter
specifies how often to refresh the security-related caches.
Security information pertaining to beans, permissions, and credentials is cached.
When the cache time out expires, all cached information becomes invalid.
Subsequent requests for the information result in a database lookup. Sometimes,
acquiring the information requires invoking a Lightweight Directory Access
Protocol(LDAP)-bind or native authentication. Both invocations are relatively
costly operations for performance.
Determine the best trade-off for the application, by looking at usage patterns
and security needs for the site.

v Actual benefit observed: In a 20-minute performance test, when the cache time
out was set so that a time out did not occur, a 40% performance improvement
was achieved.

v How to view or set: In the administrative console, click Security > Global
Security > Cache Timeout.

v Default value: The default is 600.

Security cache types and sizes (system parameters): The following system
properties determine the initial size of the primary and secondary Hashtable
caches, which affect the frequency of rehashing and the distribution of the hash
algorithms. The larger the number of available hash values, the less likely a hash
collision will occur, and more likely a slower retrieval time. If several entries
compose a Hashtable cache, creating the table in a larger capacity allows the
entries to be inserted more efficiently rather than letting automatic rehashing
determine the growth of the table. Rehashing causes every entry to be moved each
time.

com.ibm.websphere.security.util.LTPAAuthCacheSize

v Short description: This cache stores basic authentication credentials at the
Security Server. Whenever an Lightweight Third Party Authentication (LTPA)
token expires, a new token is generated from the basic authorization credentials
in this cache. If no basic authorization credentials exist, the requesting browser
must send the basic authorization credentials to the Security Server. The browser
will prompt the user for user ID and password if no cookie exists containing the
credentials.

com.ibm.websphere.security.util.LTPATokenCacheSize

v Short description: This cache stores LTPA credentials in the cache using the
LTPA token as a lookup value. When using an LTPA token to log in, the LTPA

Chapter 3. Tuning performance 115

credential is created at the Security Server for the first time. This cache prevents
the need to go to the Security Server on subsequent logins using an LTPA token.

com.ibm.websphere.security.util.CredentialCacheSize

v Short description: Given the user ID and password for login, this cache returns
the concrete credential object, either Local OS or LTPA, without the need to
repeat authentication at the Security Server. If the credential object has expired,
the need to repeat authentication is required.

com.ibm.websphere.security.util.LTPAValidationCacheSize

v Short description: Given the credential token for login, this cache returns the
concrete LTPA credential object, without the need to revalidate at the Security
Server. If the token has expired, the need to revalidate is required.

com.ibm.websphere.security.util.PermissionCacheSize

v Short description: This cache holds the WebSphere Application Server
permission objects retrieved when a getGrantedPermissions method is called. If
access to the same resource by the same principal occurs again, the permissions
will be retrieved rapidly from the cache instead of going to the repository on the
administrative server. This cache is common to both enterprise bean and
Web-granted permissions.

com.ibm.websphere.security.util.AdminBeanCacheSize

v Short description: This cache stores information, including the required
permissions, about enterprise beans that have been deployed in the
administrative server.

com.ibm.websphere.security.util.BeanCacheSize

v Short description: This cache stores information, including the required
permissions and RunAs mode, about enterprise beans that have been deployed
in a container on the application server.

Configure SSL sessions appropriately:

v Short description: The SSLV3Timeout value specifies the time interval after
which SSL sessions are renegotiated. This is a high setting, and modification
probably does not provide any significant impact. By default, it is set to 9600
seconds.
The Secure Association Service (SAS) feature establishes an SSL connection only
if it goes out of the JVM to another JVM. Therefore, if all the beans are
co-located within the same JVM, the SSL used by SAS is not expected to hinder
performance.

v How to view or set: Modify the SSLV3Timeout and other SAS properties by
editing sas.server.props and sas.client.props files. The files are located in the
product_installation_root\properties directory, where product_installation_root is the
directory where WebSphere Application Server is installed.

v Default value: The default is 9600 seconds.

Object Request Broker (ORB)
Several settings are available for controlling internal Object Request Broker (ORB)
processing. You can use these to improve application performance in the case of
applications containing enterprise beans.

You can change these settings for the default server or any application server
configured in the administrative domain.

116 IBM WebSphere Application Server Network Deployment, Version 5: Monitoring and Troublshooting

To change the settings, click Servers > Application Servers. Then, click ORB
Service from Additional Properties.

Pass-by-value versus pass-by-reference (NoLocalCopies):

v Short description: For EJB 1.1 beans, the EJB 1.1 specification states that method
calls are to be pass-by-value. For every remote method call, the parameters are
copied onto the stack before the call is made. This can be expensive. The
pass-by-reference, which passes the original object reference without making a
copy of the object, can be specified.
For EJB 2.0 beans, interfaces can be local or remote. For local interfaces, method
calls are pass-by-reference, by default.

v Actual benefit observed: If the EJB client and EJB server are installed in the
same WebSphere Application Server instance, and the client and server use
remote interfaces, specifying pass-by-reference can improve performance up to
50%.

v When to try adjusting: Pass-by-reference helps performance only in the case
where non-primitive object types are being passed as parameters. Therefore, int
and floats are always copied, regardless of the call model.
WARNING: Pass-by-reference can be dangerous and can lead to unexpected
results. If an object reference is modified by the remote method, the change
might be seen by the caller.

v How to view or set: Click Servers > Application Servers. Then, click ORB
Service from Additional Properties.

v Select Pass by Reference.
v Click OK.
v Click Apply to save the changes.
v Stop and restart the application server.
v Default value: Pass-by-value for remote interfaces, pass-by-reference for EJB 2.0

local interfaces.

If the application server expects a large workload for enterprise bean requests, the
ORB configuration is critical. Take note of the following properties:

com.ibm.CORBA.ServerSocketQueueDepth:

v Short description: This property corresponds to the length of the TCP/IP stack
listen queue and prevents WebSphere Application Server from rejecting requests
when there is not space in the listen queue.

v When to try adjusting: If there are many simultaneous clients connecting to the
server-side ORB, this parameter can be increased to support the heavy load up
to 1000 clients.

v How to view or set: To set the property, follow these steps:
1. Click Servers > Application Servers.
2. Click the application server you want to tune.
3. Click Process Definition under Additional Properties.
4. Click Java Virtual Machine under Additional Properties.
5. Type

-Dcom.ibm.CORBA.ServerSocketQueueDepth=200.

in the Generic JVM Properties field.
v Default value: 50

Chapter 3. Tuning performance 117

com.ibm.CORBA.MaxOpenConnections and Object Request Broker connection
cache maximum:

v Short description: This property has two names and corresponds to the size of
the ORB connection table. The property sets the standard for the number of
simultaneous ORB connections that can be processed.

v When to try adjusting:If there are many simultaneous clients connecting to the
server-side ORB, this parameter can be increased to support the heavy load up
to 1000 clients.

v How to view or set:

1. Click Servers > Application Servers.
2. Click the application server you want to tune.
3. Click the ORB Service under Additional Properties.
4. Update the Connection cache maximum field with OK.
5. Update the Connection cache maximum field and click OK.
6. Click Apply to save the changes.
7. Restart the application server.

v Default value: 240

ORB thread pool size:

v Short description: This property relates to the size of the ORB thread pool. A
worker thread is taken from the pool to process requests from a given
connection.

v When to try adjusting: If there are many simultaneous clients connecting to the
server-side ORB, this parameter can be increased to support the heavy load up
to 1000 clients.

v How to view or set:
1. In the administrative console, select the application server you are tuning

and then click the Services tab.
2. Click Servers > Application Servers.
3. Click the application server you want to tune.
4. Click the ORB Service under Additional Properties.
5. Click Thread Pool under Additional Properties.
6. Update the Maximum Size field and click OK.
7. Click Apply to save the changes.
8. Restart the application server.

v Related parameters: See Adjusting WebSphere Application Server’s system
queues

v Default value: 50

Java Virtual Machines (JVMs)
Tuning the JVM

The JVM offers several tuning parameters affecting the performance of WebSphere
Application Servers and application performance.

Sun JDK 1.3 HotSpot -server warm-up
v Short description: The HotSpot JVM introduces adaptive JVM technology

containing algorithms for optimizing byte code execution over time. The JVM
runs in two modes, -server and -client. Performance can be significantly

118 IBM WebSphere Application Server Network Deployment, Version 5: Monitoring and Troublshooting

enhanced if running in -server mode and a sufficient amount of time is allowed
for a HotSpot JVM to warm-up by performing continuous execution of byte
code.

v When to try adjusting: In most cases, -server mode should be run. This
produces more efficient run time execution over extended periods. The -client
option can be used if a faster startup time and smaller memory footprint are
preferred, at the cost of lower extended performance.

v How to view or set: The -server option is enabled by default. Follow these steps
to change the -client or -server mode:
1. Click Servers > Application Servers.
2. Click the application server you want to tune.
3. Click the Process Definition under Additional Properties.
4. Click Java Virtual Machine under Additional Properties.
5. Click Custom Properties under Additional Properties.
6. Select New and enter HotSpotOption in the Name field. Enter -client or -server

in the Value field.
7. Restart the application server.

v Recommended value: -server

Sun JDK 1.3 HotSpot new generation pool size
v Short description: Most garbage collection algorithms iterate every object in the

heap to determine which objects to free. The HotSpot JVM introduces
generational garbage collection which makes use of separate memory pools to
contain objects of different ages. These pools can be garbage collected
independently from one another. The sizes of these memory pools can be
adjusted. Extra work can be avoided by sizing the memory pools so that
short-lived objects will never live through more than one garbage collection
cycle.

v When to try adjusting: If garbage collection has become a bottleneck, try
customizing the generation pool settings.

v How to view or set:

v

1. Click Servers > Application Servers.
2. Click the application server you want to tune.
3. Click the Process Definition under Additional Properties.
4. Click Java Virtual Machine under Additional Properties.
5. Click Custom Properties under Additional Properties.
6. Enter the following values in the Generic JVM Arguments field:

-XX:NewSize (lower bound), -XX:MaxNewSize (upper bound)
7. Restart the application server.

v Recommended value: Bound the new generation between 25 to 50% the total
heap size.

Just In Time (JIT) compiler
v Short description: The Just In Time (JIT) compiler can significantly affect

performance.
v When to try adjusting: In all cases, run with JIT enabled, which is the default.

To disable JIT:
1. Click Servers > Application Servers.
2. Click the application server you want to tune.

Chapter 3. Tuning performance 119

3. Click the Process Definition under Additional Properties.
4. Click Java Virtual Machine under Additional Properties.
5. Select the checkbox Disable JIT.
6. Save your changes.
7. Restart the application server.

Heap size settings
v Short description: These parameters can set the maximum and initial heap sizes

for the JVM.
In general, increasing the size of the Java heap improves throughput until the
heap no longer resides in physical memory. After the heap begins swapping to
disk, Java performance drastically suffers. Therefore, the maximum heap size
needs to be low enough to contain the heap within physical memory.
The physical memory usage must be shared between the JVM and the other
applications, such as, the database. For assurance, use a smaller heap, for
example 64MB, on machines with less memory.
Try a maximum heap of 128MB on a smaller machine, that is, less than 1GB of
physical memory, 256MB for systems with 2GB memory, and 512MB for larger
systems. The starting point depends on the application.
If performance runs are being conducted and highly repeatable results are
needed, set the initial and maximum sizes to the same value. This setting
eliminates any heap growth during the run. For production systems where the
working set size of the Java applications is not well understood, an initial setting
of one-fourth the maximum setting is a good starting value. The JVM will then
try to adapt the size of the heap to the working set of the Java application.

v How to view or set:
1. Click Servers > Application Servers.
2. Click the application server you want to tune.
3. Click the Process Definition under Additional Properties.
4. Click Java Virtual Machine under Additional Properties.
5. Enter values in the General Properties field for the following fields: Initial

Heap Size and Maximum Heap Size.
6. Save your changes.
7. Restart the application server.

Class garbage collection
v Short description: In most cases, run with class garbage collection turned on.

This is the default.
v How to view or set: Disabling class garbage collection enables more class reuse,

which, in some cases, has resulted in small performance improvements.
Use the Generic JVM Arguments of the default server or any additional
application server you configure in the administrative domain to set the JVM
parameters:
1. Click Servers > Application Servers.
2. Click the application server you want to tune.
3. Click the Process Definition under Additional Properties.
4. Click Java Virtual Machine under Additional Properties.
5. Enter the value -Xnoclassgc in the Generic JVM Arguments field.
6. Save your changes.
7. Restart the application server.

120 IBM WebSphere Application Server Network Deployment, Version 5: Monitoring and Troublshooting

EJB container
Cache settings

v Short description: To determine the cache absolute limit, multiply the number of
enterprise beans active in any given transaction by the total number of
concurrent transactions expected. Then, add the number of active session bean
instances. Use the Tivoli Performance Viewer to view bean performance
information.

v How to view or set: Edit the EJB container service properties for the application
server you are tuning.

v Default value: Cache size=2053, Cache clean-up interval=3000

Break CMP enterprise beans into several enterprise bean modules

v Short description:The load time for hundreds of beans can be improved by
distributing the beans across several JAR files and packaging them to an EAR
file. This is faster when the administrative server attempts to start the beans, for
example, 8-10 minutes versus more one hour when one JAR file is used.

XML parser selection
v Short description:Add XML parser definitions to the jaxp.properties file and

xerces.properties file found in the ${WAS_HOME}/jre/lib directory to help
facilitate server startup. The XMLParserConfiguration value might have to be
changed as new versions of Xerces are provided.

v How to view or set:In both files, insert the following lines (last split for
publication):
javax.xml.parsers.SAXParserFactory=org.apache.xerces.jaxp.SAXParserFactoryImpl
javax.xml.parsers.DocumentBuildFactory=org.apache.xerces.jaxp.DocumentBuilderFactoryImpl
org.apache.xerces.xni.parser.XMLParserConfiguration=

org.apache.xerces.parsers.StandardParserConfiguration

Data sources

Connection pool size
v Short description: When accessing any database, the initial database connection

is an expensive operation. WebSphere Application Server supports JDBC 2.0
Standard Extension APIs to provide support for connection pooling and
connection reuse. The connection pool is used for direct JDBC calls within the
application, as well as for enterprise beans using the database.

v Actual benefit observed: When the connection pooling capabilities are used,
performance improvements up to 20 times the normal results can be realized.

v How to view or set: Use the administrative console to specify the database
connection pool options.

v Default value: Minimum connection pool size: 1, Maximum connection pool
size: 10

v How to view parameter utilization: Use the Tivoli Performance Viewer:
1. Start the Tivoli Performance Viewer.
2. Select the application server you are tuning.
3. Expand the database connection pools category.
4. Select the data source.
5. Click the data source and set to high. High is necessary to obtain the

percentUsed counter.
6. Click Run to start collecting statistics, and observe the following:

Chapter 3. Tuning performance 121

– Pool size = Average number of connections in the pool to the database
– Percent used = Average percent of the pool connections in use
– Concurrent waiters = Average number of threads waiting for a connection

Use Tivoli Performance Viewer to find the optimal number of pool
connections that can reduce values for these numbers. If Percent Used is
consistently low, consider decreasing the number of connections in the
pool.

v Recommended value: Better performance is generally achieved if the value for
the connection pool size is set lower than the value for the Max Connections in
the Web container. Lower settings (10-30 connections) typically perform better
than higher (more than 100) settings.
On UNIX platforms, a separate DB2 process is created for each connection.
These processes quickly affects performance on systems with low memory,
causing errors.
Each Entity EJB transaction requires an additional connection to the database
specifically to handle the transaction. Be sure to take this into account when
calculating the number of data source connections.
Deadlock can occur if the application requires more than one concurrent
connection per thread, and the database connection pool is not large enough for
the number of threads. Suppose each of the application threads requires two
concurrent database connections and the number of threads is equal to the
maximum connection pool size. Deadlock can occur when both of the following
are true:
– Each thread has its first database connection, and all are in use.
– Each thread is waiting for a second database connection, and none would

become available since all threads are blocked.

To prevent the deadlock in this case, the value set for the database connection
pool must be at least one higher, one of the waiting threads to complete its
second database connection and free up to allow database connections.

To avoid deadlock, code the application to use, at most, one connection per
thread. If the application is coded to require C concurrent database connections
per thread, the connection pool must support at least the following number of
connections, where T is the maximum number of threads.

T * (C - 1) + 1

The connection pool settings are directly related to the number of connections
that the database server is configured to support. If the maximum number of
connections in the pool is raised, and the corresponding settings in the database
are not raised, the application fails and SQL exception errors are displayed in
the stderr.log file.

v Related parameters: See Adjusting WebSphere Application Server system
queues, Prepared statement cache size, and Number of connections to DB2

Prepared statement cache size
v Short description: The WebSphere Application Server data source optimizes the

processing of prepared statements. A prepared statement is a precompiled SQL
statement that is stored in a prepared statement object. This object is used to
efficiently execute the given SQL statement multiple times.
Note: Prepared statements are optimized for handling parametric SQL
statements that benefit from precompilation. If the JDBC driver specified in the
data source supports precompilation, the creation of the prepared statement will

122 IBM WebSphere Application Server Network Deployment, Version 5: Monitoring and Troublshooting

send the statement to the database for precompilation. Some drivers might not
support precompilation and the prepared statement might not be sent until the
prepared statement is executed.

v Actual benefit observed: In test applications, tuning the prepared statement
cache improved throughput by 10-20%.

v How to view or set: In the administrative console click Resources > JDBC
Providers > provider_name > Data source > data_source_name > Connection Pool
> Statement Cache Size. The Statement Cache Size field should contain a value
that is the total cache size, not the size per container.

v Recommended value: If the cache is not large enough, useful entries will be
discarded to make room for new entries. In general, the more prepared
statements your application has, the larger the cache should be. For example, if
the application has 5 SQL statements, set the prepared statement cache size to 5,
so that each connection has 5 statements.
Tivoli Performance Viewer can help tune this setting to minimize cache discards.
Use a standard workload that represents a typical number of incoming client
requests, use a fixed number of iterations, and use a standard set of
configuration settings.
Follow these instructions to use the Tivoli Performance Viewer:
1. Start Tivoli Performance Viewer.
2. Click host > server > JDBC Connection Pools > jdbc_provider.
3. Before starting the benchmark workload, right-click driver and select Clear

Values.
4. (Optional) Right-click driver and select Reset to Zero.
5. Start the workload and run to completion. After the workload finishes,

record the value reported for PrepStmt Cache Discards.
6. Stop the application server and make the following adjustments: Click Data

Source > Connection Pooling > Statement Cache Size value.
7. Rerun the workload and record the Tivoli Performance Viewer value

reported for PrepStmt Cache Discards.

The best value for Data Source > Connection Pooling > Statement Cache Size
is the setting used to get either a value of zero or the lowest value for PrepStmt
Cache Discards. This setting indicates the most efficient number for a typical
workload.

v Related parameters: See Adjusting WebSphere Application Server system
queues, Thread pool, and Connection pool size

Other JDBC parameters
In addition to setting the prepared statement cache size, you can set other specific
properties for JDBC drivers. For example, using Oracle, you can increase the
number of rows to fetch while getting result sets with the statement
name=″defaultRowPrefetch″, value=″25″.

Enter these types of custom properties on the General tab for the database.

DB2
DB2 has many parameters that can be configured to optimize database
performance. For complete DB2 tuning information, refer to the DB2 UDB
Administration Guide: Performance.

DB2 Configuration Advisor: Located in the DB2 Control Center, this advisor
calculates and displays recommended values for the DB2 buffer pool size, the

Chapter 3. Tuning performance 123

database and database manager configuration parameters, with the option of
applying these values. See more information about the advisor in the online help
facility within the Control Center.

Use TCP sockets for DB2 on Linux:

v Short description: On Linux platforms, whether the DB2 server resides on a
local machine with WebSphere Application Server or on a remote machine,
configure the DB2 application databases to use TCP sockets for communications
with the database.

v How to view or set: The directions for configuring DB2 on Linux can be found
in the WebSphere Application Server installation documentation for the various
operating systems. This document specifies setting DB2COMM for TCP/IP and
corresponding changes required in the etc/service file.

v Default value: Shared memory for local databases
v Recommended value: On Linux, change the specification for the DB2

application databases and any session databases from shared memory to TCP
sockets.

DB2 MaxAppls:

v Related parameters: See Number of connections to DB2

DB2 MaxAgents:

v Related parameters: See Number of connections to DB2

DB2 buffpage:

v Short description: Buffpage is a database configuration parameter. A buffer pool
is a memory storage area where database pages containing table rows or index
entries are temporarily read and changed. The purpose of the buffer pool is to
improve database system performance. Data can be accessed much faster from
memory than from disk.

v How to view or set: To view the current value of buffpage for database x, issue
the DB2 command get db cfg for x and look for the value of BUFFPAGE.
To set BUFFPAGE to a value of n, issue the DB2 command update db cfg for x
using BUFFPAGE n and be sure NPAGES is -1 as follows:

db2 <-- go to DB2 command mode, otherwise the following “select” will not work as is
connect to x <-- (where x is the particular DB2 database name)
select * from syscat.bufferpools

(and note the name of the default, perhaps: IBMDEFAULTBP)
(if NPAGES is already -1, you are OK and no need to issue following command)

alter bufferpool IBMDEFAULTBP size -1
(re-issue the above “select” and NPAGES should now be -1)

v How to view parameter utilization: Collect a snapshot of the database while the
application is running and calculate the buffer pool hit ratio.
1. Collect the snapshot by issuing the following DB2 commands:

– update monitor switches using bufferpool on

– get monitor switches (To see that bufferpool monitoring is on)
– reset monitor all (To clear monitor counters)

2. Run the application.
3. Issue the following commands:

– get snapshot for all databases (Issue this command before all applications
disconnect from the database, otherwise statistics will be lost.)

– update monitor switches using bufferpool off (Make sure not to forget
this step!)

124 IBM WebSphere Application Server Network Deployment, Version 5: Monitoring and Troublshooting

4. To calculate the hit ratio, look at the following snapshot statistics for the
database:
– Buffer pool data logical reads
– Buffer pool data physical reads
– Buffer pool index logical reads
– Buffer pool index physical reads

5. The buffer pool hit ratio indicates the percentage of time that the database
manager did not need to load a page from disk in order to service a page
request. That is, the page was already in the buffer pool. The greater the
buffer pool hit ratio, the lower the frequency of disk input/output. The
buffer pool hit ratio can be calculated as follows:
– P = buffer pool data physical reads + buffer pool index physical reads
– L = buffer pool data logical reads + buffer pool index logical reads
– Hit ratio = (1-(P/L)) * 100%

DB2 query optimization level:

v Short description: When a database query is executed in DB2, various methods
are used to calculate the most efficient access plan. The query optimization level
parameter sets the amount of work and resources that DB2 puts into optimizing
the access plan. The range is from zero to 9.
An optimization level of 9 causes DB2 to devote a lot of time and all of its
available statistics to optimizing the access plan.

v How to view or set: The optimization level is set on individual databases and
can be set with either the command line or with the DB2 Control Center. Static
SQL statements use the optimization level specified on the prep and bind
commands. If the optimization level is not specified, DB2 uses the default
optimization as specified by the dft_queryopt parameter. Dynamic SQL
statements use the optimization class specified by the current query optimization
special register which is set using the SQL Set statement. For example, the
following statement sets the optimization class to 1:
Set current query optimization = 1
If the current query optimization register has not been set, dynamic statements
will be bound using the default query optimization class.

v Default value: 5
v Recommended value: Set the optimization level for the needs of the application.

Use high levels should only when there are very complicated queries.

DB2 reorgchk:

v Short description: The performance of the SQL statements can be impaired after
many updates, deletes or inserts have been made. Performance can be improved
by obtaining the current statistics for the data and rebinding.

v How to view or set: Use the following DB2 command to issue runstats on all
user and system tables for the database you are currently connected to:
reorgchk update statistics on table all
You should then rebind packages using the bind command.
In order to see if runstats has been done, issue the following command on DB2
CLP:
db2 -v “select tbname, nleaf, nlevels, stats_time from sysibm.sysindexes”

If no runstats has been done, nleaf and nlevels will be filled with -1 and
stats_time will have an empty entry “-”.

Chapter 3. Tuning performance 125

If runstats was done already, the real-time stamp when the runstats was
completed will also be displayed under stats_time. If you think the time shown
for the previous runstats is too old, do runstats again.

DB2 MinCommit:

v Short description: This parameter allows you to delay the writing of log records
to a disk until a minimum number of commits have been performed, reducing
the database manager overhead associated with writing log records. For
example, if MinCommit is set to 2, a second commit would cause output to the
transaction log for the first and second commits. The exception occurs when a
one-second time out forces the first commit to be output if a second commit
does not come along within one second.

v Actual benefit: In test applications, up to 90% of the disk input/output was
related to the DB2 transaction log. Changing MinCommit from 1 to 2 reduced
the results to 45%.

v When to try adjusting:Try to adjust this parameter if the disk input/output wait
is more than 5% and there is DB2 transaction log activity from multiple sources.
When a lot of activity occurs from multiple sources, it is less likely that an single
commit will have to wait for another commit (or the one-second time out). Do
not adjust this parameter if you have a application with a single thread
performing a series of commits (each commit could hit the one-second delay).

v How to view or set: To view the current value for a particular database follow
these steps:
1. Issue the DB2 command get db cfg for xxxxxx (where xxxxxx is the name of

the application database) to list database configuration parameters.
2. Look for “Group commit count (MINCOMMIT)”.
3. Set a new value by issuing the DB2 command update db cfg for xxxxxx

using mincommit n (where n is a value between 1 and 25 inclusive).

The new setting takes effect immediately.

The following are several metrics that are related to DB2 MinCommit:
1. The disk input/output wait can be observed on AIX with the command

vmstat 5. This shows statistics every 5 seconds. Look for the wa column
under the CPU area.

2. The percentage of time a disk is active can be observed on AIX with the
command iostat 5. This shows statistics every 5 seconds. Look for the
%tm_act column.

3. The DB2 command get snapshot for db on xxxxxx (where xxxxxx is the
name of the application database) shows counters for log pages read and log
pages written.

v Default value:The default value is 1.
v Recommended value: MinCommit should be 1 or 2 (if the circumstance

permits).

Session management
For additional information on setting session management parameters, see the
InfoCenter.

126 IBM WebSphere Application Server Network Deployment, Version 5: Monitoring and Troublshooting

Starting Windows NT or 2000 Performance Monitor
From the Start menu, choose Programs > Administrative Tools > Performance
Monitor.

Additional references
v WebSphere Application Server Development Best Practices for Performance and

Scalability, which describes development best practices for both Web applications
containing servlets, JSP files, and JDBC connections, and enterprise applications
containing enterprise bean components.

v iSeries performance documents, including WebSphere Application Server for
iSeries Performance Considerations and links to the PTDV tool, Workload
Estimator tool, and other documents.

v IBM WebSphere Application Server Advanced Edition Tuning Guide (Version 4.02)
v Redbook: WebSphere Application Server V3.5 Handbook (SG24-6161-00)
v Redbook: WebSphere Application Server V3 Performance Tuning Guide

(SG24-5657-00)

Chapter 3. Tuning performance 127

http://www-1.ibm.com/servers/eserver/iseries/software/websphere/wsappserver/product/performanceAE40.html

128 IBM WebSphere Application Server Network Deployment, Version 5: Monitoring and Troublshooting

Chapter 4. Diagnosing and fixing problems

The purpose of this section is to aid you in understanding why your enterprise
application, application server, or WebSphere Application Server is not working
and to help you resolve the problem. Unlike performance tuning which focuses on
solving problems associated with slow processes and unoptimized performance,
problem determination focuses on finding solutions to functional problems.

The kind of problem you are encountering, and how much you already know
about it, determine what steps to take to resolve it:

Steps for this task
1. For tips on investigating common problems organized according to tasks within

WebSphere Application server, see Troubleshooting by task.
2. For tips on how to investigate common kinds of problems based on the

component that is causing the problem, see Troubleshooting by component.
3. If you already have an error message and want to quickly look up its

explanation and recommended response, look up the message by selecting the
Quick reference view of this InfoCenter and expanding Messages.

4. For help in knowing where to find error and warning messages, interpreting
messages, and configuring log files, see Working with message logs.

5. Difficult problems can require the use of tracing, which exposes the low-level
flow of control and interactions between components. For help in
understanding and using traces, see Working with trace.

6. For help in adding log and trace capability to your own application, see
Programming with JRas.

7. For help in using WebSphere Application Server utilities to help you diagnose
the problem, see Working with troubleshooting tools.
Some of these tools are bundled with the product, and others are freely
downloadable.

8. To find out how to look up documented problems, common mistakes,
WebSphere Application Server prerequisites, and other problem-determination
information on the WebSphere Application Server public web site, or to obtain
technical support from IBM, see Obtaining help from IBM.

Troubleshooting by task: what are you trying to do?
This section provides troubleshooting information based on the task you were
trying to accomplish when the problem occurred. To find more information about
your problem, select a task category from the list below.

If you do not see a task that resembles yours, or if the information provided does
not solve your problem, contact IBM support for further assistance.

Installing WebSphere Application Server
Select the problem you are having with WebSphere Application Server installation:
v Install completes with errors or warnings, or installation hangs.
v The installation process completes, but the application server will not start.

© Copyright IBM Corp. 2002 129

v The installation process completes, but sample applications, such as the snoop
servlet or other applications from the Sample Gallery do not work.

If you do not see a problem that resembles yours, or if the information provided
does not solve your problem, see Troubleshooting the Installation. If that does not
provide you with a resolution to your problem, contact IBM support for further
assistance

Installation completes with errors or warnings, or hangs (panel
appears, but shows no progress)
If the WebSphere Application Server installation program indicates that errors were
encountered while installing the product:
v Browse the file main installation log <install_dir/logs/log.txt> for clues.
v Look the command prompt from which the installation panel that hangs was

launched, for error messages.
v Look up any error or warning messages in the message reference table.
v For Unix or AIX users, if you have uninstalled WebSphere Application Server

prior to reinstalling it, verify that all related packages have been removed by
using SMIT or similar tool and looking for packages beginning “WS”. If found,
remove them.

v Review “Troubleshooting the installation” (not in this document).

If you do not see a problem that resembles yours, or if the information provided
does not solve your problem, contact IBM support for further assistance.

Installation completes but the administrative console does not
start
What kind of problem are you having?
v “Internal Server Error”, “Page cannot be found”, 404, or similar error trying to

view administrative console.
v “Unable to process login. Please check User ID and password and try again. ”

error when trying to access console page.
v Directory paths in the console are garbled.

If you are able to bring up the browser page, but the console’s behavior is
inconsistent, error-prone, or unresponsive, try upgrading the browser you are
using. Older browsers may not support the administrative console’s features.

If none of these steps solves the problem, check to see if the problem has been
identified and documented using the links in Diagnosing and fixing problems:
Resources for learning. If you do not see a problem that resembles yours, or if the
information provided does not solve your problem, contact IBM support for
further assistance.

″Internal Server Error″, ″Page cannot be found″, 404, or similar error trying to
view administrative console: If you are unable to view the administrative
console, here are some steps to try:
v Verify that the application server which supports the administrative console is

up and running.
– For a “base” configuration, the administrative console is deployed by default

on “server1”. Before viewing the administrative console, you must:
- Run the startServer server1 command for Windows or ./startServer.sh

server1 command for Unix from a command prompt in the install_dir\bin
directory, or

130 IBM WebSphere Application Server Network Deployment, Version 5: Monitoring and Troublshooting

- Click the “start application server” link from the “first steps” panel, or
- Start WebSphere Application Server as a service or from the Start menu, if

you are using Windows.
– If you are using the Deployment Manager (for a multi-node configuration),

run the startManager command from the Network_Deployment_install_dir\bin
directory.

– View the SystemOut.log file for the application server or deployment
manager to verify that the server supporting the administrative console has
actually started.

v Check the URL you are using to view the console. By default, it is
http://server_name:9090/admin.

v If you are browsing the console from a remote machine, try to eliminate
connection, address and firewall issues by:
– Pinging the server machine from a command prompt, using the same server

name as in the URL.
– If you have access to the server, try browsing the console locally using

http://server_name:9090/admin.
v If you have never been able to access the administrative console, verify that the

installation was successful.

″Unable to process login. Please check User ID and password and try again. ″
error when trying to access console page: This error indicates that security has
been enabled for WebSphere Application Server, and the user ID or password
supplied is either invalid or not authorized to access the console.

To access the console,
v If you are the administrator, use the ID defined as the security administrative

ID. This ID is stored in the WebSphere Application Server directory structure in
the file security.xml.

v If you are not the administrator, ask the administrator to enable your ID for the
administrative console.

Directory paths in the console are garbled: If directory paths used for classpaths
or resources specified in the Application Assembly Tool, configuration files, or
elsewhere, appear garbled in the administrative console, it may be because the Java
runtime interprets a backslash (\) as denoting a control character.

To resolve, modify Windows-style classpaths by replacing occurrences of single
backslashes to two. For example, change “c:\MyFiles\MyJsp.jsp” to
“c:\\MyFiles\\MyJsp.jsp”.

The application server or Deployment Manager does not start or
starts with errors
If the WebSphere Application Server installation program completes successfully,
but the application server does not start, or starts with errors:
v Browse the application server log files, which are located by default in

install_dir\logs\server_name\SystemErr.log and SystemOut.log for clues.
v If there are several applications deployed on an application server or node, it

may take some time to start. Browse the SystemOut.log periodically and look at
the most recent updates to see if the server is still starting up. On Unix
platforms, the tail -f installation_path/logs/SystemOut.log is a convenient way
to watch the progress of the server.

Chapter 4. Diagnosing and fixing problems 131

v Look for any errors or warnings relating to specific resources with the module,
such as Web modules, enterprise beans and messaging resources. If you find
any, examine the application server configuration file for that resource’s
configuration settings. For example, in a base (non-distributed) configuration on
Windows systems, browse

install_dir\config\cells\BaseApplicationServerCell\nodes\host_name\servers\
server_name\server.xml

and examine the xml tags for that resource’s properties. Change its initialState
value from “START” to “STOP”. Then restart the server as a test to see if the
problem is due to this component.

v Look up any error or warning messages in the message reference table by
selecting the Quick Reference view and expanding the “Messages” heading.

v If the application server is part of a Network Deployment (multiple server)
configuration,
– Ensure that you have followed the steps for adding the application server to

the configuration.
– Ensure that the configuration is synchronized between the deployment

manager and the node. If auto synchronization is running, wait until the
synchronization has had a chance to complete. If you are using manual
synchronization, request a synchronization to each node in the cluster.

– Before starting an application server:
1. Start the Deployment Manager process:

installation_root/bin/startManager.sh or
installation_root\bin\startManager.bat.

2. Complete the one-time step of “federating” the node the application
server is running on to the Deployment Manager. This has to be done
even if there is only one node, and it is the same physical server as the
one on which the DeploymentManager is running. This is done by
running the addnode nodename utility in the installation_root/bin directory
of the application server’s host.

3. Start the Node Manager process on the nodes hosting the application
servers you want to run: installation_root/bin/startNode.sh or
installation_root\bin\startNode.bat.

v Ensure that the logical name that you have specified to appear on the console
for your application server does not contain invalid characters such as: - / \ : * ?
″ < >.

v If you are unable to start the DeploymentManager after an otherwise successful
installation:
– Look in the file installation_root/dmgr/logs/SystemErr.log and SystemOut.log

for messages.
– Where was the product installed? This product is not standalone, and

depends upon some files which are already installed as part of the base. The
Network Deployment product should be installed under the WebSphere
Application Server root directory of one of the nodes with the base product,
at the same level as the base product. For example, if the base product is in
/usr/WebSphere/AppServer, the Network Deployment should be installed
into a directory like /usr/WebSphere/NetworkDeployment. Installing the
product apart from the base product may result in a error running the
startManager command similar to: WSVR0102E: An error occurred stopping,
null [class com.ibm.ws.cache.ServerCache].

132 IBM WebSphere Application Server Network Deployment, Version 5: Monitoring and Troublshooting

v If you are using Cloudscape and receive an “ERROR XSDB6: Another instance of
Cloudscape may have already booted the database databaseName.” error
starting appplication server, consult this topic for more information.

If you do not see a problem that resembles yours, or if the information provided
does not solve your problem, contact IBM support for further assistance.

Installation completes, but sample applications do not work
If the WebSphere Application Server installation program completes successfully,
but the sample applications do not run:
v Browse the application server log files, which are located by default in

install_dir\logs\server_name\SystemErr.log and SystemOut.log for clues.
v View the JVM logs of the hosting application server for clues, after attempting

to run a Sample application,
v Look up any error or warning messages in the message table by selecting the

Quick reference view of this InfoCenter and expanding the Messages heading.
v You can also encounter some security-related problems, such as after turning on

security, “MSGS0508E: The JMS Server security service was unable to
authenticate userid:” error is displayed in SystemOut.log when starting an
application server.

v Review Troubleshooting the installation for more information.

If you do not see a problem that resembles yours, or if the information provided
does not solve your problem, check to see if your problem has been identified. See
Diagnosing and fixing problems: Resources for learning for information on getting
the latest updates. If your problem has not been reported, contact IBM support for
further assistance.

Troubleshooting migration problems
To resolve problems encountered in trying to migrate an application from an older
version of WebSphere Application Server to version 5, first determine whether
your problems occur using the pre-upgrade tool or the post-upgrade tool.
v Errors using the WASPreUpgrade tool.
v Errors using the WASPostUpgrade tool.
v For other kinds of migration problems, such as an application imported from

another version of WebSphere Application Server that will not start, look up the
related problem under Troubleshooting by task: what are you trying to do?,
based on the problem you are having in this version.

If none of these steps fixes your problem,
v For general tips on migration problems, see Troubleshooting the migration

utility.
v Review the topic Migration and its subtopics, which address migrating specific

kinds of components.
v Check to see if the problem has been identified and documented by looking at

the available online support (hints and tips, technotes, and fixes).
v If you don’t find your problem listed there contact IBM support.

Errors using the WASPreUpgrade tool
What kind of error are you encountering?
v “MIGR0125E: The call to XMLConfig was not successful”

Chapter 4. Diagnosing and fixing problems 133

v “MIGR0108E: The specified WebSphere directory does not contain WebSphere
version that can be upgraded.”

v “not found” or “no such file or directory” message

Errors using the WASPostUpgrade tool
What kind of error are you encountering?
v “not found” or “no such file or directory” message
v “MIGR0253E: The backup directory migration_backup_directory does not exist”
v “MIGR0102E: Invalid Command Line. MIGR0105E: You must specify the

primary node name.”
v “MIGR0116E: The backup directory [migration_backup_directory] does not

contain the required xml data file.”
v “MIGR0108E: The specified WebSphere directory does not contain WebSphere

version that can be upgraded”

″MIGR0125E: The call to XMLConfig was not successful″ error
when trying to run WASPreUpgrade
The WASPreUpgrade tool saves selected files from the WebSphere Application
Server release 3.5.x and release 4.x bin directories. It also exports the existing
application server configuration from the repository. If you are migrating
WebSphere Application Server Version 3.5.x Advanced Edition or WebSphere
Application Server Release 4.x Advanced Edition, the administrative server of the
existing environment must be running.

If you are migrating from WebSphere Application Server Release 4.0.x Advanced
Edition, the WASPreUpgrade command calls the XMLConfig
command to export the existing application server configuration from the
repository. If errors occur during this part of the WASPreUpgrade command, you
might have to apply fixes to the installation to successfully complete the export
step. Contact IBM Support for the latest fixes that might be applicable.

″MIGR0108E: The specified WebSphere directory does not
contain WebSphere version that can be upgraded.″
Possible reasons for this error follow:
v If WebSphere Application Server Release 4.0.x is installed, you might not have

run the WASPreUpgrade tool from the bin directory of the version 5 installation
root.
– If you see the following displayed when the WASPreUpgrade tool was run:

“IBM WebSphere Application Server, Release 4.0”, you are running the
WebSphere Application Server Release 4.0 migration utility, not the version 5
migration utility.

– The resolution is to alter your environment path or change the current
directory so that you can launch the WebSphere Application Server version 5
WASPreUpgrade program.

v WebSphere Application Server version 5 might have installed onto the same root
directory as the earlier version.
– Confirm this situation by browsing the older version’s directory structure to

see whether it contains new 5.0 directories (such as
WebSphere\AppServer\logs\ffdc).

– The resolution is to uninstall all versions of WebSphere Application Server,
then reinstall and reconfigure the older version, and then install WebSphere
Application Server version 5 into a different root directory than the previous
one.

134 IBM WebSphere Application Server Network Deployment, Version 5: Monitoring and Troublshooting

v An invalid directory might have been specified when launching the
WASPostUpgrade tool, or the WASPreUpgrade tool has not been run.

″not found″ or ″no such file or directory″ message is returned
from the WASPostUpgrade or WASPreUpgrade tool
This problem can occur if you are trying to run the WASPostUpgrade tool or the
WASPreUpgrade tool from a directory other than install_dir\bin. The resolution
is to ensure that the WASPostUpgrade or WASPreUpgrade .bat or .sh file resides
in the install_dir\bin directory, and to launch it from that location.

″MIGR0253E: The backup directory migration_backup_directory
does not exist.″ error returned from the WASPostUpgrade tool
Possible reasons for this error:
v The WASPreUpgrade tool was not run prior to the WASPostUpgrade tool. To

verify this, check to see if the backup directory specified in the error message
exists. If not, run the WASPreUpgrade .bat or .sh file, and then retry the
WASPostUpgrade tool.

v You might have specified an invalid backup directory. For example, the directory
might have been a subdirectory of the V3.5.x or V4.0.x tree, which was deleted
after the WASPreUpgrade tool was run and the older version of the product was
uninstalled, but before the WASPostUpgrade tool was run.
– Determine if the full directory structure specified in the error message exists.

If possible, rerun the WASPreUpgrade tool, specifying the correct full
migration backup directory.

– If the backup directory does not exist, and the older version it came from is
gone, you must rebuild the older version from a backup repository or XML
configuration file and rerun the WASPreUpgrade tool.

″MIGR0102E: Invalid Command Line. MIGR0105E: You must
specify the primary node name.″
The most likely cause of this error is that If release 4.0.x of the WebSphere
Application Server is installed, the user might not have run the WASPostUpgrade
tool from the bin directory of the WebSphere Application Server verion 5
installation root.

If you received the following messages when the WASPostUpgrade tool was run:
v IBM WebSphere Application Server, Release 4.0 and
v

MIGR0002I: java com.ibm.websphere.migration.postupgrade.WASPostUpgrade
<backupDirectoryName>
-adminNodeName <primary node name>
[-nameServiceHost <hostName> [-nameServicePort <portNumber>]]
[-substitute <"key1=value1[;key2=value2;[...]]">]
In input xml file, the key(s) should appear as key for substitution.")
[-import <xml data file>]
[-traceString <trace specification> [-traceFile <filename>]]}"

this indicates that the release 4.0 migration tool was run.

To correct this problem, run the WASPostUpgrade command from the bin
directory of the WebSphere Application Server version 5 installation root.

″MIGR0116E: The backup directory [migration_backup_directory]
does not contain the required xml data file.″ error returned from
the WASPostUpgrade tool.
Possible reasons for this error:

Chapter 4. Diagnosing and fixing problems 135

v If release 4.0.x of WebSphere Application Server is installed, you might not have
run the WASPostUpgrade tool from the bin directory of the version 5.0
installation root.
– If “IBM WebSphere Application Server, Release 4.0” is displayed when

launching the WASPostUpgrade program, then the wrong version of the
program is being executed.

– To resolve this problem, run the WASPostUpgrade command from the bin
directory of the 5.0 installation root.

Troubleshooting code deployment and installation problems
Select the problem you are having with deploying or installing developed code for
WebSphere Application Server:
v Errors deploying enterprise beans
v Errors or problems deploying, installing, or promoting applications and

databases

If you do not see a problem that resembles yours, or if the information provided
does not solve your problem, contact IBM support for further assistance.

Errors deploying enterprise beans
What kind of error are you seeing?
v ConnectionFac E J2CA0102E: Invalid EJB component: Cannot use an EJB module

with version 1.1 using The Relational Resource Adapter
v WSVR0040E: addEjbModule failed for MyApp-EJB.jar [class

com.ibm.ws.runtime.component.DeployedModuleImpl]
java.lang.NoClassDefFoundError: com/ibm/ejs/ras/Tr

If none of these errors match the ones you are seeing:
v Browse the application server log files for the server containing the application

for clues.
v Look up any error or warning messages in the message table.
v If the application server is part of a Network Deployment (multiple-server)

configuration, ensure that you have followed the steps for adding the
application server to the configuration.

v If the problems began after WebSphere Application Server security was enabled,
view the topic Errors and access problems after enabling security in this
InfoCenter.

If you do not see a problem that resembles yours, or if the information provided
does not solve your problem, contact IBM support for further assistance.

WSVR0040E: addEjbModule failed for MyApp-EJB.jar [class
com.ibm.ws.runtime.component.DeployedModuleImpl]
java.lang.NoClassDefFoundError: com/ibm/ejs/ras/Tr: Possible causes of this
error include:
v Security permissions are not given for the application in the

<installation_root>\properties\server.policy file.
To confirm that this is the problem, check the server.policy file to see if the
security permissions are given for application.
To correct the problem, give permissions for application in the
server.policy file. For example:

136 IBM WebSphere Application Server Network Deployment, Version 5: Monitoring and Troublshooting

//purchaseOrder permission
grant codeBase "file:${was.install.root}/installedApps/myApp.ear/-"{
permission java.security.AllPermission;
};

where myApp.ear is the application name.

For details on how to use the policy tool to configure the server.policy file, see
Configuring server.policy files.

v A was.policy file does not exist in the application/META-INF
directory, while deploying the application on to the server.
To confirm that this is the problem, if was.policy exists in application\META-INF
directory, then check for syntax errors and make sure the application ear name
is given correctly.
To correct this problem, create a was.policy file in the EAR of the application
containing the problem enterprise bean, under the [application]/META-INF
directory with the following contents:
// WebSphere Application Server Security Policy for the application you are running
grant codeBase "file:myApp.ear" {
permission java.security.AllPermission;
};

where myApp.ear is the application name.

For details on how to use the policy tool to configure the was.policy file, see
Configuring was.policy files.

Errors or problems deploying, installing, or promoting
applications
What kind of problem are you having?
v I installed my application using wsadmin, but it does not show up under

Applications-Manage Applications.
v I get a “java.lang.RuntimeException: Failed_saving_bytes_to_wor_ERROR_” in

the Application Assembly Tool (AAT), administrative console or wsadmin
v I get a WASX7015E error running wsadmin command “$AdminApp

installInteractive” or “$AdminApp install”..
v A DDL generated by Application Assembly tool throws an SQL error on target

platform.
v “ADMA0004E: Validation error in task Specifying the Default Datasource for EJB

1.x Modules” returned when installing application in administrative console or
wsadmin.

v “No valid target is specified in ObjectName<object> for module <module>”
from installation.

v addNode -includeapps option does not appear to upload all applications to the
Deployment Manager.

v “Timeout!!!” error displays when attempting to install an enterprise application
in the administrative console.

If none of these steps fixes your problem,
v Ensure that the logical name (the name you have identified to appear on the

console) for your application, enterprise bean module or other resource does not
contain invalid characters such as these: - / \ : * ? ″ < > |.

Chapter 4. Diagnosing and fixing problems 137

v If the application was installed using the wsadmin $AdminApp install command
with the -local flag, either restart the server or rerun the command without the
-local flag.

If you do not see a problem that resembles yours, or if the information provided
does not solve your problem, check to see if the problem is identified and
documented by looking at available online support including hints and tips,
technotes, and fixes. If the problem has not been identified, contact IBM support
for further assistance.

You may have installed the application but have not saved the configuration
afterwards. This can be confirmed by:
v Verifying that the application has its subdirectory under

<install_dir>/installedApps.
v Running the $AdminApp list command and verifying that the application is not

among those displayed.
– In the bin directory, run wsadmin.bat or wsadmin.sh.
– From the wsadmin prompt, enter $AdminApp list and verify that the problem

application is not among those displayed.

To resolve, reinstall your application via wsadmin, then run the command
$AdminConfigsave in wsadmin before exiting wsadmin.

″java.lang.RuntimeException: Failed_saving_bytes_to_wor_ERROR_″ in AAT,
admin console or wsadmin: If you see this error when attempting to generate
deployed code in the AAT, installing an application or module in the
administrative console, or using the wsadmin tool to install an application or
module, the system’s temporary file path length may have been exceeded. This is
typically an issue only on Windows platforms.

To verify that this is the problem, check your system’s TEMP and TMP environment
variables. If they are long, they are adding path length to the file names accessed
by the EJBDeploy tool.

To resolve the problem:
1. Stop all WebSphere Application Server processes and close all DOS prompts.
2. Set the TMP and TEMP environment variables to something short, for example

C:\TMP and C:\TEMP.
3. Re-install the application.

If this still doesn’t work, try rebooting and re-deploy or reinstall the application.

WASX7015E error running wsadmin command ″$AdminApp installInteractive″
or ″$AdminApp install″: This problem has two possible causes:
1. If the full text of the error is similar to:

WASX7015E: Exception running command: "$AdminApp installInteractive
C:/Documents and Settings/myUserName/Desktop/MyApp/myapp.ear"; exception information:
com.ibm.bsf.BSFException: error while eval’ing Jacl expression: can’t find method
"installInteractive" with 3 argument(s) for class "com.ibm.ws.scripting.AdminAppClient"

then the file and path name have been incorrectly specified. In this case, since
the path included spaces, it was interpreted as multiple parameters by the
wsadmin program.

138 IBM WebSphere Application Server Network Deployment, Version 5: Monitoring and Troublshooting

To resolve this problem, enter the path of the .ear file correctly. In this case, by
enclosing it in double quotes: $AdminApp installInteractive ″C:\Documents
and Settings\myUserName\Desktop\MyApps\myapp.ear″.

2. If the full text of the error is similar to:
WASX7015E: Exception running command: "$AdminApp installInteractive c:\MyApps\myapp.ear ";
exception information: com.ibm.ws.scripting.ScriptingException: WASX7115E:
Cannot read input file "c:\WebSphere\AppServer\bin\MyAppsmyapp.ear"

then the application path is incorrectly specified. In this case, you must use
UNIX-style “forward-slash″ (/) separators in the path.

DDL generated by Application Assembly tool throws SQL error on target
platform: If you receive SQL errors in attempting to execute Data Definition
Language statements generated by the Application Assembly Tool on a different
platform, for example if you are deploying a CMP enterprise bean designed on
Windows onto a Unix server, here are some things to try:
v Browse the DDL statements for dependencies on specific user IDs and

passwords, and correct as necessary.
v Browse the DDL statements for dependencies on specific server names, and

correct as necessary.
v Refer to the vendor’s message reference for causes and suggested actions

regarding specific SQL errors. For IBM DB2, these may be viewed online at
http://www.ibm.com/cgi-
bin/db2www/data/db2/udb/winos2unix/support/index.d2w/report .

v If you receive an error similar to
SQL0104N An unexpected token "CREATE TABLE AGENT (COMM DOUBLE, PERCENT DOUBLE, P"
was found following " ". Expected tokens may include: " ". SQLSTATE=42601

After executing a DDL file created on Windows on a UNIX platform, the
problem may be due to a difference in file formats. To resolve this problem:
– For UNIX platforms other than Linux, edit the DDL in the vi editor, removing

the Ctl-M character at the beginning of each line.
– For Linux, regenerate the deployment code for the application EAR on a Linux

platform.

″ADMA0004E: Validation error in task Specifying the Default Datasource for
EJB 1.x Modules″ returned when installing application in admin console or
wsadmin: If you see an error like the following when trying to install an
application through the administrative console or the wsadmin command prompt:
AppDeploymentException: [ADMA0014E: Validation failed.
ADMA0004E: Validation error in task Specifying the Default Datasource for EJB 1.x Modules
JNDI name is not specified for module beannameBean Jar with URI
filename.jar,META-INF/ejb-jar.xml.
You have not specified the data source for each CMP bean belonging to this module.
Either specify the data source for each CMP beans or specify the default data source
for the entire module.]

one possible cause is that in WebSphere Application Server Version 4.0, it was
mandatory to have a data source defined for each CMP bean in each JAR. In
Version 5, you can specify either a data source for a CMP bean or a default data
source for all CMP beans in the JAR. Thus during installation interaction (such as
the installation wizard in the Administrative console), the data source fields are
optional but the validation performed at the end of the install checks to see at least
one of the above is specified.

Chapter 4. Diagnosing and fixing problems 139

http://www.ibm.com/cgi-bin/db2www/data/db2/udb/winos2unix/support/index.d2w/report
http://www.ibm.com/cgi-bin/db2www/data/db2/udb/winos2unix/support/index.d2w/report

To correct this problem, step through the installation again, and specify either a
default datasource or a datasource for each CMP-type enterprise bean. If you are
using the wsadmin tool, either:
v use the $AdminApp installInteractive <filename>

command in order to be prompted for datasources during the installation, or to
provide them in a response file.

v specify datasources as an option to the $AdminApp install
command. For details on the syntax, see Installing applications with wsadmin.

″No valid target is specified in ObjectName <ObjectName>for module
<module>″ from install: This error can happen in a clustered environment if the
target cell, node, server or cluster into which the application is to be installed is
incorrectly specified. For example, it can occur if the target is misspelled.

To correct this problem, check the target names against the actual WebSphere
Application Server topology and reenter them with corrections.

addNode -includeapps option does not appear to upload all applications to the
Deployment Manager: This error can occur when some or all applications on the
target node have already been uploaded to the deployment manager. The addNode
program detects which applications are already installed and does not upload
them again.

To confirm that this is the cause of the problem, use the administrative console to
browse the Deployment Manager configuration and see what applications are
already installed.

″Timeout!!!″ error displays when attempting to install an enterprise application
in the administrative console: This error can happen if you attempt to install an
enterprise application that has not been deployed.

To correct this problem:
v Open the ear file <file_name>.ear in AAT and then select File ->Generate code

for deployment.... This will create a file with a name like
Deployed_<file_name>.ear.

v In the administrative console, install the deployed ear file.

Troubleshooting testing and first time run problems
Select the problem you are having with testing or the first run of deployed code
for WebSphere Application Server:
v The application server will not start, or starts with errors.
v The application will not start, or starts with errors.
v A Web resource, such as a JSP, servlet, HTML file, or image, does not display.
v Cannot access a datasource.
v Cannot access an enterprise bean from a servlet, JSP file, standalone program,

or other client.
v Cannot access an object hosted by WebSphere Application Server, such as an

enterprise bean or connection pool, from a servlet, JSP file, standalone program,
or other client.

v I have errors and access problems after enabling security.
v I have errors after enabling Secure Socket Layer (SSL), or SSL-related error

messages.

140 IBM WebSphere Application Server Network Deployment, Version 5: Monitoring and Troublshooting

v I have problems with messaging.
v I get errors when trying to send a SOAP request.
v A A WebSphere Application Server Client program does not work.

If you do not see a problem that resembles yours, or if the information provided
does not solve your problem, contact IBM support for further assistance.

The application server or Deployment Manager does not start or
starts with errors
If the WebSphere Application Server installation program completes successfully,
but the application server does not start, or starts with errors:
v Browse the application server log files, which are located by default in

install_dir\logs\server_name\SystemErr.log and SystemOut.log for clues.
v If there are several applications deployed on an application server or node, it

may take some time to start. Browse the SystemOut.log periodically and look at
the most recent updates to see if the server is still starting up. On Unix
platforms, the tail -f installation_path/logs/SystemOut.log is a convenient way
to watch the progress of the server.

v Look for any errors or warnings relating to specific resources with the module,
such as Web modules, enterprise beans and messaging resources. If you find
any, examine the application server configuration file for that resource’s
configuration settings. For example, in a base (non-distributed) configuration on
Windows systems, browse
install_dir\config\cells\BaseApplicationServerCell\nodes\host_name\servers\
server_name\server.xml, and examine the xml tags for that resource’s
properties. Change its initialState value from “START” to “STOP”. Then restart
the server as a test to see if the problem is due to this component.

v Look up any error or warning messages in the message reference table by
selecting the Quick Reference view and expanding the “Messages” heading.

v If the application server is part of a Network Deployment (multiple server)
configuration,
– Ensure that you have followed the steps for adding the application server to

the configuration.
– Ensure that the configuration is synchronized between the deployment

manager and the node. If auto synchronization is running, wait until the
synchronization has had a chance to complete. If you are using manual
synchronization, request a synchronization to each node in the cluster.

– Before starting an application server:
1. Start the Deployment Manager process:

installation_root/bin/startManager.sh or
installation_root\bin\startManager.bat.

2. Complete the one-time step of “federating” the node the application
server is running on to the Deployment Manager. This has to be done
even if there is only one node, and it is the same physical server as the
one on which the DeploymentManager is running. This is done by
running the addnode nodename utility in the installation_root/bin directory
of the application server’s host.

3. Start the Node Manager process on the nodes hosting the application
servers you want to run: installation_root/bin/startNode.sh or
installation_root\bin\startNode.bat.

v Ensure that the logical name that you have specified to appear on the console
for your application server does not contain invalid characters such as: - / \ : * ?
″ < >.

Chapter 4. Diagnosing and fixing problems 141

v If you are unable to start the DeploymentManager after an otherwise successful
installation:
– Look in the file installation_root/dmgr/logs/SystemErr.log and SystemOut.log

for messages.
– Where was the product installed? This product is not standalone, and

depends upon some files which are already installed as part of the base. The
Network Deployment product should be installed under the WebSphere
Application Server root directory of one of the nodes with the base product,
at the same level as the base product. For example, if the base product is in
/usr/WebSphere/AppServer, the Network Deployment should be installed
into a directory like /usr/WebSphere/NetworkDeployment. Installing the
product apart from the base product may result in a error running the
startManager command similar to: WSVR0102E: An error occurred stopping,
null [class com.ibm.ws.cache.ServerCache].

v If you are using Cloudscape and receive an “ERROR XSDB6: Another instance of
Cloudscape may have already booted the database databaseName.” error
starting appplication server, consult this topic for more information.

If you do not see a problem that resembles yours, or if the information provided
does not solve your problem, contact IBM support for further assistance.

The application does not start or starts with errors
What kind of error do you see when you start an application?
v java.lang.ClassNotFoundException:

<classname>Bean_AdderServiceHome_04f0e027Bean
v ConnectionFac E J2CA0102E: Invalid EJB component: Cannot use an EJB module

with version 1.1 using The Relational Resource Adapter
v NMSV0605E: “A Reference object looked up from the context...” error when

starting an application.
v other Name Server (“NMSV...”) errors.

If none of these erros match the one you see:
v Browse the log files of the application server for this application for clues. By

default, these files are: <install_dir>/logs/<server_name>/SystemErr.log and
SystemOut.log.

v Look up any error or warning messages in the message reference table by
selecting the Quick Reference view and expanding the “Messages” heading.

If you do not see a problem that resembles yours, or if the information provided
does not solve your problem, contact IBM support for further assistance.

java.lang.ClassNotFoundException:
<classname>Bean_AdderServiceHome_04f0e027Bean: An exception similar to
this happens is you try to start an undeployed application containing enterprise
beans, or containing undeployed enterprise bean modules.

enterprise bean modules created in tools like Eclipse or the Application Assembly
Tool (AAT) intentionally have incomplete configuration information. Deploying
these modules completes the configuration by reading the module’s deployment
descriptor and completing platform- or installation-dependent settings and adding
related classes to the enterprise bean jar file.

To avoid this problem, use one of the following steps:

142 IBM WebSphere Application Server Network Deployment, Version 5: Monitoring and Troublshooting

v Open the undeployed .ear file containing the enterprise bean, or the standalone
undeployed .EJB .jar file, in the AAT and run the File -> Generate code for
deployment option. Then uninstall the application or EJB module in the
administrative console and install the deployed version created by the AAT, or

v If you are using the wsadmin $AdminApp install command, uninstall it and
then reinstall using the -EJBDeploy option. Be sure to follow the install
command with the $AdminConfig save command.

ConnectionFac E J2CA0102E: Invalid EJB component: Cannot use an EJB module
with version 1.1 using The Relational Resource Adapter: This error occurs when
an enterprise bean developed to the EJB 1.1 specification is deployed with a
WebSphere Application Server V5 J2C-compliant data source, which is the default
data source. By default, persistent enterprise beans created under WebSphere
Application Server V4.0’s Application Assembly tool fulfill the EJB 1.1 specification.
In order to run on WebSphere Application Server V5, they must be associated with
a WebSphere Application Server V4.0-type data source.

To resolve this problem, you must either modify the application’s mapping of
enterprise beans to associate 1.x Container Managed Persistence (CMP) beans to
associate them with a V4.0 data source or delete the existing data source and create
a V4.0 data source with the same name.

To modify the application’s mapping of enterprise beans, in the WebSphere
Application Server administrative console, select the properties for the problem
application and use map resource references to resources or Map data sources for
all 1.x CMP beans to switch the data source the enterprise bean uses, then save
the configuration and restart the application.

To delete the existing data source and create a V4.0 data source with the same
name:
v In the Administrative Console, select Resources->Manage JDBC

Providers->JDBC_provider_name->Data sources.
v Delete the data source associated with the EJB 1.1 module.
v Select Resources->Manage JDBC Providers->JDBC_provider_name->Data sources

(Version 4).
v Create the data source for the EJB 1.1 module.
v Save the configuration and restart the application.

NMSV0605E: ″A Reference object looked up from the context...″ error when
starting an application: If the full text of the error is similar to:
[7/17/02 15:20:52:093 CDT] 5ae5a5e2 UrlContextHel W NMSV0605E: A Reference object
looked up from the context

"java:" with the name "comp/PM/WebSphereCMPConnectionFactory" was sent to the
JNDI Naming Manager
and an exception resulted. Reference data follows:
Reference Factory Class Name: com.ibm.ws.naming.util.IndirectJndiLookupObjectFactory
Reference Factory Class Location URLs:
Reference Class Name: java.lang.Object
Type: JndiLookupInfo
Content: JndiLookupInfo: ; jndiName="eis/jdbc/MyDatasource_CMP"; providerURL="";
initialContextFactory=""

then the problem might be that the data source intended to support a CMP
enterprise bean has not been correctly associated with the enterprise bean.

To resolve this problem:

Chapter 4. Diagnosing and fixing problems 143

v Select the Use this Data Source in container managed persistence (CMP)
checkbox in the data source’s “General Properties” panel of the administrative
console.

v Ensure that the JNDI Name given in Administrative Console under Resources ->
Manage JDBC Provider -> DataSource -> JNDI Name for DataSource matches
the JNDI Name given for CMP or BMP Resource Bindings at the time of
Assembling the application in AAT, or

v Check the JNDI Name for CMP or BMP Resource Bindings specified in the code
by J2EE Application Developer. One way to do this is to open the deployed .ear
folder in the AAT, and look for the JNDI Name for your Entity Beans under
CMP or BMP Resource Bindings.

Web resource (JSP file, servlet, HTML file, image) does not
display
What kind of error do you see when you start an application?
v Graphics do not appear on jsp or servlet output.
v SRVE0026E: [Servlet Error]-[Unable to compile class for JSP error on JSP.
v After modifying and saving a JSP, the change does not show up in the browser

(the old JSP displays).
v Message similar to “Message: /jspname.jsp(9,0) Include: Mandatory attribute

page missing”; displays when trying to access JSP.
v The Java source generated from a JSP is not retained in the temp directory (only

the classfile is found).
v The JSP Batch Compiler fails with the message “Enterprise Application

[application name you typed in] not found.”
v Non-English browser input is garbled.
v Scroll bars do not appear around items in the browser window.

Otherwise, if you are not able to display a resource in your browser follow these
steps:
v Verify that your HTTP server is healthy by accessing the URL

http://<server_name> from a browser and seeing whether the “Welcome page”
appears. This indicates whether the HTTP server is up and running, regardless
of the state of WebSphere Application Server.

v If the HTTP server’s “Welcome page” does not appear, that is, you get a browser
message such as “page cannot be displayed” or similar, try to diagnose your
Web server problem.

v If the HTTP server appears to be functioning, the problem is:
– The application server may not be serving the target resource. To see if this is

the case, try accessing the resource directly through the application server
instead of through the HTTP server.

– If you cannot access the resource directly through the application server:
- Verify that the URL used to access the resource is correct.
- If the URL is incorrect and it is created as a link from another JSP file,

servlet, or HTML file:
v After clicking the link, try correcting it by hand in the browser’s URL

field and reloading, to confirm that the problem is a malformed URL. If
this is the problem, correct the URL in the “from” HTML file, servlet or
jsp file.

144 IBM WebSphere Application Server Network Deployment, Version 5: Monitoring and Troublshooting

- If the URL appears to be correct, but the resource cannot be accessed
directly through the application server, verify the health of the hosting
application server and Web module:
v View the hosting application server and Web module in the

administrative console to verify they are up and running.
v Copy a simple HTML or JSP file (such as SimpleJsp.jsp), included in the

WebSphere Application Server directory structure) to your Web module’s
document root, and try to access it. If this works, then the problem is
with your resource. View the JVM log of your application server to find
out why your resource cannot be found or served

v If the resource can be accessed directly through the application server, but not
through an otherwise healthy HTTP server, the problem lies with the HTTP
plugin — the component that communicates between the HTTP server and the
WebSphere Application Server.

v If JSP and servlet output is served, but not static resources such as .html and
image files, see the steps for enabling file serving.

v If some kinds of resources display correctly, but you cannot display a servlet by
its class name:
– Ensure that the servlet is in a directory in the Web module’s classpath, such

as in the /<Web_module_name>.war/WEB-INF/classes directory.
– Ensure that you specify the full class name of the servlet, including its

package name, in the URL.
– Ensure that ″/servlet″ precedes the class name in the URL. For example,

example: if the root context of a Web module is ″myapp″, and the servlet is
com.mycom.welcomeServlet, then the URL should read:
http://<hostname>/myapp/servlet/com.mycom.welcomeServlet

– Ensure that serving servlets by classname is enabled for the hosting Web
module by opening the source Web module in the Application Assembly Tool
and browse the “serve servlets by classname” setting in the IBM Extensions
property page. If necessary, enable this flag and redeploy the Web module.

– For servlets or other resources served by mapped URLs, the URL is
http://<hostname>/<web module context root>/<mappedURL>.

If none of these steps fixes your problem, check to see if the problem has been
identified and documented by looking at the available online support (hints and
tips, technotes, and fixes). If you don’t find your problem listed there contact IBM
support.

Diagnosing Web server problems: If you are unable to view the welcome page of
your HTTP server, first determine if the server is operating properly.

On Windows systems, look in the Services panel for the service corresponding to
your HTTP server, and verify that the state is “Started”. If not, start it. If the
service does not start, try starting it manually from the command prompt. If you
are using IBM HTTP Server, the command is <IHS_install_dir>\apache .

On Unix systems, execute the command ps -ef | grep httpd. There should be
several processes running with a name of ″httpd″. If not, start your HTTP server
manually. If you are using IBM HTTP Server, the command is
<IHS_install_dir>/bin/apachectl start.

If the HTTP server will not start:
v Examine the HTTP server’s error log for clues.

Chapter 4. Diagnosing and fixing problems 145

v Try restoring the HTTP server to its configuration prior to installing WebSphere
Application Server and restarting it. If you are using IBM HTTP Server:
– rename the file <IHS_install_dir>\httpd.conf.
– copy the file httpd.conf.default to httpd.conf.
– If Apache is running, stop and restart it.

v For iPlanet, the configuration file to restore is obj.conf. For IIS, try removing the
WebSphere Application Server plugin through the IIS administrative GUI.

v If restoring the HTTP server’s default configuration works, then manually
review the configuration file that has WebSphere Application Server updates to
verify the directory and file names for WebSphere Application Server files. If
you cannot manually correct the configuration, you may need to uninstall and
reinstall WebSphere Application Server in order to create a clean HTTP
configuration file.
If restoring the default configuration file these steps do not help, contact
technical support for the Web server you using. If you are using IBM
HTTPServer with a WebSphere Application Server purchase, support is included
- first check available online support (hints and tips, technotes, and fixes). If you
don’t find your problem listed there contact IBM support.

Accessing a web resource through the application server (bypassing the HTTP
server): Starting with WebSphere Application Server version 4.0, the built-in
application server contained in each application server allows you to access Web
pages directly, bypassing the HTTP server. It is not recommended to serve a
production Web site in this way, but it provides a good diagnostic tool when it is
not clear whether a problem resides in the HTTP server, WebSphere Application
Server, or the HTTP plugin.

To access a a Web resource through the application server:
v Find out the port of the HTTP service in the target application server.

– In the WebSphere Administrative Console, select Servers->Manage
Application Servers.

– Select the target server, then under Additional Properties select Web
Container.

– Under the Additional Properties of the Web Container, select HTTP
Transports. You will see the ports listed for virtual hosts served by the
application server.

– There may be more than one port listed. In the default application server
(server1), for example, 9090 is the port reserved for administrative requests,
and 9443 and 9043 are used for SSL-encrypted requests. To simply test the
sample ″snoop″ servlet, for example, you would use the default application
port 9080, unless it has been changed.

v Using the port number of the Application server’s HTTP server, access the
resource from a browser. For example, if the port is 9080, the URL would be
http://<hostname>:9080\myAppContext\myJSP.jsp.

v If you are still unable to access the resource, ensure that the server’s HTTP
transport port is in the “Host Alias” list:
1. Select Application Servers>Your_ApplicationServer>Web Container>HTTP

Transports to check the Default virtual host and the HTTP transport ports
used by this application server.

146 IBM WebSphere Application Server Network Deployment, Version 5: Monitoring and Troublshooting

2. Select Environment>Manage Virtual Hosts>default host>Host Aliases to
check if the HTTP transport port is added. Add an entry if necessary. For
example, if the HTTP port for your application is server is 9080, add a host
alias of *:9082.

HTTP server and Application Server are working separately, but requests are not
passing from HTTP server to Application Server: If your HTTP server appears
to be functioning correctly, and the Application Server also works on its own, but
browser requests sent to the HTTP server for pages are not being served, this
indicates a problem in the WebSphere Application Server plugin.

If this is the case:
v Determine whether the HTTP server is attempting to serve the requested

resource itself, rather than forwarding it to the WebSphere Application Server.
– Browse the HTTP server’s access log (<IHS install root>\logs\access.log

for IBM HTTP Server). It may indicate that it could not find the file in its own
document root directory.

– browse the plugin log file as described below.
v The file <install_dir>/config/plugin-cfg.xml determines which requests sent

to the HTTP server are forwarded to the WebSphere Application Server, and to
which application server. You may need to refresh this file:
– In the WebSphere Application Server administrative console, expand the

Environment tree control.
– Select Update WebSphere Plugin.
– Stop and restart the HTTP server and retry the Web request.

v Browse the file <install_dir>/logs/http_plugin.log for clues to the problem.
Make sure the timestamps with the most recent Plugin Information stanza,
which is printed out when the plugin is loaded, correspond to the time the
Webserver was started.

v Turn on plugin tracing by setting the LogLevel attribute in the
<install_dir>/config/plugin-cfg.xml file to Trace and reloading the request,
then browsing the <install_dir>/logs/http_plugin.log file. You should be able
to see the plugin attempting to match the request URI with the various URI
definitions for the routes in the plugin-cfg.xml. You should be able to see what
rules the plugin is not matching against and then figure out if you need to add
additional ones. If you just recently installed the application you may need to
manually regenerate the plugin configuration in order to pick up the new URIs
related to the new application.

v For further details on troubleshooting plugin-related problems, see the topic
Troubleshooting the HTTP plugin component.

File serving problems (html, images, etc): If text output appears on your JSP- or
servlet-supported Web page, but image files do not:
v Ensure that your files are in the right place: the document root directory of your

Web application WebSphere Application Server follows the J2EE standard, which
means that the document root is the <Web_module_name>.war directory of your
deployed Web application. Typically this directory will be found in the
<installation_root>/installedApps/<nodename>/<appname>.ear or
<installation_root>/installedApps/<nodename>/<appname>Network.ear
directory.
If the files are in a subdirectory of the document root, verify that the reference to
the file reflects that. That is, if invoices.html is stored in Windows directory

Chapter 4. Diagnosing and fixing problems 147

<Web_module_name>.war\invoices, then links from other pages in the Web
application to display it should read ″invoices\invoices.html″, not
″invoices.html″.

v Ensure that your Web application is configured to enable file serving (i.e.,
display of static resources like image and .html files):
– View the file serving property of the hosting Web module by browsing the

source .war file in the Application Assembly Tool (AAT). If necessary, update
the property and re-deploy the module.

– Edit the fileServingEnabled property in the deployed Web
application’s ibm-web-ext.xmi configuration file, typically found in the
<install_root>/config/cells/<nodename> or
<nodename>Network/applications/<application
name>/deployments/<application name>/<Webmodule name>/web-inf directory.

Graphics do not appear on jsp or servlet output: If text output appears on your
JSP- or -servlet-supported Web page, but image files do not:
v Ensure that your graphic files are in the right place: the document root directory

of your Web application WebSphere Application Server 5 follows the J2EE
standard, which means that the document root is the <Web_module_name>.war
directory of your deployed Web application. Typically this directory will be
found in the <installation_root>/installedApps/<nodename>/<appname>.ear or
<installation_root>/installedApps/<nodename>/<appname>Network.ear
directory.
If the graphics files are in a subdirectory of the document root, verify that the
reference to the graphic reflects that; e.g., if banner.gif is stored in Windows
directory <Web_module_name>.war/images, the tag to display it should read:
, not .

v Ensure that your Web application is configured to enable file serving (i.e.,
display of static resources like image and .html files).
– View the file serving property of the hosting Web module by browsing the

source .war file in the AAT. If necessary, update the property and re-deploy
the module. Or

– Edit the fileServingEnabled property in the deployed Web
application’s ibm-web-ext.xmi configuration file, typically found in the
<install_root>/config/cells/<nodename> or
<nodename>Network/applications/<application
name>/deployments/<application name>/<Webmodule name>/web-inf directory.

– After following one of the above steps:
- In the administrative console, expand the “Environment” tree control .
- Click the link “Update WebSphere Plugin” .
- Stop and restart the HTTP server and retry the Web request.

SRVE0026E: [Servlet Error]-[Unable to compile class for JSP: If this error appears
in a browser when trying to access a new or modified .jsp file for the first time, the
most likely cause is that the JSP Java source failed (was incorrect) during the javac
compilation phase.

To confirm that this is the problem, check the SystemErr.log for a compiler error
message, such as:
C:\WASROOT\temp\ ... test.war_myJsp.java:14: Duplicate variable declaration:
int myInt was int myInt

int myInt = 122; String myString = "number is 122"; static int myStaticInt=22;
int myInt=121;

^

148 IBM WebSphere Application Server Network Deployment, Version 5: Monitoring and Troublshooting

If this is the problem, fix the problem in the JSP source, save the source and
re-request the JSP.

If this error occurs when trying to serve a JSP that was copied from another system
where it ran successfully, then there is something different about the new server’s
environment that prevents the JSP from running.

Browse the text of the error for a statement like:
Undefined variable or class name: MyClass

This error indicates that a supporting class or jar file has not been copied to the
target server, or is not on the classpath. To resolve, find the file MyClass.class, and
place it on the Web module’s WEB-INF/classes directory, or place its containing
.jar file in the Web module’s WEB-INF/lib directory.

Verify that the URL used to access the resource is correct:

v For a JSP file, html file, or image file:
http://<host_name>/<Web_module_context_root>/<subdir under doc
root, if any>/<filename.ext> . The document root for a web
application is the <application_name>.WAR directory of the installed application.
– For example, to access myJsp.jsp, located in

c:\WebSphere\ApplicationServer\installedApps\myEntApp.ear\
myWebApp.war\invoices

on myhost.mydomain.com, and assuming the context root for the myWebApp
Web module is ″myApp″, the URL would be
http://myhost.mydomain.com/myApp/invoices/myJsp.jsp.

– JSP serving is enabled by default. File serving for html and image files must
be enabled as a property of the Web module, in the Application Assembly
Tool, or by setting the fileServingEnabled property to
″true″ in the ibm-web-ext.xmifile of the installed Web application and
restarting the application.

v For servlets served by class name, the URL is
http://<hostname>/<Web_module_context_root>/servlet/<packageName.className>.
– For example, to access myCom.myServlet.class, located in

c:\WebSphere\ApplicationServer\installedApps\myEntApp.ear\
myWebApp.war\WEB-INF\classes

and assuming the context root for the myWebApp module is “myApp″, the
URL would be
http://myhost.mydomain.com/myApp/servlet/myCom.MyServlet.

v Serving servlets by classname must be enabled as a property of the Web module,
and is enabled by default. File serving for html and image files must be enabled
as a property of the Web application, in the Application Assembly Tool, or by
setting the fileServingEnabled property to ″true″ in the
ibm-web-ext.xmi file of the installed Web application and
restarting the application.

Correct the URL in the ″from″ html file, servlet or jsp: An HREF with no
leading ″/″ inherits the calling resource’s context. For example:
v an HREF in http://[hostname]/myapp/servlet/MyServlet to ″ServletB″ resolves

to ″http://hostname/myapp/servlet/ServletB″

Chapter 4. Diagnosing and fixing problems 149

v an HREF in http://[hostname]/myapp/servlet/MyServlet to ″servlet/ServletB″
resolves to ″http://hostname/myapp/servlet/servlet/ServletB″ (an error)

v an HREF in http://[hostname]/myapp/servlet/MyServlet to ″/ServletB″
resolves to ″http://hostname/ServletB″ (an error, if ServletB requires the same
context root as MyServlet)

After modifying and saving a JSP, the change does not show up in the browser
(the old JSP displays): The most likely cause of this error is that the Web
application is not configured for servlet reloading, or the reload interval is too
high.

To correct this problem, in the Application Assembly Tool, check the Reloading
Enabled flag and the Reload Interval value in the IBM Extensions for the the Web
module in question. Turn Reloading on, or if it is already on then set the Reload
Interval lower.

Message like ″Message: /jspname.jsp(9,0) Include: Mandatory attribute page
missing″ appears when attempting to browse JSP: The most likely cause of this
error is that the JSP file failed during the translation to Java phase. Specifically, a
JSPdirective, in this case an Include statement, was incorrect or referred to a file
that could not be found.

To correct this problem, fix the problem in the JSP source, save the source and
re-request the JSP.

The Java source generated from a JSP is not retained in the temp directory (only
the classfile is found): The most likely cause of this error is that the JSP Processor
is not configured to keep generated Java source.

To correct this problem, in the Application Assembly Tool, check the JSP
Attributes under Assembly Property Extensions for the Web module in question.
Make sure the attribute keepgenerated is there and is set to true. If not, set this
attribute and restart the Web application. To see the results of this operation, you
will have to delete the classfile from the temp directory in order to force the JSP
Processor to retranslate the JSP source into Java.

The most likely cause of this error is that the full Enterprise Application path and
name, starting with the .ear subdirectory that resides in the
<install_root>\config\cells\<node_name>Network\applications directory is
expected as an argument to the JspBatchCompiler tool, not just the display name.
For example:
v ″JspBatchCompiler -enterpriseapp.name

sampleApp.ear/deployments/sampleApp″ is correct, as opposed to
v ″JspBatchCompiler -enterpriseapp.name sampleApp″, which is incorrect.

Non-English browser input is garbled: If non-English-character-set browser input
is apparently garbled after being read by a servlet or JSP, ensure that the request
parameters are encoded according to the expected chararacter set before being
read. For example, if the site is Chinese, the target .jsp should have a line:
req.setCharacterEncoding("gb2312");

before any req.getParameter() calls.

150 IBM WebSphere Application Server Network Deployment, Version 5: Monitoring and Troublshooting

Note: This problem especially affects servlets and jsps ported from earlier versions
of WebSphere Application Server, which converted characters automatically based
upon the locale of the WebSphere Application Server.

Scroll bars do not appear around items in the browser window: In some
browsers, tree or list type items that extend beyond their allotted windows do not
have scroll bars to allow you to see the entire list.

To correct this problem, right click on the browser window and select Reload from
the pop-up menu.

Cannot access a data source
What kind of database are you trying to access?
v Oracle
v DB2
v SQLServer
v Cloudscape
v Sybase
v my problem wasn’t described under the topic for my database, or may not be

DBM specific.

If none of these errors match the one you see:
v Browse the application’s containing application server’s log files for clues. By

default these files are <install_dir/server_name>/SystemErr.log and
SystemOut.log.

v Mysterious errors or behavior may be the result of a missing or misnamed
Helper Class name. If WebSphere Application Server is not able to load the
specified class, it uses a default helper class which may not function correctly
with your database manager. Browse the data source’s Helper Class property
and verify that is correct and is on WebSphere Application Server’s classpath.

v Verify that the Java Naming and Directory Interface (JNDI) name of the data
source matches the name used by the client attempting to access it. If error
messages indicate that the problem may be naming-related, that is they refer to
the “name server”, “naming service” or include error IDs beginning “NMSV”,
look at the topics for naming related problems and troubleshooting the Naming
Service component.

v Enable tracing for the resource adapter using the trace specification
RRA=all=enabled. Follow the instructions for dumping and browsing the trace
output to narrow the origin of the problem.

If none of these steps fixes your problem, check to see if the problem has been
identified and documented by looking at the available online support (hints and
tips, technotes, and fixes). If you don’t find your problem listed there, contact IBM
support.

What kind of error do you see when you try to access your Oracle-based
datasource?:

v Invalid Oracle URL specified
v “DSRA0080E: An exception was received by the Data Store Adapter. See original

exception message: ORA-00600” when connecting to or using an Oracle data
source.

v “Error while trying to retrieve text for error” error when connecting to an Oracle
data source.

Chapter 4. Diagnosing and fixing problems 151

v java.lang.UnsatisfiedLinkError connecting to an Oracle data source.
v java.lang.NullPointerException or “internal error: oracle.jdbc.oci8.OCIEnv”

connecting to an Oracle data source.
v WSVR0016W: Classpath entry, ${ORACLE_JDBC_DRIVER_PATH}/classes12.zip,

in Resource, Oracle JDBC Thin Driver, located at
cells/BaseApplicationServerCell/nodes/wasrtp/resources.xml has an invalid
variable.

What kind of problem are you having accessing your DB2 database?:

v SQL0805N Package “package name” was not found.
v SQLException, with ErrorCode -99,999 and SQLState 58004, with java

“StaleConnectionException: COM.ibm.db2.jdbc.DB2Exception: [IBM][CLI Driver]
CLI0119E Unexpected system failure. SQLSTATE=58004” using WAS40-type data
source.

v DSRA0023E: The DataSource implementation class
“COM.ibm.db2.jdbc.DB2XADataSource” could not be found. when trying to
access a data source based on a DB2 database.

v SQL0805N Package “NULLID.SQLLC300” was not found. SQLSTATE=51002.
v SQL0567N “DB2ADMIN” is not a valid authorization ID. SQLSTATE=42602.
v CLI0119E System error. SQLSTATE=58004 - DSRA8100 : Unable to get a

XAconnection, or DSRA0011E: Exception: COM.ibm.db2.jdbc.DB2Exception:
[IBM][CLI Driver] CLI0119E Unexpected system failure. SQLSTATE=58004.

v COM.ibm.db2.jdbc.DB2Exception: [IBM][CLI Driver][DB2/NT] SQL0911N The
current transaction has been rolled back because of a deadlock or timeout.
Reason code “2”. SQLSTATE=40001.

v (Unix)java.sql.SQLException: java.lang.UnsatisfiedLinkError: Can’t find library
db2jdbc (libdb2jdbc.a or .so) in java.library.path.

v “COM.ibm.db2.jdbc.DB2ConnectionPoolDataSource” could not be found for data
source (data_source).

What kind of problem are you having accessing your SQLServer database?:

v ERROR CODE: 20001 and SQL STATE: HY000.
v Application fails with message stating “Cannot find stored procedure...”

What kind of problem are you having accessing your Cloudscape database?:

v Unexpected IOException wrapped in SQLException, accessing Cloudscape
database.

v “Select for update” on one row causes table to become locked, triggering a
deadlock condition.

v “ERROR XSDB6: Another instance of Cloudscape may have already booted the
database databaseName.” error starting appplication server.

Note: Cloudscape errorCodes (2000, 3000, 4000) indicate levels of severity, not
specific error conditions. In diagnosing Cloudscape problems, pay attention to the
given sqlState value.

What kind of problem are you having accessing your Sybase database?:

v SET CHAINED command not allowed within multi-statement transaction.
v “Sybase Error 7713: Stored Procedure can only be executed in unchained

transaction mode” error.
v “JZ0XS: The server does not support XA-style transactions. Please verify that the

transaction feature is enabled and licensed on this server.”

152 IBM WebSphere Application Server Network Deployment, Version 5: Monitoring and Troublshooting

v A Container Managed Persistence (CMP) enterprise bean is causing exceptions.

What kind of general data access problem do you have?:

v “ObjectNotFoundException”, “NameNotFoundException”, or other jndi-related
error when the client application attempts to use the data source.

v “IllegalConnectionUseException”
v WTRN0062E: An illegal attempt to enlist multiple one phase capable resources

has occurred.
v ConnectionWaitTimeoutException.
v com.ibm.websphere.ce.cm.StaleConnectionException: [IBM][CLI Driver]

SQL1013N The database alias name or database name “NULL” could not be
found. SQLSTATE=42705

v java.sql.SQLException: java.lang.UnsatisfiedLinkError:
v “J2CA0030E: Method enlist caught java.lang.IllegalStateException” wrapped in

error “WTRN0063E: An illegal attempt to enlist a one phase capable resource
with existing two phase capable resources has occurred” when attempting to
execute a transaction.

Invalid Oracle URL specified: This error may be caused by an incorrectly
specified URL on the target data source’s URL property.
v Examine the URL property for the data source object in the administrative

console. For the 8i OCI driver, make sure oci8 is used in URL. For the 9i OCI
driver, you can use either oci8 or oci.

v Examples of Oracle URLs:
– For the thin driver: jdbc:oracle:thin:@hostname.rchland.ibm.com:1521:IBM
– For the thick (OCI) driver: jdbc:oracle:oci8:@tnsname1

″DSRA0080E: An exception was received by the Data Store Adapter. See original
exception message: ORA-00600″ when connecting to or using an Oracle data
source ″DSRA0080E: An exception was received by the Data Store Adapter. See
original exception message: ORA-00600″ when connecting to or using an Oracle
data source ″DSRA0080E: An exception was received by the Data Store Adapter.
See original exception message: ORA-00600″ when connecting to or using an
Oracle data source: A possible reason for this exception is that a version of the
Oracle JDBC driver is being used that is older than the Oracle database that is
being connected to, or more than one version of the Oracle JDBC driver has been
configured on the WebSphere Application Server.

To confirm that this is the problem, examine the version of the JDBC driver that is
being used. This can sometimes be determined by looking at the classpath to
determine what directory the driver is in. If you can’t determine the version this
way, you can use the following program to determine the version.

Before running this program, set the classpath to the location of the JDBC driver
files.

import java.sql.*;
import oracle.jdbc.driver.*;
class JDBCVersion
{

public static void main (String args[])
throws SQLException
{

// Load the Oracle JDBC driver
DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());

Chapter 4. Diagnosing and fixing problems 153

// Get a connection to a database
Connection conn = DriverManager.getConnection

("jdbc:oracle:thin:@appaloosa:1521:app1","sys","change_on_install");
// Create Oracle DatabaseMetaData object
DatabaseMetaData meta = conn.getMetaData();
// gets driver info:
System.out.println("JDBC driver version is " + meta.getDriverVersion());

}
}

If this proves to be the problem, simply replace the JDBC driver with the correct
version, or if multiple drivers are configured, remove the incorrect one.

″Error while trying to retrieve text for error″ error when connecting to an Oracle
data source: The most likely cause of this error is that the Oracle 8i OCI driver is
being used and the ORACLE_HOME property is either not set or is set incorrectly.

To correct this error, examine the user profile that WebSphere Application Server is
running under and verify that it has the $ORACLE_HOME environment variable
set correctly.

″java.lang.UnsatisfiedLinkError:″ connecting to an Oracle data source: If your
data source throws an UnsatisfiedLinkError, and the full exception indicates that
the problem is related to an Oracle module, as in the following example for the 8i
driver:
Exception in thread "main" java.lang.UnsatisfiedLinkError:

/usr/WebSphere/AppServer/java/jre/bin/libocijdbc8.so: load ENOENT on shared library(s)
/usr/WebSphere/AppServer/java/jre/bin/libocijdbc8.so libclntsh.a

or in this example for the 9i driver:
Exception in thread "main" java.lang.UnsatisfiedLinkError:

no ocijdbc9 (libocijdbc9.a or .so) in java.library.path
at java.lang.ClassLoader.loadLibrary(ClassLoader.java(Compiled Code))
at java.lang.Runtime.loadLibrary0(Runtime.java:780)

the problem may be that the environment variable LIBPATH is not set or is set
incorrectly.

To correct this problem, examine the user profile that WebSphere Application
Server is running under and correct the LIBPATH environment variable if
necessary to include Oracle libraries. Scan for the file ″lobocijdbc8.so″ in order to
find the right directory.

java.lang.NullPointerException referencing 8i classes, or ″ internal error:
oracle.jdbc.oci8. OCIEnv″ connecting to an Oracle data source: If you encounter
an exception similar to either of the following when your application attempts to
connect to an Oracle data source:
Exception in thread "main" java.lang.NullPointerException

at oracle.jdbc.oci8.OCIDBAccess.check_error(OCIDBAccess.java:1743)
at oracle.jdbc.oci8.OCIEnv.getEnvHandle(OCIEnv.java:69)
at oracle.jdbc.oci8.OCIDBAccess.logon(OCIDBAccess.java:452)
at oracle.jdbc.driver.OracleConnection. <init>(OracleConnection.java:287)

or
Exception in thread "main" java.sql.SQLException:

internal error: oracle.jdbc.oci8. OCIEnv@568b1d21
at oracle.jdbc.dbaccess.DBError.throwSqlException(DBError.java:184)
at oracle.jdbc.dbaccess.DBError.throwSqlException(DBError.java:226)
at oracle.jdbc.oci8.OCIEnv.getEnvHandle(OCIEnv.java:79)

154 IBM WebSphere Application Server Network Deployment, Version 5: Monitoring and Troublshooting

this indicates that the 9i OCI driver is being used on AIX 32 bit machine, and the
LIBPATH is set correctly, but ORACLE_HOME is not set or is set incorrectly.

To correct this problem, examine the user profile that WebSphere Application
Server is running under and verify that it has the $ORACLE_HOME environment
variable set correctly, and that $LIBPATH includes $ORACLE_HOME/lib .

WSVR0016W: Classpath entry, ${ORACLE_JDBC_DRIVER_PATH}/classes12.zip,
in Resource, Oracle JDBC Thin Driver, located at
cells/BaseApplicationServerCell/nodes/wasrtp/resources.xml has an invalid
variable: This error occurs when no environment variable is defined for the
property: ORACLE_JDBC_DRIVER_PATH .

To verify that this is the problem, go to the administrative console in the left panel
under Environment ->Manage WebSphere Variables check whether the variable
ORACLE_JDBC_DRIVER_PATH is defined.

To correct the problem,
1. In this panel, click on New and define the variable. For example, name :

ORACLE_JDBC_DRIVER_PATH , value : c:\oracle\jdbc\lib (the actual value
depends on your operating system and directory structure, but it should be the
directory containing the classes12.zip file).

SQL0805N Package <package_name> was not found: Possible reasons for these
exceptions are:
v If the package name is NULLID.SQLLC300, see SQL0805N Package

“NULLID.SQLLC300” was not found. SQLSTATE=51002.
v You are is attempting to use a XA-enabled JDBC driver on a DB2 database that

isn’t XA-ready. To correct this problem:
– If the database is Db2/UDB, run the following commands (using the db2cmd

interface) while connected to the database in question:
- DB2 bind @db2ubind.lst blocking all grant public

- DB2 bind @db2cli.lst blocking all grant public

Note: The files db2ubind.lst and db2cli.lst are in the “bnd” directory of
your DB2 install. It is suggested you run these commands from that directory.
You should only need to do this once.

SQLException, with ErrorCode -99,999 and SQLState 58004, with java
″StaleConnectionException: COM.ibm.db2.jdbc.DB2Exception: [IBM][CLI Driver]
CLI0119E Unexpected system failure. SQLSTATE=58004″, when using
WAS40-type data source: “Unexpected system failure” usually occurs when
running in XA mode (two-phase commit). There are many possible reasons,
including:
v An invalid username or password was provided.

– To determine whether you have a username/password problem, look in
db2diag.log and view the actual error message and sql code. A message like
the following, with an SQLCODE of -1403, indicates an invalid user ID or
password:
2002-07-26-14.19.32.762905 Instance:db2inst1 Node:000

PID:9086(java) Appid:*LOCAL.db2inst1.020726191932
XA DTP Support sqlxa_open Probe:101

Chapter 4. Diagnosing and fixing problems 155

DIA4701E Database "POLICY2" could not be opened for distributed transaction
processing.
String Title: XA Interface SQLCA PID:9086 Node:000
SQLCODE = -1403

v The database name is incorrect.
v Some db2 packages are corrupted.

To resolve these problems:
v Correct your username and password, if you specified your password on the

GUI (for 40 Datasource) make sure that the username and password specified on
the bean itself are correct, since they will overwrite whatever you specify when
creating the data source.

v Use the correct database name.
v Rebind the packages (which are found in the bnd directory) as follows:

db2connect to dbname
c:\SQLLIB\bnd>DB2 bind @db2ubind.lst blocking all grant public

c:\SQLLIB\bnd>DB2 bind @db2cli.lst blocking all grant public

v Ensure that the file \WebSphere\AppServer\properties\wsj2cdpm.properties
has the right userid/password.

Error message ″java.lang.reflect.InvocationTargetException:
com.ibm.ws.exception.WsException: DSRA0023E: The DataSource
implementation class ″COM.ibm.db2.jdbc.DB2XADataSource″ could not be
found.″ when trying to access a DB2 database: One possible reason for this
exception is that a user is attempting to use a JDBC 2.0 DataSource, but DB2 isn’t
JDBC 2.0 enabled. This frequently happens with new installations of DB2 because
DB2 provides separate drivers for JDBC 1.X and 2.0, with the same physical file
name, and by default the 1.X driver is placed on the classpath.

To confirm that this is the problem:
v On Windows systems, look for the file inuse in the java12 directory under your

DB2 install. If it is not there, you need to run usejdbc2.bat.
v On Unix systems, check the classpath for your data source. If it doesn’t point to

the db2java.zip under the java12 directory, you will need to change it.

To correct this problem:
v On Windows systems, stop DB2 and run usejdbc2.bat from the java12 directory

in your DB2 installation. It is suggested you run this from the command line to
make sure it completes successfully.

v On Unix systems, change the classpath for your data source to point to the
db2java.zip in the java12 directory of your DB2 installation.

SQL0805N Package ″NULLID.SQLLC300″ was not found. SQLSTATE=51002:
Some possible causes of this error are:
v The underlying database was dropped and recreated.
v DB2 was ugpraded, and its packages may not have been rebound correctly.

To resolve this problem, rebind the db2 packages by running the the db2cli.lst
script found in the bnd directory. For example:db2>@db2cli.lst .

SQL0567N ″DB2ADMIN ″ is not a valid authorization ID. SQLSTATE=42602: If
you encounter this error when attempting to access a Db2/UDB data source:
v Check your username and password in the data source properties in the admin

console. Ensure that they are correct.

156 IBM WebSphere Application Server Network Deployment, Version 5: Monitoring and Troublshooting

v Ensure that the userid and password do not contain blank characters (before, in
between or after).

CLI0119E System error. SQLSTATE=58004 - DSRA8100 : Unable to get a
XAconnection or DSRA0011E: Exception: COM.ibm.db2.jdbc.DB2Exception:
[IBM][CLI Driver] CLI0119E Unexpected system failure. SQLSTATE=5800: If
you encounter this error when attempting to access a DB2/UDB data source:
v Check your username and password “custom properties” in the data source

properties page in the admin console. Ensure that they are correct.
v Ensure the userid and password do not containe any blank characters (before, in

between or after).
v Check that the WAS.policy file exists for the application, for example,

D:\WebSphere\AppServer\installedApps\markSection.ear\META-INF\was.policy.
v View the entire exception listing for an underlying SQL error, and look it up

using the dbm vendor’s message reference.

If you encounter this error while running DB2 on Red Hat Linux, it indicates that
the max queues system wide parameter is set too low to allow DB2 to acquire the
necessary resources to complete the transaction. When this is the problem,
exception DSRA8100E can be preceded by exceptions J2CA0046E and DSRA0010E.

To correct this problem, edit the file /proc/sys/kernal/msgmni and increase the
value of the max queues system wide parameter to be greater than 128.

COM.ibm.db2.jdbc.DB2Exception: [IBM][CLI Driver][DB2/NT] SQL0911N The
current transaction has been rolled back because of a deadlock or timeout.
Reason code ″2″. SQLSTATE=40001: If you see an error similar to the following
when accessing a Db2 data source:
ERROR CODE: -911
COM.ibm.db2.jdbc.DB2Exception: [IBM][CLI Driver][DB2/NT] SQL0911N
The current transaction has been rolled back because of a deadlock
or timeout. Reason code "2". SQLSTATE=40001

the cause is probably an application-caused Db2 deadlock.

To diagnose the problem:
v Execute the Db2 commands:

– db2 update monitor switches using LOCK ON

– db2 get snapshot for LOCKS on dbName
><directory_name>\lock_snapshot.log

where d:\lock_snapshot.log now has the DB2 lock information.
v Turn off the lock monitor by executing: db2 update monitor switches using LOCK

OFF.
v to see if you got a deadlock:

– Look for an application handle that has a lock-wait status, then look for the
“ID of agent holding lock”

– Go to that handle. If that handle has a lock-wait status and the “ID of agent
holding lock” for that it is the previous one, then you know that you have
circular lock (deadlock).

To resolve this problem:

Chapter 4. Diagnosing and fixing problems 157

v Examine your application and use a less restrictive isolation level if no
concurrency access is needed.

v Use caution; moving to a lesser accessIntent could result in data integrity
problems.

″COM.ibm.db2.jdbc.DB2ConnectionPoolDataSource″ could not be found for data
source ([data-source-name])″: This error usually occurs when the classpath of the
DB2 jdbc driver is set correctly to ″${DB2_JDBC_DRIVER_PATH}/db2java.zip″ but the
environment variable ″DB2_JDBC_DRIVER_PATH″ has not been set.

To confirm that this is the problem, on the Manage WebSphere Variables panel,
under Environment, and verify that there is no entry for the variable
″DB2_JDBC_DRIVER_PATH″.

To correct this problem, add the variable DB2_JDBC_DRIVER_PATH, with the value set
to the directory path containing db2java.zip.

ERROR CODE: 20001 and SQL STATE: HY000 accessing SQLServer database: If
you see an error similar to the following when attempting to access an SQLServer
database:
ERROR CODE: 20001
SQL STATE: HY000
java.sql.SQLException: [Microsoft][SQLServer JDBC Driver][SQLServer]xa_open (0) returns -3
at com.microsoft.jdbc.base.BaseExceptions.createException(Unknown Source) ...
at com.microsoft.jdbcx.sqlserver.SQLServerDataSource.getXAConnection(Unknown Source) ...

the problem may be that the Distributed Transaction Coordinator service is not
started.

To confirm that this is the problem, in the Windows Control Panel -> Services
window, check whether the service “Distributed Transaction Coordinator” or
“DTC” is started. If not, it may be the cause of the problem.

To resolve this problem, start the Distributed Transaction Coordinator.

Application fails with message stating ″Cannot find stored procedure...″
accessing an SQLServer database: One possible cause for this error is that the
Stored Procedures for JTA feature was not installed on the Microsoft SQL Server.

To correct this problem, repeat the installation for Stored Procedures for JTA
according to the ConnectJDBC installation guide.

Unexpected IOException wrapped in SQLException, accessing Cloudscape
database: This problem can occur because Cloudscape databases use a large
number of files, Some operating systems, such as Sun Solaris, limit the number of
files an application can open at one time. If the default is a low number, such as
64, you may get this exception.

If your operating system lets you configure the number of file descriptors, you can
correct this problem by setting the number to a high value, such as 1024.

″select for update″ causes table lock and deadlock when accessing Cloudscape:
If executing a “select for update” on one row causes the entire table is to be
locked, which in turn creates a deadlock condition, the cause may be that you
don’t have indexes defined on that table, particularly on the columns you use in
the where clause, since Cloudscape creates a table lock rather than a row level
lock.

158 IBM WebSphere Application Server Network Deployment, Version 5: Monitoring and Troublshooting

To resolve this problem, create an index on the affected table.

ERROR XSDB6: Another instance of Cloudscape may have already booted the
database ″database″: This problem is caused by the fact that Cloudscape 5.0.X
allows only one JVM to have access to database instance at a time.

To resolve this problem:
v Ensure that you don’t have other jdbc client programs, such as ij or cview

running on that database instance when WebSphere Application Server is
running.

v Ensure that you don’t use the same instance as the database for more than one
data source.

″SET CHAINED command not allowed within multi-statement transaction.″
exception accessing Sybase: If you see an error similar to the following when
attempting to use a Sybase data source:
[7/30/02 9:44:06:191 CDT] 3ab306e5 SybaseDataSto d The sqlState is: ZZZZZ

[7/30/02 9:44:06:191 CDT] 3ab306e5 GenericDataSt > findMappingClass for exception
com.sybase.jdbc2.jdbc.SybSQLException: SET CHAINED command not allowed within
multi-statement transaction.

the cause may be:
v You are attempting to set autocommit to “on” in a 2 phase transaction, which is

not permitted. To resolve this problem either:
– do not modify the autocommit value, or
– use a single phase data source.

v You might have an incorrectly configured DSM license. To resolve this problem,
correct the Adaptive Server Enterprise DTM option Authorization Code. This is
the license code supplied by your Sybase dealer. It can be entered into the
license.dat file in the Sybase directory structure.

″Sybase Error 7713: Stored Procedure can only be executed in unchained
transaction mode″ error: This error occurs when the JDBC attempts to put the
connection in autocommit(true) mode. The application can change the connection
to chained mode using Connection.setAutoCommit(false), or by using a ″set
chained on″ language command. This error is caused when the stored procedure
was not created in a compatible mode.

To fix this problem, use: sp_procxmode <procedure_name>, ″anymode″.

″JZ0XS: The server does not support XA-style transactions. Please verify that the
transaction feature is enabled and licensed on this server.″: This error occurs
when XA-style transactions are attempted on a server that does not have
Distributed Transaction Management (DTM) installed.

To correct this problem, use the instructions in the Sybase Manual titled: Using
Adaptive Server Distributed Transaction Management Features to enable Distributed
Transaction Management (DTM). The main steps in this procedure are:
1. Install the DTM option.
2. Check the license.dat file to verify that the DTM option was installed.
3. Restart the license manager.
4. Enable DTM in ISQL.
5. Restart the ASE service.

Chapter 4. Diagnosing and fixing problems 159

A Container Managed Persistence (CMP) enterprise bean is causing exceptions:
This error is caused by improper use of reserved words. Reserved words cannot be
used as column names.

To correct this problem, rename the variable to remove the reserved word. You can
find a list of reserved words in the Sybase Adaptive Server Enterprise Reference
Manual; Volume 1: Building Blocks, Chapter 4. This manual is available online at:
http://manuals.sybase.com/onlinebooks/group-as/asg1250e/refman.

IllegalConnectionUseException: One possible reason for this error is that a
connection obtained from a WAS40DataSource is being used on more than one
thread. This is a violation of the J2EE 1.3 programming model, and an exception is
generated when it is detected on the server. This problem occurs for users
accessing a data source through servlets or Bean Managed Persistence (BMP) type
enterprise beans.

To confirm that this is the problem, examine the code for sharing of connections.
Code can inadvertently cause sharing by not following the programming model
recommendations, for example by storing a connection in an instance variable in a
servlet, which can cause the connection to be used on multiple threads at the same
time.

WTRN0062E: An illegal attempt to enlist multiple one phase capable resources
has occurred: Possible causes of this error include:
v An attempt to have a one phase resource participate in a global transaction

while an XA resource or another one phase resource has already participated in
this global transaction.
– Within the scope of a global transaction you’ve tried to get a connection more

than once and at least one of the resource-refs you are using specifies that the
connection is unshareable, and the data source is not configured to support 2
Phase Commit transactions. That is, it does not support an XAResource. If
you are not using a resource-ref you will also default to unshareable
connections.

– Within the scope of a global transaction you’ve tried to get a connection more
than once and at least one of the resource-refs you are using specifies that the
connection is shareable and the data source is not configured to support 2
Phase Commit transactions. That is, it does not support an XAResource. In
addition, even though you have specified that connections should be
shareable, each getConnection request was made with different connection
properties (such as IsolationLevel or AccessIntent). In this case the
connections are not shareable, and multiple connections will be handed back.

– Multiple components (Servlets, Session Beans, BMP Entity Beans, or CMP
Entity Beans) are being accessed within a global transaction. All use the same
DataSource and all specify shareable connections on their resource-ref’s and
you expect them to all share the same connection. If the properties are
different, as stated above, you will get multiple connections. AccessIntent
settings on CMP beans will change their properties. In order for them to share
a connection the AccessIntent setting must be the same. If you want CMP
beans to share a connection with non-CMP components, see the related
documentation in the DataAccess section of the InfoCenter.

v An attempt to have more than one unshareable connections participate in a
global transaction, when the data source is not an XA resource.

v An attempt to share a single phase connection, when each getConnection
method has different connection properties; such as the AccessIntent. This causes
the connection to be created as non-shareable.

160 IBM WebSphere Application Server Network Deployment, Version 5: Monitoring and Troublshooting

http://manuals.sybase.com/onlinebooks/group-as/asg1250e/refman

To correct this error:
v Check the jdbc provider implementation class from the Manage JDBC resource

panel of the administrative console to ensure that it is a class that supports
XA-type transactions.

v Check the connection’s sharing scope from the resource binding, using the AAT.
– If you are running a unshareable connection scope, then ensure that your data

source is an XA data source.
– If you are running a shareable connection scope, then ensure that all the

connection properties, such as AccessIntent and any other properties (such as
userid), are the same.

v Check what your client code passes in with its getConnection requests, and
make sure they are consistent with each other.

ConnectionWaitTimeoutException accessing a data source or resource adapter: If
your application receives a
com.ibm.websphere.ce.cm.ConnectionWaitTimeoutException or
com.ibm.websphere.ce.j2c.ConnectionWaitTimeoutException when attempting to
access a WebSphere Application Server data source or JCA-compliant resource
adapter, respectively, some possible causes are:
v The maximum number of connections for a given pool is set too low. The

demand for concurent use of connections is greater then the configured
maximum for the connection pool. One indication that this is the problem is that
you receive these exceptions regularly, but your CPU utilization is not high. This
indicates that there are too few connections available to keep the threads in the
server busy.

v Connection Wait Time is set too low. Current demand for connections is high
enough such that sometimes there is not an available connection for short
periods of time. If your connection wait timeout value is too low, you may
timeout shortly before a user returns a connection back to the pool. Adjusting
the connection wait time may give you some relief. One indication that this is
the problem is that you are using near the maximum number of connections for
an extended period and receiving this error regularly.

v You are not closing some connections or are returning connections back to the
pool at a very slow rate. This can easily happen when using unshareable
connections, when you forget to close them, or you close them long after you are
finished using them, thus keeping the connection from being returned to the
pool for reuse. The pool soon becomes empty and all applications get
ConnectionWaitTimeoutExceptions. One indication that this is the problem is
that the connection pool has become starved and you receive this error on most
requests.

v You are driving more load than the server or backend system have resources to
handle. In this case you must determine which resources you need more of and
upgrade configurations or hardware to address the need. One indication that
this is the problem is that the application or database server CPU is nearly 100%
busy.

To correct these problems, modify an application to use fewer connections or
properly close the connections, change the pool settings of MaxConnections or
ConnnectionWaitTimeout, or adjust resources and their configuration.

com.ibm.websphere.ce.cm.StaleConnectionException: [IBM][CLI Driver]
SQL1013N The database alias name or database name ″NULL″ could not be

Chapter 4. Diagnosing and fixing problems 161

found. SQLSTATE=42705: This error occurs when a data source has been defined
but the databaseName attribute and corresponding value have not been added to
the “custom properties”.

To add the the databaseName property:
1. Expand the Resources->Manage JDBC Providers link in the administrative

console.
2. Select the JDBC Provider which supports the problem data source.
3. Select Data Sources and then select the problem data source.
4. Under additional properties select Custom Properties.
5. Select the databaseName property, or add one if it does not exist, and enter the

actual database name as the value.
6. Click Apply or OK, and then Save from the action bar.
7. Try to access the data source again.

java.sql.SQLException: java.lang.UnsatisfiedLinkError:: This error indicates that
the directory containing the binary libraries which support a database are not
included in the LIBPATH environment variable for the environment in which the
WebSphere Application Server is started.

The path containing the DBM vendor’s libraries vary by dbm. One way to find
them is by scanning the for missing library specified in the error message. Then
the LIBPATH variable can be corrected to include the missing directory, either in
the .profile of the account from which WebSphere Application Server is executed,
or by adding a statement in a .sh file which then executes the ″startServer″
program.

″J2CA0030E: Method enlist caught java.lang.IllegalStateException″ wrapped in
error ″WTRN0063E: An illegal attempt to enlist a one phase capable resource
with existing two phase capable resources has occurred″ when attempting to
execute a transaction.: This error can occur when Last Participant Support (LPS)
is missing or disabled. LPS allows a one-phase capable resource and a two-phase
capable resource to be enlisted within the same transaction.

LPS is only available if the following are true:
v WebSphere Application Server Programming Model Extensions (PME), which is

included in the Application Server Enterprise product) is installed.
v The option “Additional Enterprise Extensions” was enabled when PME was

installed. If you perform a typical installation, this is be enabled by default. If
you perform a custom installation, you have the option to disable this function,
which would disable LPS.

v The application enlisting the one phase resource has been deployed with the
Accept heuristic hazard option enabled. This is done through the Application
Assembly Tool. To enable this option in the Application Assembly Tool:
1. Load the EAR file into the Application Assembly Tool.
2. If the EAR file is actually a JTEE1.2 EAR then it must be upgraded to a

JTEE1.3 EAR by selecting File-> Convert EAR from the
Application Assembly Tool.

3. Select the EAR file in the left-hand panel of the Application Assembly Tool.
4. Select the WAS Enterprise tab in bottom right-hand window panel of the

Application Assembly Tool.
5. Ensure that the Accept heuristic hazard option is selected.

162 IBM WebSphere Application Server Network Deployment, Version 5: Monitoring and Troublshooting

6. Save the EAR file.

Cannot access an enterprise bean from a servlet, JSP file,
standalone program, or other client
What kind of error are you seeing?
v javax.naming.NameNotFoundException: Name name not found in context

“local” message when access is attempted
v BeanNotReentrantException is thrown
v CSITransactionRolledbackException / TransactionRolledbackException is thrown
v Call fails, stack trace beginning “EJSContainer E Bean method threw exception

[exception_name]” found in JVM log file.
v Call fails, ObjectNotFoundException or ObjectNotFoundLocalException when

accessing stateful session EJB found in JVM log file.
v Attempt to start CMP EJB module fails with

javax.naming.NameNotFoundException: dataSourceName
v Transaction [tran ID] has timed out after 120 seconds error accessing EJB.
v Symptom:CNTR0001W: A Stateful SessionBean could not be passivated

If the client is remote to the enterprise bean, that is running in a different
application server or as a standalone client, browse the JVM logs of the application
server hosting the enterprise bean as well as log files of the client.

If you do not see a problem that resembles yours, or if the information provided
does not solve your problem,
v If the problem appears to be Name-Service related, that is, you see a

NameNotFoundException, or a message ID beginning NMSV
– See Cannot access an object hosted by WebSphere Application Server from a

servlet, jsp, or other client and Naming services component troubleshooting
tips for more information.

v Check to see if the problem has been identified and documented using the links
in Diagnosing and fixing problems: Resources for learning.

v If none of these fixes your problem, contact IBM support for further assistance.

ObjectNotFoundException or ObjectNotFoundLocalException when accessing
stateful session EJB: A possible cause of this problem is that the stateful session
bean timed out and was removed by the container. This event must be coded for,
according to the EJB 2.0 specification (available at
http://java.sun.com/products/ejb/docs.html), section 7.6.2, Dealing with
exceptions.

Stack trace beginning ″EJSContainer E Bean method threw exception
[exception_name]″ found in JVM log file: If the “exception name” indicates an
exception thrown by an IBM class, that is it begins “com.ibm...”, then search for
the exception name within this InfoCenter, and in the online help as described
below. If “exception name” indicates an exception thrown by your application,
contact the application developer to determine what might have caused it.

javax.naming.NameNotFoundException: Name name not found in context
″local″: A possible reason for this is exception is that the enterprise bean is not
local, (not running in the same Java virtual machine [JVM] or Application Server),
to the client JSP, servlet, Java application, or other enterprise bean, yet the call is to
one of the enterprise bean’s “local” interface methods. If access worked in a
development environment but not when deployed to WebSphere Application

Chapter 4. Diagnosing and fixing problems 163

http://java.sun.com/products/ejb/docs.html

Server, for example, it could be that the enterprise bean and its client were in the
same JVM in development, but after deployment they are in separate processes.

To resolve this problem, contact the developer of the enterprise bean and
determine whether the client call is to a method in the enterprise bean’s local
interface. If so, have the client code changed to call a remote interface method, or
promote the local method into the remote interface.

BeanNotReentrantException is thrown: This problem can be caused by client
code (typically a servlet or JSP) attempting to call the same stateful SessionBean
from two different client threads. This situation often arises when the an
application stores the reference to the stateful session bean in a static variable, uses
a global (static) JSP variable to refer to the stateful SessionBean reference, or stores
the stateful SessionBean reference in the HTTP session object and then has the
client browser issue a new request to the servlet or JSP before the previous request
has completed.

To resolve this problem, ask the developer of the client code to review their code
for these conditions.

CSITransactionRolledbackException / TransactionRolledbackException is
thrown: These are high-level exceptions thrown by an enterprise bean’s container,
and indicate that an enterprise bean call could not be successfully completed.
When this exception is thrown, browse the JVM logs to determine the underlying
cause.

Some possible causes are:
v The enterprise bean may be throwing an exception that was not declared as part

of its method signature. The container is required to roll back the transaction in
this case. Common causes of this situation are where the enterprise bean or code
that it calls throws a NullPointerException, ArrayIndexOutOfBoundsException,
or other Java “runtime” exception, or where a BMP bean encounters a JDBC
error. The resolution is to investigate the enterprise bean code and resolve the
underlying exception, or to add the exception to the problem method’s
signature.

v A transaction may have attempted to do additional work after being placed in a
″Marked Rollback″, ″RollingBack″, or ″RolledBack″ state. Transactions cannot
continue to do work after they have been set to one of these states. Often this
occurs because the transaction has timed out which, in turn, often occurs
because of a database deadlock. The resolution is to work with the application’s
database managements tools or administrator to determine whether database
transactions called by the enterprise bean are timing out.

v A transaction may fail on commit due to “dangling work”. This could be due to
“local” transactions. The local transaction encountered some “dangling work”
during commit. The default “action” for local transactions when they encounter
an “Unresolved Action” is to “rollback”. This can be adjusted to “commit” in the
Application Assembly Tool. In the AAT, open the enterprise bean .jar file (or
the EAR file containing the enterprise bean) and select the “Session Beans” or
“Entity Beans” object in the component tree on the left. The “Unresolved Action”
property is on the “IBM Extensions” tab of the container properties.

Attempt to start EJB module fails with ″javax.naming.NameNotFoundException
dataSourceName_CMP″exception: The possible causes of this problem are:
v When the DataSource resource was configured, Container Managed Persistence

was not selected.

164 IBM WebSphere Application Server Network Deployment, Version 5: Monitoring and Troublshooting

– To confirm that this is the problem, in the administrative console, browse the
properties of the data source given in the NameNotFoundException. On the
Configuration panel, look for a checkbox labeled Container Managed
Persistence.

– To correct this problem, select checkbox for Container Managed Persistence.
v If Container Managed Persistence is selected, it is possible that the CMP

DataSource could not be bound into the namespace.
– Look for additional naming warnings or errors in the status bar, and in the

hosting application server’s JVM logs. Check any further naming-exception
problems that you find by looking at the topic Cannot access an object hosted
by WebSphere Application Server (enterprise bean, connection pool, etc) from
a servlet, jsp, standalone program , or other client.

Transaction [tran ID] has timed out after 120 seconds accessing EJB: This error
can happen when a client executes a transaction on a CMP or BMP enterprise
bean.
v The default timeout value for enterprise bean transactions is 120 seconds. After

this time, the transaction times out and the connection is closed.
v If the transaction legitimately takes longer than the specified timeout period, go

to Manage Application Servers -> server_name, select the Transaction Service
properties page, and look at the property Total transaction lifetime timeout.
Increase this value if necessary and save the configuration.

Symptom:CNTR0001W: A Stateful SessionBean could not be passivated: This
error can occur when a Connection Object being used in the bean has not been
closed or nulled out.

To confirm that this is the problem, look for an exception stack in the JVM log for
the EJB Container which hosts the enterprise bean, which looks similar to:
[time EDT] <ThreadID> StatefulPassi W CNTR0001W: A Stateful SessionBean could not
be passivated: StatefulBeanO(BeanId(XXX#YYY.jar#ZZZZ, <ThreadID>),
state = PASSIVATING) com.ibm.ejs.container.passivator.StatefulPassivator@
<ThreadID> java.io.NotSerializableException:
com.ibm.ws.rsadapter.jdbc.WSJdbcConnection
at java.io.ObjectOutputStream.outputObject((Compiled Code))
at java.io.ObjectOutputStream.writeObject(ObjectOutputStream.java(Compiled Code))
at java.io.ObjectOutputStream.outputClassFields((Compiled Code))
at java.io.ObjectOutputStream.defaultWriteObject((Compiled Code))
at java.io.ObjectOutputStream.outputObject((Compiled Code))
at java.io.ObjectOutputStream.writeObject(ObjectOutputStream.java(Compiled Code))
at com.ibm.ejs.container.passivator.StatefulPassivator.passivate((Compiled Code))
at com.ibm.ejs.container.StatefulBeanO.passivate((Compiled Code)
at com.ibm.ejs.container.activator.StatefulASActivationStrategy.
atUnitOfWorkEnd((Compiled Code))
at com.ibm.ejs.container.activator.Activator.unitOfWorkEnd((Compiled Code))
at com.ibm.ejs.container.ContainerAS.afterCompletion((Compiled Code)

where XXX,YYY,ZZZ is the Bean’s name, and <ThreadID> is the thread ID for that
run.

To correct this problem, the application must close all connections and set the
reference to null for all connections. Typically this is done in the ejbPassivate()
method of the bean. See the enterprise bean specification mandating this
requirement, specifically section 7.4 in the EJB specification version 2.0. Also, note
that the bean must be coded to re-acquire these connections when the bean is
re-activated. Otherwise, there will be NullPointerExceptions when the application
tries to re-use the connections.

Chapter 4. Diagnosing and fixing problems 165

Cannot look up an object hosted by WebSphere Application
Server from a servlet, JSP file, or other client
To resolve problems encountered when a servlet, JSP file, standalone application or
other client attempts to access an enterprise bean, ConnectionPool, or other named
object hosted by WebSphere Application Server, you must first verify that the
target server can be accessed from the client:
v From a command prompt on the client’s server, enter ″ping <server_name>″ and

verify connectivity.
v Use the WebSphere Application Server administrative console to verify that the

target resource’s application server and, if applicable, EJB module or Web
module, is started.

Continue only if there is no problem with connectivity and the target resource
appears to be running.

What kind of error are you seeing?
v NameNotFoundException from JNDI lookup operation
v CannotInstantiateObjectException from JNDI lookup operation
v Message NMSV0610I appears in the server’s log file, indicating that some

Naming exception has occurred
v OperationNotSupportedException from JNDI Context operation.
v “WSVR0046E: Failed to bind” error, with Original exception:

“org.omg.CosNaming.NamingContextPackage.AlreadyBound”.
v ConfigurationException from “new InitialContext” operation or from a JNDI

Context operation with a URL name.
v ServiceUnavailableException from “new InitialContext” operation.
v CommunicationException thrown from a “new InitialContext” operation.
v NMSV0605E: A Reference object looked up from the context...

If you do not see a problem that resembles yours, or if the information provided
does not solve your problem, contact IBM support for further assistance.

NameNotFoundException from JNDI lookup operation: If you encounter this
exception in trying to access an enterprise bean, data source, messaging resource,
or other resource:
v Browse the properties of the target object in the administrative console, and

verify that the jndi name it specifies matches the JNDI name the client is using.
v If you are looking up an object that resides on a server different from the one

from which he initial context was obtained, you must use the fully qualified
name.
– If access is from another server object such as a servlet accessing an enterprise

bean and you are using the default context, not specifying the fully qualified
JNDI name, you may get this error if the object is being hosted on a different
server.

– If access is from a standalone client, it may be that the object you are
attempting access is on a server different from the server from which you
obtained the initial context.

To correct this problem, use the fully-qualified JNDIname:
v If the object is in a single server:

cell/nodes/<nodeName>/servers/<serverName>/<jndiName>. Objects are not
supported in this release.

166 IBM WebSphere Application Server Network Deployment, Version 5: Monitoring and Troublshooting

v If the object is on a server cluster: cell/clusters/<clusterName>/<jndiName>.

CannotInstantiateObjectException from JNDI lookup operation: If you
encounter this exception in trying to access an enterprise bean, data source,
messaging resource, or other resource, possible causes include:
v A serialized Java object is being looked up, but the necessary classes required to

deserialize it are not in the runtime environment.
v A Reference object is being looked up, and the associated factory used to process

it as part of the lookup processing is failing.

To determine the precise cause of the problem:
v Look in the JVM logs of the server hosting the target resource. Look for

exceptions immediately preceding the CannotInstantiateObjectException. If it is a
java.lang.NoClassDefFoundError or java.lang.ClassNotFoundException, make
sure the class referenced in the error message can be located by the class loader.

v Print out the stack trace for the root cause and look for the factory class. It will
be called by javax.naming.NamingManager.getObjectInstance(). The reason for
the failure will depend on the factory implementation, and may require you to
contact the developer of the factory class.

Message NMSV0610I appears in the server’s log file, indicating that some
Naming exception has occurred: This error is informational only and is provided
in case the exception is related to an actual problem. Most of the time, it is not. If it
is, the log file should contain adjacent entries to provide context.
v If no problems are being experienced, ignore this message. Also ignore the

message if the problem you are experiencing does not appear to be related to the
exception being reported and if there are no other adjacent error messages in the
log.

v If a problem is being experienced, look in the log for underlying error messages.
v The information provided in message NMSV0610I can provide valuable debug

data for other adjacent error messages posted in response to the Naming
exception that occurred.

OperationNotSupportedException from JNDI Context operation: This error has
two possible causes:
v An update operation, such as a bind, is being performed with a name that starts

with ″java:comp/env″. This context and its subcontexts are read-only contexts.
v A Context bind or rebind operation of a non-CORBA object is being performed

on a remote name space that does not belong to WebSphere Application Server.
Only CORBA objects can be bound to these CosNaming name spaces.

To determine which of these errors is causing the problem, check the full exception
message.

WSVR0046E: Failed to bind, ejb/jndiName: ejb/jndiName. Original exception :
org.omg.CosNaming.NamingContextPackage.AlreadyBound: This error occurs
two enterprise bean server applications were installed on the same server such that
a binding name conflict occurred. That is, a jndiName value is the same in the two
applications’ deployment descriptors. The error will surface during server startup
when the second application using that jndiName value is started.

To verify that this is the problem, examine the deployment descriptors for all
enterprise bean server applications running in the server in search for a jndiName
that is specified in more than one enterprise bean application.

Chapter 4. Diagnosing and fixing problems 167

To correct the problem, change any duplicate jndiName values to ensure that each
enterprise bean in the server process is bound with a different name.

ConfigurationException from ″new InitialContext″ operation or from a JNDI
Context operation with a URL name: If you are attempting to obtain an initial
JNDI context, a configuration exception can occur because an invalid JNDI
property value was passed to the InitialContext constructor. This includes JNDI
properties set in the System properties or in some jndi.properties file visible to the
class loader in effect. A malformed provider URL is the most likely property to be
incorrect. If the JNDI client is being run as a thin client such that the CLASSPATH is
set to include all of the individual jar files required, make sure the .jar file
containing the properties file com/ibm/websphere/naming/jndiprovider.properties
is in the CLASSPATH.

If the exception is occurring from a JNDI Context call with a name in the form of a
URL, the current JNDI configuration may not be set up properly so that the
required factory class name cannot be determined, or the factory may not be
visible to the class loader currently in effect. If the name is a Java: URL, the JNDI
client must be running in a J2EE client or server environment. That is, the client
must be running in a container.

Check the exception message to verify the cause.

If the exception is being thrown from the InitialContext constructor, correct the
property setting or the CLASSPATH.

If the exception is being thrown from a JNDI Context method, make sure the
property java.naming.factory.url.pkgs includes the package name for the factory
required for the URL scheme in the name. URL names with the Java scheme can
only be used while running in a container.

ServiceUnavailableException from ″new InitialContext″ operation: This
exception indicates that some unexpected problem occurred while attempting to
contact the name server to obtain an initial context. The
ServiceUnavailableException, like all NamingException objects, can be queried for
a root cause. Check the root cause for more information. It is possible that some of
the problems described for CommunicationExceptions may also result in a
ServiceUnavailableException.

Since this exception is triggered by an unexpected error, there is no probable cause
to confirm. If the root cause exception does not indicate what the probable cause is,
investigate the possible causes listed for CommunicationExceptions.

CommunicationException thrown from a ″new InitialContext″ operation: The
name server identified by the provider URL cannot be contacted to obtain the
initial JNDI context. There are many possible causes for this problem, including:
v The host name or port in the provider URL is incorrect.
v The host name cannot be resolved into an IP address by the domain name

server, or the IP address does not match the IP address which the server is
actually running under.

v A firewall on the client or server is preventing the port specified in the provider
URL from being used.

To correct this problem:

168 IBM WebSphere Application Server Network Deployment, Version 5: Monitoring and Troublshooting

v Make sure the provider URL and the network configurations on the client and
server machines are correct.

v Make sure the host name can be resolved into an IP address which can be
reached by the client machine. You can do this using the ping command.

v If you are running a firewall, make sure that use of the port specified in the
provider URL will be allowed.

Errors or access problems after enabling security
What kind of error are you seeing?
v I cannot access part or all of administrative console or use wsadmin after

enabling security
v I cannot access a Web page after enabling security
v The client cannot access an enterprise bean after enabling security
v The client never gets prompted when accessing a secured enterprise bean
v I cannot stop an application server, node manager, or node after enabling

security
v Error Message: SECJ0314E: Current Java 2 Security policy reported a potential

violation
v “MSGS0508E: The JMS Server security service was unable to authenticate

userid:” error displayed in SystemOut.log when starting an application server
v “SECJ0237E: One or more vital LTPAServerObject configuration attributes are

null or not available” after enabling security and starting application server.
v AccessControlException is reported in SystemOut.log.
v After enabling single sign-on, I cannot log on to the administrative console.

For general tips on diagnosing and resolving security-related problems, see the
topic Troubleshooting the security component.

If you do not see a problem that resembles yours, or if the information provided
does not solve your problem, contact IBM support for further assistance.

Cannot access part or all of admin console or use wsadmin after enabling
security:

v If you cannot access the administrative console, or view or update certain
objects, look in the SystemOut log of the the application server which hosts the
administrative console page for a related error message.

v You may not have authorized your ID for administrative tasks. This is indicated
by errors such as:
– [8/2/02 10:36:49:722 CDT] 4365c0d9 RoleBasedAuth A SECJ0305A: Role

based authorization check failed for security name MyServer/myUserId,
accessId MyServer/S-1-5-21-882015564-4266526380-2569651501-1005 while
invoking method getProcessType on resource Server and module Server.

– Exception message: “ADMN0022E: Access denied for the getProcessType
operation on Server MBean”

– When running the command: wsadmin -username j2ee -password j2ee:
WASX7246E: Cannot establish “SOAP” connection to host “BIRKT20”
because of an authentication failure. Please ensure that user and password
are correct on the command line or in a properties file.

v To grant an ID administrative authority:
– From the Administrative Console, select Security Center -> Manage Console

Users and validate that the ID is a member. If it is not, add the ID with at
least monitor access privileges, for read-only access.

Chapter 4. Diagnosing and fixing problems 169

Cannot access a web page after enabling security: When secured resources
cannot be accessed, these are some possible causes:
v Authentication errors - WebSphere Application Server security cannot identify

the ID of the person or process. Symptoms of authentication errors include:
– Netscape browser:

- “Authorization failed. Retry?” message displayed after an attempt to login.
- Allows any number of attempts to retry login and displays “Error 401”

message when “cancel” is pressed to stop retry.
- Typical browser message: “Error 401: Basic realm=’Default Realm’”.

– Internet Explorer browser:
- Login prompt displayed again after an attempt to login.
- Allows 3 attempts to retry login.
- Displays “Error 401” message after 3 unsuccessful retries.

v Authorization errors - security has identified the requesting person or process as
not authorized to access the secured resource. Symptoms of authorization errors
include:
– Netscape browser: “Error 403: AuthorizationFailed” message is displayed.
– Internet Explorer:

- “You are not authorized to view this page” message is displayed.
- “HTTP 403 Forbidden” error is also displayed.

v SSL errors - WebSphere Application Server security uses Secure Socket Layer
(SSL) technology internally to secure and encrypt its own communication, and
misconfiguration of the internal SSL settings can cause problems. Also you might
have enabled SSL encryption for your own Web application or enterprise bean
client traffic which, if misconfigured, can cause problems regardless of whether
WebSphere Application Server security is enabled. SSL related problems are
often indicated by error messages which contain a statement such as:
– ERROR: Could not get the initial context or unable to look up the starting

context. Exiting. followed by:
– javax.net.ssl.SSLHandshakeException

Authentication error accessing a web page: Possible causes for authentication
errors are:

Username or Passwords invalid
Check the username and password and make sure they are correct.

Security Configuration error : User registry type is not set correctly.
Check the User Registry property in the global security settings in the
administrative console. Ensure that it is the intended User Registry.

Internal program error
If client application is a Java standalone program, it may not be gathering
or sending the credential information correctly.

If the User Registry configuration, and user ID and password, appear to be correct,
use the WebSphere Application Server trace to determine the cause of the problem.
To enable security trace use the com.ibm.ws.security.*=all=enabled trace
specification.

Authorization error accessing a Web page: If a user who should have access to a
resource does not, the problem is probably due to a missing configuration step.
Review the steps for securing and granting access to resources.

170 IBM WebSphere Application Server Network Deployment, Version 5: Monitoring and Troublshooting

Specifically:
v Check the required roles for the Web Resource being accessed.
v Check the authorization table and make sure that the user or the groups that the

user belongs to is assigned one of the required roles.
v Required roles for the Web Resource can be viewed in the deployment

descriptor of the Web Resource.
v The authorization table for the application that contains the Web Resource can

also be viewed using administrative console.
v Try using a user that is granted the required roles to see if that user can access

the problem resources.
v If the problem user is required to be granted one or more of the required roles,

use the administrative console to assign that user to required roles, and then
stop and restart the application.

If user is granted the required roles and still fails to access the secured resources,
enable security trace using com.ibm.ws.security.*=all=enabled as the trace
specification and retry to collect the trace information for further resolution.

Cannot access an enterprise bean after enabling security: If client access to an
enterprise bean fails after security is enabled:
v Review the steps for securing and granting access to resources.
v Browse the server’s JVM logs for errors relating to enterprise bean access and

security. Look up any errors in the message table.
v Errors similar to Authorization failed for /UNAUTHENTICATED while

invoking resource
securityName:/UNAUTHENTICATED;accessId:UNAUTHENTICATED not
granted any of the required roles roles indicate that:
– an unprotected servlet or JSP accessed a protected enterprise bean. When

unprotected servlet is accessed, the user is not prompted to login and hence
the servlet runs as UNAUTHENTICATED. When it makes a call to an
enterprise bean that is protected it will fail.
To resolve this problem, secure the servlet that is accessing the secured
enterprise bean. Make sure the servlet’s runAs property is set to an ID that
can access the enterprise bean.

– An unauthenticated Java client program is accessing an enterprise bean
resource that is protected. This can happen if the file read by the
sas.client.props properties file used by the client program does not have
the securityEnabled flag set to true.
To resolve this problem, make sure that the sas.client.props file on the
client side has its securityEnabled flag set to true.

v Errors similar to Authorization failed for valid_user while invoking resource
securityName:/username;accessId:xxxxxx not granted any of the required roles
roles indicate that a client attempted to access a secured enterprise bean
resource, and the supplied user ID is not assigned the required roles for that
enterprise bean.
– Check the required roles for the enterprise bean resource being accessed.

Required roles for the enterprise bean resource can be viewed in the
deployment descriptor of the Web resource.

– Check the authorization table and make sure that the user or the group that
the user belongs to is assigned one of the required roles. The authorization
table for the application that contains the enterprise bean resource can also be
viewed using administrative console.

Chapter 4. Diagnosing and fixing problems 171

org.omg.CORBA.NO_PERMISSION exceptions returned when programmatically
logging on in order to access a secured EJB indicate an authentication exception
has occurred on the server. Typically the CORBA exception is triggered by an
underlying com.ibm.WebSphereSecurity.AuthenticationFailedException. To
determine the actual cause of the authentication exception, the full trace stack must
be examined.
v Begin by viewing the text in the exception, following

“WSSecurityContext.acceptSecContext(), reason:”. Typically, it describes the
failure without further analysis.

v If this does not describe enough of the problem, look up the CORBA minor
code. Those codes are listed in the Troubleshooting the security components
reference in this document.

For example, the following exception:

org.omg.CORBA.NO_PERMISSION: Caught WSSecurityContextException in
WSSecurityContext.acceptSecContext(), reason: Major Code[0] Minor Code[0]
Message[Exception caught invoking authenticateBasicAuthData from
SecurityServer for user jdoe.
Reason: com.ibm.WebSphereSecurity.AuthenticationFailedException] minor code: 49424300
completed: No at com.ibm.ISecurityLocalObjectBaseL13Impl.
PrincipalAuthFailReason.map_auth_fail_to_minor_code(PrincipalAuthFailReason.java:83)

indicates a CORBA minor code of 49424300. The explanation of this error in the
CORBA minor code table reads:
authentication failed error.

In other words, in this case the user ID or password supplied by the client
program is probably invalid.

CORBA INITIALIZE exception with JSAS1477W: SECURITY CLIENT/SERVER
CONFIG MISMATCH error embedded, received by client program from server.

This error indicates that the server’s security configuration differs from the client in
some fundamental way. The full exception message will list the specific
mismatches. For example, the following exception lists three:
Exception received: org.omg.CORBA.INITIALIZE:

JSAS1477W: SECURITY CLIENT/SERVER CONFIG MISMATCH: The client security
configuration (sas.client.props or outbound settings in GUI) does not
support the server security configuration for the following reasons:
ERROR 1: JSAS0607E: The client requires SSL Confidentiality but the server does not support it.
ERROR 2: JSAS0610E: The server requires SSL Integrity but the client does not support it.
ERROR 3: JSAS0612E: The client requires client (e.g., userid/password or token),
but the server does not support it.
minor code: 0 completed: No at
com.ibm.ISecurityLocalObjectBaseL13Impl.SecurityConnectionInterceptor.
getConnectionKey(SecurityConnectionInterceptor.java:1770)

In general, resolving the problem requires a change to the security configuration of
either the client or the server. In order to determine which configuration setting is
involved, look at the text following the “JSAS” error message. For more detailed
explanations and instructions, look up the error message in the message reference,
found in the “Quick Reference” view of this InfoCenter.

In these particular cases:

172 IBM WebSphere Application Server Network Deployment, Version 5: Monitoring and Troublshooting

v In the case of ERROR 1, the client is requiring SSL Confidentiality but the server
does not support SSL Confidentiality. This can be resolved in two ways. The
server either supports it or the client no longer requires it.

v In the case of ERROR 2, the server requires SSL Integrity but the client does not
support SSL Integrity. Again, there are two ways this problem can be solved. Get
the server to not require integrity or get the client to support integrity.

v Finally, in the case of ERROR 3, the client requires client authentication via
userid and password, but the server does not support this type of client
authentication. Again, either the client or the server needs to change the
configuration. To change the client configuration, modify the SAS.CLIENT.PROPS
file for a pure client or change the server’s outbound configuration in the
Security GUI. To change the target server’s configuration, modify the inbound
configuration in the Security GUI.

Similarly, an exception like org.omg.CORBA.INITIALIZE: JSAS0477W: SECURITY
CLIENT/SERVER CONFIG MISMATCH: appearing on the server trying to service a client
request indicates a security configuration mismatch between client and server. The
steps for resolving the problem is the same as for JSAS1477W exceptions described
above.

Client program never gets prompted when accessing secured enterprise bean:
Even though it appears security is enabled and an enterprise bean is secured, it
may happen that the client executes the remote method without getting prompted.
v If the remote method is protected, you should get an authorization failure.

Otherwise,
v Execute the method as an unauthenticated user.

Possible reasons for this include:
v The server you are communicating with may not have security enabled. Check

with the WebSphere Application Server administrator to ensure that the server
security is enabled. This is done in the global security settings from within the
Security section of the administrative console.

v The client does not have security enabled in the sas.client.props file. Edit the
sas.client.props to ensure the property com.ibm.CORBA.securityEnabled=true.

v The client does not have a ConfigURL specified. Ensure that the property
com.ibm.CORBA.ConfigURL is specified on the command line of the Java client,
using the -D parameter.

v The specified ConfigURL has an invalid URL syntax or the sas.client.props
pointed to by it cannot be found. Ensure that the property
com.ibm.CORBA.ConfigURL is valid, for example, similar
tofile:/C:/WebSphere/AppServer/properties/sas.client.props on Windows
systems. Check the Java documentation for a description of URL formatting
rules. Also, validate that the file exists at the specified path.

v The client configuration does not support message layer client authentication
(userid and password). Ensure that the sas.client.props has one of the
following properties set to true:
– com.ibm.CSI.performClientAuthenticationSupported=true

– com.ibm.CSI.performClientAuthenticationRequired=true.

v The server configuration does not support message layer client authentication
(userid and password). Check with the WebSphere Application Server
administrator to ensure that Userid and Password authentication is specified for

Chapter 4. Diagnosing and fixing problems 173

the Inbound configuration of the server within the System Administration
section of the administrative console administration tool.

Cannot stop an application server, node manager, or node after enabling
security: If you are using command line utilities to stop WAS processes, you need
to apply additional parameters after enabling security, in order to provide
authentication and authorization information.

Use the command: ./stopServer.sh -help to display the parameters that should be
used.

You should use the following command options after enabling security:
v ./stopServer.sh hostname -username name -password password

v ./stopNode.sh -username name -password password

v ./stopManager.sh -username name -password password

Error Message: SECJ0314E: Current Java 2 Security policy reported a potential
violation on server: If you find errors on your server similar to:
Error Message: SECJ0314E: Current Java 2 Security policy reported a potential
violation of Java 2 Security Permission. Please refer to Problem Determination Guide
for further information.{0}Permission\:{1}Code\:{2}{3}Stack Trace\:{4}Code Base Location\:{5}

then The Java Security Manager checkPermission() method has reported a
SecurityException.

The reported exception may be critical to the secure system. Turn on security
trace to determine the potential code that may have violated the security policy.
Once the violating code is determined, you should verify if the attempted
operation is permitted with respect to Java 2 Security, by examining all applicable
Java 2 security policy files and the application code itself.

A more detailed report is enabled by either configuring RAS trace into debug
mode, or specifying a Java property.
v Please check the trace enabling section for instructions on how to configure RAS

trace into debug mode, or
v Specify the following property in the Application Servers > server name >

ProcessDefinition > Java virtual machine panel from the administrative console
in the Generic JVM arguments panel:
– add the runtime flag java.security.debug

– Valid values:

access to print all debug information including: required permission, code,
stack, and code base location.

stack to print debug information including: required permission, code, and
stack.

failure
to print debug information including: required permission and code.

For a review of Java security policies and what they mean , see the Java 2 Security
documentation at http://java.sun.com/j2se/1.3/docs/guide/security/index.html
.

174 IBM WebSphere Application Server Network Deployment, Version 5: Monitoring and Troublshooting

http://java.sun.com/j2se/1.3/docs/guide/security/index.html

Note: If the application is running with Java Mail, this message may be benign.
You can update the <installed Enterprise Application root>/META-
INF/was.policy file to grant the following permissions to the application:
v permission java.io.FilePermission ″${user.home}${/}.mailcap″, ″read″;

v permission java.io.FilePermission ″${user.home}${/}.mime.types″, ″read″;

v permission java.io.FilePermission ″${java.home}${/}lib${/}mailcap″,
″read″;

v permission java.io.FilePermission ″${java.home}${/}lib${/}mime.types″,
″read″;

″MSGS0508E: The JMS Server security service was unable to authenticate
userid:″ error displayed in SystemOut.log when starting an application server:
This error may be a result of installing the JMS (messaging api) sample and then
enabling security. The JMS sample is not designed to work with WebSphere
Application Server security. If WebSphere Application Server was installed with
samples and no additional code was installed which uses messaging, this message
may be ignored.

You can verify the installation of the message-driven bean sample by launching the
installation program, selecting Custom, and browsing the components which are
already installed in the Select the features you like to install panel. The JMS
sample is shown as Message-Driven Bean Sample, under Embedded Messaging.

You can also verify this by using the administrative console to open the properties
of the application server which contains the samples, selecting “MDBSamples” and
clicking “uninstall”.

If the problem persists, review the section Troubleshooting JMS.

SECJ0237E: One or more vital LTPAServerObject configuration attributes are
null or not available: The most likely cause of this error is that LTPA is selected
as authentication mechanism but the LTPA keys have not been generated. The
LTPA keys are used for encrypting the LTPA token.

To resolve this problem:
1. Select System Administration -> Console users -> LTPA

2. Enter a password, which can be anything.
3. Enter the same password in “Confirm Password”.
4. Click Apply.
5. Click Generate Keys.
6. Click on Save.

AccessControlException is reported in SystemOut.log: If you see an exception
similar to the following (error message and number may vary):
E SRVE0020E: [Servlet Error]-[validator]: Failed to load servlet:
java.security.AccessControlException:
access denied (java.io.FilePermission
C:\WebSphere\AppServer\installedApps\maeda\adminconsole.ear\adminconsole.war
\WEB-INF\validation.xml read)

the problem is related to the Java 2 Security feature of WebSphere Application
Server, the api-level security framework that is implemented in WebSphere
Application Server Version 5. For an explanation of Java 2 security, how and why

Chapter 4. Diagnosing and fixing problems 175

to enable or disable it, and how it relates to policy files, and how to edit policy
files, see the topic Java 2 Security in this InfoCenter. As this topic explains, Java 2
security is not only used by this product, but may also be implemented by
business application developers, and administrators may need to involve
developers if this exception is thrown when a client tries to access a resource
hosted by WebSphere Application Server.

Some possible causes of these errors are:
v Syntax errors in a policy file.
v Syntax errors in permission specifications in the ra.xml file bundled in a .rar file.

This case applies to resource adapters which support “connector” access to CICS
or other resources.

v An application is missing the specified permission in a policy file, or in
permission specifications in an ra.xml file bundled in a .rar file

v The classpath was not set correctly. If the classpath is not set correctly in
resource.xml file for SPI, permissions cannot be created correctly.

v A library called by an application, or the application itself, is missing a
doPrivileged block to allow access to a resource.

v Permission is specified in the wrong policy file.

To resolve these problems:
v Check all of the related policy files to ensure that the permission shown in the

exception, for example java.io.FilePermission, is specified.
v Look for a related ParserException in SystemOut.log which reports the details of

the syntax error. For example: SECJ0189E: Caught ParserException while
creating template for Application Policy
C:\WAS\config\cells\xxx\nodes\xxx\app.policy. The exception is
com.ibm.ws.security.util.ParserException: line 18: expected ’;’, found ’grant’

v Look for a message similar to: SECJ0325W: The permission permission
specified in the policy file is unresolved.

v Check the call stack to determine which method does not have the permission.
Identify what this method’s classpath is. If it is hard to identify the method,
enable Java2 security Report.
– Configuring RAS trace by specifying

com.ibm.ws.security.core.*=all=enabled, or specifying a Java
property.java.security.debug . Valid values for property java.security.debug
are:

access to print all debug information including: required permission, code,
stack, and code base location.

stack to print debug information including: required permission, code, and
stack.

failure
to print debug information including: required permission and code.

– The report shows:

Permission
the missing permission.

Code which method has the problem.

Stack Trace
where the access violation occurred.

176 IBM WebSphere Application Server Network Deployment, Version 5: Monitoring and Troublshooting

CodeBaseLocation
the detail of each stack frame.

Usually, Permission and Code should be enough to identify the problem. The
following is an example of a report:
Permission:

C:\WebSphere\AppServer\logs\server1\SystemOut_02.08.20_11.19.53.log :
access denied (java.io.FilePermission
C:\WebSphere\AppServer\logs\server1\SystemOut_02.08.20_11.19.53.log delete)

Code:
com.ibm.ejs.ras.RasTestHelper$7 in

{file:/C:/WebSphere/AppServer/installedApps/maeda/JrasFVTApp.ear/RasLib.jar}

Stack Trace:

java.security.AccessControlException: access denied (java.io.FilePermission
C:\WebSphere\AppServer\logs\server1\SystemOut_02.08.20_11.19.53.log delete)
at java.security.AccessControlContext.checkPermission
(AccessControlContext.java(Compiled Code))
at java.security.AccessController.checkPermission(AccessController.java(Compiled Code))
at java.lang.SecurityManager.checkPermission(SecurityManager.java(Compiled Code)).

.
Code Base Location:

com.ibm.ws.security.core.SecurityManager :
file:/C:/WebSphere/AppServer/lib/securityimpl.jar
ClassLoader: com.ibm.ws.bootstrap.ExtClassLoader
Permissions granted to CodeSource
(file:/C:/WebSphere/AppServer/lib/securityimpl.jar

<no certificates>
{

(java.util.PropertyPermission java.vendor read);
(java.util.PropertyPermission java.specification.version read);
(java.util.PropertyPermission line.separator read);
(java.util.PropertyPermission java.class.version read);
(java.util.PropertyPermission java.specification.name read);
(java.util.PropertyPermission java.vendor.url read);
(java.util.PropertyPermission java.vm.version read);
(java.util.PropertyPermission os.name read);
(java.util.PropertyPermission os.arch read);
}
(This list continues.)

v If the method is SPI, check the resources.xml file to ensure that the classpath is
correct.

v In order to confirm that all of the policy files are loaded correctly, or what
permission each classpath is granted, enable the trace with
com.ibm.ws.security.policy.*=all=enabled . All of the loaded permission will
be listed in trace.log. Search for app.policy,was.policy and ra.xml. In order to
check the permission list for a classpath, search for Effective Policy
for <classpath>.

v If there is any syntax error in the policy file or ra.xml file, correct it with
policytool. Please avoid editing the policy manually, since it can cause syntax
errors.

v If a permission is listed as Unresolved it does not take effect. Please make sure
that the specified permission name is correct.

v If the classpath specified in resource.xml file is not correct, correct it.
v If a required permission does not exist in policy files or the ra.xml file, examine

the application code to see if this permission needs to be added. If so, add it to
proper policy file or ra.xml file.

Chapter 4. Diagnosing and fixing problems 177

v If the permission should not be granted outside of the specific method that is
accessing this resource, the code needs to be modified to use a doPrivileged
block.

v If this permission does exist in a policy file or ra.xml file and they were loaded
correctly, but the classpath still does not have the permission in its list, the
location of the permission may not be correct. Please read Java 2 Security in this
InfoCenter carefully to determine in which policy file or ra.xml file that
permission should be specified.

Note: If the application is running with Java Mail, this message may be benign.
You can update the <installed Enterprise Application root>/META-
INF/was.policy file to grant the following permissions to the application:
v permission java.io.FilePermission ″${user.home}${/}.mailcap″, ″read″;

v permission java.io.FilePermission ″${user.home}${/}.mime.types″, ″read″;

v permission java.io.FilePermission ″${java.home}${/}lib${/}mailcap″,
″read″;

v permission java.io.FilePermission ″${java.home}${/}lib${/}mime.types″,
″read″;

After enabling single sign-on I cannot log on to the administrative console:
This problem occurs when single sign-on (SSO) is enabled, and you attempt to
access the administrative console using the short name of the server, for example
http://myserver:9090/admin. The server will accept your userID and password,
but returns you to the sign-on page instead of the administrative console.

To correct this problem, use the fully-qualified hostname of the server, for example
http://myserver.mynetwork.mycompany.com:9090/admin.

Errors after enabling SSL, or SSL-related error messages
If you are unable to access resources using a Secure-socket layer (SSL) type URL
(beginning with “https:”), or encounter error messages which indicate SSL
problems, ensure that your HTTP server has been configured correctly for SSL by
browsing the welcome page of the HTTP server using SSL by entering the URL
https:// hostname.

If the page works with HTTP, but not HTTPS, the problem is in the HTTP server.
v Refer to the documentation for your HTTP server for instructions on correctly

enabling SSL. If you are using IHS or Apache, go to:
http://www.ibm.com/software/webservers/httpservers/library.html. Select the
link Frequently Asked Questions, and the topic SSL.

v If you are using the IKeyman (IBM Key Management) tool to create certificates
and keys, remember to “stash” the password to a file when creating the KDB file
with the IBM Key Management Tool.
1. Go to the directory where the KDB file was created, and check to see if there

is a .sth file. If not,
2. Open the KDB file with the IBM Key Management Tool, select Key Database

File > Stash Password.
3. It will display “The password has been encrypted and saved in the file”.

If the HTTP server handles SSL-encrypted requests successfully, or is not involved
(for example, traffic flows from a java client application directly to an enterprise
bean hosted by the WebSphere Application Server, or the problem appears only
after enabling WebSphere Application Server security), what kind of error are you
seeing?

178 IBM WebSphere Application Server Network Deployment, Version 5: Monitoring and Troublshooting

http://www.ibm.com/software/webservers/httpservers/library.html

v javax.net.ssl.SSLHandshakeException - The client and server could not negotiate
the desired level of security. Reason: handshake failure

v javax.net.ssl.SSLHandshakeException - The client and server could not negotiate
the desired level of security. Reason: unknown certificate

v javax.net.ssl.SSLHandshakeException - The client and server could not negotiate
the desired level of security. Reason: bad certificate

v org.omg.CORBA.INTERNAL: EntryNotFoundException or NTRegistryImp E
SECJ0070E: No privilege id configured for: error when programmatically
creating a credential.

For general tips on diagnosing and resolving security-related problems, see the
topic Troubleshooting the security component.

If you do not see a problem that resembles yours, or if the information provided
does not solve your problem, contact IBM support for further assistance.

javax.net.ssl.SSLHandshakeException - The client and server could not negotiate
the desired level of security. Reason: handshake failure: If you see a java
exception stack similar to:

[Root exception is org.omg.CORBA.TRANSIENT:
CAUGHT_EXCEPTION_WHILE_CONFIGURING_SSL_CLIENT_SOCKET: JSSL0080E:
javax.net.ssl.SSLHandshakeException - The client and server could not negotiate
the desired level of security.
Reason: handshake failure:host=MYSERVER,port=1079 minor code: 4942F303
completed: No]
at com.ibm.CORBA.transport.TransportConnectionBase.connect
(TransportConnectionBase.java:NNN)

some possible causes are:
v Not having common ciphers between the client and server.
v Not specifying the correct protocol.

To correct these problems:
v Review the SSL settings by browsing the WebSphere Administrative Console

Security Settings -> SSL Configuration Repertoires -> DefaultSSLSettings (or
other named SSL settings), then selecting the Secure Socket Layer (SSL) option
from the Additional Properties menu. You can also browse the file manually by
viewing: install_dir/properties/sas.client.props.

v Check the property specified by com.ibm.ssl.protocol to determine which
protocol is specified.

v Check the cipher types specified by com.ibm.ssl.enabledCipherSuites. You may
want to add more cipher types to the list. To see which cypher suites are
currently enabled, go to the properties page of the SSL settings as described
above, and look for the Cipher Suites property. To see the list of all possible
cipher suites, go to the properties page of the SSL settings as described above,
then view the online help for that page. From the help page, click Configure
additional SSL settings.

v Correct the protocol or cipher problem by using a different client or server
protocol and/or cipher selection. Typical protocols are SSL or SSLv3.

v Make the cipher selection 40-bit instead of 128-bit. For CSIv2, set both of these
properties to false:
– com.ibm.CSI.performMessageConfidentialityRequired=false

Chapter 4. Diagnosing and fixing problems 179

– com.ibm.CSI.performMessageConfidentialitySupported=false

in the sas.client.props file, or set the security level=medium in the Administrative
Console settings.

javax.net.ssl.SSLHandshakeException: unknown certificate: If you see a java
exception stack similar to: ERROR: Could not get the initial context or unable to
look up the starting context. Exiting. Exception received:
javax.naming.ServiceUnavailableException: A communication failure occurred
while attempting to obtain an initial context using the provider url:
″corbaloc:iiop:localhost:2809″. Make sure that the host and port information is
correct and that the server identified by the provider url is a running name
server. If no port number is specified, the default port number 2809 is used.
Other possible causes include the network environment or workstation network
configuration. [Root exception is org.omg.CORBA.TRANSIENT:
CAUGHT_EXCEPTION_WHILE_CONFIGURING_SSL_CLIENT_SOCKET:
JSSL0080E: javax.net.ssl.SSLHandshakeException - The client and server could
not negotiate the desired level of security. Reason: unknown
certificate:host=MYSERVER,port=1940 minor code: 4942F303 completed: No], it
may be caused by not having the server’s personal certificate in the client
truststore.

To correct this problem:
v Check the client truststore to determine if the signer certificate from the server

personal certificate is there. For a self-signed server personal certificate, the
signer certificate is the public key of the personal certificate. For a CA signed
server personal certificate, the signer certificate is the root CA certificate of the
CA which signed the personal certificate.

v Add the server signer certificate to the client truststore.

javax.net.ssl.SSLHandshakeException: bad certificate: If you see a java exception
stack similar to ERROR: Could not get the initial context or unable to look up
the starting context. Exiting. Exception received:
javax.naming.ServiceUnavailableException: A communication failure occurred
while attempting to obtain an initial context using the provider url:
″corbaloc:iiop:localhost:2809″. Make sure that the host and port information is
correct and that the server identified by the provider url is a running name
server. If no port number is specified, the default port number 2809 is
used.Other possible causes include the network environment or workstation
network configuration. [Root exception is org.omg.CORBA.TRANSIENT:
CAUGHT_EXCEPTION_WHILE_CONFIGURING_SSL_CLIENT_SOCKET:
JSSL0080E: javax.net.ssl.SSLHandshakeException - The client and server could
not negotiate the desired level of security. Reason: bad certificate:
host=MYSERVER,port=1940 minor code: 4942F303 completed: No], it can be
caused by having a personal certificate in the client keystore used for SSL mutual
authentication but not having extracted the signer certificate into the server
truststore so that the server could trust it whenever the SSL handshake is made.

To verify this, check the server truststore to determine if the signer certificate from
the client personal certificate is there. For a self-signed client personal certificate,
the signer certificate is the public key of the personal certificate. For a CA signed
client personal certificate, the signer certificate is the root CA certificate of the CA
which signed the personal certificate.

To correct this problem, add the client signer certificate to the server truststore.

180 IBM WebSphere Application Server Network Deployment, Version 5: Monitoring and Troublshooting

org.omg.CORBA.INTERNAL: EntryNotFoundException or NTRegistryImp E
SECJ0070E: No privilege id configured for: error when programmatically creating
a credential: If you encounter the following exception in a client application
attempting to request a credential from a WebSphere Application Server using SSL
mutual authentication:

ERROR: Could not get the initial context or unable to look up the starting
context. Exiting. Exception received: org.omg.CORBA.INTERNAL: Trace from
server: 1198777258 at host MYHOST on port 0 >>org.omg.CORBA.INTERNAL:
EntryNotFoundException minor code: 494210B0 completed: No at
com.ibm.ISecurityLocalObjectBaseL13Impl.PrincipalAuthFailReason.map_auth_
fail_to_minor_code(PrincipalAuthFailReason.java:99)

or a simutaneous error from the WebSphere Application Server that resembles:

[7/31/02 15:38:48:452 CDT] 27318f5 NTRegistryImp E SECJ0070E: No privilege id
configured for: testuser

the cause may be that the user id sent by the client to the server is not in the
server’s user registry.

To confirm that this is the problem, check that an entry exists for the personal
certificate which is being sent to the server. Depending on the mechanism used for
user registry, look at the native operating system user ID’s or LDAP server entries.

To correct this problem, add the user ID to the user registry entry (for example,
operating system, LDAP directory, or other custom registry) for the personal
certificate identity.

Errors in messaging (JMS API)
What kind of problem are you seeing?
v javax.jms.JMSException: MQJMS2008: failed to open MQ queue in JVM log.

If you do not see a problem that resembles yours, or if the information provided
does not solve your problem, see Messaging (JMS) component troubleshooting tips.
If you are still unable to resolve the problem, contact IBM support for further
assistance.

javax.jms.JMSException: MQJMS2008: failed to open MQ queue in JVM log:
This error can occur when the MQ queue name is not defined in the Internal JMS
Server Queue Names List. This can occur if a WebSphere Application Server Queue
Destination is created, without adding the Queue Name to the internal JMS Server
Queue Names List.

To resolve this problem:
v Open the WebSphere Application Server Administrative Console.
v Click Servers > Manage Application Servers > server_name> Server

Components > JMS Servers.
v Add the Queue Name to the list.
v Save the changes and restart the server.

Errors returned to client trying to send a SOAP request
What kind of problem are you seeing?
v SOAPException: faultCode=SOAP-ENV:Client; msg=Error opening socket;

java.net.ConnectException: Connection refused: connect

Chapter 4. Diagnosing and fixing problems 181

v javax.security.cert.CertPathBuilderException: No end-entity certificate matching
the selection criteria could be found.

If none of these errors match the one you see:
v Browse the target application server log files. (by default file

<installation_directory>/server_name/SystemErr.log and SystemOut.log
(main installation log file) for clues. See Viewing the JVM Logs for more
information.

v Look up any error or warning messages in the message table.
v See the article Troubleshooting Universal Description, Discover, and Integration,

Web Services and SOAP components for more information.

If you do not see a problem that resembles yours, or if the information provided
does not solve your problem, contact IBM support for further assistance.

SOAPException: faultCode=SOAP-ENV:Client; msg=Error opening socket;
java.net.ConnectException: Connection refused: connect: The most likely cause
of this refused connection is that it was sent to the default port, 80, and an HTTP
server is not installed or configured.

To verify this situation, send the message directly to the SOAP port. For example,
to http://<hostname>:9080. If this works, there are two ways to
resolve the problem:
v Continue specifying port 9080 on SOAP requests.
v If an HTTP server such as the IBM HTTP Server, iis, IPlanet, or others, is not

installed, install one and then step through the WebSphere Application Server
installation to install the associated plug-in component.

v If an HTTP server is installed:
– Regenerate the HTTP plug-in configuration in the administrative console by

clicking Environment > Update WebServer Plugin, and restart the HTTP
server.

– If the problem persists, view the HTTP server access and error logs, as well as
the <install_dir>/logs/http_plugin.log file for more information.

javax.security.cert.CertPathBuilderException: No end-entity certificate matching
the selection criteria could be found: This error usually indicates that new or
updated security keys are needed. The security key files are:
v SOAPclient
v SOAPserver
v sslserver.p12

In an installed application, these files are located in:
<install_dir>/installedApps/<application_name>.ear/soapsec.war/key/. After
replacing these files, you must stop and restart the application.

To replace these files in a SOAP-enabled application that has not yet been installed:
v Expand <application_name>.ear.
v Expand soapsec.war.
v Replace the security key files in the key/ directory.
v After you have replaced these files, install the application and restart the server.

Client program does not work
What kind of problem are you seeing?

182 IBM WebSphere Application Server Network Deployment, Version 5: Monitoring and Troublshooting

v ActiveX client fails to display ASP files, or WebSphere Application Server
resources (JSP files, servlet, or HTML pages), or both.

If you do not see a problem that resembles yours, or if the information provided
does not solve your problem, contact IBM support for further assistance.

ActiveX client fails to display ASP files, or WebSphere Application Server
resources (JSP files, servlet, or HTML pages),or both: A possible cause of this
problem is that both IIS (for serving ASP files) and an HTTP server that supports
WebSphere Application Server (such as IBM HTTP Server) are deployed on the
same host. This leads to misdirected HTTP traffic if both servers are listening on
the same port (such as the default port 80).

To resolve this problem, do one of the following:
v Open the IIS administrative panel, and edit the properties of the default Web

server to change the port number to something other than 80;
v Install IIS and the WebSphere Application Server HTTP server on separate

servers.

Troubleshooting application run-time and management
problems

Select the problem you are having with running or managing deployed code for
WebSphere Application Server:
v I have problems bringing up or using the administrative console.
v I have problems starting or using the wsadmin command prompt.
v My Web module or application server dies or hangs.
v I get errors trying to configure and enable security.
v The workload is not being distributed across servers.
v I can’t uninstall or remove a node or application server.
v I have problems creating or using HTTP sessions.

If you do not see a problem that resembles yours, or if the information provided
does not solve your problem, contact IBM support for further assistance.

Installation completes but the administrative console does not
start
What kind of problem are you having?
v “Internal Server Error”, “Page cannot be found”, 404, or similar error trying to

view administrative console.
v “Unable to process login. Please check User ID and password and try again. ”

error when trying to access console page.
v Directory paths in the console are garbled.

If you are able to bring up the browser page, but the console’s behavior is
inconsistent, error-prone, or unresponsive, try upgrading the browser you are
using. Older browsers may not support the administrative console’s features.

If none of these steps solves the problem, check to see if the problem has been
identified and documented using the links in Diagnosing and fixing problems:
Resources for learning. If you do not see a problem that resembles yours, or if the
information provided does not solve your problem, contact IBM support for
further assistance.

Chapter 4. Diagnosing and fixing problems 183

″Internal Server Error″, ″Page cannot be found″, 404, or similar error trying to
view administrative console: If you are unable to view the administrative
console, here are some steps to try:
v Verify that the application server which supports the administrative console is

up and running.
– For a “base” configuration, the administrative console is deployed by default

on “server1”. Before viewing the administrative console, you must:
- Run the startServer server1 command for Windows or ./startServer.sh

server1 command for Unix from a command prompt in the install_dir\bin
directory, or

- Click the “start application server” link from the “first steps” panel, or
- Start WebSphere Application Server as a service or from the Start menu, if

you are using Windows.
– If you are using the Deployment Manager (for a multi-node configuration),

run the startManager command from the Network_Deployment_install_dir\bin
directory.

– View the SystemOut.log file for the application server or deployment
manager to verify that the server supporting the administrative console has
actually started.

v Check the URL you are using to view the console. By default, it is
http://server_name:9090/admin.

v If you are browsing the console from a remote machine, try to eliminate
connection, address and firewall issues by:
– Pinging the server machine from a command prompt, using the same server

name as in the URL.
– If you have access to the server, try browsing the console locally using

http://server_name:9090\admin.
v If you have never been able to access the administrative console, verify that the

installation was successful.

″Unable to process login. Please check User ID and password and try again. ″
error when trying to access console page: This error indicates that security has
been enabled for WebSphere Application Server, and the user ID or password
supplied is either invalid or not authorized to access the console.

To access the console,
v If you are the administrator, use the ID defined as the security administrative

ID. This ID is stored in the WebSphere Application Server directory structure in
the file security.xml.

v If you are not the administrator, ask the administrator to enable your ID for the
administrative console.

Directory paths in the console are garbled: If directory paths used for classpaths
or resources specified in the Application Assembly Tool, configuration files, or
elsewhere, appear garbled in the administrative console, it may be because the Java
runtime interprets a backslash (\) as denoting a control character.

To resolve, modify Windows-style classpaths by replacing occurrences of single
backslashes to two. For example, change “c:\MyFiles\MyJsp.jsp” to
“c:\\MyFiles\\MyJsp.jsp”.

Problems starting or using the wsadmin command
What kind of problem are you having?

184 IBM WebSphere Application Server Network Deployment, Version 5: Monitoring and Troublshooting

v “WASX7023E: Error creating “SOAP” connection to host” or similar error trying
to launch wsadmin command line utility.

v “com.ibm.bsf.BSFException: error while eval’ing Jacl expression: no such method
“<command name>” in class com.ibm.ws.scripting.AdminConfigClient” returned
from wsadmin command.

v WASX7022E returned from running “wsadmin -c ...” command, indicating
invalid command.

v com.ibm.ws.scripting.ScriptingException: WASX7025E: String “” is malformed;
cannot create ObjectName.

v “The input line is too long” error returned from the wsadmin command on a
Windows platform.

If you do not see your problem here:
v If you are not able to enter wsadmin command mode, try running wsadmin -c

″$Help wsadmin″ for help in verifying that you are entering the command
correctly.

v If you can get the wsadmin command prompt, enter $Help help to verify that
you are using specific commands correctly.

v wsadmin commands are a superset of Jacl (Java Command Language), which is
in turn a Java-based implementation of the Tcl command language. For details
on Jacl syntax beyond wsadmin commands, refere to the Tcl developers’ site,
http://www.tcl.tk. For specific details relating to the Java implementation of Tcl,
refer to http://www.tcl.tk/software/java.

v Browse the install_dir/logs/wsadmin.traceout file for clues.
– Keep in mind that wsadmin.traceout is refreshed (existing log records are

deleted) whenever a new wsadmin session is started.
– If the error returned by wsadmin does not seem to apply to the command

you entered, for example, you receive WASX7023E, stating that a connection
could not be created to host “myhost,” but you did not specify “-host
myhost” on the command line, examine the properties files used by wsadmin
to determine what properties are specified. If you do not know what
properties files were loaded, look for the WASX7326I messages in the
wsadmin.traceout file; there will be one of these messages for each properties
file loaded.

If none of these steps fixes your problem, check to see if the problem has been
identified and documented by looking at the available online support (hints and
tips, technotes, and fixes). If you don’t find your problem listed there contact IBM
support.

″WASX7023E: Error creating ″SOAP″ connection to host″ or similar error trying
to launch wsadmin command line utility: By default, the wsadmin utility
attempts to connect to an application server at startup. This is because some
commands act upon running application servers. This error indicates that no
connection could be established.

To resolve this problem:
v If you are not sure whether an application server is running, start it by entering

startserver servername from the command prompt. If the server is already
running, you will see an error similar to “ADMU3027E: An instance of the
server is already running”.

v If you are running a Network Deployment configuration, you will first need to
start the deployment manager by running “startManager” or “startManager.sh”

Chapter 4. Diagnosing and fixing problems 185

http://www.tcl.tk
http://www.tcl.tk/software/java

from the install_dir/bin directory. Then you can launch wsadmin immediately to
connect to the deployment manager, or start a node and application server to
connect to.

v If an application server is running and you still get this error:
– If you are running remotely (that is, on a different machine from the one

running WebSphere Application Server), you must use the -host hostname
option to the wsadmin command to direct wsadmin to the right physical
server.

– If you are using the -host option, try pinging the server machine from the
command line from the machine on which you are trying to launch wsadmin
to verify there are no issues of connectivity such as firewalls.

– verify that you are using the right port number to connect to the WebSphere
Application Server process:
- If you are not specifying a port number (using the -port option) when you

start wsadmin, wsadmin uses the default port specified in
install_dir/properties/wsadmin.properties, property
name=com.ibm.ws.scripting.port (default value =8879).

- The port that wsadmin should send on depends on the server process
wsadmin is trying to connect to.
For a single-server installation, wsadmin attempts to connect to the
application server process by default. To verify the port number:
v Look in the file

install_dir/config/cells/node_name/nodes/node_name/serverindex.html
for a tag containing the property
serverType=″APPLICATION_SERVER″.

v Look for an entry within that tag with the property
endPointName=″SOAP_CONNECTOR_ADDRESS″.

v Look for a port property within that tag. This is the port wsadmin
should send on.

In a Network Deployment installation, wsadmin launched from the bin
directory on the Network Deployment installation attempts to send
requests to the deployment manager by default. To verify the port number:
v Get the hostname of the node on which the Deployment Manager is

installed.
v Using that hostname, look in install_dir/config/cells/

node_nameNetwork/nodes/node_nameManager/serverindex.html for a tag
containing the property serverType=″DEPLOYMENT_MANAGER″.

v Within that tag, look for an entry with a property
endPointName=″SOAP_CONNECTOR_ADDRESS″.

v Within that tag, look for a “port” property. This is the port wsadmin
should send on.

″com.ibm.bsf.BSFException: error while eval’ing Jacl expression: no such method
″<command name>″ in class com.ibm.ws.scripting.AdminConfigClient″ returned
from wsadmin command: This error is usually caused by a misspelled command
name. Use the $AdminConfig help command to get information about what
commands are available. Note that command names are case-sensitive.

WASX7022E returned from running ″wsadmin -c ...″ command, indicating invalid
command: If the command following -c appears to be valid, the problem may be
caused by the fact that on Unix, using wsadmin -c to invoke a command that
includes dollar signs results in the shell attempting to do variable substitution. To

186 IBM WebSphere Application Server Network Deployment, Version 5: Monitoring and Troublshooting

confirm that this is the problem, check the command to see if it contains an
unescaped dollar sign, for example: wsadmin -c ″$AdminApp install″.

To correct this problem, escape the dollar sign with a backslash. For example:
wsadmin -c ″\$AdminApp install ...″.

com.ibm.ws.scripting.ScriptingException: WASX7025E: String ″″ is malformed;
cannot create ObjectName: One possible cause of this error is that an empty
string was specified for an object name. This can happen if you use one scripting
statement to create an object name and the next statement to use that name,
perhaps in an “invoke” or “getAttribute” command, but you don’t check to see if
the first statement really returned an object name. For example (the following
samples use basic Jacl commands in addition to the wsadmin Jacl extensions to
make a sample script):
#let’s misspell "Server"
set serverName [$AdminControl queryNames type=Server,*]
$AdminControl getAttributes $serverName

To correct this error, make sure that object name strings have values before using
them. For example:
set serverName[$AdminControl queryNames type=Server,*]
if {$serverName == ""} {puts "queryNames returned empty - check query argument"}
else {$AdminControl getAttributes $serverName}

For details on Jacl syntax beyond wsadmin commands, refer to the Tcl developers’
site, http://www.tcl.tk.

″The input line is too long″ error returned from the wsadmin command on a
Windows platform: This error indicates that the Windows command line limit of
1024 characters has been exceeded, probably due to a long path name used within
the wsadmin.bat command. The problem can be avoided by using the Windows
subst command, which allows you to map an entire path to a virtual drive. To see
the syntax of the subst command, enter help subst from a Windows command
prompt.

For example if the product resides in
c:\TestEnvironment\Beta\WebSphere\AppServer, edit the file
c:\TestEnvironment\Beta\WebSphere\AppServer\bin\setupCmdLine.bat as follows:

subst w: c:\TestEnvironment\Beta\WebSphere\AppServer

REM comment out the old line
REM SET WAS_HOME=C:\TestEnvironment\Beta\WebSphere\AppServer

SET WAS_HOME=w:

REM comment out the old line
REM SET JAVA_HOME=C:\TestEnvironment\Beta\WebSphere\AppServer\java

SET JAVA_HOME=w:\java

Web module or application server dies or hangs
If an application server dies, that is its process spontaneously closes, or freezes,
that is, its web modules stop responding to new requests:
v If possible, isolate the problem by installing Web modules on different servers.
v View the topic (Monitoring performance with Tivoli Performance Viewer

(formerly Resource Analyzer)). The performance viewer can be used to
determine which resources have reached their maximum capacity, such as java

Chapter 4. Diagnosing and fixing problems 187

http://www.tcl.tk

heap memory (indicating a possible memory leak) and database connections. If a
particular resource appears to have reached its maximum capacity:
– Review the application code for a possible cause.

- If database connections are used and never freed, ensure that application
code performs a close() on any opened Connection object within a finally{}
block.

- If servlet engine threads in use steadily increase, review application
synchronized code blocks for possible deadlock conditions .

- If a JVM’s heap size steadily increases, review application code for memory
leak opportunities, such as static (class-level) collections which cause
objects to never get garbage-collected.

v As an alternative to using the Performance Viewer to detect memory leak
problems, enable verbose garbage collection on the application server. This
feature adds detailed statements to the JVM error log file of the application
server about the amount of available and in-use memory.
1. Select Servers > Application Servers > server_name > Process Definition >

Java virtual machine, and enable Verbose Garbage Collection.
2. Stop and restart the application server.
3. Periodically, or after the application server stops, browse the log file for

garbage collection statements. Look for statements beginning “allocation
failure” , which indicate that a need for memory allocation has triggered a
JVM garbage collection (freeing of unused memory). Allocation failures
themselves are normal and not indicative of a problem. This will be followed
by a statements showing how many bytes are needed and how many are
actually allocated.
If the total amount of free and used memory keeps increasing, that is the
JVM keeps allocating more memory for itself, or if the JVM becomes unable
to allocate as much memory as it needs, as indicated by “bytes needed”,
there may be a memory leak.

v If the Performance Viewer or verbose garbage collection output indicate that the
application server is running out of memory, indicating one of the following
problems:
– There is a memory leak in application code which needs to be addressed. In

order to pinpoint the cause of a memory leak Enable the RunHProf function
in the Servers > Application Servers > server_name > Process Definition >
Java virtual machine pane of the problem application server.
- In the same pane, set the HProf Arguments field to a value like

depth=20,file=heapdmp.txt. This will show the exception stacks to a
maximum of 20 levels, and save the output to the <installation_root>/bin
directory in a file named heapdmp.txt.

- Save the settings, then stop and restart the application server.
- Re-enact the scenario or access the resource that causes the hang or crash, if

possible, and then stop the applicatin server. If this is not possible, wait
until the hang or crash happens again.

- Examine the file into which the heapdump was saved.
v Search on the string, “SITES BEGIN”. This finds the location of a list of

Java objects in memory and the amount of memory allocated to them.
v This list has a record for each time an allocation of memory was made in

this JVM, what type of object the memory was used to instantiate, and
an identifier of a trace stack, listed elsewhere in the dump, which shows
the Java method in which the allocation was made.

188 IBM WebSphere Application Server Network Deployment, Version 5: Monitoring and Troublshooting

v The list is in descending order by number of bytes allocated. Depending
on the nature of the leak, the problem class should show up near the top
of the list, but this is not always the case. Look for large amounts of
memory or frequent instances of the same class getting instantiated
thoughout the list. In the latter case, use the ID in the trace stack
column to find allocations happening repeatedly in the same class and
method.

v Examine the source code indicated in the related trace stacks for the
possibility of memory leaks.

– The default maximum heap size of the application server needs to be
increased, or

– There is a defect in the WebSphere Application Server product which needs to
be reported, or which may already be fixed in a maintenance download.
Contact IBM support.

v If an application server has spontaneously died, look a for a java thread dump
file. This is a file created by the JVM in the product directory structure, with a
name like javacore[number].txt.

v Thread dumps (or “javacores”) can also be forced from running applications.
The way to create a thread dump differs from earlier releases of the product:
1. Using the wsadmin command prompt, first get a handle to the problem

application server: wsadmin>set jvm $AdminControl completeObjectName
type=JVM,process=server1,*

2. Generate the thread dump: wsadmin>$AdminControl invoke $jvm
dumpThreads.

3. Look for an output file in the installation root directory with a name like
javacore.date.time.id.txt

v Browse the thread dump for clues.
– If the thread dump was not manually forced (it was created by the JVM as it

closed) look for an “error” or “exception information” at the beginning of the
file indicating the thread which caused it to die.

– The thread dump contains a snapshot of each thread in the process, starting
in the section labeled “Full thread dump.”
- Look for threads for which the description contains “state:R”. These are

threads in an active, running state when the dump was forced or the
process exited.

- Look for multiple threads in the same java application code source location.
These may be an indication of a deadlock condition (multiple threads
waiting on a monitor) or an infinite loop, and may indicate where in
application code the problem lies.

If none of these steps fixes your problem, check to see if the problem has been
identified and documented by looking at the available online support (hints and
tips, technotes, and fixes). If you don’t find your problem listed there contact IBM
support.

Errors when trying to configure or enable security
What kind of error are you seeing?
v “LTPA password not set. validation failed” message displayed as error in the

Administrative Console after enabling global security.
v “Validation failed for user [userid]. Please try again...” displayed in the

Administrative Console when enabling global security.

Chapter 4. Diagnosing and fixing problems 189

v If you have successfully configured security (made changes, saved the
configuration, and enabled security with no errors), but are now having
problems accessing Web resources or the administrative console, refer to Errors
or access problems after enabling security.

For general tips on diagnosing and resolving security-related problems, see the
topic Troubleshooting the security component.

If you do not see a problem that resembles yours, or if the information provided
does not solve your problem, contact IBM support for further assistance.

″LTPA password not set. validation failed″ message displayed as error in the
Administrative Console after saving global security settings: This error can be
caused if, when configuring WebSphere Application Server security, “LTPA” is
selected as the authentication mechanism, and the LTPA password field is not set.
To resolve this problem:
v Select Authentication Mechanism -> LTPA.
v Complete the password and confirm password fields.
v Click OK.
v Try setting Global Security again.

″Validation failed for user userid. Please try again...″ displayed in the
Administrative Console after saving global security settings: This typically
indicates that a setting in the User Registry configuration is not valid:
v If the user registry is LocalOS, it’s likely that either the server userid and

password is invalid or the server userid does not have “Act As Part of the
Operating System” (for NT) or root authority (for Unix). It needs this authority
in order to access the LocalOS user registry to authenticate.

v If the user registry is Lightweight Directory Access Protocol (LDAP):
– Any of the settings that enable WebSphere Application Server to communicate

with LDAP might be invalid, such as the LDAP server’s userid, password,
host, port, or LDAP filter. When you select Apply or OK on the Global
Security panel, a validation routine connects to the registry just as it would
during runtime when security is enabled. This is done in order to verify any
configuration problems immediately, instead of waiting until the server
restarts.

– If the BIND DN is required, you must specify a DN instead of a short name.
– Sometimes the LDAP server might be down during configuration. The best

way to check this is to issue a command line search - LdapSearch, to search
for the server ID. This way you can determine if the server is running and if
the server ID is a valid entry in the LDAP.

v If the user registry is Custom, double check that your implementation is in the
classpath. Also, check to see if your implementation is authenticating properly.

v Regardless of registry type, check the User Registries configuration panels to see
if you can find a configuration error:
– Go back to the User Registries configuration panels and retype the password

for the server ID.
v See if there is an obvious configuration error. Double check the attributes

specified.

Cannot uninstall an application or remove a node or application
server
What kind of problem are you having?

190 IBM WebSphere Application Server Network Deployment, Version 5: Monitoring and Troublshooting

v After uninstalling an application through wsadmin tool, the application
continues to run and throws “DocumentIOException”

v The removeNode command does not remove the installed application from the
deployment manager

v I cannot display the syntax for the removeNode command.

If none of these steps fixes your problem:
v Make sure that the application and its Web and EJB modules, are in a stopped

state before uninstalling.
v If you are uninstalling or installing an application using wsadmin, make sure

that you are using the -conntype NONE option to invoke wsadmin and enable
local mode. To use the -conntype NONE option, stop the hosting application
server before uninstalling the application.

v Check to see if the problem has been identified and documented by looking at
the available online support (hints and tips, technotes, and fixes).

v If you don’t find your problem listed there contact IBM support

After uninstalling application through the wsadmin tool, the application throws
″DocumentIOException″: If this exception occurs after the application was
uninstalled using wsadmin with the -conntype NONE option:
v Restart the server or,
v Rerun the uninstall command without the -conntype NONE option.

The removeNode command does not remove the installed application from the
deployment manager: If the applications were installed indirectly using the
addNode program with the -installapp option, then removeNode will not uninstall
them, since they may be in use by other nodes. These applications must be
explicitly uninstalled, for example through the administrative console.

I cannot display the syntax for the removeNode command: Unlike the addNode
command, the removeNode command is valid with no parameters, so executing it
will execute the operation, that is, remove the node, without displaying the
command syntax.

To see the valid options for removeNode, execute removeNode -? or removeNode
-help.

Workload not getting distributed or errors setting up multiserver
environment
What kind of problem are you seeing?
v Web (HTTP) requests do not get distributed to all servers.
v Enterprise bean requests don’t get distributed to all servers.
v Enterprise bean requests are not distributed evenly.
v After creating and then starting a cluster, the cluster will not start and logs show

that the servers are not found.
v One or more nodes don’t show up in the administrative console.
v When some servers fail, enterprise bean requests are still sent to the bad server

(failover fails).
v The addNode command fails.
v Application files are not getting copied to all nodes.
v After downloading the Network Deployment plugin to my system, my server

does not start.

Chapter 4. Diagnosing and fixing problems 191

v Stopped or hung servers do not share the workload after being restored.

If none of these steps fixes your problem:
v Browse the JVM logs of the problem deployment manager and application

servers, and
– Look up any error messages by selecting the Quick Reference view of this

InfoCenter and expanding Messages in the navigation tree.
– Use the Log Analyzer to browse and analyze the service log (activity.log) of

the deployment manager and any nodes encountering problems. View the
activity.log files in both <NetworkDeployment_installation_root>/logs and
<ApplicationServer_installation_root>/logs.

– If Java exceptions appear in the log files, try to determine the actual
subcomponent directly involved in the problem by examining the trace stack
and looking for a WebSphere Application Server-related class near the top of
the stack (with names beginning com.ibm.websphere or com.ibm.ws) which
threw the exception. If appropriate, review the steps for troubleshooting the
appropriate subcomponent under Troubleshooting by component: what is not
working?
For example, if the exception appears to have been thrown by a class in the
com.ibm.websphere.naming package, review the topic, Naming Services
Component troubleshooting tips in this InfoCenter.

v Ensure that all the machines in your configuration have TCP/IP connectivity to
each other by running the ping command:
– From each physical server to the Deployment Manager, and
– From the Deployment Manager to each physical server.

v Although the problem is happening in a clustered environment, the actual cause
may be only indirectly related, or unrelated, to clustering. Be sure to investigate
all relevant possibities:
– If an enterprise bean on one or more servers is not serving requests, review

the topics Cannot access an enterprise bean from a servlet, jsp, standalone
program, or other client and Cannot access an object hosted by WebSphere
Application Server from a servlet, jsp file, or other client.

– If problems seem to appear after enabling security, review the topic Errors or
access problems after enabling security.

– If one or more application server stops responding to requests, or
spontaneously dies (its process closes), review the topic Web module or
application server dies or hangs.

– If SOAP requests are not being served by some or all servers, review the topic
Errors returned to client trying to send a SOAP request.

– If you have problems installing or deploying an application on servers on one
or more nodes, review the topic, Troubleshooting code deployment and
installation problems.

v If your topology consists of a Windows-based Deployment Manager with
Unix-based servers, browse any recently-updated .xml and .policy files on the
Unix platforms using vi to ensure that Control-M characters haven’t been
inadvertently inserted in the files. To avoid this problem in the future edit these
files using vi on the Unix platforms to avoid inserting these characters.

v Check the steps for troubleshooting the Workload Management component.
v check to see if the problem is identified and documented by looking at the

available online support (hints and tips, technotes, and fixes). If you don’t find
your problem listed there contact IBM support.

192 IBM WebSphere Application Server Network Deployment, Version 5: Monitoring and Troublshooting

Web (HTTP) requests don’t get distributed to all servers: If HTTP requests are
not being distributed to all servers:
v Check your PrimaryServers list. The plugin will load balance across all servers

that are defined in the PrimaryServers list if affinity has not been established. If
you do not have a PrimaryServers list defined then the plugin will load balance
across all servers defined in the cluster if affinity has not been established. In the
case where affinity has been established, the plugin should go directly to that
server for all requests within the same HTTP session.

v If some servers are servicing requests and one or more others are not, try
accessing a problem server directly to verify that it works, apart from workload
management issues. If that does not work:
– Use the Administrative Console to ensure that the affected server is running.
– See the article Web resource (JSP, servlet, html file, image, etc) will not display

for more information.
v See the article HTTP plugin component troubleshooting tips for more

information.
v Check the steps for diagnosing workload management issues in Troubleshooting

the Workload Management component.

Enterprise bean requests don’t get distributed to all servers: If a client cannot
reach a server in a cluster thought to be reachable, a server may have been marked
unusable, or is down. To verify this:
v Use the Administrative Console to verify that the server is started. Try starting

it, or if started restart it.
v Browse the administrative console and verify that the node that runs the server

having the problem appears. If it does not:
– Review the steps for adding a node to a cluster.
– Review the steps under ″One or more nodes don’t show up in the admin

console.″
v If possible, try accessing the enterprise bean directly on the problem server to

see if there is a problem with TCP/IP connectivity, application server health, or
other problem not related to workload management. If this fails, review the
topic Cannot access enterprise bean from a servlet, jsp, standalone program , or
other client.

v Check the steps for diagnosing workload management issues in Troubleshooting
the Workload Management component.

Enterprise bean requests are not distributed evenly: There are a number of
possible reasons for this behavior, which generally fall into one or more of these
categories:
v improper configuration
v environment issues such as the availability of servers or applications.
v a large numbers of requests that involve transactional affinity, or
v a small number of clients

Work load management of WebSphere Application Server is based on a round
robin scheme of request distribution. This results in balance being determined by
numbers of requests rather than by any other measure. A true balance problem is
determined by comparing the number of requests processed by each member of
the cluster with the weights that have been set for each of those members. This is
done by following the step in the Troubleshooting the Workload Management
component.

Chapter 4. Diagnosing and fixing problems 193

v When the percentage of requests that arrive for each member of the cluster is
consistent with the weights then further analysis of the application is required to
determine the cause for the workload being imbalanced even when the number
of requests is balanced.

v When the number of numIncomingNonWLMObjectRequests is not balanced
among the members of the cluster and is large in relation to the
numIncomingRequests then the reason for the imbalance is the
non-distributable components installed on the members of the cluster. A
modification to the configuration will yield a more balanced environment.

v When the number of numIncomingStrongAffinityRequests is not balanced
among the members of the cluster and is large in relation to the
numIncomingRequests then the reason for the imbalance is the requests which
are invoked within a transaction. These can be reduced by installing the objects
involved within a transaction within the same cluster.

After creating and then starting a cluster, the cluster will not start and logs show
that the servers are not found: This error can occur when the configuration is not
synchronized from the deployment manager to a node. If ″auto synchronization″ is
enabled, wait until the synchronization has had a chance to run. If you are using
manual synchronization, explicitly request a sync to each node on the cluster.

To determine whether synchronization has taken place, look at the configuration
on the node machines using the administrative console and verify that the new
cluster members are defined on each node.

One or more nodes do not show up in the administrative console: This can
occur when there is a basic connectivity problem between the deployment manager
server and other servers in the topology. To determine whether this is the problem,
look for the fileserverindex.xml in the deployment manager’s directory structure.
v If the problem node does not appear in the list, review the steps for adding a

node to the cluster.
v If the problem node does appear in the list:

– From the deployment manager server, ping the server name as it appears in
the list. If the ping command shows no communiction, verify that the
hostname is correct in the list, and correct it if necessary, then restart the
deployment manager.

– If the name that appears in the list is the short name, ping the fully qualified
network name. If the corrected name works, update the list and restart the
deployment manager.

– If the problem server uses Dynamic Host Configuration Protocol (DHCP), try
replacing the logical hostname with the IP address and restart the deployment
manager. If this resolves the problem be aware that you will need to change
serverindex.xml every time the problem server’s address changes, potentially
every time the problem machine is rebooted. To avoid this problem, consider
assigning a static IP address to the server.

v If you still cannot establish communication between the servers, contact your
network administrator to resolve the problem, and restart the deployment
manager after the problem is corrected.

When some servers fail, Enterprise bean requests still sent to the bad server
(failover fails): Some possible causes of this problem are:
v The client may have been in a transaction with an enterprise bean on the server

that went down. Check the JVM logs of the application server hosting the
problem enterprise bean instance. If a request is returned with CORBA

194 IBM WebSphere Application Server Network Deployment, Version 5: Monitoring and Troublshooting

SystemException COMM_FAILURE
org.omg.CORBA.completion_status.COMPLETED_MAYBE, this may be
working as designed. The design is to let this particular exception flow back to
the client, since the transaction may have completed. Failing over this request to
another server could result in this request being serviced twice.

v If the requests sent to the servers come back to the client with any other
exceptions consistently, it may be that no servers are available. In this case,
follow the resolution steps as outlined in Troubleshooting the Workload
Management component.

The addNode command fails: This error can occur when the deployment
manager’s Domain Name Server (DNS) configuration is not properly set up. The
default installation on Linux uses the loopback address (127.0.0.1) as the default
host address. To verify that this is the problem, query the hostname of the suspect
machine. If it returns localhost 127.0.0.1, or if file transfer traces at the node show
the node trying to upload files to a URL that includes 127.0.0.1, the node has an
incorrect DNS configuration.

To correct this problem, update the /etc/hosts file or the name service
configuration file (/etc/nsswitch.conf) to query the Domain Name Server or
Network Information Server (NIS) before searching hosts.

Application files are not getting copied to all nodes: In the WebSphere
Application Server Network Deployment environment, the application binary files
are transferred to the individual nodes where applications are supported as part of
the node sync operation. During node sync, application files are only propogated if
their deployment descriptors specify enableDistribution=true. This flag is
specified as part of the application installation procedure in the administrative
console, and is stored as a property in the
d<install_dir>/config/cells/<cell_name>/applications/
<application_name>/deployment.xml file.

To confirm that this is the cause, check to see whether the enableDistribution flag
is set. If it is already set to true, ensure that the target node is configured to run
auto file synchronization.

If both of these settings are correct and the problem persists, manually perform an
explicit synchronization. If the application files still do not appear in the
installation directory, use the EARExpander tool (located in $WAS_ROOT/bin) to
expande the ear file from the repository to the installation destination. On the
remote nodes the repository should appear in
config/cells/<cell_name>/applications/<application_name>.ear/directory.

After downloading the Network Deployment plugin to my system, my server
does not start: If you experience this situation, the most likely cause is that the
transport paths in the plugin must be modified to work in your environment. See
Example: Manually editing transport settings in the server.xml file for information
on how to modify these settings.

Stopped or hung servers do not share the workload after being restored: This
error occurs when the servers that were unavailable are not recognized by the
Workload Management component after they are restored. There is an ″unusable″
interval determined by the property com.ibm.websphere.wlm.unusable.interval
during which the WLM will wait to send to a server that has been marked
unusable. By default this is 15 minutes.

Chapter 4. Diagnosing and fixing problems 195

You can confirm that this is the problem by ensuring that the servers that were
down are now up and capable of servicing requests. Then wait for the unusable
interval to elapse before checking to determine whether failback occurred.

Problems creating or using HTTP sessions
Note: To view and update the Session Manager settings discussed here, use the
administrative console. Select the application server that hosts the problem
application, then under Additional properties, select Web Container, then Session
manager.

What kind of problem are you having?
v HTTP Sessions are not getting created, or are lost between requests.
v HTTP Sessions are not persistent (session data lost when application server

restarts, or not shared across cluster).
v Session is shared across multiple browsers on same client machine.
v Session is not getting invalidated immediately after specified Session timeout

interval.
v Unwanted sessions are being created by jsps.

If your problem is not described here, or none of these steps fixes the problem:
v Review Troubleshooting the HTTP Session Manager for general steps on

debugging Session-manager related problems.
v Review Managing HTTP sessions for information on how to configure the

Session manager, and best practices for using it.
v Check to see if the problem has been identified and documented by looking at

the available online support (hints and tips, technotes, and fixes).
v If you don’t find your problem listed there contact IBM support.

HTTP Sessions are not getting created, or are lost between requests: By default,
the Session Manager uses cookies to store the session ID on the client between
requests. Unless you intend to avoid cookie-based session tracking, ensure that
cookies are flowing between WebSphere Application Server and the browser:
v Make sure the Enable cookies checkbox is checked under the Session tracking

Mechanism property.
v Make sure cookies are enabled on the browser you are testing from or from

which your users are accessing the application.
v Check the Cookie domain specified on the SessionManager (to view the or

update the cookie settings, in the Session tracking mechanism->enable cookies
property, click Modify).
– For example, if the cookie domain is set as “.myCom.com”, resources should

be accessed using that domain name, e.g.
http://www.myCom.com/myapp/servlet/sessionservlet.

– If the domain property is set, make sure it begins with a dot (.). Certain
versions of Netscape do not accept cookies if domain name doesn’t start with
a dot. Internet Explorer honors the domain with or without a dot. For
example, if the domain name is set to mycom.com, change it to .mycom.com so
that both Netscape and Internet Explorer honor the cookie.

v Check the Cookie path specified on the SessionManager. Check whether the
problem url is hierarchially below the Cookie path specified. If not correct the
Cookie path.

v If the Cookie maximum age property is set, ensure that the client (browser)
machine’s date and time is the same as the server’s, including the time zone. If

196 IBM WebSphere Application Server Network Deployment, Version 5: Monitoring and Troublshooting

the client and the server time difference is over the “Cookie maximum age” then
every access would be a new session, since the cookie will “expire” after the
access.

v If you have multiple web modules within an enterprise application that track
sessions:
– If you want to have different session settings among web modules in an

enterprise application, ensure that each web module specifies a different
cookie name or path, or

– If Web modules within an enterprise application use a common cookie name
and path, ensure that the HTTP session settings, such as Cookie maximum
age, are the same for all Web modules. Otherwise cookie behaviour will be
unpredictable, and will depend upon which application creates the session.
Note that this does not affect session data, which is maintained separately by
Web module.

v Check the cookie flow between browser and server:
1. On the browser, enable “cookie prompt”. Hit the servlet and make sure

cookie is being prompted.
2. On the server, enable SessionManager trace. Enable tracing for the HTTP

Session Manager component, by using the trace specification
“com.ibm.ws.webcontainer.httpsession.*=all=enabled”. After trace is enabled,
excericise your session-using servlet or jsp, then follow the instructions for
dumping and browsing the trace output .

3. Access the session servlet from the browser.
4. The browser will prompt for the cookie; note the jsessionid.
5. Reload the servlet, note down the cookie if a new cookie is sent.
6. Check the session trace and look for the session id and trace the request by

the thread. Verify that the session is stable across web requests:
– Look for getIHttpsession(...) which is start of session request.
– Look for releaseSesson(..) which is end of servlet request.

v If you are using URL rewriting instead of cookies:
– Ensure there are no static HTML pages on your application’s navigation path.
– Ensure that your servlets and jsp files are implementing URL rewriting

correctly. For details and an example see Session tracking options.
v If you are using SSL as your session tracking mechanism:

– Ensure that you have SSL enabled on your IHS or iPlanet http server.
– Review Session tracking with SSL information.

v If you are in a clustered (multiple node) environment, ensure that you have
session persistence enabled.

HTTP Sessions are not persistent: If your HTTP sessions are not persistent, that
is session data is lost when the application server restarts or is not shared acrss the
cluster:
v Check the Datasource.
v Check the SessionManager’s Persistence Settings properties:

– If you intend to take advantage of Session Persistence, verify that Persistence
is set to Database or Memory to Memory Replication.

– If you are using Database-based persistence:
- Check the jndi name of the datasource specified correctly on

SessionManager.
- Specify correct userid and password for accessing the database.

Chapter 4. Diagnosing and fixing problems 197

Note that these settings have to be checked against the properties of an
existing Data Source in the admin console. The Session Manager does not
automatically create a session database for you.

- The Datasource should be non-JTA, i.e. non XA enabled.
- Check the JVM logs for appropiate database error messages.
- With DB2, for row sizes other than 4k make sure specified row size

matches the db2 page size. Make sure tablespace name is specified
correctly.

– If you are using memory-based persistence, available in a
network-deployment (multiple application server) configuration only:
- Review Memory-to-memory replication and Configuring for

Memory-to-memory replication.
- Review the Internal Replication Domains properties of your Session

manager.

Session is shared across multiple browsers on same client machine: This
behaviour is browser-dependent. It varies between browser vendors, and also may
change according to whether a browser is launched as a new process or as a
subprocess of an existing browser session (for example by hitting Ctl-N on
Windows).

The Cookie maximum age property of the Session Manager also affects this
behaviour, if cookies are used as the session-tracking mechanism. If the maximum
age is set to some positive value, all browser instances share the cookies, which are
persisted to file on the client for the specifed maximum age time.

Session is not getting invalidated immediately after specified Session timeout
interval: The SessionManager invalidation process thread runs every x seconds to
invalidate any invalid sessions, where x is determined based on the Session
timeout interval specified in the Session manager properties. For the default value
of 30 minutes , x is around 300 seconds. In this case, it could take up to 5 minutes
(300 seconds) beyond the timeout threshold of 30 minutes for a particular session
to become invalidated.

Unwanted sessions are being created by jsps: As required by the Java Server
Page specification, jsps by default perform a request.getSession(true), so that a
session is created if none exists for the client. To prevent jsps from creating a new
session, set the session scope to false in the jsp using the page directive as follows:
<% @page session="false" %>

Troubleshooting by component: what is not working?
This section provides troubleshooting information based on the task you were
trying to accomplish when the problem occurred. To find more information about
your problem, select a task category from the list below.

If you do not see a task that resembles yours, or if the information provided does
not solve your problem, contact IBM support for further assistance.

Installation component troubleshooting tips
If you are having problems installing the WebSphere Application Server, follow
these steps to resolve the problem:
v If possible, follow the steps outlined in Troubleshooting the installation.

198 IBM WebSphere Application Server Network Deployment, Version 5: Monitoring and Troublshooting

v Browse the relevant log files for clues:
– The main installation log file: <install_dir>/log.txt.
– IBM Http Server log: <install_dir>/ihs.log.
– The log file produced when the default application .ear file is installed is:

<install_dir>/logs/installDefaultApplication.log.
v Ensure that you have installed the correct level of dependent software, such as

operating system version and revision level, by reviewing
http://www.ibm.com/software/webservers/appserv/doc/latest/prereq.html.

If none of these steps solves the problem, check to see if the problem is identified
and documented using the links in Diagnosing and fixing problems: Resources for
learning. If you do not see a problem that resembles yours, or if the information
provided does not solve your problem, contact IBM support for further assistance.

Migration utility troubleshooting tips
If you are encounter problems migrating an application from a previous version of
WebSphere Application Server to Version 5.0:
v Look for these log files and browse them for clues:

– <install_dir>/logs/WASPostUpgrade.<time stamp>.log

– <migration_backup_dir>/WASPreUpgrade.<time stamp>.log

– <install_dir>/logs/clientupgrade.<time stamp>.log

v Look for MIGR0259I: Completed successfully or MIGR0271W: Completed with
warnings in the <migration_backup_dir>/WASPreUpgrade.<time stamp>.log,
<migration_backup_dir>/WASPreUpgrade.<time stamp>.log, or
<install_dir>/logs/clientupgrade.<time stamp>.log.
If MIGR0286E: Completed with errors. appears, attempt to correct any
problems based on the error messages that appear in the log file. After
correcting any errors, rerun the command from the bin directory of the product
installation root. If the errors persist, rerun the command with trace enabled.

v To generate more detailed messages when running the migration tools, enable
tracing:
– when running the WASPreUpgrade or WASPostUpgrade tools, add the

following strings when you invoke them: -traceString ″*=all=enabled″
-traceFile migration_backup_dir/filename.

– when running ClientUpgrade, add the following strings to the command line
when you invoke it: -traceString ″*=all=enabled″ -traceFile
install_dir/logs/filename.

v Open the log analyzer on the service log of the server which is hosting the
resource you are trying to access and use it to browse error and warning
messages.

v With WebSphere Application Server running, run the dumpNameSpace on
Windows or dumpNameSpace.sh command on Unix, and pipe, redirect, or
“more” the output so that it can be easily viewed. This command results in a
display of all objects in WebSphere Application Server’s namespace, including
the directory path and object name.

v If the object a client needs to access does not appear, use the administrative
console to verify that:
– The server hosting the target resource is started.
– The web module or EJB container hosting the target resource is running.
– The JNDI name of the target resource is properly specified.

Chapter 4. Diagnosing and fixing problems 199

http://www.ibm.com/software/webservers/appserv/doc/latest/prereq.html

v To view detailed information on the runtime behavior of WebSphere Application
Server’s Naming service, enable trace on the following components and review
the output:
– com.ibm.ws.naming.*
– com.ibm.websphere.naming.*

If none of these steps solves the problem, see Troubleshooting migration problems
for tips on specific migration problems. If none of these match your problem, check
to see if the problem is identified and documented using the links in Diagnosing
and fixing problems: Resources for learning. If you do not see a problem that
resembles yours, or if the information provided does not solve your problem,
contact IBM support for further assistance.

Administration and Administrative Console troubleshooting
tips

In the WebSphere Application Server, administrative functions are supported by
the
v application server (such as “server1”) in the base installation, or
v the Deployment Manager in the Network Deployment configuration.

This process must be running in order to use the administrative console. The
wsadmin command line utility has a local mode that can be used to perform
administrative functions even when the server is not running.

If you have problems starting or using the administrative console or wsadmin
utility, verify that the supporting server process started and is healthy.
v For a base installation, look at the files:

– installation_directory/logs/server/startServer.log for this message indicating
that the server started successfully: ADMU3000I: Server server1 open for
e-business; process id is nnnn..

– install_dir/logs/server/SystemOut.log for this message indicating that the
server started successfully: WSVR0001I: Server server open for e-business.

v For a Network Deployment installation, look at the files:
– install_dir/logs/dmgr/startServer.log for this message indicating that the

server started successfully: ADMU3000I: Server server1 open for e-business;
process id is nnnn..

– install_dir/logs/dmgr/SystemOut.log for this message indicating that the
server started successfully: WSVR0001I: Server server open for e-business.

v Look up any error messages in these files in the message reference table. Select
the Quick Reference view in this InfoCenter, then click Messages.

v A message like WASX7213I: This scripting client is not connected to a server
process when trying to start wsadmin indicates that either the server process is
not running, the host machine where it is running is not accessible, or that the
port or server name used by wsadmin is incorrect.

v Verify that you are using the right port number to communicate with the admin
console or wsadmin server using the following steps:
– Look in the SystemOut.log.
– The line ADMC0013I: SOAP connector available at port nnnn indicates the

port the server is using to listen for wsadmin functions.
– The property com.ibm.ws.scripting.port in the file

install_dir/properties/wsadmin.properties controls the port used by wsadmin

200 IBM WebSphere Application Server Network Deployment, Version 5: Monitoring and Troublshooting

to send requests to the server. If it is different from the value shown in the
SystemOut.log file, either change the port number in this file, or specify the
correct port number when starting wsadmin by using the -port port_number
property on the command line.

– The message SRVE0171I: Transport http is listening on port nnnn (default
9090) indicates the port the server uses to listen for administrative console
requests. If it is different than the one specified in the URL for the admin
console, change the URL in the browser to the correct value. The default
value is http://localhost:9090/admin.

v Use the TCP/IP ping command to test that the hostname where the application
server or Deployment manager is executing is reachable from the system where
the browser or wsadmin program are being used. If you are able to ping this
hostname, this indicates that there are no firewall or connectivity issues.

v if the host where the application server or DeploymentManager is running is
remote to the machine from which the client browser or wsadmin command is
running, ensure that
– the hostname in the browser URL for the console is correct, or
– the -host hostname option of the wsadmin command is being used to direct

wsadmin to the right server.

If none of these steps solves the problem, See if the specific problem you are
having is addressed in the topic Installation completes but the administrative
console does not start in this InfoCenter. Check to see if the problem has been
identified and documented using the links in Diagnosing and fixing problems:
Resources for learning. If you do not see a problem that resembles yours, or if the
information provided does not solve your problem, contact IBM support for
further assistance.

Application Assembly Tool troubleshooting tips
If you are having problems installing the WebSphere Application Server
Application Assembly Tool (AAT), follow these steps:
v If a problem occurs using this component, the first thing to do is to enable the

printing of messages and exceptions to the screen.
– Modify the assembly.bat file located in the bin directory of the product

installation. Change the statement ″start javaw″ to just ″java″.
– Restart the AAT and a hanging command prompt window will appear

through the lifetime of the Java process and display messages and exceptions.
– Look up any error or warning messages you see in the message reference

table.
v With a problem application open in the AAT, use the Verify menu command.

This command will go through all components of the application and validate
them for any XML errors or invalid entries such as missing fields, invalid bean
or class references.

v To verify the integrity of an EAR (Enterprise Application Resource) file, expand
it manually (outside of the AAT) by running the WebSphere Application Server
<install_root>\bin\EARExpander.bat or EARExpander.sh file and supplying the
name of the EAR file as a parameter. Browse the directory structure of the
expanded EAR file to see if contains all the expected files.
Here is an example using the Windows command prompt: EARExpander -ear
my.ear -expandDir c:\tmp\myear -operation expand

Chapter 4. Diagnosing and fixing problems 201

v Contact the developer of the EAR file or its component files and ensure that
they comply with J2EE specification level 1.3 and that any enterprise beans it
contains conform to the EJB 2.0 Specification level.

If none of these steps solves the problem, check to see if the problem is identified
and documented using the links in Diagnosing and fixing problems: Resources for
learning. If you do not see a problem that resembles yours, or if the information
provided does not solve your problem, contact IBM support for further assistance.

Web Container troubleshooting tips
If you are having problems starting a Web module, or accessing resources within a
particular Web module:
v View the JVM logs and process logs for the application server which hosts the

problem Web modules, and look for messages in the JVM output file which
indicate that the web module has started successfully. You should see messages
similar to the following:
WebContainer A SRVE0161I: IBM WebSphere Application Server - Web Container.
Copyright IBM Corp. 1998-2002
WebContainer A SRVE0169I: Loading Web Module: [module_name]
ApplicationMg A WSVR0221I: Application started: [application_name]
HttpTransport A SRVE0171I: Transport http is listening on port [port_number]
[server_name] open for e-business in [install_root]/log/[server_name]/SystemOut.log

v For specific problems that can cause servlets, html files, and jsp files not to be
served, see Web resource (JSP, servlet, html file, image, etc) will not display.

v Use the Log Analyzer tool to browse the service log (activity.log) file for clues.
v For a detailed trace of the runtime behaviour of the Web container, enable trace

for the component com.ibm.ws.webcontainer.*.

If none of these steps fixes your problem, check to see if the problem has been
identified and documented by looking at the available online support (hints and
tips, technotes, and fixes). If you don’t find your problem listed there contact IBM
support.

HTTP plugin component troubleshooting tips
If you are having problems with the HTTP plugin component - the component
which sends requests from your HTTP server, such as IBM HTTP Server, Apache,
Domino, iPlanet, or IIS, to the Websphere Application Server, try these steps:
v Review the file <install_dir>/logs/http_plugin.log for clues. Look up any

error or warning messages in the message table.
v Review your HTTP server’s error and access logs to see if the HTTP server is

having a problem:
– IBM HTTP Server and Apache: access.log and error.log.
– Domino web server: httpd-log and httpd-error.
– iPlanet: access and error.
– IIS: <timedatestamp>.log.

If these files don’t reveal the cause of the problem, follow these additional steps.

Plugin Problem Determination Steps

202 IBM WebSphere Application Server Network Deployment, Version 5: Monitoring and Troublshooting

The plugin provides very readable tracing which can be beneficial in helping to
figure out the problem. By setting the LogLevel attribute in the
config/plugin-cfg.xml file to Trace, you can follow the request processing to see
what is going wrong. At a high level:
1. The plugin gets a request.
2. The plugin checks the routes defined in the plugin-cfg.xml file.
3. It finds the server group.
4. It finds the server.
5. It picks the transport protocol, usually HTTP.
6. It sends the request.
7. It reads the response.
8. It writes it back to the client.

You can see this very clearly by reading through the trace for a single request:
v The first step is to determine if the plugin has loaded into the HTTP server

successfully.
– Check to make sure thehttp_plugin.log has been created.
– If it has, look in it to see if any error messages indicate some sort of failure

that took place during plugin initialization. If no errors are found look for the
following stanza, which indicates that the plugin started normally. Ensure that
the timestamps for the messages correspond to the time you started the
webserver:
--------------------System Information--------------------
Bld date: Jul 3 2002, 15:35:09
Webserver: IIS
Hostname = SWEETTJ05
OS version 4.0, build 1381, ’Service Pack 6’

– Some common errors are:

lib_security: loadSecurityLibrary: Failed to load gsk library
The GSK did not get installed or the installation is corrupt. If the GSK
did not get installed you can determine this by searching for the file
gsk5ssl.dll on all drives for Win32 or see if there are any
libgsk5*.so files in /usr/lib on Unix. Try reinstalling the plugin to
see if you can get the GSK to install in order to fix this.

ws_transport: transportInitializeSecurity: Keyring wasn’t set
The HTTPS transport defined in the configuration file was
prematurely terminated and did not contain the Property definitions
for the keyring and stashfile. Check your XML syntax for the line
number given in the error messages that follow this one to make sure
the Transport element contains definitions for the keyring and
stashfiles before it is terminated.

– If thehttp_plugin.log is not created, check the webserver error log to see if
any plugin related error messages have been logged there that indicate why
the plugin is failing to load. Typical causes of this can include failing to
correctly configure the plugin with the Webserver environment. Check the
documentation for configuring the Webserver you are trying to use with the
Webserver plugin.

v Determine whether there are network connection problems with the plugin and
the various app servers defined in the configuration. Typically you will see the
following message when this is the case:

Chapter 4. Diagnosing and fixing problems 203

ws_common: websphereGetStream: Failed to connect to app server, OS
err=%d

Where %d is an OS specific error code related to why the connect() call failed.
This can happen for a variety of reasons.
– Ping the machines to make sure they are properly connected to the network.

If the machines can’t be pinged then there is no way the plugin will be able
to contact them. Possible reasons for this include:
- Firewall policies limiting the traffic from the plugin to the app server.
- The machines are not on the same network.

– If you are able to ping the machines then the likely cause of the problem is
that the port is not active. This could be because the application server or
cluster has not been started or the application server has gone down for some
reason. You can test this by hand by trying to telnet into the port that the
connect() is failing on. If you cannot telnet into the port the app server is not
up and that problem needs to be resolved before the plugin will be able to
connect() successfully.

v Determine whether other activity on the machines where the servers are
installed is impairing the server’s ability to service a request. Check the
processor utilization as measured by the task manager, processor ID, or some
other outside tool to see if it:
– Is not what was expected.
– Is erratic rather than a constant.
– Shows that a newly added member of the cluster is not being utilized.
– Shows that a failing member that has been fixed is not being utilized.

v Check the administrative console to ensure that the application servers are
started. View the administrative console for error messages or look in the JVM
logs.

v In the administrative console, select the problem application server and view its
installed applications to verify that they are started.

If none of these steps solves the problem:
v For specific problems that can cause web pages and their contents not to display,

see Web resource (JSP, servlet, html file, image, etc) will not display in this
InfoCenter.

v Check to see if the problem has been identified and documented using the links
in Diagnosing and fixing problems: Resources for learning.

v If you do not see a problem that resembles yours, or if the information
provided does not solve your problem, contact IBM support for further
assistance.

HTTP session manager troubleshooting tips
If you are having problems creating or using HTTP sessions with your Web
application hosted by WebSphere Application Server, here are some steps to take:
v See HTTP session aren’t getting created or are getting dropped to see if your

specific problem is discussed.
v View the JVM logs for the application server which hosts the problem

application:
– first, look at messages written while each application is starting. They will be

written between the following two messages:

204 IBM WebSphere Application Server Network Deployment, Version 5: Monitoring and Troublshooting

Starting application: <application>
.....................
Application started: <application>

– Within this block, look for any errors or exceptions containing a package
name of com.ibm.ws.webcontainer.httpsession. If none are found, this is an
indication that the session manager started successfully.

– Error ″SRVE0054E: An error occurred while loading session context and
Web application″ indicates that SessionManager didn’t start properly for a
given application.

– Look within the logs for any Session Manager related messages. These
messages will be in the format SESNxxxxE and SESNxxxxW for errors and
warnings, respectively, where xxxx is a number identifying the precise error.
Look up the extended error definitions in the Session Manager message table.

v Use the Log Analyzer tool to browse the service log (activity.log) file for clues.
v See Best practices for using HTTP Sessions.
v To dynamically view the number of sessions as a Web application is running,

enable performance monitoring for HTTP sessions. This will give you an
indication as to whether sessions are actually being created.
– To learn how to enable HTTP session monitoring, see (Enabling data

collection through the administrative console).
– To learn how to view the http session counters as the application runs, see

(Monitoring performance with Tivoli Performance Viewer (formerly Resource
Analyzer)).

v Alternatively, a special servlet can be invoked that displays the current
configuration and statistics related to session tracking. This servlet has all the
counters that are in performance monitor tool and has some additional counters.
– Servlet name: com.ibm.ws.webcontainer.httpsession.IBMTrackerDebug.
– It can be invoked from any web module which is enabled to serve by class

name. For example, using default_app,
http://localhost:9080/servlet/com.ibm.ws.webcontainer.httpsession.IBMTrackerDebug.

– If you are viewing the module via the serve-by-class-name feature, be aware
that it may be viewable by anyone who can view the application. You may
wish to map a specific, secured URL to the servlet instead and disable the
serve-servlets-by-classname feature.

v Enable tracing for the HTTP Session Manager component:
– Use the trace specification

com.ibm.ws.webcontainer.httpsession.*=all=enabled. Follow the instructions
for dumping and browsing the trace output to narrow the origin of the
problem.

– If you are using persistent sessions based on memory replication, also enable
trace for com.ibm.ws.drs.*.

v If you are using database-based persistent sessions, look for problems related to
the data source the Session Manager relies on to keep session state information.
For details on diagnosing database related problems see Errors accessing a
datasource or connection pool

If none of these steps fixes your problem, check to see if the problem has been
identified and documented by looking at the available online support (hints and
tips, technotes, and fixes). If you don’t find your problem listed there contact IBM
support.

Chapter 4. Diagnosing and fixing problems 205

Naming services component troubleshooting tips
“Naming” is a J2EE service which publishes and provides access to resources such
as connection pools, enterprise beans, message listeners, etc, to client processes. If
you have problems in accessing a resource which otherwise appears to be healthy,
the naming service might be involved. To investigate problems with the
WebSphere Application Server Naming service:
v Browse the JVM logs for the server which is hosting the resource you are trying

to access. Messages starting with NMSV are related to the Naming Service.
v Open the Log Analyzer on the service log of the server which is hosting the

resource you are trying to access and use it to browse error and warning
messages.

v With WebSphere Application Server running, run the
dumpNameSpace command for Windows systems, or the
dumpNameSpace.sh command for Unix systems, and pipe,
redirect, or “more” the output so that it is easily viewed. This command results
in a display of all objects in the WebSphere Application Server namespace,
including the directory path and object name.

v If the object a client needs to access does not appear, use the administrative
console to verify that:
– The server hosting the target resource is started.
– The Web module or EJB container, if applicable, hosting the target resource is

running.
– The jndi name of the target resource is correct and updated.
– If the problem resource is remote, that is, not on the same node as the Name

Server node, that the jndi name is fully qualified, including the host name.
This is especially applicable to Network Deployment configurations

v View detailed information on the run time behavior of the WebSphere
Application Server Naming service by enabling trace on the following
components and reviewing the output:
– com.ibm.ws.naming.*
– com.ibm.websphere.naming.*

v If you see an exception that appears to be CORBA related (“CORBA” appears as
part of the exception name) look for a naming-services-specific CORBA minor
code, further down in the exception stack, for information on the real cause of
the problem. For a list of naming service exceptions and explanations, see the
class com.ibm.websphere.naming.WsnCorbaMinorCodes in the Javadoc.

If none of these steps solve the problem:
v For specific problems that can cause access to named object hosted in WebSphere

Application Server to fail, see Cannot look up an object hosted by WebSphere
Application Server from a servlet, jsp, or other client.

v Check to see if the problem has been identified and documented using the links
in Diagnosing and fixing problems: Resources for learning.

v If you do not see a problem that resembles yours, or if the information
provided does not solve your problem, contact IBM support for further
assistance.

Messaging (JMS) component troubleshooting tips
If you are having problems deploying or executing applications which use the
WebSphere Application Server messaging capabilities, review these articles in the
WebSphere Application Server InfoCenter:

206 IBM WebSphere Application Server Network Deployment, Version 5: Monitoring and Troublshooting

v “Troubleshooting message-driven beans” (not in this document)
v “Troubleshooting transactions” (not in this document)

If none of these steps solves the problem, check to see if the problem has been
identified and documented using the links in Diagnosing and fixing problems:
Resources for learning. If you do not see a problem that resembles yours, or if the
information provided does not solve your problem, contact IBM support for
further assistance.

Universal Discovery, Description, and Integration, Web
Service, and SOAP components troubleshooting tips

If you are having problems deploying or executing applications that use
WebSphere Application Server Web Services, Universal Discovery, Description, and
Integration (UDDI), or SOAP, try these steps:
v Review the troubleshooting documentation for messaging in this InfoCenter:

– WSIF troubleshooting tips
– Problem determination for the UDDI
– Problem determination for the Web Services Gateway

v Investigate the following areas for SOAP-related problems:
– View the JVM logs for the target application server, and run the Log

Analyzer on the server’s service log.
– View the error log of the HTTP server to which the SOAP request is sent.
– View the run time behavior of the SOAP component in more detail, by

enabling trace for org.apache.soap.* and com.ibm.*.soap*.
– Browse the Web site http://xml.apache.org/soap/ for FAQs and known

SOAP issues.

If none of these steps solves the problem, check to see if the problem has been
identified and documented using the links in Diagnosing and fixing problems:
Resources for learning. If you do not see a problem that resembles yours, or if the
information provided does not solve your problem, contact IBM support for
further assistance.

Enterprise bean and EJB container troubleshooting tips
If you are having problems starting an EJB container, or encounter error messages
or exceptions that appear to be generated on by an EJB container, follow these
steps to resolve the problem:
v Browse the relevant log files for clues:

– Use the Administrative Console to verify that the application server which
hosts the container is running.

– Browse the JVM log files for the application server which hosts the container.
Look for the message server <server_name> open for e-business in the
SystemOut.log. If it does not appear, or if you see the message problems
occurred during startup, browse the SystemErr.log for details.

– Browse the system log files for the application server which hosts the
container.

v Use the Log Analyzer tool to browse the service log file for more information.
v Enable tracing for the EJB Container component, by using the following trace

specification EJBContainer=all=enabled. Follow the instructions for dumping
and browsing the trace output to narrow the origin of the problem.

Chapter 4. Diagnosing and fixing problems 207

http://xml.apache.org/soap/

If none of these steps solves the problem, check to see if the problem is identified
and documented using the links in Diagnosing and fixing problems: Resources for
learning. If you do not see a problem that resembles yours, or if the information
provided does not solve your problem, contact IBM support for further assistance.

Security components troubleshooting tips
This document explains basic resources and steps for diagnosing security related
issues in the WebSphere Application Server, including:
v What log files to look at and what to look for in them.
v A general approach to isolating and resolving security problems.
v When and how to enable security-related trace.
v An overview and table of security-related CORBA minor codes.

The following security-related problems are addressed elsewhere in this
InfoCenter:
v Errors and access problems after enabling security
v Errors after enabling SSL, or SSL-related error messages
v Errors trying to configure and enable security

If none of these steps solves the problem, check to see if the problem has been
identified and documented using the links in Diagnosing and fixing problems:
Resources for learning. If you do not see a problem that resembles yours, or if the
information provided does not solve your problem, contact IBM support for
further assistance.

Note: for an overview of WebSphere Application Server security components such
as SAS and how they work, see Getting started with security.

Log files
When troubleshooting the security component, browse the JVM logs for the server
which is hosting the resource you are trying to access. The following is a sample of
messages you would expect to see from a server in which the security service has
started successfully:
SASRas A JSAS0001I: Security configuration initialized.
SASRas A JSAS0002I: Authentication protocol: CSIV2/IBM
SASRas A JSAS0003I: Authentication mechanism: SWAM
SASRas A JSAS0004I: Principal name: MYHOSTNAME/aServerID
SASRas A JSAS0005I: SecurityCurrent registered.
SASRas A JSAS0006I: Security connection interceptor initialized.
SASRas A JSAS0007I: Client request interceptor registered.
SASRas A JSAS0008I: Server request interceptor registered.
SASRas A JSAS0009I: IOR interceptor registered.
NameServerImp I NMSV0720I: Do Security service listener registration.
SecurityCompo A SECJ0242A: Security service is starting
UserRegistryI A SECJ0136I: Custom Registry:
com.ibm.ws.security.registry.nt.NTLocalDomainRegistryImpl
has been initialized
SecurityCompo A SECJ0202A: Admin application initialized successfully
SecurityCompo A SECJ0203A: Naming application initialized successfully
SecurityCompo A SECJ0204A: Rolebased authorizer initialized successfully
SecurityCompo A SECJ0205A: Security Admin mBean registered successfully
SecurityCompo A SECJ0243A: Security service started successfully
SecurityCompo A SECJ0210A: Security enabled true

208 IBM WebSphere Application Server Network Deployment, Version 5: Monitoring and Troublshooting

The following is an example of messages from a server which cannot start the
security service, in this case because the administrative user ID and password
given to communicate with the user registry is wrong, or the user registry itself is
down or misconfigured:
SASRas A JSAS0001I: Security configuration initialized.
SASRas A JSAS0002I: Authentication protocol: CSIV2/IBM
SASRas A JSAS0003I: Authentication mechanism: SWAM
SASRas A JSAS0004I: Principal name: MYHOSTNAME/aServerID
SASRas A JSAS0005I: SecurityCurrent registered.
SASRas A JSAS0006I: Security connection interceptor initialized.
SASRas A JSAS0007I: Client request interceptor registered.
SASRas A JSAS0008I: Server request interceptor registered.
SASRas A JSAS0009I: IOR interceptor registered.
NameServerImp I NMSV0720I: Do Security service listener registration.
SecurityCompo A SECJ0242A: Security service is starting
UserRegistryI A SECJ0136I: Custom Registry:
com.ibm.ws.security.registry.nt.NTLocalDomainRegistryImpl has been initialized
Authenticatio E SECJ4001E: Login failed for badID/<null>
javax.security.auth.login.LoginException: authentication failed: bad user/password

The following is an example of messages from a server for which LDAP has been
specified as the security mechanism, but the LDAP keys have not been properly
configured:
SASRas A JSAS0001I: Security configuration initialized.
SASRas A JSAS0002I: Authentication protocol: CSIV2/IBM
SASRas A JSAS0003I: Authentication mechanism: LTPA
SASRas A JSAS0004I: Principal name: MYHOSTNAME/anID
SASRas A JSAS0005I: SecurityCurrent registered.
SASRas A JSAS0006I: Security connection interceptor initialized.
SASRas A JSAS0007I: Client request interceptor registered.
SASRas A JSAS0008I: Server request interceptor registered.
SASRas A JSAS0009I: IOR interceptor registered.
NameServerImp I NMSV0720I: Do Security service listener registration.
SecurityCompo A SECJ0242A: Security service is starting
UserRegistryI A SECJ0136I: Custom Registry:
com.ibm.ws.security.registry.nt.NTLocalDomainRegistryImpl has
been initialized
SecurityServe E SECJ0237E: One or more vital LTPAServerObject configuration
attributes are null or not available. The attributes and values are password :
LTPA password does exist, expiration time 30, private key <null>,
public key <null>, and shared key <null>.

A problem with the SSL configuration might lead to the following message. You
should ensure that the keystore location and keystore passwords are valid. Also,
ensure the keystore has a valid personal certificate and that the personal certificate
public key or CA root has been extracted on put into the truststore.
SASRas A JSAS0001I: Security configuration initialized.
SASRas A JSAS0002I: Authentication protocol: CSIV2/IBM
SASRas A JSAS0003I: Authentication mechanism: SWAM
SASRas A JSAS0004I: Principal name: MYHOSTNAME/aServerId
SASRas A JSAS0005I: SecurityCurrent registered.
SASRas A JSAS0006I: Security connection interceptor initialized.
SASRas A JSAS0007I: Client request interceptor registered.
SASRas A JSAS0008I: Server request interceptor registered.
SASRas A JSAS0009I: IOR interceptor registered.
SASRas E JSAS0026E: [SecurityTaggedComponentAssistorImpl.register]
Exception connecting object to the ORB. Check the SSL configuration to ensure
that the SSL keyStore and trustStore properties are set properly. If the problem persists,
contact support for assistance. org.omg.CORBA.OBJ_ADAPTER:
ORB_CONNECT_ERROR (5) - couldn’t get Server Subcontract minor code: 4942FB8F completed: No

Chapter 4. Diagnosing and fixing problems 209

General approach for troubleshooting security-related issues
When troubleshooting security-related problems, the following questions are very
helpful and should be considered:

Does the problem occur when security is disabled?
This is a good litmus test to determine that a problem is security related.
However, just because a problem only occurs when security is enabled
does not always make it a security problem. More troubleshooting is
necessary to ensure the problem is really security-related.

Did security appear to initialize properly?
A lot of security code is visited during initialization. So you will likely see
problems there first if the problem is configuration related. The following
sequence of messages generated in the SystemOut.log indicate normal code
initialization of an application server. This will vary based on the
configuration, but the messages are similar:
SASRas A JSAS0001I: Security configuration initialized.
SASRas A JSAS0002I: Authentication protocol: CSIV2/IBM
SASRas A JSAS0003I: Authentication mechanism: SWAM
SASRas A JSAS0004I: Principal name: BIRKT20/pbirk
SASRas A JSAS0005I: SecurityCurrent registered.
SASRas A JSAS0006I: Security connection interceptor initialized.
SASRas A JSAS0007I: Client request interceptor registered.
SASRas A JSAS0008I: Server request interceptor registered.
SASRas A JSAS0009I: IOR interceptor registered.
NameServerImp I NMSV0720I: Do Security service listener registration.
SecurityCompo A SECJ0242A: Security service is starting
UserRegistryI A SECJ0136I: Custom Registry:
com.ibm.ws.security.registry.nt.NTLocalDomainRegistryImpl
has been initialized
SecurityCompo A SECJ0202A: Admin application initialized successfully
SecurityCompo A SECJ0203A: Naming application initialized successfully
SecurityCompo A SECJ0204A: Rolebased authorizer initialized successfully
SecurityCompo A SECJ0205A: Security Admin mBean registered successfully
SecurityCompo A SECJ0243A: Security service started successfully
SecurityCompo A SECJ0210A: Security enabled true

Is there a stack trace or exception printed in the SystemOut.log?
A single stack trace tells a lot about the problem. What code initiated the
code that failed? What is the failing component? Which class did the
failure actually come from? Sometimes the stack trace is all that is needed
to solve the problem and it can pinpoint the root cause. Other times, it can
only give us a clue, and could actually be misleading. When support
analyzes a stack trace, they may request additional trace if it is not clear
what the problem is. If it appears to be security related and the solution
cannot be determined from the stack trace or problem description, you will
be asked to gather the following trace specification:
SASRas=all=enabled:com.ibm.ws.security.*=all=enabled from all
processes involved.

Is this a distributed security problem or a local security problem?

v If the problem is local, that is the code involved does not make a remote
method invocation, then troubleshooting is isolated to a single process. It
is important to know when a problem is local versus distributed since
the behavior of the Orb, among other components, is different between
the two. Once a remote method invocation takes place, an entirely
different security code path is entered.

v When you know that the problem involves two or more servers, the
techniques of troubleshooting change. You will need to trace all servers
involved simultaneously so that the trace shows the client and server
sides of the problem. Try to make sure the timestamps on all machines

210 IBM WebSphere Application Server Network Deployment, Version 5: Monitoring and Troublshooting

match as closely as possible so that you can find the request and reply
pair from two different processes. Enable both SAS and Security trace
using the trace specification:
SASRas=all=enabled:com.ibm.ws.security.*=all=enabled.

Is the problem related to authentication or authorization?
Most security problems fall under one of these two categories.
Authentication is the process of determing who the caller is. Authorization
is the process of validating that the caller has the proper authority to
invoke the requested method. When authentication fails, typically this is
related to either the authentication protocol, authentication mechanism or
user registry. When authorization fails, this is usually related to the
application bindings from assembly and/or deployment and to the caller’s
identity who is accessing the method and the roles required by the
method.

Is this a Web or EJB request?

Web requests have a completely different code path than EJB requests.
Also, there are different security features for Web requests than for EJB
requests, requiring a completely different body of knowledge to resolve.
For example, when using the LTPA authentication mechanism, the Single
SignOn feature is available for Web requests but not for EJB requests. Web
requests involve HTTP header information not required by EJB requests
due to the protocol differences. Also, the Web container (or servlet engine)
is involved in the entire process. Any of these components could be
involved in the problem and all should be considered during
troubleshooting, based on the type of request and where the failure occurs.

Secure EJB requests heavily involve the ORB and Naming components
since they flow over the RMI/IIOP protocol. In addition, when work flow
management (WLM) is enabled, other behavior changes in the code can be
observed. All of these components interact closely for security to work
properly in this environment. At times, trace in any or all of these
components might be necessary to troubleshoot problems in this area. The
trace specification to begin with is
SASRas=all=enabled:com.ibm.ws.security.*=all=enabled. ORB trace is
also very beneficial when the SAS/Security trace does not seem to pinpoint
the problem.

Does the problem seem to be related to SSL?

The Secure Socket Layer is just that, a totally distinct, separate layer of
security. Troubleshooting SSL problems are usually separate from
troubleshooting authentication and/or authorization problems. There are
many things to consider. Usually, SSL problems are first time setup
problems because the configuration can be difficult. Each client must
contain the server’s signer certificate. During mutual authentication, each
server must contain the client’s signer certificate. Also, there can be
protocol differences (SSLv3 vs. TLS), and listener port problems related to
stale IORs (i.e., IORs from a server reflecting the port prior to the server
restarting).

For SSL problems, we sometimes request an SSL trace to determine what is
happening with the SSL handshake. The SSL handshake is the process
which occurs when a client opens a socket to a server. If anything goes
wrong with the key exchange, cipher exchange, etc. the handshake will fail
and thus the socket is invalid. Tracing JSSE (the SSL implementation used
in WebSphere Application Server) involves the following steps:

Chapter 4. Diagnosing and fixing problems 211

v Ensure that the client and server processes contain an ibmjsse-debug.jar
file in the java/jre/lib/ext directory. The ibmjsse-debug.jar is
shipped with the product. You can locate the file under
<installation_directory>\web\docs\jsse. Make sure you remove the
existing ibmjsse.jar file from this directory after putting in the
ibmjsse-debug.jar. If both exist in the /ext directory, the JSSE trace will
not be complete.

v Set the following system property on the client and server processes:
-Djavax.net.debug=true. For the server, add this to the Generic JVM
Arguments property of the Java virtual machine settings page.

v Turn on ORB trace as well.
v Recreate the problem. The SystemOut.log of both processes should

contain the JSSE trace. You will find trace similar to the following:
SSLConnection: install <com.ibm.sslite.e@3ae78375>
>> handleHandshakeV2 <com.ibm.sslite.e@3ae78375>
>> handshakeV2 type = 1
>> clientHello: SSLv2.
SSL client version: 3.0
...
...
...
JSSEContext: handleSession[Socket[addr=null,port=0,localport=0]]

<< sendServerHello.
SSL version: 3.0
SSL_RSA_WITH_RC4_128_MD5
HelloRandom
...
...
...
<< sendCertificate.
<< sendServerHelloDone.
>> handleData <com.ibm.sslite.e@3ae78375>
>> handleHandshake <com.ibm.sslite.e@3ae78375>
>> handshakeV3 type = 16
>> clientKeyExchange.
>> handleData <com.ibm.sslite.e@3ae78375>
>> handleChangeCipherSpec <com.ibm.sslite.e@3ae78375>
>> handleData <com.ibm.sslite.e@3ae78375>
>> handleHandshake <com.ibm.sslite.e@3ae78375>
>> handshakeV3 type = 20
>> finished.
<< sendChangeCipherSpec.
<< sendFinished.

Tracing security
The classes which implement WebSphere Application Server security are:
v com.ibm.ws.security.*
v com.ibm.websphere.security.*
v com.ibm.WebSphereSecurityImpl.*
v SASRas

To view detailed information on the runtime behavior of security, enable trace on
the following components and review the output:
v com.ibm.ws.security.*=all=enabled:com.ibm:

WebSphereSecurityImpl.*=all=enabled:
com.ibm.websphere.security.*=all=enabled. This trace statement collects the
trace for the security runtime.

212 IBM WebSphere Application Server Network Deployment, Version 5: Monitoring and Troublshooting

v com.ibm.ws.console.security.*=all=enabled. This trace statement collects the
trace for the security center GUI.

v SASRas=all=enabled. This trace statement collects the trace for SAS (low-level
authentication logic).

Fine tuning SAS traces:
If a subset of classes need to be traced for the SAS/CSIv2 component, a
system property can be specified with the class names comma separated:
com.ibm.CORBA.securityTraceFilter=SecurityConnectionInterceptorImpl,
VaultImpl, ...

Fine tuning Security traces:
If a subset of packages need to be traced, specify a trace specification more
detailed than com.ibm.ws.security.*=all=enabled. For example, to trace
just dynamic policy code, you can specify
com.ibm.ws.security.policy.*=all=enabled. To disable dynamic policy
trace, you can specify com.ibm.ws.security.policy.*=all=disabled.

Configuring CSIv2 or SAS Trace Settings
Situations arise where reviewing trace for the CSIv2 or SAS authentication
protocols can assist in troubleshooting difficult problems. This section
decribes how to enable to CSIv2/SAS trace.

Enabling Client-Side CSIv2/SAS Trace
To enable CSIv2 and SAS trace on a pure client, the following steps
need to be taken:
v Edit the file TraceSettings.properties in the

/WebSphere/AppServer/properties directory.
v In this file, change traceFileName= to point to the path in which

you want the ouput file created. Make sure you put a double
backslash (\\) between each subdirectory. For example,
traceFileName=c:\\WebSphere\\AppServer\\logs\\sas_client.log

v In this file, add the trace specification string:
SASRas=all=enabled. Any additional trace strings can be added
on separate lines.

v Point to this file from within your client application. On the Java
command line where you launch the client, add the following
system property:
-DtraceSettingsFile=TraceSettings.properties.
Note: Do not give the fully qualified path to the
TraceSettings.properties file. Make sure that the
TraceSettings.properties file is in your classpath.

Enabling Server-Side CSIv2/SAS Trace
To enable SAS trace in an application server, complete the
following:
v Add the trace specification, SASRas=all=enabled, to the

server.xml file or add it to the Trace settings within the
WebConsole GUI.

v Typically it is best to also trace the authorization security
runtime in addition to the authentication protocol runtime. To do
this, use the following two trace specifications in combination:
SASRas=all=enabled:com.ibm.ws.security.*=all=enabled.

v When troubleshooting a connection type problem, it is beneficial
to trace both SAS/CSIv2 and the ORB. To do this, use the
following three trace specifications:

Chapter 4. Diagnosing and fixing problems 213

SASRas=all=enabled:com.ibm.ws.security.*=all=enabled:
ORBRas=all=enabled

.
v In addition to adding these trace specifications, for ORB trace

there are a couple of system properties that also need to be set.
Go to the ORB settings in the GUI and add the following two
properties: com.ibm.CORBA.Debug=true and
com.ibm.CORBA.CommTrace=true.

CSIv2 CORBA Minor Codes
Whatever exceptions might occur within the security code on either the client or
server, the eventual exception will become a CORBA exception. So any exception
that occurs gets “wrapped” by a CORBA exception, because the CORBA
architecture is used by the security service for its own inter-process
communication. CORBA exceptions are generic, and indicate a problem in
communication between two components. CORBA minor codes are more specific,
and indicate the underlying reason that a component could not complete a request.

The following shows the CORBA Minor codes which a client can expect to receive
after executing a security-related request such as authentication. It also includes the
CORBA exception type that the minor code would appear in.

The following exception shows an example of a CORBA exception where the
minor code is 49424300. From the table below, this minor code indicates
Authentication Failure. Typically, a descriptive message is also included in the
exception to assist in troubleshooting the problem. Here, the detailed message is
“Exception caught invoking authenticateBasicAuthData from SecurityServer for
user jdoe. Reason: com.ibm.WebSphereSecurity.AuthenticationFailedException”
which indicates that the authentication failed for user “jdoe”.

The completed field in the exception indicates whether the method was completed
or not. In the case of a NO_PERMISSION, the method should never get invoked, so it
will always be “completed:No”. Other exceptions which are caught on the server
side could have a completed status of “Maybe” or “Yes”.
org.omg.CORBA.NO_PERMISSION: Caught WSSecurityContextException in
WSSecurityContext.acceptSecContext(),
reason: Major Code[0] Minor Code[0] Message[Exception caught invoking
authenticateBasicAuthData from SecurityServer for user jdoe.
Reason: com.ibm.WebSphereSecurity.AuthenticationFailedException]
minor code: 49424300 completed: No

at com.ibm.ISecurityLocalObjectBaseL13Impl.PrincipalAuthFailReason.map_auth_
fail_to_minor_code(PrincipalAuthFailReason.java:83)
at com.ibm.ISecurityLocalObjectBaseL13Impl.CSIServerRI.receive_request(CSIServerRI.java:1569)
at com.ibm.rmi.pi.InterceptorManager.iterateReceiveRequest(InterceptorManager.java:739)
at com.ibm.CORBA.iiop.ServerDelegate.dispatch(ServerDelegate.java:398)
at com.ibm.rmi.iiop.ORB.process(ORB.java:313)
at com.ibm.CORBA.iiop.ORB.process(ORB.java:1581)
at com.ibm.rmi.iiop.GIOPConnection.doWork(GIOPConnection.java:1827)
at com.ibm.rmi.iiop.WorkUnitImpl.doWork(WorkUnitImpl.java:81)
at com.ibm.ejs.oa.pool.PooledThread.run(ThreadPool.java:91)
at com.ibm.ws.util.CachedThread.run(ThreadPool.java:149)

214 IBM WebSphere Application Server Network Deployment, Version 5: Monitoring and Troublshooting

The following table shows the CORBA Minor codes which a client can expect to
receive after executing a security-related request such as authentication. It also
includes the CORBA exception type that the minor code would appear in.

Minor code name Minor code value
(in hex)

Exception type (all
in the package of
org.omg.CORBA
.*)

Minor code
description

Retry performed (when
authenticationRe
tryEnabled=true)

AuthenticationFailed 49424300 NO_PERMISSION This is a generic
authentication
failed error. It does
not give any details
about whether the
userid or password
is invalid. Some
registries can
choose to use this
type of error code,
others might
choose to use the
next three types
which are more
specific.

Yes

InvalidUserid 49424301 NO_PERMISSION This occurs when
the registry returns
bad userid.

Yes

InvalidPassword 49424302 NO_PERMISSION This occurs when
the registry returns
bad password.

Yes

InvalidSecurityCredentials 49424303 NO_PERMISSION This is a generic
error indicating
that the credentials
are bad for
whatever reason. It
could be that they
don’t have the
right attributes set.

Yes, if client has
BasicAuth credential
(token based credential
was rejected in the first
place).

InvalidRealm 49424304 NO_PERMISSION This occurs when
the REALM in the
token received
from the client does
not match the
server’s current
realm.

No

ValidationFailed 49424305 NO_PERMISSION A validation failure
occurs when a
token is sent from
the client or server
to a target server
but the token
format or the
expiration is
invalid.

Yes, if client has
BasicAuth credential
(token based credential
was rejected in the first
place).

Chapter 4. Diagnosing and fixing problems 215

CredentialTokenExpired 49424306 NO_PERMISSION This is more
specific about why
the validation
failed. In this case,
the token has a
absolute lifetime,
and this lifetime
has expired.
Therefore, it is no
longer a valid
token and cannot
be used.

Yes, if client has
BasicAuth credential
(token based credential
was rejected in the first
place).

InvalidCredentialToken 49424307 NO_PERMISSION This is more
specific about why
the validation
failed. In this case,
the token cannot be
decrypted or the
data within it is not
readable.

Yes, if client has
BasicAuth credential
(token based credential
was rejected in the first
place).

SessionDoesNotExist 49424308 NO_PERMISSION This indicates that
the CSIv2 session
does not exist on
the server.
Typically, a retry
occurs
automatically and
will successfully
create a new
session.

Yes

SessionConflictingEvidence 49424309 NO_PERMISSION This indicates that
a session already
exists on the server
which matches the
context_id sent
over by the client,
however, the
information
provided by the
client for this
EstablishContext
message is different
from the
information
originally provided
to establish the
session.

Yes

SessionRejected 4942430A NO_PERMISSION This indicates that
the session
referenced by the
client has been
previously rejected
by the server.

Yes

216 IBM WebSphere Application Server Network Deployment, Version 5: Monitoring and Troublshooting

SecurityServerNotAvailable 4942430B NO_PERMISSION This error occurs
when the server
cannot contact the
security server
(whether local or
remote) in order to
authenticate or
validate.

No

InvalidIdentityToken 4942430C NO_PERMISSION This error indicates
that identity cannot
be obtained from
the identity token
when Identity
Assertion is
enabled.

No

IdentityServerNotTrusted 4942430D NO_PERMISSION This indicates that
the server id of the
sending server is
not on the target
server’s trusted
principal list.

No

InvalidMessage 4942430E NO_PERMISSION This indicates that
the CSIv2 message
format is invalid
for the receiving
server.

No

AuthenticationNotSupported 49421090 NO_PERMISSION This error occurs
when a mechanism
does not support
authentication
(very rare).

No

InvalidSecurityMechanism 49421091 NO_PERMISSION This is used to
indicate that the
specified security
mechanism is not
known.

No

CredentialNotAvailable 49421092 NO_PERMISSION This indicates a
credential is not
available when it is
required.

No

SecurityMechanismNotSupported 49421093 NO_PERMISSION This error occurs
when a security
mechanism
specified in the
CSIv2 token is not
implemented on
the server.

No

Chapter 4. Diagnosing and fixing problems 217

ValidationNotSupported 49421094 NO_PERMISSION This error occurs
when a mechanism
does not support
validation (such as
LocalOS). This
error should not
occur since the
LocalOS credential
is not a
forwardable
credential,
therefore,
validation should
never need to be
called on it.

No

CredentialTokenNotSet 49421095 NO_PERMISSION This is used to
indicate the token
inside the
credential is null.

No

ServerConnectionFailed 494210A0 COMM_FAILURE This error is used
when a connection
attempt fails.

Yes (via Orb retry)

CorbaSystemException 494210B0 INTERNAL This is a generic
Corba specific
exception in system
code.

No

JavaException 494210B1 INTERNAL This is a generic
error that indicated
an unexpected Java
exception occurred.

No

ValueIsNull 494210B2 INTERNAL This is used to
indicate that a
value or parameter
passed in was null.

No

EffectivePolicyNotPresent 494210B3 INTERNAL This indicates that
an effective policy
object for CSIv2 is
not present. This
object is used to
determine what
security
configuration
features have been
specified.

No

NullPointerException 494210B4 INTERNAL This is used to
indicate that a
NullPointerException
was caught in the
runtime.

No

ErrorGettingClassInstance 494210B5 INTERNAL This indicates a
problem loading a
class dynamically.

No

MalFormedParameters 494210B6 INTERNAL This indicates
parameters are not
valid.

No

218 IBM WebSphere Application Server Network Deployment, Version 5: Monitoring and Troublshooting

DuplicateSecurityAttributeType 494210B7 INTERNAL A duplicate
credential attribute
has been specified
during the
set_attributes
operation.

No

MethodNotImplemented 494210C0 NO_IMPLEMENT A method invoked
has not been
implemented.

No

GSSFormatError 494210C5 BAD_PARAM This indicates that
a GSS encoding or
decoding routine
has thrown an
exception.

No

TagComponentFormatError 494210C6 BAD_PARAM This indicates that
a tag component
cannot be read
properly.

No

InvalidSecurityAttributeType 494210C7 BAD_PARAM This indicates an
attribute type
specified during
the set_attributes
operation is an
invalid type.

No

SecurityConfigError 494210CA INITIALIZE A problem exists
between the client
and server
configuration.

No

JSP engine troubleshooting tips
If you are having difficulty using the JSP engine, try these steps:
1. Determine whether other resources such as .html files or servlets are being

requested and displayed correctly. If they are not, the problem probably lies at
a deeper level, such as with the HTTP server.

2. If other resources are being displayed correctly, determine whether the JSP
engine has started normally:
v Browse the JVM logs of the server hosting the JSP files you are trying to

access. A message such as <application_name/Sevlet.LOG>: JSP 1.2
Processor: init″ in the <root_dir>/logs/<server_name>/SystemOut.log file
indicates that the JSP engine has started normally. If the JSP processor fails to
load, you may see a message such as Did not realize init()
exception thrown by servlet JSP 1.2 Processor in
<application_name/Servlet.LOG>: JSP 1.2 Processor: init″ in the
<root_dir>/logs/<server_name>/SystemOut.log file.

v Open the Log analyzer on the service log of the server which is hosting the
jsp you are trying to access and use it to browse error and warning
messages.

3. If the JSP engine has started normally, the problem may be with the JSP file
itself.
v Copy a simple JSP file (such as the WebSphere Application Server sample

“HelloHTML.jsp”) to the Web application’s document root and attempt to
serve it.

v If that works, examine the target application server’s SystemOut.log for
invalid JSP directive syntax . Errors similar to the following in a browser

Chapter 4. Diagnosing and fixing problems 219

indicate this kind of problem: Message: /<jspname>.jsp(9,0)
Include: Mandatory attribute page missing. This example
indicates that line 9, column 0 of the named JSP is missing a mandatory page
attribute. Similar messages are displayed for other syntax errors.

v Examine the target application server’s SystemErr.log files for problems with
invalid Java syntax. Errors similar to Message: Unable to compile
class for JSP in a browser indicate this kind of problem.
The error message output from the Javac compiler will be found in the
SystemErr.log. It might look like:
C:\WASROOT\temp\ ... test.war_myJsp.java:14: Duplicate variable declaration:
int myInt was int myInt int myInt = 122;
String myString = "number is 122"; static int myStaticInt=22; int myInt=121;
1 error

Correct the error in the JSP file and retry the file.

If none of these steps solves the problem, check to see if the problem is identified
and documented using the links in Diagnosing and fixing problems: Resources for
learning. If you do not see a problem that resembles yours, or if the information
provided does not solve your problem, contact IBM support for further assistance.

Workload Management component troubleshooting tips
If the Workload Management component is not properly distributing the workload
across servers in multi-node configuration, use these steps to isolate the problem.

There are four basic steps troubleshooting the Workload Management component:
v Eliminate environment or configuration issues
v Browse log files for WLM errors and WLM CORBA minor codes
v Analyze PMI data
v Resolve problem or contact IBM support

Eliminate environment or configuration issues
First, determine the health of the cluster. In other words, are the servers capable of
serving the applications for which they have been enabled? To do this, you must
identify the cluster that is exhibiting the problem.
v Are there network connection problems with the members of the cluster or the

administrative servers, for example deployment manager or node agents?
– If so, ping the machines to ensure that they are properly connected to the

network.
v Is there other activity on the machines where the servers are installed that is

impacting the servers ability to service a request? For example, check the
processor utilization as measured by the task manager, processor ID, or some
other outside tool to see if:
– It is not what is expected, or is erratic rather than constant.
– It shows that a newly added, installed, or upgraded member of the cluster is

not being utilized.
v Are all of the application servers you started on each node running, or are some

stopped?
v Are the applications installed and operating?
v If the problem relates to distributing workload across persistent (CMP or BMP)

enterprise beans, have you configured the supporting JDBC drivers and
datasources on each server? For problems relating to data access, review the
topic Cannot access a datasource.

220 IBM WebSphere Application Server Network Deployment, Version 5: Monitoring and Troublshooting

If you are experiencing workload management problems related to HTTP requests,
such as HTTP requests not being served by all members of the cluster, be aware
that the HTTP plugin will balance the load across all servers that are defined in the
PrimaryServers list if affinity has not been established. If you do not have a
PrimaryServers list defined then the plugin will load balance across all servers
defined in the cluster if affinity has not been established. If affinity has been
established, the plugin should go directly to that server for all requests.

For workload management problems relating to enterprise bean requests, such as
enterprise bean requests not getting served by all members of a cluster:
v Are the weights set to the allowed values?

– For the cluster in question, log onto the administrative console and:
1. Select Cluster -> Manage cluster

2. Select your cluster from the list.
3. Select Cluster Members.
4. For each server in the cluster, click on servername and note the assigned

weight of the server.
– Ensure that the weights are within the valid range of 0-20. If a server has a

weight of 0, no requests will be routed to it. Weights greater than 20 are
treated as 0.

Note: The remainder of this article deals with enterprise bean workload balancing
only. For more help on diagnosing problems in distributing Web (HTTP) requests,
view the topics HTTP plugin component troubleshooting tips and Web resource
(JSP, servlet, html file, image, etc) will not display.

Browse log files for WLM errors and CORBA minor codes
If you still encounter problems with enterprise bean workload management, the
next step is to check the activity log for entries that show:
v A server that has been marked unusable more than once and remains unusable.
v All servers in a cluster have been marked bad and remain unusable.
v A Location Service Daemon (LSD) has been marked unusable more than once

and remains unusable.

To do this, use the Log Analyzer tool to open the service log (activity.log) on the
affected servers, and look for the following entries:
v WWLM0061W: An error was encountered sending a request to cluster member

member and that member has been marked unusable for future requests to the
cluster cluster.
Note: It is not unusual for a server to be marked unusable. The server may be
tagged unusable for normal operational reasons, such as a ripple start being
executed while there is still a load on the server from a client.

v WWLM0062W: An error was encountered sending a request to cluster member
member that member has been marked unusable, for future requests to the
cluster cluster two or more times.

v WWLM0063W: An error was encountered attempting to use the LSD LSD_name
to resolve an object reference for the cluster cluster and has been marked
unusable for future requests to that cluster.

v WWLM0064W: Errors have been encountered attempting to send a request to all
members in the cluster cluster and all of the members have been marked
unusable for future requests that cluster.

Chapter 4. Diagnosing and fixing problems 221

v WWLM0065W: An error was encountered attempting to update a cluster
member server in cluster cluster, as it was not reachable from the deployment
manager.

If any of these warning are encountered, follow the user response given in the log.
If, after following the user response, the warnings persist, look at any other errors
and warnings in the Log Analyzer on the affected servers to look for:
v A possible user response, such as changing a configuration setting.
v Base class exceptions that might indicate a WebSphere Application Server defect.

You may also see exceptions with ″CORBA″ as part of the exception name, since
WLM uses CORBA (Common Object Request Broker Architecture) to communicate
between processes. Look for a statement in the exception stack specifying a ″minor
code″. These codes denote the specific reason a CORBA call or response could not
complete. WLM minor codes fall in range of 0x4921040 - 0x492104F. For an
explanation of minor codes related to WLM, see the Javadocfor the package and
class com.ibm.websphere.wlm.WsCorbaMinorCodes.

Analyze PMI data
The purpose for analyzing the PMI data is to understand the workload arriving for
each member of a cluster. The data for any one member of the cluster is only
useful within the context of the data of all the members of the cluster. To obtain
PMI data for all members of a cluster, see (Performance monitoring infrastructure).

Once you have obtained the PMI data, you should calculate the percentage of
numIncomingRequests for each member of the cluster to the total of the
numIncomingRequests of all members of the cluster. A comparison of this
percentage value to the percentage of weights directed to each member of the
cluster provides an initial look at the balance of the workload directed to each
member of a cluster.

In addition to the numIncomingRequests two other metrics show how work is
balanced between the members of a cluster, numincomingStrongAffinityRequests
and numIncomingNonWLMObjectRequests. These two metrics show the number
of requests directed to a specific member of a cluster that could only be serviced
by that member.

For example, consider a 3-server cluster. We have assigned the following weights
to each of these three servers:
v Server1 = 5
v Server2 = 3
v Server3 = 2

Allow our cluster of servers to start servicing requests, and wait for the system to
reach a steady state, that is the number of incoming requests to the cluster equals
the number of responses from the servers. In such a situation, we would expect
that the percentage of requests routed to each server to be:
v % routed to Server1 = weight1 / (weight1+weight2+weight3) = 5/10 or 50%
v % routed to Server2 = weight2 / (weight1+weight2+weight3) = 3/10 or 30%
v % routed to Server3 = weight3 / (weight1+weight2+weight3) = 2/10 or 20%

Now let us consider a case where there are no incoming requests with neither
strong affinity nor any non-WLM object requests.

222 IBM WebSphere Application Server Network Deployment, Version 5: Monitoring and Troublshooting

In this scenario, let us assume that the PMI metrics gathered show the number of
incoming requests for each server are:
v numIncomingRequestsServer1 = 390
v numIncomingRequestsServer2 = 237
v numIncomingRequestsServer3 = 157

Thus, the total number of requests coming into the cluster is:
numIncomingRequestsCluster = numIncomingRequestsServer1 +
numIncomingRequestsServer2 + numIncomingRequestsServer3 = 784

numincomingStrongAffinityRequests = 0

numIncomingNonWLMObjectRequests = 0

Can we decide based on this data if WLM is properly balancing the incoming
requests among the servers in our cluster? Since there are no requests with strong
affinity, the question we need to answer is, are the requests in the ratios we expect
based on the assigned weights? The computation to answer that question is
straightforward:
v % (actual) routed to Server1 = 390 / 784 = 49.8%
v % (actual) routed to Server2 = 237 / 784 = 30.2%
v % (actual) routed to Server3 = 157 / 784 = 20.0%

So WLM is behaving as designed, as the data are completely what is expected,
based on the weights assigned the servers.

Now let us consider a 3-server cluster. We have assigned the following weights to
each of these three servers:
v Server1 = 5
v Server2 = 3
v Server3 = 2

Allow this cluster of servers to start servicing requests and wait for the system to
reach a steady state, that is the number of incoming requests to the cluster equals
the number of responses from the servers. In such a situation, we would expect
that the percentage of requests routed to Server1-3 would be:
v % routed to Server1 = weight1 / (weight1+weight2+weight3) = 5/15 or 1/3 of

the requests.
v % routed to Server2 = weight2 / (weight1+weight2+weight3) = 5/15 or 1/3 of

the requests.
v % routed to Server3 = weight3 / (weight1+weight2+weight3) = 5/15 or 1/3 of

the requests.

In this scenario, let us assume that the PMI metrics gathered show the number of
incoming requests for each server are:
v numIncomingRequestsServer1 = 1236
v numIncomingRequestsServer2 = 1225
v numIncomingRequestsServer3 = 1230

Thus, the total number of requests coming into the cluster:
v numIncomingRequestsCluster = numIncomingRequestsServer1 +

numIncomingRequestsServer2 + numIncomingRequestsServer3 = 3691

Chapter 4. Diagnosing and fixing problems 223

v numincomingStrongAffinityRequests = 445, and that all 445 requests are aimed
at Server1.

v numIncomingNonWLMObjectRequests = 0.

In this case, we see that the number of requests was not evenly split among the
three servers, as expected. Instead, the distribution is:
v % (actual) routed to Server1 = 1236 / 3691= 33.49%
v % (actual) routed to Server2 = 1225 / 3691= 33.19%
v % (actual) routed to Server3 = 1230 / 3691= 33.32%

However, the correct interpretation of this data is the routing of requests is not
perfectly balanced because Server1 had several hundred strong affinity requests.
WLM attempts to compensate for strong affinity requests directed to 1 or more
servers by distributing new incoming requests preferentially to servers which are
not participating in transactional affinity, to compensate for those servers that are
participating in transactions. In the case of incoming requests with strong affinity
and non-WLM object requests, the analysis would be analogous to this case.

If, once you have analyzed the PMI data and accounted for transactional affinity
and non-WLM object requests, the percentage of actual incoming requests to
servers in a cluster to do not reflect the assigned weights, this indicates that
requests are not being properly balanced. If this is the case, it is recommended that
you repeat the steps described above for eliminating environment and
configuration issues and browsing log files before proceeding.

Resolve problem or contact IBM support
If the PMI data or client logs indicate an error in WLM, collect the following
information and contact IBM support.
v A detailed description of your environment.
v A description of the symptoms.
v The SystemOut.logs and SystemErr.logs for all servers in the cluster.
v The activity.log.
v The First Failure Data Capture logs.
v The PMI metrics.
v A description of what the client is attempting to do, and a description of the

client. For example, 1 thread, multiple threads, servlet, J2EE client, etc..

If none of these steps solves the problem, check to see if the problem has been
identified and documented using the links in Diagnosing and fixing problems:
Resources for learning. If you do not see a problem that resembles yours, or if the
information provided does not solve your problem, contact IBM support for
further assistance.

Object Request Broker component troubleshooting tips
This article describes how to diagnose problems related to the WebSphere
Application Server Object Request Broker (ORB) component by explaining:
v How to enable tracing for the ORB component.
v What log files to examine for more information.
v Information on the Java packages containing the ORB Service.
v ORB-related tools.
v Where to find configurable settings.

224 IBM WebSphere Application Server Network Deployment, Version 5: Monitoring and Troublshooting

v A listing of CORBA minor codes generated by this component.

Enabling tracing for the Object Request Broker component
The Object Request Broker (ORB) Service is one of the WebSphere Application
Server run time services. Tracing of messages sent and received by the ORB is a
useful starting point for troubleshooting the ORB Service. You can selectively
enable or disable tracing of ORB messages for each server in a WebSphere
Application Server installation, and for each application client.

This tracing is referred to by WebSphere Application Server support as a comm
trace, and is different from the general purpose trace facility. The trace facility,
which shows the detailed run time behavior of product components, may be used
alongside comm trace for other product components, or for the ORB component.
The trace string associated with the ORB Service is ″ORBRas=all=enabled″.

You can enable and disable comm tracing using the administrative console or by
manually editing the server.xml file for the server be trace. You must stop and
restart the server for the configuration change to take effect.

For example, using the administrative console:
v Navigate to the desired server by clicking Servers > Manage Application

Servers > server1 > ORB Service, and select the ORB tracing checkbox. or
v Locate the server.xml file for the selected server, for example:

<install_dir>/config/cells/<nodename>/nodes/<nodename>/servers/
<servername>/server.xml

v Locate the services entry for the ORB Service
(xmi:type=″orb:ObjectRequestBroker″) and set commTraceEnabled=″true″.

To enable ORB comm tracing for client applications, you must specify two ORB
properties in the command line used to launch the client application:
v If you are using the WebSphere Application Server launcher launchClient, use

the option -CCD or
v If you are using the java command directly, use the -D option to specify these

parameters:
– com.ibm.CORBA.Debug=true

– com.ibm.CORBA.CommTrace=true

Log files and messages associated with Object Request Broker
Messages and trace information for the ORB are captured primarily in two logs:
v <install_dir>/logs/<servername>/trace.log for output from comm tracing and

tracing the behavior of the ORBRas component, and
v The JVM logs for each application server, for WebSphere Application Server

error and warning messages.

In general, if the following message appears in the SystemOut.log file, it indicates
the application server has successfully started, which indicates that the ORB
Service was successfully started also:

WSVR0001I: Server server1 open for e-business

When comm tracing is enabled, a message in the file
install_dir/logs/servername/trace.log similar to the one below indicates that the

Chapter 4. Diagnosing and fixing problems 225

ORB service has started successfully. It also shows a ListenerThread has started
successfully and is waiting for requests on the specified local port.

com.ibm.ws.orbimpl.transport.WSTransport startListening(
ServerConnectionData connectionData) P=693799:O=0:CT a new ListenerThread
has been started for ServerSocket[addr=0.0.0.0/0.0.0.0,port=0,localport=1360]

If tracing of the Object Adapter has been enabled (com.ibm.ejs.oa.*=all=enabled),
the following message in the trace.log indicates that the ORB service has started
successfully:

EJSORBImpl < initializeORB

The ORB service is one of the first services started during the WebSphere
Application Server initialization process. If it is not properly configured, other
components such as Naming, Security, and Node Agent, are not likely to start
successfully. This is obvious in the JVM logs or trace.log of the affected
application server.

Java packages containing the Object Request Broker service
The ORB service resides in the following Java packages:
v com.ibm.com.CORBA.*
v com.ibm.rmi.*
v com.ibm.ws.orb.*
v com.ibm.ws.orbimpl.*
v org.omg.CORBA.*
v javax.rmi.CORBA.*

The .jar files which contain the packages above are:
v <install_dir>/java/jre/lib/ext/ibmorb.jar

v <install_dir>/java/jre/lib/ext/iwsorbutil.jar

v <install_dir>/lib/iwsorb.jar

Tools used with Object Request Broker
The tools used to compile Java remote interfaces to generate language bindings
used by the ORB at runtime reside in the following Java packages:
v com.ibm.tools.rmic.*
v com.ibm.idl.*

The .jar file which contains the packages is
<install_dir>/java/lib/ibmtools.jar.

Object Request Broker properties
The ORB service requires a number of ORB properties for correct operation. It is
not necessary for most users to modify these properties, and it is recommended
that only your system administrator modify them when required.. Consult IBM
Support personnel for assistance. The properties reside in the orb.properties file,
located at <install_dir>/java/jre/lib/orb.properties.

CORBA minor codes
The CORBA specification defines standard minor exception codes for use by the
ORB when a system exception is thrown. In addition, the Object Management
Group (OMG) assigns each vendor a unique prefix value for use in
vendor-proprietary minor exception codes. The minor code values assigned to IBM

226 IBM WebSphere Application Server Network Deployment, Version 5: Monitoring and Troublshooting

and used by the ORB in the WebSphere Application Server are shown below. The
minor code value is shown in decimal and hexadecimal formats. The column
labeled “Minor Code Reason” gives a short description of the condition causing
the exception. Currently there is no documentation for these errors beyond the
“Minor Code Reason” shown below. If technical support from IBM is required, the
code helps support engineers in determining the source of the problem.

Decimal Hexadecimal Minor Code Reason
1229066320 0x49421050 HTTPOUTPUTSTREAM_WRITE
1229066321 0x49421051 COULD_NOT_INSTANTIATE_CLIENT_SSL_SOCKET_FACTORY
1229066322 0x49421052 COULD_NOT_INSTANTIATE_SERVER_SSL_SOCKET_FACTORY
1229066323 0x49421053 CREATE_LISTENER_FAILED_1
1229066324 0x49421054 CREATE_LISTENER_FAILED_2
1229066325 0x49421055 CREATE_LISTENER_FAILED_3
1229066326 0x49421056 CREATE_LISTENER_FAILED_4
1229066327 0x49421057 CREATE_LISTENER_FAILED_5
1229066328 0x49421058 INVALID_CONNECTION_TYPE
1229066329 0x49421059 HTTPINPUTSTREAM_NO_ACTIVEINPUTSTREAM
1229066330 0x4942105a HTTPOUTPUTSTREAM_NO_OUTPUTSTREAM
1229066331 0x4942105b CONNECTIONINTERCEPTOR_INVALID_CLASSNAME
1229066332 0x4942105c NO_CONNECTIONDATA_IN_CONNECTIONDATACARRIER
1229066333 0x4942105d CLIENT_CONNECTIONDATA_IS_INVALID_TYPE
1229066334 0x4942105e SERVER_CONNECTIONDATA_IS_INVALID_TYPE
1229066335 0x4942105f NO_OVERLAP_OF_ENABLED_AND_DESIRED_CIPHER_SUITES
1229066352 0x49421070 CONNECT_FAILURE_ON_SSL_CLIENT_SOCKET
1229066353 0x49421071 GETCONNECTION_KEY_RETURNED_FALSE
1229066354 0x49421072 UNABLE_TO_CREATE_SSL_SOCKET
1229066355 0x49421073 SSLSERVERSOCKET_TARGET_SUPPORTS_LESS_THAN_1
1229066356 0x49421074 SSLSERVERSOCKET_TARGET_REQUIRES_LESS_THAN_1
1229066357 0x49421075 SSLSERVERSOCKET_TARGET_LESS_THAN_TARGET_REQUIRES
1229066358 0x49421076 UNABLE_TO_CREATE_SSL_SERVER_SOCKET
1229066359 0x49421077 CAUGHT_EXCEPTION_WHILE_CONFIGURING_SSL_SERVER_SOCKET
1229066360 0x49421078 INVALID_SERVER_CONNECTION_DATA_TYPE
1229066361 0x49421079 GETSERVERCONNECTIONDATA_RETURNED_NULL
1229066362 0x4942107a GET_SSL_SESSION_RETURNED_NULL
1229066363 0x4942107b GLOBAL_ORB_EXISTS
1229123841 0x4942f101 DSIMETHOD_NOTCALLED
1229123842 0x4942f102 BAD_INV_PARAMS
1229123843 0x4942f103 BAD_INV_RESULT
1229123844 0x4942f104 BAD_INV_CTX
1229123879 0x4942f127 PI_NOT_POST_INIT
1229123969 0x4942f181 BAD_OPERATION_EXTRACT_SHORT
1229123970 0x4942f182 BAD_OPERATION_EXTRACT_LONG
1229123971 0x4942f183 BAD_OPERATION_EXTRACT_USHORT
1229123972 0x4942f184 BAD_OPERATION_EXTRACT_ULONG
1229123973 0x4942f185 BAD_OPERATION_EXTRACT_FLOAT
1229123974 0x4942f186 BAD_OPERATION_EXTRACT_DOUBLE
1229123975 0x4942f187 BAD_OPERATION_EXTRACT_LONGLONG
1229123976 0x4942f188 BAD_OPERATION_EXTRACT_ULONGLONG
1229123977 0x4942f189 BAD_OPERATION_EXTRACT_BOOLEAN
1229123978 0x4942f18a BAD_OPERATION_EXTRACT_CHAR
1229123979 0x4942f18b BAD_OPERATION_EXTRACT_OCTET
1229123980 0x4942f18c BAD_OPERATION_EXTRACT_WCHAR
1229123981 0x4942f18d BAD_OPERATION_EXTRACT_STRING
1229123982 0x4942f18e BAD_OPERATION_EXTRACT_WSTRING
1229123983 0x4942f18f BAD_OPERATION_EXTRACT_ANY

Chapter 4. Diagnosing and fixing problems 227

1229123984 0x4942f190 BAD_OPERATION_INSERT_OBJECT_1
1229123985 0x4942f191 BAD_OPERATION_INSERT_OBJECT_2
1229123986 0x4942f192 BAD_OPERATION_EXTRACT_OBJECT_1
1229123987 0x4942f193 BAD_OPERATION_EXTRACT_OBJECT_2
1229123988 0x4942f194 BAD_OPERATION_EXTRACT_TYPECODE
1229123989 0x4942f195 BAD_OPERATION_EXTRACT_PRINCIPAL
1229123990 0x4942f196 BAD_OPERATION_EXTRACT_VALUE
1229123991 0x4942f197 BAD_OPERATION_GET_PRIMITIVE_TC_1
1229123992 0x4942f198 BAD_OPERATION_GET_PRIMITIVE_TC_2
1229123993 0x4942f199 BAD_OPERATION_INVOKE_NULL_PARAM_1
1229123994 0x4942f19a BAD_OPERATION_INVOKE_NULL_PARAM_2
1229123995 0x4942f19b BAD_OPERATION_INVOKE_DEFAULT_1
1229123996 0x4942f19c BAD_OPERATION_INVOKE_DEFAULT_2
1229123997 0x4942f19d BAD_OPERATION_UNKNOWN_BOOTSTRAP_METHOD
1229124097 0x4942f201 NULL_PARAM_1
1229124098 0x4942f202 NULL_PARAM_2
1229124099 0x4942f203 NULL_PARAM_3
1229124100 0x4942f204 NULL_PARAM_4
1229124101 0x4942f205 NULL_PARAM_5
1229124102 0x4942f206 NULL_PARAM_6
1229124103 0x4942f207 NULL_PARAM_7
1229124104 0x4942f208 NULL_PARAM_8
1229124105 0x4942f209 NULL_PARAM_9
1229124106 0x4942f20a NULL_PARAM_10
1229124107 0x4942f20b NULL_PARAM_11
1229124108 0x4942f20c NULL_PARAM_12
1229124109 0x4942f20d NULL_PARAM_13
1229124110 0x4942f20e NULL_PARAM_14
1229124111 0x4942f20f NULL_PARAM_15
1229124112 0x4942f210 NULL_PARAM_16
1229124113 0x4942f211 NULL_PARAM_17
1229124114 0x4942f212 NULL_PARAM_18
1229124115 0x4942f213 NULL_PARAM_19
1229124116 0x4942f214 NULL_PARAM_20
1229124117 0x4942f215 NULL_IOR_OBJECT
1229124118 0x4942f216 NULL_SC_DATA
1229124126 0x4942f21e BAD_SERVANT_TYPE
1229124127 0x4942f21f BAD_EXCEPTION
1229124128 0x4942f220 BAD_MODIFIER_LIST
1229124129 0x4942f221 NULL_PROP_MGR
1229124130 0x4942f222 INVALID_PROPERTY
1229124131 0x4942f223 ORBINITREF_FORMAT
1229124132 0x4942f224 ORBINITREF_MISSING_OBJECTURL
1229124133 0x4942f225 ORBDEFAULTINITREF_FORMAT
1229124134 0x4942f226 ORBDEFAULTINITREF_VALUE
1229124135 0x4942f227 OBJECTKEY_SERVERUUID_LENGTH
1229124136 0x4942f228 OBJECTKEY_SERVERUUID_NULL
1229124139 0x4942f22b NULL_OBJECT_IOR
1229124225 0x4942f281 TYPECODEIMPL_CTOR_MISUSE_1
1229124226 0x4942f282 TYPECODEIMPL_CTOR_MISUSE_2
1229124227 0x4942f283 TYPECODEIMPL_NULL_INDIRECTTYPE
1229124228 0x4942f284 TYPECODEIMPL_RECURSIVE_TYPECODES
1229124235 0x4942f28b TYPECODEIMPL_KIND_INVALID_1
1229124236 0x4942f28c TYPECODEIMPL_KIND_INVALID_2
1229124237 0x4942f28d TYPECODEIMPL_NATIVE_1

228 IBM WebSphere Application Server Network Deployment, Version 5: Monitoring and Troublshooting

1229124238 0x4942f28e TYPECODEIMPL_NATIVE_2
1229124239 0x4942f28f TYPECODEIMPL_NATIVE_3
1229124240 0x4942f290 TYPECODEIMPL_KIND_INDIRECT_1
1229124241 0x4942f291 TYPECODEIMPL_KIND_INDIRECT_2
1229124242 0x4942f292 TYPECODEIMPL_NULL_TYPECODE
1229124243 0x4942f293 TYPECODEIMPL_BODY_OF_TYPECODE
1229124244 0x4942f294 TYPECODEIMPL_KIND_RECURSIVE_2
1229124245 0x4942f295 TYPECODEIMPL_COMPLEX_DEFAULT_1
1229124246 0x4942f296 TYPECODEIMPL_COMPLEX_DEFAULT_3
1229124247 0x4942f297 TYPECODEIMPL_INDIRECTION
1229124248 0x4942f298 TYPECODEIMPL_SIMPLE_DEFAULT
1229124249 0x4942f299 TYPECODEIMPL_NOT_CDROS
1229124353 0x4942f301 CONNECT_FAILURE_1
1229124354 0x4942f302 CONNECT_FAILURE_2
1229124355 0x4942f303 CONNECT_FAILURE_3
1229124356 0x4942f304 CONNECT_FAILURE_4
1229124357 0x4942f305 CONN_PURGE_REBIND
1229124358 0x4942f306 CONN_PURGE_ABORT
1229124359 0x4942f307 CONN_NOT_ESTABLISH
1229124360 0x4942f308 CONN_CLOSE_REBIND
1229124368 0x4942f310 WRITE_ERROR_SEND
1229124376 0x4942f318 GET_PROPERTIES_ERROR
1229124384 0x4942f320 BOOTSTRAP_SERVER_NOT_AVAIL
1229124392 0x4942f328 INVOKE_ERROR
1229124481 0x4942f381 BAD_HEX_DIGIT
1229124482 0x4942f382 BAD_STRINGIFIED_IOR_LEN
1229124483 0x4942f383 BAD_STRINGIFIED_IOR
1229124485 0x4942f385 BAD_MODIFIER_1
1229124486 0x4942f386 BAD_MODIFIER_2
1229124488 0x4942f388 CODESET_INCOMPATIBLE
1229124490 0x4942f38a LONG_DOUBLE_NOT_IMPLEMENTED_1
1229124491 0x4942f38b LONG_DOUBLE_NOT_IMPLEMENTED_2
1229124492 0x4942f38c LONG_DOUBLE_NOT_IMPLEMENTED_3
1229124496 0x4942f390 COMPLEX_TYPES_NOT_IMPLEMENTED
1229124497 0x4942f391 VALUE_BOX_NOT_IMPLEMENTED
1229124865 0x4942f501 TRANS_NS_CANNOT_CREATE_INITIAL_NC_SYS
1229124866 0x4942f502 TRANS_NS_CANNOT_CREATE_INITIAL_NC
1229124867 0x4942f503 GLOBAL_ORB_EXISTS
1229124868 0x4942f504 PLUGINS_ERROR
1229124993 0x4942f581 BAD_REPLYSTATUS
1229124994 0x4942f582 PEEKSTRING_FAILED
1229124995 0x4942f583 GET_LOCAL_HOST_FAILED
1229124996 0x4942f584 CREATE_LISTENER_FAILED
1229124997 0x4942f585 BAD_LOCATE_REQUEST_STATUS
1229124998 0x4942f586 STRINGIFY_WRITE_ERROR
1229125000 0x4942f588 BAD_GIOP_REQUEST_TYPE_1
1229125001 0x4942f589 BAD_GIOP_REQUEST_TYPE_2
1229125002 0x4942f58a BAD_GIOP_REQUEST_TYPE_3
1229125003 0x4942f58b BAD_GIOP_REQUEST_TYPE_4
1229125005 0x4942f58d NULL_ORB_REFERENCE
1229125006 0x4942f58e NULL_NAME_REFERENCE
1229125008 0x4942f590 ERROR_UNMARSHALING_USEREXC
1229125009 0x4942f591 SUBCONTRACTREGISTRY_ERROR
1229125010 0x4942f592 LOCATIONFORWARD_ERROR
1229125011 0x4942f593 BAD_READER_THREAD

Chapter 4. Diagnosing and fixing problems 229

1229125013 0x4942f595 BAD_REQUEST_ID
1229125014 0x4942f596 BAD_SYSTEMEXCEPTION
1229125015 0x4942f597 BAD_COMPLETION_STATUS
1229125016 0x4942f598 INITIAL_REF_ERROR
1229125017 0x4942f599 NO_CODEC_FACTORY
1229125018 0x4942f59a BAD_SUBCONTRACT_ID
1229125019 0x4942f59b BAD_SYSTEMEXCEPTION_2
1229125020 0x4942f59c NOT_PRIMITIVE_TYPECODE
1229125021 0x4942f59d BAD_SUBCONTRACT_ID_2
1229125022 0x4942f59e NAMING_CTX_REBIND_ALREADY_BOUND
1229125023 0x4942f59f NAMING_CTX_REBINDCTX_ALREADY_BOUND
1229125024 0x4942f5a0 NAMING_CTX_BAD_BINDINGTYPE
1229125025 0x4942f5a1 NAMING_CTX_RESOLVE_CANNOT_NARROW_TO_CTX
1229125032 0x4942f5a8 TRANS_NC_BIND_ALREADY_BOUND
1229125033 0x4942f5a9 TRANS_NC_LIST_GOT_EXC
1229125034 0x4942f5aa TRANS_NC_NEWCTX_GOT_EXC
1229125035 0x4942f5ab TRANS_NC_DESTROY_GOT_EXC
1229125042 0x4942f5b2 INVALID_CHAR_CODESET_1
1229125043 0x4942f5b3 INVALID_CHAR_CODESET_2
1229125044 0x4942f5b4 INVALID_WCHAR_CODESET_1
1229125045 0x4942f5b5 INVALID_WCHAR_CODESET_2
1229125046 0x4942f5b6 GET_HOST_ADDR_FAILED
1229125047 0x4942f5b7 x REACHED_UNREACHABLE_PATH
1229125048 0x4942f5b8 PROFILE_CLONE_FAILED
1229125049 0x4942f5b9 INVALID_LOCATE_REQUEST_STATUS
1229125512 0x4942f788 BAD_CODE_SET
1229125520 0x4942f790 INV_RMI_STUB
1229125521 0x4942f791 INV_LOAD_STUB
1229125522 0x4942f792 INV_OBJ_IMPLEMENTATION
1229125523 0x4942f793 OBJECTKEY_NOMAGIC
1229125524 0x4942f794 OBJECTKEY_NOSCID
1229125525 0x4942f795 OBJECTKEY_NOSERVERID
1229125526 0x4942f796 OBJECTKEY_NOSERVERUUID
1229125527 0x4942f797 OBJECTKEY_SERVERUUIDKEY
1229125762 0x4942f882 UNSPECIFIED_MARSHAL_1
1229125763 0x4942f883 UNSPECIFIED_MARSHAL_2
1229125764 0x4942f884 UNSPECIFIED_MARSHAL_3
1229125765 0x4942f885 UNSPECIFIED_MARSHAL_4
1229125766 0x4942f886 UNSPECIFIED_MARSHAL_5
1229125767 0x4942f887 UNSPECIFIED_MARSHAL_6
1229125768 0x4942f888 UNSPECIFIED_MARSHAL_7
1229125769 0x4942f889 UNSPECIFIED_MARSHAL_8
1229125770 0x4942f88a UNSPECIFIED_MARSHAL_9
1229125771 0x4942f88b UNSPECIFIED_MARSHAL_10
1229125772 0x4942f88c UNSPECIFIED_MARSHAL_11
1229125773 0x4942f88d UNSPECIFIED_MARSHAL_12
1229125774 0x4942f88e UNSPECIFIED_MARSHAL_13
1229125775 0x4942f88f UNSPECIFIED_MARSHAL_14
1229125776 0x4942f890 UNSPECIFIED_MARSHAL_15
1229125777 0x4942f891 UNSPECIFIED_MARSHAL_16
1229125778 0x4942f892 UNSPECIFIED_MARSHAL_17
1229125779 0x4942f893 UNSPECIFIED_MARSHAL_18
1229125780 0x4942f894 UNSPECIFIED_MARSHAL_19
1229125781 0x4942f895 UNSPECIFIED_MARSHAL_20
1229125782 0x4942f896 UNSPECIFIED_MARSHAL_21

230 IBM WebSphere Application Server Network Deployment, Version 5: Monitoring and Troublshooting

1229125783 0x4942f897 UNSPECIFIED_MARSHAL_22
1229125784 0x4942f898 UNSPECIFIED_MARSHAL_23
1229125785 0x4942f899 UNSPECIFIED_MARSHAL_24
1229125786 0x4942f89a UNSPECIFIED_MARSHAL_25
1229125787 0x4942f89b UNSPECIFIED_MARSHAL_26
1229125788 0x4942f89c UNSPECIFIED_MARSHAL_27
1229125789 0x4942f89d UNSPECIFIED_MARSHAL_28
1229125790 0x4942f89e UNSPECIFIED_MARSHAL_29
1229125791 0x4942f89f UNSPECIFIED_MARSHAL_30
1229125792 0x4942f8a0 UNSPECIFIED_MARSHAL_31
1229125793 0x4942f8a1 UNSPECIFIED_MARSHAL_32
1229125794 0x4942f8a2 UNSPECIFIED_MARSHAL_33
1229125795 0x4942f8a3 UNSPECIFIED_MARSHAL_34
1229125796 0x4942f8a4 UNSPECIFIED_MARSHAL_35
1229125797 0x4942f8a5 UNSPECIFIED_MARSHAL_36
1229125798 0x4942f8a6 UNSPECIFIED_MARSHAL_37
1229125799 0x4942f8a7 UNSPECIFIED_MARSHAL_38
1229125800 0x4942f8a8 UNSPECIFIED_MARSHAL_39
1229125801 0x4942f8a9 UNSPECIFIED_MARSHAL_40
1229125802 0x4942f8aa UNSPECIFIED_MARSHAL_41
1229125803 0x4942f8ab UNSPECIFIED_MARSHAL_42
1229125804 0x4942f8ac UNSPECIFIED_MARSHAL_43
1229125805 0x4942f8ad UNSPECIFIED_MARSHAL_44
1229125806 0x4942f8ae UNSPECIFIED_MARSHAL_45
1229125807 0x4942f8af UNSPECIFIED_MARSHAL_46
1229125808 0x4942f8b0 UNSPECIFIED_MARSHAL_47
1229125809 0x4942f8b1 UNSPECIFIED_MARSHAL_48
1229125810 0x4942f8b2 UNSPECIFIED_MARSHAL_49
1229125811 0x4942f8b3 UNSPECIFIED_MARSHAL_50
1229125812 0x4942f8b4 UNSPECIFIED_MARSHAL_51
1229125813 0x4942f8b5 UNSPECIFIED_MARSHAL_52
1229125818 0x4942f8ba UNSPECIFIED_MARSHAL_57
1229125819 0x4942f8bb UNSPECIFIED_MARSHAL_58
1229125820 0x4942f8bc UNSPECIFIED_MARSHAL_59
1229125821 0x4942f8bd UNSPECIFIED_MARSHAL_60
1229125822 0x4942f8be UNSPECIFIED_MARSHAL_61
1229125823 0x4942f8bf UNSPECIFIED_MARSHAL_62
1229125824 0x4942f8c0 UNSPECIFIED_MARSHAL_63
1229125825 0x4942f8c1 READ_OBJECT_EXCEPTION_1
1229125826 0x4942f8c2 READ_OBJECT_EXCEPTION_2
1229125828 0x4942f8c4 UNSUPPORTED_IDLTYPE
1229125842 0x4942f8d2 DSI_RESULT_EXCEPTION
1229125844 0x4942f8d4 IIOPINPUTSTREAM_GROW
1229125847 0x4942f8d7 NO_CHAR_CONVERTER_1
1229125848 0x4942f8d8 NO_CHAR_CONVERTER_2
1229125849 0x4942f8d9 CHARACTER_MALFORMED_1
1229125850 0x4942f8da CHARACTER_MALFORMED_2
1229125851 0x4942f8db CHARACTER_MALFORMED_3
1229125852 0x4942f8dc CHARACTER_MALFORMED_4
1229125854 0x4942f8de INCORRECT_CHUNK_LENGTH
1229125856 0x4942f8e0 CHUNK_OVERFLOW
1229125858 0x4942f8e2 CANNOT_GROW
1229125859 0x4942f8e3 CODESET_ALREADY_SET
1229125860 0x4942f8e4 REQUEST_CANCELLED
1229125861 0x4942f8e5 WRITE_TO_STREAM_1

Chapter 4. Diagnosing and fixing problems 231

1229125862 0x4942f8e6 WRITE_TO_STREAM_2
1229125863 0x4942f8e7 WRITE_TO_STREAM_3
1229125864 0x4942f8e8 WRITE_TO_STREAM_4
1229125889 0x4942f901 DSI_NOT_IMPLEMENTED
1229125890 0x4942f902 GETINTERFACE_NOT_IMPLEMENTED
1229125891 0x4942f903 SEND_DEFERRED_NOTIMPLEMENTED
1229125893 0x4942f905 ARGUMENTS_NOTIMPLEMENTED
1229125894 0x4942f906 RESULT_NOTIMPLEMENTED
1229125895 0x4942f907 EXCEPTIONS_NOTIMPLEMENTED
1229125896 0x4942f908 CONTEXTLIST_NOTIMPLEMENTED
1229125902 0x4942f90e CREATE_OBJ_REF_BYTE_NOTIMPLEMENTED
1229125903 0x4942f90f CREATE_OBJ_REF_IOR_NOTIMPLEMENTED
1229125904 0x4942f910 GET_KEY_NOTIMPLEMENTED
1229125905 0x4942f911 GET_IMPL_ID_NOTIMPLEMENTED
1229125906 0x4942f912 GET_SERVANT_NOTIMPLEMENTED
1229125907 0x4942f913 SET_ORB_NOTIMPLEMENTED
1229125908 0x4942f914 SET_ID_NOTIMPLEMENTED
1229125909 0x4942f915 GET_CLIENT_SUBCONTRACT_NOTIMPLEMENTED
1229125913 0x4942f919 CONTEXTIMPL_NOTIMPLEMENTED
1229125914 0x4942f91a CONTEXT_NAME_NOTIMPLEMENTED
1229125915 0x4942f91b PARENT_NOTIMPLEMENTED
1229125916 0x4942f91c CREATE_CHILD_NOTIMPLEMENTED
1229125917 0x4942f91d SET_ONE_VALUE_NOTIMPLEMENTED
1229125918 0x4942f91e SET_VALUES_NOTIMPLEMENTED
1229125919 0x4942f91f DELETE_VALUES_NOTIMPLEMENTED
1229125920 0x4942f920 GET_VALUES_NOTIMPLEMENTED
1229125922 0x4942f922 GET_CURRENT_NOTIMPLEMENTED_1
1229125923 0x4942f923 GET_CURRENT_NOTIMPLEMENTED_2
1229125924 0x4942f924 CREATE_OPERATION_LIST_NOTIMPLEMENTED_1
1229125925 0x4942f925 CREATE_OPERATION_LIST_NOTIMPLEMENTED_2
1229125926 0x4942f926 GET_DEFAULT_CONTEXT_NOTIMPLEMENTED_1
1229125927 0x4942f927 GET_DEFAULT_CONTEXT_NOTIMPLEMENTED_2
1229125928 0x4942f928 SHUTDOWN_NOTIMPLEMENTED
1229125929 0x4942f929 WORK_PENDING_NOTIMPLEMENTED
1229125930 0x4942f92a PERFORM_WORK_NOTIMPLEMENTED
1229125931 0x4942f92b COPY_TK_ABSTRACT_NOTIMPLEMENTED
1229125932 0x4942f92c PI_CLIENT_GET_POLICY_NOTIMPLEMENTED
1229125933 0x4942f92d PI_SERVER_GET_POLICY_NOTIMPLEMENTED
1229125934 0x4942f92e ADDRESSING_MODE_NOTIMPLEMENTED_1
1229125935 0x4942f92f ADDRESSING_MODE_NOTIMPLEMENTED_2
1229125936 0x4942f930 SET_OBJECT_RESOLVER_NOTIMPLEMENTED
1229126017 0x4942f981 MARSHAL_NO_MEMORY_1
1229126018 0x4942f982 MARSHAL_NO_MEMORY_2
1229126019 0x4942f983 MARSHAL_NO_MEMORY_3
1229126020 0x4942f984 MARSHAL_NO_MEMORY_4
1229126021 0x4942f985 MARSHAL_NO_MEMORY_5
1229126022 0x4942f986 MARSHAL_NO_MEMORY_6
1229126023 0x4942f987 MARSHAL_NO_MEMORY_7
1229126024 0x4942f988 MARSHAL_NO_MEMORY_8
1229126025 0x4942f989 MARSHAL_NO_MEMORY_9
1229126026 0x4942f98a MARSHAL_NO_MEMORY_10
1229126027 0x4942f98b MARSHAL_NO_MEMORY_11
1229126028 0x4942f98c MARSHAL_NO_MEMORY_12
1229126029 0x4942f98d MARSHAL_NO_MEMORY_13
1229126030 0x4942f98e MARSHAL_NO_MEMORY_14

232 IBM WebSphere Application Server Network Deployment, Version 5: Monitoring and Troublshooting

1229126031 0x4942f98f MARSHAL_NO_MEMORY_15
1229126032 0x4942f990 MARSHAL_NO_MEMORY_16
1229126033 0x4942f991 MARSHAL_NO_MEMORY_17
1229126034 0x4942f992 MARSHAL_NO_MEMORY_18
1229126035 0x4942f993 MARSHAL_NO_MEMORY_19
1229126036 0x4942f994 MARSHAL_NO_MEMORY_20
1229126037 0x4942f995 MARSHAL_NO_MEMORY_21
1229126038 0x4942f996 MARSHAL_NO_MEMORY_22
1229126039 0x4942f997 MARSHAL_NO_MEMORY_23
1229126040 0x4942f998 MARSHAL_NO_MEMORY_24
1229126041 0x4942f999 MARSHAL_NO_MEMORY_25
1229126042 0x4942f99a MARSHAL_NO_MEMORY_26
1229126043 0x4942f99b MARSHAL_NO_MEMORY_27
1229126044 0x4942f99c MARSHAL_NO_MEMORY_28
1229126045 0x4942f99d MARSHAL_NO_MEMORY_29
1229126046 0x4942f99e MARSHAL_NO_MEMORY_30
1229126047 0x4942f99f MARSHAL_NO_MEMORY_31
1229126401 0x4942fb01 RESPONSE_TIMED_OUT
1229126402 0x4942fb02 FRAGMENT_TIMED_OUT
1229126529 0x4942fb81 NO_SERVER_SC_IN_DISPATCH
1229126530 0x4942fb82 NO_SERVER_SC_IN_LOOKUP
1229126531 0x4942fb83 NO_SERVER_SC_IN_CREATE_DEFAULT_SERVER
1229126532 0x4942fb84 NO_SERVER_SC_IN_SETUP
1229126533 0x4942fb85 NO_SERVER_SC_IN_LOCATE
1229126534 0x4942fb86 NO_SERVER_SC_IN_DISCONNECT
1229126539 0x4942fb8b ORB_CONNECT_ERROR_1
1229126540 0x4942fb8c ORB_CONNECT_ERROR_2
1229126541 0x4942fb8d ORB_CONNECT_ERROR_3
1229126542 0x4942fb8e ORB_CONNECT_ERROR_4
1229126543 0x4942fb8f ORB_CONNECT_ERROR_5
1229126544 0x4942fb90 ORB_CONNECT_ERROR_6
1229126545 0x4942fb91 ORB_CONNECT_ERROR_7
1229126546 0x4942fb92 ORB_CONNECT_ERROR_8
1229126547 0x4942fb93 ORB_CONNECT_ERROR_9
1229126548 0x4942fb94 ORB_REGISTER_1
1229126549 0x4942fb95 ORB_REGISTER_2
1229126553 0x4942fb99 ORB_REGISTER_LOCAL_1
1229126554 0x4942fb9a ORB_REGISTER_LOCAL_2
1229126657 0x4942fc01 LOCATE_UNKNOWN_OBJECT
1229126658 0x4942fc02 BAD_SERVER_ID_1
1229126659 0x4942fc03 BAD_SERVER_ID_2
1229126660 0x4942fc04 BAD_IMPLID
1229126665 0x4942fc09 BAD_SKELETON_1
1229126666 0x4942fc0a BAD_SKELETON_2
1229126673 0x4942fc11 SERVANT_NOT_FOUND_1
1229126674 0x4942fc12 SERVANT_NOT_FOUND_2
1229126675 0x4942fc13 SERVANT_NOT_FOUND_3
1229126676 0x4942fc14 SERVANT_NOT_FOUND_4
1229126677 0x4942fc15 SERVANT_NOT_FOUND_5
1229126678 0x4942fc16 SERVANT_NOT_FOUND_6
1229126679 0x4942fc17 SERVANT_NOT_FOUND_7
1229126687 0x4942fc1f SERVANT_DISCONNECTED_1
1229126688 0x4942fc20 SERVANT_DISCONNECTED_2
1229127297 0x4942fe81 UNKNOWN_CORBA_EXC
1229127298 0x4942fe82 RUNTIMEEXCEPTION

Chapter 4. Diagnosing and fixing problems 233

1229127299 0x4942fe83 UNKNOWN_SERVER_ERROR
1229127300 0x4942fe84 UNKNOWN_DSI_SYSEX
1229127301 0x4942fe85 UNNOWN_IN_READ_VALUE
1229127302 0x4942fe86 UNKNOWN_CREATE_EXCEPTION_RESPONSE
1229127312 0x4942fe90 UNKNOWN_PI_EXC
1229127313 0x4942fe91 UNKNOWN_PI_EXC_2
1229127314 0x4942fe92 PI_ARGS_FAILURE
1229127315 0x4942fe93 PI_EXCEPTS_FAILURE
1229127316 0x4942fe94 PI_CONTEXTS_FAILURE
1229127317 0x4942fe95 PI_OP_CONTEXT_FAILURE
1229127326 0x4942fe9e USER_DEFINED_ERROR
1229127327 0x4942fe9f UNKNOWN_RUNTIME_IN_BOOTSTRAP
1229127328 0x4942fea0 UNKNOWN_THROWABLE_IN_BOOTSTRAP
1229127329 0x4942fea1 UNKNOWN_RUNTIME_IN_INSAGENT
1229127330 0x4942fea2 UNKNOWN_THROWABLE_IN_INSAGENT
1330446337 0x4f4d0001 CHARACTER_NOT_MAPPED
1330446338 0x4f4d0002 INCOMPATIBLE_VALUE_IMPL
1330446339 0x4f4d0003 NAME_ALREADY_USED_IN_THE_CONTEXT_IN_IFR
1330446340 0x4f4d0004 CANNOT_MARSHAL_LOCAL_OBJECT
1330446341 0x4f4d0005 NAME_CLASH_IN_INHERITED_CONTEXT
1330446342 0x4f4d0006 INCORRECT_TYPE_FOR_ABSTRACT_INTERFACE
1330446343 0x4f4d0007 INS_BAD_SCHEME_NAME
1330446344 0x4f4d0008 INS_BAD_ADDRESS
1330446345 0x4f4d0009 INS_BAD_SCHEME_SPECIFIC_PART
1330446346 0x4f4d000a INS_OTHER
1330446350 0x4f4d000e INVALID_PI_CALL
1330446351 0x4f4d000f SERVICE_CONTEXT_ID_EXISTS
1330446359 0x4f4d0017 NO_TRANSMISSION_CODE
1330446362 0x4f4d001a INVALID_SERVICE_CONTEXT
1330446363 0x4f4d001b NULL_OBJECT_ON_REGISTER
1330446364 0x4f4d001c INVALID_COMPONENT_ID
1330446365 0x4f4d001d INVALID_IOR_PROFILE

If none of these steps fixes your problem, check to see if the problem has been
identified and documented by looking at the available online support (hints and
tips, technotes, and fixes). If you do not find your problem listed there contact IBM
Support.

Message reference
You can log WebSphere Application Server system messages from a variety of
sources, including application server components and applications. Messages
logged by application server components and associated IBM products start with a
unique message identifier that indicates the component or application that issued
the message. The message identifier can be either 8 or 9 characters in length and
has the form:
CCCC1234X

where:

CCCC is a four character alphabetic component or application identifier.

1234 is a fourcharacter numeric identifier used to identify the specific message
for that component.

234 IBM WebSphere Application Server Network Deployment, Version 5: Monitoring and Troublshooting

X is an optional alphabetic severity indicator. (I=Informational, W=Warning,
E=Error)

To view the messages generated by WebSphere Application Server components,
select the Quick Reference view of this InfoCenter and expand the topic
Messages.

CORBA minor codes
Overview

Common Object Request Broker Architecture (CORBA) is an industry-wide
standard for object-oriented communication between processes, which is supported
in several programming languages. Several subcomponents of WebSphere
Application Server use CORBA to communicate across processes.

When a CORBA process fails, that is a request from one process to another cannot
be sent, completed, or returned, a high-level exception is thrown, such as
TransactionRolledBackException: CORBA TRANSACTION_ROLLEDBACK. In
order to show the underlying cause of the failure, applications which use CORBA
services generate minor codes, which appear in the exception stack. Look for
“minor code” in the exception stack to locate these exceptions.

Minor codes used by WebSphere Application Server components

Range Related subcomponent Where to find details
0x49424300-0x494243FF Security “Security components troubleshooting tips”
0x49421050-0x4942105F,
0x49421070-0x4942107F

ORB services “Object Request Broker component troubleshooting tips”

0x4f4d and above Standard CORBA
exceptions

http://www.omg.org

0x49421080-0x4942108F Naming services Javadoc for class
ws.code.naming.src.com.ibm.websphere.naming.WsnCorbaMinorCodes

0x49421080-0x4942108F Workload Management Javadoc for class
com.ibm.websphere.wlm.WsCorbaMinorCodes

Working with message logs
WebSphere Application Server can write system messages to several general
purpose logs. These include the JVM logs, the process logs and the IBM service
log.

The JVM logs are created by redirecting the System.out and System.err streams of
the JVM to independent log files. WebSphere Application Server writes formatted
messages to the System.out stream. In addition, applications and other code can
write to these streams using the print() and println() methods defined by the
streams. Some JDK built-ins such as the printStackTrace() method on the
Throwable class can also write to these streams. Typically, the System.out log is
used to monitor the health of the running application server. The System.out log
can be used for problem determination, but it is recommended to use the IBM
Service log and the advanced capabilities of the Log Analyzer instead. The
System.err log contains exception stack trace information that is useful when
performing problem analysis.

Since each application server represents a JVM, there is one set of JVM logs for
each application server and all of its applications, located by default in the

Chapter 4. Diagnosing and fixing problems 235

http://www.omg.org

<installation_root>/logs/<server_name> directory. In the case of a WebSphere
Application Server Network Deployment configuration, JVM logs are also created
for the deployment manager and each node manager, since they also represent
JVMs.

The process logs are created by redirecting the stdout and stderr streams of the
process to independent log files. Native code, including the Java virtual machine
(JVM) itself write to these files. As a general rule, WebSphere Application Server
does not write to these files. However, these logs can contain information relating
to problems in native code or diagnostic information written by the JVM.

As with JVM logs, there is a set of process logs for each application server, since
each JVM is an operating system process, and in the case of a WebSphere
Application Server Network Deployment configuration, a set of process logs for
the deployment manager and each node manager.

The IBM service log contains both the WebSphere Application Server messages that
are written to the System.out stream and some special messages that contain
extended service information that is normally not of interest, but can be important
when analyzing problems. There is one service log for all WebSphere Application
Server JVMs on a node, including all application servers. The IBM Service log is
maintained in a binary format and requires a special tool to view. This viewer, the
Log Analyzer, provides additional diagnostic capabilities. In addition, the binary
format provides capabilities that are utilized by IBM support organizations.

In addition to these general purpose logs, WebSphere Application Server contains
other specialized logs that are very specific in nature and are scoped to a particular
component or activity. For example, the HTTP server plugin maintains a special
log. Normally, these logs are not of interest, but you might be instructed to
examine one or more of these logs while performing specific problem
determination procedures. For details on how and when to view the plugin log,
see HTTP server and Application Server are working separately, but requests are
not passing from HTTP server to Application Server.

Viewing the JVM logs
The JVM logs are written as plain text files. Therefore there are no special
requirements to view these logs. They are located in are located in the
<installation_directory>/logs/<applicationServerName> directory, and by
default are named SystemOut.log and SystemErr.log.

There are two techniques that you can use to view the JVM logs for an application
server:
v Use the adminstrative console. This supports viewing the JVM logs from a

remote machine.
v Use a text editor on the machine where the logs are stored.

Steps for this task
1. View the JVM logs from the administrative console.

a. Start the administrative console.
b. Click Troubleshooting > Logging and Tracing in the console navigation

tree, then click server > JVM Logs.
c. Select the runtime tab.
d. Click View corresponding to the log you want to view.

236 IBM WebSphere Application Server Network Deployment, Version 5: Monitoring and Troublshooting

2. View the JVM logs from the machine where they are stored.
a. Go to the machine where the logs are stored.
b. Open the file in a text editor or drag and drop the file into an editing and

viewing program.

Interpreting the JVM logs
The JVM logs contain print data written by applications. The application can write
this data written directly in the form of System.out.print(), System.err.print(),
or other method calls. The application can also write data indirectly by calling a
JVM function, such as an Exception.printStackTrace(). In addition, the
System.out JVM log contains system messages written by the WebSphere
Application Server.

You can format application data to look like WebSphere Application Server system
messages by using the Installed Application Output field of the [link to
ttrb_cfgmsglogs.html] JVM Logs properties panel, or as plain text with no
additional formatting . WebSphere Application Server system messages are always
formatted.

Depending on how the JVM log is configured, formatted messages can be written
to the JVM logs in either basic or advanced format.

Message formats

Formatted messages are written to the JVM logs in one of two formats:

Basic Format
The format used in earlier versions of WebSphere Application Server.

Advanced Format
Extends the basic format by adding information about an event, when
possible.

Basic and advanced format fields

Basic and Advanced Formats use many of the same fields and formatting
techniques. The various fields that may be found in these formats follow:

TimeStamp
The timestamp is formatted using the locale of the process where it is
formatted. It includes a fully qualified date (for example YYMMDD) , 24
hour time with millisecond precision and a time zone.

ThreadId
An 8 character hexidecimal value generated from the hash code of the
thread that issued the message.

ShortName
The abbreviated name of the logging component that issued the message
or trace event. This is typically the class name for WebSphere Application
Server internal components, but can be some other identifier for user
applications.

LongName
The full name of the logging component that issued the message or trace
event. This is typically the fully qualified class name for WebSphere
Application Server internal components, but can be some other identifier
for user applications.

Chapter 4. Diagnosing and fixing problems 237

EventType
A one character field that indicates the type of the message or trace event.
Message types are in upper case. Possible values include:

A An Audit message.

I An Informational message.

W A Warning message.

E An Error message.

F A Fatal message.

O A message that was written directly to System.out by the user
application or internal components.

R A message that was written directly to System.err by the user
application or internal components.

u A special message type used by the message logging component of
the WebSphere Application Server run time.

Z A placeholder to indicate the type was not recognized.

ClassName
The class that issued the message or trace event.

MethodName
The method that issued the message or trace event.

Organization
The organization that owns the application that issued the message or trace
event.

Product
The product that issued the message or trace event.

Component
The component within the product that issued the message or trace event.

Basic format

Message events displayed in basic format use the following format. The notation
<name> indicates mandatory fields that will always appear in the basic format
message. The notation [name] indicates optional or conditional fields that will be
included if they can be determined.
<timestamp><threadId><shortName><eventType>[className][methodName]<message>

Advanced format

Message events displayed in advanced format use the following format. The
notation <name> is used to indicate mandatory fields that will always appear in
the advanced format for message entries. The notation [name] is used to indicate
optional or conditional fields that will be included if they can be determined.
<timestamp><threadId><eventType><UOW><source=longName>[className]
[methodName]<Organization><Product><Component>
<message>

Configuring the JVM logs
Before you begin

238 IBM WebSphere Application Server Network Deployment, Version 5: Monitoring and Troublshooting

Use the administrative console to configure the JVM logs for an application server.
Configuration changes for the JVM logs that are made to a running application
server are not applied until the next restart of the application server.

Steps for this task
1. Start the administrative console
2. Click Troubleshooting > Logging and Tracing, then click server > JVM Logs.
3. Select the Configuration tab.
4. Scroll through the panel to display the attributes for the stream to configure.
5. Change the appropriate configuration attributes and click Apply.
6. Save your configuration changes.

JVM log settings
Use this page to view and modify the settings for the Java virtual machine (JVM)
System.out and System.err logs.

To view this administrative console page, click Troubleshooting > Logs and Trace
> server > JVM Logs.

File Name: Specifies the name of the System.out file. Press the View button on
the Runtime tab to view the contents of this file.

The file name specified on the Configuration tab must have one of the following
values:

filename
The name of a file in the file system. It is recommended that you use a
fully qualified file name. If the file name is not fully qualified, it is
considered to be relative to the current working directory for the server.
Each stream must be configured with a dedicated file. For example, you
cannot redirect both System.out and System.err to the same physical file.

If the directory containing the file already exists, the user ID under which
the server is running requires read/write access to the directory. If the
directory does not exist, it will be created with the proper permissions. The
userid under which the server is running must have authority to create the
directory.

console
This is a special file name used to redirect the stream to the corresponding
process stream. If this value is specified for System.out, the file is
redirected to stdout. If this value is specified for System.err, the file is
redirected to stderr.

none Discards all data written to the stream. Specifying none is equivalent to
redirecting the stream to dev/null on a Unix system.

File formatting: Specifies the format to use in saving the System.out file.

Log file rotation: Use this set of configuration attributes to configure the log file
to be self-managing.

A self-managing log file will write messages to a file until some criteria, either time
or size, is reached. At the specified time or when the file reaches the specified size,
logging is temporarily suspended and the log file is closed and renamed. The new
name is based on the original name of the file, plus a timestamp qualifier that
indicates when the renaming occurred. Once the renaming is complete, a new,

Chapter 4. Diagnosing and fixing problems 239

empty log file with the original name is reopened, and logging resumes. No
messages are lost as a result of the rollover, although a single message may be split
across the two files.

You can only configure a log to be self-managing if the corresponding stream is
redirected to a file.

File size
Selecting this attribute allows the log file to manage itself based on the size
of the file. If this option is selected, the file automatically performs
self-maintenance by rolling over the file when it reaches the specified
maximum size.

Maximum size
This attribute specifies the maximum size in megabytes to which the file is
allowed to grow.

This attribute is only valid if the File Size attribute is selected. When the
file reaches this size, it is rolled over as described above.

Time Selecting this attribute allows the log file to manage itself based on the age
of the file. If this option is selected, the file will roll itself over after the
specified time period.

Start Time
Specifies the hour of the day, from 1 to 24, from which the periodic
rollover algorithm commences. The periodic rollover algorithm uses this
hour to load the algorithm at application server startup. Once started, the
rollover algorithm runs without adjustment until the application server is
stopped.

Rollover period
Specifies the number of hours after which the log file will be rolled over to
a new filename. Valid values are from 1 to 24.

Note that you can configure a log file to roll over based on both time and
size. If both File Size and Time are selected, the file is rolled over based
on the criteria that is met first. For example, if the Rollover period is set to
rollover every 5 hours and the Maximum File Size is set to 2 megabytes,
the file will be rolled over every 5 hours, unless the log file reaches 2
megabytes in size before the time interval elapses, in which case it will be
rolled over when the size limit is reached.

Maximum Number of Historical Log Files: Specifies the number of historical, or
rolled over, files to keep. When a file is rolled over, the current file to which the
stream is writing is closed and renamed to a name consisting of the current name
plus a timestamp The stream then reopens a new file reusing the original name
and continues writing. The last maximum number of historical files are maintained:
when a historical file ages beyond that limit it is deleted.

Installed Application Output: Specifies whether the System.out or System.err
print statements issued from the application code are logged and formatted.

Show application print statements
Causes application messages written to this stream using the print and
println stream methods to be shown. This will have no effect on system
messages written to the stream by the WebSphere Application Server.

Format print statements
Causes application messages written to this stream using the print and
println stream methods to be formatted like WebSphere system messages.

240 IBM WebSphere Application Server Network Deployment, Version 5: Monitoring and Troublshooting

Process logs
WebSphere Application Server processes contain two output streams that are
accessible to native code running in the process. These streams are the stdout and
stderr streams. Native code, including the JVM, may write data to these process
streams. In addition, the JVM provided System.out and System.err streams can be
configured to write their data to these streams also.

By default, the stdout and stderr streams are redirected to log files at application
server startup, which contain text written to the stdout and stderr streams by
native modules (.dlls, .exes, UNIX libraries, and other modules). By default,
these files are stored as
<installation_root>/logs/<applicationServerName>/native_stderr.log and
native_stdout.log.

This is a change from previous versions of WebSphere Application Server, which
by default had one log file for both JVM standard output and native standard
output, and one log file for both JVM standard error and native error output.

Viewing the service log
The service log is a special log written in a binary format. You cannot view the log
directly using a text editor. You should never directly edit the service log, as doing
so will corrupt the log. To move the service log from one machine to another, you
must use a mechanism like FTP, which supports binary file transfer.

You can view the service log in two ways:
v It is recommended that you use the Log Analyzer tool to view the service log.

This tool provides interactive viewing and analysis capability that is helpful in
identifying problems.

v If you are unable to use the Log Analyzer tool, you can use the Showlog tool to
convert the contents of the service log to a text format that you can then write to
a file or dump to the command shell window. The steps for using the Showlog
tool are described below.

Steps for this task
1. Open a shell window on the machine where the service log resides.
2. Change directory to <install_directory>/bin where <install_directory> is

the fully qualified path where the WebSphere Application Server product is
installed.

3. (Optional) Run the showlog script with no parameters to display usage
instructions.
On Windows systems, the script is named <samp>showlog.bat . On UNIX
systems, the script is named <samp>showlog.sh .

4. Run the showlog script with the appropriate parameters.
For example:
To display the service log contents to the shell window, use the invocation
showlog service_log_filename. If the service log is not in the default location,
you must fully qualify the service_log_filename.
To format and write the service log contents to a file use the invocation showlog
service_log_filename output_filename. If the service log is not in the default
location, you must fully qualify the service_log_filename.

Chapter 4. Diagnosing and fixing problems 241

Interpreting the service log
To take advantage of the Log Analyzer’s browsing and analysis capabilities, start
the Log Analyzer tool:
v On Unix systems: <installation_root>/bin/waslogbr
v On Windows systems: installation_root/bin/waslogbr.bat

Use the File > open menu item, and select the file /logs/activity.log. You can
also browse to activity logs from other WebSphere Application Server installations,
and even other versions of the product. Expand the tree of admininstrative and
application server logging sessions. Uncolored records are “normal”, yellow
records are warnings, and pink records are errors. If you select a record, you will
see its contents, including the basic error or warning message, date, time, which
component logged the record, and which process (i.e., administrative server or an
application server) it came from, in the upper-right hand pane.

The activity log does not analyze any other log files, such as default_stderr.log
or tracefile. To analyze these records, right click on a record in the tree on the left
(click on the UnitOfWorkView at the top to get them all), and select analyze. Any
records with a green check mark next to them match a record in the symptom
database. When you select a check-marked record, you will see and explanation of
the problem in the lower-right-hand pane.

Updating the symptom database

The database of known problems and resolutions used when you click the analyze
menu item is periodically enhanced as new problems come to light and new
versions of the product are introduced. To ensure that you have the latest version
of the database, use the File > update database > advanced symptom database
menu item from within the log analyzer tool at least once a month. Users who
have just installed the product and have never run the update should do so
immediately, since extensive updates occurred since the version first released.

The knowledge base used for analysis is built gradually from problems reported
by users. For a recently released version of the product, you might not find any
analysis hits. However, the Log Analyzer tool still provides a way to see all error
messages and warnings from all components in a convenient, user-friendly way.

Configuring the service log
Before you begin

By default, the service log is shared among all server processes for a node. The
configuration values for the service log are inherited by each server process from
the node configuration. You can configure a separate service log for each server
process by overriding the configuration values at the server level.

Steps for this task
1. Start the administrative console.
2. Click Troubleshooting > Logging and Tracing > server_name > IBM Service

Logs.
3. Select the Enable box to enable the service log, clear the check box to disable

the log.
4. Set the name for the service log.

242 IBM WebSphere Application Server Network Deployment, Version 5: Monitoring and Troublshooting

The default name is <install_directory>/logs/activity.log. If the name is
changed, the run time requires write access to the new file, and the file must
use the .log extension.

5. Set the maximum file size.
Specifies the number of megabytes to which the file can grow. When the file
reaches this size, it wraps, replacing the oldest data with the newest data.

6. Set the message filter level to the desired state.
7. Save the configuration.
8. Restart the server to apply the configuration changes.

IBM service log settings
Use this page to configure the IBM Service log, also known as the activity log.

To view this administrative console page, click Troubleshooting > Logs and Trace
> server > IBM Service Logs.

Enable service log: Specifies creation of a log file by the IBM Service log.

File Name: Specifies the name of the file used by the IBM Service log.

Maximum File Size: Specifies the maximum size in megabytes of the service log
file. The default value is 2 megabytes.

When this size is reached, the service log wraps in place. Note that the service log
does not roll over to a new log file like the JVM logs.

Message Filtering: Specifies the message filter level to the desired state. You can
use this option to filter out or suppress some message categories. This filter value
is applied to all logs, not just the service log.

Enable Correlation ID: Specifies the generation of a correlation ID that is logged
with each message.

You can use the correlation ID to correlate activity to a particular client request, or
correlate activities on multiple application servers.

Configuration problem collection
Use this page to identify and view problems that exist in the current configuration.

To view this administrative console page, click Troubleshooting > Configuration
Problems in the console navigation tree.

Click on the name of the configuration problem in the Configuration Problems
table to see more information about the problem.

Configuration document validation
Use these fields to specify the level of validation to perform on configuration
documents.

Cross validation
Enables cross validation of configuration documents.

Enabling cross validation enables comparison of configuration documents for
conflicting settings.

Chapter 4. Diagnosing and fixing problems 243

Configuration Problems table
Displays any current configuration problems and their associated message data.
For more information on the problem, click the message associated with the
problem.

Message
Displays the message returned from the validator.

Explanation
A brief explanation of the problem.

Recommendation
Specifies the recommended action to correct the problem.

Target Object
Identifies the configuration object where the validation error occurred.

Severity
Indicates the severity of the configuration error, with 1 being a severe error.
Severity decreases as the severity descriptor increases.

Local URI
Specifies the local URI of the configuration file where the error occurred.

Full URI
Specifies the full URI of the configuration file where the error occurred.

Validator classname
The classname of the validator reporting the problem.

Debugging with the Application Server Toolkit
The Application Server Toolkit, included with the WebSphere Application Server
on a separately-installable CD, includes debugging functionality that is built on the
Eclipse workbench and that includes the following:

The WebSphere Application Server debug adapter
which allows you to debug Web objects that are running on WebSphere
Application Server and that you have launched in a browser. These objects
include EJBs, JSPs, and servlets.

The JavaScript debug adapter
which enables server-side JavaScript debugging.

The Compiled language debugger
which allows you to detect and diagnose errors in compiled-language
applications.

The Java development tools (JDT) debugger
which allows you to debug Java.

All of the debug components in the Application Server Toolkit can be used for
debugging locally and for remote debugging.

To learn more about the debug components, launch the Application Server Toolkit,
select Help > Help Contents and choose the Debugger Guide bookshelf entry. To
learn about known limitations and problems that are associated with the
Application Server Toolkit, see the Application Server Toolkit release notes.

244 IBM WebSphere Application Server Network Deployment, Version 5: Monitoring and Troublshooting

Debugging WebSphere Application Server applications
In order to debug your application, you must first create a Java project or a project
with a Java nature. You must then import the program that you want to debug
into the project. By following the steps below, you can import the WebSphere
Application Server examples into a Java project.

There are two debugging styles available. Step-by-step mode will prompt you
whenever the server calls a method on a Web object. A dialog allows you to either
step into the method or skip it. In the dialog, you can also turn off step-by-step
mode. Alternatively, if you know which part of your program you want to debug,
you can add breakpoints to this code and run until one of the breakpoints is
encountered. Note that breakpoints work with both styles of debugging -
step-by-step mode just allows you to see which Web objects are being called
without having to set up breakpoints ahead of time.

You do not have to import all of your program into the project. If you do not
import all of your program into the project, some of the source may not compile.
You can still debug the project and most features of the debugger will work
including breakpoints, stepping and viewing/modifying variables. However, the
inspect and display features in the source view will not work if the source has
build errors. The inspect and display features allow you to select an expression in
the source view and evaluate it. You must import any source that you want to set
breakpoints in.

Steps for this task
1. Create a Java Project by opening the New Project dialog.
2. select Java from the left side of the dialog and Java Project in the right side of

the dialog.
3. Click Next and then specify a name for the project (such as WASExamples).
4. Press Finish to create the project.
5. Select the new project, choose File > Import > File System, then Next to open

the import file system dialog.
6. Select the directory Browse pushbutton and go to the following directory:

installation_root\installedApps\node_name
\DefaultApplication.ear\DefaultWebApplication.war.

7. Select the checkbox next to DefaultWebApplication.war in the left side of the
Import dialog and then click Finish.
This will import the JSPs and Java source for the examples into your project.

8. Add any JAR files needed to build to the Java Build Path.
To do this, select Properties from the right-click menu. Choose the Java Build
Path node and then select the Libraries tab. Use the Add External JARs
pushbutton to add the following JAR files:
v

installation_root\installedApps\node_name\DefaultApplication.ear\Increment.jar.
Once you have added this JAR file, select it and use the Attach Source
pushbutton to attach Increment.jar as the source - Increment.jar contains both
the source and class files.

v installation_root\lib\j2ee.jar
v installation_root\lib\pagelist.jar
v installation_root\\lib\webcontainer.jar

Click OK when you have added all of the JARs.

Chapter 4. Diagnosing and fixing problems 245

9. (Optional) You can set some breakpoints in the source at this time if you like,
however, it is not necessary as step-by-step mode will prompt you whenever
the server calls a method on a Web object.
Step-by-step mode is explained in more detail below.

10. To start debugging, you need to start the WebSphere Application Server in
debug mode and make note of the JVM debug port.
The default value of the JVM debug port is 7777.

11. Once the server is started, switch to the debug perspective by selecting
Window > Open Perspective > Debug. You can also enable the debug launch
in the Java Perspective by choosing Window > Customize Perspective and
selecting the Debug and Launch checkboxes in the Other category.

12. Select the workbench toolbar Debug pushbutton and then select WebSphere
Application Server Debug from the list of launch configurations. Click the
New pushbutton to create a new configuration.

13. Give your configuration a name and select the project to debug (your new
WASExamples project). Change the port number if you did not start the server
on the default port (7777).

14. Click Debug to start debugging.
15. Load one of the examples in your browser (for example,

http://localhost:9080/hitcount).

What to do next

To learn more about the debugging, launch the Application Server Toolkit, select
Help > Help Contents and choose the Debugger Guide bookshelf entry. To learn
about known limitations and problems that are associated with the Application
Server Toolkit, see the Application Server Toolkit release notes.

Debugging Service details
Use this page to view and modify the settings used by the Debugging Service.

To view this administrative console page, click Servers > Application Servers >
server > Debugging Service.

Startup
Specifies whether the server will attempt to start the Debug service when the
server starts.

JVM debug port
Specifies the port that the Java virtual machine will listen on for debug
connections.

JVM debug arguments
Specifies the debugging argument string used to start the JVM in debug mode.

Debug class filters
Specifies an array of classes to ignore during debugging. When running in
step-by-step mode, the debugger whill not stop in classes that match a filter entry.

BSF debug port
Specifies the port that the BSF Debug Manager listens on.

BSF logging level
Specifies the level of logging provided by the BSF Debug Manager. The valid range
is 0-3, with 3 being the highest level of logging.

246 IBM WebSphere Application Server Network Deployment, Version 5: Monitoring and Troublshooting

Working with trace
Use trace to obtain detailed information about the execution of WebSphere
Application Server components, including application servers, clients, and other
processes in the environment. Trace files show the time and sequence of methods
called by WebSphere Application Server base classes, and you can use these files to
pinpoint the failure.

Collecting a trace is often requested by IBM technical support personnel. If you are
not familiar with the internal structure of WebSphere Application Server, the trace
output might not be meaningful to you.

Steps for this task
1. Configure an output destination to which trace data is sent.
2. Enable trace for the appropriate WebSphere Application Server or application

components.
3. Run the application or operation to generate the trace data.
4. Analyze the trace data or forward it to the appropriate organization for

analysis.

Enabling trace
Trace for an application server process is enabled while the server process runs by
using the administrative console. You can configure the application server to start
in a trace-enabled state by setting the appropriate configuration properties. You can
only enable trace for an application client or standalone process at process startup.

Trace strings

By default, the trace service for all WebSphere Application Server components is
disabled. To request a change to the current state of the trace service, a trace string
is passed to the trace service. This trace string encodes the information detailing
which level of trace to enable or disable and for which components.

You can type in Trace strings, or construct them with a user-friendly GUI in the
administrative console. Trace strings must conform to a specific grammar for
processing by the trace service. The specification of this grammar follows:
TRACESTRING=COMPONENT_TRACE_STRING[:COMPONENT_TRACE_STRING]*

COMPONENT_TRACE_STRING=COMPONENT_NAME=LEVEL=STATE[,LEVEL=STATE]*

LEVEL = all | entryExit | debug | event

STATE = enabled | disabled

COMPONENT_NAME = COMPONENT | GROUP

The COMPONENT_NAME is the name of a component or group registered with
the trace service. Typically, WebSphere Application Server components register
using a fully qualified Java classname, for example
com.ibm.servlet.engine.ServletEngine. In addition, you can use a wildcard character
of asterisk (*) to terminate a component name and indicate multiple classes or
packages. For example, use a component name of com.ibm.servlet.* to specify all
components whose names begin with com.ibm.servlet.

Examples of legal trace strings include:

Chapter 4. Diagnosing and fixing problems 247

com.ibm.ejs.ras.ManagerAdmin=debug=enabled
com.ibm.ejs.ras.ManagerAdmin=all=enabled,event=disabled
com.ibm.ejs.ras.*=all=enabled
com.ibm.ejs.ras.*=all=enabled:com.ibm.ws.ras=debug=enabled,entryexit=enabled

Trace strings cannot contain blanks.

Trace strings are processed from left to right. Specifying a trace string like
abc.*=all=enabled,event=disabled

first enables all trace for all components whose names start with abc, then disables
event tracing for those same components. This means that the trace string
abc.*=all=enabled,event=disabled

is equivalent to
abc.*=debug=enabled,entryexit=enabled

Enabling trace at server startup
The diagnostic trace configuration settings for a server process determines the
initial trace state for a server process. The configuration settings are read at server
startup and used to configure the trace service. You can also change many of the
trace service properties or settings while the server process is running.

Steps for this task
1. Start the administrative console.
2. Click Troubleshooting > Logging and Tracing in the console navigation tree,

then click Server > Diagnostic Trace.
3. Click Configuration.
4. Select the Enable Trace check box to enable trace, clear the check box to

disable trace.
5. Set the trace specification to the desired state by entering the proper

TraceString.
6. Select whether to direct trace ouput to either a file or an in-memory circular

buffer.
7. (Optional) If the in-memory circular buffer is selected for the trace output set

the size of the buffer, specified in thousands of entries.
This is the maximum number of entries that will be retained in the buffer at
any given time.

8. (Optional) If a file is selected for trace output, set the maximum size in
megabytes to which the file should be allowed to grow.
When the file reaches this size, the existing file will be closed, renamed, and a
new file with the original name reopened. The new name of the file will be
based upon the original name with a timestamp qualifier added to the name.
In addition, specify the number of history files to keep.

9. Select the desired format for the generated trace.
10. Save the changed configuration.
11. Start the server.

Enabling trace on a running server
You can modify the trace service state that determines which components are being
actively traced for a running server by using the following procedure.

Steps for this task

248 IBM WebSphere Application Server Network Deployment, Version 5: Monitoring and Troublshooting

1. Start the administrative console.
2. Click Troubleshooting > Logging and Tracing in the console navigation tree,

then click server > Diagnostic Trace.
3. Select the Runtime tab.
4. (Optional) Select the Save Trace check box if you want to write your changes

back to the server configuration.
5. Change the existing trace state by changing the trace specification to the

desired state.
6. (Optional) Configure the trace output if a change from the existing one is

desired.
7. Click Apply.

Managing the application server trace service
You can manage the trace service for a server process while the server is stopped
and while it is running. You can specify which components to trace, where to send
trace output, the characteristics of the trace output device, and which format to
generate trace output in.

Steps for this task
1. Start the administrative console.
2. Click Troubleshooting > Logging and Tracing in the console navigation tree,

then click server > Diagnostic Trace

3. If the server is running, select the Runtime tab. If the server is stopped, select
the Configuration tab.

4. (Optional) For a running server, check the Save trace check box to write your
changes back to the server configuration.
If Save trace is not selected, the changes you make will apply only for the life
of the server process that is currently running.

5. Perform the desired operation:
a. Enter the file name and click Dump to dump the in-memory circular buffer.
b. To change the trace destination from a file to the in-memory circular buffer

or to a different file, or to change from the in memory circular buffer to a
file, select the appropriate radio buttons, then click Apply.

c. To change the format in which trace output is generated, select the
appropriate value from the drop-down list.

Interpreting trace output
On an application server, trace output can be directed either to a file or to an
in-memory circular buffer. If trace output is directed to the in-memory circular
buffer, it must be dumped to a file before it can be viewed.

On an application client or standalone process, trace output can be directed either
to a file or to the process console window.

In all cases, trace output is generated as plain text in either basic, advanced or log
analyzer format as specified by the user. The basic and advanced formats for trace
output are similar to the basic and advanced formats that are available for the JVM
message logs.

Basic and advanced format fields

Chapter 4. Diagnosing and fixing problems 249

Basic and Advanced Formats use many of the same fields and formatting
techniques. The fields that can be used in these formats include:

TimeStamp
The timestamp is formatted using the locale of the process where it is
formatted. It includes a fully qualified date (YYMMDD), 24 hour time with
millisecond precision and the time zone.

ThreadId
An 8 character hexidecimal value generated from the hash code of the
thread that issued the trace event.

ShortName
The abbreviated name of the logging component that issued the trace
event. This is typically the class name for WebSphere Application Server
internal components, but may be some other identifier for user
applications.

LongName
The full name of the logging component that issued the trace event. This is
typically the fully qualified class name for WebSphere Application Server
internal components, but may be some other identifier for user
applications.

EventType
A one character field that indicates the type of the trace event. Trace types
are in lower case. Possible values include:

> a trace entry of type method entry.

< a trace entry of type method exit.

e a trace entry of type event.

d a trace entry of type debug.

m a trace entry of type dump.

u a trace entry of type unconditional.

Z a placeholder to indicate that the trace type was not recognized.

ClassName
The class that issued the message or trace event.

MethodName
The method that issued the message or trace event.

Organization
The organization that owns the application that issued the message or trace
event.

Product
The product that issued the message or trace event.

Component
The component within the product that issued the message or trace event.

Basic format

Trace events displayed in basic format use the following format:

250 IBM WebSphere Application Server Network Deployment, Version 5: Monitoring and Troublshooting

<timestamp><threadId><shortName><eventType>[className][methodName]<textmessage>
[parameter 1]
[parameter 2]

Advanced formats

Trace events displayed in advanced format use the following format:
<timestamp><threadId><eventType><UOW><source=longName>
[className][methodName]<Organization><Product><Component>
<textMessage>[parameter 1=parameterValue][parameter 2=parameterValue]

Log analyzer

Specifying the log analyzer format allows you to open trace output using the Log
Analyzer. This is useful if you are trying to correlate traces from two different
server processes, because it allows you to use the Log Analyzer’s merge capability).

Trace service settings
Use this page to review and modify the properties of the diagnostic trace service.

To view this page, click Troubleshooting > Logs and Trace > server > Diagnostic
trace.

Enable Trace
Enables the trace service.

If this option is not selected, the following configuration properties will not be
passed to the application server trace service at server startup.

Save Trace
Save changes made on the runtime tab to the trace configuration as well.

Select this box to copy runtime trace changes to the trace configuration settings as
well. Saving these changes to the trace configuration will cause the changes to
persist even if the application is restarted.

Trace Specification
Specifies tracing details.

Enter a trace string that specifies the components, packages, or groups to trace. The
trace string must conform to the specific grammar described below. You can enter
the trace string directly, or generate it using the graphical trace interface. Click
Modify to start the graphical trace interface.

If you start the graphical trace interface from the configuration tab, a list of
well-known components, packages, and groups is displayed. This list might not be
exhaustive.

If you start the graphical trace interface from the runtime tab, the list of
components, packages, and groups displays all such components currently
registered on the running server.

The format of the trace specification is:
<component> = <trace_type>= enabled | disabled

Chapter 4. Diagnosing and fixing problems 251

where: <component> is the component for which to enable or disable tracing, and
<trace_type> is the type of tracing to enable or disable. Separate multiple tracing
specifications with colons (:).

Components correspond to Java packages and classes, or to collections of Java
packages. Use * as a wildcard to indicate components that include all classes in all
packages contained by the specified component. For example:

* Specifies all traceable code running in the application server, including
WebSphere Application Server system code and customer code.

com.ibm.ws.*
specifies all classes whose package name begins with com.ibm.ws.

com.ibm.ws.classloader.JarClassLoader
Specifies only the JarClassLoader class.

For more information on trace string grammar, see the article Enabling trace in the
WebSphere Application Server InfoCenter.

Trace Output
Specifies where trace output should be written.

The trace output can be written directly to an output file, or stored in memory and
written to a file on demand using the Dump button found on the runtime page.

Memory Buffer
Specifies that the trace output should be written to an in-memory circular
buffer. If you select this option you must specify the following parameters:

Maximum Buffer Size
Specifies the number of entries, in thousands, that can be cached in
the buffer. When this number is exceeded, older entries are
overwritten by new entries.

Dump File Name
The name of the file to which the memory buffer will be written
when it is dumped. This option is only available from the runtime
tab.

File Specifies to write the trace output to a self-managing log file.

The self-managing log file writes messages to the file until a size criteria is
reached. When the file reaches the specified size, logging is temporarily
suspended and the log file is closed and renamed. The new name is based
on the original name of the file, plus a timestamp qualifier that indicates
when the renaming occurred. Once the renaming is complete, a new,
empty log file with the original name is reopened, and logging resumes.
No messages are lost as a result of the rollover, although a single message
may be split across the two files.

If you select this option you must specify the following parameters:

Maximum File Size
Specifies the maximum size, in megabytes, to which the output file is
allowed to grow.

This attribute is only valid if the File Size attribute is selected. When the
file reaches this size, it is rolled over as described above.

252 IBM WebSphere Application Server Network Deployment, Version 5: Monitoring and Troublshooting

Maximum Number of Historical Files
Specifies the maximum number of rolled over files to keep.

File Name
Specifies the name of the file to which the trace output is written.

Trace Output Format
Specifies the format of the trace output.

You can specify one of three levels for trace output:

Basic (Compatible)
preserves only basic trace information. Select this option to minimize the
amount of space taken up by the trace output.

Advanced
preserved more specific trace information. Select this option to see detailed
trace information for use in troubleshooting and problem determination.

Log Analyzer
preserved trace information in a format that is compatible with the Log
Analyzer tool. Select this option if you want to use the trace output as
input to the Log Analyzer tool.

Logging and tracing settings
Use this page to view and configure logging and trace settings for the server.

To view this administrative console page, click Troubleshooting > Logs and Trace
server_name > service_type.

Adding logging and tracing to your application
Designers and developers of applications that run with or under WebSphere
Application Server, such as servlets, JSP files, enterprise beans, client applications,
and their supporting classes, may find it useful to use the same facility for
generating messages that WebSphere Application Server itself uses, JRas.

This approach has advantages over simply adding System.out.println()
statements to your code:
v Your messages appear in the WebSphere Application Server standard message

format with additional data, such as a date and time stamp, added
automatically.

v You can more easily correlate problems and events in your own application to
problems and events associated with WebSphere Application Server components.

v You can take advantage of the WebSphere Application Server log file
management features.

v You can view your messages with the WebSphere Application Server
user-friendly Log Analyzer tool.

Unless you choose to extend the JRas framework, using the JRas API set is only
slightly more complicated than writing basic System println() statements.

Programming with the JRas framework
Use the JRas extensions to incorporate message logging and diagnostic trace into
WebSphere Application Server applications. The JRas extensions are based on the
standalone JRas logging toolkit.

Chapter 4. Diagnosing and fixing problems 253

Steps for this task
1. Retrieve a reference to the JRas manager.
2. Retrieve message and trace loggers by using methods on the returned manager.
3. Call the appropriate methods on the returned message and trace loggers to

create message and trace entries, as appropriate.

Understanding the JRas facility
Developing, deploying and maintaining applications are complex tasks. For
example, when a running application encounters an unexpected condition it might
not be able to complete a requested operation. In such a case you might want the
application to inform the administrator that the operation has failed and give
information as to why. This enables the administrator to take the proper corrective
action. Application developers or maintainers might need to gather detailed
information relating to the execution path of a running application in order to
determine the root cause of a failure that is due to a code bug. The facilities that
are used for these purposes are typically referred to as message logging and
diagnostic trace.

Message logging (messages) and diagnostic trace (trace) are conceptually quite
similar, but do have important differences. It is important for application
developers to understand these differences in order to use these tools properly. To
start with, the following operational definitions of messages and trace are
provided.

Message
A message entry is an informational record intended to be viewed by end
users, systems administrators and support personnel. The text of the
message must be clear, concise and interpretable by an end user. Messages
are typically localized, meaning they are displayed in the national
language of the end user. Although the destination and lifetime of
messages might be configurable, some level of message logging is always
enabled in normal system operation. Message logging must be used
judiciously due to both performance considerations and the size of the
message repository.

Trace A trace entry is an information record that is intended to be used by
service engineers or developers. As such a trace record may be
considerably more complex, verbose and detailed than a message entry.
Localization support is typically not used for trace entries. Trace entries
may be fairly inscrutable, understandable only by the appropriate
developer or service personnel. It is assumed that trace entries are not
written during normal runtime operation, but may be enabled as needed to
gather diagnostic information.

WebSphere Application Server provides a message logging and diagnostic trace
API that can be used by applications. This API is based on the standalone JRas
logging toolkit which was developed by IBM. The standalone JRas logging toolkit
is a collection of interfaces and classes that provide message logging and
diagnostic trace primitives. These primitives are not tied to any particular product
or platform. The standalone JRas logging toolkit provides a limited amount of
support (typically referred to as systems management support), including log file
configuration support based on property files.

As designed, the standalone JRas logging toolkit does not contain the support
required for integration into the WebSphere Application Server runtime or for
usage in a J2EE environment. To overcome these limitations, WebSphere

254 IBM WebSphere Application Server Network Deployment, Version 5: Monitoring and Troublshooting

Application Server provides a set of extension classes to address these
shortcomings. This collection of extension classes is referred to as the JRas
extensions. The JRas extensions do not modify the interfaces introduced by the
standalone JRas logging toolkit, but simply provide the appropriate
implementation classes. The conceptual structure introduced by the standalone
JRas logging toolkit is described below. It is equally applicable to the JRas
extensions.

JRas Concepts

The following is a basic overview of important concepts and constructs introduced
by the standalone JRas logging toolkit. It is not meant to be an exhaustive
overview of the capabilities of this logging toolkit, nor is it intended to be a
detailed discussion of usage or programming paradigms. More detailed
information, including code examples, is available in JRas extensions and its
subtopics, including in the Javadoc for the various interfaces and classes that make
up the logging toolkit.

Event Types
The standalone JRas logging toolkit defines a set of event types for
messages and a set of event types for trace. Examples of message types
include informational, warning and error. Examples of trace types include
entry, exit and trace.

Event Classes
The standalone JRas logging toolkit defines both message and trace event
classes.

Loggers
A logger is the primary object with which the user code interacts. Two
types of loggers are defined. These are message loggers and trace loggers.
The set of methods on message loggers and trace loggers are different,
since they provide different functionality. Message loggers create only
message records and trace loggers create only trace records. Both types of
loggers contain masks that indicates which categories of events the logger
should process and which it should ignore. Although every JRas logger is
defined to contain both a message and trace mask, the message logger only
uses the message mask and the trace logger only uses the trace mask. For
example, by setting a message logger’s message mask to the appropriate
state, it can be configured to process only Error messages and ignore
Informational and Warning messages. Changing the state of a message
logger’s trace mask has no effect.

A logger contains one or more handlers to which it forwards events for
further processing. When the user calls a method on the logger, the logger
will compare the event type specified by the caller to its current mask
value. If the specified type passes the mask check, the logger will create an
event object to capture the information relating to the event that was
passed to the logger method. This information may include information
such as the names of the class and method which is logging the event, a
message and parameters to log, among others. Once the logger has created
the event object, it forwards the event to all handlers currently registered
with the logger.

Handlers
A handler provides an abstraction over an output device or event
consumer. An example is a file handler, which knows how to write an
event to a file. The handler also contains a mask that is used to further

Chapter 4. Diagnosing and fixing problems 255

restrict the categories of events the handler will process. For example, a
message logger may be configured to pass both warning and error events,
but a handler attached to the message logger may be configured to only
pass error events. Handlers also include formatters, which the handler
invokes to format the data in the passed event before it is written to the
output device.

Formatters
Handlers are configured with Formatters, which know how to format
events of certain types. A handler may contain multiple formatters, each of
which know how to format a specific class of event. The event object is
passed to the appropriate formatter by the handler. The formatter returns
formatted output to the handler, which then writes it to the output device.

JRas Extensions
The standalone JRas logging toolkit defines interfaces and provides a variety of
concrete classes that implement these interfaces. Since the standalone JRas logging
toolkit was developed as a general purpose toolkit, the implementation classes do
not contain the configuration interfaces and methods necessary for use in the
WebSphere Application Server product. In addition, many of the implementation
classes are not written appropriately for use in a J2EE environment. To overcome
these shortcomings, WebSphere Application Server provides the appropriate
implementation classes that allow integration into the WebSphere Application
Server environment. The collection of these implementation classes is referred to as
the JRas extensions.

Usage Model

You can use the JRas extensions in three distinct operational modes:

Integrated
In this mode, message and trace records are written only to logs defined
and maintained by the WebSphere Application Server runtime. This is the
default mode of operation and is equivalent to the WebSphere Application
Server 4.0 mode of operation.

Standalone
In this mode, message and trace records are written solely to standalone
logs defined and maintained by the user. You control which categories of
events are written to which logs, and the format in which entries are
written. You are responsible for configuration and maintenance of the logs.
Message and trace entries are not written to WebSphere Application Server
runtime logs.

Combined
In this mode message and trace records are written to both WebSphere
Application Server runtime logs and to standalone logs that you must
define, control, and maintain. You can use filtering controls to determine
which categories of messages and trace are written to which logs.

The JRas extensions are specifically targeted to an integrated mode of operation.
The integrated mode of operation can be appropriate for some usage scenarios, but
there many scenarios are not adequately addressed by these extensions. Many
usage scenarios require a standalone or combined mode of operation instead. A set
of user extension points has been defined that allow the JRas extensions to be used
in either a standalone or combined mode of operations.

256 IBM WebSphere Application Server Network Deployment, Version 5: Monitoring and Troublshooting

JRas extension classes: WebSphere Application Server provides a base set of
implementation classes that collectively are referred to as the JRas extensions.
Many of these classes provide the appropriate implementations of loggers,
handlers and formatters for use in a WebSphere Application Server environment.
As previously noted, this collection of classes is targeted at an Integrated mode of
operation. If you choose to use the JRas extensions in either standalone or
combined mode, you can reuse the logger and manager class provided by the
extensions, but you must provide your own implementations of handlers and
formatters.

WebSphere Application Server Message and Trace loggers

The message and trace loggers provided by the standalone JRas logging toolkit
cannot be directly used in the WebSphere Application Server environment. The
JRas extensions provide the appropriate logger implementation classes. Instances of
these message and trace logger classes are obtained directly and exclusively from
the WebSphere Application Server Manager class, described below. You cannot
directly instantiate message and trace loggers. Obtaining loggers in any manner
other than directly from the Manager is not allowed. Doing so is a direct violation
of the programming model.

The message and trace loggers instances obtained from the WebSphere Application
Server Manager class are subclasses of the RASMessageLogger() and
RASTraceLogger() classes provided by the standalone JRas logging toolkit. The
RASMessageLogger() and RASTraceLogger() classes define the set of methods that
are directly available. Public methods introduced by the JRas extensions logger
subclasses cannot be called directly by user code. Doing so is a violation of the
programming model.

Loggers are named objects and are identified by name. When the Manager class is
called to obtain a logger, the caller is required to specify a name for the logger. The
Manager class maintains a name-to-logger instance mapping. Only one instance of
a named logger will ever be created within the lifetime of a process. The first call
to the Manager with a particular name will result in the logger being created and
configured by the Manager. The Manager will cache a reference to the instance,
then return it to the caller. Subsequent calls to the Manager that specify the same
name will result in a reference to the cached logger being returned. Separate name
spaces are maintained for message and trace loggers. This means a single name
can be used to obtain both a message logger and a trace logger from the Manager,
without ambiguity, and without causing a name space collision.

In general, loggers have no predefined granularity or scope. A single logger could
be used to instrument an entire application. Or users may determine that having a
logger per class is more desirable. Or the appropriate granularity may lie
somewhere in between. Partitioning an application into logging domains is
rightfully determined by the application writer.

The WebSphere Application Server logger classes obtained from the Manager are
thread-safe. Although the loggers provided as part of the standalone JRas logging
toolkit implement the serializable interface, in fact loggers are not serializable.
Loggers are stateful objects, tied to a Java virtual machine instance and are not
serializable. Attempting to serialize a logger is a violation of the programming
model.

Please note that there is no provision for allowing users to provide their own
logger subclasses for use in a WebSphere Application Server environment.

Chapter 4. Diagnosing and fixing problems 257

WebSphere Application Server handlers

WebSphere Application Server provides the appropriate handler class that is used
to write message and trace events to the WebSphere Application Server runtime
logs. You cannot configure the WebSphere Application Server handler to write to
any other destination. The creation of a WebSphere Application Server handler is a
restricted operation and not available to user code. Every logger obtained from the
Manager comes preconfigured with an instance of this handler already installed.
You can remove the WebSphere Application Server handler from a logger when
you want to run in standalone mode. Once you have removed it, you cannot
re-add the WebSphere Application Server handler to the logger from which it was
removed (or any other logger). Also, you cannot directly call any method on the
WebSphere Application Server handler. Attempting to create an instance of the
WebSphere Application Server handler, to call methods on the WebSphere
Application Server handler or to add a WebSphere Application Server handler to a
logger by user code is a violation of the programming model.

WebSphere Application Server formatters

The WebSphere Application Server handler comes preconfigured with the
appropriate formatter for data that is written to WebSphere Application Server
logs. The creation of a WebSphere Application Server formatter is a restricted
operation and not available to user code. No mechanism exists that allows the user
to obtain a reference to a formatter installed in a WebSphere Application Server
handler, or to change the formatter a WebSphere Application Server handler is
configured to use.

WebSphere Application Server manager

WebSphere Application Server provides a Manager class located in the
com.ibm.websphere.ras package. All message and trace loggers must be obtained
from this Manager. A reference to the Manager is obtained by calling the static
Manager.getManager() method. Message loggers are obtained by calling the
createRASMessageLogger() method on the Manager. Trace loggers are obtained by
calling the createRASTraceLogger() method on the Manager class.

The manager also supports a group abstraction that is useful when dealing with
trace loggers. The group abstraction allows multiple, unrelated trace loggers to be
registered as part of a named entity called a group. WebSphere Application Server
provides the appropriate systems management facilities to manipulate the trace
setting of a group, similar to the way the trace settings of an individual trace
logger.

For example, suppose component A consist of 10 classes. Suppose each class is
configured to use a separate trace logger. Suppose all 10 trace loggers in the
component are registered as members of the same group (for example
Component_A_Group). You can then turn on trace for a single class. Or you can
turn on trace for all 10 classes in a single operation using the group name if you
want a component trace. Group names are maintained within the name space for
trace loggers.

Extending the JRas framework: Since the Jras extensions classes do not provide
the flexibility and behavior required for many scenarios, a variety of extension
points have been defined. You are allowed to write your own implementation
classes to obtain the required behavior.

258 IBM WebSphere Application Server Network Deployment, Version 5: Monitoring and Troublshooting

In general, the Jras extensions require you to call the Manager class to obtain a
message logger or trace logger. No provision is made to allow you to provide your
own message or trace logger subclasses. In general, user-provided extensions
cannot be used to affect the integrated mode of operation.The behavior of the
integrated mode of operation is solely determined by the WebSphere Application
Server runtime and the JRas extensions classes.

Handlers

The standalone JRas logging toolkit defines the RASIHandler interface. All handlers
must implement this interface. You can write your own handler classes that
implement the RASIHandler interface. You should directly create instances of
user-defined handlers and add them to the loggers obtained from the Manager.

The standalone JRas logging toolkit provides several handler implementation
classes. These handler classes are inappropriate for usage in the J2EE environment.
You cannot directly use or subclass any of the Handler classes provided by the
standalone JRas logging toolkit. Doing so is a violation of the programming model.

Formatters

The standalone JRas logging toolkit defines the RASIFormatter interface. All
formatters must implement this interface. You can write your own formatter
classes that implement the RASIFormatter interface. You can only add these classes
to a user-defined handler. WebSphere Application Server handlers cannot be
configured to use user-defined formatters. Instead, directly create instances of your
formatters and add them to the your handlers appropriately.

As with handlers, the standalone JRas logging toolkit provides several formatter
implementation classes. Direct usage of these formatter classes is not supported.

Message event types

The standalone JRas toolkit defines message event types in the RASIMessageEvent
interface. In addition, the WebSphere Application Server reserves a range of
message event types for future use. The RASIMessageEvent interface defines three
types, with values of 0x01, 0x02, and 0x04. The values 0x08 through 0x8000 are
reserved for future use. You can provide your own message event types by
extending this interface appropriately. User-defined message types must have a
value of 0x1000 or greater.

Message loggers retrieved from the Manager have their message masks set to pass
or process all message event types defined in the RASIMessageEvent interface. In
order to process user-defined message types, you must manually set the message
logger mask to the appropriate state by user code after the message logger has
been obtained from the Manager. WebSphere Application Server does not provide
any built-in systems management support for managing any message types.

Message event objects

The standalone Jras toolkit provides a RASMessageEvent implementation class.
When a message logging method is called on the message logger, and the message
type is currently enabled, the logger creates and distributes an event of this class to
all handlers currently registered with that logger.

Chapter 4. Diagnosing and fixing problems 259

You can provide your own message event classes, but they must implement the
RASIEvent interface. You must directly create instances of such user-defined
message event classes. Once it is created, pass your message event to the message
logger by calling the message logger’s fireRASEvent() method directly. WebSphere
Application Server message loggers cannot directly create instances of user-defined
types in response to calling a logging method (msg(), message()...) on the logger. In
addition, instances of user-defined message types are never processed by the
WebSphere Application Server handler. You cannot create instances of the
RASMessageEvent class directly.

Trace event types

The standalone JRas toolkit defines trace event types in the RASITraceEvent
interface. You can provide your own trace event types by extending this interface
appropriately. In such a case you must ensure that the values for the user-defined
trace event types do not collide with the values of the types defined in the
RASITraceEvent interface.

Trace loggers retrieved from the Manager typically have their trace masks set to
reject all types. A different starting state can be specified by using WebSphere
Application Server systems managment facilities. In addition, the state of the trace
mask for a logger can be changed at runtime using WebSphere Application Server
systems management facilities.

In order to process user-defined trace types, the trace logger mask must be
manually set to the appropriate state by user code. WebSphere Application Server
systems management facilities cannot be used to manage user-defined trace types,
either at start time or runtime.

Trace event objects

The standalone Jras toolkit provides a RASTraceEvent implementation class. When
a trace logging method is called on the WebSphere Application Server trace logger
and the type is currently enabled, the logger creates and distributes an event of
this class to all handlers currently registered with that logger.

You can provide your own trace event classes. Such trace event classes must
implement the RASIEvent interface. You must create instances of such user-defined
event classes directly. Once it is created, pass the trace event to the trace logger by
calling the trace logger’s fireRASEvent() method directly. WebSphere Application
Server trace loggers cannot directly create instances of user-defined types in
response to calling a trace method (entry(), exit(), trace()) on the trace logger.
In addition, instances of user-defined trace types are never processed by the
WebSphere Application Server handler. You cannot create instances of the
RASTraceEvent class directly.

User defined types, user defined events and WebSphere Application Server

By definition, the WebSphere Application Server handler will process user-defined
message or trace types, or user-defined message or trace event classes. Message
and trace entries of either a user-defined type or user-defined event class cannot be
written to the WebSphere Application Server runtime logs.

Writing User Extensions: General Considerations

260 IBM WebSphere Application Server Network Deployment, Version 5: Monitoring and Troublshooting

You can configure the WebSphere Application Server to use Java 2 security to
restrict access to protected resources such as the file system and sockets. Since user
written extensions typically access such protected resources, user written
extensions must contain the appropriate security checking calls, using
AccessController doPrivileged() calls. In addition, the user written extensions
must contain the appropriate policy file. In general, it is recommended that you
locate user written extensions in a separate package. It is your responsibility to
restrict access to the user written extensions appropriately.

Writing a handler

User written handlers must implement the RASIHandler interface. The RASIHandler
interface extends the RASIMaskChangeGenerator interface, which extends the
RASIObject interface. A short discussion of the methods introduced by each of
these interfaces follows, along with implementation pointers. For more in depth
information on any of the particular interfaces or methods, see the corresponding
product Javadoc.

RASIObject interface

The RASIObject interface is the base interface for standalone JRas logging toolkit
classes that are stateful or configurable, such as loggers, handlers and formatters.
v The standalone JRas logging tookit supports rudimentary properties-file based

configuration. To implement this configuration support, the configuration state is
stored as a set of key-value pairs in a properties file. The methods public
Hashtable getConfig() and public void setConfig(Hashtable ht) are used to
get and set the configuration state. The JRas extensions do not support
properties based configuration and it is recommended that these methods be
implemented as no-operations. You can implement your own properties based
configuration using these methods.

v Loggers, handlers and formatters can be named objects. For example, the JRas
extensions require the user to provide a name for the loggers that are retrieved
from the manager. You can name your handlers. The methods public String
getName() and public void setName(String name) are provided to get or set the
name field. The JRas extensions currently do not call these methods on user
handlers. You can implement these methods as you want, including as no
operations.

v Loggers, handlers and formatters can also contain a description field. The
methods public String getDescription() and public void
setDescription(String desc) can be used to get or set the description field. The
JRas extensions currently do not use the description field. You can implement
these methods as you want, including as no operations.

v The method public String getGroup() is provided for usage by the RASManager.
Since the JRas extensions provide their own Manager class, this method is never
called. It is recommended you implement this as a no-operation.

RASIMaskChangeGenerator interface

The RASIMaskChangeGenerator interface is the interface that defines the
implementation methods for filtering of events based on a mask state. This means
that it is currently implemented by both loggers and handlers. By definition, an
object that implements this interface contains both a message mask and a trace
mask, although both need not be used. For example, message loggers contain a
trace mask, but the trace mask is never used since the message logger never

Chapter 4. Diagnosing and fixing problems 261

generates trace events. Handlers however can actively use both mask values. For
example a single handler could handle both message and trace events.
v The methods public long getMessageMask() and public void

setMessageMask(long mask) are used to get or set the value of the message
mask. The methods public long getTraceMask() and public void
setTraceMask(long mask) are used to get or set the value of the trace mask.

In addition, this interface introduces the concept of calling back to interested parties
when a mask changes state. The callback object must implement the
RASIMaskChangeListener interface.
v The methods public void addMaskChangeListener(RASIMaskChangeListener

listener) and public void removeMaskChangeListener(RASIMaskChangeListener
listener) are used to add or remove listeners to the handler. The method
public Enumeration getMaskChangeListeners() returns an Enumeration over the
list of currently registered listeners. The method public void
fireMaskChangedEvent(RASMaskChangeEvent mc) is used to call back all the
registered listeners to inform them of a mask change event.

For efficiency reasons, the Jras extensions message and trace loggers implement the
RASIMaskChangeListener interface. The logger implementations maintain a
“composite mask” in addition to the logger’s own mask. The logger’s composite
mask is formed by logically or’ing the appropriate masks of all handlers that are
registered to that logger, then and’ing the result with the logger’s own mask. For
example, the message logger’s composite mask is formed by or’ing the message
masks of all handlers registered with that logger, then and’ing the result with the
logger’s own message mask.

This means that all handlers are required to properly implement these methods. In
addition, when a user handler is instantiated, the logger it is to be added to should
be registered with the handler using the addMaskChangeListener() method. When
either the message mask or trace mask of the handler is changed, the logger must
be called back to inform it of the mask change. This allows the logger to
dynamically maintain the composite mask.

The RASMaskChangedEvent class is defined by the standalone JRas logging toolkit.
Direct usage of that class by user code is allowed in this context.

In addition the RASIMaskChangeGenerator introduces the concept of caching the
names of all message and trace event classes that the implementing object will
process. The intent of these methods is to allow a management program such as a
GUI to retrieve the list of names, introspect the classes to determine the event
types that they might possibly process and display the results. The JRas extensions
do not ever call these methods, so they can be implemented as no operations, if
desired.
v The methods public void addMessageEventClass(String name) and public void

removeMessageEventClass(String name) can be called to add or remove a
message event class name from the list. The method public Enumeration
getMessageEventClasses() will return an enumeration over the list of message
event class names. Similarly, the public void addTraceEventClass(String name)
and public void removeTraceEventClass(String name) can be called to add or
remove a trace event class name from the list. The method public Enumeration
getTraceEventClasses() will return an enumeration over the list of trace event
class names.

RASIHandler interface

262 IBM WebSphere Application Server Network Deployment, Version 5: Monitoring and Troublshooting

The RASIHandler interface introduces the methods that are specific to the behavior
of a handler.

The RASIHandler interface as provided by the standalone JRas logging toolkit
supports handlers that run in either a synchronous or asynchronous mode. In
asynchronous mode, events are typically queued by the calling thread and then
written by a worker thread. Since spawning of threads is not allowed in the
WebSphere Application Server environment, it is expected that handlers will not
queue or batch events, although this is not expressly prohibited.
v The methods public int getMaximumQueueSize() and public void

setMaximumQueueSize(int size) throw IllegalStateException are provided to
manage the maximum queue size. The method public int getQueueSize() is
provided to query the actual queue size.

v The methods public int getRetryInterval() and public void
setRetryInterval(int interval) support the notion of error retry, which again
implies some type of queueing.

v The methods public void addFormatter(RASIFormatter formatter), public
void removeFormatter(RASIFormatter formatter) and public Enumeration
getFormatters() are provided to manage the list of formatters that the handler
can be configured with. Different formatters can be provided for different event
classes, if appropriate.

v The methods public void openDevice(), public void closeDevice() and public
void stop() are provided to manage the underlying device that the handler
abstracts.

v The methods public void logEvent(RASIEvent event) and public void
writeEvent(RASIEvent event) are provided to actually pass events to the
handler for processing.

Writing a formatter

User written formatters must implement the RASIFormatter interface. The
RASIFormatter interface extends the RASIObject interface. The implementation of
the RASIObject interface is the same for both handlers and formatters. A short
discussion of the methods introduced by the RASIFormatter interface follows. For
more in depth information on the methods introduced by this interface, see the
corresponding product javadoc.

RASIFormatter interface

v The methods public void setDefault(boolean flag) and public boolean
isDefault() are used by the concrete RASHandler classes provided by the
standalone JRas logging toolkit to determine if a particular formatter is the
default formatter. Since these RASHandler classes must never be used in a
WebSphere Application Server environment, the semantic significance of these
methods can be determined by the user.

v The methods public void addEventClass(String name), public void
removeEventClass(String name) and public Enumeration getEventClasses() are
provided to determine which event classes a formatter can be used to format.
You can provide the appropriate implementations as you see fit.

v The method public String format(RASIEvent event) is called by handler
objects and returns a formatted String representation of the event.

Example: user written handler: The following is a very simple sample of a
Handler class that writes formatted events to a file. This class is functional, but is
intended solely to demonstrate concepts. For simplicity and clarity, much code

Chapter 4. Diagnosing and fixing problems 263

(including appropriate boundary condition checking logic) has been ignored. This
sample is not intended to be an example of good programming practice.
package com.ibm.ws.ras.test.user;

import com.ibm.ras.*;
import java.io.*;
import java.util.*;
import java.security.AccessController;
import java.security.PrivilegedAction;
import java.security.PrivilegedExceptionAction;
import java.security.PrivilegedActionException;

/**
* The <code>SimpleFileHandler</code> is a class that implements the
* {{@link RASIHandler} interface. It is a simple
* Handler that writes to a file. The name of the file must be specified in the constructor.
* <p>
* If the file includes a path, the path separator may be a front-slash (’/’)
* or the platform-specific path separator character. For example:
*
* /Dir1/Dir2/Dir3/MyStuff.log
*
*/

public class SimpleFileHandler implements RASIHandler
{

/**
* A public boolean that can be inspected by the caller to determine if an error has
* occurred during an operation.
* This boolean can only be changed when the device synchronizer is held.
*/
public boolean errorHasOccurred = false;
/**
* The name of the Handler
*/
private String ivName = "";

/**
* The message mask which determines the types of messages that will be processed.
*/
private long ivMessageMask;

/**
* The trace mask which determines the types of trace points that will be processed.
*/
private long ivTraceMask;

/**
* The names of the message event classes which this object processes.
*/
private Vector ivMessageEventClasses;

/**
* The names of the trace event classes which this object processes.
*/
private Vector ivTraceEventClasses;

/**
* The set of {@link RASIMaskChangeListener} which want to be informed of changes to the
* <code>RASIMaskChangeGenerator</code> message or trace mask configuration.
*/
private Vector ivMaskChangeListeners;

/**

264 IBM WebSphere Application Server Network Deployment, Version 5: Monitoring and Troublshooting

* The fully-qualified, normalized name of the file to which the log entries are written.
*/
private String ivFqFileName;

/**
* A boolean flag which indicates whether the device to which this handler sends log
* entries is open. It is set to true when the device is open and false otherwise.
*/
private boolean ivDeviceOpen = false;

/**
* A Hashtable of RASIFormatters keyed by the name of the event class they format.
* Each event type can have exactly
* one formatter. Different event classes can have different formatters.
*/
private Hashtable ivFormatters;

/**
* An object on which the {@link #closeDevice closeDevice} and
* {@link #writeEvent writeEvent} methods can synchronize.
*/
private Object ivDeviceLock = new Object();

/**
* The stream to which formatted log events are written. This stream will wrap a file.
*/
private PrintWriter ivWriter = null;

/**
* Create a SimpleFileHandler.
* <p>
* The constructor will attempt to open a stream in append mode over the specified file.
* If the operation does not complete
* successfully, the errorHasOccurred boolean is set to true. If no exceptions are thrown
* by this constructor and the
* errorHasOccurred booleans state is false, the stream is open and the handler is usable.
* <p>
* @param name the name assigned to this handler object. Null is tolerated.
* @param fileName a non-null file name. Caller must guarantee this name is not null.
* A fully qualified file name is preferred.
*/
public SimpleFileHandler(String name, String fileName) throws Exception {

setName(name);
ivMessageMask = RASIMessageEvent.DEFAULT_MESSAGE_MASK;
ivTraceMask = RASITraceEvent.DEFAULT_TRACE_MASK;
// Allocate the Hashtables and Vectors required.
ivMaskChangeListeners = new Vector();
ivMessageEventClasses = new Vector();
ivTraceEventClasses = new Vector();
ivFormatters = new Hashtable();
// Add the default event classes that this handler will process
addMessageEventClass("com.ibm.ras.RASMessageEvent");
addTraceEventClass("com.ibm.ras.RASTraceEvent");

// Get the fully qualified, normalized file name. Open the stream
File x = new File(fileName);
ivFqFileName = x.getAbsolutePath();
openDevice();

}

///
//
// The following methods are required by the RASIObject interface
//
///

/**

Chapter 4. Diagnosing and fixing problems 265

* Return this objects configuration as a set of Properties in a Hashtable.
* <p>
* This handler does not support properties-based configuration. Therefore a call to
* this method always returns null
* @return null is always returned.
*/
public Hashtable getConfig() {

return null;
}

/**
* Set this objects configuration from the properties in the specified Hashtable.
* <p>
* This handler does not support properties-based configuration.
* This method is a no-operation.
* @param hashTable a Hashtable containing the properties. Input is ignored.
*/
public void setConfig(Hashtable ht) {

return;
}

/**
* Return the name by which this object is known.
* <p>
* @return a String containing the name of this object, or an empty string ("") if
* the name has not been set.
*/
public String getName() {

return ivName;
}

/**
* Set the name by which this object is known. If the specified name is
* <code>null</code>, the current name is not changed.
* <p>
* @param name The new name for this object. Null is tolerated.
*/
public void setName(String name) {

if (name != null)
ivName = name;

}

/**
* Return the description field of this object.
* <p>
* This handler does not use a description field. An empty String is always returned.
* <p>
* @return an empty String.
*/
public String getDescription() {

return "";
}

/**
* Set the description field for this object.
* <p>
* This handler does not use a description field. Input is ignored and
* this method does nothing.
* <p>
* @param desc The description of this object. Input is ignored.
*/
public void setDescription(String desc) {

return;
}

/**
* Return the name of the {@link com.ibm.ras.mgr.RASManager RASManager} group

266 IBM WebSphere Application Server Network Deployment, Version 5: Monitoring and Troublshooting

* with which this object is associated. This method is only used by the RAS Manager.
* <p>
* This object does not support RASManager configuration. Null is always returned.
* @return null is always returned.
*/
public String getGroup() {

return null;
}

///
//
// Methods required by the RASIMaskChangeGenerator interface
//
//

/**
* Return the message mask which defines the set of message types that will be
* processed by this Handler. The set of possible
* types is identified in the {@link RASIMessageEvent}
* <code>TYPE_XXXX</code> constants.
* <p>
* @return The current message mask.
*/
public long getMessageMask() {

return ivMessageMask;
}

/**
* Set the message mask which defines the set of message types that will be
* processed by this Handler. The set of possible
* types is identified in the {@link RASIMessageEvent}
* <code>TYPE_XXXX</code> constants.
* The mask value is not validated against these types.
* <p>
* @param mask The message mask.
*/
public void setMessageMask(long mask) {

RASMaskChangeEvent mc = new RASMaskChangeEvent(this, ivMessageMask, mask, true);
ivMessageMask = mask;
fireMaskChangedEvent(mc);

}

/**
* Return the trace mask which defines the set of trace types that will be
* processed by this Handler. The set of possible
* types is identified in the {@link RASITraceEvent}
* <code>TYPE_XXXX</code>
* constants.
* <p>
* @return The current trace mask.
*/
public long getTraceMask() {

return ivTraceMask;
}

/**
* Set the trace mask which defines the set of trace types that will be
* processed by this Handler. The set of possible types
* is identified in the {@link RASITraceEvent}
* <code>TYPE_XXXX</code> constants.
* The specified trace mask value is not validated.
* <p>
* @param mask The trace mask.
*/
public void setTraceMask(long mask) {

RASMaskChangeEvent mc = new RASMaskChangeEvent(this, ivTraceMask, mask, false);
ivTraceMask = mask;

Chapter 4. Diagnosing and fixing problems 267

fireMaskChangedEvent(mc);
}

/**
* Add a {@link RASIMaskChangeListener} object to the set of listeners which wish to
* be identified of a change in the message
* or trace mask configuration. If the specified listener is
* <code>null</code> or is already registered, this method does nothing.
* <p>
* @param listener The mask change listener.
*/
public void addMaskChangeListener(RASIMaskChangeListener listener) {

if (listener != null && (!ivMaskChangeListeners.contains(listener)))
ivMaskChangeListeners.addElement(listener);

}

/**
* Remove a {@link RASIMaskChangeListener} object from the list of registered listeners
* that wish to be informed of changes
* in the message or trace mask configuration. If the listener is
* <code>null</code> or is not registered, this method does nothing.
* <p>
* @param listener The mask change listener.
*/
public void removeMaskChangeListener(RASIMaskChangeListener listener) {

if (listener != null && ivMaskChangeListeners.contains(listener))
ivMaskChangeListeners.removeElement(listener);

}

/**
* Return an enumeration over the set of listeners currently registered to be
* informed of changes in the message or trace mask configuration.
* <p>
* @return An Enumeration of mask change listeners. If no listeners are registered,
* the Enumeration is empty.
*/
public Enumeration getMaskChangeListeners() {

return ivMaskChangeListeners.elements();
}

/**
* Inform all registered <code>RASIMaskChangeListener</code>s that
* the message or trace mask has been changed.
*<p>
* @param mc A mask change event, indicating what has changed.
*/
public void fireMaskChangedEvent(RASMaskChangeEvent mc) {

RASIMaskChangeListener c;
Enumeration e = getMaskChangeListeners();
while (e.hasMoreElements()) {

c = (RASIMaskChangeListener) e.nextElement();
c.maskValueChanged(mc);

}
}

/**
* Add the name of a message event class to the list of message event classes
* which this handler processes. If the specified
* event class is null or is already registered, this method does nothing.
* <p>
* @param name The event class name.
*/
public void addMessageEventClass(String name) {

if (name != null && (! ivMessageEventClasses.contains(name)))
ivMessageEventClasses.addElement(name);

}

268 IBM WebSphere Application Server Network Deployment, Version 5: Monitoring and Troublshooting

/**
* Remove the name of a message event class from the list of names of classes
* which this handler processes. If the specified event
* class is null or is not registered, this method does nothing.
* <p>
* @param name The event class name.
*/
public void removeMessageEventClass(String name) {

if ((name != null) && (ivMessageEventClasses.contains(name)))
ivMessageEventClasses.removeElement(name);

}

/**
* Return an enumeration over the set of names of the message event classes
* which this handler processes.
* <p>
* @return An Enumeration of RAS event class names. If no event classes
* are registered, the Enumeration is empty.
*/
public Enumeration getMessageEventClasses() {

return ivMessageEventClasses.elements();
}

/**
* Add the name of a trace event class to the list of trace event classes
* which this handler processes. If the specified event
* class is null or is already registered, this method does nothing.
* <p>
* @param name The event class name.
*/
public void addTraceEventClass(String name) {

if ((name != null) && (!ivTraceEventClasses.contains(name)))
ivTraceEventClasses.addElement(name);

}

/**
* Remove the name of a trace event class from the list of names of classes
* which this handler processes. If the
* specified event class is null or is not registered, this method does
* nothing.
* <p>
* @param name The event class name.
*/
public void removeTraceEventClass(String name) {

if ((name != null) && (ivTraceEventClasses.contains(name)))
ivTraceEventClasses.removeElement(name);

}

/**
* Return an enumeration over the set of names of the trace event classes
* which this handler processes
* <p>
* @return An Enumeration of RAS event class names. If no event classes are
* registered, the Enumeration is empty.
*/
public Enumeration getTraceEventClasses() {

return ivTraceEventClasses.elements();
}

///
//
// Methods required by the RASIHandler interface
//
//

/**
* Return the maximum number of {@link RASIEvent RASIEvents} which this handler

Chapter 4. Diagnosing and fixing problems 269

* will queue before writing.
* <p>
* In the WebSphere Application Server environment, handlers may not start
* threads.
* All writes will be done
* synchonously and never queued. This handler does not queue events for later
* retry if a write operation fails.
* <p>
* @return zero is always returned.
*/
public int getMaximumQueueSize() {

return 0;
}

/**
* Set the maximum number of {@link RASIEvent RASIEvents} which the handler will
* queue before writing.
* <p>
* This handler does not queue events. This method is a no-operation
* <p>
* @param size The maximum queue size. Input is ignored.
*/
public void setMaximumQueueSize(int size) throws IllegalStateException {

return;
}

/**
* Return the amount of time (in milliseconds) that this handler will wait before
* retrying a failed write
* <p>
* This handler does not retry or queue failed writes. If a write operation fails,
* the event is simply discarded.
* <p>
* @return The retry interval. Zero is always returned.
*/
public int getRetryInterval() {

return 0;
}

/**
* Set the amount of time (in milliseconds) that this handler will wait before
* retrying a failed write.
* <p>
* This handler does not queue or retry failed writes. This method is a
* no-operation.
* <p>
* @param interval The retry interval. Input is ignored.
*/
public void setRetryInterval(int interval) {

return;
}

/**
* Return the current number of {@link RASIEvent RASIEvents} in the handler’s
* queue.
* <p>
* This handler does not queue events. Zero is always returned.
* <p>
* @return The current queue size. Zero is always returned.
*/
public int getQueueSize() {

return 0;
}

/**
* Add a RASIFormatter to the set of formatters which are currently registered to
* this handler. The specified formatter

270 IBM WebSphere Application Server Network Deployment, Version 5: Monitoring and Troublshooting

* must be fully configured. Specifically, the formatter must be configured with
* the set of {@link RASIEvent} classes which it knows how to format.
* <p>
* @param formatter The event formatter. Null is tolerated. If the specified
* formatter supports formatting an event class which already has an
* associated formatter, the existing formatter is replaced with this one.
**/
public void addFormatter(RASIFormatter formatter) {

if (formatter != null) {
Enumeration e = formatter.getEventClasses();
while (e.hasMoreElements()) {

String name = (String) e.nextElement();
ivFormatters.put(name, formatter);

}
}

}

/**
* Remove a RASIFormatter from the set of formatters currently registered
* with this handler.
* <p>
* @param formatter The event formatter. If the specified formatter is null
* or is not registered, this method does nothing.
**/
public void removeFormatter(RASIFormatter formatter) {

if (formatter != null) {
Enumeration e = formatter.getEventClasses();
while (e.hasMoreElements()) {

String name = (String) e.nextElement();
ivFormatters.remove(name);

}
}

}

/**
* Return an enumeration over the set of RASIFormatters currently registered
* with this handler.
* <p>
* @return An Enumeration over the set of registered formatters. If no
* formatters are currently registered, the Enumeration is empty.
**/
public Enumeration getFormatters() {

return ivFormatters.elements();
}

/**
* Close the stream to which this handler is currently writing its entries,
* if the stream is currently open.
**/
public void closeDevice() {

synchronized(ivDeviceLock) {
if (ivWriter == null)

return;
ivWriter.flush();
ivWriter.close();
ivWriter = null;

}
}

/**
* Stop the handler, closing the stream to which this handler is currently
* writing its entries
* <p>
* This method must be called when a handler is no longer needed. Be careful
* not to call this method if other loggers may still be using this handler.
**/
public void stop() {

Chapter 4. Diagnosing and fixing problems 271

/** This handler does not have any queues to flush or preprocessing to do.
* Simply call
* closeDevice().
*/
closeDevice();

}

/**
* Asynchronously process a RAS event passed from a logger to this handler.
* <p>
* WebSphere Application Server loggers always operate synchronously. It is
* expected that no events will be delivered via this method. This
* handler also only supports synchronous operations. If events are
* delivered via this method, simply process them synchronously
* <p>
* @param event A RAS event. Null is tolerated
*/
public void logEvent(RASIEvent event) {

writeEvent(event);
}

/**
* Synchronously process a RAS event passed from a logger to this handler.
* <p>
* WebSphere Application Server loggers always operate synchronously. It is
* expected that all events will be delivered via this method. This handler
* also only supports synchronous operations.
* <p>
* @param event A RAS event. Null is tolerated
*/
public void writeEvent(RASIEvent event) {

if (event == null)
return;

synchronized(ivDeviceLock) {
if (ivWriter == null)

return;
RASIFormatter formatter = findFormatter(event);
if (formatter != null) {

String msg = formatter.format(event);
ivWriter.println(msg);
// If an error occurs, simply set the boolean that caller can check
if (ivWriter.checkError())

errorHasOccurred = true;
}

}
}

///
//
// Methods introduced by this implementation
//
///

/**
* Return the fully-qualified, normalized name of the file which this handler
* is currently configured to write events to.
* <p>
* @return The fully-qualified, normalized name of the output file.
*/
public String getFileName() {

return ivFqFileName;
}

/**
* Set this handler to write to a file other than the file it is currently
* writing to.
* <p>

272 IBM WebSphere Application Server Network Deployment, Version 5: Monitoring and Troublshooting

* The current stream that the handler is writing to is closed. A new stream
* is opened over the specified file.
* <p>
* @param name name of the file. May not be null. A fully-qualified file name
* is recommended.
* @exception An exception is thrown if the specified name is null, the file
* cannot be created or some other error occurs. If an exception is thrown,
* the handlers state is indeterminate.
*/
public void setFileName(String name) throws Exception {
if (name == null)

throw new Exception("Null passed for name");
synchronized(ivDeviceLock) {

closeDevice();
File x = new File(name);
ivFqFileName = x.getAbsolutePath();
openDevice();

}
}

/**
* Open a stream over the file to which this handler will write formatted log
* entries. The stream will always be opened in append mode.
* <p>
* If a stream is already open over the file, the current stream is closed.
* If an error occurs during this operation, the errorHasOccurred boolean is
* set to true and a plain text error message is written to System.err along
* with the exception stack trace, if any. If the operation is successful,
* the errorHasOccurred boolean is set to false.
* <p>
*/
public void openDevice() {

synchronized(ivDeviceLock) {
try {

closeDevice();
errorHasOccurred = false;
// The file name may have been changed.Create the directory for the file
// if it doesn’t already exist.
File x = new File(ivFqFileName);
String dir = x.getParent();
File dirs = new File(dir);
if (fileExists(dirs) == false) {

boolean result = makeDirectories(dirs);
if (result == false) {

errorHasOccurred = true;
return;

}
}
// Open a file output stream over the file in append mode. Wrap the
// FileOutputStream in an OutputStreamWriter. Finally wrap the
// OutputStreamWriter in a BufferedPrintWriter with line flushing
// enabled.
FileOutputStream fos = createFileOutputStream(ivFqFileName, true);
OutputStreamWriter osw = new OutputStreamWriter(fos);
ivWriter = new PrintWriter(new BufferedWriter(osw), true);

}
catch (Throwable t) {

// not much we can do here except set the error boolean.
errorHasOccurred = true;
System.err.println("Error occurred in openDevice() for handler "+ivName);
t.printStackTrace();

}
}

}

/**
* Return a reference to the formatter associated with the specified event

Chapter 4. Diagnosing and fixing problems 273

* class. If the specified event class is not registered, the superclasses
* of the event class will be checked for a registered formatter.
* <p>
* @param event A RAS event. Must not be null.
* @return formatter The formatter associated with the specified event class.
* Null is returned if the event class is not registered.
**/
private RASIFormatter findFormatter(RASIEvent event) {

Class eventClass = event.getClass();
RASIFormatter formatter = null;

while (eventClass != null) {
String className = eventClass.getName();
if (ivFormatters.containsKey(className)) {

return (RASIFormatter) ivFormatters.get(className);
}
else

eventClass = eventClass.getSuperclass();
}
return null;

}

/**
* A worker method that wraps the creation of a FileOutputStream in a
* doPrivileged block.
* <p>
* @param fileName the name of the file to create the stream over.
* @param append a boolean, when true indicates the file should be opened
* in append mode
* @ return the FileOutputStream.
* @exception SecurityException A security violation has occurred.
* This class is not authorized to access the specified file.
* @exception PrivilegedActionException a checked exception was thrown
* in the course of running the privileged action. The checked exception
* is contained within the PrivilegedActionException. Most likely the wrapped
* exception is a FileNotFound.
**/
private FileOutputStream createFileOutputStream(String fileName, boolean append)

throws PrivilegedActionException
{

final String tempFileName = fileName;
final boolean tempAppend = append;
FileOutputStream fs = (FileOutputStream) AccessController.doPrivileged(

new PrivilegedExceptionAction() {
public Object run() throws IOException {

return new FileOutputStream(tempFileName, tempAppend);
}

}
);
return fs;

}

/**
* A worker method that wraps the check for the existence of a file in a
* doPrivileged block.
* <p>
* @param fileToCheck a <code>File</code> object whose abstract
* pathname corresponds to the physical file whose existence is to be checked.
* @return true if and only if the file exists. Otherwise false.
* @exception SecurityException A security violation has occurred. This class
* is not authorized to access the specified file.
**/
private boolean fileExists(File fileToCheck) throws SecurityException
{

final File tempFileToCheck = fileToCheck;
Boolean exists = (Boolean) AccessController.doPrivileged(

new PrivilegedAction() {

274 IBM WebSphere Application Server Network Deployment, Version 5: Monitoring and Troublshooting

public Object run() {
return new Boolean(tempFileToCheck.exists());

}
}

);
return exists.booleanValue();

}

/**
* A worker method that wraps the creation of directories in a
* doPrivileged block.
* <p>
* @param dirToMake a non-null <code>File</code> object
* whose abstract pathname represents the fully qualified directory to
* create.
* @return true is returned if and only if all necessary directories were
* created. Otherwise false is returned.
* @exception SecurityException A security violation has occurred. This
* class is not authorized to access at leas one of the specified
* directories.
**/
private boolean makeDirectories(File dirToMake) throws SecurityException
{

final File tempDirToMake = dirToMake;
Boolean result = (Boolean) AccessController.doPrivileged(

new PrivilegedAction() {
public Object run() {

return new Boolean(tempDirToMake.mkdirs());
}

}
);
return result.booleanValue();

}

}

Example: user written formatter: The following is a very simple sample of a
Formatter class. This class is functional, but is intended solely to demonstrate
concepts. For simplicity and clarity, much code (including appropriate boundary
condition checking logic) has been ignored. This sample is not intended to be an
example of good programming practice.
package com.ibm.ws.ras.test.user;
import com.ibm.ras.*;
import java.text.*;
import java.util.*;

/**
* The <code>SimpleFormatter</code> implements the
* RASIFormatter interface.
* It is a simple implementation used for demonstration purposes only.
* It does not do any advanced formatting, it simply formats the message
* and parameters in an event.
* It does not include the timestamp in the formatted result, for example.
*/
public class SimpleFormatter implements RASIFormatter
{

/**
* The name of the formatter
*/
private String ivName = "";

/**
* A vector containing the event classes this Formatter knows how
* to process.
**/

Chapter 4. Diagnosing and fixing problems 275

private Vector ivEventClasses = new Vector();

/**
* Create a <code>SimpleFormatter</code>.
**/
public SimpleFormatter(String name) {

setName(name);
}

//
//
// Methods required by the RASIObject Interface
//
///

/**
* Return this objects configuration as a set of Properties in a
* Hashtable.
* <p>
* This formatter does not support properties-based configuration.
* Therefore a call to this method always returns null
* @return null is always returned.
*/
public Hashtable getConfig() {

return null;
}

/**
* Set this objects configuration from the properties in the specified
* Hashtable.
* <p>
* This formatter does not support properties-based configuration. This method
* is a no-operation.
* @param hashTable a Hashtable containing the properties. Input is ignored.
*/
public void setConfig(Hashtable ht) {

return;
}

/**
* Return the name by which this formatter is known.
* <p>
* @return a String containing the name of this object, or an empty string
* ("") if the name has not been set.
*/
public String getName() {

return ivName;
}

/**
* Set the name by which this formatter is known. If the specified name is
* <code>null</code>, the current name is not changed.
* <p>
* @param name The new name for this object. Null is tolerated.
*/
public void setName(String name) {

if (name != null)
ivName = name;

}

/**
* Return the description field of this formatter.
*<p>
* This formatter does not use a description field. An empty String is always
* returned.
*<p>
* @return an empty String.

276 IBM WebSphere Application Server Network Deployment, Version 5: Monitoring and Troublshooting

*/
public String getDescription() {

return "";
}

/**
* Set the description field for this formatter.
*<p>
* This formatter does not use a description field. Input is ignored and
* this method does nothing.
*<p>
* @param desc The description of this object. Input is ignored.
*/
public void setDescription(String desc) {

return;
}

/**
* Return the name of the {@link com.ibm.ras.mgr.RASManager RASManager} group
* with which this formatter is associated. This method is only used by the
* RAS Manager.
*<p>
* This formatter does not support RASManager configuration. Null is always
* returned.
* @return null is always returned.
**/
public String getGroup() {

return null;
}

//
//
// Methods required by the RASIFormatter Interface
//
///

/**
* Set a flag that indicates whether this formatter is the default formatter
* used by {@link com.ibm.ras.RASHandler} objects to format events.
*<p>
* Instances of com.ibm.ras.RASHandler are not allowed to be instantiated
* in the WebSphere Application Server environment.
* This formatter cannot be the default formatter for handlers of this type.
* This method does nothing.
*<p>
* @param flag input is ignored, since this formatter cannot be the default
* formatter.
**/
public void setDefault(boolean flag) {

return;
}

/**
* Return a boolean that indicates whether or not this is the default
* formatter used by a {@link com.ibm.ras.RASHandler} to format the
* RAS events.
*<p>
* com.ibm.ras.RASHandlers will never be instantiated in a WebSphere
* Application Server environment so this method always returns
* false.
*<p>
* @return false is always returned.
**/
public boolean isDefault() {

return false;
}

Chapter 4. Diagnosing and fixing problems 277

/**
* Add the name of a {@link com.ibm.ras.RASIEvent} class to the list of
* classes which this formatter can process.
* If the specified class name is null or it is already registered,
* this method does nothing.
*<p>
* @param name The event class name. Null is tolerated.
**/
public void addEventClass(String name) {

if ((name != null) && (! ivEventClasses.contains(name)))
ivEventClasses.addElement(name);

}

/**
* Remove the name of a {@link com.ibm.ras.RASIEvent} class from the
* list of classes which this formatter can process. If the specified
* class name is null or is not registered, this method does nothing.
*<p>
* @param name The event class name.
**/
public void removeEventClass(String name) {

if ((name != null) && (ivEventClasses.contains(name)))
ivEventClasses.removeElement(name);

}

/**
* Return an enumeration over the set of names of
* {@link com.ibm.ras.RASIEvent} classes which this formatter can
* process.
*<p>
* @return An enumeration of RAS event class names. If no event
* classes are registered, the enumeration is empty.
**/
public Enumeration getEventClasses() {

return ivEventClasses.elements();
}

/**
* Format the specified {link com.ibm.ras.RASIEvent} object and
* return a String containing the formatted output.
*<p>
* @param event The event to format. Null is tolerated.
* @return The formatted event contents. Null may be returned.
**/
public String format(RASIEvent event) {

if (event == null)
return null;

if (event.isMessageEvent())
return formatMessage(event);

else
return formatTrace(event);

}

/**
* Format a message event.
*<p>
* If a message key is used and that key is not found in any
* message file, the message text becomes an error message indicating
* that the key was not found.
*<p>
* @param event The event to format.
* @return The formatted event.
**/
public String formatMessage(RASIEvent event) {

String messageKey = "null";
try {

messageKey = event.getText();

278 IBM WebSphere Application Server Network Deployment, Version 5: Monitoring and Troublshooting

String[] messageInserts = event.getParameters();
if (event instanceof com.ibm.ras.RASMessageEvent) {

// RASMessageEvents usually contain localizable messages.
RASMessageEvent rme = (RASMessageEvent)event;
String bundleName = rme.getMessageFile();
if (bundleName != null) {

// Not a text message, get localized message and return
ResourceBundle bundle = ResourceBundle.getBundle(bundleName,
Locale.getDefault());
String localizedKey = bundle.getString(messageKey);
return MessageFormat.format(localizedKey, messageInserts);

}
else {

// Text message
for (int i=0; i<messageInserts.length; ++i)
{messageKey = messageKey + " " + messageInserts[i];
}
return messageKey;

}
}
else {

// A User defined type. Append paramaters to key and return
for (int i=0; i<messageInserts.length; ++i){

messageKey = messageKey + " " + messageInserts[i];
}
return messageKey;

}
}
catch (Throwable t) {

t.printStackTrace();
return "SimpleFormattter: Error while formatting message "+messageKey;

}
}

/**
* Format a trace event.
*<p>
* Append the parameters (in order of specification) to the text
* message in the trace event object.
*<p>
* @param event The event to format.
* @return The formatted event.
*/
private String formatTrace(RASIEvent event) {

String text = "null";
try {

text = event.getText();
String[] parms = event.getParameters();
if (parms != null) {

for (int i=0; i<parms.length; ++i){
text = text + " " + parms[i];
}

}
return text;

}
catch (Throwable t) {

t.printStackTrace();
return "SimpleFormatter: Error while formatting trace "+text;

}
}

}

Programming model summary: The programming model described in this section
builds upon and summarizes some of the concepts already introduced. This section
also formalizes usage requirements and restrictions. Use of the WebSphere

Chapter 4. Diagnosing and fixing problems 279

Application Server JRas extensions in a manner that does not conform to the
following programming guidelines is prohibited.

As described previously, you can use the WebSphere Application Server JRas
extensions in three distinct operational modes. The programming models concepts
and restrictions apply equally across all modes of operation.
v You must not use implementation classes provided by the standalone JRas

logging toolkit directly, unless specifically noted otherwise. Direct usage of those
classes is not supported. IBM Support will provide no diagnostic aid or bug
fixes relating to direct usage of classes provided by the standalone JRas logging
toolkit.

v You must obtain message and trace loggers directly from the Manager class. You
cannot directly instantiate loggers.

v There is no provision that allows you to replace the WebSphere Application
Server message and trace logger classes.

v You must guarantee that the logger names passed to the Manager are unique,
and follow the naming constraints documented below. Once a logger is obtained
from the Manager, you must not attempt to change the name of the logger by
calling the setName() method.

v Named loggers are idempotent. For any given name, the first call to the
Manager results in the Manager creating a logger that is associated with that
name. Subsequent calls to the Manager that specify the same name result in a
reference to the existing logger being returned.

v The Manager maintains a hierarchical namespace for loggers. It is
recommended but not required that a dot-separated, fully qualified class name
be used to identify any given logger. Other than dots or periods, logger names
cannot contain any punctuation characters, such as asterisk (*), comma(.), equals
sign(=), colon(:), or quotes.

v Group names must comply with the same naming restrictions as logger names.
v The loggers returned from the Manager are subclasses of the

RASMessageLogger and RASTraceLogger provided by the standalone JRas
logging toolkit. You are allowed to call any public method defined by the
RASMessageLogger and RASTraceLogger classes. You are not allowed to call
any public method introduced by the provided subclasses.

v If you want to operate in either standalone or combined mode, you must
provide your own Handler and Formatter subclasses. You are not allowed to use
the Handler and Formatter classes provided by the standalone JRas logging
toolkit. User written Handlers and Formatters must conform to the documented
guidelines.

v Loggers obtained from the Manager come with a WebSphere Application Server
handler installed. This handler will write message and trace records to logs
defined by the WebSphere Application Server runtime. Manage these logs using
the provided systems management interfaces.

v You can programmatically add and remove user-defined Handlers from a
logger at any time. Multiple additions and removals of user defined handlers are
allowed. You are responsible for creating an instance of the handler to add,
configuring the handler by setting the handler’s mask value and formatter
appropriately, then adding the handler to the logger using the addHandler()
method. You are responsible for programmatically updating the masks of
user-defined handlers as appropriate.

v You may get a reference to the handler installed within a logger by calling the
getHandlers() method on the logger and processing the results. You must not
call any methods on the handler obtained in this fashion. You are allowed to

280 IBM WebSphere Application Server Network Deployment, Version 5: Monitoring and Troublshooting

remove the WebSphere Application Server handler from the logger by calling the
logger’s removeHandler() method, passing in the reference to the WebSphere
Application Server handler. Once removed, the WebSphere Application Server
handler cannot be re-added to the logger.

v You are allowed to define your own message type. The behavior of user-defined
message types and restrictions on their definitions is discussed in Extending the
JRas framework.

v You are allowed to define your own message event classes. The usage of
user-defined message event classes is discussed in Extending the JRas
framework.

v You are allowed to define your own trace types. The behavior of user-defined
trace types and restrictions on your definitions is discussed in Extending the
JRas framework.

v You are allowed to define your own trace event classes. The usage of
user-defined trace event classes is discussed in Extending the JRas framework.

v You must programmatically maintain the bits in the message and trace logger
masks that correspond to any user-defined types. If WebSphere Application
Server facilities are being used to manage the predefined types, these updates
must not modify the state of any of the bits corresponding to those types. If you
are assuming ownership responsibility for the predefined types then you can
change all bits of the masks.

JRas Messages and Trace event types
This section describes JRas message and trace event types.

Event types

The base message and trace event types defined by the standalone JRas logging
toolkit are not the same as the “native” types recognized by the WebSphere
Application Server runtime. Instead the basic JRas types are mapped onto the
native types. This mapping may vary by platform or edition. The mapping is
discussed below.

Platform Message Event Types

The message event types that are recognized and processed by the WebSphere
Application Server runtime are defined in the RASIMessageEvent interface
provided by the standalone JRas logging toolkit. These message types are mapped
onto the native message types as follows.

WebSphere Application Server native type JRas RASIMessageEvent type
Audit TYPE_INFO, TYPE_INFORMATION
Warning TYPE_WARN, TYPE_WARNING
Error TYPE_ERR, TYPE_ERROR

Platform Trace Event Types

The trace event types recognized and processed by the WebSphere Application
Server runtime are defined in the RASITraceEvent interface provided by the
standalone JRas logging toolkit. The RASITraceEvent interface provides a rich and
overly complex set of types. This interface defines both a simple set of levels, as
well as a set of enumerated types.
v For a user who prefers a simple set of levels, RASITraceEvent provides

TYPE_LEVEL1, TYPE_LEVEL2, and TYPE_LEVEL3. The implementations provide

Chapter 4. Diagnosing and fixing problems 281

support for this set of levels. The levels are hierarchical (that is, enabling level 2
will also enable level 1, enabling level 3 also enables levels 1 and 2).

v For users who prefer a more complex set of values that can be OR’d together,
RASITraceEvent provides TYPE_API, TYPE_CALLBACK, TYPE_ENTRY_EXIT,
TYPE_ERROR_EXC, TYPE_MISC_DATA, TYPE_OBJ_CREATE, TYPE_OBJ_DELETE,
TYPE_PRIVATE, TYPE_PUBLIC, TYPE_STATIC, and TYPE_SVC.

The trace event types are mapped onto the native trace types as follows:

Mapping WebSphere Application Server trace types to JRas RASITraceEvent
“Level” types.

WebSphere Application Server native type JRas RASITraceEvent level type
Event TYPE_LEVEL1
EntryExit TYPE_LEVEL2
Debug TYPE_LEVEL3

Mapping WebSphere Application Server trace types to JRas RASITraceEvent
enumerated types.

WebSphere Application Server native type JRas RASITraceEvent enumerated types
Event TYPE_ERROR_EXC, TYPE_SVC,

TYPE_OBJ_CREATE, TYPE_OBJ_DELETE
EntryExit TYPE_ENTRY_EXIT, TYPE_API,

TYPE_CALLBACK, TYPE_PRIVATE,
TYPE_PUBLIC, TYPE_STATIC

Debug TYPE_MISC_DATA

For simplicity, it is recommended that one or the other of the tracing type
methodologies is used consistently throughout the application. For users who
decide to use the non-level types, it is further recommended that you choose one
type from each category and use those consistently throughout the application to
avoid confusion.

Message and Trace parameters

The various message logging and trace method signatures accept parameter types
of Object, Object[] and Throwable. WebSphere Application Server will process and
format the various parameter types as follows.

Primitives
Primitives, such as int and long are not recognized as subclasses of Object
and cannot be directly passed to one of these methods. A primitive value
must be transformed to a proper Object type (Integer, Long) before being
passed as a parameter.

Object
toString() is called on the object and the resulting String is displayed.
The toString() method should be implemented appropriately for any
object passed to a message logging or trace method. It is the responsibility
of the caller to guarantee that the toString() method does not display
confidential data such as passwords in clear text, and does not cause
infinite recursion.

Object[]
The Object[] is provided for the case when more than one parameter is

282 IBM WebSphere Application Server Network Deployment, Version 5: Monitoring and Troublshooting

passed to a message logging or trace method. toString() is called on each
Object in the array. Nested arrays are not handled. (i.e. none of the
elements in the Object array should be an array).

Throwable
The stack trace of the Throwable is retrieved and displayed.

Array of Primitives
An array of primitive (e.g. byte[], int[] is recognized as an Object, but is
treated somewhat as a second cousin of Object by Java. In general, arrays
of primitives should be avoided, if possible. If arrays of primitives are
passed, the results are indeterminate and may change depending on the
type of array passed, the API used to pass the array and the release of the
product. For consistent results, user code should preprocess and format the
primitive array into some type of String form before passing it to the
method. If such preprocessing is not performed, the following may result.
v [B@924586a0b - This is deciphered as “a byte array at location X”. This is

typically returned when an array is passed as a member of an Object[].
It is the result of calling toString() on the byte[].

v Illegal trace argument : array of long. This is typically returned when an
array of primitives is passed to a method taking an Object.

v 01040703... : the hex representation of an array of bytes. Typically this
may be seen when a byte array is passed to a method taking a single
Object. This behavior is subject to change and should not be relied on.

v “1” “2” ... : The String representation of the members of an int[] formed
by converting each element to an Integer and calling toString on the
Integers. This behavior is subject to change and should not be relied on.

v [Ljava.lang.Object;@9136fa0b : An array of objects. Typically this is seen
when an array containing nested arrays is passed.

Controlling message logging

Writing a message to a WebSphere Application Server log requires that the
message type passes three levels of filtering or screening.
1. The message event type must be one of the message event types defined in the

RASIMessageEvent interface.
2. Logging of that message event type must be enabled by the state of the

message logger’s mask.
3. The message event type must pass any filtering criteria established by the

WebSphere Application Server runtime itself.

When a WebSphere Application Server logger is obtained from the Manager, the
initial setting of the mask is to forward all native message event types to the
WebSphere Application Server handler. It is possible to control what messages get
logged by programmatically setting the state of the message logger’s mask.

Some editions of the product allow the user to specify a message filter level for a
server process. When such a filter level is set, only messages at the specified
severity levels are written to WebSphere Application Server logs. This means that
messages types that pass the message logger’s mask check may be filtered out by
the WebSphere Application Server itself.

Controlling Tracing

Chapter 4. Diagnosing and fixing problems 283

Each edition of the product provides a mechanism for enabling or disabling trace.
The various editions may support static trace enablement (trace settings are
specified before the server is started), dynamic trace enablement (trace settings for
a running server process can be dynamically modified) or both.

Writing a trace record to a WebSphere Application Server requires that the trace
type passes three levels of filtering or screening.
1. The trace event type must be one of the trace event types defined in the

RASITraceEvent interface.
2. Logging of that trace event type must be enabled by the state of the trace

logger’s mask.
3. The trace event type must pass any filtering criteria established by the

WebSphere Application Server runtime itself.

When a logger is obtained from the Manager, the initial setting of the mask is to
suppress all trace types. The exception to this rule is the case where the WebSphere
Application Server runtime supports static trace enablement and a non-default
startup trace state for that trace logger has been specified. Unlike message loggers,
the WebSphere Application Server may dynamically modify the state of a trace
loggers trace mask. WebSphere Application Server will only modify the portion of
the trace logger’s mask corresponding to the values defined in the RASITraceEvent
interface. WebSphere Application Server will not modify undefined bits of the
mask that may be in use for user defined types.

When the dynamic trace enablement feature available on some platforms is used,
the trace state change is reflected both in the Application Server runtime and the
trace loggers trace mask. If user code programmatically changes the bits in the
trace mask corresponding to the values defined by in the RASITraceEvent interface,
the trace logger’s mask state and the runtime state will become unsynchronized
and unexpected results will occur. Therefore, programmatically changing the bits of
the mask corresponding to the values defined in the RASITraceEvent interface is
not allowed.

Instrumenting an application with JRas extensions
To instrument an application using the WebSphere Application Server JRas
extensions, perform the following steps:

Steps for this task
1. Determine the mode the extensions will be used in: integrated, standalone or

combined.
2. If the extensions will be used in either standalone or combined mode, create

the necessary handler and formatter classes.
3. If localized messages will be used by the application, create a resource bundle

as described in Creating JRas resource bundles and message files.
4. In the application code, get a reference to the Manager class and create the

manager and logger instances as described in Creating JRas manager and
logger instances.

5. Insert the appropriate message and trace logging statements in the application
as described in Creating JRas manager and logger instances.

Creating JRas resource bundles and message files: The WebSphere Application
Server message logger provides the message() and msg() methods to allow the

284 IBM WebSphere Application Server Network Deployment, Version 5: Monitoring and Troublshooting

user to log localized messages. In addition, it provides the textMessage() method
for logging of messages that are not localized. Applications can use either or both,
as appropriate.

The mechanism for providing localized messages is the Resource Bundle support
provided by the Java Development Kit (JDK). If you are not familiar with resource
bundles as implemented by the JDK, you can get more information from various
texts, or by reading the javadoc for the java.util.ResourceBundle,
java.util.ListResourceBundle and java.util.PropertyResourceBundle classes, as
well as the java.text.MessageFormat class.

The PropertyResourceBundle is the preferred mechanism to use. In addition, note
that the JRas extensions do not support the extended formatting options such as {1,
date} or {0,number, integer} that are provided by the MessageFormat class.

You can forward messages that are written to the internal WebSphere Application
Server logs to other processes for display. For example, messages displayed on the
administrator console, which can be running in a different location than the server
process, can be localized using the late binding process. Late binding means that
WebSphere Application Server does not localize messages when they are logged,
but defers localization to the process that displays the message.

To properly localize the message, the displaying process must have access to the
resource bundle where the message text is stored. This means that you must
package the resource bundle separately from the application, and install it in a
location where the viewing process can access it. If you do not want to take these
steps, you can use the early binding technique to localize messages as they are
logged.

The two techniques are described as follows:

Early binding
The application must localize the message before logging it. The
application looks up the localized text in the resource bundle and formats
the message. When formatting is complete, the application logs the
message using the textMessage() method. Use this technique to package
the application’s resource bundles with the application.

Late binding
The application can choose to have the WebSphere Application Server
runtime localize the message in the process where it is displayed. Using
this technique,the resource bundles are packaged in a standalone .jar file,
separately from the application. You must then install the resource bundle
.jar file on every machine in the installation from which an
administrator’s console or log viewing program might be run. You must
install the .jar file in a directory that is part of the extensions classpath. In
addition, if you forward logs to IBM service, you must also forward the
.jar file containing the resource bundles.

To create a resource bundle, perform the following steps.

Steps for this task
1. Create a text properties file that lists message keys and the corresponding

messages.
The properties file must have the following characteristics:
v Each property in the file is terminated with a line-termination character.

Chapter 4. Diagnosing and fixing problems 285

v If a line contains only white space, or if the first non-white space character of
the line is the symbol # (pound sign) or ! (exclamation mark), the line is
ignored. The # and ! characters can therefore be used to put comments into
the file.

v Each line in the file, unless it is a comment or consists only of white space,
denotes a single property. A backslash (\) is treated as the line-continuation
character.

v The syntax for a property file consists of a key, a separator, and an element.
Valid separators include the equal sign (=), colon (:), and white space ().

v The key consists of all characters on the line from the first non-white space
character to the first separator. Separator characters can be included in the
key by escaping them with a backslash (\), but doing this is not
recommended, because escaping characters is error prone and confusing. It is
instead recommended that you use a valid separator character that does not
appear in any keys in the properties file.

v White space after the key and separator is ignored until the first non-white
space character is encountered. All characters remaining before the
line-termination character define the element.

See the Java documentation for the java.util.Properties class for a full
description of the syntax and construction of properties files.

2. The file can then be translated into localized versions of the file with
language-specific file names (for example, a file named
DefaultMessages.properties can be translated into
DefaultMessages_de.properties for German and DefaultMessages_ja.properties
for Japanese).

3. When the translated resource bundles are available, write them to a
system-managed persistent storage medium.
Resource bundles are then used to convert the messages into the requested
national language and locale.

4. When a message logger is obtained from the JRas manager, it can be
configured to use a particular resource bundle. Messages logged via the
message() API will use this resource bundle when message localization is
performed.
At run time, the user’s locale setting is used to determine the properties file
from which to extract the message specified by a message key, thus ensuring
that the message is delivered in the correct language.

5. (Optional) If the message loggers msg() method is called, a resource bundle
name must be explicitly provided.

What to do next

The application locates the resource bundle based on the file’s location relative to
any directory in the classpath. For instance, if the property resource bundle named
DefaultMessages.properties is located in the
<baseDir>/<subDir1>/<subDir2>/resources directory and <baseDir> is in the class
path, the name <subdir1>.<subdir2>.resources.DefaultMessage is passed to the
message logger to identify the resource bundle.

Developing JRas resource bundles: Resource bundle sample

You can create resource bundles in several ways. The best and easiest way is to
create a properties file that supports a PropertiesResourceBundle. This sample
shows how to create such a properties file.

286 IBM WebSphere Application Server Network Deployment, Version 5: Monitoring and Troublshooting

For this sample, four localizable messages are provided. The properties file is
created and the key-value pairs inserted into it. All the normal properties files
conventions and rules apply to this file. In addition, the creator must be aware of
other restrictions imposed on the values by the Java MessageFormat class. For
example, apostrophes must be “escaped” or they will cause a problem. Also avoid
use of non-portable characters. WebSphere Application Server does not support
usage of extended formatting conventions that the MessageFormat class supports,
such as {1, date} or {0,number, integer}.

Assume that the base directory for the application that uses this resource bundle is
″baseDir″ and that this directory will be in the classpath. Assume that the
properties file is stored in a subdirectory of baseDir that is not in the classpath
(e.g. baseDir/subDir1/subDir2/resources). In order to allow the messages file to be
resolved, the name subDir1.subDir2.resources.DefaultMessage is used to identify
the PropertyResourceBundle and is passed to the message logger.

For this sample, the properties file is named DefaultMessages.properties.
Contents of DefaultMessages.properties file
MSG_KEY_00=A message with no substitution parameters.
MSG_KEY_01=A message with one substitution parameter: parm1={0}
MSG_KEY_02=A message with two substitution parameters: parm1={0}, parm2 = {1}
MSG_KEY_03=A message with three parameter: parm1={0}, parm2 = {1}, parm3={2}

Once the file DefaultMessages.properties is created, the file can be sent to a
translation center where the localized versions will be generated.

Creating JRas manager and logger instances: You can use the JRas extensions in
integrated, standalone, or combined mode. Configuration of the application will
vary depending on the mode of operation, but usage of the loggers to log message
or trace entries is identical in all modes of operation.

Integrated mode is the default mode of operation. In this mode, message and trace
events are sent to the WebSphere Application Server logs. See Setting up for
integrated JRas operation for information on configuring for this mode of
operation.

In the combined mode, message and trace events are logged to both WebSphere
Application Server and user-defined logs. See Setting up for combined JRas
operation for more information on configuring for this mode of operation.

In the standalone mode, message and trace events are logged only to user-defined
logs. See Setting up for standalone JRas operation for more information on
configuring for this mode of operation.

Using the message and trace loggers

Regardless of the mode of operation, the use of message and trace loggers is the
same. See Creating JRas resource bundles and message files for more information
on using message and trace loggers.

Using a message logger

The message logger is configured to use the DefaultMessages resource bundle.
Message keys must be passed to the message loggers if the loggers are using the
message() API.

Chapter 4. Diagnosing and fixing problems 287

msgLogger.message(RASIMessageEvent.TYPE_WARNING, this, methodName, "MSG_KEY_00");
... msgLogger.message(RASIMessageEvent.TYPE_WARN, this, methodName, "MSG_KEY_01",

"some string");

If message loggers use the msg() API, you can specify a new resource bundle
name.
msgLogger.msg(RASIMessageEvent.TYPE_ERR, this, methodName, "ALT_MSG_KEY_00",
"alternateMessageFile");

You can also log a text message. If you are using the textMessage API, no message
formatting is done.
msgLogger.textMessage(RASIMessageEvent.TYPE_INFO, this, methodName, "String and Integer",
"A String", new Integer(5));

Using a trace logger

Since trace is normally disabled, trace methods should be guarded for performance
reasons.
private void methodX(int x, String y, Foo z)
{

/** trace an entry point. Use the guard to make sure tracing is enabled.
* Do this checking before we waste cycles gathering parameters to
* be traced.
**/
if (trcLogger.isLoggable(RASITraceEvent.TYPE_ENTRY_EXIT) {

// since I want to trace 3 parameters, package them up in an Object[]
Object[] parms = {new Integer(x), y, z};
trcLogger.entry(RASITraceEvent.TYPE_ENTRY_EXIT, this, "methodX", parms);

}
... logic

// a debug or verbose trace point
if (trcLogger.isLoggable(RASITraceEvent.TYPE_MISC_DATA) {

trcLogger.trace(RASITraceEvent.TYPE_MISC_DATA, this, "methodX" "reached here");
}
...
/** Another classification of trace event. Here an important state change has
* been detected, so a different trace type is used.
*/
if (trcLogger.isLoggable(RASITraceEvent.TYPE_SVC) {

trcLogger.trace(RASITraceEvent.TYPE_SVC, this, "methodX", "an important event");
}
...
// ready to exit method, trace. No return value to trace

if (trcLogger.isLoggable(RASITraceEvent.TYPE_ENTRY_EXIT)) {
trcLogger.exit(RASITraceEvent.TYPE_ENTRY_EXIT, this, "methodX");

}
}

Setting up for integrated JRas operation: In the integrated mode of operation,
message and trace events are sent to WebSphere Application Server logs. This is
the default mode of operation.

Steps for this task
1. Import the requisite JRas extensions classes

import com.ibm.ras.*;
import com.ibm.websphere.ras.*;

2. Declare logger references.
private RASMessageLogger msgLogger = null;
private RASTraceLogger trcLogger = null;

3. Obtain a reference to the Manager and create the loggers.

288 IBM WebSphere Application Server Network Deployment, Version 5: Monitoring and Troublshooting

Since loggers are named singletons, you can do this in a variety of places. One
logical candidate for enterprise beans is the ejbCreate() method. For example,
for the enterprise bean named “myTestBean”, place the following code in the
ejbCreate() method.
com.ibm.websphere.ras.Manager mgr = com.ibm.websphere.ras.Manager.getManager();
msgLogger = mgr.createRASMessageLogger("Acme", "WidgetCounter", "RasTest",
myTestBean.class.getName());
//Configure the message logger to use the message file created for this application.
msgLogger.setMessageFile("acme.widgets.DefaultMessages");
trcLogger = mgr.createRASTraceLogger("Acme", "Widgets", "RasTest", myTestBean.class.getName())
mgr.addLoggerToGroup(trcLogger, groupName);

Setting up for combined JRas operation: In combined mode, messages and trace
are logged to both WebSphere Application Server logs and user-defined logs. The
following sample assumes that you have written a user defined handler named
SimpleFileHandler and a user defined formatter named SimpleFormatter. It also
assumes that you are not using user defined types or events.

Steps for this task
1. Import the requisite JRas extensions classes

import com.ibm.ras.*;
import com.ibm.websphere.ras.*;

2. Import the user handler and formatter.
import com.ibm.ws.ras.test.user.*;

3. Declare the logger references.
private RASMessageLogger msgLogger = null;

private RASTraceLogger trcLogger = null;

4. Obtain a reference to the Manager, create the loggers and add the user
handlers.
Since loggers are named singletons, you can obtain a reference to the loggers in
a number of places. One logical candidate for enterprise beans is the
ejbCreate() method. Make sure that multiple instances of the same user
handler are not accidentally inserted into the same logger. Your initialization
code must handle this. The following sample is a message logger sample. The
procedure for a trace logger is similar.
com.ibm.websphere.ras.Manager mgr = com.ibm.websphere.ras.Manager.getManager();

msgLogger = mgr.createRASMessageLogger("Acme", "WidgetCounter", "RasTest",
myTestBean.class.getName());

/** Configure the message logger to use the message file defined in the
* ResourceBundle sample.
/*
msgLogger.setMessageFile("acme.widgets.DefaultMessages");

// Create the user handler and formatter. Configure the formatter,
// then add it to the handler.
RASIHandler handler = new SimpleFileHandler("myHandler", "FileName");
RASIFormatter formatter = new SimpleFormatter("simple formatter");
formatter.addEventClass("com.ibm.ras.RASMessageEvent");
handler.addFormatter(formatter);

// Add the Handler to the logger. Add the logger to the list of the
// handlers listeners, then set the handlers mask, which will update
// the loggers composite mask appropriately.
// WARNING - there is an order dependency here that must be followed.
msgLogger.addHandler(handler);
handler.addMaskChangeListener(msgLogger);
handler.setMessageMask(RASIMessageEvent.DEFAULT_MESSAGE_MASK);

Chapter 4. Diagnosing and fixing problems 289

Setting up for standalone JRas operation: In standalone mode, messages and
traces are logged only to user-defined logs. The following sample assumes that you
have a user-defined handler named SimpleFileHandler and a user-defined
formatter named SimpleFormatter. It is also assumes that no user-defined types or
events are being used.

Steps for this task
1. Import the requisite JRas extensions classes

import com.ibm.ras.*;
import com.ibm.websphere.ras.*;

2. Import the user handler and formatter.
import com.ibm.ws.ras.test.user.*;

3. Declare the logger references.
private RASMessageLogger msgLogger = null;

private RASTraceLogger trcLogger = null;

4. Obtain a reference to the Manager, create the loggers and add the user
handlers.
Since loggers are named singletons, you can obtain a reference to the loggers in
a number of places. One logical candidate for enterprise beans is the
ejbCreate() method. Make sure that multiple instances of the same user
handler are not accidentally inserted into the same logger. Your initialization
code must handle this. The following sample is a message logger sample. The
procedure for a trace logger is similar.
com.ibm.websphere.ras.Manager mgr = com.ibm.websphere.ras.Manager.getManager();

msgLogger = mgr.createRASMessageLogger("Acme", "WidgetCounter", "RasTest",
myTestBean.class.getName());

// Configure the message logger to use the message file defined in the
// ResourceBundle sample.
msgLogger.setMessageFile("acme.widgets.DefaultMessages");

// Get a reference to the Handler and remove it from the logger.
RASIHandler aHandler = null;
Enumeration enum = msgLogger.getHandlers();
while (enum.hasMoreElements()) {

aHandler = (RASIHandler)enum.nextElement();
if (aHandler instanceof WsHandler)

msgLogger.removeHandler(wsHandler);
}

// Create the user handler and formatter. Configure the formatter, then add
// it to the handler.
RASIHandler handler = new SimpleFileHandler("myHandler", "FileName");
RASIFormatter formatter = new SimpleFormatter("simple formatter");
formatter.addEventClass("com.ibm.ras.RASMessageEvent");
handler.addFormatter(formatter);

// Add the Handler to the logger. Add the logger to the list of the handlers listeners,
// then set the handlers
// mask, which will update the loggers composite mask appropriately.
// WARNING - there is an order dependency here that must be followed.
msgLogger.addHandler(handler);
handler.addMaskChangeListener(msgLogger);
handler.setMessageMask(RASIMessageEvent.DEFAULT_MESSAGE_MASK);

290 IBM WebSphere Application Server Network Deployment, Version 5: Monitoring and Troublshooting

Working with troubleshooting tools
WebSphere Application Server includes a number of troubleshooting tools that are
designed to help you isolate the source of problems. Many of these tools are
designed to generate information to be used by IBM Support, and their output
might not be understandable by the customer.

This section only discusses tools that are bundled with the WebSphere Application
Server product. A wide range of tools which address a variety of problems is
available from the WebSphere Application Server Technical Support Web site.

Steps for this task
1. Select the appropriate tool for the task.

For more information on the capacities of the supplied troubleshooting tools,
see the relevant articles in this section.

2. Run the tool as described in the relevant article.
3. Contact IBM Support for assistance in deciphering the output of the tool.

Collector Tool
The Collector Tool gathers information about your WebSphere Application Server
installation and packages it in a .jar file that can be sent to IBM Customer
Support to assist in problem determination and analysis. The information includes
logs, property files, configuration files, operating system and Java data, and
prerequisite software presence and levels.

There are two phases to using the Collector tool. The first phase is to execute the
Collector program on your WebSphere Application Server. The second phase is the
analysis of the Collector program output .jar file by IBM Customer Support.

The Collector program is designed to run to completion despite errors such as files
or commands not found, in order to collect as much data as possible.

Running the Collector Tool
The Collector Tool gathers information about your WebSphere Application Server
installation and packages it in a .jar file that can be sent to IBM Customer
Support to assist in problem determination and analysis. The information includes
logs, property files, configuration files, operating system and Java data, and
prerequisite software presence and levels.

The Collector program is designed to run to completion despite errors such as files
or commands not found, in order to collect as much data as possible.

Steps for this task
1. Log on to the system as root or Administrator.
2. Ensure that Java 1.2.2 or higher is available in the path.

The Collector program needs Java in order to run, and also collects data about
the Java Development Kit (JDK) in which it is running. If multiple JDKs are
running on this system, ensure that the JDK being used by WebSphere
Application Server is the one in the path for the Collector program. If the JDK
being used by the WebSphere Application Server is not available, putting
another JDK in the path allows you to collect all the data except Java
information.

3. Ensure that the necessary information is in the path being used by the Collector
program.

Chapter 4. Diagnosing and fixing problems 291

a. If it is a Windows system, regedit must be in the path.
b. If it is a UNIX system, the path must contain:

v /bin

v /sbin

v /usr/bin

v /usr/sbin

4. Create a work directory in which the Collector program is invoked.
5. Make the work directory the current directory.

The Collector program writes its output .jar file to the current directory. It also
creates and deletes a number of temporary files in the current directory.
Creating a work directory to run the Collector program avoids name collisions
and makes cleanup easier. You cannot run the Collector tool in a directory
under the WebSphere Application Server installation directory.

6. Run the Collector program by entering the command: collector
-ServerName <server_name> from the command line, where
<server_name> is the name of the server from which to gather data.
Note:

Make sure the path is set up correctly. For Windows, <WebSphere_home>\bin
must be in the path. For Unix, <WebSphere_home>/bin must be in the path.
The WebSphere Application Server installation directory is determined from the
what is specified in ″setupcmdline″.
Alternatively, you can fully qualify the path to the collector command. For
example, in a Windows default installation, one could enter from the command
line: c:\WebSphere\AppServer\bin\collector.bat..

Results

The Collector program creates a log file, Collector.log, and an output .jar file in
the current directory.

The .jar file name is based on the hostname and package of the server on which
the Collector tool was run, in the format: <hostname>-<ND|Base>-WASenv.jar. For
example, if the Collector tool were run on the server ″ws-laceweb″ with a Network
Deployment installation, the filename would be ″ws-laceweb-ND-WASenv.jar″.

The log file is one of the files collected in <hostname>-<ND|Base>-WASenv.jar.

What to do next

Send the <hostname>-<ND|Base>-WASenv.jar file to IBM Customer Support for
analysis.

Analyzing Collector Tool output
The second step in using the Collector tool is to analyze the output. The preferred
method of analyzing this output is to send it to IBM Customer Support for
analysis, but this article details the contents of the Collector tool output to help
you perform your own analysis if necessary.

Although you can view the files contained in the Collector output file without
extracting them, it is easier to extract the contents and view them individually. To
extract the files, use one of the following commands:
v jar -xvf <WASenv.jar>

292 IBM WebSphere Application Server Network Deployment, Version 5: Monitoring and Troublshooting

v unzip <WASenv.jar>

Where Wasenv.jar is the name of the output .jar file created when you ran the
Collector tool.

This file contains:
v A Collector execution log file, Collector.log
v Copies of stored WebSphere Application Server files and their full paths
v A directory of operating system information in the OS directory
v A directory of Java information in the Java directory
v A directory of WebSphere Application Server information in the WAS directory
v A directory of Collector shell script and batch file execution information for

debugging purposes in the debug directory
v If MQ is installed, a directory of MQ information in the MQ directory
v A jar file manifest.

Tips and suggestions

v Unzip the output .jar file to an empty directory for easy access to the gathered
files and simplified cleanup.

v Check Collector.log for errors.
– Note that some errors may be normal or expected, as when the Collector tries

to gather files or directories that do not exist for your specific installation.
– A non-zero return code means that the command the tool is trying to execute

does not exist. This may be normal, but if it occurs repeatedly it can indicate
a problem.

v On Unix systems, the file OS/commands has the location of all commands used. If
you are missing command output, check this file to see if the command was
found.

v On Unix systems, the Collector runs some shell scripts. The shell script output is
saved in files in the OS directory, while the corresponding debug information is
saved in the debug directory. If the output of a shell script is missing, check the
corresponding file in the debug directory.

v The WebSphere Application Server installation directory is determined from the
what is specified in the PATH statement. For example, if both the Base
Application Server and the Deployment Manager are installed on the same
machine, the tool will run against whichever bin directory it finds first in the
PATH. It is recommended that you fully qualify the PATH to the Collector tool.

v On Windows systems, the OS directory contains a file named installed.out.
This file contains a list of programs found in the Add/Remove Programs list.
This same information is contained in the file Desktop\My Computer\Control
Panel\Add/Remove Programs\Install/Uninstall.

First Failure Data Capture tool
The First Failure Data Capture tool preserves the information generated from a
processing failure and returns control to the affected engines. The captured data is
saved in a log file for use in analyzing the problem.

The First Failure Data Capture tool is intended primarily for use by IBM Service. It
runs as part of the IBM WebSphere Application Server, and you cannot start or
stop it. It is recommended that you not attempt to configure the First Failure Data

Chapter 4. Diagnosing and fixing problems 293

Capture tool. If you experience conditions requiring you to contact IBM Service,
your IBM Service representative will assist you in reading and analyzing the First
Failure Data Capture log.

The First Failure Data Capture tool does not affect the performance of the IBM
WebSphere Application Server.

Log Analyzer
The Log Analyzer takes one or more service or activity logs, merges all of the data,
and displays the entries. Based on its symptom database, the tool analyzes and
interprets the event or error conditions in the log entries to help you diagnose
problems. Log Analyzer has a special feature enabling it to download the latest
symptom database from the IBM Web site.

To download the latest updates to the symptom database, use the File -> Update
Database -> WebSphere Application Server Symptom Database option for
WebSphere Application Server, or WebSphere Application Server Network
Deployment Symptom Database option for WebSphere Application Server
Network Deployment in the Log Analyzer interface.

About the service or activity log
The application server creates the service or activity log file from the activity of the
various WebSphere Application Server components. Log Analyzer is used to view
the service or activity log file. Log Analyzer can merge service or activity log files
into one log file. The service or activity log file is a binary file located at:
installation_directory/logs/activity log.

The service or activity log cannot be viewed using a text editor. The Log Analyzer
tool is designed for viewing this file.

Viewing a service or activity log file in the absence of a graphical
interface
The Log Analyzer cannot be used to view remote files. If the operating system on
which you are running WebSphere Application Server does not support the use of
a graphical interface, then transfer the file in binary mode to the system on which
you are running the Java administrative console. Use the Log Analyzer tool there.

In cases in which transferring the file is impractical or inconvenient, an alternate
tool named ″showlog″ is provided for viewing the service or activity log file:
1. Change directory to: <installation_directory>/bin.
2. Run the showlog tool with no parameters to display the usage instructions:

v On Windows systems, run showlog.bat.
v On Unix systems, run showlog.sh.

To direct the service or activity log (named activity.log contents to stdout, use:
showlog activity.log

To dump the service or activity log (named activity.log to a text file that can be
viewed using a text editor, use:
showlog activity.log [textFileName]

Using the Log Analyzer
To view the service or activity.log using the Log Analyzer:

Steps for this task

294 IBM WebSphere Application Server Network Deployment, Version 5: Monitoring and Troublshooting

1. Change directory to: install_dir/bin.
2. Run the waslogbr script file.

This file is named:
v waslogbr.bat on Windows systems.
v waslogbr on UNIX systems.

This script must be run from the install_dir/bin directory.

This starts the Log Analyzer interface.
3. Select File -> Open.
4. Navigate to the directory containing the service or activity log file.
5. Select the service or activity log file and click Open.
6. To analyze the records, right click on a record in the tree on the left, select

UnitOfWorkView from the right-click menu, and select Analyze.
Now any records with a green check mark next to them match a record in the
symptom database. When you select a check-marked record, you will see an
explanation of the problem in the lower-right-hand pane.

Log Analyzer main window: The Log Analyzer takes one or more service or
activity logs, merges all the data, and, by default, displays the entries in unit of
work (UOW) groupings. It analyzes event and error conditions in the log entries to
provide message explanations. The Log Analyzer’s main window has the following
interface:
v Three window panes
v Status line
v Menu bar
v Pop-up actions

Window panes

The Log Analyzer window has three panes:

Logs pane (left)

By default, Log Analyzer’s Logs pane displays log entries by UOW. It lists
all the UOW instances and its associated entries from the logs that you
have opened. You may find the UOW grouping useful when you are trying
to find related entries in the service or activity log or when you are
diagnosing problems across multiple machines. The file name of the first
log that you opened is shown in the pane’s title bar. There is a root folder
and under it, each UOW has a folder icon which you can expand to show
all the entries for that UOW. All log entries without any UOW
identification are grouped into a single folder in this tree view. The UOW
folders are sorted to show the UOW with the latest timestamp at the top of
the list. The entries within each UOW are listed in the reverse sequence,
that is the first (earliest) entry for that UOW is displayed at the top of the
list. If you have merged several logs in the Log Analyzer, all the log entries
are merged in timestamp sequence within each UOW folder, as if they all
came from the same log.

Every log entry is assigned an entry number, Rec_nnnn, when a log is
opened in the Log Analyzer. If more than one file is opened in the Log
Analyzer (merged files), the Rec_nnnn identification will not be unique
because the number is relative to the entry sequence in the original log file

Chapter 4. Diagnosing and fixing problems 295

and not to the merged data that the Log Analyzer is displaying. This
Rec_nnnn appears in the first line (RecoredId) in the Records pane.

By default, each entry in this pane is color-coded to help you quickly
identify the ones that have high severity errors. The values listed here are
the default values, you can configure your own colors.
v Non-selected log entry with background color of:

– Pink indicates that it has a severity 1 error.
– Yellow indicates that it has a severity 2 error.
– White indicates that it has a severity 3 error.

v Selected log entry with background color of:
– Red indicates that it has a severity 1 error.
– Green indicates that it has a severity 2 error.
– Blue indicates that it has a severity 3 error.

These colors are configurable and can be changed in the Log Analyzer’s
Preferences Log page. See Background color for different error severity
levels and for more information on how to do this.

The Log Analyzer can display the log entries in different groupings. Use
the Log Analyzer Preferences notebook: Logs page to set the grouping
filters.

After the Analyze action has been invoked, each analyzed log entry has the
following icons:
v A check icon indicates that the entry has some analysis information in

one or more pages in the Analysis pane.
v A cascading plus sign (+) icon indicates that the entry has some analysis

information and that it has a reraised or remapped exception. You may
want to look at the log entry prior to this one when diagnosing
problems.

v A question mark icon indicates that the entry has either a severity 1 or 2
error but no additional analysis information is available for it.

v An “x” icon indicates that the entry has a severity 3 error and it has no
analysis information.

Record pane (upper right)

When you select an entry in the Logs pane, you see the entry in the
Record pane. The entry’s identification is shown in the pane’s title bar.
Right-click in this Record pane to see the actions that you can perform on
the entry. There is a drop down arrow next to Record which allows you to
go back to look at the last ten records that you have viewed. The cache for
the historical data (10, by default) is set in the Preferences General page.

Note:

v The associated analysis data for these cached records are not shown. To
see analysis information for cached data, reselect the entry from the Logs
pane.

You can enable/disable line wrap mode for the Record Pane using the Log
Analyzer Preferences notebook: Record. To print contents of this pane,
select Record > Print when the Record pane is in focus.

Analysis pane (lower right)

296 IBM WebSphere Application Server Network Deployment, Version 5: Monitoring and Troublshooting

When the analyze action has been invoked and additional information is
available, the information will appear in the Symptom page. If the page tab
is grayed out, there is no information in that page. The pages of the
Analysis pane are:

Symptom
The Log Analyzer provides a database of information on common
events and errors to help you recover from some common errors.
As a part of the analyze action, if such information is found in the
database for the selected log entry, the information is displayed in
this page.

Status line

There is a status line at the bottom of the window showing the status of actions.

Menu bar

The menu bar in the Log Analyzer’s main window, has the following selections:

File

Open...

Opens a new log file. You can select either a service or activity log
or a previously saved XML file. If you want the Log Analyzer to
format a raw log file (by running the showlog command) prior to
opening it, name the log file with suffix.log. If the Log Analyzer
finds that the .log file contains formatted data, it skips the showlog
formatting step.

If you want to merge data from another log, select Merge with.

Merge with...

When another log file is already opened in the Log Analyzer, use
the Merge with action to open subsequent logs. The Log Analyzer
merges the data from all the logs that it opens and displays all the
entries within timestamp sequence in the UOW folders. The data
appears as if they came from one log.

If you want the Log Analyzer to format a raw log file (by running
the showlog command) prior to opening it, name the log file with
suffix.log. If the Log Analyzer finds that the .log file contains
formatted data, it skips the showlog formatting step.

Redisplay logs
To redisplay the logs using the recently set filters.

Save as...

Saves the log as an XML file (or text file). If analyze action has
been performed, all the Symptom analysis information is also
saved. If logs are merged in the Log Analyzer, the saved file
contains entries of all the merged logs in the sequence that is
shown in the Logs pane.

Chapter 4. Diagnosing and fixing problems 297

Note: If the merged logs have different timestamp formats, you
should not save the merged information because the Log Analyzer
only recognizes a single timestamp format for each file that it
opens.

Save

Is only enabled if the first file that you opened is an XML file. It
resaves the XML file with all the data that is currently displayed in
the Log Analyzer. If analyze action has been performed, all the
Symptom analysis information is also saved. If logs are merged in
the Log Analyzer, the saved file contains entries of all the merged
logs in the sequence that is shown in the Logs pane.

Note: If the merged logs have different timestamp formats, you
should not save the merged information because the Log Analyzer
only recognizes a single timestamp format for each file that it
opens.

Print Log...
Prints all the entries that the Log Analyzer is displaying. If logs are
merged in the Log Analyzer, the output contains entries of all the
merged logs in the sequence that is shown in the Logs pane. If
analyze action has been performed, all Symptom analysis
information is also printed. To print parts of the log, use Record >
Print.

Close Closes the opened log.

Update Database
Updates the symptom database which is used for Symptom
analysis. It downloads the latest version of the symptom database
from the URL specified in the ivblogbr.properties file.

Preferences...
Lets you configure and change the appearance of the Log Analyzer
window and its contents.

Exit Exits the Log Analyzer and closes its window.

Edit

Copy Copies the selected text in the Record or Analysis pane to the
clipboard. If you have not selected any text, Copy does not appear
in the menu.

Find Allows you to find text strings in the focused pane.

View

Logs Toggles the visibility of the Logs pane.

Record
Toggles the visibility of the Record pane.

Symptom
Toggles the visibility of the Symptom page in the Analysis pane.

Record

298 IBM WebSphere Application Server Network Deployment, Version 5: Monitoring and Troublshooting

All the actions under this menu applies to the focused pane.

To select several entries, hold down the Ctrl key when making the
selection. When a folder is selected, the action applies to all the entries in
that folder.

Analyze

Retrieves and displays additional documentation on known events
and event messages in the Analysis pane (Symptom page). Select
the folder(s) and/or entries in the Logs pane, right-click to select
the Analyze action, or from the menu bar, select Record >
Analyze.

Note: If you invoke Analyze for the root folder, then all the entries
in the log that you are viewing will be analyzed. If some analysis
information is available for an entry, it will either have a check
icon or a cascading plus sign (+) icon next to it in the Logs pane. If
the analyze action has already been performed, the selection will
be grayed out.

Save to file
Saves the selected entries in the Logs pane. If folders are selected,
all the entries in the folder are saved. Any retrieved analysis
information is also saved. If the focused pane is either the Records
or Analysis pane, then only that pane’s information is saved.

Print

v If the focused pane is Logs, the action prints the selected
folder(s) and/or entries. Any retrieved analysis information for
those entries is also printed.

v If the focused pane is Record, the action prints the entry that is
currently in the Record pane. Any retrieved analysis information
is not printed.

v If the focused pane is Analysis, the action prints the Symptom
page contents.

Windows
If you have detached the Symptom page in the Analysis pane into
separate windows, all the windows will be listed under this menu
and you can select the windows that you want to bring to the
foreground.

Help Provides a list of on-line documentation for additional information.

Pop-up actions

In the focused pane, right-click to bring up a list of actions in a pop-up menu.
Actions that you cannot perform are grayed out. When a folder is selected in Logs
pane, the action applies to all the entries in that folder. To select several folders or
entries in the Logs pane, hold down the Ctrl key when making the selection.

Log Analyzer find window: The Log Analyzer Find window allows you to look
for text strings in the focused pane. For example, if you remember the Unit of
Work identification, you can enter that text string in the Find window to quickly
locate the Unit of Work folder in the Logs pane.

Chapter 4. Diagnosing and fixing problems 299

Log Analyzer Preferences notebook - General: The Log Analyzer Preferences
notebook’s General page lets you specify the behavior of panes in the Log
Analyzer’s window:

Show title bars
Shows the title bars of window and its panes.

Highlight selected pane
Highlights the pane that is in focus.

Pane history cache size
Specifies a number of records to save in the cache. The Log Analyzer keeps
a history of the (specified number of) records that you have viewed. You
can use the drop down list next to Record in the pane’s title bar to see
these cached entries.

Note: The associated analysis data for these records are not saved. To see
analysis information, reselect the entry from the Logs pane.

Show logo at startup
Shows the logo when you start-up the Log Analyzer.

When you are finished, click OK to apply your changes and close the Preferences
notebook.

Log Analyzer Preferences notebook - Appearance: The Log Analyzer Preferences
notebook’s Appearance page lets you define the overall appearance of the Log
Analyzer. You can select the family of products and its texture schemes that you
want the Log Analyzer’s window to emulate.

When you are finished, click OK to apply your changes and close the Preferences
notebook.

Log Analyzer Preferences notebook - Toolbars: The Log Analyzer Preferences
notebook’s Toolbars page lets you customize the appearance and contents of the
toolbar in the Log Analyzer window. You can select whether there is text and/or
icon in the toolbar, as well as, the functions that you want in the toolbar.

When you are finished, click OK to apply your changes and close the Preferences
notebook.

Log Analyzer Preferences notebook - Help: The Log Analyzer Preferences
notebook’s Help page lets you select the browser that will be used to display
online help files.

For Windows, the default Web browser will be used and you do not need to
update any settings unless there are problems when bringing up the default
browser.

For AIX, HP-UX, and Solaris, you have to update the following settings, especially
the browser’s full path in the Browser location entry.

Help browser
Select the Web browser you want to use.

Browser location
Select the location of the browser executable file. This should be correct by
default, but if you cannot access help then you may need to explicitly enter
the browser location.

300 IBM WebSphere Application Server Network Deployment, Version 5: Monitoring and Troublshooting

When you are finished, click OK to apply your changes and close the Preferences
notebook.

Log Analyzer Preferences notebook - Proxy: The symptom database included in
the Log Analyzer package contains entries for common events and errors. New
versions of the symptom database provide additional entries. Download new
versions of the database from the IBM FTP site. The URL for the FTP site is located
in file: install_dir/bin/ivblogbr.properties.

The default setting for the FTP site is:
ftp://ftp.software.ibm.com/software/websphere/info/tools/loganalyzer/symptoms/
std/symptomdb.xml

You can update your symptom database in one of two ways:
1. Download a new version from the FTP site, and replace your existing database

with the new version. Your database is:
install_dir/symptoms/std/symptomdb.xml.

2. Use the Log Analyzer graphical user interface (GUI) to update your database
by selecting: File -> Update database -> WebSphere Application Server
Symptom Database (for WebSphere Application Server) or WebSphere
Application Server Network Deployment Symptom Database for WebSphere
Application Server Network Deployment.

Setting the proxy definition

If your organization uses a FTP or SOCKS proxy server, contact your system
administrator for the host name and port number of the proxy server.

If you use the Log Analyzer GUI to update the database, you can add a proxy
definition to the Proxy Preferences page as described below:
1. Select File -> Preferences -> Proxy.
2. Select the appropriate proxy type.
3. Enter the host name and port number of the proxy server on the Proxy panel.

If you do not use the Log Analyzer GUI, add the proxy definition to the command
that launches Log Analyzer.
v Do the following to add the proxy definition for the FTP proxy server:

– For Windows:
1. Modify file: install_dir\bin\waslogbr.bat.
2. Add the following text to the file:

%JAVA_HOME%\bin\java -DIVB_HOME=%USERPROFILE%/logbr ^
....
-Dftp.proxyHost=proxy_host -Dftp.proxyPort=port_number ^

– For UNIX:
1. Modify file: install_dir/bin/waslogbr.
2. Add the following text to the file:

$JAVA_HOME/bin/java -ms10m -mx255m -DIVB_HOME=$HOME/logbr \
....
-Dftp.proxyHost=proxy_host -Dftp.proxyPort=port_number \

v Do the following to add the proxy definition for the SOCKS proxy server:
– For Windows:

Chapter 4. Diagnosing and fixing problems 301

1. Modify file: install_dir\bin\waslogbr.bat.
2. Add the following text to the file:

%JAVA_HOME%\bin\java -DIVB_HOME=%USERPROFILE%/logbr ^
....
-DsocksProxyHost=proxy_host -DsocksProxyPort=port_number ^

– For UNIX:
1. Modify file: install_dir/bin/waslogbr.
2. Add the following text to the file:

$JAVA_HOME/bin/java -ms10m -mx255m -DIVB_HOME=$HOME/logbr \
....
-DsocksProxyHost=proxy_host -DsocksProxyPort=port_number \

Log Analyzer Preferences notebook -- Logs: The Logs page of the Log Analyzer
Preferences notebook lets you group the entries in the logs by different entry fields
for viewing. For example, you can select to group the log entries by TimeStamp or
clientHostName when they are displayed in the Logs pane.

Primary sort field
Use this filter to set the first level of grouping when log entries are
displayed in the Logs pane. By default, the log entries are grouped by
UnitOfWork.

Secondary sort field

Use this filter to set the second level of grouping (that is, within the
grouping of the primary sort field) when log entries are displayed in the
Logs pane.

All the entries within the grouped folders are always sorted in timestamp
sequence with the earliest entry at the top of the list.

Redisplay log file immediately
Select this box to immediately regroup the logs entries (after you have
clicked OK) based on the new filter settings. The entries in the Logs Pane
are redisplayed according to the new grouping. If you want to delay the
grouping, then do not select this box and, at a later time, you can use the
File > Redisplay logs... menu selection to regroup and display the log
entries based on the changed filter settings.

When you are finished, click OK to apply your changes and close the Preferences
notebook.

Log Analyzer Preferences notebook -- Severity: The Log Analyzer Preferences
notebook’s Severity page lets you change the background colors of log entries that
appear in the Logs pane. The colors are useful to help you quickly identify entries
that have high severity errors and the entry that you have currently selected.

Use colors to indicate severities
Select this checkbox to color-code the background of log entries and
folders. When selected, the radio button selections in this page are enabled.

Background color

For each folder and entry in the Logs pane, there is some text describing
the entry. To choose a background color for selected log entry that has a
severity 1 error, do the following:
1. Select Selected node.

302 IBM WebSphere Application Server Network Deployment, Version 5: Monitoring and Troublshooting

2. Select Severity 1.
3. Select the color by clicking on the color Swatches. To use the default

setting, click Restore Default. To see the results of your change, look at
the Preview box.

4. Click Apply to save that setting.

Repeat similar steps to change the background color for selected log entries
that have severity 2 and 3 errors.

To choose a background color for an unselected log entry that has a
severity 1 error, do the following:
1. Select Unselected node.
2. Select Severity 1.
3. Select the color by clicking on the color Swatches. To use the default

setting, click Restore Default. To see the results of your change, look at
the Preview box.

4. Click Apply to save that setting.

Repeat similar steps to change the background color for unselected log
entries that have severity 2 and 3 errors.

Sample
You can see the result of you color change prior to applying the change.
Look at the nodes shown in the Sample box. For color changes of selected
nodes, click on the node in the sample box to see the color change.

When you are finished, click OK to apply your changes and close the Preferences
notebook.

Log Analyzer Preferences notebook -- Analyzer output: The Log Analyzer
Preferences notebook lets you enable line wrap for information that appears in the
Analysis pane.

Set line wrap
Select the appropriate checkbox to enable line wrap for the Symptom page
that appears in the Analysis pane.

When you are finished, click OK to apply your changes and close the Preferences
notebook.

Diagnosing and fixing problems: Resources for learning
In addition to this InfoCenter, there are several Web-based resources for
researching and resolving problems related to the WebSphere Application Server.

The WebSphere Application Server support page

The official site for providing tools and sharing knowledge about WebSphere
Application Server problems is the WebSphere Application Server support page:
http://www.ibm.com/software/webservers/appserv/support.html . Among the
features it provides are:
v A search field for searching the entire support site for documentation and fixes

related to a specific exception, error message, or other problem. Use this search
function before contacting IBM Support directly.

Chapter 4. Diagnosing and fixing problems 303

http://www.ibm.com/software/webservers/appserv/support.html

v Hints and Tips, Technotes, and Solutions links take you to specific problems and
resolutions documented by WebSphere Application Server technical support
personnel.

v A link All e-fixes, fixpaks, and tools provides free WebSphere Application Server
maintenance upgrades and problem determination tools.
– e-fixes are software patches which address specific WebSphere Application

Server defects. Selecting a specific defect from the list in the All e-fixes, fixpaks,
and tools page takes you to a description of what problem the e-fix addresses.

– Fixpaks are rollups of multiple efixes, tested together and released as a
maintenance upgrade to WebSphere Application Server. If you select a fixpak
from this page, you are taken to a page describing the target platform,
WebSphere Application Server prerequisite level, and other related
information. Selecting the list defects link on that page displays a list of the
e-fixes which the fixpak includes. If you intend to install an e-fix which is
part of a fixpak, it is usually better to upgrade to the complete fixpak rather
than to just install the individual e-fix.

– Tools are free programs that help you analyze the configuration, behavior and
performance of your WebSphere Application Server installation.

Accessing WebSphere Application Server support page resources

Some resources on the WebSphere Application Server support page are marked
with a key icon. To access these resources, you must supply a user ID and
password, or to register if do not already have an ID. When registering, you are
asked for your contract number, which is supplied as part of a WebSphere
Application Server purchase.

WebSphere Developer Domain

The Developer Domains are IBM-supported sites for enabling developers to learn
about IBM software products and how to use them. They contain resources such as
articles, tutorials, and links to newsgroups and user groups. You can reach the
WebSphere Developer Domain at http://www7b.software.ibm.com/wsdd/ .

Obtaining help from IBM
If you are not able to resolve a WebSphere Application server problem by
following the steps described in the Troubleshooting guide, by looking up error
messages in the message reference, or looking for related documentation on the
online help, contact IBM Technical Support.

Purchase of WebSphere Application Server entitles you to one year of telephone
support under the Passport Advantage program. For details on the Passport
Advantage program, visit
www.lotus.com/services/passport.nsf/WebDocs/Passport_Advantage_Home.

The number for Passport Advantage members to call for WebSphere Application
Server support is 1-800-237-5511. Please have the following information available
when you call:
v Your Contract or Passport Advantage number.
v Your WebSphere Application Server version and revision level, plus any installed

e-fixes.
v Your operating system name and version.
v Your database type and version.

304 IBM WebSphere Application Server Network Deployment, Version 5: Monitoring and Troublshooting

http://www7b.software.ibm.com/wsdd/

v Basic topology data: how many machines are running how many application
servers, and so on.

v Any error or warning messages related to your problem.

The Collector Tool

WebSphere Application Server comes with a built-in utility that collects logs and
configuration information into one file, the Collector Tool. IBM Technical Support
may ask you to run this tool and submit the output.

Tracing

WebSphere Application Server support engineers might ask you to enable tracing
on a particular component of the product to diagnose a difficult problem. For
details on how to do this, see Enabling trace.

Consulting

For complex issues such as high availability and integration with legacy systems,
education, and help in getting started quickly with the WebSphere product family,
consider using IBM consulting services. To learn about these services, browse the
Web site http://www-1.ibm.com/services/fullservice.html.

Chapter 4. Diagnosing and fixing problems 305

http://www-1.ibm.com/services/fullservice.html

	Contents
	Trademarks and service marks
	Chapter 1. Welcome to Monitoring and Troubleshooting
	Chapter 2. Monitoring performance
	Performance Monitoring Infrastructure
	Performance data organization
	BeanModule data counters
	JDBC connection pool data counters
	J2C connection pool data counters
	Java Virtual Machine data counters
	Object Request Broker data counters
	Session data counters
	Transaction data counters
	ThreadPool data counters
	Web application data counters
	Workload Management data counters
	System data counters
	Dynamic cache data counters

	Performance data classification
	Enabling PMI services through the administrative console
	Enabling performance data collection through the administrative console
	Performance monitoring service settings
	Startup
	Initial specification level
	Specifications

	Enabling performance monitoring services using the command line
	Enabling Java Virtual Machine Profiler Interface data reporting
	Java Virtual Machine Profiler Interface

	Monitoring performance with Tivoli Performance Viewer (formerly Resource Analyzer)
	Tivoli Performance Viewer features
	Starting the Tivoli Performance Viewer
	Setting performance monitoring levels
	Viewing summary reports
	Changing the refresh rate of data retrieval
	Changing the display buffer size
	Viewing and modifying performance chart data
	Scaling the performance data chart display
	Refreshing data
	Performance data refresh behavior

	Clearing values from tables and charts
	Storing data to a log file
	Performance data log file

	Replaying a performance data log file
	Resetting counters to zero

	Tivoli performance monitoring and management solutions
	Developing your own monitoring applications
	Developing your own monitoring application using Performance Monitoring Infrastructure client
	Performance Monitoring Infrastructure client
	Performance Monitoring Infrastructure client interface
	Using Version 5.0 PMI API in Version 3.5.5+ and Version 4.0.x
	Example: Performance Monitoring Infrastructure client (Version 4.0)
	Example: Performance Monitoring Infrastructure client with new data structure
	Example: Administering Java Management Extension-based interface

	Developing your own monitoring applications with Performance Monitoring Infrastructure servlet
	Performance Monitoring Infrastructure servlet

	Accessing Performance Monitoring Infrastructure data through the Java Management Extension interface
	Developing Performance Monitoring Infrastructure interfaces (Version 4.0)

	Third-party performance monitoring and management solutions
	Measuring data requests (Performance Monitoring Infrastructure Request Metrics)
	Performance Monitoring Infrastructure Request Metrics
	Application Response Measurement
	Performance Monitoring Infrastructure Request Metrics trace filters
	Performance Monitoring Infrastructure Request Metrics data output
	Configuring Request Metrics
	Enabling Performance Monitoring Infrastructure Request Metrics
	Enabling Application Response Measurement
	Enabling Performance Monitoring Infrastructure Request Metrics filters
	Setting the trace level in Performance Monitoring Infrastructure Request Metrics
	Performance Monitoring Infrastructure Request Metrics configuration settings

	Example: Generating trace records from PMI Request Metrics

	Performance: Resources for learning

	Chapter 3. Tuning performance
	Symptom table
	Tuning basics
	What influences tuning?
	Types of tuning
	Parameter tuning

	Adjusting the queues in WebSphere Application Server
	Queuing network
	Determining the settings
	Drawing a throughput curve
	Queuing and enterprise beans
	Queuing and clustering

	Tuning Secure Sockets Layer
	Overview of handshake and bulk encryption and decryption
	How to enhance SSL performance
	Enterprise bean modules
	Web module

	Tuning Java memory
	The garbage collection bottleneck
	The garbage collection gauge
	Detecting over-utilization of objects
	Detecting memory leaks
	Java heap parameters

	Solaris TCP parameters
	Workload management topology
	Number of connections to DB2

	Individual performance parameters
	Hardware
	Processor speed
	System memory
	Networks

	Operating system settings
	Windows NT or 2000 TCP/IP parameters
	AIX (4.3.3 and 5.1)
	Solaris Operating Environment

	The Web server
	Web server configuration reload interval
	IBM HTTP Server (IHS) - AIX and Solaris
	Sun ONE Web server, Enterprise Edition (formerly iPlanet) - Solaris
	Microsoft Internet Information Server (IIS) - Windows NT or 2000
	IBM HTTP Server - Linux
	IBM HTTP Server - Windows NT or 2000

	The WebSphere Application Server process
	Adjusting the operating system priority of the WebSphere Application Server process
	Web containers
	Allow thread allocation beyond maximum
	Security
	Object Request Broker (ORB)

	Java Virtual Machines (JVMs)
	Sun JDK 1.3 HotSpot -server warm-up
	Sun JDK 1.3 HotSpot new generation pool size
	Just In Time (JIT) compiler
	Heap size settings
	Class garbage collection

	EJB container
	XML parser selection
	Data sources
	Connection pool size
	Prepared statement cache size
	Other JDBC parameters
	DB2

	Session management

	Starting Windows NT or 2000 Performance Monitor
	Additional references

	Chapter 4. Diagnosing and fixing problems
	Troubleshooting by task: what are you trying to do?
	Installing WebSphere Application Server
	Installation completes with errors or warnings, or hangs (panel appears, but shows no progress)
	Installation completes but the administrative console does not start
	The application server or Deployment Manager does not start or starts with errors
	Installation completes, but sample applications do not work

	Troubleshooting migration problems
	Errors using the WASPreUpgrade tool
	Errors using the WASPostUpgrade tool
	"MIGR0125E: The call to XMLConfig was not successful" error when trying to run WASPreUpgrade
	"MIGR0108E: The specified WebSphere directory does not contain WebSphere version that can be upgraded."
	"not found" or "no such file or directory" message is returned from the WASPostUpgrade or WASPreUpgrade tool
	"MIGR0253E: The backup directory migration_backup_directory does not exist." error returned from the WASPostUpgrade tool
	"MIGR0102E: Invalid Command Line. MIGR0105E: You must specify the primary node name."
	"MIGR0116E: The backup directory [migration_backup_directory] does not contain the required xml data file." error returned from the WASPostUpgrade tool.

	Troubleshooting code deployment and installation problems
	Errors deploying enterprise beans
	Errors or problems deploying, installing, or promoting applications

	Troubleshooting testing and first time run problems
	The application server or Deployment Manager does not start or starts with errors
	The application does not start or starts with errors
	Web resource (JSP file, servlet, HTML file, image) does not display
	Cannot access a data source
	Cannot access an enterprise bean from a servlet, JSP file, standalone program, or other client
	Cannot look up an object hosted by WebSphere Application Server from a servlet, JSP file, or other client
	Errors or access problems after enabling security
	Errors after enabling SSL, or SSL-related error messages
	Errors in messaging (JMS API)
	Errors returned to client trying to send a SOAP request
	Client program does not work

	Troubleshooting application run-time and management problems
	Installation completes but the administrative console does not start
	Problems starting or using the wsadmin command
	Web module or application server dies or hangs
	Errors when trying to configure or enable security
	Cannot uninstall an application or remove a node or application server
	Workload not getting distributed or errors setting up multiserver environment
	Problems creating or using HTTP sessions

	Troubleshooting by component: what is not working?
	Installation component troubleshooting tips
	Migration utility troubleshooting tips
	Administration and Administrative Console troubleshooting tips
	Application Assembly Tool troubleshooting tips
	Web Container troubleshooting tips
	HTTP plugin component troubleshooting tips
	HTTP session manager troubleshooting tips
	Naming services component troubleshooting tips
	Messaging (JMS) component troubleshooting tips
	Universal Discovery, Description, and Integration, Web Service, and SOAP components troubleshooting tips
	Enterprise bean and EJB container troubleshooting tips
	Security components troubleshooting tips
	Log files
	General approach for troubleshooting security-related issues
	Tracing security
	CSIv2 CORBA Minor Codes

	JSP engine troubleshooting tips
	Workload Management component troubleshooting tips
	Eliminate environment or configuration issues
	Browse log files for WLM errors and CORBA minor codes
	Analyze PMI data
	Resolve problem or contact IBM support

	Object Request Broker component troubleshooting tips
	Enabling tracing for the Object Request Broker component
	Log files and messages associated with Object Request Broker
	Java packages containing the Object Request Broker service
	Tools used with Object Request Broker
	Object Request Broker properties
	CORBA minor codes

	Message reference
	CORBA minor codes
	Working with message logs
	Viewing the JVM logs
	Interpreting the JVM logs
	Configuring the JVM logs
	JVM log settings

	Process logs
	Viewing the service log
	Interpreting the service log
	Configuring the service log
	IBM service log settings

	Configuration problem collection
	Configuration document validation
	Cross validation
	Configuration Problems table
	Message
	Explanation
	Recommendation
	Target Object
	Severity
	Local URI
	Full URI
	Validator classname

	Debugging with the Application Server Toolkit
	Debugging WebSphere Application Server applications
	Debugging Service details
	Startup
	JVM debug port
	JVM debug arguments
	Debug class filters
	BSF debug port
	BSF logging level

	Working with trace
	Enabling trace
	Enabling trace at server startup
	Enabling trace on a running server

	Managing the application server trace service
	Interpreting trace output
	Trace service settings
	Enable Trace
	Save Trace
	Trace Specification
	Trace Output
	Trace Output Format

	Logging and tracing settings

	Adding logging and tracing to your application
	Programming with the JRas framework
	Understanding the JRas facility
	JRas Extensions
	JRas Messages and Trace event types
	Instrumenting an application with JRas extensions

	Working with troubleshooting tools
	Collector Tool
	Running the Collector Tool
	Analyzing Collector Tool output

	First Failure Data Capture tool
	Log Analyzer
	About the service or activity log
	Viewing a service or activity log file in the absence of a graphical interface
	Using the Log Analyzer

	Diagnosing and fixing problems: Resources for learning
	Obtaining help from IBM

