
IBM WebSphere Application Server Network
Deployment, Version 5

Servers

���

Note
Before using this information, be sure to read the general information under “Trademarks and service marks” on page v.

Compilation date: November 21, 2002

© Copyright International Business Machines Corporation 2002. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Trademarks and service marks v

Chapter 1. Welcome to Servers. 1

Chapter 2. Configuring application
servers 3
Application servers 3
Creating application servers 4

Configuring application servers for UTF-8
encoding 5

Managing application servers 5
Application server collection 6
Starting servers 10
Running servers as non-root using the console. . 11
Detecting and handling problems with run-time
components 12
Stopping servers. 12

Transports 12
Configuring transports 13

HTTP transport collection 14
HTTP transport settings 14
Example: Manually editing transport settings in
the server.xml file 15

Custom services 16
Developing custom services 16

Custom service collection 18
Process definition 19
Defining application server processes 19

Process definition settings 20
Java virtual machines (JVMs) 22
Using the JVM 22

Java virtual machine settings 23
Example: Configuring JVM sendRedirect calls to
use context root 25

Preparing to host applications 26
Application servers: Resources for learning 26

Chapter 3. Managing Object Request
Brokers 29
Object Request Brokers 29
Object Request Broker tuning guidelines. 30
Object Request Broker service settings in
administrative console 30

Request timeout 31
Request retries count 31
Request retries delay 31
Connection cache maximum 31
Connection cache minimum 31
ORB tracing 32
Locate request timeout 32
Force tunneling 32
Tunnel agent URL 32
Pass by reference 33

Object Request Broker service settings that can be
added to the administrative console 33
Object Request Broker communications trace . . . 34
Client-side programming tips for the Java Object
Request Broker service. 38
Character codeset conversion support for the Java
Object Request Broker service 40
Object Request Brokers: Resources for learning . . 41

Chapter 4. Balancing workloads with
clusters 43
Workload management (WLM) 44

Techniques for managing state 44
Clusters 45
Creating clusters. 45

Server cluster collection 47
Creating cluster members. 48

Cluster member collection 49
Replication 50

Replication entry 50
Replication domain 50

Replicating data 51
Internal replication domain collection. 53

Starting clusters 56
Stopping clusters 57
Tuning a workload management configuration . . 57
Workload management run-time exceptions . . . 58
Clustering and workload management: Resources
for learning 59

Chapter 5. IBM WebSphere UDDI
Registry 61
UDDI Registry Terminology 61

UDDI Registry Definitions 62
An overview of IBM UDDI Registries 62
Migrating from the IBM WebSphere UDDI Registry
on WebSphere Application Server 4.0 63
Installing and Setting up a UDDI Registry 64

Installing the UDDI Registry into a deployment
manager cell 66
Installing the UDDI Registry into a single
appserver 74

Reinstalling the UDDI Registry application 80
Removing the UDDI Registry application from a
deployment manager cell 80
Removing the UDDI Registry application from a
single appserver 81
Configuring the UDDI Registry. 81

Configuring global UDDI properties 82
Modifying the database userid and password . . 83
Configuring security properties 83
Configuring the UDDI User Console (GUI) for
multiple language encoding support 84
Customizing the UDDI User Console (GUI) . . 84
Configuring SOAP interface properties 84

© Copyright IBM Corp. 2002 iii

Configuring SOAP properties with the AAT . . 85
Configuring SOAP properties in the deployment
descriptor 85
Configuring WebSphere to use HTTPS and SSL 86

Administering the UDDI Registry 86
Running the UDDI Registry 86
Backing up and restoring the UDDI Registry
database 86

UDDI user console 87
Displaying the user console 89

SOAP Application Programming Interface for the
UDDI Registry 89

Programming the UDDI SOAP API 90
SOAP API error handling tips in the UDDI
Registry 90

UDDI Registry application programming interface 91
Inquiry API for the UDDI Registry 91
Publish API for the UDDI Registry 94

UDDI EJB Interface for the UDDI Registry 96
Datatypes package in the UDDI Registry . . . 101
EJB Interface Methods in the UDDI Registry . . 104

UDDI Troubleshooting Tips 105
Turning on UDDI trace 106

Messages 106
UDAI (Web Services UDDI) messages 107
UDCF (Web Services UDDI) messages 107
UDDA (Web Services UDDI) messages 108
UDDM (Web Services UDDI) messages 108
UDEJ (Web Services UDDI) messages 108
UDEX (Web Services UDDI) messages 108
UDIN (Web Services UDDI) messages 108
UDLC (Web Services UDDI) messages 134
UDPR (Web Services UDDI) messages 134
UDRS (Web Services UDDI) messages 134
UDSC (Web Services UDDI) messages 134
UDSP (Web Services UDDI) messages 134
UDUC (Web Services UDDI) messages 136
UDUU (Web Services UDDI) messages 138

Running the UDDI Samples 138
Installation Verification Program (IVP) 138

Reporting Problems with the IBM WebSphere
UDDI Registry 140
Feedback 141

Chapter 6. Enabling Web services
through the IBM Web Services
Gateway 143
Web Services Gateway - Frequently Asked
Questions 143
Web Services Gateway - What is new in this
release. 144
Web Services Gateway - Completing the
installation 145

Web Services Gateway - prerequisites and
constraints 146
Establishing requirements for using a database
with the gateway 147
Installing the gateway into a deployment
manager cell. 147
Installing the gateway into a standalone
application server 150
Testing the Web Services Gateway installation 153

Administering the Web Services Gateway 153
Setting the namespace URI and WSDL URI for
the Web Services Gateway 155
Working with channels 156
Working with filters 160
Working with UDDI references 162
Working with Web services 165

Running the Web Services Gateway samples . . . 170
Administering security for the Web Services
Gateway 171

Enabling gateway-level authentication 171
Enabling operation-level authorization 173
Invoking web services over HTTPS 175

Web Services Gateway troubleshooting tips . . . 176
Web Services Gateway messages 178

Web Services Gateway: Resources for learning . . 190

iv IBM WebSphere Application Server Network Deployment, Version 5: Servers

Trademarks and service marks

The following terms are trademarks of IBM Corporation in the United States, other
countries, or both:
v Cloudscape
v Everyplace
v iSeries
v IBM
v Redbooks
v ViaVoice
v WebSphere
v zSeries

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the
United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other company, product and service names may be trademarks or service marks of
others.

© Copyright IBM Corp. 2002 v

vi IBM WebSphere Application Server Network Deployment, Version 5: Servers

Chapter 1. Welcome to Servers

The product provides application servers and more.

Application servers

Application servers extend the ability of a Web server to handle Web application
requests. An application server enables a server to generate a dynamic, customized
response to a client request.

You can (configure one or more application servers) and enhance the operation of
an application server using:
v (transports)
v (custom services)
v (command-line information) that passes to a server when it starts or initializes
v Settings that (improve the use of the Java virtual machine (JVM))

Application servers use an Object Request Broker (ORB) for RMI/IIOP
communication.

Clusters

Clusters are groupings of servers. Each server in a cluster is a member of the
cluster. Using clusters simplifies administration in that applications installed to a
cluster are automatically installed to each member in the cluster. Likewise,
applications removed from a cluster are automatically removed from each member
in the cluster. When you (create a cluster with multiple members), each member
contains the same applications and, thus, can service the same client requests.

Using clusters can optimize the distribution of client processing tasks (load
balancing) and improve application availability (failover).

Clusters can help balance loads in that clustering enables multiple servers to
service the same client request; a request from a given client can be routed to any
of the cluster members. Thus, rather than having all client requests handled by a
single application server, client work can now be distributed across all members of
a cluster. This enables systems to be scaled up to serve a higher client load than
could be provided by a single server. Further, you can configure multiple cluster
members on the same physical machine (vertical scaling), configure multiple
cluster members on different physical machines (horizontal scaling), or do both.
Finally, you can specify the amount of work targeted to each member of a cluster.
For example, you can distribute client tasks according to the capacities of the
different machines in the enterprise.

That multiple servers can service the same client request is also the basis for
failover support. If a server fails while processing a client request, the failed
request can be rerouted to any of the remaining cluster members. In fact, several
servers could fail, and as long as at least one cluster member is running, client
requests can continue to be serviced.

Java Messaging (JMS) servers

© Copyright IBM Corp. 2002 1

The product supports asynchronous messaging based on the Java Messaging
Service (JMS) of a JMS provider that conforms to the JMS specification version
1.0.2 and supports the Application Server Facility (ASF) function defined within
that specification.

For IBM WebSphere Application Server, the JMS functions (of the JMS provider) for
an application server are served by the JMS server within the application server.
For Network Deployment and Enterprise Extensions, the JMS functions (of JMS
providers) within the administration domain are served by one or more JMS
servers. There can be at most one JMS server on each node in the administration
domain, and any application server within the domain can access JMS resources
served by any JMS server on any node in the domain.

Web services servers

The Web services components included with this product version build upon the
Apache Simple Object Access Protocol (SOAP) 2.3-based capabilities delivered with
Version 4.0.x.

New in Network Deployment are the following features:
v A private Universal Description, Discovery and Integration (UDDI) Registry,

implementing Version 2.0 of the UDDI specification
v A Web Services Gateway for providing gateway access to existing Web services

2 IBM WebSphere Application Server Network Deployment, Version 5: Servers

Chapter 2. Configuring application servers

An application server configuration provides settings that control how an
application server provides services for running enterprise applications and their
components.

This section describes how to create and configure application servers, and how to
otherwise handle server configurations.

A WebSphere Application Server administrator can configure one or more
application servers and perform tasks such as the following:

Steps for this task
1. Create application servers.
2. Manage application servers.
3. (Optional) Configure transports.
4. (Optional) Develop custom services.
5. (Optional) Define processes for the application server. As part of defining

processes, you can define process execution statements for starting or
initializing a UNIX process, monitoring policies to track the performance of a
process, process logs to which standard out and standard error streams write,
and name-value pairs for properties.

6. (Optional) Use the Java virtual machine.

After preparing a server, deploy an application or component on the server. See
″Preparing to host applications″ for a sample procedure that you might follow in
configuring the application server run-time and resources.

Application servers
Application servers extend a Web server’s capabilities to handle Web application
requests, typically using Java technology. An application server makes it possible
for a server to generate a dynamic, customized response to a client request.

For example, suppose—
1. A user at a Web browser on the public Internet visits a company Web site. The

user requests to use an application that provides access to data in a database.
2. The user request flows to the Web server.
3. The Web server determines that the request involves an application containing

resources not handled directly by the Web server (such as servlets). It forwards
the request to a WebSphere Application Server product.

4. The WebSphere Application Server product forwards the request to one of its
application servers on which the application is running.

5. The invoked application then processes the user request. For example:
v An application servlet prepares the user request for processing by an

enterprise bean that performs the database access.
v The application produces a dynamic Web page containing the results of the

user query.

© Copyright IBM Corp. 2002 3

6. The application server collaborates with the Web server to return the results to
the user at the Web browser.

The WebSphere Application Server product provides multiple application servers
that can be either separately configured processes or nearly identical clones.

Creating application servers
You can create a new application server using the wsadmin tool or the Create New
Application Server page of the administrative console. On the Network
Deployment product, you can also create a new application server when you (add
a cluster member to a server cluster). The steps below describe how to use the
Create New Application Server page.

Steps for this task
1. Go to the Application Servers page and click New. This brings you to the

Create New Application Server page.
2. Follow the instructions on the Create New Application Server page and define

your application server.
a. Select a node for the application server.
b. Type in a name for the application server. The name must be unique within

the node.
c. Select whether the new server will have unique ports for each HTTP

transport. By default, this option is enabled. If you select this option, you
might need to update the alias list for the virtual host that you plan to use
with this server to contain these new port values. If you deselect this
option, ensure that the default port values do not conflict with other servers
on the same physical machine.

d. Select a template to be used in creating the new server. You can use a
default application server template for your new server or use an existing
application server as a template. The new application server will inherit all
properties of the template server.

e. If you create the new server using an existing application server as a model,
select whether to map applications from the existing server to the new
server. By default, this option is disabled.

3. (Optional) To use multiple language encoding support in the administrative
console, configure an application server with UTF-8 encoding enabled.

Results

The new application server appears in the list of servers on the Application Servers
page.

What to do next

Note that the application server created has many default values specified for it.
An application server has many properties that can be set and creating an
application server on the Create New Application Server page specifies values for
only a few of the important properties. To view all of the properties of your
application server and to customize your application server further, click on the
name of your application server on the Application Servers page and change the
settings for your application server as needed.

4 IBM WebSphere Application Server Network Deployment, Version 5: Servers

Configuring application servers for UTF-8 encoding
To use multiple language encoding support in the administrative console, you
must configure an application server with UTF-8 encoding enabled.

Steps for this task
1. Create an application server or use an existing application server.
2. On the Application Server page, click on the name of the server you want

enabled for UTF-8.
3. On the settings page for the selected application server, click Process

Definition.
4. On the Process Definition page, click Java Virtual Machine.
5. On the Java Virtual Machine page, specify -Dclient.encoding.override=UTF-8

for Generic JVM Arguments and click OK.
6. Click Save on the console taskbar.
7. Restart the application server.

Note that the autoRequestEncoding option does not work with UTF-8 encoding
enabled. The default behavior for WebSphere Application Server is, first, to check if
charset is set on content type header. If it is, then the product uses content type
header for character encoding; if it is not, then the product uses character encoding
set on server using the system property default.client.encoding. If charset is not
present and the system property is not set, then the product uses ISO-8859-1.
Enabling autoRequestEncoding on a Web module changes the default behavior: if
charset it not present on an incoming request header, the product checks the
Accept-Language header of the incoming request and does encoding using the first
language found in that header. If there is no charset on content type header and no
Accept language header, then the product uses character encoding set on server
using the system property default.client.encoding. As with the default behavior, if
charset is not present and the system property is not set, then the product uses
ISO-8859-1.

Managing application servers
To view information about an application server, use the Application Servers page.
For the Network Deployment product, you can also use the Application Servers
page to manage application servers. For the single-server (base) product, you
cannot manage application servers from the administrative console; you must
manage application servers from a console hosted by a Network Deployment
deployment manager, use the wasadmin tool, or use command line tools such as
startServer and stopServer.

Steps for this task
1. Access the Application Servers page. Click Servers > Application Servers in

the console navigation tree.
2. View information about application servers. The Application Servers page lists

application servers in the cell and the nodes holding the application servers.
The Network Deployment product also shows the status of the application
servers. The status indicates whether a server is started, stopped, or
unavailable.
To view additional information about a particular application server or to
further configure a server, click on the server’s name under Name. This
accesses the settings page for an application server.
To view product information for a server:

Chapter 2. Configuring application servers 5

a. Ensure that the server is running.
b. Go to the Runtime tab on the settings page for an application server.
c. Click Product Information.

The Product Information page displayed lists the WebSphere Application Server
products installed for the server, the version and build levels for the products,
the build dates, and any e-fixes applied to the server.

3. Create an application server. Click New and follow the instructions on the
Create New Application Server page.

4. Start your application server.
5. Monitor the running of application servers.
6. Stop your application server.
7. (Optional) Delete an application server.

a. Click Servers > Application Servers in the console navigation tree to access
the Application Servers page.

b. Place a checkmark in the check box beside the server you want deleted.
c. Click Delete.
d. Click OK to confirm the deletion.

Application server collection
Use this page to view information about and manage application servers.

The Application Servers page lists application servers in the cell and the nodes
holding the application servers.

The Network Deployment product also shows the status of the application servers.
The status indicates whether a server is running, stopped, or encountering
problems.

To view this administrative console page, click Servers > Application Servers.

Name
Specifies a logical name for the server. Server names must be unique within a
node.

Node
Specifies the name of the node for the application server.

Status
Indicates whether the application server is started or stopped.

Note that if the status is Unavailable, the node agent is not running in that node
and you must restart the node agent before you can start the server.

Application server settings
Use this page to view or change the settings of an application server instance.

To view this administrative console page, click Servers > Application Servers >
server_name.

The Configuration tab provides editable fields and the Runtime tab provides
read-only information. The Runtime tab is available only when the server is
running.

6 IBM WebSphere Application Server Network Deployment, Version 5: Servers

Name: Specifies a logical name for the server. Server names must be unique
within a node.

Data type String
Default server1

Initial State: Specifies the desired state of the application server when its
containing process (node) starts. The options are Started and Stopped. The default is
Started.

Data type String
Default Started

Application Classloader Policy: Specifies whether to use a single classloader to
load all applications or to use a different classloader for each application.

The options are SINGLE and MULTIPLE. The default is to use a separate
classloader for each application (MULTIPLE).

Data type String
Default MULTIPLE

Application Classloading Mode: Specifies whether the classloader should search
in the parent classloader or in the application classloader first to load a class. The
standard for JDK classloaders and WebSphere classloaders is PARENT_FIRST. By
specifying PARENT_LAST, your application can override classes contained in the
parent classloader, but this action can potentially result in ClassCastException or
LinkageErrors if you have mixed use of overriden classes and non-overriden
classes.

The options are PARENT_FIRST and PARENT_LAST. The default is to search in
the parent classloader before searching in the application classloader to load a
class.

Data type String
Default PARENT_FIRST

Process ID: Specifies a string identifying the process.

Data type String

Cell Name: Specifies the name of the cell for the application server.

Data type String
Default host_nameNetwork

Node Name: Specifies the name of the node for the application server.

Data type String

State: Indicates whether the application server is started or stopped.

Chapter 2. Configuring application servers 7

Data type String
Default Started

End point collection: Use this page to view and manage communication end
points used by run-time components running within a process. End points provide
host and port specifications for a server.

To view this administrative console page, click Servers > Application Servers >
server_name > End Points.

Note that this page displays only when you are working with end points for
application servers.

End Point Name: Specifies the name of an end point. Each name must be unique
within the server.

End point settings: Use this to view and change the configuration for a
communication end point used by run-time components running within a process.
An end point provides host and port specifications for a server.

To view this administrative console page, click Servers > Application Servers >
server_name > End Points > end_point_name.

End Point Name: Specifies the name of the end point. The name must be unique
within the server.

Note that this field displays only when you are defining an end point for an
application server.

Data type String

Host: Specifies the IP address, domain name server (DNS) host name with
domain name suffix, or just the DNS host name, used by a client to request a
resource (such as the naming service, administrative service, or JMS broker).

For example, if the host name is myhost, the fully qualified DNS name can be
myhost.myco.com and the IP address can be 155.123.88.201.

Data type String
Default *

Port: Specifies the port for which the service is configured to accept client
requests. The port value is used in conjunction with the host name.

Data type Integer
Default None

Property collection: Use this page to view and manage arbitrary name-value
pairs of data, where the name is a property key and the value is a string value that
can be used to set internal system configuration properties.

To view this administrative console page, click Servers > Application Servers >
server_name > Custom Properties.

8 IBM WebSphere Application Server Network Deployment, Version 5: Servers

Name: Specifies the name (or key) for the property.

Value: Specifies the value paired with the specified name.

Description: Provides information about the name-value pair.

Property settings: Use this page to configure arbitrary name-value pairs of data,
where the name is a property key and the value is a string value that can be used
to set internal system configuration properties. Defining a new property enables
you to configure a setting beyond that which is available in the administrative
console.

To view this administrative console page, click Servers > Application Servers >
server_name > Custom Properties > property_name.

Name: Specifies the name (or key) for the property.

Data type String

Value: Specifies the value paired with the specified name.

Data type String

Description: Provides information about the name-value pair.

Data type String

Server component collection: Use this page to view information about and
manage server component types such as application servers, messaging servers, or
name servers.

To view this administrative console page, click Servers > Application Servers >
server_name > Server Components.

Type: Specifies the type of internal server.

Server component settings: Use this page to view or configure a server
component instance.

To view this administrative console, click Servers > Application Servers >
server_name > Server Components > server_component_name.

Name: Specifies the name of the component.

Data type String

Initial State: Specifies the desired state of the component when the server process
starts. The options are: Started and Stopped. The default is Started.

Data type String
Default Started

Chapter 2. Configuring application servers 9

Thread pool settings: Use this page to configure a group of threads that an
application server uses. A thread pool enables components of the server to reuse
threads to eliminate the need to create new threads at run time. Creating new
threads expends time and resources.

To view this administrative console page, click Servers > Manage Application
Servers > server_name > ORB Service > Thread Pool. (You can reach this page
through more than one navigational route.)

Minimum size: Specifies the minimum number of threads to allow in the pool.

Data type Integer
Default 10

Maximum size: Specifies the maximum number of threads to allow in the pool.

Data type Integer
Default 50

Thread inactivity timeout: Specifies the number of milliseconds of inactivity that
should elapse before a thread is reclaimed. A value of 0 indicates not to wait and a
negative value (less than 0) means to wait forever.

Data type Integer
Units Milliseconds
Default 3500

Growable thread pool: Specifies whether the number of threads can increase
beyond the maximum size configured for the thread pool.

Data type Boolean
Default Not enabled (false)
Range Valid values are Allow thread allocation beyond maximum

thread size or Not enabled.

Starting servers
Starting a server starts a new server process based on the current server
configuration’s process definition settings. The node agent for the node on which
the application server resides must be running before you can start the application
server.

Note that after you start a server, other processes might not discover the running
server immediately. Application servers are discovered by the node agent and node
agents are discovered by the deployment manager. Node agents usually can
discover local application servers quickly but it can take a deployment manager
from 2 to 60 seconds to discover node agents.

Starting a server from a command line

To start a server, run the startServer command.

If the node agent for the node on which the application server resides is not
running, run the startNode command and then run the startServer command.

10 IBM WebSphere Application Server Network Deployment, Version 5: Servers

Starting an application server using the administrative console

1. Click Servers > Application Servers from the administrative console navigation
tree to go to the Application Server page.

2. If the node agent for the node on which the application server resides is not
running, click Restart or Restart all Servers on Node on the Node Agents page
to start the node agent.

3. Place a checkmark in the check box beside the application server that you want
started and click Start.

4. View the Status value and any messages or logs to see whether the server
starts.

Starting a server for tracing and debugging

To start the server with standard Java debugging enabled:
1. Click Servers > Application Servers from the administrative console navigation

tree. Then, click the application server whose processes you want to trace and
debug, Process Definition, and Java Virtual Machine.

2. On the Java Virtual Machine page, place a checkmark in the check box for the
Debug Mode setting to enable the standard Java debugger. If needed, set
debug arguments. Then, click OK.

3. Save the changes to a configuration file.
4. Stop the server.
5. Start the server again (see above).

Running servers as non-root using the console
By default, WebSphere Application Server servers use a root ID. A server can be
run using a non-root ID if security file system permissions grant all users of a
certain group writable access to main WebSphere Application Server directories
and the user ID and group ID for the server ″run as″ the user and group.

Steps for this task
1. Specify user and group ID values for the Run As User and Run As Group

settings for a server
a. Go to the Process Execution page for the server you want to run as

non-root. Click Servers > Application Servers > server_name > Process
Definition > Process Execution.

b. For Run As User, specify a user name for the process to run as.
c. For Run As Group, specify a group name for the process to run as.

2. Using operating system tools, create a set of users that are all in the group.
3. Using operating system tools, change the permissions of the WebSphere

Application Server installation root (install_root) directory.
a. Change the group owner to the group.
b. Make the following files under the install_root directory writable by the

group:
v Log files
v All files and subdirectories below the tranlog directory
v All files and subdirectories below the config/temp directory

4. From the user ID, run the startServer command to start the server.

Chapter 2. Configuring application servers 11

Detecting and handling problems with run-time components
You must monitor the status of run-time components to ensure that, once started,
they remain operational as needed.

Steps for this task
1. Regularly examine the status of run-time components.

One way is using the Logging and Tracing page of the administrative console.
Click Troubleshooting > Logs and Trace in the console navigation tree to
access the page.
Another way is to browse messages displayed under Websphere Runtime
Messages in the WebSphere status area at the bottom of the console. The
run-time event messages marked with a red X provide detailed information on
event processing.

2. If an application stops running when it should be operational, examine the
application’s status on an Applications page and try restarting the application.
If messages indicate that a server has stopped running, use the Application
Servers page to try restarting the server. If a cluster of servers has stopped
running, use the (Server Cluster page) to try (restarting the cluster). If the
status of an application server is Unavailable, the node agent is not running in
that node and you must restart the node agent before you can start the server.

3. If the run-time components do not restart, re-examine the messages and read
information on problem determination to help you to restart the components.

Stopping servers
Stopping a server stops a server process based on the current server
configuration’s process definition settings.

Stopping a server from a command line

To stop a server, run the stopServer command.

Stopping an application server using the administrative console

1. Click Servers > Application Servers from the administrative console navigation
tree to go to the Application Server page.

2. Place a checkmark in the check box beside the application server that you want
stopped and click Stop.

3. Confirm that you want to stop the server.
4. View the Status value and any messages or logs to see whether the server

stops.
A warning message displays if you are stopping the server that is running the
administrative application.

Transports
A transport is the request queue between a WebSphere Application Server plug-in
for Web servers and a Web container in which the Web modules of an application
reside. When a user at a Web browser requests an application, the request is
passed to the Web server, then along the transport to the Web container.

12 IBM WebSphere Application Server Network Deployment, Version 5: Servers

Transports define the characteristics of the connections between a Web server and
an application server, across which requests for applications are routed.
Specifically, they define the connection between the Web server plug-in and the
Web container of the application server.

Administering transports is closely related to administering WebSphere Application
Server plug-ins for Web servers. Indeed, without a plug-in configuration, a
transport configuration is of little use.

The internal transport

For applications in a test or development environment (in other words, a
non-production environment), you can use the internal HTTP transport system to
serve servlets without an Web server plug-in. Simply use the internal HTTP
transport port (typically on port 9080).

For example, to serve a servlet (servlet_path_name) without an HTTP server, use the
URL: http://server_name:port/servlet_path_name

with port being the internal transport port number (typically 9080) and server_name
being localhost if the application server is on the local machine.

For a production environment, do not use the internal transport, as it lacks the
performance available when using a Web server plug-in.

At times, you might be able to configure the internal transport to use a port other
than 9080. The transport configuration is a part of the Web container configuration.
To change the port number, you must adjust your virtual host alias and what you
type into the Web browser.

Configuring transports
You configure transports to specify:
v How to manage a set of connections. For example, to specify the number of

concurrent requests to allow.
v Whether to secure the connections with SSL
v Host and IP information for the transport participants

Steps for this task
1. Create an HTTP transport.

a. Ensure that virtual host aliases include port values for the new transport.
b. Go to the HTTP Transports page and click New.
c. On the settings page for an HTTP transport, specify values such as the

transport’s host name and port number, then click OK.
2. (Optional) Change the configuration for an existing transport.

a. Ensure that virtual host aliases include port values for the transport your
are changing.

b. Go to the HTTP Transports page and click on the transport under Host
whose configuration you want to change.

c. On the settings page for an HTTP transport, which might have the page
title DefaultSSLSettings, change the specified values as needed, then click
OK.

3. Regenerate the WebSphere plug-in for the Web server.

Chapter 2. Configuring application servers 13

If the Web server is located on a machine remote from the application server, you
might also need to perform special configuration tasks to redirect application
requests from the Web server machine to the application server machine.

HTTP transport collection
Use this page to view or manage HTTP transports. Transports provide request
queues between WebSphere plug-ins for Web servers and Web containers in which
the Web modules of applications reside. When you request an application in a Web
browser, the request is passed to the Web server, then along the transport to the
Web container.

To view this administrative console page, click Servers > Application Servers >
server_name > Web Container > HTTP Transports.

Host
Specifies the host IP address to bind for transport. If the application server is on a
local machine, the host name might be localhost.

Port
Specifies the port to bind for transport. The port number can be any port that
currently is not in use on the system. The port number must be unique for each
application server instance on a given machine.

SSL Enabled
Specifies whether to protect connections between the WebSphere plug-in and
application server with Secure Sockets Layer (SSL). The default is not to use SSL.

HTTP transport settings
Use this page to view and configure an HTTP transport. The name of the page
might be that of an SSL setting such as DefaultSSLSettings.

To view this administrative console page, click Servers > Application Servers >
server_name > Web Container > HTTP Transports > host_name.

Host
Specifies the host IP address to bind for transport.

If the application server is on a local machine, the host name might be localhost.

Data type String

Port
Specifies the port to bind for transport. The port number can be any port that
currently is not in use on the system. The port number must be unique for each
application server instance on a given machine.

Data type Integer

SSL Enabled
Specifies whether to protect connections between the WebSphere plug-in and
application server with Secure Sockets Layer (SSL). The default is not to use SSL.

Data type Boolean
Default false

14 IBM WebSphere Application Server Network Deployment, Version 5: Servers

SSL
Specifies the Secure Sockets Layer (SSL) settings type for connections between the
WebSphere plug-in and application server. The options include one or more SSL
settings defined in the Security Center; for example, DefaultSSLSettings,
ORBSSLSettings, or LDAPSSLSettings.

Data type String
Default An SSL setting defined in the Security Center

Example: Manually editing transport settings in the server.xml
file

WebSphere Application Server Version 4.x has several transport properties that are
not shown in the settings page for an HTTP transport:

ConnectionIOTimeout
Specifies the maximum number of seconds to wait when trying to read or
write data during a request.

ConnectionKeepAliveTimeout
Specifies the maximum number of seconds to wait for the next request on
a keep alive connection.

MaxKeepAliveConnections
Specifies the maximum number of concurrent keep alive (persistent)
connections across all HTTP transports. The default value is 90% of the
maximum number of threads in the Web container thread pool. This
prevents all of the threads from being held by keep alive connections so
that there are threads available to handle new incoming connect requests.

MaxKeepAliveRequests
Specifies the maximum number of requests which can be processed on a
single keep alive connection.

To specify values for these transport properties, you can edit the <properties>
settings in the server.xml file shown in bold font below. After editing the
server.xml file, restart the server and regenerate the Web server plug-in. As to each
of the new properties, whatever value you specify for a first transport is applied
globally to all other HTTP transports in the cell.
<components xmi:type="applicationserver.webcontainer:WebContainer"

xmi:id="WebContainer_1" enableServletCaching="false">
<stateManagement xmi:id="StateManageable_5" initialState="START"/>
<properties xmi:id="WebContainer_Property_1" name="MaxConnectBacklog" value="50"/>
<properties xmi:id="WebContainer_Property_2"

name="MaxKeepAliveConnections" value="45"/>
<properties xmi:id="WebContainer_Property_3"

name="MaxKeepAliveRequests" value="100"/>
<properties xmi:id="WebContainer_Property_4"

name="ConnectionIOTimeout" value="5"/>
<properties xmi:id="WebContainer_Property_5"

name="ConnectionKeepAliveTimeout" value="5"/>
<services xmi:type="applicationserver.webcontainer:SessionManager"

xmi:id="SessionManager_1" enable="true" enableUrlRewriting="false"
enableCookies="true" enableSSLTracking="false"
enableProtocolSwitchRewriting="false" enableSecurityIntegration="false"
sessionPersistenceMode="NONE" allowSerializedSessionAccess="false"
accessSessionOnTimeout="true" maxWaitTime="5">

<defaultCookieSettings xmi:id="Cookie_1" name="JSESSIONID" domain=""
maximumAge="-1" path="/" secure="false"/>

<sessionDatabasePersistence xmi:id="SessionDatabasePersistence_1"
datasourceJNDIName="jdbc/Sessions"

Chapter 2. Configuring application servers 15

userId="db2admin" password="db2admin" db2RowSize="ROW_SIZE_4KB"
tableSpaceName=""/>

<tuningParams xmi:id="TuningParams_1" usingMultiRowSchema="false"
maxInMemorySessionCount="1000" allowOverflow="true"
invalidationTimeout="30" writeContents="ONLY_UPDATED_ATTRIBUTES"
writeFrequency="TIME_BASED_WRITE" writeInterval="120"
scheduleInvalidation="false">

<invalidationSchedule xmi:id="InvalidationSchedule_1" firstHour="14"
secondHour="2"/>

</tuningParams>
</services>
<threadPool xmi:id="ThreadPool_2" minimumSize="10" maximumSize="50"

inactivityTimeout="3500" isGrowable="false"/>
<transports xmi:type="applicationserver.webcontainer:HTTPTransport"

xmi:id="HTTPTransport_1" sslEnabled="false">
<address xmi:id="EndPoint_1" host="" port="9080"/>

</transports>
<transports xmi:type="applicationserver.webcontainer:HTTPTransport"

xmi:id="HTTPTransport_2" sslEnabled="true"
sslConfig="DefaultSSLSettings">

<address xmi:id="EndPoint_2" host="" port="9443"/>
</transports>
<transports xmi:type="applicationserver.webcontainer:HTTPTransport"

xmi:id="HTTPTransport_3" sslEnabled="false">
<address xmi:id="EndPoint_3" host="" port="9090"/>

</transports>
<transports xmi:type="applicationserver.webcontainer:HTTPTransport"

xmi:id="HTTPTransport_4" sslEnabled="true"
sslConfig="DefaultSSLSettings">

<address xmi:id="EndPoint_4" host="" port="9043"/>
</transports>

</components>

Custom services
A custom service provides the ability to plug into a WebSphere application server
to define a hook point that runs when the server starts and shuts down.

A developer implements a custom service containing a class that implements a
particular interface. The administrator configures the custom service in the
administrative console, identifying the class created by the developer. When an
application server starts, any custom services defined for the application server are
loaded and the server run-time calls their initialize methods.

Developing custom services
To define a hook point to be run when a server starts and shuts down, you
develop a custom service class and then use the administrative console to
configure a custom service instance for an application server. When the application
server starts, the custom service starts and initializes.

Steps for this task
1. Develop a custom service class that implements ConfigServer described in the

Javadoc file at ../javadoc/ae/com/ibm/websphere/management/configservice
/ConfigService.html.
The properties passed by the application server run-time to the initialize
method can include one for an external file containing configuration
information for the service (retrieved with externalConfigURLKey). In addition,
the properties can contain any name-value pairs that are stored for the service,

16 IBM WebSphere Application Server Network Deployment, Version 5: Servers

along with the other system administration configuration data for the service.
The properties are passed to the initialize method of the service as a Properties
object.
There is a shutdown method for the interface as well. Both methods of the
interface declare that they may throw an exception, although no specific
exception subclass is defined. If an exception is thrown, the run-time logs it,
disables the custom service, and proceeds with starting the server.

2. On the Custom Service page of the administrative console, click New. Then, on
the settings page for a custom service instance, create a custom service
configuration for an existing application server, supplying the name of the class
implemented.
If your custom services class requires a configuration file, specify the
fully-qualified path name to that configuration file in the externalConfigURL
field. This file name is passed into your custom service class.

3. Stop the application server and then restart the server.
4. Check the application server to ensure that the initialize method of the custom

service ran as intended. Also ensure that the shutdown method performs as
intended when the server stops.

Usage scenario

As mentioned above, your custom services class must implement the
CustomService interface. In addition, your class must implement the initialize and
shutdown methods. Suppose the name of the class that implements your custom
service is ServerInit, your code would declare this class as shown below. The code
below assumes that your custom services class needs a configuration file. It shows
how to process the input parameter in order to get the configuration file. If your
class does not require a configuration file, the code that processes configProperties
is not needed.
public class ServerInit implements CustomService
{
/**
* The initialize method is called by the application server run-time when the
* server starts. The Properties object passed to this method must contain all
* configuration information necessary for this service to initialize properly.
*
* @param configProperties java.util.Properties
*/

static final java.lang.String externalConfigURLKey =
"com.ibm.websphere.runtime.CustomService.externalConfigURLKey";

static String ConfigFileName="";

public void initialize(java.util.Properties configProperties) throws Exception
{

if (configProperties.getProperty(externalConfigURLKey) != null)
{

ConfigFileName = configProperties.getProperty(externalConfigURLKey);
}

// Implement rest of initialize method
}

/**
* The shutdown method is called by the application server run-time when the
* server begins its shutdown processing.
*
* @param configProperties java.util.Properties
*/

Chapter 2. Configuring application servers 17

public void shutdown() throws Exception
{

// Implement shutdown method
}

Custom service collection
Use this page to view a list of services available to the application server and to
see whether the services are enabled. A custom service provides the ability to plug
into a WebSphere application server and define code that runs when the server
starts or shuts down.

To view this administrative console page, click Servers > Application Servers >
server_name > Custom Services.

External Configuration URL
Specifies the URL for a custom service configuration file.

If your custom services class requires a configuration file, the value provides a
fully-qualified path name to that configuration file. This file name is passed into
your custom service class.

Classname
Specifies the class name of the service implementation. This class must implement
the Custom Service interface.

Display Name
Specifies the name of the service.

Startup
Specifies whether the server attempts to start and initialize the service when its
containing process (the server) starts. By default, the service is not enabled when
its containing process starts.

Custom service settings
Use this page to configure a service that runs in an application server.

To view this administrative console page, click Servers > Application Servers >
server_name > Custom Services > custom_service_name.

Startup: Specifies whether the server attempts to start and initialize the service
when its containing process (the server) starts. By default, the service is not
enabled when its containing process starts. To enable the service, place a
checkmark in the check box.

Data type Boolean
Default false

External Configuration URL: Specifies the URL for a custom service
configuration file.

If your custom services class requires a configuration file, specify the
fully-qualified path name to that configuration file for the value. This file name is
passed into your custom service class.

Data type String
Units URL

18 IBM WebSphere Application Server Network Deployment, Version 5: Servers

Classname: Specifies the class name of the service implementation. This class
must implement the Custom Service interface.

Data type String
Units Java class name

Display Name: Specifies the name of the service.

Data type String

Description: Describes the custom service.

Data type String

Classpath: Specifies the class path used to locate the classes and JAR files for this
service.

Data type String
Units Class path

Process definition
A process definition specifies the run-time characteristics of an application server
process.

A process defintions can include characteristics such as JVM settings, standard in,
error and output paths, and the user ID and password under which a server runs.

Defining application server processes
To enhance the operation of an application server, you can define command-line
information for starting or initializing an application server process. Such settings
define run-time properties such as the program to run, arguments to run the
program, the working directory.

Steps for this task
1. Go to the settings page for a process defintion in the administrative console.

Click Servers > Application Servers in the console navigation tree, click on an
application server name and then Process Definition.

2. On the settings page for a process defintion, specify the name of the executable
to run, any arguments to pass when the process starts running, and the
working directory in which the process will run. Then click OK.

3. (Optional) Specify process execution statements for starting or initializing a
UNIX process.

4. (Optional) Specify monitoring policies to track the performance of a process.
5. (Optional) Specify process logs to which standard out and standard error

streams write. Complete this step if you do not want to use the default file
names.

6. (Optional) Specify name-value pairs for properties needed by the process
definition.

7. Stop the application server and then restart the server.

Chapter 2. Configuring application servers 19

8. Check the application server to ensure that the process definition runs and
operates as intended.

Process definition settings
Use this page to view or change settings for a process definition, which provides
command-line information for starting or initializing a process.

To view this administrative console page, click Servers > Application Servers >
server_name > Process Definition.

Executable Name
Specifies the executable name of the process.

Data type String

Executable Arguments
Specifies executable commands that run when the process starts.

For example, the executable target program might expect three arguments: arg1
arg2 arg3.

Data type String
Units Java command-line arguments

Working Directory
Specifies the file system directory in which the process will run.

This directory is used to determine the locations of input and output files with
relative path names.

Passivated enterprise beans are placed in the current working directory of the
application server on which the beans are running. Make sure the working
directory is a known directory under the root directory of the WebSphere
Application Server product.

Data type String

Process execution settings
Use this page to view or change command-line information for starting or
initializing a UNIX process.

To view this administrative console page, click Servers > Application Servers >
server_name > Process Definition > Process Execution.

Process Priority: Specifies the operating system priority for the process. Only root
users can change this value.

Data type Integer
Default 1000 for WebSphere Application Server on most operating

systems. On OS/400, the default is 25.

UMASK: Specifies the user mask under which the process runs (the file-mode
permission mask).

20 IBM WebSphere Application Server Network Deployment, Version 5: Servers

Data type Integer

Run As User: Specifies the user that the process runs as.

Data type String

Run As Group: Specifies the group that the process is a member of and runs as.

On OS/400, the Run As Group setting is ignored.

Data type String

Run In Process Group: Specifies a specific process group for the process. This
process group is useful for such things as processor partitioning. A system
admininistor can assign a process group to run on, for example, 6 of 12 processors.
The default (0) is not to assign the process to any specific group.

On OS/400, the Run In Process Group setting is ignored.

Data type Integer
Default 0

Process logs settings
Use this page to view or change settings for specifying the files to which standard
out and standard error streams write.

To view this administrative console page, click Servers > Application Servers >
server_name > Process Definition > Process Logs.

Stdout File Name: Specifies the file to which the standard output stream are
directed. The file name can include a symbolic path name defined in the variable
entries.

To direct server output to the administrative console or to the process that
launched the server, either delete the value for this property or specify console.

Data type String
Units File path name

Stderr File Name: Specifies the file to which the standard error stream is directed.
The file name can include a symbolic path name defined in the variable entries.

Data type String
Units File path name

Monitoring policy settings
Use this page to view or change settings that control how the node agent monitors
and restarts a process.

To view this administrative console page, click Servers > Application Servers >
server_name > Process Definition > Monitoring Policy.

Chapter 2. Configuring application servers 21

Maximum Startup Attempts: Specifies the maximum number of times to attempt
to start the application server before giving up.

Data type Integer

Ping Interval: Specifies the frequency of communication attempts between the
parent process, such as the node agent, and the process it has spawned, such as an
application server. Adjust this value based on your requirements for restarting
failed servers. Decreasing the value detects failures sooner; increasing the value
reduces the frequency of pings, reducing system overhead.

Data type Integer

Ping Timeout: When a parent process is spawning a child process, such as when
a process manager spawns a server, the parent process pings the child process to
see whether the child was spawned successfully. This value specifies the number of
seconds that the parent process should wait (after pinging the child process) before
assuming that the child process failed.

Data type Integer
Units Seconds

Automatic Restart: Specifies whether the process should restart automatically if it
fails. The default is to restart the process automatically.

Data type Boolean
Default true

Node Restart State: Specifies the desired state for the process after the node
completely shuts down and restarts. The options are: STOPPED, RUNNING,
PREVIOUS. The default is STOPPED.

Data type String
Default STOPPED
Range Valid values are STOPPED, RUNNING, or PREVIOUS.

Java virtual machines (JVMs)
The Java virtual machine (JVM) is an interpretive computing engine responsible for
executing the byte codes in a compiled Java program. The JVM translates the Java
byte codes into the native instructions of the host machine. The application server,
being a Java process, requires a JVM in order to run, and to support the Java
applications running on it. JVM settings are part of an application server
configuration.

Using the JVM
As part of configuring an application server, you might define settings that
enhance your system’s use of the Java virtual machine (JVM).

To view and change the JVM configuration for an application server’s process, use
the Java Virtual Machine page of the console or use wsadmin to change the
configuration through scripting.

22 IBM WebSphere Application Server Network Deployment, Version 5: Servers

Steps for this task
1. Access the Java Virtual Machine page.

a. Click Servers > Application Servers in the console navigation tree.
b. On the Application Server page, click on the name of the server whose JVM

settings you want to configure.
c. On the settings page for the selected application server, click Process

Definition.
d. On the Process Definition page, click Java Virtual Machine.

2. On the Java Virtual Machine page, specify values for the JVM settings as
needed and click OK.

3. Click Save on the console taskbar.
4. Restart the application server.

Usage scenario

″Configuring application servers for UTF-8 encoding″ provides an example that
involves specifying a value for the Generic JVM Arguments property on the Java
Virtual Machine page to enable UTF-8 encoding on an application server. Enabling
UTF-8 allows multiple language encoding support to be used in the administrative
console.

″Example: Configuring JVM sendRedirect calls to use context root″ provides an
example that involves defining a property for the JVM.

Java virtual machine settings
Use this page to view and change the Java virtual machine (JVM) configuration for
the application server’s process.

To view this administrative console page, click Servers > Application Servers >
server_name > Process Definition > Java Virtual Machine.

Classpath
Specifies the standard class path in which the Java virtual machine code looks for
classes.

Enter each classpath entry into a table row. You do not need to add the colon or
semicolon at the end of each entry.

Data type String
Units Class path

Boot Classpath
Specifies bootstrap classes and resources for JVM code. This option is only
available for JVM instructions that support bootstrap classes and resources. You
can separate multiple paths by a colon (:) or semi-colon (;), depending on
operating system of the node.

Data type String

Verbose Class Loading
Specifies whether to use verbose debug output for class loading. The default is not
to enable verbose class loading.

Chapter 2. Configuring application servers 23

Data type Boolean
Default false

Verbose Garbage Collection
Specifies whether to use verbose debug output for garbage collection. The default
is not to enable verbose garbage collection.

Data type Boolean
Default false

Verbose JNI
Specifies whether to use verbose debug output for native method invocation. The
default is not to enable verbose Java Native Interface (JNI) activity.

Data type Boolean
Default false

Initial Heap Size
Specifies the initial heap size available to the JVM code, in megabytes. The default
is 64 for OS/400 and zero (0) for all other platforms.

Data type Integer
Default 64 for OS/400, 0 for all other platforms

Maximum Heap Size
Specifies the maximum heap size available to the JVM code, in megabytes. The
default is zero (0) for OS/400 and 256 for all other platforms.

Data type Integer
Default 0 for OS/400, 256 for all other platforms

Run HProf
Specifies whether to use HProf profiler support. To use another profiler, specify the
custom profiler settings using the HProf Arguments setting. The default is not to
enable HProf profiler support.

If you set the Run HProf property to true, then you must specify command-line
profiler arguments as values for the HProf Arguments property.

Data type Boolean
Default false

HProf Arguments
Specifies command-line profiler arguments to pass to the JVM code that starts the
application server process. You can specify arguments when HProf profiler support
is enabled.

HProf arguments are only required if the Run HProf property is set to true.

Data type String

24 IBM WebSphere Application Server Network Deployment, Version 5: Servers

Debug Mode
Specifies whether to run the JVM in debug mode. The default is not to enable
debug mode support.

If you set the Debug Mode property to true, then you must specify command-line
debug arguments as values for the Debug Arguments property.

Data type Boolean
Default false

Debug Arguments
Specifies command-line debug arguments to pass to the JVM code that starts the
application server process. You can specify arguments when Debug Mode is
enabled.

Debug arguments are only required if the Debug Mode property is set to true.

Data type String
Units Java command-line arguments

Generic JVM Arguments
Specifies command-line arguments to pass to the Java virtual machine code that
starts the application server process.

Data type String
Units Java command-line arguments

Executable JAR File Name
Specifies a full path name for an executable JAR file that the JVM code uses.

Data type String
Units Path name

Disable JIT
Specifies whether to disable the Just In Time (JIT) compiler option of the JVM code.
The default is not to disable JIT support.

Data type Boolean
Default false

Operating System Name
Specifies JVM settings for a given operating system. When started, the process uses
the JVM settings for the operating system of the node.

Data type String

Example: Configuring JVM sendRedirect calls to use context
root

If the com.ibm.websphere.sendredirect.compatibility property is not set and your
application servlet code has statements such as sendRedirect(″/home.html″), your Web
browser might display messages such as Error 404: No target servlet configured for
uri: /home.html. To instruct the server not to use the Web server’s document root

Chapter 2. Configuring application servers 25

and to use instead the Web application’s context root for sendRedirect() calls,
configure the JVM by setting the com.ibm.websphere.sendredirect.compatibility
property to a true or false value.

Steps for this task
1. Access the settings page for a property of the JVM.

a. Click Servers > Application Servers in the console navigation tree.
b. On the Application Server page, click on the name of the server whose JVM

settings you want to configure.
c. On the settings page for the selected application server, click Process

Definition.
d. On the Process Definition page, click Java Virtual Machine.
e. On the Java Virtual Machine page, click Custom Properties.
f. On the Properties page, click New.

2. On the settings page for a property, specify a name of
com.ibm.websphere.sendredirect.compatibility and either true or false for
the value, then click OK.

3. Click Save on the console taskbar.
4. Stop the application server and then restart the application server.

Preparing to host applications
The default application server and a set of default resources are available to help
you begin quickly. Suppose you choose instead to configure a new server and set
of resources. Here is what you need to do in order to set up a run-time
environment to support applications.

Steps for this task
1. Create an application server.
2. Create a virtual host.
3. Configure a Web container.
4. Configure an EJB container.
5. Create resources for data access.
6. Create a JDBC provider and data source.
7. Create a URL and URL provider.
8. Create a JMS destination, connection, and provider.
9. Create a JavaMail session.

10. Create resources for session support.
11. Configure a Session Manager.

Application servers: Resources for learning
Use the following links to find relevant supplemental information about
configuring application servers. The information resides on IBM and non-IBM
Internet sites, whose sponsors control the technical accuracy of the information.

These links are provided for convenience. Often, the information is not specific to
the IBM WebSphere Application Server product, but is useful all or in part for
understanding the product. When possible, links are provided to technical papers
and Redbooks that supplement the broad coverage of the release documentation
with in-depth examinations of particular product areas.

26 IBM WebSphere Application Server Network Deployment, Version 5: Servers

View links to additional information about:
v Programming model and decisions
v Programming instructions and examples
v Programming specifications
v Administration

Programming model and decisions

v Exploiting the Java Virtual Machine
(http://www.develop.com/downloads/DevWPJav.pdf)

Programming instructions and examples

v WebSphere Application Server education
(http://www.ibm.com/software/webservers/learn/)

Programming specifications

v The JavaTM Virtual Machine Specification, Second Edition
(http://java.sun.com/docs/books/vmspec/)

v Sun’s technology forum for the JavaTM Virtual Machine Specification
(http://forum.java.sun.com/forum.jsp?forum=37)

Administration

v IBM WebSphere Administration (http://www.mcgraw-
hill.co.uk/html/0072223154.html)

v Listing of all IBM WebSphere Application Server Redbooks
(http://publib-b.boulder.ibm.com/Redbooks.nsf/Portals/WebSphere)

v IBM WebSphere V4.0 Advanced Edition Handbook
(http://www.redbooks.ibm.com/abstracts/sg246176.html)

v WebSphere 4.0 Installation and Configuration on the IBM iSeries Server
(http://publib-
b.boulder.ibm.com/Redbooks.nsf/9445fa5b416f6e32852569ae006bb65f/
7b1a07251256f08b85256b750067aee1?OpenDocument)

v Redbook on Backing up WebSphere Application Server with Tivoli
Storage Management (http://publib-
b.boulder.ibm.com/Redbooks.nsf/RedbookAbstracts/redp0149.html?Open)

Chapter 2. Configuring application servers 27

http://www.develop.com/downloads/DevWPJav.pdf
http://www.ibm.com/software/webservers/learn/
http://java.sun.com/docs/books/vmspec/
http://forum.java.sun.com/forum.jsp?forum=37
http://www.mcgraw-hill.co.uk/html/0072223154.html
http://www.mcgraw-hill.co.uk/html/0072223154.html
http://publib-b.boulder.ibm.com/Redbooks.nsf/Portals/WebSphere
http://www.redbooks.ibm.com/abstracts/sg246176.html
http://publib-b.boulder.ibm.com/Redbooks.nsf/9445fa5b416f6e32852569ae006bb65f/7b1a07251256f08b85256b750067aee1?OpenDocument
http://publib-b.boulder.ibm.com/Redbooks.nsf/9445fa5b416f6e32852569ae006bb65f/7b1a07251256f08b85256b750067aee1?OpenDocument
http://publib-b.boulder.ibm.com/Redbooks.nsf/9445fa5b416f6e32852569ae006bb65f/7b1a07251256f08b85256b750067aee1?OpenDocument
http://publib-b.boulder.ibm.com/Redbooks.nsf/RedbookAbstracts/redp0149.html?Open
http://publib-b.boulder.ibm.com/Redbooks.nsf/RedbookAbstracts/redp0149.html?Open

28 IBM WebSphere Application Server Network Deployment, Version 5: Servers

Chapter 3. Managing Object Request Brokers

Default property values are set when the product is started and the Java Object
Request Broker (ORB) service is initialized. These properties control the run-time
behavior of the ORB and can also affect the behavior of product components that
are tightly integrated with the ORB, such as security. It might be necessary to
modify some ORB settings under certain conditions.

In every request/response exchange, there is a client-side ORB and a server-side
ORB. It is important that the ORB properties be set for both sides as necessary.

After an ORB instance has been established in a process, changes to ORB
properties do not affect the behavior of the running ORB instance. The process
must be stopped and restarted in order for the modified properties to take effect.

The following steps are to be performed only as needed.

Steps for this task
1. (Optional) Adjust timeout settings to improve handling of network failures.

Before making these adjustments, be sure to read ″ORB tuning guidelines.″
2. (Optional) Adjust (thread-pool settings) used by the ORB for handling IIOP

connections.
3. If problems with the ORB arise, determine the problem.

For help in troubleshooting, look at the ORB communications trace.

Object Request Brokers
An Object Request Broker (ORB) manages the interaction between clients and
servers, using the Internet InterORB Protocol (IIOP). It enables clients to make
requests and receive responses from servers in a network-distributed environment.

The ORB provides a framework for clients to locate objects in the network and call
operations on those objects as if the remote objects were located in the same
running process as the client, providing location transparency. The client calls an
operation on a local object, known as a stub. Then the stub forwards the request to
the desired remote object, where the operation is run and the results are returned
to the client.

The client-side ORB is responsible for creating an IIOP request that contains the
operation and any required parameters, and for sending the request on the
network. The server-side ORB receives the IIOP request, locates the target object,
invokes the requested operation, and returns the results to the client. The
client-side ORB demarshals the returned results and passes the result to the stub,
which, in turn, returns to the client application, as if the operation had been run
locally.

This product uses an ORB to manage communication between client applications
and server applications as well as communication among product components.
During product installation, default property values are set when the ORB is
initialized. These properties control the run-time behavior of the ORB and can also

© Copyright IBM Corp. 2002 29

affect the behavior of product components that are tightly integrated with the ORB,
such as security. This product does not support the use of multiple ORB instances.

Object Request Broker tuning guidelines
If Web clients that access Java applications running in the product environment are
consistently experiencing problems with their requests, and the problem cannot be
traced to other sources and addressed through other solutions, consider setting an
Object Request Broker (ORB) time-out value and adjusting it for your environment.
v Web browsers vary in their language for indicating that they have timed out.

Usually, the problem is announced as a connection failure or no-path-to-server
message.

v Aim to set an ORB time-out value to less than the time after which a Web client
eventually times out. Because it can be difficult to tell how long Web clients will
wait before timing out, setting an ORB time-out requires some experimentation.
Another difficulty is that the ideal testing environment features some simulated
network failures for testing the proposed setting value.

v Empirical results from limited testing indicate that 30 seconds is a reasonable
starting value. Mainly, you need to ensure that the setting is not too low. To
fine-tune the setting, find a value that is not too low. Then gradually decrease
the setting until reaching the threshhold at which the value becomes too low. Set
the value a little above the threshold.

v When an ORB time-out value is set too low, the symptom is numerous CORBA
’NO_RESPONSE’ exceptions, which occur even for some requests that should
have been valid. If requests that should have been successful (for example, the
server is not down) are being lost or refused, the value is likely to be too low.

Note: Do not adjust an ORB time-out value unless experiencing a problem, because
configuring a value that is inappropriate for the environment can itself create a
problem. If you set the value, experimentation might be needed to find the correct
value for the particular environment. Configuring an incorrect value can produce
results worse than the original problem.

You can adjust time-out intervals for the product’s Java ORB through the following
administrative settings:
v Request timeout, the number of seconds to wait before timing out on most

pending ORB requests if the network fails
v Locate request timeout, the number of seconds to wait before timing out on a

locate-request message

You can also improve performance by setting the com.ibm.CORBA.numJNIReaders
system property through a command-line script. This property specifies the
number of threads to be shared for request handling when the native selector
mechanism is enabled. The default value of this property is 2. Valid settings for
this property range from 0 to 2147483647.

Object Request Broker service settings in administrative console
Use this page to configure the Java Object Request Broker (ORB) service.

To view this administrative console page, click Servers > Application Servers >
serverName > ORB Service.

30 IBM WebSphere Application Server Network Deployment, Version 5: Servers

Request timeout
Specifies the number of seconds to wait before timing out on a request message.

For use in command-line scripting, the full name of this system property is
com.ibm.CORBA.RequestTimeout.

Data type int
Units Seconds
Default 180
Range 0 to 300

Request retries count
Specifies the number of times that the ORB attempts to send a request if a server
fails. Retrying sometimes enables recovery from transient network failures.

For use in command-line scripting, the full name of this system property is
com.ibm.CORBA.requestRetriesCount.

Data type int
Default 1
Range 1 to 10

Request retries delay
Specifies the number of milliseconds between request retries.

For use in command-line scripting, the full name of this system property is
com.ibm.CORBA.requestRetriesDelay.

Data type int
Units Milliseconds
Default 0
Range 0 to 60

Connection cache maximum
Specifies the largest number of connections allowed to occupy the connection cache
for the service.

Data type Integer
Units Connections
Default 240

Connection cache minimum
Specifies the smallest number of connections allowed to occupy the connection
cache for the service.

Data type Integer
Units Connections
Default 100

Chapter 3. Managing Object Request Brokers 31

ORB tracing
Enables the tracing of ORB GIOP messages.

This setting affects two system properties: com.ibm.CORBA.Debug and
com.ibm.CORBA.CommTrace. If you set these properties through command-line
scripting, you must set both to true in order to enable the tracing of GIOP
messages.

Data type Boolean
Default Not enabled (false)

Locate request timeout
Specifies the number of seconds to wait before timing out on a LocateRequest
message.

For use in command-line scripting, the full name of this system property is
com.ibm.CORBA.LocateRequestTimeout.

Data type int
Units Seconds
Default 180
Range 0 to 300

Force tunneling
Controls how the client ORB attempts to use HTTP tunneling.

For direct access, the full name of this property is com.ibm.CORBA.ForceTunnel.

Data type String
Default NEVER
Range Valid values are ALWAYS, NEVER, or WHENREQUIRED.

Additional information about valid values follows:

ALWAYS
Use HTTP tunneling immediately, without trying TCP connections first.

NEVER
Disable HTTP tunneling. If a TCP connection fails, a CORBA system
exception (COMM_FAILURE) is thrown.

WHENREQUIRED
Use HTTP tunneling if TCP connections fail.

Tunnel agent URL
Specifies the URL of the servlet used to support HTTP tunneling.

This must be a properly formed URL, such as
http://w3.mycorp.com:81/servlet/com.ibm.CORBA.services.IIOPTunnelServlet or,
for applets,
http://applethost:port/servlet/com.ibm.CORBA.services.IIOPTunnelServlet.
This field is required if HTTP tunneling is set.

32 IBM WebSphere Application Server Network Deployment, Version 5: Servers

For use in command-line scripting, the full name of this system property is
com.ibm.CORBA.TunnelAgentURL.

Pass by reference
When enabled, this specifies that the ORB is to pass parameters by reference
instead of by value, which bypasses a copy operation. Enable this property with
caution, because unexpected behavior might occur.

For use in command-line scripting, the full name of this system property is
com.ibm.CORBA.iiop.noLocalCopies.

Data type Boolean
Default Not enabled (false)

Object Request Broker service settings that can be added to the
administrative console

Use the Properties page to set and monitor settings associated with the Java Object
Request Broker (ORB) service that do not appear on the main settings page by
default.

To view that administrative console page, click Servers > Application Servers >
serverName > ORB Service > Custom Properties.

To add properties to this page, click New and enter at least a name and value for
the property. Then click Apply. When you are finished entering properties, click
OK.

The page might already include Secure Socket Layer (SSL) properties that were
added during product setup. A list of additional properties associated with the
Java ORB service follows:

com.ibm.CORBA.BootstrapHost
Specifies the DNS host name or IP address of the machine on which initial
server contact for this client resides. This setting is deprecated and will be
removed in a future release. For a command-line or programmatic
alternative, see ″Programming tips for the Java Object Request Broker
service.″

com.ibm.CORBA.BootstrapPort
Specifies the port to which the ORB connects for bootstrapping. In other
words, the port of the machine on which the initial server contact for this
client is listening. The default value is 2809. This setting is deprecated and
will be removed in a future release. For a command-line or programmatic
alternative, see ″Programming tips for the Java Object Request Broker
service.″

com.ibm.CORBA.FragmentSize
Specifies the size of GIOP fragments used by the ORB. If the total size of a
request exceeds the set value, the ORB breaks up and sends multiple
fragments until the entire request is sent. The default value is 1024 bytes.
The valid range is from 64 to the largest value of the Java int type that is
divisible by 8.

com.ibm.CORBA.ListenerPort
Specifies the port on which this server listens for incoming requests. The

Chapter 3. Managing Object Request Brokers 33

setting of this property is valid only for client-side ORBs. The default value
is the next available system-assigned port number. The valid range is 0 to
2147483647.

com.ibm.CORBA.LocalHost
Specifies the host name or IP address of the system on which the server
ORB is running. The setting of this property is valid only for client-side
ORBs. Otherwise, the ORB obtains a value at run time by calling
InetAddress.getLocalHost().getHostAddress().

com.ibm.CORBA.ServerSocketQueueDepth
The property changes the maximum queue length for server incoming
TCP/IP connection requests. If a connection requests arrives when the
queue is full, the connection is refused. The valid range is between 50 and
the maximum Java int value. The default value is 50.

com.ibm.CORBA.ShortExceptionDetails
If set to any value, this specifies that the exception detail message that is
returned whenever the server ORB encounters a CORBA system exception
is to contain a short description of the exception as returned by the
toString() method of java.lang.Throwable. Otherwise, the message contains
the complete stack trace as returned by the printStackTrace() method of
java.lang.Throwable.

If needed for locale support, you can also set and monitor properties for codeset
conversion. For details, see ″Character codeset conversion support for the Java
Object Request Broker service.″

Object Request Broker communications trace
The Object Request Broker (ORB) communications trace, typically referred to as
CommTrace, contains the sequence of General InterORB Protocol (GIOP) messages
sent and received by the ORB during application execution. It might be necessary
to understand the low-level sequence of client-to-server or server-to-server
interactions during problem determination. This article uses trace entries from log
examples to explain the contents of the log and help you understand the
interaction sequence. It focuses only in the GIOP messages and does not discuss in
detail additional trace information that appears when intervening with the
GIOP-message boundaries.

Location

When ORB tracing is enabled, this information is placed in install_root/logs/trace.

Usage notes

v Is this file read-only?
Yes

v Is this file updated by a product component?
This file is updated by the administrative function.

v How and when are the contents of this file used?
You use this file to localize and resolve ORB-related problems.

How to interpret the output

The following sections refer to sample log output found later in this topic.

34 IBM WebSphere Application Server Network Deployment, Version 5: Servers

Identifying information
The start of a GIOP message is identified by a line which contains either
″OUT GOING:″ or ″IN COMING:″ depending on whether the message is
sent or received by the process that is being traced.

Following the identifying line entry is a series of items, formatted for
convenience, with information extracted from the raw message that
identify the endpoints in this particular message interaction. See lines 3-13
in both examples. The formatted items include the following:
v GIOP message type (line 3)
v Date and time that message was recorded (line 4)
v Information useful in uniquely identifying the thread in execution when

the message was recorded, with other thread-specific information (line 5,
broken for publication in the reply example)

v Local and remote TCP/IP ports used for the interaction (lines 6 through
9)

v GIOP version, byte order, whether the message is a fragment, and
message size (lines 10 through 13)

Request ID, response expected and reply status
Following the introductory message information, the request ID is an
integer generated by the ORB. It is used to identify and associate each
request with its corresponding reply. This is necessary because the ORB
can receive requests from multiple clients and must be able to associate
each reply with the corresponding originating request.
v Lines 15-17 in the request example show the request ID, followed by an

indication to the receiving endpoint that a response is expected (CORBA
allows sending of one-way requests for which a response is not
expected.)

v Line 15 in Sample Log Entry - GIOP Reply shows the request ID; line 33
shows the reply status received after completing the previously sent
request.

Object Key
Lines 18-20 in the request example show the object key, the internal
representation used by the ORB during execution to identify and locate the
target object intended to receive the request message. Object keys are not
standardized.

Operation
Line 21 in the request example shows the name of the operation to be
executed by the target object in the receiving endpoint. In this example, the
specific operation requested is named _get_value.

Service context information
The service contexts in the message are also formatted for convenience.
Each GIOP message might contain a sequence of service contexts
sent/received by each endpoint. Service contexts, identified uniquely with
an ID, contain data used in the specific interaction, such as security,
character codeset conversion, and ORB version information. The content of
some of the service contexts is standardized and specified by OMG, while
other service contexts are proprietary and specified by each vendor.
IBM-specific service contexts are identified with IDs that begin with
0x4942.

Lines 22-41 in the request example illustrate typical service context entries.
There are three service contexts in the request message, as shown in line

Chapter 3. Managing Object Request Brokers 35

22. The ID, length of data, and raw data for each service context is printed
next. Lines 23-25 show an IBM-proprietary context, as indicated by the ID
0x49424D12. Lines 26-41 show two standard service contexts, identified by
ID 0x6 (line 26) and 0x1 (line 39).

Lines 16-32 in the Sample Log Entry - GIOP Reply illustrate two service
contexts, one IBM-proprietary (line 17) and one standardized (line 20).

For the definition of the standardized service contexts, see the CORBA
specification. Service context 0x1 (CORBA::IOP::CodeSets) is used to
publish the character codesets supported by the ORB in order to negotiate
and determine the codeset used to transmit character data. Service context
0x6 (CORBA::IOP::SendingContextRunTime) is used by RMI-IIOP to
provide the receiving endpoint with the IOR for the
SendingContextRuntime object. IBM service context 0x49424D12 is used to
publish ORB PartnerVersion information in order to support
release-to-release interoperability between sending and receiving ORBs.

Data offset
Line 42 in the request example shows the offset, relative to the beginning
of the GIOP message, where the remainder body of the request or reply
message is located. This portion of the message is specific to each
operation and varies from operation to operation. Therefore, it is not
formatted, as the specific contents are not known by the ORB. The offset is
printed as an aid to quickly locating the operation-specific data in the raw
GIOP message dump, which follows the data offset.

Raw GIOP message dump
Starting at line 45 in the request example and line 36 in Sample Log Entry
- GIOP Reply, a raw dump of the entire GIOP message is printed in
hexadecimal format. Request messages contain the parameters required by
the given operation and reply messages contain the return values and
content of output parameters as required by the given operation. For
brevity, not all of the raw data has been included in the figures.

Sample Log Entry - GIOP Request
1. OUT GOING:

3. Request Message
4. Date: April 17, 2002 10:00:43 PM CDT
5. Thread Info: P=842115:O=1:CT
6. Local Port: 1243 (0x4DB)
7. Local IP: jdoe.austin.ibm.com/192.168.1.101
8. Remote Port: 1242 (0x4DA)
9. Remote IP: jdoe.austin.ibm.com/192.168.1.101
10. GIOP Version: 1.2
11. Byte order: big endian
12. Fragment to follow: No
13. Message size: 268 (0x10C)
--
15. Request ID: 5
16. Response Flag: WITH_TARGET
17. Target Address: 0
18. Object Key: length = 24 (0x18)

4B4D4249 00000010 BA4D6D34 000E0008
00000000 00000000

21. Operation: _get_value
22. Service Context: length = 3 (0x3)
23. Context ID: 1229081874 (0x49424D12)
24. Context data: length = 8 (0x8)

00000000 13100003
26. Context ID: 6 (0x6)

36 IBM WebSphere Application Server Network Deployment, Version 5: Servers

27. Context data: length = 164 (0xA4)
00000000 00000028 49444C3A 6F6D672E
6F72672F 53656E64 696E6743 6F6E7465
78742F43 6F646542 6173653A 312E3000
00000001 00000000 00000068 00010200
0000000E 3139322E 3136382E 312E3130
310004DC 00000018 4B4D4249 00000010
BA4D6D69 000E0008 00000000 00000000
00000002 00000001 00000018 00000000
00010001 00000001 00010020 00010100
00000000 49424D0A 00000008 00000000
13100003

39. Context ID: 1 (0x1)
40. Context data: length = 12 (0xC)

00000000 00010001 00010100
42. Data Offset: 118

45. 0000: 47494F50 01020000 0000010C 00000005 GIOP............
46. 0010: 03000000 00000000 00000018 4B4D4249KMBI
47. 0020: [remainder of message body deleted for brevity]

Sample Log Entry - GIOP Reply
1. IN COMING:

3. Reply Message
4. Date: April 17, 2002 10:00:47 PM CDT
5. Thread Info: RT=0:P=842115:O=1:com.ibm.rmi.transport.TCPTransportConnection
5a. remoteHost=192.168.1.101 remotePort=1242 localPort=1243
6. Local Port: 1243 (0x4DB)
7. Local IP: jdoe.austin.ibm.com/192.168.1.101
8. Remote Port: 1242 (0x4DA)
9. Remote IP: jdoe.austin.ibm.com/192.168.1.101
10. GIOP Version: 1.2
11. Byte order: big endian
12. Fragment to follow: No
13. Message size: 208 (0xD0)
--
15. Request ID: 5
16. Service Context: length = 2 (0x2)
17. Context ID: 1229081874 (0x49424D12)
18. Context data: length = 8 (0x8)

00000000 13100003
20. Context ID: 6 (0x6)
21. Context data: length = 164 (0xA4)

00000000 00000028 49444C3A 6F6D672E
6F72672F 53656E64 696E6743 6F6E7465
78742F43 6F646542 6173653A 312E3000
00000001 00000000 00000068 00010200
0000000E 3139322E 3136382E 312E3130
310004DA 00000018 4B4D4249 00000010
BA4D6D34 000E0008 00000001 00000000
00000002 00000001 00000018 00000000
00010001 00000001 00010020 00010100
00000000 49424D0A 00000008 00000000
13100003

33. Reply Status: NO_EXCEPTION

36. 0000: 47494F50 01020001 000000D0 00000005 GIOP............
37. 0010: 00000000 00000002 49424D12 00000008IBM.....
38. 0020: [remainder of message body deleted for brevity]

Chapter 3. Managing Object Request Brokers 37

Client-side programming tips for the Java Object Request Broker
service

This article includes programming tips for applications that communicate with the
client-side Object Request Broker (ORB) that is part of the Java ORB service.

Resolution of initial references to services

Client applications can use the properties ORBInitRef and ORBDefaultInitRef to
configure the network location that the Java ORB service uses to find a service
such as naming. Once set, these properties are included in the parameters used to
initialize the ORB, as follows:
org.omg.CORBA.ORB.init(java.lang.String[] args,

java.util.Properties props)

You can set these properties in client code or by command-line argument. It is
possible to specify more than one service location by using multiple ORBInitRef
property settings (one for each service), but only a single value for
ORBDefaultInitRef may be specified. For more information about the two
properties and the order of precedence that the ORB uses to locate services, read
the CORBA/IIOP specification, cited in ″Resources for learning.″

For setting in client code, these properties are
com.ibm.CORBA.ORBInitRef.service_name and com.ibm.CORBA.ORBDefaultInitRef,
respectively. For example, to specify that the naming service (NameService) is
located in sample.server.com at port 2809, set the
com.ibm.CORBA.ORBInitRef.NameService property to
corbaloc::sample.server.com:2809/NameService.

For setting by command-line argument, these properties are -ORBInitRef and
-ORBDefaultInitRef, respectively. To locate the same naming service specified
previously, use the following Java command (split here for publication only):
java program -ORBInitRef

NameService=corbaloc::sample.server.com:2809/NameService

After these properties have been set for services supported by the ORB, J2EE
applications obtain the initial reference to a given service by calling the
resolve_initial_references function on the ORB as defined in the CORBA/IIOP
specification.

Preferred API for obtaining an ORB instance

For J2EE applications, you can use either of the following approaches. However, it
is strongly recommended that you use the JNDI approach to ensure that the same
ORB instance is used throughout the client application; you will avoid the
unintended inconsistencies that might occur when different ORB instances are
used.

JNDI approach: For J2EE applications (including enterprise beans, J2EE clients and
servlets), you can obtain an ORB instance by creating a JNDI InitialContext object
and looking up the ORB under the name java:comp/ORB, as follows:
javax.naming.Context ctx = new javax.naming.InitialContext();
org.omg.CORBA.ORB orb =

(org.omg.CORBA.ORB)javax.rmi.PortableRemoteObject.narrow(ctx.lookup(
"java:comp/ORB"), org.omg.CORBA.ORB.class);

38 IBM WebSphere Application Server Network Deployment, Version 5: Servers

The ORB instance obtained using JNDI is a singleton object, shared by all J2EE
components running in the same Java virtual machine process.

CORBA approach: Because thin-client applications do not run in a J2EE container,
they cannot use JNDI interfaces to look up the ORB. In this case, you can obtain an
ORB instance by using CORBA programming interfaces, as follows:
java.util.Properties props = new java.util.Properties();
java.lang.String[] args = new java.lang.String[0];
org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init(args, props);

In contrast to the JNDI approach, the CORBA specification requires that a new
ORB instance be created each time the ORB.init method is called. If necessary to
change the ORB’s default settings, you can add ORB property settings to the
Properties object that is passed in the ORB.init() call.

The use of com.ibm.ejs.oa.EJSORB.getORBinstance(), supported in previous releases
of this product, has been deprecated.

API restrictions with sharing an ORB instance among J2EE application
components

For performance reasons, it often makes sense to share a single ORB instance
among components in a J2EE application. As required by the J2EE Specification,
Version 1.3, all web and EJB containers provide an ORB instance in the JNDI
namespace as java:comp/ORB. Each container can share this instance among
application components but is not required to. For proper isolation between
application components, application code must comply with the following
restrictions:
v Do not call the ORB shutdown method
v Do not call org.omg.CORBA_2_3.ORB methods register_value_factory or

unregister_value_factory

In addition, an ORB instance should not be shared among application components
in different J2EE applications.

Required use of rmic and idlj shipped with the IBM Developer Kit

The Java Runtime Environment (JRE) used by this product includes the tools rmic
and idlj. You use the tools to generate Java language bindings for the
CORBA/IIOP protocol.

During product installation, the tools are installed in the directory
installation_root/java/ibm_bin, where installation_root is the installation directory for
the product. Versions of these tools included with Java development kits in
$JAVA_HOME/bin other than the IBM Developer Kit installed with this product
are incompatible with this product.

When you install this product, the directory installation_root/java/ibm_bin is
included in the $PATH search order to enable use of the rmic and idlj scripts
provided by IBM. Because the scripts are in installation_root/java/ibm_bin instead
of the JRE standard location installation_root/java/bin, it is unlikely that you will
overwrite them when applying maintenance to a JRE not provided by IBM.

In addition to the rmic and idlj tools, the JRE also includes Interface Definition
Language (IDL) files. The files are based on those defined by the Object

Chapter 3. Managing Object Request Brokers 39

Management Group (OMG) and can be used by applications that need an IDL
definition of selected ORB interfaces. The files are placed in the
installation_root/java/ibm_lib directory.

Before using either the rmic or idlj tool, ensure that the
installation_root/java/ibm_bin directory is included in the proper PATH variable
search order in the environment. If your application will use IDL files in the
installation_root/java/ibm_lib directory, also ensure that the directory is included in
the PATH variable.

Character codeset conversion support for the Java Object Request
Broker service

The CORBA/IIOP specification defines a framework for negotiation and
conversion of character codesets used by the Java Object Request Broker (ORB)
service. This product supports the framework and provides the following system
properties for modifying the default settings:

com.ibm.CORBA.ORBCharEncoding
Specifies the name of the native codeset that the ORB is to use for
character data (referred to as NCS-C in the CORBA/IIOP specification). By
default, the ORB uses UTF8. (In contrast, the default value for versions 3.5.x
and 4.0.x of this product was ISO8859_1, also known as Latin-1.) Valid
codeset values for this property are shown in the table that follows this
list; values that are valid only for ORBWCharDefault are indicated.

com.ibm.CORBA.ORBWCharDefault
Specifies the default codeset that the ORB is to use for transmission of
wide character data when no codeset for wide character data is found in
the tagged component in the Interoperable Object Reference (IOR) or in the
GIOP service context. By default, the ORB uses UCS2. The only valid
codeset values for this property are UCS2 or UTF16.

The CORBA codeset negotiation/conversion framework specifies the use of codeset
registry IDs as defined in the Open Software Foundation (OSF) codeset registry.
The ORB translates the Java file.encoding names shown in the following table to
the corresponding OSF registry IDs. These IDs are then used by the ORB in the
IOR Codeset tagged component and GIOP Codeset service context as specified in
the CORBA/IIOP specification.

Java name OSF registry ID Comments

ASCII 0x00010020

ISO8859_1 0x00010001

ISO8859_2 0x00010002

ISO8859_3 0x00010003

ISO8859_4 0x00010004

ISO8859_5 0x00010005

ISO8859_6 0x00010006

ISO8859_7 0x00010007

ISO8859_8 0x00010008

ISO8859_9 0x00010009

ISO8859_15_FDIS 0x0001000F

40 IBM WebSphere Application Server Network Deployment, Version 5: Servers

Java name OSF registry ID Comments

Cp1250 0x100204E2

Cp1251 0x100204E3

Cp1252 0x100204E4

Cp1253 0x100204E5

Cp1254 0x100204E6

Cp1255 0x100204E7

Cp1256 0x100204E8

Cp1257 0x100204E9

Cp943C 0x100203AF

Cp943 0x100203AF

Cp949C 0x100203B5

Cp949 0x100203B5

Cp1363C 0x10020553

Cp1363 0x10020553

Cp950 0x100203B6

Cp1381 0x10020565

Cp1386 0x1002056A

EUC_JP 0x00030010

EUC_KR 0x0004000A

EUC_TW 0x00050010

Cp964 0x100203C4

Cp970 0x100203CA

Cp1383 0x10020567

Cp33722C 0x100283BA

Cp33722 0x100283BA

Cp930 0x100203A2

Cp1047 0x10020417

UCS2 0x00010100 Valid only for ORBWCharDefault

UTF8 0x05010001

UTF16 0x00010109 Valid only for ORBWCharDefault

For more information, read the CORBA/IIOP specification, cited in ″Resources for
learning.″

Object Request Brokers: Resources for learning
Use the following links to find relevant supplemental information about Object
Request Brokers (ORBs). The information resides on IBM and non-IBM Internet
sites, whose sponsors control the technical accuracy of the information.

These links are provided for convenience. Often, the information is not specific to
this product but is useful all or in part for understanding the product. When

Chapter 3. Managing Object Request Brokers 41

possible, links are provided to technical papers and Redbooks that supplement the
broad coverage of the release documentation with in-depth examinations of
particular product areas.

View links to additional information about:
v Planning, business scenarios, and IT architecture
v Administration
v Programming specifications

Planning, business scenarios, and IT architecture

v CORBA FAQ (http://www.omg.org/gettingstarted/corbafaq.htm)
Getting started with object request brokers and CORBA.

Administration

v IANA Character Set Registry
(http://www.iana.org/assignments/character-sets)
This contains a list of all valid character encoding schemes.

v WebSphere Interoperability between Versions 3.5.x and 4.0.x
(http://www7b.boulder.ibm.com/wsdd/library/techarticles/
0202_sundman/sundman.html)
This WebSphere Developer Domain article by Joel Sundman and Matt Kelm
(February 2002, updated May 2002) is not directly related to the Java ORB
service, but it touches upon ORB-related issues.

Programming specifications

v Catalog Of OMG CORBA/IIOP Specifications
(http://www.omg.org/technology/documents/corba_spec_catalog.htm)

42 IBM WebSphere Application Server Network Deployment, Version 5: Servers

http://www.omg.org/gettingstarted/corbafaq.htm
http://www.iana.org/assignments/character-sets
http://www7b.boulder.ibm.com/wsdd/library/techarticles/0202_sundman/sundman.html
http://www7b.boulder.ibm.com/wsdd/library/techarticles/0202_sundman/sundman.html
http://www.omg.org/technology/documents/corba_spec_catalog.htm

Chapter 4. Balancing workloads with clusters

To monitor application servers and manage the workloads of servers, use server
clusters and cluster members provided by the Network Deployment product.

To assist you in understanding how to configure and use clusters for workload
management, below is a scenario. In this scenario, client requests are distributed
among the cluster members on a single machine. (A client refers to any servlet,
Java application, or other program or component that connects the end user and
the application server that is being accessed.) In more complex workload
management scenarios, you can distribute cluster members to remote machines.

Steps for this task
1. Decide which application server for which you will define a cluster member.
2. Decide whether you want to configure replication domains and entries.

Replication enables the sharing of data among processes and the backing up
of failed processes.

3. Deploy the application onto the application server.
4. After configuring the application server and the application components

exactly as you want them to be, create a cluster. The original server instance
becomes a cluster member that is administered through the cluster.

5. If you did not do so when creating a cluster, create one or more cluster
members of the cluster.

6. Start all of the application servers by starting the cluster. Workload
management automatically begins when you start the cluster members of the
application server.

7. Stop the cluster.
8. Upgrade applications on clusters.
9. (Detect and handle problems with server clusters and their workloads.)

10. (Optional) Tune the behavior of the workload management run time. If your
application is experiencing problems with timeouts or your network
experiences extreme latency, change the timeout interval for the
com.ibm.CORBA.RequestTimeout property. Or, if the workload management
state of the client is refreshing too soon or too late, change the interval for the
com.ibm.websphere.wlm.unusable.interval property.

You need to define a bootstrap host for stand-alone Java clients, which are clients
located on a different machine from the application server that have no
administrative server. Add the following line to the Java Virtual Machine (JVM)
arguments for the client:
-Dcom.ibm.CORBA.BootstrapHost=machine_name

where machine_name is the name of the machine on which the administrative server
is running.

© Copyright IBM Corp. 2002 43

Workload management (WLM)
Workload management optimizes the distribution of client processing tasks.
Incoming work requests are distributed to the application servers, enterprise beans,
servlets, and other objects that can most effectively process the requests. Workload
management also provides failover when servers are not available, improving
application availability.

Workload management provides the following benefits to WebSphere Application
Server applications:
v It balances client workloads, allowing processing tasks to be distributed

according to the capacities of the different machines in the system.
v It provides failover capability by redirecting client requests if one or more

servers is unable to process them. This improves the availability of applications
and administrative services.

v It enables systems to be scaled up to serve a higher client load than provided by
the basic configuration. With clustering, additional instances of servers, servlets,
and other objects can easily be added to the configuration.

v It enables servers to be transparently maintained and upgraded while
applications remain available for users.

v It centralizes the administration of servers and other objects.

In the WebSphere Application Server environment, you implement workload
management by using clusters, transports, and replication domains.

Techniques for managing state
Multimachine scaling techniques rely on using multiple copies of an application
server; multiple consecutive requests from various clients can be serviced by
different servers. If each client request is completely independent of every other
client request, it does not matter whether consecutive requests are processed on the
same server. However, in practice, client requests are not independent. A client
often makes a request, waits for the result, then makes one or more subsequent
requests that depend on the results received from the earlier requests. This
sequence of operations on behalf of a client falls into two categories:

Stateless
A server processes requests based solely on information provided with
each request and does not reply on information from earlier requests. In
other words, the server does not need to maintain state information
between requests.

Stateful
A server processes requests based on both the information provided with
each request and information stored from earlier requests. In other words,
the server needs to access and maintain state information generated during
the processing of an earlier request.

For stateless interactions, it does not matter whether different requests are
processed by different servers. However, for stateful interactions, the server that
processes a request needs access to the state information necessary to service that
request. Either the same server can process all requests that are associated with the
same state information, or the state information can be shared by all servers that
require it. In the latter case, accessing the shared state information from the same
server minimizes the processing overhead associated with accessing the shared
state information from multiple servers.

44 IBM WebSphere Application Server Network Deployment, Version 5: Servers

The load distribution facilities in WebSphere Application Server use several
different techniques for maintaining state information between client requests:
v Session affinity, where the load distribution facility recognizes the existence of a

client session and attempts to direct all requests within that session to the same
server.

v Transaction affinity, where the load distribution facility recognizes the existence
of a transaction and attempts to direct all requests within the scope of that
transaction to the same server.

v Server affinity, where the load distribution facility recognizes that although
multiple servers might be acceptable for a given client requests, a particular
server is best suited for processing that request.

v The WebSphere Application Server Session Manager, which is part of each
application server, stores client session information and takes session affinity and
server affinity into account when directing client requests to the cluster members
of an application server. The workload management service takes server affinity
and transaction affinity into account when directing client requests among the
cluster members of an application server.

Clusters
Clusters are sets of servers that are managed together and participate in workload
management. The servers that are members of a cluster can be on different host
machines, as opposed to the servers that are part of the same node and must be
located on the same host machine.

A cell can have no clusters, one cluster, or multiple clusters.

Servers that belong to a cluster are members of that cluster set and must all have
identical application components deployed on them. Other than the applications
configured to run on them, cluster members do not have to share any other
configuration data. One cluster member might be running on a huge
multi-processor enterprise server system while another member of that same
cluster might be running on a small laptop. The server configuration settings for
each of these two cluster members are very different, except in the area of
application components assigned to them. In that area of configuration, they are
identical.

A vertical cluster has cluster members on the same node. A horizontal cluster has
cluster members on multiple nodes.

A network dispatcher routes application access among cluster members by
server-weighting, to provide better distribution control.

WebSphere Application Server can respond to increased use of an enterprise
application by automatically replicating the application to additional cluster
members as needed. This lets you deploy an application on a cluster instead of on
a single node, without considering workload.

Creating clusters
You can manage application servers collectively using a cluster. To create a cluster,
view information about clusters, or manage server members on a cluster, use the
Server Cluster page.

Steps for this task

Chapter 4. Balancing workloads with clusters 45

1. Go to the Server Cluster page. Click Servers > Clusters in the console
navigation tree. The Server Cluster page lists clusters of application servers in
the cell and states whether a cluster is stopped, started or unavailable.

2. Click New to access the Create New Cluster page.
3. Type a cluster name.
4. (Optional) To route requests routed to the local node if possible, place a

checkmark in the Prefer local enabled check box.
5. (Optional) To enable memory-to-memory replication of HttpSession (for

failover) or replication of cached data and cache invalidations with a Web
Container’s dynamic caching, select options supporting data replication.

6. Choose whether to include an existing server in the cluster. You can create an
empty cluster and then add server members to it. To create an empty cluster,
do not include an existing server in this cluster. Or, you can create a cluster
based on an existing server member, then create and add additional server
members to the cluster. To create a cluster based on an existing server, choose
Select an existing server to add to this cluster and then select the server from
the drop-down list.

7. Click Next.
8. (Optional) Add application servers (cluster members) to the cluster. For each

new cluster member, do the following:
a. Type the name of a new application server (cluster member) to add to the

cluster.
b. Select the node on which the server will reside.
c. Specify the server weight. The weight value controls the amount of work

directed to the application server. If the weight value for the server is
greater than the weight values assigned to other servers in the cluster, then
the server receives a larger share of the servers’ workload. The value can
range from 0 to 100.

d. Specify whether to generate a unique HTTP port.
e. Specify whether to create a replication entry for the server. A replication

entry enables memory-to-memory replication of HttpSession (for failover)
or replication of cached data and cache invalidations with a Web
Container’s dynamic caching.

f. Specify the server template.
g. Click Apply to finish the cluster member. Repeat the above steps to define

another cluster member.
9. Click Next and review the summary of changes.

10. Click Finish to complete the configuration.
11. Click Save on the administrative console taskbar and save your administrative

configuration. As part of saving the change to the configuration, you can select
Synchronize changes with Nodes before clicking Save on the Save page.

12. Before you can start the cluster, the configuration needs to be synchronized to
the nodes. If you selected Synchronize changes with Nodes when saving
your configuration in the previous step, you can ignore this step. If you are
running automatic synchronization, wait until synchronization runs. Or, run
manual synchronization to get the configuration files moved to the nodes.
Click System Administration > Nodes and, on the Nodes page, select the
node and click Synchronize or Full Resynchronize. The Nodes page displays
status indicating whether the node is synchronized.

13. To further configure a cluster, click on the cluster’s name under Name. This
displays the settings for the server cluster instance. Note that, unless you have

46 IBM WebSphere Application Server Network Deployment, Version 5: Servers

clicked Save and saved your administrative configuration, you only see the
Configuration and Local Topology tabs; to see the Runtime tab as well you
must save your administrative configuration. Also, ensure that changes are
synchronized to the nodes (step 12).

Server cluster collection
Use this page to view information about and manage clusters of application
servers.

To view this administrative console page, click Servers > Clusters.

Click New to access the Create New Cluster page, which you use to define a new
cluster.

Name
Specifies a logical name for the cluster. The name must be unique among clusters
within the containing cell.

Status
Specifies whether cluster members are stopped, starting, or running.

If all cluster members are stopped, the cluster status and state is Stopped. After you
request to start a cluster by clicking Start or Ripplestart, the cluster state briefly
changes to Starting and each server that is a member of that cluster launches, if it
is not already running. When the first member launches, the state changes to
PartialStart. The state remains PartialStart until all cluster members are running,
then the state changes to Running and the status is Started. Similarly, when
stopping a cluster by clicking Stop or ImmediateStop, the state changes to
PartialStop as the first member stops and changes to Stopped when all members are
not running.

Server cluster settings
Use this page to view or change the configuration and local topology of a server
cluster instance. Provided you saved your administrative configuration after
creating the server cluster instance, you can also view run-time information such
as the status of the server cluster instance.

To view this administrative console page, click Servers > Clusters > cluster_name.

Name: Specifies a logical name for the cluster. The name must be unique among
clusters within the containing cell.

Data type String

Prefer Local: Specifies whether enterprise bean requests are routed to the node on
which the client resides, if it is possible to do so.

Select the Prefer Local check box to specify routing of requests to the node on
which the client resides. By default, the Prefer Local check box is selected,
specifying routing of requests to the node.

Data type Boolean
Default true

Chapter 4. Balancing workloads with clusters 47

wlcID: Specifies the currently registered workload controller (WLC) identifier for
the cluster. This setting might not display for all configurations.

Data type String

State: Specifies whether cluster members are stopped, starting, or running.

If all cluster members are stopped, the cluster state is websphere.cluster.stopped. After
you request to start a cluster, the cluster state briefly changes to
websphere.cluster.starting and each server that is a member of that cluster launches,
if it is not already running. When the first member launches, the state changes to
websphere.cluster.partial.start. The state remains websphere.cluster.partial.start until all
cluster members are running, then the state changes to websphere.cluster.running.
Similarly, when stopping a cluster, the state changes to websphere.cluster.partial.stop
as the first member stops and changes to websphere.cluster.stopped when all
members are not running.

Data type String
Range Valid values are websphere.cluster.starting,

websphere.cluster.partial.start, websphere.cluster.running,
websphere.cluster.partial.stop, or websphere.cluster.stopped.

Creating cluster members
You create a cluster member to represent an application server in a cluster. To
create a cluster member, view information about cluster members, or manage
members of a cluster, use the Cluster Members page.

Steps for this task
1. Go to the Cluster Members page. Click Servers > Clusters in the console

navigation tree. Then, click a cluster in the collection of clusters and click
Cluster Members. The Cluster Members page lists members of a cluster, states
the nodes on which members reside, and states whether members are started,
stopped or encountering problems.

2. Click New and follow the steps on the Create New Cluster Members page.
a. Type a name for the cluster member (application server).
b. Select the node on which the server will reside.
c. Specify the server weight. The weight value controls the amount of work

directed to the application server. If the weight value for the server is
greater than the weight values assigned to other servers in the cluster, then
the server receives a larger share of the servers’ workload. The value can
range from 0 to 100.

d. Specify whether to generate a unique HTTP port.
e. Specify whether to create a replication entry for the server.
f. Specify the server template.
g. Click Apply to finish the cluster member. Repeat steps 1 through 7 to define

another cluster member.
h. Click Next.
i. Review the summary of information on new cluster members and click

Finish.
3. Click Save on the administrative console taskbar and save your administrative

configuration.

48 IBM WebSphere Application Server Network Deployment, Version 5: Servers

4. To examine a cluster member’s settings, click on the member’s name under
Member Name on the Cluster Members page. This displays the settings page
for the cluster member instance.

Cluster member collection
Use this page to view information about and manage members of an application
server cluster.

To view this administrative console page, click Servers > Clusters > cluster_name >
Cluster Members.

Name
Specifies the name of the server in the cluster. On most platforms, the name of the
server is the process name. The name must match the (object) name of the
application server.

Node
Specifies the name of the node for the cluster member.

Status
Specifies whether a cluster member is running, stopped, or unavailable.

If a cluster member is stopped, its status is Stopped. After you request to start a
cluster member by clicking Start, the status becomes Started. After you click Stop,
its status changes to Stopped when it stops running.

Note that if the status is Unavailable, the node agent is not running in that node
and you must restart the node agent before you can start the cluster member.

Cluster member settings
Use this page to configure a member instance of an application server cluster.

To view this administrative console page, click Servers > Clusters > cluster_name >
Cluster Members > cluster_member_name.

Member Name: Specifies the name of the server in the cluster. On most
platforms, the name of the server is the process name. The name must match the
(object) name of the application server.

Data type String

Weight: Controls the amount of work directed to the application server. If the
weight value for the server is greater than the weight values assigned to other
servers in the cluster, then the server receives a larger share of the server
workload.

Data type Integer
Range 0 to 20

Unique ID: Specifies a numerical identifier for the application server that is
unique within the cluster. The ID is used for affinity.

Data type Integer

Chapter 4. Balancing workloads with clusters 49

Replication
WebSphere Application Server provides a service that transfers data or events
among WebSphere Application Server servers. The service is called WebSphere
Internal Replication, or replication for short.

The replication service transfers both J2EE application data and any internal data
used to maintain the application data among WebSphere run-time processes in a
cluster of application servers.

Currently, the Web container in WebSphere Application Server leverages
replication.

The replication service can replicate HttpSession data among processes and retrieve
the HttpSession if the process that currently maintains the HttpSession fails. Using
replication for HttpSession failover provides a potentially lower cost and more
easily administrable alternative to storing HttpSession in a relational database.
Further, the service can distribute across a WebSphere cluster information on
invalid data and actual cached data maintained by a Web container’s dynamic
caching.

Replication entry
A replication entry (or replicator) is a run-time component that handles the transfer
of internal WebSphere Application Server data.

WebSphere Application Server processes can connect to any replicator within a
domain to receive data from other processes connected to any other replicator in
the same domain. If the replicator a process is connected to goes down, the
WebSphere Application Server process automatically attempts to reconnect to
another replicator in the domain and recover data missed while unconnected.

You can define replicators to operate within a running application server process.
Replicators are not enabled by default. You must define replicators as needed as
part of application server and cluster management.

You can take the default settings for replicators or specify settings values for
replicators that better suit your server configuration. The default configuration
options are suitable for many scenarios.

Replication domain
A replication domain is a collection of replicator entry (or replicator) instances used
by clusters or individual servers within a cell.

All replicators within a replication domain connect with each other, forming a
network of replicators.

The default is to define a replication domain for a cluster when creating the cluster.
However, replication domains can span across clusters.

Global default settings apply to all replication use for a given replication domain
across a cell. Most default settings tune and control the behavior of replicator
entries in managed servers across the cell. Such default settings control the use of
encryption or the serialization and transferring of objects. Some default settings

50 IBM WebSphere Application Server Network Deployment, Version 5: Servers

tune and control how specific WebSphere Application Server functions (for
example, session manager and dynamic caching) leverage replication, such as
session use of partitions.

For situations that require settings values other than the default, change the values
for a given replication domain on the Internal Replication Domains page. Settings
include various resource allocation, replication strategies (such as grouping or
partitioning) and methods, as well as some security related items.

If you are using replication for HttpSession failover, you might need to filter where
the session replicates to. For example, only replicate to two places out of many.
The global default settings define the partition size or number of groups and the
session manager settings define the groups to which a particular instance belongs.

Filtering is less important if you are using replication to distribute information on
invalid data and actual cached data maintained by a Web container’s dynamic
caching. Replication does not occur for failover as much as for data
synchronization across a cluster or cell when you likely want to avoid expensive
costs for generating data potentially needed across those various servers.

Note that you can filter or segment by using multiple replication domains.

Replicating data
To enable the sharing of data among processes and the backing up of failed
processes, you can use the replication service provided by WebSphere Application
Server. To use the service, you define replication domains, which list
interconnected replicator entries (residing in managed servers in the cell) that can
exchange data.

There are two ways to define replication domains and replicator entries:
v You can use the Internal Replication Domains page and Replicator Entry page to

define replication domains and replicator entries. To access the Internal
Replication Domains page, click Environment > Internal Replication Domains
in the console navigation tree. To access the Replicator Entry page, click a
replication domain on the Internal Replication Domains page and then click
Replicator Entries. When you create the entries on the Replicator Entry page,
you can select any server for the replicator to reside in. The page lists all servers
in the cell that do not already have replicators defined.

v You can define replication domains and replicator entries when you create a
cluster on the Create New Cluster page. Using the page allows you to create a
replication domain that has the same name as the cluster and, as you add or
create new application servers in the cluster, define replicator entries in those
servers. To access the Create New Cluster page, click Servers > Clusters in the
console navigation tree to go to the Server Clusters page and click New.

A replicator does not need to run in the same process as the application server that
uses it. However, it might be easier to manage replicators and replication domains
if a one-to-one correspondence exists between replicators and application servers.
During configuration, an application server connects by default to its local
replicator, so you do not need to explicitly specify the replicator to use. All
processes share equally in the replication cost.

Steps for this task

Chapter 4. Balancing workloads with clusters 51

1. (Create an application server). Later, enable a replication domain and its
replicators (step 2).
Or, create a cluster and add an application server to it. When you define the
cluster, you can specify that you want a replication domain associated with the
cluster. Also, when you define a cluster, you can specify that you want a
replicator associated with an application server. For example, you might specify
that a replicator launch in the same Java virtual machine as a Web container.
Or, you can enable a replicator later (step 2).

2. Create a replication domain if one is not already created for the processes you
want supported by data replication. Go to the Replication Domains page and
click New. On the settings for a replication domain instance, specify values for
the instance. The default values generally will be sufficient, especially as to
pooling and timeout values.
a. Name the replication domain.
b. Specify the timeout interval.
c. Specify the encryption type. The DES and TRIPLE_DES options encrypt

data sent between WebSphere Application Server processes and better
secure the network joining the processes.

d. Partition the replication domain to filter the number of processes to which
data is sent. Partitioning the replication domain is most often done if you
are replicating data to support retrieval of an HttpSession if the process
maintaining the HttpSession fails. Partitioning is not supported for sharing
of cached data maintained by Web container dynamic caching.

e. Specify whether you want a single replication of data to be made. Enable
the option if you are replicating data to support retrieval of an HttpSession
if the process maintaining the HttpSession fails.

f. Specify whether processes should receive data in objects or bytes. Processes
receiving data in objects receive the data and class definitions. Processes
receiving data in bytes receive the data only.

g. (Optional) Configure a pool of replication resources. Pooling replication
resources can enhance the performance of the internal data replication
service.

3. Create replicators for the processes you want supported by data replication, if
replicators have not already been created for the processes. The default
convention is to define a replicator in each application server that uses
replication. However, you can define a pool of replicators, separate from the
servers hosting applications.
a. Click on the replication domain instance on the Replication Domains page

and then Replicator Entries to access the Replicator Entry page.
b. Click New and, on the replicator entry settings page, define a replicator.

Specify a replicator name and, from the drop-down list of the available
servers within the cell to which you can assign a replicator, select a server.
Also specify a host name and ports. Note that a replicator has two end
points (replicator and client end points) that use the same host name but
have different ports.

If you use the DES or TRIPLE_DES encryption type for a replicator, click
RegenerateKey on the settings for a replication domain instance at regular
intervals such as monthly. Periodically changing the key enhances security.

52 IBM WebSphere Application Server Network Deployment, Version 5: Servers

Internal replication domain collection
Use this page to view and manage replicator instances used within a cell.
Replicators can transfer both application data and any internal data used to
maintain the application data among WebSphere Application Server run-time
processes in a cluster of application servers.

To view this administrative console page, click Environment > Internal
Replication Domains.

Using replicators, you can replicate HttpSession data among processes and retrieve
the HttpSession if the process that currently maintains the HttpSession fails.
Further, you can distribute across a cell the creation, modification, and invalidation
of cached data maintained by a Web container’s dynamic caching.

If you are using replication for HttpSession failover, you will likely need to filter
where the session replicates to. For example, only replicate to two places out of
many. The global default settings define the partition size or number of groups and
the session manager settings define the groups to which a particular instance
belongs. Filtering is less important if you are using replication to distribute
information on cached data maintained by a Web container’s dynamic caching.

The default is to define a replication domain for a cluster when creating the cluster.
However, you can create a new domain from this page. Click New and follow the
instructions on the page displayed.

Clicking Delete deletes a domain and all replicators defined under the domain.

Name
Specifies a name for the replication domain.

Internal replication domain settings
Use this page to configure a replicator instance.

To view this administrative console page, click Environment > Internal
Replication Domains > replication_domain_name.

An application server connected to replicator within a domain can access the same
set of data sent out by any application server connected to any other replicator
(including the same replicator). Data is not shared across replicator domains.

Name: Specifies a name for the replication domain.

Data type String

Request Timeout: Specifies the number of seconds that a replicator waits when
requesting information from another replicator before giving up and assuming the
information does not exist. The default is 5 seconds.

Data type Integer
Units Seconds
Default 5

Chapter 4. Balancing workloads with clusters 53

Encryption Type: Specifies the type of encryption used before transfer. The
options include NONE, DES, TRIPLE_DES. The default is NONE. The DES and
TRIPLE_DES options encrypt data sent between WebSphere processes and better
secure the network joining the processes.

If you specify DES or TRIPLE_DES, a key for global data replication is generated
after you click Apply or OK. When you use the DES or TRIPLE_DES encryption
type, click RegenerateKey at regular intervals such as monthly because
periodically changing the key enhances security.

Data type String
Default NONE

DRS Partition Size: Specifies the number of groups into which a replication
domain is partitioned. By default, data sent by a WebSphere Application Server
process to a replication domain is transferred to all other WebSphere Application
Server processes connected to that replication domain. To filter or reduce the
number of destinations for the data being sent, partition the replication domain.
The default partition size is 10, and the partition size should be 10 or more to
enhance performance.

Partitioning the replication domain is most often done if you are replicating data to
support retrieval of an HttpSession if the process maintaining the HttpSession fails.
Partitioning is not supported for sharing of cached data maintained by Web
container dynamic caching. As to dynamic caching, all partitions or groups are
always active and used for data replication.

When you partition a replication domain, you define the total number of groups or
partitions. Use this setting to define the number of groups. Then, when you
configure a specific session manager under a Web container or as part of an
enterprise application or Web module, select the partition to which that session
manager instance listens and from which it accepts data. To specify the groups to
which an application server listens, change the settings for affected servers on a
Session Manager page. In addition, you can set a replicator role for a server. This
replicator role affects whether a WebSphere process sends data to the replication
domain, receives data, or does both. The default is both to receive and send data.

Data type Integer
Default 10

Single Replica: Specifies that a single replication of data be made. Enable this
option if you are replicating data to support retrieval of an HttpSession if the
process maintaining the HttpSession fails. This option restricts the recipient of the
data to a single instance.

This setting provides filtering beyond grouping or partitioning. Using this setting,
you can choose to have data only sent to one other listening instance in the
replication domain.

Data type Boolean
Default false

Serialization Method: Specifies the object serialization method to use when
replicating data. An administrative concern with replicating Java objects is locating

54 IBM WebSphere Application Server Network Deployment, Version 5: Servers

the class definition, especially in a J2EE environment where class definitions might
reside only in certain web modules or enterprise applications. Object serialization
methods define whether the processes receiving data also need the class definition.

The options for this setting are OBJECT and BYTES. The default is BYTES.

OBJECT instructs a replicator to write the object directly to the stream. With
OBJECT, a replicator must reinstantiate the object on the receiving side so must
have the class definition.

BYTES instructs a replicator to break down the object into bytes and then send
only the bytes across the stream. With BYTES, a replicator does not need to
instantiate the object on the receiving side. The BYTES option is useful for failover,
where the data is not used at the receiving side and thus the class definitions do
not need to be stored there. Or, the option requires that you move class definitions
from the Web application class path to the system class path.

Data type String
Default BYTES
Range Valid values are OBJECT or BYTES.

DRS Pool Size: Specifies the maximum number of items allowed in a pool of
replication resources. The default is 10.

Pooling replication resources can enhance the performance of the WebSphere
internal data replication service.

Data type Integer
Default 10
Range 1 to 50

DRS Pool Connections: Specifies whether the data replication service includes
replicator connections in a pool of replication resources. Whether this option is
enabled or not, the pool includes replicator sessions, publishers and subscribers.

The default is not to include replicator connections in the pool.

Data type Boolean
Default false

Replicator entry collection: Use this page to view and manage replicator entries.

To view this administrative console page, click Environment > Internal
Replication Domains > replication_domain_name > Replicator Entries.

To configure a new replicator entry, click New and follow the instructions on the
page. You add a replicator to an existing server in the cell.

Replicator Name: Specifies a name for the replicator entry.

Replicator entry settings: Use this page to view and configure a replicator entry
(or replicator).

Chapter 4. Balancing workloads with clusters 55

To view this administrative console page, click Environment > Internal
Replication Domains > replication_domain_name > Replicator Entries >
replicator_entry_name.

Replicators communicate using TCP/IP. Thus, you must allocate an IP address and
ports for replicators. Use this page to name a replicator and then to allocate an IP
address and two ports (replicator and client ports) for the replicator.

Replicator Name: Specifies a name for the replicator entry.

Data type String

Available Servers: Specifies the server for which you are defining a replicator.
The drop-down list provides the names of servers that do not already have
replicators.

Data type String
Default None

Replicator and Client Host Name: Specifies the IP address, DNS host name with
domain name suffix, or just the DNS host name, used by a client to request a Web
application resource (such as a servlet, JSP file, or HTML page).

A replicator port and client port share the same host name.

Data type String
Default None

Replicator Port: Specifies the port for which the Web server is configured to
accept client requests. The port value is used in conjunction with the host name.

The replicator port enables communication among replicators. It provides
replicator port to replicator communication. The usual value specified is 7874.

Data type Integer
Default None

Client Port: Specifies the port for which the Web server is configured to accept
client requests. The port value is used in conjunction with the host name.

The client port enables communication between an application server process and
a replicator. It provides client port to application server communication. The usual
value specified is 7873.

Data type Integer
Default None

Starting clusters
You can start all members of a cluster at the same time by requesting that the state
of a cluster change to running. That is, you can start all application servers in a
server cluster at the same time.

56 IBM WebSphere Application Server Network Deployment, Version 5: Servers

When you request that all members of a cluster start, the cluster state changes to
websphere.cluster.partial.start and each server that is a member of that cluster
launches, if it is not already running. After all members of the cluster are running,
the cluster state becomes websphere.cluster.running.

Steps for this task
1. Click Servers > Clusters in the console navigation tree to access the Server

Cluster page.
2. Put a checkmark in the check boxes beside those clusters whose members you

want started.
3. Click Start or RippleStart.

v Start launches the server process of each member of the cluster by calling the
node agent for each server to start the servers. After all servers are running,
the state of the cluster changes to websphere.cluster.running. If the call to a
node agent for a server fails, the server will not start.

v RippleStart combines stopping and starting operations. It first stops and
then restarts each member of the cluster.

Stopping clusters
You can stop all members of a cluster at the same time by requesting that the state
of a cluster change to stopped. That is, you can stop all application servers in a
server cluster at the same time.

Steps for this task
1. Click Servers > Clusters in the console navigation tree to access the Server

Cluster page.
2. Put a checkmark in the check boxes beside those clusters whose members you

want stopped.
3. Click Stop or Immediate Stop.

v Stop halts each server in a manner that allows the server to finish existing
requests and allows failover to another member of the cluster. When the stop
operation begins the cluster state changes to websphere.cluster.partial.stop. After
all servers stop, the cluster state becomes websphere.cluster.stopped.

v Immediate Stop brings down the server quickly without regard to existing
requests. When the stop operation begins, the cluster state changes to
websphere.cluster.partial.stop. After all servers stop, the cluster state becomes
websphere.cluster.stopped.

You can also stop and start server clusters from the settings page for a server
cluster instance. To access such a page, click on the server cluster that you want to
start or stop in the collection under Name on a Server Cluster page. You can view
the status of a server cluster (that is, whether the cluster is started or stopped) on
the Runtime tab of the settings page for a server cluster instance. Note that the
Runtime tab is only shown if you have clicked Save on the administrative console
taskbar since creating the server cluster instance.

Tuning a workload management configuration
You can set values for several workload management client properties to tune the
behavior of the workload management run time. You set the properties as
command-line arguments for the Java virtual machine (JVM) process in which the
workload management client is running.

Chapter 4. Balancing workloads with clusters 57

Caution: Set the values of these properties only in response to problems that you
encounter. In most cases, you do not need to change the values. If workload
management is functioning correctly, changing the values can produce undesirable
results.

To change the property values, you can use the Java Virtual Machine page of the
administrative console or use the wsadmin tool. In cases such as where a servlet is
a client to an enterprise bean, use the administrative console page for the
application server where the servlet is running to configure the properties. The
steps below describe how to change the values using the console.

Steps for this task
1. Access the (Java Virtual Machine page).

a. Click Servers > Application Servers in the console navigation tree.
b. On the (Application Server page), click on the name of the server where the

client is running.
c. On the (settings page for the selected application server), click Process

Definition.
d. On the (Process Definition page), click Java Virtual Machine.

2. On the (Java Virtual Machine page), specify one or more of the following
command-line arguments in the Generic JVM arguments field:

-Dcom.ibm.CORBA.RequestTimeout=timeout_interval
If your application is experiencing problems with timeouts, this
argument changes the value for the com.ibm.CORBA.RequestTimeout
property, which specifies the timeout period for responding to requests
sent from the client. This argument uses the -D option. timeout_interval
is the timeout period in seconds. If your network experiences extreme
latency, specify a large value to prevent timeouts. If you specify a value
that is too small, an application server that participates in workload
management can time out before it receives a response.

Note: Be careful specifying this property; it has no recommended value.
Set it only if your application is experiencing problems with timeouts.

-Dcom.ibm.websphere.wlm.unusable.interval=interval
If the workload management state of the client is refreshing too soon or
too late, this argument changes the value for the
com.ibm.websphere.wlm.unusable.interval property, which specifies the
time interval that the workload management client run time waits after
it marks a server as unavailable before it attempts to contact the server
again. This argument uses the -D option. interval is the time in seconds
between attempts. The default value is 300 seconds. If the property is
set to a large value, the server is marked as unavailable for a long
period of time. This prevents the workload management refresh
protocol from refreshing the workload management state of the client
until after the time period has ended.

3. Click OK.
4. (Stop the application server) and then (restart the application server).

Workload management run-time exceptions
The workload management service can throw the following exceptions if it
encounters problems:

58 IBM WebSphere Application Server Network Deployment, Version 5: Servers

org.omg.CORBA.TRANSIENT with a minor code 1229066306 (0x40421042)
This exception is thrown if the workload management routing service
cannot retry a request and the failure resulted from a connection error. This
exception indicates that the application should invoke some compensation
logic and resubmit the request.

org.omg.CORBA.NO_IMPLEMENT with a minor code 1229066304 (0x49421040)
This exception is thrown if the workload management service cannot
contact any of the EJB application servers that participate in workload
management.

The WebSphere Application Server client can catch these exceptions and then
implement its own strategies to handle the situation. For example, it can display an
error message if no servers are available.

The workload management routing service can reroute a failed request to a
different target transparently to the application if the application will not be
adversely affected by a second attempt. Currently, the only way is to check if the
request did not execute in whole or part on the previous attempt. When a request
executes in whole or in part, an org.omg.CORBA.TRANSIENT with the minor code
1229066306 (0x49421042) exception is thrown to signal that a request can be made
again. This informs the application that another target might be available to satisfy
the request, but the request could not be failed over transparently to the
application. Thus, the application can resubmit the request. The routing service
throws an org.omg.CORBA.NO_IMPLEMENT with the minor code 1229066304
(0x49421040) exception if it cannot locate a suitable target for the request. The
exception is thrown, for example, if the cluster is stopped or if the application does
not have a path to any of the cluster members.

Clustering and workload management: Resources for learning
Use the following links to find relevant supplemental information about clustering
and workload management. The information resides on IBM and non-IBM Internet
sites, whose sponsors control the technical accuracy of the information.

These links are provided for convenience. Often, the information is not specific to
the IBM WebSphere Application Server product, but is useful all or in part for
understanding the product. When possible, links are provided to technical papers
and Redbooks that supplement the broad coverage of the release documentation
with in-depth examinations of particular product areas.

View links to additional information about:
v Planning, business scenarios, and IT architecture
v Programming model and decisions
v Programming instructions and examples

Planning, business scenarios, and IT architecture

v WebSphere Application Server V5.0: Architecture and Overview
(http://developerworks.cybercentral.com/ibm0502/amt
/ibmpresentations/683_1.pdf)

Programming model and decisions

Chapter 4. Balancing workloads with clusters 59

http://developerworks.cybercentral.com/ibm0502/amt/ibmpresentations/683_1.pdf
http://developerworks.cybercentral.com/ibm0502/amt/ibmpresentations/683_1.pdf

v Improving availability by clustering the WebSphere Application Server
(http://www-106.ibm.com/developerworks/ibm/library
/i-extreme18/?open&l=937,t=gr)

v Redbook on WebSphere Scalability: WLM and Clustering Using
WebSphere Application Server Advanced Edition (http://publib-
b.boulder.ibm.com/Redbooks.nsf/RedbookAbstracts/sg246153.html?Open)

v Failover and Recovery in WebSphere Application Server Advanced
Edition 4.0 (ftp://vadd1:ua33pcww@207.25.253.53/1/wsdd/pdf/modjeski.pdf)

Programming instructions and examples

v WebSphere Application Server education
(http://www.ibm.com/software/webservers/learn/)

v IBM WebSphere Administration (http://www.mcgraw-
hill.co.uk/html/0072223154.html)

v Listing of all IBM WebSphere Application Server Redbooks
(http://publib-b.boulder.ibm.com/Redbooks.nsf/Portals/WebSphere)

v Redbook on IBM WebSphere V4.0 Advanced Edition Scalability and
Availability (http://publib-
b.boulder.ibm.com/Redbooks.nsf/9445fa5b416f6e32852569ae006bb65f/
ff31072025dcf5de85256aca00781918?OpenDocument&Highlight=0,plug-in)

v

WebSphere Application Server Bible
(http://www.wiley.com/cda/product/0,,0764548964%7Ctoc%7C2948,00.html)

60 IBM WebSphere Application Server Network Deployment, Version 5: Servers

http://www-106.ibm.com/developerworks/ibm/library/i-extreme18/?open&l=937,t=gr
http://www-106.ibm.com/developerworks/ibm/library/i-extreme18/?open&l=937,t=gr
http://publib-b.boulder.ibm.com/Redbooks.nsf/RedbookAbstracts/sg246153.html?Open
http://publib-b.boulder.ibm.com/Redbooks.nsf/RedbookAbstracts/sg246153.html?Open
ftp://vadd1:ua33pcww@207.25.253.53/1/wsdd/pdf/modjeski.pdf
http://www.ibm.com/software/webservers/learn/
http://www.mcgraw-hill.co.uk/html/0072223154.html
http://www.mcgraw-hill.co.uk/html/0072223154.html
http://publib-b.boulder.ibm.com/Redbooks.nsf/Portals/WebSphere
http://publib-b.boulder.ibm.com/Redbooks.nsf/9445fa5b416f6e32852569ae006bb65f/ff31072025dcf5de85256aca00781918?OpenDocument&Highlight=0,plug-in
http://publib-b.boulder.ibm.com/Redbooks.nsf/9445fa5b416f6e32852569ae006bb65f/ff31072025dcf5de85256aca00781918?OpenDocument&Highlight=0,plug-in
http://publib-b.boulder.ibm.com/Redbooks.nsf/9445fa5b416f6e32852569ae006bb65f/ff31072025dcf5de85256aca00781918?OpenDocument&Highlight=0,plug-in
http://www.wiley.com/cda/product/0,,0764548964%7Ctoc%7C2948,00.html

Chapter 5. IBM WebSphere UDDI Registry

Welcome to the IBM WebSphere UDDI Registry.

Use the table of contents on the left to view the various topics for a specific
product or technology. Select the topic you are interested in to either open
documentation locally or find information about how to locate documentation.
v ″UDDI Registry Terminology″

v ″UDDI Registry Definitions″

v ″An overview of IBM UDDI Registries″

v ″Migrating from the IBM WebSphere UDDI Registry on WebSphere Application
Server 4.0″

v ″Installing and Setting up a UDDI Registry″

v ″Reinstalling the UDDI Registry application″

v ″Removing the UDDI Registry application from a deployment manager cell″
v ″Removing the UDDI Registry application from a single appserver″

v ″Configuring the UDDI Registry″

v ″Administering the UDDI Registry″

v ″UDDI user console″

v ″SOAP Application Programming Interface for the UDDI Registry″

v ″UDDI Registry application programming interface″

v ″UDDI EJB Interface for the UDDI Registry″

v ″UDDI Troubleshooting Tips″

v ″Messages″

v ″Running the UDDI Samples″

v ″Installation Verification Program (IVP)″
v ″Reporting Problems with the IBM WebSphere UDDI Registry″

v ″Feedback″

UDDI Registry Terminology
Syntax

When reference is made to the directory location of the WebSphere Application
Server it is referred to as <WebSphere-install-dir> and , the directory location of
the WebSphere Deployment manager as <DeploymentManager-install-dir>. These
translate, by default, to the following locations:

Windows

<WebSphere-install-dir>
C:\Progra~1\WebSphere\AppServer\

<DeploymentManager-install-dir>
C:\Progra~1\WebSphere\DeploymentManager\

Unix Platforms

© Copyright IBM Corp. 2002 61

(Linux/Solaris) - <WebSphere-install-dir>
/opt/WebSphere/AppServer/

<(AIX) - <WebSphere-install-dir>
/usr/WebSphere/AppServer/

<DeploymentManager-install-dir>
/opt/WebSphere/DeploymentManager/

UDDI Registry Definitions
Syntax

bindingTemplate
Technical information about a service entry point and construction
specifications.

businessEntity
Information about the party who publishes information about a family of
services.

businessService
Descriptive information about a particular service.

publisherAssertion
Information about a relationship between two parties, asserted by one or
both.

tModel
Descriptions of specifications for services or taxonomies. The basis for
technical fingerprints. This is short for technical model

An overview of IBM UDDI Registries
The Universal Description, Discovery and Integration (UDDI) specification defines
a way to publish and discover information about Web Services. The term ’Web
service’ describes specific business functionality exposed by a company, usually
through an Internet connection, to allow another company, or its subsidiaries, or
software program to use the service.

Universal Business Registries (IBM UBR)

The IBM Universal Business Registry is one of a group of web-based registries that
expose information about a business or other entity and its technical interfaces (or
APIs). These registries are run by multiple Operator Sites, and can be used by
anyone who wants to make information available about one or more businesses or
entities, as well as anyone that wants to find that information. Although there are
Universal Business Registries (sometimes referred to as ’public UDDI registries’)
hosted worldwide, including one hosted by IBM, enterprises may wish to host
their own internal registries behind their firewall to better manage their internal
implementation of Web Services.

For more detailed information about UDDI in general visit http://www.uddi.org

IBM WebSphere UDDI Registry

The IBM WebSphere UDDI Registry is a directory for Web Services that is
implemented using the UDDI specifications. In contrast with the IBM UBR, this
component of WebSphere Network Deployment is a product offering for
companies or industries to implement.

62 IBM WebSphere Application Server Network Deployment, Version 5: Servers

A critical component of IBM’s dynamic e-business infrastructure, IBM WebSphere
UDDI Registry solves the problem of discovery of technical components for an
enterprise and its partners by:
v Providing control, flexibility and confidentiality so that an enterprise can protect

its e-business investments
v Increasing efficiency by making it easier to identify technical assets
v Leveraging existing infrastructures

For example, the IBM WebSphere UDDI Registry could be used in the following
way within a large enterprise:

A company has a legacy application that provides phone numbers and Human
Resources (HR) information of employees. This is turned into a Web Service and
published to the registry. A developer in the same company needs to write an
application for a procurement function that also needs to provide HR information
to the supplier. The application should allow the supplier to have access to the
employee account codes once the employee provides his name or serial number.
Before Web Services, the developer had three choices:
1. Would not have known about the similar application
2. Knew about it but could not reuse due to technical barriers
3. Knew about it and reused only after significant time and negotiation

With UDDI, the developer can search for the ″web service″ and reuse the existing
technical component in his new application for the supplier in a matter of minutes.
The developer saves time and gets the application up and running sooner than he
would have otherwise — increasing efficiency and saving the company time and
money. The IBM WebSphere UDDI Registry is the first version 2
standard-compliant UDDI registry for private enterprise work. The IBM WebSphere
UDDI Registry:
v Supports the public UDDI V2.0 standard
v Leverages the proven, reliable WebSphere Application Server technology
v Uses a relational database, such as DB2, for its persistent store.

Migrating from the IBM WebSphere UDDI Registry on WebSphere
Application Server 4.0

Before you begin

If you have previously installed the IBM WebSphere UDDI Registry V1.1 (or later
refreshes) on WebSphere Application Server V4.0, then you should take the
following steps in order to migrate to the UDDI Registry that is available as part of
WebSphere Application Server for Network Deployment V5.0.
1. If you have made any changes to the configuration properties in the file

uddi.properties, which is located in the properties subdirectory of your
WebSphere AppServer install tree, then you should make a copy of this file (or
make a note of all the changes), so that you will be able to reapply the changes
to the file after you have installed WebSphere Application Server V5.0.

2. If you have made any other configuration changes, for example to the GUI
style sheets or to the SOAP interface properties, you should make a note of
them, and re-apply them after upgrading to the new UDDI version.

Chapter 5. IBM WebSphere UDDI Registry 63

3. Uninstall the IBM WebSphere UDDI Registry using Add/Remove Programs on
Windows platforms, or rpm -e IBMWebSphere-UDDI on Unix Platforms. This
will remove the application, but will preserve the UDDI Registry database.

4. Please note that, if you wish to continue using DB2 as the persistence store for
the UDDI Registry, and if you have any data in the UDDI Registry which you
wish to preserve, then you should not run the DB2 setup wizard to create the
DB2 version of the UDDI Registry database, but will instead be able to
continue using the database that you already have. However, if you do run the
wizard, you will be prompted whether you wish to keep the database or
overwrite it.

5. You can now follow the instructions on installing (or upgrading) IBM
WebSphere Application Server V5 and ″Installing the UDDI Registry
component″.

6. After completing the install procedure, you should edit the uddi.properties file
to reflect any changes that you require to the configuration properties. You
should not replace this file with your previous copy from the IBM WebSphere
UDDI Registry V1.1 or later refreshes. You can also re-apply any other
configuration changes as necessary.

7. If you are migrating from version 1.1 of the IBM WebSphere UDDI registry,
then there have been a few minor changes to the EJB interface which means
that you may need to modify your EJB client applications. If you are migrating
from later refreshes of the IBM WebSphere UDDI Registry (such as version
1.1.1), then you should not need to make any changes to your EJB clients.
The changes for version 1.1 are when saving a new service through the EJB
interface either using saveBusiness or saveService, you should not set the
serviceKey before calling saveBusiness or saveService.

In the IBM WebSphere UDDI Registry V1.1 the term ’service type’ was used to
refer to a ’technical model’ or ’tModel’, for example, in various of the panels in the
User Console. This term has now been replaced by the term ’technical model’.

Installing and Setting up a UDDI Registry
Before you begin

If you wish to use the UDDI User Console using Internet Explorer as your web
browser, and using SSL, then you must use Internet Explorer V5.5 with SP2 and
security fix Q321232 (which must be applied in that order).

If you are migrating from the IBM WebSphere UDDI Registry product that was
available to run on WebSphere Application Server 4.0, then you need to read the
section Migrating from the IBM WebSphere UDDI Registry on WebSphere
Application Server 4.0 before installing the new product.

Choice of database product to be used as the persistence store

The UDDI Registry application can use either DB2 or Cloudscape as the
persistence store for the registry data.
v If you plan to use the UDDI Registry in production then you must use DB2 as

your persistence store.
v If you plan to use the UDDI Registry for development and testing purposes,

then you can choose to use Cloudscape as your persistence store. Please note
that Cloudscape is not intended for production purposes.

64 IBM WebSphere Application Server Network Deployment, Version 5: Servers

As part of the installation of the IBM WebSphere Application Server with Network
Deployment option, you are given the option to install the ″UDDI Registry″, which
is shown under Web Services. Having selected the UDDI Registry and installed the
various files that make up the application, you have two choices as to the
environment in which you run it:
1. Install the UDDI Registry application into the deployment manager cell using

DB2 or Cloudscape as the database in which the UDDI Registry data will be
held, selecting one of the application servers within the cell in which to run the
UDDI Registry.

2. Install the UDDI Registry application directly into an application server using
DB2 or Cloudscape as the database in which the UDDI Registry data will be
held. Please note that, if you choose this option, then the application server on
which you run the UDDI Registry must not be added into a deployment
manager cell, as this would cause the file synchronization within the cell to
remove the application.

In most cases you will probably choose option 1, and install the UDDI Registry
into a deployment manager cell, but you might find that option 2, to install the
UDDI Registry into a standalone application server, is useful for development or
test purposes.

Note:

1. Several WebSphere commands are used during the following procedures, some
of which must execute on the DeploymentManager and some of which must
execute on the target Application server. The instructions below will distinguish
which is appropriate for each command. The WebSphere commands will be
found in the bin subdirectory of the appropriate WebSphere install tree. In
order to ensure correct operation of these commands, you will need to do one
of the following:
v Ensure that the appropriate bin subdirectory is in your path prior to

executing the command
v Change directory to the appropriate bin subdirectory
v Fully qualify the path to the commands

2. It is recommended that you use the version of java shipped with WebSphere
found in the java/bin subdirectory.

The following table lists the UDDI Registry files, and the locations into which they
are placed by the install. The ″Location″ column shows the subdirectory under the
WebSphere DeploymentManager install directory. For example, if you had installed
IBM WebSphere Application Server with Network Deployment option onto a
machine running Windows, and had used the default directory, then a location of
″installableApps″ would mean that the file had been placed into the
C:\Progra~1\WebSphere\DeploymentManager\installableApps directory. For
Windows platforms, read the ″/″ directory separator in the location column as a
″\″ directory separation character.

Files Purpose Location
uddi.ear The UDDI Registry

application itself, which is
packaged and runs as an
Enterprise Application

installableApps

uddi.properties Provides configuration
properties for the UDDI
Registry application

properties

Chapter 5. IBM WebSphere UDDI Registry 65

uddiresourcebundles.jar Contains system messages for
the UDDI Registry
application

lib

uddicloudscapeuserfunc.jar Contains functions that are
used by Cloudscape if the
Cloudscape database is used
with the UDDI Registry

lib

setupuddi.jacl Admin script to create a
JDBC driver and datasource
for the UDDI Registry, and to
install the UDDI Registry
application in a
DeploymentManager Cell

UDDIReg/scripts

setupuddimessages.jar Contains setup and install
messages for the UDDI
Registry application

lib

removeuddi.jacl Admin script to undo the
effects of setupuddi.jacl

UDDIReg/scripts

appserverremoveuddi.jacl Admin script to undo the
effects of
appserversetupuddi.jacl

UDDIReg/scripts

appserversetupuddi.jacl Admin script to create a
JDBC driver and datasource
for the UDDI Registry, and to
install the UDDI Registry
application in a single,
standalone, application server

UDDIReg/scripts

SetupDB2UDDI.jar The ’UDDI DB2 Setup
Wizard’, to create and
pre-load the UDDI Registry
database if DB2 is to be used
as the persistence store

UDDIReg/scripts

UDDI20 (directory) Cloudscape directory
containing the UDDI Registry
tables and pre-loaded data

bin

uddiejbclient.jar Class library for use when
writing an EJB client to
access the UDDI Registry

UDDIReg/ejb

Various javadoc files JAVADOC to describe the EJB
interface to the UDDI
Registry

UDDIReg/ejb/javadoc

If you intend to run in a Deployment Manager Cell then complete the following
task - Installing the UDDI Registry into a deployment manager cell

If you intend to run in a single WebSphere Application server, then complete the
following task - Installing the UDDI Registry into a single WebSphere
Application Server

What to do next

Continue with Configuring the UDDI Registry.

Installing the UDDI Registry into a deployment manager cell
These instructions assume that the installation has been performed into a clean
environment. If you are installing into an existing Deployment Manager cell, then
steps 1 to 5 must be omitted, i.e. skip to bullet 6 immediately.

66 IBM WebSphere Application Server Network Deployment, Version 5: Servers

Steps for this task
1. Install the WebSphere Application Server for Network Deployment package,

and select the UDDI Registry option under Web Services.
2. Install one or more base application servers which will form the cell of

servers. One of these should be the application server in which you plan to
run an instance of the UDDI Registry. You can run more than one instance of
the UDDI Registry within a cell of servers: the UDDI Registry application
name will be suffixed with the target node and server names to make it
unique within the cell (See also ″ Advanced use of setupuddi.jacl″), but you
can only run one UDDI instance within each application server.

3. Ensure that the target application server is stopped.
4. Run startManager (startManager.sh on Unix Platforms) on the deployment

manager node to start the deployment manager.
(On Unix platforms you must remember to run the db2profile script before
issuing the startServer.sh server_name command. This script is located within
the DB2 instance’s home directory under SQLLIB and can be invoked, for
example, by typing:
". /home/db2inst1/sqllib/db2profile"

)
5. Run addNode (addNode.sh on Unix Platforms) on each of the base application

server(s) to add it as a node into the cell (please see elsewhere in the
InfoCenter for how to run addNode). For example, addnode cell_host

6. Copy the uddiejbclient.jar file and the EJB javadoc directory tree from the
UDDIReg/ejb subdirectory of the deployment manager install tree onto any
machine(s) where you will be creating EJB clients to access the UDDI Registry.

7. If you have any global configuration properties that will be common to any
UDDI Registries that you install into this cell, then you can edit the
uddi.properties file in the properties subdirectory of the deployment manager
install tree to set them up (see the section on Configuring the UDDI Registry
for more details about the global configuration properties).

8. The UDDI Registry application is supplied with the security permissions that
it requires to execute. This step explains how you can see the permissions that
have been set, and change them if you feel that it is appropriate to do so. It is
recommended that you only do this if you have a thorough understanding of
Java 2 security issues, and the way in which security permissions are used by
WebSphere.

The permissions for the UDDI Registry application are set within a file
was.policy which is part of the uddi.ear application file. To see and change the
contents of this file you should:
a. On the deployment manager, copy the uddi.ear file from the

installableApps subdirectory of the deployment manager install tree into a
temporary directory.

b. Un-jar the uddi.ear file (i.e. unpack uddi.ear using the ’jar -x’ command).
For example,
jar -x uddi.ear

(This uses the jar command in the bin subdirectory of the deployment
manager, so you might need to fully qualify the path to the jar command.)

c. You will find the was.policy file under the META-INF subdirectory that is
created.

Chapter 5. IBM WebSphere UDDI Registry 67

This will allow you to see the permissions which have been granted to the
UDDI Registry application, and to make any changes that are necessary.
Please note that if you make any errors in changing this file, then the
UDDI Registry application might either fail to start, or will encounter
errors when trying to execute UDDI requests.

d. Re-jar the uddi.ear file using the jar command.
For example,
jar -cf uddi.ear.

Note: NOTE the dot after uddi.ear)

(This uses the jar command in the bin subdirectory of the deployment
manager, so you might need to fully qualify the path to the jar command.)

e. Copy the new uddi.ear back to the installableApps directory.
9. Please note that if the target application server is running, then this step will stop

and restart it.If you are planning to use Cloudscape for the database in which
the UDDI Registry will be held, please read the section ″Setting up the UDDI
Registry to use Cloudscape within a deployment manager cell″ and then
return to this point. If however, you plan to use DB2, then please refer to the
section ″Setting up the UDDI Registry to use DB2 within a deployment
manager cell″ and then return to this point.

10. Ensure that the UDDI Registry is configured appropriately for your
installation, as described in the section on Configuring the UDDI Registry.

11. Start, or stop and restart, the target application server. This should also start
the UDDI Registry application. If not, use the admin console on the
deployment manager to do so.

What to do next

Advanced use of setupuddi.jacl

A number of symbols are defined at the top of the setupuddi.jacl script. These
allow you to control the amount of logging that is performed, and to install
multiple instances of the UDDI Registry within the same cell.

The symbols which you can edit are as follows:
v logEnabled - default setting is 1 which causes the progress of the script to be

logged. Setting this symbol to 0 causes information logging to be suppressed,
with only error messages being output.

v overwriteExisting - default setting is 1 which causes any existing installation of
the UDDI Registry application to be overwritten. Setting this symbol to 0 would
cause the existing installation to be left as is, but would allow other files used by
the UDDI Registry to be updated. You are recommended to only change this
setting under the guidance of IBM Service.

v appName - default setting is UDDIRegistry, which will be the first part of the
name used for the UDDI Registry application installed into the target server. To
ensure uniqueness of application names within the cell, the full application name
that will be used is <appName>.<nodeName>.<server>, where <nodeName> is
the name of the target node and <server> is the name of the target server. You
can choose to change the first part of this (the <appName>) portion by changing
the setting of this symbol before running setupuddi.jacl, although it is generally
recommended that you do not change this value.

Continue with Configuring the UDDI Registry.

68 IBM WebSphere Application Server Network Deployment, Version 5: Servers

Setting up the UDDI Registry to use Cloudscape within a
deployment manager cell
If you plan to use Cloudscape for the database in which the UDDI Registry data
will be held, use this task to create and load the UDDI Registry database using
Cloudscape.

Before you begin

Please see the section ″Choice of database product to be used as the persistence
store″ to decide which database product you should use as your persistence store
before proceeding further with this step.

This task, to configure Cloudscape for the UDDI Registry database, is part of the
parent task to install and setup a UDDI Registry, described in Installing the UDDI
Registry into a deployment manager cell. You should complete this task at the
appropriate step in the parent task, then return to and complete the parent task.

If you plan to use Cloudscape for the database in which the UDDI Registry data
will be held, use this task to setup and install the UDDI Registry application to use
the supplied Cloudscape database.

This task configures Cloudscape on the host where you want to run the UDDI
Registry. Cloudscape is supplied with WebSphere Application Server, so you
should not need to install Cloudscape support.

In this task you will invoke a script called setupuddi.jacl, specifying the target
node and application server into which the UDDI Registry is to be deployed.
Please note that if the target application server is running when you invoke
setupuddi.jacl, then the script will stop the server and will restart the server after it
has completed its operations.

Steps for this task
1. Copy the UDDI20 directory tree from the bin subdirectory of the deployment

manager tree into the bin subdirectory of the target application server’s install
tree.

2. Create a JDBC driver and datasource to provide access to the UDDI20
Cloudscape database, and install the UDDI Registry application. This is done
using the WSADMIN tool, using as input the setupuddi.jacl script from the
UDDIReg/scripts subdirectory of the Deployment Manager. Note that this
script must be run on the deployment manager node.
You should either run this script from the UDDIReg/scripts subdirectory where
it is located, or copy it to some other suitable directory. Note that the
WSADMIN command is located in the bin subdirectory of the deployment
manager node.The syntax for calling this script for Cloudscape is:
wsadmin -f setupuddi.jacl

deploymgrpath
servername
nodename
discoveryURLprefix
pathtodb
> setupuddi.log

where
v deploymgrpath is the fully qualified pathname of the deployment manager

install directory, specified using forward slashes regardless of platform; e.g.
for Windows, this might be C:/Progra~1/WebSphere/deploymentManager

Chapter 5. IBM WebSphere UDDI Registry 69

v servername is the name of the target server on which you wish to deploy the
UDDI Registry, such as server1

v nodename is the name of the WebSphere node on which the target server runs
v discoveryURLprefix is the URL prefix to be used for discovery URLs. Typically

this will be of the form http://<ip-address>:9080/uddisoap/ so an example
of a discoveryURLprefix value might be
http://mynode.mylocation.mycompany.com:9080/uddisoap/

v pathtodb is the path to the UDDI20 database within the bin subdirectory of
your WebSphere AppServer installation, specified using forward slashes
regardless of platform; e.g. for Windows, this might be
C:/Progra~1/WebSphere/AppServer/bin/UDDI20 and for Unix platforms, it
might be /opt/WebSphere/AppServer/bin/UDDI20

v > setupuddi.log is an optional parameter to direct the output to a log file as
opposed to the default (which is to the screen)

For example, the following command (shown split for publication):
wsadmin -f setupuddi.jacl "C:/Progra~1/WebSphere/DeploymentManager/"
server1 MYRIAD "http://myriad.headoffice.xyz.com:9080/uddisoap/"
"C:/Progra~1/WebSphere/Appserver/bin/UDDI20"

will install the UDDI Registry application into the server server1 running on
node MYRIAD, and set it up to access the Cloudscape UDDI20 database
located in the bin subdirectory of the application server.

The setupuddi.jacl script will
a. Create a JDBC driver named UDDI.JDBC.Driver.<nodeName>.<server> and

a datasource named UDDI.Datasource.<nodeName>.<server> (where
<nodeName> is the name of the target node and <server> is the name of
the target server>, and will replace any existing driver and datasource of
that name.

b. Check whether the UDDI Registry application is already installed and, if so,
stop it and uninstall it.

c. Update the uddi.properties configuration property file to configure the
discoveryURLprefix value that you have specified and set the persister
property as ’Cloudscape’, and place this file into the location
config/cells/<currentcell>/nodes/<nodename>/servers/<servername>
/uddi.properties. You should make any further global configuration changes
using this copy of the file.

d. Place a number of files that are needed by the UDDI Registry into the
WebSphere configuration repository, and update the ws.ext.dirs list to
reference these files.

e. Install the UDDI Registry.

This script will deploy the UDDI Registry into the configuration under the
deployment manager, and then do a Synch which causes it to get installed into
the specified server.

What to do next

Return to the next step in the parent task Installing the UDDI Registry into a
deployment manager cell.

70 IBM WebSphere Application Server Network Deployment, Version 5: Servers

Setting up the UDDI Registry to use DB2 within a deployment
manager cell
Before you begin

Please see the section ″Choice of database product to be used as the persistence
store″ to decide which database product you should use as your persistence store
before proceeding further with this step.

This task, to set up the UDDI Registry to use DB2 within a deployment cell, is part
of the parent task to install the UDDI Registry into a deployment manager cell,
described in Installing the UDDI Registry into a deployment manager cell. You
should complete this task at the appropriate step in the parent task, then return to
and complete the parent task.

If you plan to use DB2 for the database in which the UDDI Registry data will be
held, use this task to create and load the UDDI Registry database using DB2, and
to setup and install the UDDI Registry application to use the DB2 database.

This task uses the UDDI DB2 Setup Wizard to configure DB2 on the system where
you want to run the UDDI Registry. Before starting this task, ensure that DB2 is
installed and running on that system.

Copy the UDDIReg directory tree from the deployment manager to the target
application server where DB2 will run.

The following steps should be carried out on the system on which the target
application server is located (referred to below as the ’target system’).

In this task you will invoke a script called setupuddi.jacl, specifying the target
node and application server into which the UDDI Registry is to be deployed.
Please note that if the target application server is running when you invoke
setupuddi.jacl, then the script will stop the server and will restart the server after it
has completed its operations.

Steps for this task
1. On Windows, ensure that since installing DB2 you have run the usejdbc2.bat

command file.
For more information about this, see ″Application Building Guide″ in the DB2
documentation.

2. Create and load the UDDI Registry database, called UDDI20.
Note: If you are migrating from an earlier version of the UDDI Registry, and
your UDDI20 DB2 database already exists, then you should skip this step
unless you want to replace the existing database with a new UDDI20 DB2
database. If you do choose to replace an existing database then all of your
existing UDDI data will be lost. Important: please also note that if you do
choose to replace the existing UDDI20 database, then there must not be any
applications or users accessing the database at the time that you run the UDDI
DB2 setup wizard.
The UDDI DB2 Setup Wizard used in this task will prompt you to provide the
DB2 userid and password under which the UDDI Registry database will be
created and subsequently accessed. Before starting this task, ensure that you
have created an appropriate DB2 userid and password. This same userid and
password must be used throughout the following steps where the DB2 userid
and password is requested.

Chapter 5. IBM WebSphere UDDI Registry 71

On Windows this should be a userid and password with administrative
privileges. On Unix platforms, you should supply the userid and password of
the DB2 instance in which you wish the database to be created.
To create the database you use the UDDI DB2 setup wizard, which is supplied
as a jar file called SetupDB2UDDI.jar in the UDDIReg/scripts subdirectory, by
following these steps:
a. Change directory to the directory containing the file SetupDB2UDDI.jar

(that is, either the UDDIReg/scripts directory in which it is supplied, or a
directory on the target system into which you have copied it).

b. In order to run the wizard, you need to first ensure that you have access
from your command line to the JVM supplied with WebSphere. This is done
as follows:
v On Windows, in a command window type the following command:

was_install\bin\setupcmdline.bat

Where was_install is the path to the directory where you installed
WebSphere Application Server.

For example,
C:\Program Files\WebSphere\AppServer\bin\setupcmdline.bat

v On Unix platforms, at a command line type one of the following
commands:
– If you are using bash, then as the root user run

./opt/WebSphere/AppServer/bin/setupCmdLine.sh

– If you are using csh, then as the root user run
source /opt/WebSphere/AppServer/bin/setupCmdLine.sh

where /opt/WebSphere/AppServer is the path to the directory where you
installed WebSphere Application Server.

c. In the same command window, start the UDDI DB2 setup wizard by typing
one of the following commands:
v To start a graphical user interface, type

java -jar SetupDB2UDDI.jar

v To start a text mode interface, type:
java -jar SetupDB2UDDI.jar -console

d. Follow the prompts to work through the wizard panels.
e. (Optional) If necessary, check the log files for the wizard. A log file called

UDDIloadDB.log is written to the directory from which the wizard is run
(but note that on Windows platforms, if you have decided not to overwrite
an existing UDDI20 database, then this fact will not be logged, and the log
file will not be created).

3. Create a JBDC driver and datasource to provide access to the UDDI20 DB2
database, and install the UDDI Registry application. This is done using the
WASADMIN tool, using as input the setupuddi.jacl script from the
UDDIReg/scripts subdirectory of the Deployment Manager. Note that this
script must be run on the deployment manager node.
You should either run this script from the UDDIReg/scripts subdirectory where
it is located, or copy it to some other suitable directory. Note that the
WSADMIN command is located in the bin subdirectory of the deployment
manager node.The syntax for this script for DB2 is:

72 IBM WebSphere Application Server Network Deployment, Version 5: Servers

wsadmin -f setupuddi.jacl
deploymgrpath
servername
nodename
discoveryURLprefix
dbname
db2userid
db2password
db2ziplocation
> setupuddi.log

where
v deploymgrpath is the fully qualified pathname of the deployment manager

install directory, specified using forward slashes regardless of platform; e.g.
for Windows, this might be c:/Progra~1/WebSphere/DeploymentManager

v servername is the name of the target application server on which you wish to
deploy the UDDI Registry, such as server1

v nodename is the name of the WebSphere node on which the target application
server runs. Typically, this will be the same as the machine name.

v discoveryURLprefix is the URL prefix to be used for discovery URLs. Typically
this will be of the form http://<ip-address>:9080/uddisoap/ so an example
of a discoveryURLprefix value might be
http://mynode.mylocation.mycompany.com:9080/uddisoap/

v dbname is the name of the UDDI Registry database under DB2. You should
specify UDDI20 for this parameter

v db2userid and db2password are a valid DB2 userid and password with
administrative privileges

v db2ziplocation is the path to the db2java zip file on your system, specified
using forward slashes regardless of platform; e.g. for Windows, this might be
C:/Progra~1/SQLLIB/java/db2java.zip

v > setupuddi.log is an optional parameter to direct the output to a log file as
opposed to the default (which is to the screen)

For example (shown split for publication):
wsadmin -f setuppuddi.jacl "C:/Progra~1/WebSphere/deploymentManager/"
server1 MYRIAD "http://myriad.headoffice.xyz.com:9080/uddisoap/"
UDDI20 db2admin secretpwd "C:/Progra~1/SQLLIB/java/db2java.zip" >
setupuddi.log

will install the UDDI Registry application into the server server1 running on
node MYRIAD, and set it up to access the DB2 UDDI20 database using the
userid ’db2admin’ and password ’secretpwd’.

The setupuddi.jacl script will:
a. Create a JDBC driver named UDDI.JDBC.Driver.<nodeName>.<server> and

a datasource named UDDI.Datasource.<nodeName>.<server> (where
<nodeName> is the name of the target node and <server> is the name of
the target server>, and will replace any existing driver and datasource of
that name.

b. Check whether the UDDI Registry application is already installed and, if so,
stop it and uninstall it.

c. Update the uddi.properties configuration file to configure the
discoveryURLprefix value that you have specified, and to set the persister
property as ’DB2’, and place this file into the location

Chapter 5. IBM WebSphere UDDI Registry 73

config/cells/<currentcell>/nodes/<nodename>/servers/<servername>
/uddi.properties. You should make any further global configuration changes
using this copy of the file.

d. Place a number of files that are needed by the UDDI Registry into the
WebSphere configuration repository, and update the ws.ext.dirs list to
reference these files.

e. Install the UDDI Registry.

What to do next

Return to the next step in the parent task Installing the up a UDDI Registry into a
deployment manager cell.

Installing the UDDI Registry into a single appserver
If you intend to run in a single WebSphere Application server, then complete the
following task.

When you select the UDDI Registry option, then the installation will place all files
that are needed to run a UDDI Registry onto the deployment manager install tree
on the machine on which you are installing IBM WebSphere Application Server for
Network Deployment.

To be able to run the UDDI Registry in a single application server instance in your
network space you must copy these files over to the application server and then
deploy the UDDI Registry. You can do this as follows:

Steps for this task
1. Stop the application server on which you plan to run the UDDI Registry; for

example, using the command stopServer server_name (stopServer.sh on Unix
Platforms)

2. Copy the uddi.ear file from the installableApps subdirectory of the deployment
manager install tree into the installableApps subdirectory of the target
application server’s install tree.

3. Copy the uddi.properties file from the properties subdirectory of the deployment
manager install tree into the properties subdirectory of the target application
server’s install tree.
In a subsequent step, you configure the UDDI Registry using the properties in
the uddi.properties file.

4. Copy both the uddiresourcebundles.jar and the setupuddimessages.jarfiles from the
lib subdirectory of the deployment manager install tree into the lib subdirectory
of the target application server’s install tree.

5. Copy the uddiejbclient.jar file and the EJB javadoc directory tree from the
UDDIReg/ejb subdirectory of the deployment manager install tree onto any
machines where you will be creating EJB clients to access the UDDI Registry.

6. Configure database support for the UDDI Registry database, in which the
UDDI Registry will be held.
To do this, complete one of the following tasks then return this point:
v Setting up the UDDI Registry to use Cloudscape in a single AppServer
v Setting up the UDDI Registry to use DB2 in a single AppServer

Note: If you set up the UDDI Registry application with a JDBC driver and
datasource that reference Cloudscape, but set the persister property in

74 IBM WebSphere Application Server Network Deployment, Version 5: Servers

uddi.properties to specify DB2, or vice versa, then some unexpected behavior
will result, such as a fatal error on deleting an entity. If this happens, you
should check that the above details are not in conflict. This only applies to a
UDDI Registry installation on a single appserver.

7. Ensure that the UDDI Registry is configured appropriately for your installation,
as described in the section on Configuring the UDDI Registry.

8. Stop then restart the application server.
(On Unix platforms you must remember to run the db2profile script before
issuing the startServer.sh server_name command. This script is located within the
DB2 instance’s home directory under SQLLIB and can be invoked, for example,
by typing:
". /home/db2inst1/sqllib/db2profile"

)

What to do next

Continue with Configuring the UDDI Registry.

Setting up the UDDI Registry to use Cloudscape in a single
appserver
Before you begin

Please see the section ″Choice of database product to be used as the persistence
store″ to decide which database product you should use as your persistence store
before proceeding further with this step.

If you plan to use Cloudscape for the database in which the UDDI Registry data
will be held, use this task to setup and install the UDDI Registry application to use
the supplied Cloudscape database.

This task configures Cloudscape on the host where you want to run the UDDI
Registry. Before starting this task, ensure that Cloudscape is installed and running
on that host, and that you can open a command window on that host.

This task, to configure Cloudscape for the UDDI Registry database. Cloudscape is
supplied with WebSphere Application Server, so you should not need to install
Cloudscape support.

This task, to configure Cloudscape for the UDDI Registry database, is part of the
parent task to install and setup a UDDI Registry, described in Installing and
Setting up a UDDI Registry. You should complete this task at the appropriate step
in the parent task, then return to and complete the parent task.

To configure Cloudscape for the UDDI Registry database, complete the following
steps:

Steps for this task
1. Copy the UDDI20 directory tree from the bin subdirectory of the deployment

manager tree into the bin subdirectory of the target application server’s install
tree.

2. Copy the uddicloudscapeuserfunc.jar file from the lib subdirectory of the
deployment manager install tree to the lib subdirectory of the target application
server’s install tree.

Chapter 5. IBM WebSphere UDDI Registry 75

3. Ensure that the persister property in the uddi.properties file is set to
persister=Cloudscape

4. Copy the appserversetupuddi.jacl script from the UDDIReg/scripts subdirectory
of the deployment manager install tree to the WebSphere Application Server
bin subdirectory (for example, on Windows,
C:\Progra~1\WebSphere\AppServer\bin).

5. Change directory to the WebSphere Application Server bin subdirectory.
6. Start the application server on which the UDDI Registry is to run.

For example, you can start the application server server1 by typing the
command:
startserver server1

7. Create a JDBC driver and datasource to provide access to the UDDI20
Cloudscape database, and install the UDDI Registry application.
To do this run the WSADMIN tool with the script appserversetupuddi.jacl as
input, on the target application server, using the following command syntax:
(You should either run this script from the UDDIReg/scripts subdirectory
where it is located, or copy it to some other suitable directory. Note that the
WSADMIN command is located in the WebSphere bin subdirectory.)
wsadmin -f appserversetupuddi.jacl

uddi-ear-location
servername
nodename
WebSphere-lib-subdirectory
cloudscapedbname
> setupuddi.log

Where:
v uddi-ear-location is the fully-qualified path to the uddi.ear file in the

installableApps subdirectory, specified using forward slashes regardless of
platform. For example, on Windows:
C:/Progra~1/WebSphere/AppServer/installableApps/uddi.ear

v servername is the name of the application server on which the UDDI registry
is to run; for example: server1

v nodename is the name of the WebSphere node on which the application
server, servername, is running. Typically this is the machine name.

v WebSphere-lib-subdirectory is the fully-qualified path to the WebSphere
Application Server lib subdirectory, specified using forward slashes
regardless of platform. For example:
– On Windows: C:/Progra~1/WebSphere/AppServer/lib
– On Unix: /opt/WebSphere/AppServer/lib

v cloudscapedbname is the fully-qualified path to the UDDI20 database within
the bin subdirectory of your WebSphere AppServer installation, specified
using forward slashes regardless of platform. For example:
– On Windows, C:/Progra~1/WebSphere/AppServer/bin/UDDI20
– On Unix, /opt/WebSphere/AppServer/bin/UDDI20

v > setupuddi.log is an optional parameter to direct the output to a log file as
opposed to the default (which is to the screen)

The appserversetupuddi.jacl script will complete the following actions:
a. Create a JDBC driver named UDDI.JDBC.Driver.<nodeName>.<server> and

a datasource named UDDI.Datasource.<nodeName>.<server> (where

76 IBM WebSphere Application Server Network Deployment, Version 5: Servers

<nodeName> is the name of the target node and <server> is the name of
the target server>, and will replace any existing driver and datasource of
that name.

b. Checks whether the WebSphere UDDI Registry application is already
installed and, if so, stop the application and uninstall it.

c. Installs the WebSphere UDDI Registry, then start it.

What to do next

Return to the next step in the parent task Installing the UDDI Registry into a single
appserver.

Setting up the UDDI Registry to use DB2 in a single appserver
Before you begin

Please see the section ″Choice of database product to be used as the persistence
store″ to decide which database product you should use as your persistence store
before proceeding further with this step.

This task, to configure DB2 for the UDDI Registry database, is part of the parent
task to install and setup a UDDI Registry, described in Installing and setting up a
UDDI Registry. You should complete this task at the appropriate step in the parent
task, then return to and complete the parent task.

If you plan to use DB2 for the database in which the UDDI Registry data will be
held, use this task to create and load the UDDI Registry database using DB2, and
to setup and install the UDDI Registry application to use the database.

This task uses the UDDI DB2 setup wizard to configure DB2 on the system where
you want to run the UDDI Registry. Before starting this task, ensure that DB2 is
installed and running on that system.

Copy the UDDIReg directory tree from the deployment manager to the target
application server where DB2 will run.

The following steps should be carried out on the system on which the target
application server is located (referred to below as the ’target system’).

Steps for this task
1. On Windows, ensure that since installing DB2 you have run the usejdbc2.bat

command file.
For more information about this, see ″Application Building Guide″ in the DB2
documentation.

2. Create and load the UDDI Registry database, called UDDI20.
Note: If you are migrating from an earlier version of the UDDI Registry, and
your UDDI20 DB2 database already exists, then you should skip this step
unless you want to replace the existing database with a new UDDI20 DB2
database. If you do choose to replace an existing database then all of your
existing UDDI data will be lost. Important: please also note that if you do
choose to replace the existing UDDI20 database, then there must not be any
applications or users accessing the database at the time that you run the UDDI
DB2 setup wizard.
The UDDI DB2 setup wizard used in this task will prompt you to provide the
DB2 userid and password under which the UDDI Registry database will be

Chapter 5. IBM WebSphere UDDI Registry 77

created and subsequently accessed. Before starting this task, ensure that you
have created an appropriate DB2 userid and password. This same userid and
password must be used throughout the following steps where the DB2 userid
and password is requested.
On Windows this should be a userid and password with administrative
privileges.
On Unix platforms, you should supply the userid and password of the DB2
instance in which you wish the database to be created.
To create the database you use the UDDI DB2 setup wizard, which is supplied
as a jar file called SetupDB2UDDI.jar in the UDDIReg/scripts subdirectory, by
following these steps:
a. Change directory to the directory containing the file SetupDB2UDDI.jar

(that is, either the UDDIReg/scripts directory in which it is supplied, or a
directory on the target system into which you have copied it).

b. In order to run the wizard, you need to first ensure that you have access
from your command line to the JVM supplied with WebSphere. This is done
as follows:
v On Windows, in a command window type the following command:

was_install\bin\setupcmdline.bat

Where was_install is the path to the directory where you installed
WebSphere Application Server.

For example, C:\Program
Files\WebSphere\AppServer\bin\setupcmdline.bat

v On Unix platforms, at a command line type one of the following
commands:
– If you are using bash, then as the root user run

. /opt/WebSphere/AppServer/bin/setupCmdLine.sh

– If you are using csh, then as the root user run
source /opt/WebSphere/AppServer/bin/setupCmdLine.sh

where /opt/WebSphere/AppServer is the path to the directory where you
installed WebSphere Application Server.

c. In the same command window, start the UDDI DB2 setup wizard by typing
one of the following commands:
v To start a graphical user interface, type

java -jar SetupDB2UDDI.jar

v To start a text mode interface, type:
java -jar SetupDB2UDDI.jar -console

d. Follow the prompts to work through the wizard panels.
e. (Optional) If necessary, check the log files for the wizard. A log file called

UDDIloadDB.log is written out into the directory from which the wizard is
run (but note that, on Windows platforms, if you have decided not to
overwrite an existing UDDI20 database, then this fact will not be logged,
and the log file will not be created).

3. Ensure that the persister property in the uddi.properties file is set to
persister=DB2.

4. On Unix, ensure that you have run the db2profile script to set up the
environment for the DB2 instance that the UDDI Registry is using.
For example, type the command:

78 IBM WebSphere Application Server Network Deployment, Version 5: Servers

. /home/db2inst1/sqllib/db2profile

5. Start the application server on which the UDDI Registry is to run.
For example, you can start the application server server1 by typing the
command:
startserver server1

6. Copy the appserversetupuddi.jacl script from the UDDIReg/scripts subdirectory
of the deployment manager install tree to the WebSphere Application Server
bin subdirectory (for example, on Windows,
C:\Progra~1\WebSphere\AppServer\bin).

7. Change directory to the WebSphere Application Server bin subdirectory.
8. Create a JDBC driver and datasource to provide access to the UDDI20 database,

and install the UDDI Registry application.
To do this run the WSADMIN tool with the script appserversetupuddi.jacl as
input, on the target application server, using the following command syntax:
(You should either run this script from the UDDIReg/scripts subdirectory
where it is located, or copy it to some other suitable directory. Note that the
WSADMIN command is located in the WebSphere bin subdirectory.)
wsadmin -f appserversetupuddi.jacl

uddi-ear-location
servername
nodename
WebSphere-lib-subdirectory
dbname
db2userid
db2pwd
db2-install-dir/java12/db2java.zip
> setupuddi.log

where
v uddi-ear-location is the fully-qualified path to the uddi.ear file in the

installableApps subdirectory, specified using forward slashes regardless of
platform. For example, on Windows:
C:/Progra~1/WebSphere/AppServer/installableApps/uddi.ear

v servername is the name of the application server on which the UDDI registry
is to run; for example: server1

v nodename is the name of the WebSphere node on which the application
server, servername, is running

v WebSphere-lib-subdirectory is the fully-qualified path to the WebSphere
Application Server lib subdirectory, specified using forward slashes
regardless of platform. For example:
– On Windows: C:/Progra~1/WebSphere/AppServer/lib
– On Unix: /opt/WebSphere/AppServer/lib

v dbname is the name of the UDDI Registry database under DB2. You should
specify UDDI20 for this parameter

v db2userid and db2pwd are a valid DB2 userid and password with
administrative privileges, as specified in an earlier step.

v db2-install-dir is the path under which you have installed DB2 on your
system, specified using forward slashes regardless of platform. For example,
on Windows: C:/Progra~1/SQLLIB

v > setupuddi.log is an optional parameter to direct the output to a log file as
opposed to the default (which is to the screen)

The appserversetupuddi.jacl will complete the following actions:

Chapter 5. IBM WebSphere UDDI Registry 79

a. Create a JDBC driver named UDDI.JDBC.Driver.<nodeName>.<server> and
a datasource named UDDI.Datasource.<nodeName>.<server> (where
<nodeName> is the name of the target node and <server> is the name of
the target server>, and will replace any existing driver and datasource of
that name.

b. Checks whether the WebSphere UDDI Registry application is already
installed and, if so, stop the application and uninstall it.

c. Installs the WebSphere UDDI Registry, then starts it.

What to do next

Return to the next step in the parent task Installing and Setting up a UDDI
Registry.

Reinstalling the UDDI Registry application
If you wish to reinstall the UDDI Registry then please follow the appropriate
section below.

Reinstalling into a deployment manager cell

If you wish to reinstall the UDDI Registry into the target application server, for
example because you wish to alter certain aspects of its configuration using AAT,
then you should rerun the setupuddi.jacl script (described in the appropriate link
below
v ″Setting up the UDDI Registry to use Cloudscape within a deployment cell″
v ″Setting up the UDDI Registry to use DB2 within a deployment cell″

Reinstalling into a single appserver

Remove the UDDI Registry application in the same manner as any other Enterprise
Application and then install using the appropriate link shown below:
v Setting up the UDDI Registry to use Cloudscape in a single AppServer
v Setting up the UDDI Registry to use DB2 in a single AppServer

Removing the UDDI Registry application from a deployment manager
cell

Before you begin

If you wish to completely remove the UDDI Registry application from the target
application server in the deployment manager cell, then you should run the
wsadmin (wsadmin.sh on Unix Platforms) script removeuddi.jacl, which is located in
the UDDIReg/scripts directory of the deployment manager install tree.

Please note that if the target server specified on invoking removeuddi.jacl is
running at the same time, then the script will stop the server and will restart the
server after when it has completed its operations.

Steps for this task
1. The syntax for this script is:

80 IBM WebSphere Application Server Network Deployment, Version 5: Servers

wsadmin -f removeuddi.jacl
servername
nodename
> removeuddi.log

Where servername and nodename are the server and node where you have
deployed the UDDI Registry application. By default output will go to the
screen, but, optionally, you can specify ’> removeuddi.log’ to direct output to a
log file.

For example,
wsadmin -f removeuddi.jacl server1 myriad

will remove the UDDI Registry application and related files from server server1
running in node myriad, and will send any messages to the screen.

Removing the UDDI Registry application from a single appserver
Before you begin

If you wish to completely remove the UDDI Registry application from a standalone
application server then you should run the WSADMIN script
appserverremoveuddi.jacl, which will have been installed into the
UDDIReg/scripts directory when you installed the UDDI Registry as part of a
Network Deployment install.

Steps for this task are:

Steps for this task
1. The syntax for this script is:

wsadmin -f appserverremoveuddi.jacl
servername
nodename
> removeuddi.log

where
v servername and nodename are the name of the standalone application node in

which it runs (these are the names that you specified when you ran
appserversetupuddi.jacl to install the UDDI Registry application).

v by default output will go to the screen, but, optionally, you can specify ’>
removeuddi.log’ to direct the output to a log file.

For example,
wsadmin -f appserverremoveuddi.jacl server1 monolith

will remove the UDDI Registry application and related files from server server1
running in node monolith, and will send any messages to the screen.

Configuring the UDDI Registry
Before you begin

The UDDI Registry is supplied as a J2EE application file, uddi.ear. This is installed
into the WebSphere Application Server during installation. If you want to change
any of its configuration properties using AAT see ″Configuring SOAP properties
with the AAT″.

Chapter 5. IBM WebSphere UDDI Registry 81

If you enable WebSphere security then to run the publish API servlet of the IBM
WebSphere UDDI Registry, you also need to configure WebSphere to use HTTPS
and SSL, as described in Configuring WebSphere to use HTTPS and SSL

You can configure the following aspects of the UDDI Registry:
v ″Configuring global UDDI properties″

v ″Modifying the database userid and password″

v ″Configuring security properties″

v ″Configuring the UDDI User Console (GUI) for multiple language encoding
support″

v ″Customizing the UDDI User Console (GUI)″
v ″Configuring SOAP interface properties″

v ″Configuring SOAP properties with the AAT″

v ″Configuring SOAP properties in the deployment descriptor″

v ″Configuring WebSphere to use HTTPS and SSL″

Configuring global UDDI properties
Before you begin

To set the following global UDDI properties, edit the properties file
uddi.properties, which is in one of the following locations depending on where
you have installed the UDDI Registry:
v If you have installed the UDDI Registry into an application server within a

Deployment Manager cell, then the uddi.properties file will be located in the
configuration repository, under the application server; that is in
config/cells/<cellname>/nodes/<nodename>/servers/<servername>, where
<cellname> is the name of the Deployment Manager cell, <nodename> is the
name of the node in which the application server is installed, and <servername>
is the name of the application server in which you have installed the UDDI
Registry.

v If you have installed the UDDI Registry into a single application server which is
not part of a Deployment Manager cell, then the uddi.properties file will be
located in the properties subdirectory of the WebSphere Application Server in
which you have installed the UDDI Registry application.

The properties that can be changed within uddi.properties are as follows:
v The dbMaxResultCount, which is the limit on the number of rows of

information that should be returned on Find requests, and will apply if the
request does not specify a maxRows limit itself (or if it specifies a limit which
exceeds this value). The initial value for this in uddi.properties is 100.

v The persister, which indicates what database is to be used as the persistence
store for the UDDI Registry database. If you have installed the UDDI Registry
into an application server within a Deployment Manager cell, then the persister
property will have been set to the corect valuefor you. If you change this value,
then you must also ensure that you have a UDDI Registry database created
using the chosen database product (for more details about the UDDI Registry
database, please refer to the section on ″Installing the UDDI Registry″). You
should also be aware that any data published to the UDDI Registry with one
setting of the persister property will not be accessible when running the UDDI
Registry application with a different setting for the persister property. The valid
values for the persister property are:
– persister=DB2

82 IBM WebSphere Application Server Network Deployment, Version 5: Servers

indicating that DB2 is to be used as the persistence store
– persister=Cloudscape

indicating that Cloudscape is to be used as the persistence store

The initial value for this in uddi.properties is Cloudscape.

Note: This property is dynamically set by the setupuddi.jacl script when
installing into a Deployment Manager cell so in this case you should not need to
modify it.

v The default language to be used on a publish request as the xml:lang when one
is not specified. The initial value for this in uddi.properties is en-US. This property
must contain one of the valid xml:lang values.

v The UDDI site operator name. This is a string which is stored in every registry
object, to indicate the operator of the UDDI Registry. The initial value for this in
uddi.properties is www.mycompany.com/uddi. This property does not have any
particular functional use, so its value can be set to any string that you feel is
suitable.

v The maximum number of search keys that can be used on find API requests. The
initial value for this in uddi.properties is 5.

v The getServletURLprefix and getServletname name, used to build up the
discovery URL. The initial values for these are
http://localhost:9080/uddisoap/ and get. If you have installed the UDDI
Registry into an application server within a Deployment Manager cell, then the
getServletURLPrefix property will have been set for you using the value you
specified as a parameter to the setup script. You are recommended to set suitable
values for these properties before you first use the UDDI Registry.
Note: This property is dynamically set by the setupuddi.jacl script when installing
into a Deployment Manager cell so in this case you should not need to modify
it.

In order for your changes to take effect, you must stop and restart the UDDI
Registry application using the WebSphere Administrative Console.

Modifying the database userid and password
Before you begin

If you use DB2 as the persistence store for the UDDI Registry, and you need to
change the database userid and/or password, you should alter the user and
password values in the custom properties of the ’UDDI Datasource’, which can be
edited from the WebSphere Administrative Console. The UDDI.Datasource is under
datasources within the UDDI.JDBC.Driver, which is itself found under JDBC
Providers under Resources. Do not alter the databaseName.

Configuring security properties
Before you begin

See Configuring WebSphere to use HTTPS and SSL for details on configuring
security properties.

To run the publish API servlet of the IBM WebSphere UDDI Registry, you also
need to configure WebSphere to use HTTPS and SSL, as described in Configuring
WebSphere to use HTTPS and SSL

Chapter 5. IBM WebSphere UDDI Registry 83

Configuring the UDDI User Console (GUI) for multiple
language encoding support

Before you begin

If you want to use multiple language encoding support in the User Console (GUI),
you need to configure the application server into which the UDDI Registry
application is installed with UTF-8 encoding enabled. To do this, please refer to
(″Configuring application servers for UTF-8 encoding″) elsewhere in the
WebSphere Application Server version 5 InfoCenter on enabling an application
server for UTF-8.

Customizing the UDDI User Console (GUI)
Before you begin

The look and feel of the UDDI Console is determined by the styles defined in the
uddi_gui.css file which is located in the /gui.war/theme directory of the installed
UDDI Registry application directory. The UDDI Registry The UDDI Registry
application directory will be one of the following, depending on where you ahve
installed the UDDI Registry:
v If you have installed the UDDI Registry into an application server within a

Deployment Manager cell, the directory is UDDIReg.ear under the /apps
directory of the configuration repository for the cell.

v If you have installed the UDDI Registry into a single application server which is
not part of a Deployment Manager cell, the directory is UDDIRgistry.ear under
the installedApps directory of the WebSphere Application Server in which you
have installed the UDDI registry application.

The contents of this file can be edited to change the colors, fonts and font sizes
according to the user’s preference.

The content and layout of the UDDI User Console is provided by JSP pages, which
can be customized by a programmer who is familiar with JSPs. The JSP pages are
found in the uddi.ear enterprise application, which is under the installedApps
subdirectory of the WebSphere AppServer installation. To locate the JSPs, you
should expand the UDDI_Registry.ear, open the gui.war, and they are located
under WEB-INF in the pages subdirectory. So, on a Windows system which has
WebSphere installed in the default location, the JSP files will be found in
″<WebSphere-install-dir>\installedApps\UDDI_Registry.ear\gui.war\WEB-
INF\pages″. These JSP pages also contain some application logic (as opposed to
presentation logic) which should not be changed.

Configuring SOAP interface properties
Before you begin

You can configure the following SOAP interface properties
v defaultPoolSize - the number of SOAP parsers with which to initialize the parser

pool for the SOAP interface. The can be set independently for the Publish
(uddipublish) and Inquiry (uddi) APIs. For example, if you expect more
inquiries than publish requests via the SOAP interface, you can set a larger pool
size for the Inquiry API. The default initial size for both APIs is 10.

v The context root used for the Publish and Inquiry APIs, which forms a part of the
URL by which they are accessed. By default this is /uddisoap.

84 IBM WebSphere Application Server Network Deployment, Version 5: Servers

v Whether the API is to be secure (via HTTPS) or insecure (via HTTP). The default
is to use HTTPS.

To configure the following SOAP interface properties, you can use either of the
following methods, as described below:
v ″Configuring SOAP properties with the AAT″ (the recommended option,

especially for a production environment)
v ″Configuring SOAP properties in the deployment descriptor″ for the SOAP

module in the UDDI application directly. This option is faster and may be the
preferred method in a test environment.

Configuring SOAP properties with the AAT
Before you begin

To configure SOAP properties by using the WebSphere Application Assembly tool,
complete the following steps:
v Select Update and click on the Application icon.
v Select the uddi.ear file (this is placed, by the UDDI installation, into the UDDI

install directory (e.g. C:\WebSphere\installableApps\uddi.ear).
v Expand the uddi.ear icon on the left hand pane in the AAT.
v Expand the Web Modules tree.
v Expand the uddi Soap tree
v To change the defaultPoolSize, expand Web Components and then uddipublish (for

the publish API) or uddi (for the inquiry API).
– Click on Initialization Parameters which will show the defaultPoolSize parameter

in the upper right hand pane. This can be edited in the lower right-hand
pane.

v To change the context root, click on UDDI Soap which will display general
information about the SOAP module in the lower right hand pane in AAT. The
context root can be edited in this pane.

v To change the publish API to use HTTP (instead of HTTPS), click on Security
Constraints and change the Transport Guarantee from Confidential to none.

v Having made any changes above, you must now save them. To do this, click on
File -> Save (or Save As) to save your changes.

v Redeploy the uddi.ear to WebSphere, by first removing it and reinstalling it via
the Administrator’s Console.

Configuring SOAP properties in the deployment descriptor
Before you begin

To configure SOAP properties by using the WebSphere Application Assembly tool,
complete the following steps:
1. The deployment descriptor for the SOAP module (web.xml) is found in the

WEB-INF subdirectory of the uddi.ear application in the installed applications
within the WebSphere install directory (for example, <WebSphere-install-
dir>\installableApps\uddi.ear\soap.war\WEB-INF). It can be edited directly to
specify the desired settings.

2. Stop and restart the WebSphere Application server for the changes to take
effect.

Chapter 5. IBM WebSphere UDDI Registry 85

Configuring WebSphere to use HTTPS and SSL
Before you begin

To support the use of secure access with the IBM WebSphere UDDI Registry, you
need to configure WebSphere to use HTTPS and SSL. Please refer to the
information available elsewhere in this InfoCenter for configuring SSL in
WebSphere Application Server. It is assumed throughout the information for the
UDDI Registry that, where SSL is used, it has been configured on port 9443.

Administering the UDDI Registry
Before you begin

This section describes the various tasks about administering the UDDI Registry.
v ″Running the UDDI Registry″

v ″Backing up and restoring the UDDI Registry database″

Running the UDDI Registry
Before you begin

The UDDI Registry is started automatically when the Application Server is started.
In order to stop and restart it, use the Administrative console.

Backing up and restoring the UDDI Registry database
Before you begin

If you want to protect the data in your UDDI Registry database, you can backup
and restore the database using the facilities of the database product. For DB2, you
can do this by using the export and import functions of the DB2 Control Center.
For Cloudscape you can simply use operating system tools to copy the database
directory. Please refer to the database product information for more details.

The UDDI Registry database is called UDDI20, and the tables which should be
backed up are:
v ADDRESS
v ADDRLINE
v BSERVICE
v BTEMPLATE
v BUSINESS
v CATEGORY
v CATEGORYBAG
v CONTACT
v DESCR
v DISCOVERYURL
v EMAIL
v EXTCATEGORY
v IDENTIFIERBAG
v INSTANCEDETAIL
v NAMEELEMENT
v OVERVIEWDOC

86 IBM WebSphere Application Server Network Deployment, Version 5: Servers

v PHONE
v PUBLISHERASSERTION
v SERVICEPROJECTION
v TMODEL
v VALIDATIONCACHE
v VALIDATIONSERVICES

UDDI user console
This topic describes the layout of the UDDI user console, also referred to as the
Graphical User Interface (GUI), which you can use to act on the IBM WebSphere
UDDI Registry.

For information about how to display the UDDI user console, see Displaying the
user console.

If you will be using the UDDI Console, then it is recommended that you configure
the application server into which you have installed the UDDI Registry for UTF-8
encoding support: please refer to the section on ″Configuring the UDDI User
Console for multiple language encoding support″.

The UDDI user console is split into three distinct areas. At the top of the screen are
buttons which activate various functions in the areas below this bar. These buttons
are:

Home returns you to the IBM WebSphere UDDI Registry welcome page

Find activates the Find tab on the frame below to the left

Publish
similarly activates the Publish tab on the frame below to the left

Below the WebSphere UDDI Registry banner the screen is split into two parts. On
the left are the two tabs mentioned above, the Find and Publish tabs.

Find tab

The Find tab is in two parts. At the top, a Quick Find service is provided. There
are three radio buttons to enable a choice of ’service’, ’business’ and ’technical
model’ finds. Below these radio buttons is a text entry box for entering the name
to search for and, beneath this, a ’Find’ link to start the search. Comments are
provided to show the user the wildcard character. The results of clicking on the
’Find’ link are shown in the detail frame to the right.

Beneath the Quick Find is a section for Advanced Find functions which enables
the user to choose which entity they want to perform an advanced search on.
There are three links: Find services, Find businesses and Find technical models.
Clicking one of these links displays the corresponding advanced search form in the
frame to the right, which the user may use to enter search criteria. The Locator
section has a link (marked in blue with the words ″Show category tree″) which
displays the tree from which the user can select categories (or taxonomies). This is
shown in the left hand frame In the advanced search form there are two links to
start the search (mid-way down and at the bottom).

The results of clicking either of the two links to start the search are displayed in
the same detail frame.

Chapter 5. IBM WebSphere UDDI Registry 87

Publish tab

The Publish link on the top banner activates the Publish tab in the navigation frame
to the left.

The Publish tab is split into three distinct sections. The top part is a Quick Publish
section to allow the user to publish a business or technical model by name only.
There are two radio buttons to enable a choice of ’business’ or ’technical model’.
Below these radio buttons is a text entry box for entering the name to assign to the
selected entity and, beneath this, a blue ’Publish now’ link to publish the entity.
The results of clicking on the Publish now link are shown in the detail frame to
the right.

To publish an entity with more detail, such as with multiple names, descriptions
and categories, use the Advanced Publish section below this. The comments below
each link (’Add a business’ and ’Add a technical model’) describe individual
functions. Clicking one of these links displays the corresponding advanced publish
form in the detail frame where the user may enter details about the entity they
want to publish. As in the Advanced Find functions above, there are two links to
publish a business or technical model (one towards the top of the form and the
other at the bottom). Similarly the Locator section allows taxonomies to be shown
in the left frame from which the user can select categories.

Below the Advanced Publish section is a Registered Information section which has
a link to Show Owned Entities in order to show the businesses, services and
technical models registered to the individual user, and pending business
relationships. Clicking the Show Owned Entities link displays the Show Owned
Entities page in the detail frame at the right. The Show Owned Entities page is
organised in three sections: Registered Businesses, Pending Business
Relationships and Registered Technical Models. Each section shows the number
of registered items. Users can Edit or Delete businesses owned by them by clicking
the appropriate links in the Actions column.

Services are added to a business by clicking the Add a Service link in the Services
column of the Registered Businesses section. Services can also be ’referenced’ by a
business as if the business was the owner of the service. This ’service projection’ is
performed by clicking the Reference a service link in the Services column.
Services associated with a business, whether they are owned or referenced, can be
displayed by clicking the Show services link. This acts as a toggle, displaying
services available for editing or deleting.

A business can be associated with another business in the UDDI Registry and this
function is performed by clicking the Add a relationship link in the Actions
column of the Registered Businesses section. Clicking the Show related businesses
link in the Actions column displays a list of any completed business relationships.

The Pending Business Relationships section shows all incomplete publisher
assertions, where only one party has asserted a relationship and is waiting for the
other party to make the same assertion. This section reminds the user of any
relationships that involve their businesses. Once both parties have asserted the
same relationship between two businesses, the relationship moves from the
Pending Business Relationships section and appears in the list of relationships
displayed after clicking the Show related businesses link in the Registered
Businesses section.

88 IBM WebSphere Application Server Network Deployment, Version 5: Servers

Technical Models owned by the user are shown in the bottom Registered
Technical Models section. As for businesses, users can Edit or Delete technical
models owned by them by clicking the appropriate links in the Actions column.

Note: Users should take note that deletion of Technical Models (tModels) does not
cause them to be physically deleted, but hidden. This is in accordance with the
UDDI Registry V2.0 specifications. After deletion Technical Models are shown
under the ″Shown Owned Entities″ link on the publish page but not via the Find
links on the Find page. ALL other entities are deleted from the UDDI Registry in
the normal way.
v ″Displaying the user console″

Displaying the user console
Before you begin

This topic describes how to display the UDDI Registry user console (sometimes
referred to as the GUI). The URL you use depends on whether or not you have
enabled WebSphere security:
v If you have the WebSphere security disabled, you can access the UDDI User

Console by using the following URL in your Web browser:
http://<hostname>:9080/uddigui

Note: With WebSphere security disabled, all the publish operations are
performed using a userid of UNAUTHENTICATED.

v If you have WebSphere security enabled, you can access the UDDI User Console
through HTTPS by using the following URL in your Web browser:
https://<hostname>:9443/uddigui

The User Console displays the default frameset containing the header frame,
navigation frame showing find options, and details frame. When you click the
link to show the publish options in the navigation frame, you are challenged for
a userid and password.

If WebSphere security is enabled and you try to access a publish action via an
unsecured link, e.g. clicking the publish link on the navigation frame where the
User Console was opened with
http://<hostname>:9080/uddigui

you will be redirected to a secure logon. Inquire functions will work as expected.

SOAP Application Programming Interface for the UDDI Registry
Access to the SOAP API will by default be available at:

http://localhost:9080/uddisoap/inquiryapi or

https://localhost:9443/uddisoap/publishapi

Where ’localhost’ is the address by which your WebSphere server is known. If
security is enabled on your WebSphere server, the publishapi will also be protected
by basic-authentication. By default, when security is enabled, the publishapi is
restricted to HTTPS, this is to ensure the confidentiality and security of your data
whilst in transit to UDDI. If you do not wish to use SSL, when security is enabled,
you will have to modify the jar file using AAT to remove the CONFIDENTIAL

Chapter 5. IBM WebSphere UDDI Registry 89

restriction placed upon the publish URLs. For more information about this topic,
see the section on Configuring SOAP properties with the AAT If you normally
access your WebSphere server via a web server, you will need to ensure the plugin
configuration for the WebSphere plugin on the web server has been updated since
installing UDDI. This will then allow access to the UDDI SOAP API through the
URLs

http://localhost/uddisoap/inquiryapior

https://localhost/uddisoap/publishapi

Where ’localhost’ is the address by which your web server is accessed. Note that if
you plan on accessing UDDI via a web server in this manner, that the samples will
require modification to inform them of the SSL certificates used by your web
server, so that the samples can make SSL connections to the web server. It is
beyond the scope of this document to cover the many variants available on web
server/WebSphere/java SSL configurations
v ″Programming the UDDI SOAP API″
v ″Warning: no string named [rwsu_soapapi_errors] found.″

Programming the UDDI SOAP API
To use the SOAP API construct a properly formed UDDI message within the body
of a SOAP request, and send it using HTTP POST to the URL of the API which the
request relates to. The response will be returned within the body of the HTTP
reply. Although the samples are written in Java, you may use other programming
languages to create your SOAP client, providing you still send requests compliant
to the SOAP specification. Valid UDDI requests should conform to the UDDI
schema, and be as detailed within the UDDI standard documentation available
from:

http://www.uddi.org/

For more information on using the SOAP API, refer to ″The UDDI Registry
application programming interface″ section within this InfoCenter.

SOAP API error handling tips in the UDDI Registry
When using the SOAP API there are three main categories that may cause an error
to be returned:-
v An invalid/incorrect request being sent to the SOAP API. eg. Incorrectly formed

XML, Badly formed UDDI requests, Non-schema compliant requests.
v Invalid business logic within a SOAP API request. eg. Attempting to delete a

business that does not exist.
v Problems occurring while processing a valid request. eg. Server connection to

database failure.

In each of these cases, an error will be returned to the client that made the request,
which will attempt to explain further what the problem was.

90 IBM WebSphere Application Server Network Deployment, Version 5: Servers

UDDI Registry application programming interface
The IBM WebSphere UDDI Registry fully supports the Application Programming
Interface (API) specification which can be viewed by visiting
http://www.uddi.org/pubs/ProgrammersAPI_v2.pdf. Any changes from this
specification are documented within the IBM WebSphere UDDI Registry
information.
v The Inquiry API
v The Publish API

Inquiry API for the UDDI Registry
The Inquiry API provides three forms of query that follow broadly used
conventions which match the needs of software traditionally used within registries.
v ″Warning: no string named [rwsu_browse_api] found.″
v ″Warning: no string named [rwsu_drilldown] found.″
v ″Warning: no string named [rwsu_invocation_pattern] found.″
v ″Inquiry API functions in the UDDI Registry″

Browse pattern for the UDDI Registry
Software that allows people to explore and examine data - especially hierarchical
data - requires browse capabilities. The browse pattern characteristically involves
starting with some broad information, performing a search, finding general result
sets and then selecting more specific information for drill-down.

The UDDI API specifications accommodate the browse pattern by way of the
find_xx API calls. These calls form the search capabilities provided by the API and
are matched with summary return messages that return overview information
about the registered information that is associated with the inquiry message type
and the search criteria specified in the inquiry.

A typical browse sequence might involve finding whether a particular business
you know about has any information registered. This sequence would start with a
call to find_business, perhaps passing the first few characters of a business name
that you already know. This returns a businessList result. This result is overview
information (keys, names and descriptions) derived from the registered
businessEntity information, matching on the name fragment that you provided. If
you spot the business you are looking for within this list, you can drill down into
the corresponding businessService information, looking for particular technical
models (e.g. purchasing, shipping, etc) using the find_service API call. Similarly, if
you know the technical fingerprint (tModel signature) of a particular software
interface and want to see if the business you’ve chosen provides a web service that
supports that interface, you can use the find_binding inquiry message.

Drilldown pattern for the UDDI Registry
When you have a key for one of the four main data types managed by a UDDI
registry, you can use that key to access the full registered details for a specific data
instance. The UDDI data types are businessEntity, businessService,
bindingTemplate and tModel. You can access the full registered information for any
of these structures by passing a relevant key type to one of the get_xx API calls.

Continuing the example from the previous section on browsing, one of the data
items returned by all of the find_x return sets is key information. In the case of the
business we were interested in, the businessKey value returned within the contents
of a businessList structure can be passed as an argument to get_businessDetail. The

Chapter 5. IBM WebSphere UDDI Registry 91

successful return to this message is a businessDetail message containing the full
registered information for the entity whose key value was passed. This will be a
full businessEntity structure.

Invocation pattern for the UDDI Registry
In order to prepare an application to take advantage of a remote web service that
is registered within the UDDI registry by other businesses or entities, you need to
prepare that application to use the information found in the registry for the specific
service being invoked.

The bindingTemplate data obtained from the UDDI registry represents the specific
details about an instance of a given interface type, including the location at which
a program starts interacting with the service. The calling application or program
should cache this information and use it to contact the service at the registered
address whenever the calling application needs to communicate with the service
instance. In previously popular remote procedure technologies tools have
automated the tasks associated with caching (or hard coding) location information.
Problems arise however when a remote service is moved without any knowledge
on the part of the callers. Moves occur for a variety of reasons, including server
upgrades, disaster recovery, and service acquisition and business name changes.

When a call fails using cached information previously obtained from a UDDI
Registry, the proper behavior is to query the UDDI Registry for fresh
bindingTemplate information. The proper call get_bindingDetail passing the
original bindingKey value. If the data returned is different from the cached
information, the service invocation should automatically retry the invocation using
the fresh information. If the result of this retry is successful, the new information
should replace the cached information.

By using this pattern with web services, a business using a UDDI Registry can
automate the recovery of a large number of partners without undue
communication and coordination costs. For example, if a business has activated a
disaster recovery site, most of the calls from partners will fail when they try to
invoke services at the failed site. By updating the UDDI information with the new
address for the service, partners who use the invocation pattern will automatically
locate the new service information and recover without further administrative
action.

Inquiry API functions in the UDDI Registry
These messages represent inquiries that can be made of the UDDI Registry. These
messages all behave synchronously.

The queries available are:

find_binding
Used to locate specific bindings within a registered businessService.
Returns a bindingDetail message.

find_business
Used to locate information about one or more businesses. Returns a
businessList message.

find_relatedBusinesses
Used to locate information about businessEntity registrations that are
related to a specific business entity whose key is passed in the inquiry. The
Related Businesses feature is used to manage registration of business units
and subsequently relate them based on organizational hierarchies or
business partner relationships. Returns a relatedBusinessList message.

92 IBM WebSphere Application Server Network Deployment, Version 5: Servers

find_service
Used to locate specific services within a registered businessEntity. Returns
a serviceList message.

find_tModel
Used to locate one or more tModel information structures. Returns a
tModelList structure.

get_bindingDetail
Used to get full bindingTemplate information suitable for making one or
more service requests. Returns a bindingDetail message.

get_businessDetail
Used to get the full businessEntity information for one or more businesses
or organizations. Returns a businessDetail message.

get_serviceDetail
Used to get full details for a given set of registered businessService data.
Returns a serviceDetail message.

get_tModelDetail
Used to get full details for a given set of registered tModel data. Returns a
tModelDetail message.

Accessible query values in the UDDI Registry: A list of the accessible queries for
the UDDI Registry is given here.

Accessible queries within the UDDI Registry are:

find_binding
used to locate specific bindings within a registered businessService.
Returns a bindingDetail message that contains zero or more
bindingTemplate structures matching the criteria specified in the
arguement list.

find_business
used to locate information about one or more businesses. Returns a
businessList message that matches the conditions specified in the
arguments.

find_relatedBusinesses
used to locate information about businessEntity registrations that are
related to a specific business entity whose key is passed in the inquiry. The
Related Businesses feature is used to manage registration of business units
and subsequently relate them based on organizational hierarchies or
business partner relationships. Returns a relatedBusinessList message
containing results that match the conditions specified in the arguments.

find_Service
used to locate specific services within a registered businessEntity. Returns a
serviceList message that matches the conditions specified in the arguments.

find_tModel
used to locate a list of tModels that match a set of specified criteria. The
response will be a list of abbreviated information about registered tModel
data that amtches the criteria specified.The result will be returned in a
tModelList message.

get_bindingDetail
used to requesting the run-time bindingTemplate information for the
purpose of invoking a registered business API. Returns a bindingDetail
message.

Chapter 5. IBM WebSphere UDDI Registry 93

get_businessDetail
used to return complete businessEntity information for one or more
specified businessEntity registrations matching on the businessKey values
specified.

get_businessDetailExt
used to return extended businessEntity information for one or more
specified businessEntity registrations. This message returns exactly the
same information as the get_businessDetail message, but may contain
additional attributes if the source is an external registry that is compatible
with the API specification.

get_serviceDetail
used to request full information about a known businessService structure.
Returns a serviceDetail message.

get_tModelDetail
get_tModelDetail

For full details of the syntax of the above queries, please refer to the API
Specification at http://www.uddi.org/pubs/ProgrammersAPI-V2.00-Open-
20010608.pdf

Publish API for the UDDI Registry
The messages in this section represent commands that are used to publish and
update information contained in a UDDI registry. The messages defined in this
section all behave synchronously.

The Publishing API calls defined that UDDI operators support are:

add_publisherAssertions
this call causes one or more publisherAssertion to be added to an
individual publisher’s assertion collection.

delete_binding
causes one or more instances of bindingTemplate data to be deleted from
the UDDI registry.

delete_business
used to remove one or more business registrations and all direct contents
from a UDDI registry.

delete_publisherAssertions
causes one or more publisherAssertion elements to be removed from a
publisher’s assertion collection.

delete_service
is used to remove one or more businessService elements from the UDDI
registry and from its containing businessEntity parent.

delete_tModel
is used to logically delete one or more tModel structures. Logical deletion
hides the deleted tModels from find_tModel result sets but does not
physically delete it.

discard_authToken
is used to inform an Operator Site that the authentication token is to be
discarded, effectively ending the session. Subsequent calls that use the

94 IBM WebSphere Application Server Network Deployment, Version 5: Servers

same authToken will be rejected. This message is optional for Operator
Sites that do not manage session state or that do not support the
get_authToken message.

get_assertionStatusReport
this call provides administrative support for determining the status of
current and outstanding publisher assertions that involve any of the
business registrations managed by the individual publisher account. Using
this message, a publisher can see the status of assertions that they have
made, as well as see assertions that others have made that involve
businessEntity structures controlled by the calling publisher account.

get_authToken
the call used to obtain an authentication token.Authentication tokens are
opaque values that are required for all other publisher API calls. This
message is not required for Operator Sites that have an external
mechanism defined for users to get an authentication token. This API is
provided for implementations that do not have some other method of
obtaining an authentication token or certificate, or that choose to use user
ID and password based authentication.

get_publisherAssertions
this is used to obtain the full set of publisher assertions that are associated
with an individual publisher account. Publisher assertions are used to
control publicly visible business relationships.

get_registeredInfo
this call is used to get an abbreviated list of all businessEntity and tModel
data that are controlled by the individual associated with the credentials
passed.

save_binding
is used to save or update a complete bindingTemplate element. this
message can be used to add or update one or more bindingTemplate
elements as well as the container/contained relationship that each
bindingTemplate has with one or more existing businessService elements.

save_business
this is used to save or update information about a complete businessEntity
element. This API has the broadest scope of all the save_xx API calls in the
publisher API, and can be used to make sweeping changes to the
published information for one or more businessEntity elements controlled
by an individual.

save_service
the call used to add or update one or more businessService elements
exposed by a specified businessEntity.

save_tModel
this call adds or updates one or more registered tModel elements.

set_publisherAssertions
this call is used to manage all of the tracked relationship assertions
associated with an individual publisher account.

For full details of the syntax of the above queries, please refer to the API
Specification at http://www.uddi.org/pubs/ProgrammersAPI_v2.pdf.

Chapter 5. IBM WebSphere UDDI Registry 95

UDDI EJB Interface for the UDDI Registry
This section describes how to use the EJB application programming interface (API)
of the IBM WebSphere UDDI Registry component to publish, find and delete UDDI
entries.

The necessary client classes are contained in the uddiejbclient.jar file in the ejb
subdirectory of the UDDIReg directory under the WebSphere appserver directory
tree.

The javadoc for the EJB API is contained in the javadoc directory tree under the ejb
subdirectory of the UDDIReg directory under the WebSphere appserver directory
tree.

The EJB API is contained in two stateless session beans, one for the Inquiry API
(com.ibm.uddi.ejb.InquiryBean) and one for the Publish API
(com.ibm.uddi.ejb.PublishBean), whose public methods form an EJB interface for
the UDDI Registry. All the public methods on the InquiryBean correspond to UDDI
Inquiry API functions, and all the public methods on the PublishBean correspond
to UDDI Publish API functions. (Not all UDDI API functions are implemented, e.g.
get_authToken, discard_authToken, get_businessDetailExt, etc.) For version 1 of the
UDDI registry, the EJB component supports only UDDI v2.0.

The two EJBs use container-managed transactions. The transaction attribute for the
methods of the InquiryBean is NotSupported, and for the methods of the
PublishBean it is Required. You should not change the transaction attributes as this
could result in undesirable behavior.

Within each interface there are groups of overloaded methods that correspond to
the operations in the UDDI 2.0 specification. There is a separate method for each
major variation in function. For example, the single UDDI 2.0 operation
find_business is represented by 10 variations of findBusiness methods, with
different variations for finding by name, finding by categoryBag etc.

The arguments for the EJB interface methods are java objects in the package
com.ibm.uddi.datatypes. Roughly speaking, there is a one-one correspondence
between classes in this package and elements of the UDDI v2.0 XML schema.
Exceptions to this are, for example, where UDDI XML elements can be represented
by a single String. (See Package com.ibm.uddi.datatypes below for more
information.)

Enabling an EJB Client

This section is written on the assumption that WebSphere Application Server V5.0,
a supported database and the IBM WebSphere UDDI Registry have already been
installed.

Classpaths

In order for EJB clients to work correctly, the following jar files and folders must
be added to the user’s CLASSPATH:

For Windows

<WebSphere-install-dir>\lib\j2ee.jar
<WebSphere-install-dir>\lib\naming.jar

96 IBM WebSphere Application Server Network Deployment, Version 5: Servers

<WebSphere-install-dir>\lib\namingclient.jar
<WebSphere-install-dir>\lib\ecutils.jar
<WebSphere-install-dir>\lib\sas.jar
<WebSphere-install-dir>\properties

For Unix Platforms

<WebSphere-install-dir>/lib/j2ee.jar
<WebSphere-install-dir>/lib/naming.jar
<WebSphere-install-dir>/lib/namingclient.jar
<WebSphere-install-dir>/lib/ecutils.jar
<WebSphere-install-dir>/lib/sas.jar
<WebSphere-install-dir>/properties

In addition to these jars, there is also the jar file that contains all of the UDDI
specific API for the EJB interface, which can be found at:

For Windows

<DeploymentManager-install-
dir>\UDDIReg\ejb\uddiejbclient.jar

where <DeploymentManager-install-dir> is the install location for WebSphere
Application Server for Network Deployment, which by default is
C:\Progra~1\WebSphere\DeploymentManager.

For Unix Platforms

<DeploymentManager-install-
dir>/UDDIReg/ejb/uddiejbclient.jar

where <DeploymentManager-install-dir> is the install location for WebSphere
Application Server for Network Deployment, which by default is
/opt/WebSphere/DeploymentManager for Linux/Solaris systems or
/usr/WebSphere/DeploymentManager for AIX systems.

The Path

Please ensure that your PATH statement starts with <WebSphere-install-
dir>\java\bin

Creating an EJB Client

If you want to read about creating EJB Clients in more detail, then please read the
″Sun Microsystems Enterprise JavaBeansTM Specification Version 2.0″

Finding the EJB Reference

An EJB Client can be a standalone Java application, an Applet, Servlet or a JSP.
This document only covers writing a standalone Java application. In order to
invoke an EJB that has been deployed into WebSphere on the server side, the
Client must do two things: find the EJB on the server, and then create a Cient side
reference to that EJB. Once this Client side reference has been created, then the

Chapter 5. IBM WebSphere UDDI Registry 97

Client can invoke methods upon the EJB as if it was a local object. Clients cannot
reference, or invoke, and EJB directly. Any calls made to the EJB must be made
through the interfaces that the EJB provides. The interface that is used to create a
local reference to the EJB is called the home interface. When an EJB is deployed in
WebSphere, this home interface is made available to Clients by means of a
searchable namespace. This means that a Client can look up an address on the
namespace. If there is a home interface at that address, and it is the home interface
to the EJB that they were looking for, then the Client can create a local instance of
that home interface, and then, from that, a local reference to the EJB can be created.

What code is needed in the Client?

The following code fragment illustrates how to Find and Create a local instance of
the Inquiry EJB only. The same will need to be done to Find and Create a local
copy of the Publish EJB.
private com.ibm.uddi.ejb.Inquiry inquiry = null; // This private variable,

// "inquiry" is going to be the local reference to the EJB in
// WebSphere declaring it outside the scope of a method means
// that this same reference can be used throughout the client,
// without having to query the namespace again.

public void homeLookup()
{
// These variables simply determine the address of the JNDI namespace, and

// the address of the home interface within that namespace.

// String naming_factory = "com.ibm.ejs.ns.jndi.CNInitialContextFactory";
//WAS 4.0.2 Naming Factory

String naming_factory = "com.ibm.websphere.naming.WsnInitialContextFactory";
//WAS 5.0 Naming Factory

String namespace_address = "iiop://localhost:2809/";
// The address of the namespace

String home_address = "com/ibm/uddi/ejb/InquiryHome";
// The address of the home interface within the JNDI namespace

java.util.Hashtable environment = new java.util.Hashtable();
environment.put(javax.naming.Context.INITIAL_CONTEXT_FACTORY, naming_factory);
environment.put(javax.naming.Context.PROVIDER_URL, namespace_address);

try
{
javax.naming.InitialContext ic = new javax.naming.InitialContext(environment);

// Create a context using the details above to connect to the namespace

Object o = ic.lookup(home_address);
// Do a lookup to see if there is an ejb_home at the address given above

// Now create a valid home instance for the EJB type we want to create
com.ibm.uddi.ejb.InquiryHome home = (com.ibm.uddi.ejb.InquiryHome)

(javax.rmi.PortableRemoteObject.narrow(
o, com.ibm.uddi.ejb.InquiryHome.class));

inquiry = home.create();
// Now create a local reference of the EJB, by using the home.create()
// method. Any business method that is intended for the EJB in
// Websphere must me invoked against this inquiry object.

}
catch (javax.naming.NamingException ne) {ne.printStackTrace();}

// This is thrown if there was a problem connecting to the namespace,
// or finding the home_address in the namespace

catch (java.rmi.RemoteException re) {re.printStackTrace();}
// This usually indicates some sort of system failure, either
// WebSphere is not running, or there is a communications problem

98 IBM WebSphere Application Server Network Deployment, Version 5: Servers

catch (javax.ejb.CreateException ce) {ce.printStackTrace();}
// This is thrown if the EJB reference cannot be created from
// the home instance.

}

Writing Client code to use the EJB API

Once the reference to the EJB has been created (the Inquiry Object, in the above
code), then the reference can be treated like any other Java Object. This is an
example method using the UDDI EJB API - the only important point to remember
is that, although the Inquiry Object has been created as a local reference, it is still
referring to a remote EJB Object in a different server, possibly even in a different
country. This means that at the very least a javax.rmi.RemoteException must be
caught on each method call that is made to the EJB.
public void findBusiness()
{
System.out.println("Find Business:");

NameList names = new NameList();
names.add(new Name("IBM Corporation"));

// Create the list of names to find in the UDDI Registry, here just
// one is used, "IBM Corporation"

try
{

BusinessList list = inquiry.findBusiness(names);
// This is the call to the inquiry EJB that searches through
// the UDDI Registry

// Now display the amount of business found, and for each one, get the
// BusinessKey, the BusinessName and the amount of Services that
// Business has

System.out.println("There are "+list.getBusinessInfos().size()+"
matching Businesses in this registry");

for (int i=0;i<list getBusinessInfos().size();i++)
{

BusinessInfo business = list.getBusinessInfos().get(i);
System.out.println("\nBusinessKey = "+business.getBusinessKey());
System.out.println("BusinessName =

"+business.getNames().get(0).getNameString());
System.out.println("This Business Has

"+business.getServiceInfos().size()+" Services\n");
}

}

// This is a UDDI specific exception, and will be thrown if for example
// an invalid name was used as the search criteria

catch (com.ibm.uddi.datatypes.DispositionReportException e)
{this.handleDispositionReportException(e);}

catch (java.rmi.RemoteException re) {re.printStackTrace();}
// This is the RemoteException that is thrown if there has been
// a system failure or a connection problem.

}

What new code is needed on the Client?

Just as each EJB has an interface listed on the JNDI namespace, the
javax.transaction.UserTransaction class also has an interface listed. This means that
the same method used to get a local instance of an EJB can be applied to get a
local instance of the UserTransaction class. Again, this code can be used to find the
UserTransaction reference on the namespace, in addition to the code required to
find the Inquiry EJB and the Publish EJB, or, alternatively, there is a slightly more
elegant method used in the TransactionEJBClientSample.java.

Chapter 5. IBM WebSphere UDDI Registry 99

public void txLookup()
{
private javax.transaction.UserTransaction tx = null;

// This is the private variable that will be used to hold the
// UserTransaction Object declaring it outside the scope of a method
// means that this same reference can be used throughout the client,
// without having to query the namespace again.

// These variables simply determine the address of the JNDI namespace, and
// the address of the home interface within that namespace.

// String naming_factory = "com.ibm.ejs.ns.jndi.CNInitialContextFactory";
// WAS 4.0.2 Naming Factory

String naming_factory = "com.ibm.websphere.naming.WsnInitialContextFactory";
// WAS 5.0 Naming Factory

String namespace_address = "iiop://localhost:2809/";
//The address of the namespace

String transaction_address = "jta/usertransaction";
//The address of the UserTransaction interface within the JNDI namespace

java.util.Hashtable environment = new java.util.Hashtable();
environment.put(javax.naming.Context.INITIAL_CONTEXT_FACTORY, naming_factory);
environment.put(javax.naming.Context.PROVIDER_URL, namespace_address);

try
{
javax.naming.InitialContext ic = new javax.naming.InitialContext(environment);

// Create a context using the details above to connect to the namespace
Object remote_object = ic.lookup(transaction_address);

// Do a lookup to see if there is a UserTransaction Object at the
// address specified above

tx = (javax.transaction.UserTransaction)remote_object;
// Convert the remote object found into a UserTransaction Object,
// and assign to the private variable

}
catch (javax.naming.NamingException ne) {ne.printStackTrace();}

// This is thrown if there was a problem connecting to the namespace,
// or finding the transaction_address in the namespace

}

Writing Client code to use the EJB API with a Client transaction

To perform an Inquiry, a Publish or a Delete upon the IBM WebSphere UDDI
Registry with client side transactional support requires very little additional code
compared to doing the same operations without client side transactional support.
Using the same code that is listed above (in ″Writing Client Code to use the EJB
API″), this example illustrates how easy client side transactions are to implement.

The additional lines of code needed are in bold type. This code also assumes that
there is a variable called tx that has been declared at the class scope.
public void findBusiness()
{
//Just as there are UDDI and RMI specific exceptions thrown,
// 5 more exceptions need to be caught.
try
{
tx.begin(); //This begins the transaction context
System.out.println("Find Business:");
NameList names = new NameList();
names.add(new Name("IBM Corporation"));

// Create the list of names to find in the UDDI Registry,
// here just one is used, "IBM Corporation"

100 IBM WebSphere Application Server Network Deployment, Version 5: Servers

try
{
BusinessList list = inquiry.findBusiness(names);
// This is the call to the inquiry EJB that searches through the UDDI Registry

// Now display the amount of business found, and for each one, get the
// BusinessKey, the BusinessName and the amount of Services that Business has
System.out.println("There are "+list.getBusinessInfos().size()+"

matching Businesses in this registry");
for (int i=0;i<list.getBusinessInfos().size();i++)
{
BusinessInfo business = list.getBusinessInfos().get(i);
System.out.println("\nBusinessKey = "+business.getBusinessKey());
System.out.println("BusinessName = "+business.getNames().get(0).getNameString());
System.out.println("This Business Has "+business.getServiceInfos().size()+"

Services\n");
}
}
// This is a UDDI specific exception, and will be thrown if for example an
// invalid name was used as the search criteria
catch (com.ibm.uddi.datatypes.DispositionReportException e)

{this.handleDispositionReportException(e);}
catch (java.rmi.RemoteException re) {re.printStackTrace();}

// This is the RemoteException that is thrown if there has been a
// system failure or a connection problem.

tx.commit(); //This ends the transaction context
}
catch (javax.transaction.NotSupportedException nse)

{nse.printStackTrace();}
catch (javax.transaction.RollbackException rbe) {rbe.printStackTrace();}
catch (javax.transaction.SystemException se) {se.printStackTrace();}
catch (javax.transaction.HeuristicMixedException hme)

{hme.printStackTrace();}
catch (javax.transaction.HeuristicRollbackException hrbe)

{hrbe.printStackTrace();}
}

v ″Datatypes package in the UDDI Registry″

v ″EJB Interface Methods in the UDDI Registry″

Datatypes package in the UDDI Registry
Below is a table listing the classes in the com.ibm.uddi.datatypes package, the
elements in the UDDI v2.0 XML schema, and the correspondence between the two.

com.ibm.uddi.datatypes
Class

Corresponding UDDIv2.0
XML Schema Element

Notes on DatatypeClass

AccessPoint accessPoint
Address address

String addressLine
AdressLineList Encapsulates a Vector of

addressLine Strings
AddressList Encapsulates a Vector of

Address objects
AssertionStatusItem assertionStatusItem
AssertionStatusItemList Encapsulates a Vector of

AssertionStatusItem objects
AssertionStatusReport assertionStatusReport

(response message)
String authInfo

AuthToken Object containing authInfo
String and operator name

String bindingKey

Chapter 5. IBM WebSphere UDDI Registry 101

BindingDetail bindingDetail (response
message)

BindingTemplate bindingTemplate
BindingTemplateList bindingTemplates Encapsulates a Vector of

Bindingtemplate objects
BusinessDetail businessDetail (reponse

message)
BusinessDetailExt businessDetailExt (Response

message)
**

BusinessEntity businessEntity
BusinessEntityExt businessEntityExt **
BusinessEntityExtList Encapsulates a Vector of

BusinessEntityExt objects **
BusinessEntityList Encapsulates a Vector of

BusinessEntity objects
BusinessInfo businessInfo
BusinessInfoList businessInfo Encapsulates a Vector of

businessInfo objects
String businessKey

BusinessList businessList (reponse
message)

BusinessService businessService
BusinessServiceList businessServices Encapsulates a Vector of

BusinessService objects
CategoryBag categoryBag

String completionStatus
Contact contact
ContactList contacts Encapsulates a Vector of

Contact objects
Description description
DescriptionList Encapsulates a Vector of

Description objects
DiscoveryUrl discoveryURL
DiscoveryUrlList discoveryURLs Encapsulates a Vector of

DiscoveryURL objects
DispositionReport dispositionReport
DispositionreportException Exception thrown by EJB

interface functions when an
error occurs

Email email
EmailList Encapsulates a Vector of

Email objects
EndPoint Used as baseclass for

AccessPoint and
HostingRedirector providing
mutual exclusivity

ErrInfo errInfo
findQualifier

FindQualifier findQualifiers
String fromKey

HostingRedirector hostingRedirector
IdentifierBag identifierbag
InquiryOptions Encapsulates a FindQualifiers

object and a maxrows field.
Used in find_* API calls to
specify search options

InstanceDetails instanceDetails

102 IBM WebSphere Application Server Network Deployment, Version 5: Servers

String instanceParms
String keyValue

KeyedReference keyedReference
keysOwned keysOwned
LanguageString Abstract class, extended by

some of the datatypes, which
represents a string that can
optionally be tagged with
xml:lang.

Name name
NameList Encapsulates a Vector of

Name objects
OverviewDoc overviewDoc

String overviewURL
String personName

Phone phone
PhoneList Encapsulates a Vector of

Phone objects
PublisherAssertion publisherAssertion
PublisherAssertionList Encapsulates a Vector of

Publisher Assertion objects
PublisherAssertions publisherAssertions (response

message)
RegisteredInfo registeredInfo (response

message)
relatedBusinessInfo not used
relatedBusinessInfos not used

RelatesBusinessesList relatedBusinessesList
RelatedBusinessInfo relatedBusinessInfo
RelatedBusinessInfos relatedBusinessInfos
Result result
ResultList Encapsulates a Vector of

Result objects
ServiceDetail serviceDetail (response

message)
ServiceInfo serviceInfo
ServiceInfoList serviceInfos Encapsulates a Vector of

serviceInfo objects
String serviceKey

ServiceList serviceList (reponse message)
sharedRelationships not used

SharedRelationships sharedRelationships
Tmodel tModel
TModelBag tModelBag
TModelDetail tModelDetail (response

message)
TModelInfo tModelInfo
TModelInfoList tModelInfos Encapsulates a Vector of

TModelInfo objects
TModelInstanceInfo tModelInstanceInfo
TModelInstanceInfoList tModelInstanceDetails Encapsulates a Vector of

TModelInstanceInfo objects
String tModelKey

TModelList tModelList (response
message)

TModels Encapsulates a Vector of
TModel objects

Chapter 5. IBM WebSphere UDDI Registry 103

String toKey
String uploadRegister

UploadRegisterList Encapsulates a Vector of
uploadRegister strings

** Used in UDDI API functions relating to BusinessDetailExtension. These UDDI
API functions are not implemented in Version 1 of the IBM WebSphere UDDI
Registry.

In general, a datatype called DatatypeList contains a vector of Datatype objects.
Often these correspond to XML schema elements with plural names. (For example
the datatype Contact corresponds to XML element contact, and ContactList
corresponds to contacts.) Where there is no plural XML schema element for a
particular Datatype, often there is still a DatatypeList where it is useful to have one,
e.g. AddressList.

The exceptions to this naming convention occur when there is an existing XML
schema element ending in List. The exceptions are: TModelList, ServiceList,
BusinessList. In these cases, the corresponding datatypes are given the same names
as the XML schema elements, and the datatypes that would have had these names
are called: TModels, BusinessServiceList, BusinessEntityList.

EJB Interface Methods in the UDDI Registry
Inquiry
findBinding
findBusiness
findRelatedBusinesses
findService
findTModel
getBindingDetail
getBusinessDetail
getServiceDetail
getTModelDetail

Publish
addPublisherAssertions
deleteBinding
deleteBusiness
deletePublisherAssertions
deleteService
deleteTModel
getAssertionStatusReport
getRegisteredInfo
getPublisherASsertions
saveBinding
saveBusiness
saveService
saveTModel
setPublisherAssertions

Each method is overloaded and can take various combinations of arguments. The
Javadoc contains detailed information about each method.

Note that get_authToken and discard_authtoken are not implemented, as
WebSphere security is used instead.

104 IBM WebSphere Application Server Network Deployment, Version 5: Servers

UDDI Troubleshooting Tips
When the IBM WebSphere UDDI Registry is running, it might issue messages to
report events or errors. You can use these messages, described in Messages as your
first aid to problem determination. If you need more details about the causes of a
problem, you can turn on tracing for UDDI, as described in Turning on UDDI
trace.
v ″Turning on UDDI trace″

Below are a few of the common causes of errors that might be found and their
suggested solutions.
v If you set up the UDDI Registry application with a JDBC driver and datasource

that reference Cloudscape, but set the persister property in uddi.properties to
specify DB2, or vice versa, then some unexpected behavior will result, such as a
fatal error on deleting an entity. If this happens, you should check that the above
details are not in conflict. This only applies to a UDDI Registry installation on a
single appserver.

v If you get a message ″The application failed to initialize″ when trying to access
the UDDI User console and you are using DB2 as the persistence store for the
UDDI Registry, a likely cause of the problem is that you specified the wrong
userid and/or password when you ran the script to install the UDDI Registry
application. If this occurs rerun the script ensuring you use the correct userid
and password.

v You might find that, after uninstalling and reinstalling the UDDI Registry, you
get errors from the UDDI User Console of the form:
″Error 500: JSPG0059E: Unable to compile class for JSP″.
If this occurs, then you should clear out the temp directory of the WebSphere
AppServer.

v When running one of the UDDI setup scripts setupuddi.jacl or removeuddi.jacl,
if you get an error such as:
WASX7017E: Exception received while running file ″setupuddi.jacl″; exception
information: com.ibm.bsf.BSFException: error while eval’ing Jacl expression:
java.util.MissingResourceException: Can’t find resource for bundle
java.util.PropertyResourceBundle, key ErrMsgIncorrectNumArgs
then please ensure that the file setupuddimessages.jafr is located in the lib
subdirectory of the WebSphere deployment manager or application server under
which you are running the script.

v When running the DB2 Setup Wizard, if you get an error stating ″Invalid userid
and password″, then if could be caused by any of the following situations:
– You have supplied an invalid userid or password - re-enter with a valid

userid and password.
– The supplied userid does not have the necessary privileges - retry with a

userid that has appropriate privileges.
– DB2 is stopped when you run the Wizard - start DB2 and retry the Wizard.
– The UDDI20 database already exists and has been removed previously and,

as such, is not catalogued. The DB2 Wizard does not recognize this situation
and gives the error. You now have two options.
1. If you wish to use the existing database then you will need to catalogue it

and there is no need to rerun the Wizard.
2. If you wish to create a new database you will need to recatalogue the

database and re-run the DB2 Wizard and choose the option to overwrite
the database. (Any existing data WILL be lost.)

Chapter 5. IBM WebSphere UDDI Registry 105

Turning on UDDI trace
Before you begin

You can enable UDDI-specific trace in the same way as you enable other tracing in
the WebSphere Application Server.

The following is a list of trace strings that may be used:
v com.ibm.uddi.api
v com.ibm.uddi.config
v com.ibm.uddi.datatypes
v com.ibm.uddi.dom
v com.ibm.uddi.ejb
v com.ibm.uddi.exception
v com.ibm.uddi.exceptions
v com.ibm.uddi.gui
v com.ibm.uddi.gui.inquire
v com.ibm.uddi.gui.publish
v com.ibm.uddi.persistence
v com.ibm.uddi.persistence.jdbc
v com.ibm.uddi.persistence.jdbc.cloudscape
v com.ibm.uddi.persistence.jdbc.db2
v com.ibm.uddi.ras
v com.ibm.uddi.security
v com.ibm.uddi.soap
v com.ibm.uddi.uuid
v com.ibm.uddi.validation
v com.ibm.uddi.xml

For example, to trace the UDDI User Console you would specify:
’com.ibm.uddi.gui=all=enabled’

This would enable all types of trace for the gui. Please refer to ″Enabling trace″
elsewhere in the WebSphere Application Server V5.0 InfoCenter for more
information about using the administrator console to enable/disable trace.

Messages
When the IBM WebSphere UDDI Registry is running, it might issue messages to
report events or errors. The messages are in the form UD<i>xxnnnns</i> where:

xx is a two character descriptor identifying which component is involved

nnnn give the error code being issued

s is either I (Information) or E (Error)

The prefix UDxxnnnns: is followed by text which describes the event or error. For
some messages, the first word of the text is one of the form (MSN=SSSS). The SSSS
provides a message sequence number (or MSN), which identifies the unique
circumstance in which the message was issued, and is of use where the same
message can be issued in more than one circumstance.

106 IBM WebSphere Application Server Network Deployment, Version 5: Servers

To help you diagnose problems and minimize the need to enable trace in any of
the above components, view the messages table. You can view the messages by
prefix or component, whichever is easiest for you to find in the table. All messages
are documented with user/system action and explanation.

The text for the UDDI messages is contained in a file uddiresourcebundles.jar which
is placed, by the installation process, into the \lib subdirectory (Windows) of the
WebSphere application server into which the UDDI Registry was installed. If you
will be running a console or log analyzer from another process; for example, to
analyze the activity log, then you must place a copy of uddiresourcebundles.jar into a
directory which is within the classpath of that process. Otherwise, the message
lookup for the UDDI messages will fail.

UDDI Components Message Prefix Table

click on individual links for message documentation for the component
UDAI API
UDCF Configuration
UDDA Datatypes
UDDM DOM
UDEJ EJB Interface
UDEX Exceptions
UDIN Installation
UDLC Local API
UDPR Persistence
UDRS Logging
UDSC Security
UDSP SOAP Interface
UDUC User Console
UDUU UUID

UDAI (Web Services UDDI) messages
There are no messages issued by this component.

UDCF (Web Services UDDI) messages
UDCF0001E: Exception occurred while getting int value of configuration
property ″<property>″, exception: ″<exception>″

Explanation: This message is issued when an attempt to read the value of
a configuration property from the uddi.properties file and convert it to
integer has failed with the indicated exception.

User Response: Check that the uddi.properties file contains a value for the
indicated configuration property, and that the value is valid. Check also
that the indicated configuration property is a legal property. Refer to the
InfoCenter for further information about global configuration properties
and the uddi.properties file.

UDCF0002E: Exception occurred while getting long value of configuration
property ″<property>″, exception: ″<exception>″

Explanation: This message is issued when an attempt to read the value of
a configuration property from the uddi.properties file and convert it to
long has failed with the indicated exception.

User Response: Check that the uddi.properties file contains a value for the
indicated configuration property, and that the value is valid. Check also

Chapter 5. IBM WebSphere UDDI Registry 107

that the indicated configuration property is a legal property. Refer to the
InfoCenter for further information about global configuration properties
and the uddi.properties file.

UDCF0003E: Exception occurred while getting boolean value of configuration
property ″<property>″, exception: ″<exception>″

Explanation: This message is issued when an attempt to read the value of
a configuration property from the uddi.properties file and convert it to
boolean has failed with the indicated exception

User Response: Check that the uddi.properties file contains a value for the
indicated configuration property, and that the value is valid. Check also
that the indicated configuration property is a legal property. Refer to the
InfoCenter for further information about global configuration properties
and the uddi.properties file.

UDCF0004E: Failed to load UDDI global properties file.
Explanation: This message is issued when the UDDI global configuration
properties file, uddi.properties, cannot be loaded. Default values for the
global configuration properties will be set, but these defaults may not be
adequate for many of the properties, so you should investigate and resolve
this problem.

User Response: Check that the uddi.properties file exists and is in the
correct directory. Refer to the InfoCenter for further information about
global configuration properties and the uddi.properties file.

UDCF0005E: Exception occurred while loading UDDI global configuration
properties, exception: ″<exception>″

Explanation: This message is issued when an attempt to load the UDDI
global configuration properties from the uddi.properties has failed with the
indicated exception. Default values for the global configuration properties
will be set, but these defaults may not be adequate for many of the
properties, so you should investigate and resolve this problem.

User Response: Check that the uddi.properties file exists and contains
valid values for each of the configuration properties. Refer to the
InfoCenter for further information about global configuration properties
and the uddi.properties file.

UDDA (Web Services UDDI) messages
There are no messages issued by this component.

UDDM (Web Services UDDI) messages
There are no messages issued by this component.

UDEJ (Web Services UDDI) messages
There are no messages issued by this component.

UDEX (Web Services UDDI) messages
There are no messages issued by this component.

UDIN (Web Services UDDI) messages
UDIN0001I: Assuming hard coded defaults.

Explanation: This is an informational message issued by the UDDI setup
script setupuddi.jacl.

108 IBM WebSphere Application Server Network Deployment, Version 5: Servers

User Response: None..

UDIN0002I: Cloudscape classpath is clpath. Value is:
Explanation: This is an informational message issued by the UDDI setup
script setupuddi.jacl.

User Response: None.

UDIN0003I: Looking for childtype childname under parenttype parentname.
Values are:

Explanation: This is an informational message issued by the UDDI setup
script setupuddi.jacl.

User Response: None.

UDIN0004I: Looking for childtype childname under parenttype parentname and
parenttype2 parentname2. Values are:

Explanation: This is an informational message issued by the UDDI setup
script setupuddi.jacl.

User Response: None.

UDIN0005I: Conflict found with existing childtype childname. Values are:
Explanation: This is an informational message issued by the UDDI setup
script setupuddi.jacl.

User Response: None.

UDIN0006I: Not creating requested childtype. Value is:
Explanation: This is an informational message issued by the UDDI setup
script setupuddi.jacl.

User Response: None.

UDIN0007I: Seeking parenttype with requested id of parentname. Values are:
Explanation: This is an informational message issued by the UDDI setup
script setupuddi.jacl.

User Response: None.

UDIN0008I: Seeking parenttype with requested id of parentname under
parenttype2 parentname2. Values are:

Explanation: This is an informational message issued by the UDDI setup
script setupuddi.jacl.

User Response: None.

UDIN0009I: Attempting to create childtype under parenttype of parentID. Values
are: Explanation: This is an informational message issued by the UDDI setup

script setupuddi.jacl.

User Response: None.

UDIN0010I: Create command that will be issued is:
Explanation: This is an informational message issued by the UDDI setup
script setupuddi.jacl.

User Response: None.

UDIN0011I: childtype childId was successfully created. Values are:
Explanation: This is an informational message issued by the UDDI setup
script setupuddi.jacl.

User Response: None.

Chapter 5. IBM WebSphere UDDI Registry 109

UDIN0012I: Looking for builtin_rra.
Explanation: This is an informational message issued by the UDDI setup
script setupuddi.jacl.

User Response: None.

UDIN0013I: List for J2CResourceAdapter returned N members. Value is:
Explanation: This is an informational message issued by the UDDI setup
script setupuddi.jacl.

User Response: None.

UDIN0014I: Hunting J2CResourceAdapter associated with Node nodename.
Value is:

Explanation: This is an informational message issued by the UDDI setup
script setupuddi.jacl.

User Response: None.

UDIN0015I: Using rraID as builtin_rra. Value is:
Explanation: This is an informational message issued by the UDDI setup
script setupuddi.jacl.

User Response: None.

UDIN0016I: Using provider class of implclass with a classpath of clpath. Values
are: Explanation: This is an informational message issued by the UDDI setup

script setupuddi.jacl.

User Response: None.

UDIN0017I: Installing to server servername, node nodename using database type
of dbtype. Values are:

Explanation: This is an informational message issued by the UDDI setup
script setupuddi.jacl.

User Response: None.

UDIN0018I: Attempting to create UDDI JDBCProvider.
Explanation: This is an informational message issued by the UDDI setup
script setupuddi.jacl.

User Response: None.

UDIN0019I: Attempting to create UDDI Datasource.
Explanation: This is an informational message issued by the UDDI setup
script setupuddi.jacl.

User Response: None.

UDIN0020I: Application Manager appmgr found. Value is:
Explanation: This is an informational message issued by the UDDI setup
script setupuddi.jacl.

User Response: None.

UDIN0021I: Attempting to install UDDI Registry application.
Explanation: This is an informational message issued by the UDDI setup
script setupuddi.jacl.

User Response: None.

UDIN0022I: Checking for installed UDDI Registry application of name
appname. Value is:

Explanation: This is an informational message issued by the UDDI setup
script setupuddi.jacl.

110 IBM WebSphere Application Server Network Deployment, Version 5: Servers

User Response: None.

UDIN0023W: Application of name appname is not present. Value is:
Explanation: This is an informational message issued by the UDDI setup
script setupuddi.jacl.

User Response: None.

UDIN0024I: ApplicationManager not running, so application will not need to be
stopped.

Explanation: This is an informational message issued by the UDDI setup
script setupuddi.jacl.

User Response: None.

UDIN0025I: Stopping application of name appname. Value is:
Explanation: This is an informational message issued by the UDDI setup
script setupuddi.jacl.

User Response: None.

UDIN0026W: stopApplication command for application appname caught
exception Exc. Application might not have been running on this server. Values
are: Explanation: This is an informational message issued by the UDDI setup

script setupuddi.jacl.

User Response: None.

UDIN0027I: Application appname stopped successfully. Value is:
Explanation: This is an informational message issued by the UDDI setup
script setupuddi.jacl.

User Response: None.

UDIN0028I: Removing application appname. Value is:
Explanation: This is an informational message issued by the UDDI setup
script setupuddi.jacl.

User Response: None.

UDIN0029I: Application appname removed successfully. Value is:
Explanation: This is an informational message issued by the UDDI setup
script setupuddi.jacl.

User Response: None.

UDIN0030I: Adding resource bundles to repository.
Explanation: This is an informational message issued by the UDDI setup
script setupuddi.jacl.

User Response: None.

UDIN0031I: Adding Cloudscape user functions to repository.
Explanation: This is an informational message issued by the UDDI setup
script setupuddi.jacl.

User Response: None.

UDIN0032I: UDDI configuration properties file already exists. Only the persister
and getServletURLPrefix properties will be overwritten.

Explanation: This is an informational message issued by the UDDI setup
script setupuddi.jacl.

User Response: None.

Chapter 5. IBM WebSphere UDDI Registry 111

UDIN0033I: Editing UDDI configuration properties file propsfile. Value is:
Explanation: This is an informational message issued by the UDDI setup
script setupuddi.jacl.

User Response: None.

UDIN0034I: Url prefix found. Updating it to discoveryURL. Value is:
Explanation: This is an informational message issued by the UDDI setup
script setupuddi.jacl.

User Response: None.

UDIN0035I: Persister property found. Updating it to dbtype. Value is:
Explanation: This is an informational message issued by the UDDI setup
script setupuddi.jacl.

User Response: None.

UDIN0036I: Adding UDDI configuration properties file to repository for cell
cellname under target node and server. Value is:

Explanation: This is an informational message issued by the UDDI setup
script setupuddi.jacl.

User Response: None.

UDIN0037I: ws.ext.dir processing starting.
Explanation: This is an informational message issued by the UDDI setup
script setupuddi.jacl.

User Response: None.

UDIN0038I: serverID is:
Explanation: This is an informational message issued by the UDDI setup
script setupuddi.jacl.

User Response: None.

UDIN0039I: JVM is:
Explanation: This is an informational message issued by the UDDI setup
script setupuddi.jacl.

User Response: None.

UDIN0040I: Out of N properties we located M matches at positions poslist.
Values are:

Explanation: This is an informational message issued by the UDDI setup
script setupuddi.jacl.

User Response: None.

UDIN0041I: Building new ws.ext.dirs properties.
Explanation: This is an informational message issued by the UDDI setup
script setupuddi.jacl.

User Response: None.

UDIN0042I: SYSPROP is:
Explanation: This is an informational message issued by the UDDI setup
script setupuddi.jacl.

User Response: None.

UDIN0043I: ws.ext.dir has been set with new sysprop. Value is:
Explanation: This is an informational message issued by the UDDI setup
script setupuddi.jacl.

112 IBM WebSphere Application Server Network Deployment, Version 5: Servers

User Response: None.

UDIN0044I: ws.ext.dir update skipped, required changes already present.
Explanation: This is an informational message issued by the UDDI setup
script setupuddi.jacl.

User Response: None.

UDIN0045I: ws.ext.dir processing step complete.
Explanation: This is an informational message issued by the UDDI setup
script setupuddi.jacl.

User Response: None.

UDIN0046I: Cleaning up temporary version of properties file temppropsfile.
Value is:

Explanation: This is an informational message issued by the UDDI setup
script setupuddi.jacl.

User Response: None.

UDIN0047I: Issuing nodeSync.
Explanation: This is an informational message issued by the UDDI setup
script setupuddi.jacl.

User Response: None.

UDIN0048I: UDDI Registry successfully installed. Please restart server
servername to activate configuration changes. Value is:

Explanation: This is an informational message issued by the UDDI setup
script setupuddi.jacl.

User Response: None.

UDIN0049I: Application Manager appmgr found. Value is:
Explanation: This is an informational message issued by the UDDI setup
script setupuddi.jacl.

User Response: None.

UDIN0050I: Server is not running, so will not need to be stopped.
Explanation: This is an informational message issued by the UDDI setup
script setupuddi.jacl.

User Response: None.

UDIN0051I: Stopping server servername under node nodename. Values are:
Explanation: This is an informational message issued by the UDDI setup
script setupuddi.jacl.

User Response: None.

UDIN0052I: Server servername stopped successfully. Value is:
Explanation: This is an informational message issued by the UDDI setup
script setupuddi.jacl.

User Response: None.

UDIN0053I: Restarting application server
Explanation: This is an informational message issued by the UDDI setup
script setupuddi.jacl.

User Response: None.

Chapter 5. IBM WebSphere UDDI Registry 113

UDIN0054I: Application server servername restarted successfully. Value is:
Explanation: This is an informational message issued by the UDDI setup
script setupuddi.jacl.

User Response: None.

UDIN0055I: Please ignore any errors concerning the serverStartupSyncEnabled
attribute.

Explanation: This is an informational message issued by the UDDI setup
script setupuddi.jacl.

User Response: None.

UDIN0101I: Attempting to save new configuration.
Explanation: This is an informational message issued by the UDDI setup
script setupuddi.jacl.

User Response: None.

UDIN0102I: Changes saved successfully.
Explanation: This is an informational message issued by the UDDI setup
script setupuddi.jacl.

User Response: None.

UDIN0103I: Changes were not saved on this call.
Explanation: This is an informational message issued by the UDDI setup
script setupuddi.jacl.

User Response: None.

UDIN0104I: Attempting to save new configuration.
Explanation: This is an informational message issued by the UDDI setup
script setupuddi.jacl.

User Response: None.

UDIN0105I: Changes saved successfully.
Explanation: This is an informational message issued by the UDDI setup
script setupuddi.jacl.

User Response: None.

UDIN0106I: Attempting to save ws.ext.dir changes.
Explanation: This is an informational message issued by the UDDI setup
script setupuddi.jacl.

User Response: None.

UDIN0107I: Changes saved successfully.
Explanation: This is an informational message issued by the UDDI setup
script setupuddi.jacl.

User Response: None.

UDIN0108I: Attempting final save of new configuration.
Explanation: This is an informational message issued by the UDDI setup
script setupuddi.jacl.

User Response: None.

UDIN0109I: Changes saved successfully.
Explanation: This is an informational message issued by the UDDI setup
script setupuddi.jacl.

User Response: None.

114 IBM WebSphere Application Server Network Deployment, Version 5: Servers

UDIN1001I: Application Manager appmgr found. Value is:
Explanation: This is an informational message issued by the UDDI setup
script removeuddi.jacl.

User Response: None.

UDIN1002I: Server is not running, so will not need to be stopped.
Explanation: This is an informational message issued by the UDDI setup
script removeuddi.jacl.

User Response: None.

UDIN1003I: Stopping server servername under node nodename. Values are:
Explanation: This is an informational message issued by the UDDI setup
script removeuddi.jacl.

User Response: None.

UDIN1004I: Server servername stopped successfully. Value is:
Explanation: This is an informational message issued by the UDDI setup
script removeuddi.jacl.

User Response: None.

UDIN1005I: Resource bundles file will be removed from repository if present.
Explanation: This is an informational message issued by the UDDI setup
script removeuddi.jacl .

User Response: None.

UDIN1006I: Removing resource bundles from repository.
Explanation: This is an informational message issued by the UDDI setup
script removeuddi.jacl.

User Response: None.

UDIN1007I: Resource bundles successfully removed from repository.
Explanation: This is an informational message issued by the UDDI setup
script removeuddi.jacl.

User Response: None.

UDIN1008I: Cloudscape user functions file will be removed from repository if
present.

Explanation: This is an informational message issued by the UDDI setup
script removeuddi.jacl.

User Response: None.

UDIN1009I: Removing Cloudscape user functions from repository.
Explanation: This is an informational message issued by the UDDI setup
script removeuddi.jacl.

User Response: None.

UDIN1010I: Cloudscape user functions successfully removed from repository.
Explanation: This is an informational message issued by the UDDI setup
script removeuddi.jacl.

User Response: None.

UDIN1011I: Application Manager appmgr found. Value is:
Explanation: This is an informational message issued by the UDDI setup
script removeuddi.jacl.

User Response: None.

Chapter 5. IBM WebSphere UDDI Registry 115

UDIN1012I: Checking for installed UDDI Registry application of name
appname. Value is:

Explanation: This is an informational message issued by the UDDI setup
script removeuddi.jacl.

User Response: None.

UDIN1013W: Application of name appname is not present. Value is:
Explanation: This is an informational message issued by the UDDI setup
script removeuddi.jacl.

User Response: None.

UDIN1014I: ApplicationManager not running, so application will not need to be
stopped.

Explanation: This is an informational message issued by the UDDI setup
script removeuddi.jacl.

User Response: None.

UDIN1015I: Stopping application of name appname. Value is:
Explanation: This is an informational message issued by the UDDI setup
script removeuddi.jacl.

User Response: None.

UDIN1016W: stopApplication command for application appname caught
exception Exc. Application might not have been running on this server. Values
are: Explanation: This is an informational message issued by the UDDI setup

script removeuddi.jacl.

User Response: None.

UDIN1017I: Application appname stopped successfully. Value is:
Explanation: This is an informational message issued by the UDDI setup
script removeuddi.jacl.

User Response: None.

UDIN1018I: Removing application appname. Value is:
Explanation: This is an informational message issued by the UDDI setup
script removeuddi.jacl.

User Response: None.

UDIN1019I: Application appname removed successfully. Value is:
Explanation: This is an informational message issued by the UDDI setup
script removeuddi.jacl.

User Response: None.

UDIN1020I: UDDI datasource will be removed from server servername in node
nodename if present. Values are:

Explanation: This is an informational message issued by the UDDI setup
script removeuddi.jacl.

User Response: None.

UDIN1021I: Removing UDDI datasource.
Explanation: This is an informational message issued by the UDDI setup
script removeuddi.jacl.

User Response: None.

116 IBM WebSphere Application Server Network Deployment, Version 5: Servers

UDIN1022I: UDDI datasource successfully removed.
Explanation: This is an informational message issued by the UDDI setup
script removeuddi.jacl.

User Response: None.

UDIN1023I: UDDI JDBC driver will be removed from server servername in node
nodename if present. Values are:

Explanation: This is an informational message issued by the UDDI setup
script removeuddi.jacl.

User Response: None.

UDIN1024I: Removing UDDI JDBC driver.
Explanation: This is an informational message issued by the UDDI setup
script removeuddi.jacl.

User Response: None.

UDIN1025I: UDDI JDBC driver successfully removed.
Explanation: This is an informational message issued by the UDDI setup
script removeuddi.jacl.

User Response: None.

UDIN1026I: UDDI configuration properties file will be removed from repository
if present.

Explanation: This is an informational message issued by the UDDI setup
script removeuddi.jacl.

User Response: None.

UDIN1027I: Removing configuration properties file from cell cellname, node
nodename and server servername. Values are:

Explanation: This is an informational message issued by the UDDI setup
script removeuddi.jacl.

User Response: None.

UDIN1028I: Configuration properties file successfully removed from repository.
Explanation: This is an informational message issued by the UDDI setup
script removeuddi.jacl.

User Response: None.

UDIN1029I: Issuing nodeSync.
Explanation: This is an informational message issued by the UDDI setup
script removeuddi.jacl.

User Response: None.

UDIN1030I: UDDI Registry application, JDBC driver and datasource removed
successfully.

Explanation: This is an informational message issued by the UDDI setup
script removeuddi.jacl.

User Response: None.

UDIN1031I: Restarting application server.
Explanation: This is an informational message issued by the UDDI setup
script removeuddi.jacl.

User Response: None.

Chapter 5. IBM WebSphere UDDI Registry 117

UDIN1032I: Application server servername restarted successfully. Value is:
Explanation: This is an informational message issued by the UDDI setup
script removeuddi.jacl.

User Response: None.

UDIN1033I: Please ignore any errors concerning the serverStartupSyncEnabled
attribute.

Explanation: This is an informational message issued by the UDDI setup
script removeuddi.jacl.

User Response: None.

UDIN1034I: ws.ext.dir processing starting.
Explanation: This is an informational message issued by the UDDI setup
script removeuddi.jacl.

User Response: None.

UDIN1035I: serverID is:
Explanation: This is an informational message issued by the UDDI setup
script removeuddi.jacl.

User Response: None.

UDIN1036I: JVM is:
Explanation: This is an informational message issued by the UDDI setup
script removeuddi.jacl.

User Response: None.

UDIN1037I: Out of N properties we located M matches at positions poslist.
Values are:

Explanation: This is an informational message issued by the UDDI setup
script removeuddi.jacl.

User Response: None.

UDIN1038I: Removing UDDI values from ws.ext.dirs properties.
Explanation: This is an informational message issued by the UDDI setup
script removeuddi.jacl.

User Response: None.

UDIN1039I: ws.ext.dir has been set with new sysprop. Value is:
Explanation: This is an informational message issued by the UDDI setup
script removeuddi.jacl.

User Response: None.

UDIN1040I: ws.ext.dir update skipped, required changes already present.
Explanation: This is an informational message issued by the UDDI setup
script removeuddi.jacl.

User Response: None.

UDIN1041I: ws.ext.dir processing step complete.
Explanation: This is an informational message issued by the UDDI setup
script removeuddi.jacl.

User Response: None.

UDIN1101I: Attempting to save new configuration.
Explanation: This is an informational message issued by the UDDI setup
script removeuddi.jacl.

118 IBM WebSphere Application Server Network Deployment, Version 5: Servers

User Response: None.

UDIN1102I: Changes saved successfully.
Explanation: This is an informational message issued by the UDDI setup
script removeuddi.jacl.

User Response: None.

UDIN1103I: Attempting to save new configuration.
Explanation: This is an informational message issued by the UDDI setup
script removeuddi.jacl.

User Response: None.

UDIN1104I: Changes saved successfully.
Explanation: This is an informational message issued by the UDDI setup
script removeuddi.jacl.

User Response: None.

UDIN1105I: Attempting to save new configuration.
Explanation: This is an informational message issued by the UDDI setup
script removeuddi.jacl.

User Response: None.

UDIN1106I: Changes saved successfully.
Explanation: This is an informational message issued by the UDDI setup
script removeuddi.jacl.

User Response: None.

UDIN1107I: Attempting final save of new configuration.
Explanation: This is an informational message issued by the UDDI setup
script removeuddi.jacl.

User Response: None.

UDIN1108I: Changes saved successfully.
Explanation: This is an informational message issued by the UDDI setup
script removeuddi.jacl.

User Response: None.

UDIN1109I: Attempting to save ws.ext.dir changes.
Explanation: This is an informational message issued by the UDDI setup
script removeuddi.jacl.

User Response: None.

UDIN1110I: Changes saved successfully.
Explanation: This is an informational message issued by the UDDI setup
script removeuddi.jacl.

User Response: None.

UDIN2001I: Assuming hard coded defaults.
Explanation: This is an informational message issued by the UDDI setup
script appserversetupuddi.jacl.

User Response: None.

UDIN2002I: Listing members of type parenttype. Value is:
Explanation: This is an informational message issued by the UDDI setup
script appserversetupuddi.jacl.

User Response: None.

Chapter 5. IBM WebSphere UDDI Registry 119

UDIN2003I: List for type parenttype returned N members. Values are:
Explanation: This is an informational message issued by the UDDI setup
script appserversetupuddi.jacl.

User Response: None.

UDIN2004I: Seeking parenttype with requested id of parentname. Values are:
Explanation: This is an informational message issued by the UDDI setup
script appserversetupuddi.jacl.

User Response: None.

UDIN2005I: Checking parentID with parentname. Values are:
Explanation: This is an informational message issued by the UDDI setup
script appserversetupuddi.jacl.

User Response: None.

UDIN2006I: Using this as parenttype of parentname. Values are:
Explanation: This is an informational message issued by the UDDI setup
script appserversetupuddi.jacl.

User Response: None.

UDIN2007I: Checking for existing childtype under parentname. Values are:
Explanation: This is an informational message issued by the UDDI setup
script appserversetupuddi.jacl.

User Response: None.

UDIN2008I: List for childtype returned N members. Values are:
Explanation: This is an informational message issued by the UDDI setup
script appserversetupuddi.jacl.

User Response: None.

UDIN2009I: No existing childtype present. Value is:
Explanation: This is an informational message issued by the UDDI setup
script appserversetupuddi.jacl.

User Response: None.

UDIN2010I: N existing objects of type childtype found, examining for conflict
with childname. Values are:

Explanation: This is an informational message issued by the UDDI setup
script appserversetupuddi.jacl.

User Response: None.

UDIN2011I: Checking childID with name childname. Values are:
Explanation: This is an informational message issued by the UDDI setup
script appserversetupuddi.jacl.

User Response: None.

UDIN2012I: Conflict found with existing childtype of id childID. Values are:
Explanation: This is an informational message issued by the UDDI setup
script appserversetupuddi.jacl.

User Response: None.

UDIN2013I: Not creating requested object of type childtype. Value is:
Explanation: This is an informational message issued by the UDDI setup
script appserversetupuddi.jacl.

User Response: None.

120 IBM WebSphere Application Server Network Deployment, Version 5: Servers

UDIN2014I: Conflict found with existing childtype, removing existing childtype.
Value is:

Explanation: This is an informational message issued by the UDDI setup
script appserversetupuddi.jacl.

User Response: None.

UDIN2015I: Removal of childtype was successful. Value is:
Explanation: This is an informational message issued by the UDDI setup
script appserversetupuddi.jacl.

User Response: None.

UDIN2016I: Not in conflict.
Explanation: This is an informational message issued by the UDDI setup
script appserversetupuddi.jacl.

User Response: None.

UDIN2017I: Attempting to create childtype under parentname of parentID.
Values are:

Explanation: This is an informational message issued by the UDDI setup
script appserversetupuddi.jacl.

User Response: None.

UDIN2018I: Create command that will be issued is:
Explanation: This is an informational message issued by the UDDI setup
script appserversetupuddi.jacl.

User Response: None.

UDIN2019I: childtype childID was successfully created. Values are:
Explanation: This is an informational message issued by the UDDI setup
script appserversetupuddi.jacl.

User Response: None.

UDIN2020I: No matches found.
Explanation: This is an informational message issued by the UDDI setup
script appserversetupuddi.jacl.

User Response: None.

UDIN2021I: Looking for builtin_rra.
Explanation: This is an informational message issued by the UDDI setup
script appserversetupuddi.jacl.

User Response: None.

UDIN2022I: List for J2CResourceAdapter returned N members. Value is:
Explanation: This is an informational message issued by the UDDI setup
script appserversetupuddi.jacl.

User Response: None.

UDIN2023I: Hunting J2CResourceAdapter associated with Node nodename.
Value is:

Explanation: This is an informational message issued by the UDDI setup
script appserversetupuddi.jacl.

User Response: None.

UDIN2024I: Using rraID as builtin_rra. Value is:
Explanation: This is an informational message issued by the UDDI setup
script appserversetupuddi.jacl.

Chapter 5. IBM WebSphere UDDI Registry 121

User Response: None.

UDIN2025I: Using provider class of implclass with a classpath of clpath. Values
are: Explanation: This is an informational message issued by the UDDI setup

script appserversetupuddi.jacl.

User Response: None.

UDIN2026I: Installing to node nodename using database type of dbtype. Values
are: Explanation: This is an informational message issued by the UDDI setup

script appserversetupuddi.jacl.

User Response: None.

UDIN2027I: Attempting to create UDDI JDBCProvider.
Explanation: This is an informational message issued by the UDDI setup
script appserversetupuddi.jacl.

User Response: None.

UDIN2028I: Attempting to create UDDI Datasource.
Explanation: This is an informational message issued by the UDDI setup
script appserversetupuddi.jacl.

User Response: None.

UDIN2029I: Application Manager appmgr found. Value is:
Explanation: This is an informational message issued by the UDDI setup
script appserversetupuddi.jacl.

User Response: None.

UDIN2030I: Attempting to install UDDI Registry application.
Explanation: This is an informational message issued by the UDDI setup
script appserversetupuddi.jacl.

User Response: None.

UDIN2031I: Checking for installed UDDI Registry application of name
appname. Value is:

Explanation: This is an informational message issued by the UDDI setup
script appserversetupuddi.jacl.

User Response: None.

UDIN2032I: List for Applications returned N members. Value is:
Explanation: This is an informational message issued by the UDDI setup
script appserversetupuddi.jacl.

User Response: None.

UDIN2033W: Application of name appname is not present. Value is:
Explanation: This is an informational message issued by the UDDI setup
script appserversetupuddi.jacl.

User Response: None.

UDIN2034I: ApplicationManager not running, so application will not need to be
stopped.

Explanation: This is an informational message issued by the UDDI setup
script appserversetupuddi.jacl.

User Response: None.

122 IBM WebSphere Application Server Network Deployment, Version 5: Servers

UDIN2035I: Stopping application of name appname. Value is:
Explanation: This is an informational message issued by the UDDI setup
script appserversetupuddi.jacl.

User Response: None.

UDIN2036W: stopApplication command for application appname caught
exception Exc. Application might not have been running on this server. Values
are: Explanation: This is an informational message issued by the UDDI setup

script appserversetupuddi.jacl.

User Response: None.

UDIN2037I: Application appname stopped successfully. Value is:
Explanation: This is an informational message issued by the UDDI setup
script appserversetupuddi.jacl.

User Response: None.

UDIN2038I: Removing application appname. Value is:
Explanation: This is an informational message issued by the UDDI setup
script appserversetupuddi.jacl.

User Response: None.

UDIN2039I: Application appname removed successfully. Value is:
Explanation: This is an informational message issued by the UDDI setup
script appserversetupuddi.jacl.

User Response: None.

UDIN2040I: Attempting to install application appname. Value is:
Explanation: This is an informational message issued by the UDDI setup
script appserversetupuddi.jacl.

User Response: None.

UDIN2041I: Starting UDDI application.
Explanation: This is an informational message issued by the UDDI setup
script appserversetupuddi.jacl.

User Response: None.

UDIN2042I: Application appname started successfully. Value is:
Explanation: This is an informational message issued by the UDDI setup
script appserversetupuddi.jacl.

User Response: None.

UDIN2101I: Attempting to save new configuration.
Explanation: This is an informational message issued by the UDDI setup
script appserversetupuddi.jacl.

User Response: None.

UDIN2102I: Changes saved successfully.
Explanation: This is an informational message issued by the UDDI setup
script appserversetupuddi.jacl.

User Response: None.

UDIN2103I: Changes were not saved on this call.
Explanation: This is an informational message issued by the UDDI setup
script appserversetupuddi.jacl.

User Response: None.

Chapter 5. IBM WebSphere UDDI Registry 123

UDIN2104I: Attempting to save post installation configuration.
Explanation: This is an informational message issued by the UDDI setup
script appserversetupuddi.jacl.

User Response: None.

UDIN2105I: Changes saved successfully for UDDI Registry.
Explanation: This is an informational message issued by the UDDI setup
script appserversetupuddi.jacl.

User Response: None.

UDIN2106I: Attempting to save new configuration.
Explanation: This is an informational message issued by the UDDI setup
script appserversetupuddi.jacl.

User Response: None.

UDIN2107I: Changes saved successfully for UDDI Registry.
Explanation: This is an informational message issued by the UDDI setup
script appserversetupuddi.jacl.

User Response: None.

UDIN3001I: Application Manager appmgr found. Value is:
Explanation: This is an informational message issued by the UDDI setup
script appserverremoveuddi.jacl.

User Response: None.

UDIN3002I: Checking for installed UDDI Registry application.
Explanation: This is an informational message issued by the UDDI setup
script appserverremoveuddi.jacl.

User Response: None.

UDIN3003I: List for Applications returned N members. Value is:
Explanation: This is an informational message issued by the UDDI setup
script appserverremoveuddi.jacl.

User Response: None.

UDIN3004W: Application of name appname is not present. Value is:
Explanation: This is an informational message issued by the UDDI setup
script appserverremoveuddi.jacl.

User Response: None.

UDIN3005I: ApplicationManager not running, so application will not need to be
stopped.

Explanation: This is an informational message issued by the UDDI setup
script appserverremoveuddi.jacl.

User Response: None.

UDIN3006I: Stopping application of name appname. Value is:
Explanation: This is an informational message issued by the UDDI setup
script appserverremoveuddi.jacl.

User Response: None.

UDIN3007W: stopApplication command for application appname caught
exception Exc. Application might not have been running on this server. Values
are: Explanation: This is an informational message issued by the UDDI setup

script appserverremoveuddi.jacl.

124 IBM WebSphere Application Server Network Deployment, Version 5: Servers

User Response: None.

UDIN3008I: Application appname stopped successfully. Value is:
Explanation: This is an informational message issued by the UDDI setup
script appserverremoveuddi.jacl.

User Response: None.

UDIN3009I: Removing application appname. Value is:
Explanation: This is an informational message issued by the UDDI setup
script appserverremoveuddi.jacl.

User Response: None.

UDIN3010I: Application appname removed successfully. Value is:
Explanation: This is an informational message issued by the UDDI setup
script appserverremoveuddi.jacl.

User Response: None.

UDIN3011I: UDDI datasource will be removed from server servername in node
nodename if present. Values are:

Explanation: This is an informational message issued by the UDDI setup
script appserverremoveuddi.jacl.

User Response: None.

UDIN3012I: Removing UDDI datasource.
Explanation: This is an informational message issued by the UDDI setup
script appserverremoveuddi.jacl.

User Response: None.

UDIN3013I: UDDI datasource successfully removed.
Explanation: This is an informational message issued by the UDDI setup
script appserverremoveuddi.jacl.

User Response: None.

UDIN3014I: UDDI JDBC driver will be removed from server servername in node
nodename if present. Values are:

Explanation: This is an informational message issued by the UDDI setup
script appserverremoveuddi.jacl.

User Response: None.

UDIN3015I: Removing UDDI JDBC driver from node nodename. Value is:
Explanation: This is an informational message issued by the UDDI setup
script appserverremoveuddi.jacl.

User Response: None.

UDIN3016I: UDDI JDBC driver successfully removed.
Explanation: This is an informational message issued by the UDDI setup
script appserverremoveuddi.jacl.

User Response: None.

UDIN3017I: UDDI Registry application, JDBC driver and datasource removed
successfully.

Explanation: This is an informational message issued by the UDDI setup
script appserverremoveuddi.jacl.

User Response: None.

Chapter 5. IBM WebSphere UDDI Registry 125

UDIN3101I: Attempting to save new configuration.
Explanation: This is an informational message issued by the UDDI setup
script appserverremoveuddi.jacl.

User Response: None.

UDIN3102I: Changes to remove UDDI Registry have been saved successfully.
Explanation: This is an informational message issued by the UDDI setup
script appserverremoveuddi.jacl.

User Response: None.

UDIN3103I: Attempting to save new configuration.
Explanation: This is an informational message issued by the UDDI setup
script appserverremoveuddi.jacl.

User Response: None.

UDIN3104I: Changes saved successfully.
Explanation: This is an informational message issued by the UDDI setup
script appserverremoveuddi.jacl.

User Response: None.

UDIN3105I: Attempting final save of new configuration.
Explanation: This is an informational message issued by the UDDI setup
script appserverremoveuddi.jacl.

User Response: None.

UDIN3106I: Changes saved successfully.
Explanation: This is an informational message issued by the UDDI setup
script appserverremoveuddi.jacl.

User Response: None.

UDIN6001E: This script must be run in a Deployment Manager environment.
Explanation: This is an error message issued by the UDDI setup script
setupuddi.jacl.

User Response:This message is self-explanatory.

UDIN6002E: To install in a standalone application server, use
appserversetupuddi.jacl.

Explanation: This is an error message issued by the UDDI setup script
setupuddi.jacl.

User Response:This message is self-explanatory.

UDIN6003E: Incorrect number of arguments passed to script.
Explanation: This is an error message issued by the UDDI setup script
setupuddi.jacl.

User Response:This message is self-explanatory.

UDIN6004E: Usage is:
Explanation: This is an error message issued by the UDDI setup script
setupuddi.jacl. The text following ’Usage is:’ gives the syntax for calling
setupuddi.jacl.

User Response:This message is self-explanatory.

UDIN6005E: (<db2userid> <db2password> <db2ziplocation> are only required if
setting up to use DB2).

Explanation: This is an error message issued by the UDDI setup script
setupuddi.jacl.

126 IBM WebSphere Application Server Network Deployment, Version 5: Servers

User Response:This message is self-explanatory.

UDIN6006E: Use all forward (’/’) slashes to avoid problems with escaping back
(’\\’) slashes.

Explanation: This is an error message issued by the UDDI setup script
setupuddi.jacl.

User Response:This message is self-explanatory.

UDIN6007E: Removal of childtype childname caught exception Exc. Values are:
Explanation: This is an error message issued by the UDDI setup script
setupuddi.jacl.

User Response:This message is self-explanatory.

UDIN6008E: An exception Exc occurred while creating childtype. Values are:
Explanation: This is an error message issued by the UDDI setup script
setupuddi.jacl.

User Response:This message is self-explanatory.

UDIN6009E: Unable to find requested parentype of parentname. Values are:
Explanation: This is an error message issued by the UDDI setup script
setupuddi.jacl.

User Response:This message is self-explanatory.

UDIN6010E: List command for J2CResourceAdapter caught exception Exc. Value
is: Explanation: This is an error message issued by the UDDI setup script

setupuddi.jacl.

User Response:This message is self-explanatory.

UDIN6011E: No J2CResourceAdapter objects available.
Explanation: This is an error message issued by the UDDI setup script
setupuddi.jacl.

User Response:This message is self-explanatory.

UDIN6012E: An error occurred during execution of setupuddi.jacl. Please check
the parameters and try again.

Explanation: This is an error message issued by the UDDI setup script
setupuddi.jacl.

User Response:This message is self-explanatory.

UDIN6013E: Uninstall of application appname caught exception Exc. Values are:
Explanation: This is an error message issued by the UDDI setup script
setupuddi.jacl.

User Response:This message is self-explanatory.

UDIN6014E: Install of UDDI application caught exception Exc. Value is:
Explanation: This is an error message issued by the UDDI setup script
setupuddi.jacl.

User Response:This message is self-explanatory.

UDIN6015E: Could not get JVM.
Explanation: This is an error message issued by the UDDI setup script
setupuddi.jacl.

User Response:This message is self-explanatory.

Chapter 5. IBM WebSphere UDDI Registry 127

UDIN6016E: Cannot find nodeSync MBean.
Explanation: This is an error message issued by the UDDI setup script
setupuddi.jacl.

User Response:This message is self-explanatory.

UDIN6017E: nodeSync failed. UDDI Application may not be fully installed.
Explanation: This is an error message issued by the UDDI setup script
setupuddi.jacl.

User Response:This message is self-explanatory.

UDIN6018E: stopServer command for server servername caught exception Exc.
Values are:

Explanation: This is an error message issued by the UDDI setup script
setupuddi.jacl.

User Response:This message is self-explanatory.

UDIN6019E: startServer command for server servername caught exception Exc.
Values are:

Explanation: This is an error message issued by the UDDI setup script
setupuddi.jacl.

User Response:This message is self-explanatory.

UDIN6101E: Error saving configuration, changes not saved due to exception Exc.
Value is:

Explanation: This is an error message issued by the UDDI setup script
setupuddi.jacl.

User Response:This message is self-explanatory.

UDIN6102E: Error saving configuration, changes not saved due to exception Exc.
Value is:

Explanation: This is an error message issued by the UDDI setup script
setupuddi.jacl.

User Response:This message is self-explanatory.

UDIN6103E: Error saving configuration, changes not saved due to exception Exc.
Value is:

Explanation: This is an error message issued by the UDDI setup script
setupuddi.jacl.

User Response:This message is self-explanatory.

UDIN6104E: Error saving configuration, changes not saved due to exception Exc.
Value is:

Explanation: This is an error message issued by the UDDI setup script
setupuddi.jacl.

User Response:This message is self-explanatory.

UDIN7001E: This script must be run in a Deployment Manager environment.
Explanation: This is an error message issued by the UDDI setup script
removeuddi.jacl.

User Response:This message is self-explanatory.

UDIN7002E: To remove from a standalone application server, use
appserverremoveuddi.jacl.

Explanation: This is an error message issued by the UDDI setup script
removeuddi.jacl.

128 IBM WebSphere Application Server Network Deployment, Version 5: Servers

User Response:This message is self-explanatory.

UDIN7003E: Incorrect number of arguments passed to script.
Explanation: This is an error message issued by the UDDI setup script
removeuddi.jacl.

User Response:This message is self-explanatory.

UDIN7004E: Usage is:
Explanation: This is an error message issued by the UDDI setup script
removeuddi.jacl. The text following ’Usage is:’ gives the syntax for calling
removeuddi.jacl.

User Response:This message is self-explanatory.

UDIN7005E: stopServer command for server servername caught exception Exc.
Values are:

Explanation: This is an error message issued by the UDDI setup script
removeuddi.jacl.

User Response:This message is self-explanatory.

UDIN7006E: Removal of resource bundles caught exception Exc. Value is:
Explanation: This is an error message issued by the UDDI setup script
removeuddi.jacl.

User Response:This message is self-explanatory.

UDIN7007E: Removal of Cloudscape user functions caught exception Exc. Value
is: Explanation: This is an error message issued by the UDDI setup script

removeuddi.jacl.

User Response:This message is self-explanatory.

UDIN7008E: Uninstall of application appname caught exception Exc. Values are:
Explanation: This is an error message issued by the UDDI setup script
removeuddi.jacl.

User Response:This message is self-explanatory.

UDIN7009E: Removal of UDDI datasource caught exception Exc. Value is:
Explanation: This is an error message issued by the UDDI setup script
removeuddi.jacl.

User Response:This message is self-explanatory.

UDIN7010E: Removal of UDDI JDBC driver caught exception Exc. Value is:
Explanation: This is an error message issued by the UDDI setup script
removeuddi.jacl.

User Response:This message is self-explanatory.

UDIN7011E: Removal of configuration properties file caught exception Exc.
Value is:

Explanation: This is an error message issued by the UDDI setup script
removeuddi.jacl.

User Response:This message is self-explanatory.

UDIN7012E: Cannot find nodeSync MBean.
Explanation: This is an error message issued by the UDDI setup script
removeuddi.jacl.

User Response:This message is self-explanatory.

Chapter 5. IBM WebSphere UDDI Registry 129

UDIN7013E: nodeSync failed. UDDI Application may not be fully uninstalled.
Explanation: This is an error message issued by the UDDI setup script
removeuddi.jacl.

User Response:This message is self-explanatory.

UDIN7014E: startServer command for server servername caught exception Exc.
Values are:

Explanation: This is an error message issued by the UDDI setup script
removeuddi.jacl.

User Response:This message is self-explanatory.

UDIN7015E: Could not get JVM.
Explanation: This is an error message issued by the UDDI setup script
removeuddi.jacl.

User Response:This message is self-explanatory.

UDIN7101E: Error saving configuration, changes not saved due to exception Exc.
Value is:

Explanation: This is an error message issued by the UDDI setup script
removeuddi.jacl.

User Response:This message is self-explanatory.

UDIN7102E: Error saving configuration, changes not saved due to exception Exc.
Value is:

Explanation: This is an error message issued by the UDDI setup script
removeuddi.jacl.

User Response:This message is self-explanatory.

UDIN7103E: Error saving configuration, changes not saved due to exception Exc.
Value is:

Explanation: This is an error message issued by the UDDI setup script
removeuddi.jacl.

User Response:This message is self-explanatory.

UDIN7104E: Error saving configuration, changes not saved due to exception Exc.
Value is:

Explanation: This is an error message issued by the UDDI setup script
removeuddi.jacl.

User Response:This message is self-explanatory.

UDIN7105E: Error saving configuration, changes not saved due to exception Exc.
Value is:

Explanation: This is an error message issued by the UDDI setup script
removeuddi.jacl.

User Response:This message is self-explanatory.

UDIN8001E: This script must be run on a standalone application server.
Explanation: This is an error message issued by the UDDI setup script
appserversetupuddi.jacl.

User Response:This message is self-explanatory.

UDIN8002E: To install in a Deployment Manager Environment, use
setupuddi.jacl.

Explanation: This is an error message issued by the UDDI setup script
appserversetupuddi.jacl.

130 IBM WebSphere Application Server Network Deployment, Version 5: Servers

User Response:This message is self-explanatory.

UDIN8003E: Incorrect number of arguments passed to script.
Explanation: This is an error message issued by the UDDI setup script
appserversetupuddi.jacl.

User Response:This message is self-explanatory.

UDIN8004E: Usage is:
Explanation: This is an error message issued by the UDDI setup script
appserversetupuddi.jacl. The text following ’Usage is:’ gives the syntax for
calling appserversetupuddi.jacl.

User Response:This message is self-explanatory.

UDIN8005E: (<db2userid> <db2password> <db2ziplocation> are only required if
setting up to use DB2).

Explanation: This is an error message issued by the UDDI setup script
appserversetupuddi.jacl.

User Response:This message is self-explanatory.

UDIN8006E: Use all forward (’/’) slashes to avoid problems with escaping back
(’\\’) slashes.

Explanation: This is an error message issued by the UDDI setup script
appserversetupuddi.jacl.

User Response:This message is self-explanatory.

UDIN8007E: List command for type parenttype caught exception Exc. Values are:
Explanation: This is an error message issued by the UDDI setup script
appserversetupuddi.jacl.

User Response:This message is self-explanatory.

UDIN8008E: No objects of type parenttype available. Value is:
Explanation: This is an error message issued by the UDDI setup script
appserversetupuddi.jacl.

User Response:This message is self-explanatory.

UDIN8009E: List command for childtype caught exception Exc. Values are:
Explanation: This is an error message issued by the UDDI setup script
appserversetupuddi.jacl.

User Response:This message is self-explanatory.

UDIN8001E: This script must be run on a standalone application server.
Explanation: This is an error message issued by the UDDI setup script
appserversetupuddi.jacl.

User Response:This message is self-explanatory.

UDIN8010E: Error during remove of existing childtype, exception Exc caught.
Values are:

Explanation: This is an error message issued by the UDDI setup script
appserversetupuddi.jacl.

User Response:This message is self-explanatory.

UDIN8011E: Create command for childtype caught exception Exc. Values are:
Explanation: This is an error message issued by the UDDI setup script
appserversetupuddi.jacl.

User Response:This message is self-explanatory.

Chapter 5. IBM WebSphere UDDI Registry 131

UDIN8012E: Unable to find requested parentype of parentname. Values are:
Explanation: This is an error message issued by the UDDI setup script
appserversetupuddi.jacl.

User Response:This message is self-explanatory.

UDIN8013E: List command for J2CResourceAdapter caught exception Exc. Value
is: Explanation: This is an error message issued by the UDDI setup script

appserversetupuddi.jacl.

User Response:This message is self-explanatory.

UDIN8014E: No J2CResourceAdapter objects available.
Explanation: This is an error message issued by the UDDI setup script
appserversetupuddi.jacl.

User Response:This message is self-explanatory.

UDIN8015E: An error occurred during execution of appserversetupuddi.jacl.
Please check the parameters and try again.

Explanation: This is an error message issued by the UDDI setup script
appserversetupuddi.jacl.

User Response:This message is self-explanatory.

UDIN8016E: List command for Applications caught exception Exc. Value is:
Explanation: This is an error message issued by the UDDI setup script
appserversetupuddi.jacl.

User Response:This message is self-explanatory.

UDIN8017E: Uninstall of application appname caught exception Exc. Values are:
Explanation: This is an error message issued by the UDDI setup script
appserversetupuddi.jacl.

User Response:This message is self-explanatory.

UDIN8018E: Install of UDDI application caught exception Exc. Value is:
Explanation: This is an error message issued by the UDDI setup script
appserversetupuddi.jacl.

User Response:This message is self-explanatory.

UDIN8019E: startApplication command for appname caught exception Exc.
Values are:

Explanation: This is an error message issued by the UDDI setup script
appserversetupuddi.jacl.

User Response:This message is self-explanatory.

UDIN8101E: Error saving configuration, changes not saved due to exception Exc.
Value is:

Explanation: This is an error message issued by the UDDI setup script
appserversetupuddi.jacl.

User Response:This message is self-explanatory.

UDIN8102E: Error saving configuration, changes not saved due to exception Exc.
Value is:

Explanation: This is an error message issued by the UDDI setup script
appserversetupuddi.jacl.

User Response:This message is self-explanatory.

132 IBM WebSphere Application Server Network Deployment, Version 5: Servers

UDIN8103E: Error saving configuration, changes not saved due to exception Exc.
Value is:

Explanation: This is an error message issued by the UDDI setup script
appserversetupuddi.jacl.

User Response:This message is self-explanatory.

UDIN9001E: This script must be run on a standalone application server.
Explanation: This is an error message issued by the UDDI setup script
appserverremoveuddi.jacl.

User Response:This message is self-explanatory.

UDIN9002E: To remove from a deployment manager environment, use
removeuddi.jacl.

Explanation: This is an error message issued by the UDDI setup script
appserverremoveuddi.jacl.

User Response:This message is self-explanatory.

UDIN9003E: Incorrect number of arguments passed to script.
Explanation: This is an error message issued by the UDDI setup script
appserverremoveuddi.jacl.

User Response:This message is self-explanatory.

UDIN9004E: Usage is:
Explanation: This is an error message issued by the UDDI setup script
appserverremoveuddi.jacl.

User Response:This message is self-explanatory.

UDIN9005E: List command for Applications caught exception Exc. Value is:
Explanation: This is an error message issued by the UDDI setup script
appserverremoveuddi.jacl.

User Response:This message is self-explanatory.

UDIN9006E: Uninstall of application appname caught exception Exc. Values are:
Explanation: This is an error message issued by the UDDI setup script
appserverremoveuddi.jacl.

User Response:This message is self-explanatory.

UDIN9007E: Removal of UDDI datasource caught exception Exc. Value is:
Explanation: This is an error message issued by the UDDI setup script
appserverremoveuddi.jacl.

User Response:This message is self-explanatory.

UDIN9008E: Removal of UDDI JDBC driver caught exception Exc. Value is:
Explanation: This is an error message issued by the UDDI setup script
appserverremoveuddi.jacl.

User Response:This message is self-explanatory.

UDIN9101E: Error saving configuration, changes not saved due to exception Exc.
Value is:

Explanation: This is an error message issued by the UDDI setup script
appserverremoveuddi.jacl.

User Response:This message is self-explanatory.

Chapter 5. IBM WebSphere UDDI Registry 133

UDIN9102E: Error saving configuration, changes not saved due to exception Exc.
Value is:

Explanation: This is an error message issued by the UDDI setup script
appserverremoveuddi.jacl.

User Response:This message is self-explanatory.

UDIN9103E: Error saving configuration, changes not saved due to exception Exc.
Value is:

Explanation: This is an error message issued by the UDDI setup script
appserverremoveuddi.jacl.

User Response:This message is self-explanatory.

UDLC (Web Services UDDI) messages
There are no messages issued by this component.

UDPR (Web Services UDDI) messages
There are no messages issued by this component.

UDRS (Web Services UDDI) messages
UDRS0001E: Exception ″<exception>″ occurred while attempting to get UDDI
Message Logger.

Explanation: This message is issued to stderr when an attempt to get the
UDDI Message Logger fails with the indicated exception. Since the attempt
to get the message logger failed, the message cannot be logged. No
messages can be logged by this instance of the IBM WebSphere UDDI
Registry.

User Response: Restart the UDDI registry. If the error persists, examine the
WebSphere logs for information on its cause. If the problem cannot be
resolved, then please contact the IBM Customer Service Center.

UDRS0002E: Exception ″<exception>″ occurred while attempting to get UDDI
Trace Logger for ″<component>″.

Explanation: This message is logged when an attempt to get the UDDI
Trace Logger for the specified component (or package) fails with the
indicated exception. No trace entries can be logged for this component or
package of the IBM WebSphere UDDI Registry.

User Response: Restart the UDDI registry. If the error persists, examine the
WebSphere logs for information on its cause. If the problem cannot be
resolved, then please contact the IBM Customer Service Center.

UDSC (Web Services UDDI) messages
There are no messages issued by this component.

UDSP (Web Services UDDI) messages
UDSP0001E: ParserPool found empty whilst attempting to process request.
Request unsatisfied

Explanation: A SOAP request was received, but was unable to be dealt
with, as there were no free Parsers within the ParserPool.

User Response: Consider increasing the number of Parsers within the
ParserPool by modifying the Init Parameter on the SOAP servlets.

134 IBM WebSphere Application Server Network Deployment, Version 5: Servers

UDSP0002E: Error locating schemas required for UDDI processing. SOAP
Servlets unworkable.

Explanation: The SOAP servlet was unable to locate the schemas it
requires in order to process SOAP requests. Without these, the servlet
cannot process SOAP requests.

User Response: Check installation of UDDI was performed correctly. If the
error persists, examine the WebSphere logs for information on its cause. If
the problem cannot be resolved, then please contact the IBM Customer
Service Center.

UDSP0003W: Servlet unable to locate init parameter ’defaultPoolSize’. Using
internal defaults.

Explanation: The SOAP servlet was unable to locate the init parameter
which sets the default size of the ParserPool. It will fall back to an internal
default.

User Response: If this message occured after attempting to make changes
to the defaultPoolSize init parameter, ensure the changes were correct. If
this message has appeared after installed, ensure installation was
performed correctly.

UDSP0004W: Servlet unable to understand init parameter ’defaultPoolSize’.
Using internal defaults.

Explanation: The SOAP servlet was unable to parse the init parameter
which sets the default size of the ParserPool. It will fall back to an internal
default.

User Response: If this message occured after attempting to make changes
to the defaultPoolSize init parameter, ensure the changes were correct. If
this message has appeared after installed, ensure installation was
performed correctly.

UDSP0005E: Error occurred during parser creation.
Explanation: An unspecified error occured during the creation of a SOAP
parser

User Response: Restart the UDDI registry. If the error persists, examine the
WebSphere logs for information on its cause. If the problem cannot be
resolved, then please contact the IBM Customer Service Center.

UDSP0006E: Internal configuration error.
Explanation: This error may occur if there was a failure creating a Parser,
with accompanying message UDSP0005. It may also occur if there was a
problem acquiring the Persistence layer.

User Response: Restart the UDDI registry. If the error persists, examine the
WebSphere logs for information on its cause. If the problem cannot be
resolved, then please contact the IBM Customer Service Center.

UDSP0007E: Error during servlet acquisition of persistence layer.
Explanation: The SOAP servlet was unable to acquire the persistence layer
required for it to communicate with the UDDI datasource

User Response: Restart the UDDI registry. If the error persists, examine the
WebSphere logs for information on its cause. If the problem cannot be
resolved, then please contact the IBM Customer Service Center.

UDSP0008E: Error during servlet release of persistence layer.
Explanation: The persistence layer reported a problem when the SOAP
servlet attempted to release it.

Chapter 5. IBM WebSphere UDDI Registry 135

User Response: Restart the UDDI registry. If the error persists, examine the
WebSphere logs for information on its cause. If the problem cannot be
resolved, then please contact the IBM Customer Service Center.

UDSP0009E: Error during sending of response to client.
Explanation: An error occured when sending a SOAP response message
back to a client. The client may not have received the response

User Response: This error is recorded to enable logging of failed responses
to clients. The error may be the fault of the client disconnecting before the
reply could be sent, or may indicate a network problem. Examine the
WebSphere logs for more information on its cause.

UDUC (Web Services UDDI) messages
UDUC0001I: IBM WebSphere UDDI Registry user console starting initialization.

Explanation: The user console control servlet is starting.

User Response: None.

UDUC0002I: IBM WebSphere UDDI Registry user console finished
initialization.

Explanation: The user console control servlet has completed startup.

User Response: None.

UDUC0003I: Reading init parameters.
Explanation: The user console control servlet has started reading external
parameters in its init method

User Response: None.

UDUC0004I: Finished reading init parameters.
Explanation: The user console control servlet has finished reading external
parameters in its init method. This message indicates the user console is
ready to accept client requests.

User Response: None.

UDUC0005E: A serious error has occurred. Error message: <Message> error:
<Throwable>. More information: <Additional information>.

Explanation: This error message indicates an unexpected error has
occurred. The <Message> describes the error that has occurred and the
<Throwable> is the type of error that was caught. <Additional
information> may provide further information, if available.

User Response: A trace of the gui component is recommended. Contact
IBM support with this information.

UDUC0006E: A persistence error has occurred. Error message: <Message> error:
<Throwable>. More information: <Additional information>.

Explanation: An error occurred while performing a database operation.
The <Message> describes the error that occurred and the <Throwable> is
the type of error that was caught. <Additional information> may provide
further information, if available.

User Response: Check database connections and state. Please provide IBM
support with a trace, including the gui and persistence components.

UDUC0007E: A User mismatch error has occurred. Error message: <Message>
error: <Throwable>. More information: <Additional information>.

Explanation: The user id provided does not match the user id required or
expected whilst performing an operation that requires authentication. The

136 IBM WebSphere Application Server Network Deployment, Version 5: Servers

<Message> describes the error that occurred and the <Throwable> is the
type of error that was caught. <Additional information> may provide
further information, if available.

User Response: Check the user has authority for the operation being
requested. If necessary, contact IBM support detailing the actions taken to
recreate the problem.

UDUC0008E: An invalid key was passed. Error message: <Message> error:
<Throwable>. More information: <Additional information>.

Explanation: The requested operation is trying to retrieve information
about an entity with a key that is invalid. This may occur if the entity has
been deleted by another session. The <Message> describes the error that
occurred and the <Throwable> is the type of error that was caught.
<Additional information> may provide further information, if available.

User Response: Ask the client to close existing sessions and attempt the
operation in a new browser session. If the problem persists, please provide
IBM support with a trace of the gui and api components.

UDUC0009E: An invalid value was supplied. Error message: <Message> error:
<Throwable>. More information: <Additional information>

Explanation: An invalid value was passed to an API call. The >Message>
describes the error that occurred and the <Throwable> is the type of error
that was caught. <Additional information> may provide further
information, if available.

User Response: Contact IBM support with a trace of the gui and api
components.

UDUC0010E: Failed to introspect ActionForm properties. Exception:
<Exception>.

Explanation: String properties of a form object could not be introspected
which means that the form contents cannot be checked for invalid
characters.

User Response: Please contact IBM support with details of the Exception
and a trace of the gui component.

UDUC0011E: Failed to invoke reflected methods in ActionForm. Exception:
<Exception>.

Explanation: A form object’s declared public method for setting or getting
a String value could not be invoked. This method is required to check for
invalid characters.

User Response: Please contact IBM support with details of the Exception
and a trace of the gui component.

UDUC0012E: User console initialization failed to connect to UDDI database.
Exception: <Exception>.

Explanation: During user console initialization, connection to the database
failed, and threw the exception specified.

User Response: Check the connection to the UDDI database. The included
exception message may yield some clues to help you resolve the problem.
If unresolved, please contact IBM support with a trace of the gui
component during startup.

Chapter 5. IBM WebSphere UDDI Registry 137

UDUC0013E: User console initialization failed to initialize tModels. Exception:
<Exception>.

Explanation: Indicates that an error has occurred during initialization of
ActionServlet, specifically when reading tModels (invoking init method in
class TModelNames).

User Response: Check the state of the UDDI database. Visually inspect the
TMODEL table and confirm it is populated with valid data. The included
exception message may yield some clues to help you resolve the problem.
If unresolved, please contact IBM support with a trace of the gui
component during startup.

UDUC0014E: User console initialization failed to initialize taxonomies.
Exception: <Exception>.

Explanation: Indicates that an error has occurred during initialization of
ActionServlet, specifically when reading taxonomy data (invoking init
method of CategoryTaxonomyTree).

User Response: Check the state of the UDDI database. The included
exception message may yield some clues to help you resolve the problem.
If unresolved, please contact IBM support with a trace of the gui
component during startup.

UDUU (Web Services UDDI) messages
There are no messages issued by this component.

Running the UDDI Samples
The UDDI samples, and documentation on how to use them, are available through
the Web Services UDDI samples link on the

(http://www.ibm.com/websphere/developer/library/samples/AppServer.html)
page of the IBM WebSphere Developer Domain Web site.

Installation Verification Program (IVP)
Before you begin

There are some samples available on the WSDD web site that are intended to
provide an optional Installation Verification test, or IVP, for the UDDI Registry
component.

This topic describes how to run these installation verification programs (IVPs) to
verify that the IBM UDDI Registry has been installed correctly.

There are two IVP SOAP samples called SOAPSampleIVPa and SOAPSampleIVPb.
They are intended to verify the successful installation of the product, and should
be used in conjunction with the UDDI Users Console (GUI). SOAPSampleIVPa
saves some data to the registry which you can then find using the GUI. Finally
you can delete the data by running SOAPSampleIVPb.

The IVP samples are installed into the same target directory as the other SOAP
samples and they use the same XML files as the basic Java SOAP samples.

138 IBM WebSphere Application Server Network Deployment, Version 5: Servers

http://www.ibm.com/websphere/developer/library/samples/AppServer.html

SOAPSampleIVPa saves three businesses, six services (2 per business) and three
tModels. The data structures are very basic and consist only of a name. The keys
returned by the save_* UDDI API calls are then written to a file,
SOAPSampleIVPa.out. SOAPSampleIVPb then reads in these keys from the file in
order to delete the saved data from the UDDI registry.

Note: Each time you run SOAPSampleIVPa, it overwrites the output file
SOAPSampleIVPa.out so, if you wish to use SOAPSampleIVPb to delete the data,
you must run this before you next run SOAPSampleIVPa.

To run the IVPs, complete the following steps on the same system as the UDDI
Registry:
1. Ensure that DB2 and the WebSphere Admin Server are started.
2. Start the WebSphere Administrator’s Console and ensure the default server is

started and the UDDI Registry Application is started.
3. For SOAP samples to work, you need to ensure that the Client JDK is either the

one shipped with IBM WebSphere Application Server or a later IBM JDK.:
v For Windows - ensure that <WebSphere-install-dir>\java\bin is present in

the PATH statement before any other JDK’s
v For Unix Platforms - ensure that <WebSphere-install-dir>/java/bin is present

in the PATH statement before any other JDK’s

Note: You must use the IBM WebSphere supplied JDK or a later level of the
IBM JDK.

For Windows, the default system path can be set via Control Panel ...->
Settings ...-> System ...-> Advanced Properties ...-> Environment Variables

Alternatively, this can be accomplished just for the shell where you plan to run
the samples by modifying the path within the shell:
v For Windows - set path=<WebSphere-install-dir>\java\bin;%path%
v For Unix Platforms - export PATH=<WebSphere-install-dir>/java/bin:$PATH

4. Copy the samples and *.xml files to a directory, and compile and run them
there (see next bullets)

5. Compile both SOAPSampleIVPa and SOAPSampleIVPb by typing:
’javac SOAPSampleIVPa.java’

and
’javac SOAPSampleIVPb’

.
6. Run SOAPSampleIVPa by typing ’java SOAPSampleIVPa’. This should publish

a number of businesses and services and technical models into the registry.
7. Start your Web browser on the same system as the UDDI Registry.
8. To display the UDDI GUI home page, type one of the following URLs:

v If you have WebSphere security disabled: http://localhost:9080/uddigui
v If you have WebSphere security enabled: https://localhost:9433/uddigui

9. On the find page, complete the following steps:
a. Select the business radio button
b. In the data entry field, type % (percent is the wild card symbol)
c. Click Find

Chapter 5. IBM WebSphere UDDI Registry 139

You should get a results page returned with three businesses (mybusiness1,
mybusiness2, and mybusiness3). This demonstrates that the API and the
UDDI Console are working correctly.

10. To see the services that are available for a business, click the ″Show Services″
option next to the business.

11. To delete all of the IVP data, run SOAPSampleIVPb (from the command
prompt as before - by typing ’java SOAPSampleIVPb’)

12. On the find page, complete the following steps:
a. Select the business radio button
b. In the data entry field, type % (percent is the wild card symbol)
c. Click Find

You should get an empty results page returned.

Reporting Problems with the IBM WebSphere UDDI Registry
Before you begin

If you report a problem with the IBM WebSphere UDDI Registry component to
IBM, please supply the following information:
1. A detailed description of the problem.
2. The build date and time of the version you are using. This can be obtained as

follows:
v In the installedApps subdirectory of the WebSphere install location, you will

find a subdirectory called UDDI_Registry.<nodename>.<servername>.ear,
where <nodename> is the name of the node into which the UDDI Registry
application is installed, and <servername> is the name of the server. Within
that subdirectory, you will find a file called version.txt. Please include the
contents of this file as part of your information.

v If the UDDI Registry has been started with tracing enabled for the UDDI
component, then you should find a trace entry in the WebSphere trace log
which includes the strings ″ getUDDIMessageLogger″ and ″UDDI Build :″
followed by the build date and time, and the build system. Please also
include this information.

3. Any relevant log files and trace files.
v If the problem occurred while setting up and installing the UDDI Registry

application using one of the setup scripts, setupuddi.jacl or
appserversetupuddi.jacl, then please supply the log output from running the
script. (If you had not chosen to redirect the output from the script file to a
log file, then please rerun the script, this time redirecting the output as
described in the section ’Installing and Setting up a UDDI Registry’.) The log
file will be in the directory from which you ran the setup script.

v If the problem occurred while removing the UDDI Registry application using
one of the remove scripts, removeuddi.jacl or appserverremoveuddi.jacl, then
please supply the log output from running the script. (If you had not chosen
to redirect the output from the script file to a log file, then please rerun the
script, this time redirecting the output as described in the section ’Removing
the UDDI Registry from a deployment manager cell’ or ’Removing the UDDI
Registry application from a single appserver’.) The log file will be in the
directory from which you ran the remove script.

v If the problem occurred while creating the UDDI Registry database using the
UDDI DB2 Setup Wizard, then please supply the log file UDDIloadDB.log,
which will be in the directory from which the wizard was run.

140 IBM WebSphere Application Server Network Deployment, Version 5: Servers

v If the problem occurred while running the UDDI Registry, please enable
UDDI tracing (if not already enabled) and supply the trace log from the logs
directory of the application server on which the UDDI Registry was running.
Please refer to the section on ’Turning on UDDI Trace’ for details on how to
enable UDDI tracing.

4. If appropriate, any application code that you are using and the output
produced by the application code.

Feedback
Before you begin

See the section on ″Obtaining help from IBM″ elsewhere in this InfoCenter for
details on seeking assistance.

Chapter 5. IBM WebSphere UDDI Registry 141

142 IBM WebSphere Application Server Network Deployment, Version 5: Servers

Chapter 6. Enabling Web services through the IBM Web
Services Gateway

Use this topic to enable Web services through the IBM Web services Gateway

You use the IBM Web Services Gateway to handle Web Service invocations
between Internet and Intranet environments. You use it to make your internal Web
services available externally, and to make external Web services available to your
internal systems.

With the Web Services Gateway you can administer Web services, Channels, Filters
and UDDI registrations.

Detailed instructions on how to enable Web services through the IBM Web Services
Gateway are given in the following tasks:
v ″Web Services Gateway - Completing the installation″.
v ″Administering the Web Services Gateway″.
v ″Running the Web Services Gateway samples″.
v ″Administering security for the Web Services Gateway″.
v ″Web Services Gateway troubleshooting tips″.

For a brief overview of what the Web Services Gateway is for, and how it works,
see ″Web Services Gateway - Frequently Asked Questions″.

For a list of the major changes since the AlphaWorks preview version of the Web
Services Gateway, see ″Web Services Gateway - What is new in this release″.

For additional technical details of the Web Services Gateway, see the gateway
(../javadoc/wsg/index.html).

For more information about working with Web services, visit the Internet sites
referenced in Web Services Gateway: Resources for Learning.

Web Services Gateway - Frequently Asked Questions
This topic provides answers to the following set of frequently asked questions
about the Web Services Gateway:
v What are Web services?

Web services are modular applications that interact with one another across the
Internet. Web services are based on shared, open and emerging technology
standards and protocols (such as SOAP, UDDI, and WSDL) and can
communicate, interact, and integrate with other applications, no matter how
they are implemented.

v What is the IBM Web Services Gateway?

The gateway is a middleware component that bridges the gap between Internet
and Intranet environments during Web service invocations. You use it to manage
– Web services.
– channels that carry requests to and responses from the services.
– filters that act upon the services.

© Copyright IBM Corp. 2002 143

– references to UDDI Registries in which services can be registered.
v How does the Web Services Gateway work?

The gateway builds upon the Web services Definition Language (WSDL) and the
Web Services Invocation Framework (WSIF) for deployment and invocation.
You deploy a Web service to the Web Services Gateway by deploying a WSDL
file which describes how the Web Services Gateway should access it. The WSDL
file can be deployed to a UDDI Registry or to a URL. You can send requests
passing through the Web Services Gateway to a Java class, an enterprise bean, or
a SOAP server (including another gateway).
A request to the Web Services Gateway arrives through a channel, is translated
into an internal form, then passed through any filters that are registered for the
requested service, and finally sent on to the service implementation. Responses
follow the same path in reverse.

v What problems are solved by the Web Services Gateway?

– Securely ″externalizing″ Web services: Business applications that are exposed
as Web services can be used by any Web service-enabled tool, regardless of
the implementation details, to create new applications. To better integrate
your business processes, you might want to expose these assets to business
partners, customers and suppliers who are outside the firewall. The Web
Services Gateway lets clients from outside the firewall use Web services that
are buried deep inside your enterprise. The gateway also allows you to set
access control on each of these deeply-buried services.

– Better return on investment: A process that you develop as a Web service can
be reused by any number of partners.

– Use of existing infrastructure: With the Web Services Gateway, you can use
your existing messaging infrastructure to make Web service requests, and use
your existing Web services for external process integration.

– Protocol transformation: You might use one particular messaging protocol to
invoke Web services, while your partners use some other protocol. Using the
Web Services Gateway, you can trap the request from the client and transform
it to another messaging protocol.

v Who should use the Web Services Gateway?

Any enterprise that chooses to share its resources selectively with its business
partners and customers. IT Managers and Developers, who deploy resources,
can also benefit from this technology.

Web Services Gateway - What is new in this release

The Web Services Gateway was first made available on
(http://www.alphaworks.ibm.com/tech/wsgw) on 21 December 2001. The main
differences between the AlphaWorks edition and the current version are as follows:
v The gateway has been rebuilt using enterprise beans.

Note: A side-effect of this is that the Web Services Gateway now only runs in an
application server that has an EJB container. So it no longer runs in the Tomcat
server.

v The gateway includes UDDI integration, so you can deploy and remove Web
services to a UDDI registry as well as to a URL.

v The gateway supports bidirectional interactions (that is, both inbound and
outbound requests) directly, by deploying two instances of each type of channel.

144 IBM WebSphere Application Server Network Deployment, Version 5: Servers

http://www.alphaworks.ibm.com/tech/wsgw

Note: To achieve this configuration with the AlphaWorks version, you had to
deploy two instances of the Web Services Gateway; one for inbound
communication and one for outbound communication.

v Interceptors have been renamed as filters.
v Channels, filters and UDDI references are deployed to the Web services

Gateway, then associated with individual Web services. So when you configure a
Web Service, you choose the following entities:
– The Channels on which it is available.
– The Filters (if any) which apply to it.
– The UDDI References (if any) to which it is deployed.

v You can change the channels, filters and UDDI references that are associated
with a deployed service without having to remove the service.

v You can deploy multiple targets for a single service (that is, more than one
implementation of a service that has the same service interface).

v You can set security (basic authorization) on the individual methods of a Web
service, as well as for the gateway as a whole.

Web Services Gateway - Completing the installation
Before you begin

This task assumes that, when you installed WebSphere Application Server Network
Deployment, you either chose to install the Web Services Gateway (by choosing the
″custom install″ option Web Services -> Web Services Gateway) or you accepted
the ″typical install″ option (which includes the gateway). If you did this, then all
the files that are needed to run a Web Services Gateway were copied into
directories under WebSphere_DeployMgr_root, where WebSphere_DeployMgr_root is
the Deployment Manager root directory (by default WebSphere/DeploymentManager).

The following table lists the Web Services Gateway files, and the locations into
which they are placed by the install. The Location column shows the subdirectory
under WebSphere_DeployMgr_root. For example, if you installed WebSphere
Application Server onto a machine running Windows, and accepted the default
directory names, then the location of the ″installableApps″ directory is
C:\Progra~1\WebSphere\DeploymentManager\installableApps.

File name Purpose Location
wsgw.ear The Web Services Gateway

application
/installableApps

wsgwsoap1.ear The Apache SOAP channel
application number 1

/installableApps

wsgwsoap2.ear The Apache SOAP channel
application number 2

/installableApps

wsgwcorr.ear The application used to
correlate any asynchronous
reply messages

/installableApps

wsgwauth.ear The Web service
operation-level security
application

/installableApps

WSGWResourceBundles.jar System messages for the Web
Services Gateway application

/lib

Various install scripts Installation of the Web
Services Gateway

/WSGW/scripts/install

Chapter 6. Enabling Web services through the IBM Web Services Gateway 145

Authorization scripts Generation of authorization
beans for Web service
operation-level security

/WSGW/scripts/auth

Cloudscape directory tree Cloudscape database
containing the Web Services
Gateway tables and
pre-loaded data needed to
install a database to use with
the gateway

/bin/WSGWDB

Before you can run the Web Services Gateway, you need to complete the
installation. You have two choices:
v Install into a deployment manager cell.
v Install into a standalone application server.

For production use you will probably want to install the gateway into a
deployment manager cell, but for development or test purposes you might find it
useful to install the gateway into a standalone application server.

What to do next

To finish the Web Services Gateway installation, complete the following steps:
v Confirm that your system configuration complies with the Web services

Gateway prerequisites and constraints.
v Establish requirements for using a database with the gateway.
v Enable security if required.
v either Install the gateway into a deployment manager cell.
v or Install the gateway into a standalone application server.
v Test the installation.

Web Services Gateway - prerequisites and constraints
The Web Services Gateway assumes that IBM WebSphere Application Server
Advanced Edition (AE) Version 5.0, or IBM WebSphere Application Server
Advanced Edition - Developer Only Option (AEd) Version 5.0, and any
prerequisites they require, are installed on your system.

This version of the Web services Gateway is also subject to the following
constraints:
v WSDL definitions for target services must use XML Schema version 2001. For

more information, see ″Web Services Gateway troubleshooting tips″.
v The gateway application (wsgw.ear) must be installed before channel and filter

applications. If the gateway application needs to be reinstalled, all channels and
filters must be uninstalled first, then reinstalled after the gateway application.

v The gateway does not support WSDL service definitions that contain
soap:header elements within their wsdl:definition element.

v When you deploy a Web service to the gateway, the WSDL file that describes the
Web service must be located at a URL. It cannot be located through UDDI
lookup information.

v You must publish your Web services manually to any UDDI registries.

146 IBM WebSphere Application Server Network Deployment, Version 5: Servers

You might also find it useful to enable trace for all Gateway components, and have
trace, stdout and stderr for the application server written to a well-known location.
For information on how to do this, see Enabling trace.

Establishing requirements for using a database with the
gateway

Before installing the Web Services Gateway you need to decide on your database
requirements. There are three choices:

No database
You do not have to install a database, but if you do not install one you
cannot use asynchronous channels.

DB2 If DB2 is already installed on your system, you can create an associated
DB2 Web Services Gateway database.

Cloudscape
You can use the copy of Cloudscape 5.0.3 runtime that is installed with
WebSphere Application Server.

What to do next

Database installation instructions are included in the next task. So after you have
decided on your database requirements you are ready to either Install the gateway
into a deployment manager cell or Install the gateway into a standalone application
server.

Installing the gateway into a deployment manager cell
Before you begin

This task assumes that you have already completed the step Establishing
requirements for using a database with the gateway, and that you are installing
into an existing Deployment Manager cell.

If you want to enable gateway-level security, you must do so before you install the
Web Services Gateway and SOAP channel 1.

In this task you install the gateway into an existing Deployment Manager cell. The
major elements of this process are as follows:
v Database and Table creation (optional - DB2 only).
v JDBC driver and Datasource creation (optional - only if a database is being

installed).
v Installation of the following enterprise applications:

– The gateway application.
– SOAP channel 1.
– The correlation application (optional - only if a database is being installed).

v Installation of other gateway applications. For example SOAP channel 2.

To install the gateway into a Deployment Manager cell, complete the following
steps:

Steps for this task
1. (Optional) To create and install a DB2 database and associated tables, complete

the following steps:

Chapter 6. Enabling Web services through the IBM Web Services Gateway 147

a. From a command prompt, go to directory
WebSphere_DeployMgr_root/WSGW/scripts/install, where
WebSphere_DeployMgr_root is the Deployment Manager root directory (by
default WebSphere/DeploymentManager).

b. Enter the command WSGWinstallDB.ext WebSphere_DeployMgr_root
db2user_id db2password

where .ext is .bat for a Windows system and .sh for a UNIX system. For
example (UNIX systems):
./WSGWinstallDB.sh /opt/WebSphere/DeploymentManager mydb2id mydb2pw

Note: Running WSGWinstallDB also creates WSGWInstallDB.log in the
application server for network deployment’s /logs directory. Open this file
to check that the database was created successfully.

2. Start the application server (you can use the command startServer.ext
your_server).

3. From a command prompt, go to directory
WebSphere_DeployMgr_root/WSGW/scripts/install.

4. Clear your class path.
You can use the following command:
v (Windows systems): set CLASSPATH=

v (UNIX systems): unset CLASSPATH

5. Enter the command WebSphere_DeployMgr_root/bin/wsadmin.ext -f
setupWSGW.jacl parm1 ... parmN

where
v parm1 is the WebSphere_DeployMgr_root directory
v parm2 is the server name
v parm3 is the node name (this is case sensitive)

If you are not using a database, there are no more parameters and
wsgwcorr.ear is not installed. For example (Windows systems):

C:\Progra~1\WebSphere\DeploymentManager\bin\wsadmin.bat -f
setupWSGW.jacl C:/Progra~1/WebSphere/DeploymentManager server1 PHJ2

Note: The use of forward slashes (/) is compulsory for this command, even on
Windows systems.

If you are using Cloudscape, there is one more parameter:
v parm4 is the name and location of the WSGWDB directory

(WebSphere_DeployMgr_root/bin/WSGWDB).

For example (Windows systems):

C:\Progra~1\WebSphere\DeploymentManager\bin\wsadmin.bat -f
setupWSGW.jacl C:/Progra~1/WebSphere/DeploymentManager server1 PHJ2
C:/Progra~1/WebSphere/DeploymentManager/bin/WSGWDB

Note: The use of forward slashes (/) is compulsory for this command, even on
Windows systems.

If you are using DB2, there are four more parameters:
v parm4 is WSGWDB.

148 IBM WebSphere Application Server Network Deployment, Version 5: Servers

v parm5 is your DB2 user ID
v parm6 is your DB2 password
v parm7 is the name and location of file db2java.zip

For example (Windows systems):

C:\Progra~1\WebSphere\DeploymentManager\bin\wsadmin.bat -f
setupWSGW.jacl C:/Progra~1/WebSphere/DeploymentManager server1 PHJ2
WSGWDB mydb2id mydb2pw C:/Progra~1/SQLLIB/java/db2java.zip

Note: The use of forward slashes (/) is compulsory for this command, even on
Windows systems.

6. The gateway (wsgw.ear), SOAP channel 1 (wsgwsoap1.ear) and (optionally)
correlation (wsgwcorr.ear) applications have been installed by setupWSGW.jacl
in the previous steps. To install additional Web services Gateway applications -
for example SOAP channel 2 (wsgwsoap2.ear) - complete the following steps:
Note: If you prefer, you can install these EAR files using the WebSphere
Application Server administrative console, as described in the final step of the
task Enabling operation-level authorization.
a. From a command prompt, go to directory WebSphere_DeployMgr_root/bin

b. To start the application server, enter the command startServer.ext
your_server

c. To start the WebSphere administration program, enter the command
wsadmin.ext.

d. For each additional Web Services Gateway enterprise application that you
want to install, enter the following commands (shown split for publication)
at the wsadmin> prompt:
$AdminApp install path_to_ear_file{

-appname application
-server your_server
-node your_node_name}

$AdminConfig save

where
v application is the name of the enterprise application
v path_to_ear_file is the name and location of the enterprise application’s

EAR file
v your_node_name is the node name (this is case sensitive)

For example (Windows systems, shown split for publication):
wsadmin>$AdminApp install

C:/Progra~1/WebSphere/DeploymentManager/installableApps/wsgwsoap2.ear
{-appname wsgwsoap2 -server server1 -node PHJ2}

$AdminConfig save

e. After you have installed all your additional Web Services Gateway
enterprise applications, close the WebSphere administration program by
entering quit or exit at the wsadmin> prompt.

7. To stop then restart the application server, complete the following steps:
a. Enter the command stopServer.ext your_server

b. Enter the command startServer.ext your_server

What to do next

Chapter 6. Enabling Web services through the IBM Web Services Gateway 149

You are now ready to test the installation.

Installing the gateway into a standalone application server
Before you begin

This task assumes that you have already completed the step Establishing
requirements for using a database with the gateway.

If you want to enable gateway-level security, you must do so before you install the
gateway.

Note: The application server in which you run the gateway must not form part of
a cell managed by a deployment manager. In other words, you must not issue an
addNode command for the node containing the application server in which you run
the Web Services Gateway application. If you do issue the addNodecommand, then
the installed Web Services Gateway application is deleted by the node
synchronisation process that takes place within a cell of application servers.

When you installed WebSphere Application Server Network Deployment, all the
files that are needed to run a Web Services Gateway were copied into directories
under WebSphere_DeployMgr_root, where WebSphere_DeployMgr_root is the
Deployment Manager root directory (by default WebSphere/DeploymentManager).
Before you can install and run the gateway in a single application server instance
in your network space, you must first copy these files over to the application
server. You can do this by completing the following steps:
v Stop the application server into which you plan to install the Web Services

Gateway. You can use the command stopServer.ext your_server

where
– .ext is .bat for a Windows system and .sh for a UNIX system.
– your_server is your application server’s name.

For example (UNIX systems): ./stopServer.sh server1.
v Copy all the EAR files with filenames that begin ″wsgw″ from the

WebSphere_DeployMgr_root/installableApps directory of the machine on which
you installed WebSphere Application Server Network Deployment into the
standalone_WAS_root/installableApps directory of the target application
server’s install tree, where standalone_WAS_root is the root directory of your
target application server (by default WebSphere/AppServer).

v Copy file WebSphere_DeployMgr_root/lib/WSGWResouceBundles.jar into directory
standalone_WAS_root/lib.

v Copy directory WebSphere_DeployMgr_root/WSGW and all files and directories
within it into directory standalone_WAS_root/WSGW.

v If you plan to use the Cloudscape database with the Web Services Gateway, then
copy directory WebSphere_DeployMgr_root/bin/WSGWDB and all files and
directories within it into directory standalone_WAS_root/bin/WSGWDB.

In this task you install the gateway into an individual application server instance
in your network space. The major elements of this process are as follows:
v Database and Table creation (optional - DB2 only).
v JDBC driver and Datasource creation (optional - only if a database is being

installed).
v Installation of the following enterprise applications:

– The gateway application.

150 IBM WebSphere Application Server Network Deployment, Version 5: Servers

– SOAP channel 1.
– The correlation application (optional - only if a database is being installed).

v Installation of other gateway applications. For example SOAP channel 2.

To install the gateway into an application server instance, complete the following
steps:

Steps for this task
1. (Optional) To create and install a DB2 database and associated tables, complete

the following steps:
a. From a command prompt, go to directory

standalone_WAS_root/WSGW/scripts/install.
b. Enter the command WSGWinstallDB.ext standalone_WAS_root db2user_id

db2password

For example (UNIX systems): ./WSGWinstallDB.sh
/opt/WebSphere/AppServer mydb2id mydb2pw

Note: Running WSGWinstallDB also creates WSGWInstallDB.log in the
standalone application server’s /logs directory. Open this file to check that
the database was created successfully.

2. Start the application server (you can use the command startServer.ext
your_server).

3. From a command prompt, go to directory
standalone_WAS_root/WSGW/scripts/install.

4. Clear your class path.
You can use the following command:
v (Windows systems): set CLASSPATH=

v (UNIX systems): unset CLASSPATH

5. Enter the command standalone_WAS_root/bin/wsadmin.ext -f setupWSGW.jacl
parm1 ... parmN

where
v parm1 is the standalone_WAS_root directory
v parm2 is the server name
v parm3 is the node name (this is case sensitive)

If you are not using a database, there are no more parameters and
wsgwcorr.ear is not installed. For example (Windows systems):

C:\Progra~1\WebSphere\AppServer\bin\wsadmin.bat -f setupWSGW.jacl
C:/Progra~1/WebSphere/AppServer server1 PHJ2

Note: The use of forward slashes (/) is compulsory for this command, even on
Windows systems.

If you are using Cloudscape, there is one more parameter:
v parm4 is the name and location of the WSGWDB directory

(standalone_WAS_root/bin/WSGWDB).

For example (Windows systems, shown split for publication):

Chapter 6. Enabling Web services through the IBM Web Services Gateway 151

C:\Progra~1\WebSphere\AppServer\bin\wsadmin.bat -f setupWSGW.jacl
C:/Progra~1/WebSphere/AppServer server1 PHJ2
C:/Progra~1/WebSphere/AppServer/bin/WSGWDB

Note: The use of forward slashes (/) is compulsory for this command, even on
Windows systems.

If you are using DB2, there are four more parameters:
v parm4 is WSGWDB.
v parm5 is your DB2 user ID
v parm6 is your DB2 password
v parm7 is the name and location of file db2java.zip

For example (Windows systems):

C:\Progra~1\WebSphere\AppServer\bin\wsadmin.bat -f setupWSGW.jacl
C:/Progra~1/WebSphere/AppServer server1 PHJ2 WSGWDB mydb2id mydb2pw
C:/Progra~1/SQLLIB/java/db2java.zip

Note: The use of forward slashes (/) is compulsory for this command, even on
Windows systems.

6. The gateway (wsgw.ear), SOAP channel 1 (wsgwsoap1.ear) and (optionally)
correlation (wsgwcorr.ear) applications have been installed by setupWSGW.jacl
in the previous steps. To install additional Web services Gateway applications -
for example SOAP channel 2 (wsgwsoap2.ear) - complete the following steps:
Note: If you prefer, you can install these EAR files using the WebSphere
Application Server administrative console, as described in the final step of the
task Enabling operation-level authorization.
a. From a command prompt, go to directory standalone_WAS_root/bin

b. To start the application server, enter the command startServer.ext
your_server

c. To start the WebSphere administration program, enter the command
wsadmin.ext.

d. For each additional Web Services Gateway enterprise application that you
want to install, enter the following commands (shown split for publication)
at the wsadmin> prompt:
$AdminApp install path_to_ear_file {
-appname application
-server your_server
-node your_node_name}
$AdminConfig save

where
v application is the name of the enterprise application
v path_to_ear_file is the name and location of the enterprise application’s

EAR file
v your_node_name is the node name (this is case sensitive)

For example (Windows systems, shown split for publication):
wsadmin>$AdminApp install
C:/Progra~1/WebSphere/AppServer/installableApps/wsgwsoap2.ear
{-appname wsgwsoap2 -server server1 -node PHJ2}
$AdminConfig save

152 IBM WebSphere Application Server Network Deployment, Version 5: Servers

e. After you have installed all your additional Web Services Gateway
enterprise applications, close the WebSphere administration program by
entering quit or exit at the wsadmin> prompt.

7. To stop then restart the application server, complete the following steps:
a. Enter the command stopServer.ext your_server

b. Enter the command startServer.ext your_server

What to do next

You are now ready to test the installation.

Testing the Web Services Gateway installation
Use this task to test that the Web Services Gateway has been installed correctly.

To test the basic installation of the Web Services Gateway, complete the following
steps:

Steps for this task
1. In a Web browser, go to http://host:port/wsgw where host and port are the

host name and port number that your HTTP server is listening on.
The browser should display the following message:
IBM Web Services Gateway

What do you want to do?
v Run the admin client
v View the product ID

2. If the previous step was successful, then to test the Apache SOAP channels use
your Web browser to display the Web page at
http://host:port/wsgwengine/soaprpcrouter where engine is either soap1 or
soap2.
The browser should display the following message: Sorry, I don’t speak via
HTTP GET - you have to use HTTP POST to talk to me.

What to do next

If you don’t see these messages, your server is not configured correctly - in which
case, see Web Services Gateway troubleshooting tips.

Administering the Web Services Gateway
Use this task to administer the Web Services Gateway

To administer the Web Services Gateway, complete the following steps:

Steps for this task
1. Start the WebSphere Application Server Administrative Server.
2. Open the following Web page: http://host:port/wsgw/admin/index.html

where host and port are the host name and port number that your HTTP server
is listening on. For example localhost:8080 or localhost:9080.

Chapter 6. Enabling Web services through the IBM Web Services Gateway 153

The main administration page is displayed:

The order of the elements on this page is significant, for the following reasons:
v If you change the namespace URI or WSDL URI (using the Configure

Gateway option), you break the link back to the gateway for every Web
service that you have already deployed. So you must set these URIs before
you deploy any Web services.

v When you configure a Web service, you choose the following entities:
– The Channels on which it is available.
– The Filters (if any) which apply to it.
– The UDDI References (if any) to which it is deployed.

Each of these choices is made from a list of resources which have already
been deployed to the Web Services Gateway. So you might want to deploy
your channels, filters and UDDI references to the gateway before you
configure the Web services that use them.

3. For more information on how to configure each element of the Web services
Gateway, see the following topics:
v Setting the namespace URI and WSDL URI for the Web Services Gateway
v Working with channels
v Working with filters
v Working with UDDI references
v Working with Web services

Note:

v You configure each of the above elements of the gateway by filling in fields
in a panel.

v In all of the gateway’ panels, fields marks with asterisks are required.

154 IBM WebSphere Application Server Network Deployment, Version 5: Servers

v After you deploy a channel, filter, or UDDI reference you should refresh all
other open browser windows to ensure that up-to-date lists are displayed.

Setting the namespace URI and WSDL URI for the Web
Services Gateway

Use this task to set the namespace URI for the Web Services Gateway.

Before you begin

Initial values for the namespace URI and WSDL URI are automatically configured
when you install the Web Services Gateway.

When you deploy a Web Service to the Web Services Gateway, these two URIs are
used as follows:
v The Namespace URI for services is used as the namespace for the gateway

services in exported WSDL documents.
v The WSDL URI for exported definitions is used to generate the URL in import

statements within exported WSDL documents.

Note: When you change these URIs, you break the link back to the Web services
Gateway for every Web service that you have already deployed. So you must set
these URIs before you deploy any Web services to the Web services Gateway.

To set the namespace URI and WSDL URI for the Web services Gateway, complete
the following steps:

Steps for this task
1. Display the Web services Gateway administrative user interface.
2. In the navigation pane, click the following link:

Gateway

v Configure

The gateway configuration form is displayed:

3. In the Namespace URI for services field, type the new name.

Chapter 6. Enabling Web services through the IBM Web Services Gateway 155

There is no fixed syntax for the namespace URI, but whatever name you
choose is likely to be more effective if it observes the following guidelines:
v It begins with ″urn:″

See the guidance on Internet standards for the syntax of Uniform Resource

Names (URNs) at (http://www.ietf.org/rfc/rfc2141.txt).
v It is globally unique.
v It reflects your company name.

4. In the WSDL URI for exported definitions field, type the new name.
The initial value is the gateway’s ″best guess″ at the right value, but you will
probably want to overwrite it with a new value. For example it might guess a
local URI such as http://hldswrth:9080/wsgw, and because you are giving the
WSDL to people in other companies you modify this to
http://hldswrth.your_company.com/wsgw. Note that only the host and port parts
of the initial value are modified, and that this URI should always start http://
and end /wsgw.

5. Click Apply Changes.

Working with channels
Use this task to administer channels

Before you begin

Before you can work with a channel, you must install the channel application in
WebSphere Application Server as described in the penultimate step of Installing the
gateway into a deployment manager cell and Installing the gateway into a
standalone application server.

Two versions of each type of channel are supplied so that, for each channel type,
you can set up separate channels for inbound and outbound requests. For more
information see Channels - entry points to the Web Services Gateway.

From the navigation pane of the Web Services Gateway administrative user
interface, you can choose the following actions for Channels:
v List to list the deployed channels, and modify their deployment details.
v Deploy to deploy a channel.
v Remove to remove channels.

Channels - entry points to the Web Services Gateway
Channels form entry points to the Web Services Gateway and carry requests and
responses between Web services and the Web Services Gateway. A request to the
Web Services Gateway arrives through a channel, is translated into a WSIF
message, then passed through any filters that are registered for the requested
service, and finally sent on to the service implementation. Responses follow the
same path in reverse.

Before you can use a channel, you must install the channel application in
WebSphere Application Server then deploy the channel to the Web services
Gateway.

Note: A deployed channel is not used until you deploy a Web Service that uses the
channel.

156 IBM WebSphere Application Server Network Deployment, Version 5: Servers

http://www.ietf.org/rfc/rfc2141.txt

Two versions of each type of channel are supplied with the gateway. This is so
that, for each channel type, you can set up separate channels for inbound and
outbound requests. This provides a simple mechanism for giving different access
rights to users from outside your organisation from the rights you give to users
within your organisation:
v To ensure that users outside your organisation can only access those internal

services that you choose to publish externally, you deploy those services on the
inbound channel.

v To give users inside your organisation access to the full range of internal and
external services, you deploy those services on the outbound channel.

Listing and managing gateway-deployed channels
Use this task to list the channels that are deployed to the Web services Gateway,
and modify their deployment details.

To list the channels that are currently deployed to the Web services Gateway, and
view and modify their deployment details, complete the following steps:

Steps for this task
1. Display the Web services Gateway administrative user interface.
2. In the navigation pane, click the following link:

Channels

v List

The main pane is updated with a list of all the channels that are deployed to
the Web Services Gateway.

3. Click the name of a channel in the list. A form is displayed through which you
can view and modify the current deployment details for this channel.

4. Modify the following deployment details:

Home Location
Type the name of the new home for this channel.

End Point Address
Type the new address on which the channel is to listen.

5. (Optional) If this channel is intended to be used to receive asynchronous reply
messages, type appropriate values in the following two fields. Otherwise leave
them blank.
Note: If the channel supports asynchronous messaging, then the deployment
details documentation for the channel should indicate what values to enter in
these fields.

Async Reply Context Name

Async Reply Context Value

6. To start this channel, enable the YES radio button. To stop this channel, enable
the NO radio button.

7. Click Apply changes.

Results

If the processing completes successfully, the list of deployed channels is
redisplayed. Otherwise, an error message is displayed.

Chapter 6. Enabling Web services through the IBM Web Services Gateway 157

Deploying channels to the Web Services Gateway
Use this task to deploy a channel to the Web Services Gateway.

Before you begin

Before you can deploy a channel, you must install the channel application in
WebSphere Application Server as described in the penultimate step of Installing the
gateway into a deployment manager cell and Installing the gateway into a
standalone application server.

If you want to deploy the channels supplied with the Web Services Gateway, their
deployment details are listed in Web services Gateway - Channel deployment
details.

To deploy a channel, complete the following steps:

Steps for this task
1. Display the Web services Gateway administrative user interface.
2. In the navigation pane, click the following link:

Channels

v Deploy

A form is displayed for you to specify the deployment details.
3. Type the following channel deployment details:

Channel Name
Type the name by which the channel will be known within the Web
Services Gateway (and by which it will be listed using the Channels >
List option). This name must be unique within the Web Services
Gateway.

Home Location
Type the name of the home for this channel.

End Point Address
Type the address on which the channel is to listen.

4. (Optional) If this channel is intended to be used to receive asynchronous reply
messages, type appropriate values in the following two fields. Otherwise leave
them blank.
Note: If the channel you are deploying supports asynchronous messaging, then
the deployment details documentation for the channel should indicate what
values to enter in these fields.

Async Reply Context Name

Async Reply Context Value

5. Click OK.

Results

If the processing completes successfully, the list of deployed channels is updated to
include the new channel. Otherwise, an error message is displayed.

What to do next

158 IBM WebSphere Application Server Network Deployment, Version 5: Servers

Note: The deployed channel will not be used until you deploy a Web Service that
uses the channel.

Web Services Gateway - Channel deployment details: The deployment details
for the channels supplied with the Web services Gateway are listed below:
v Apache SOAP channel 1

– Channel Name: ApacheSOAPChannel1
– Home Location: ApacheSOAPChannel1Bean
– End Point Address: http://host:port/wsgwsoap1

where host and port are the host name and port number for the application
server on which the channel application is installed.

– Async Reply Context Name: Leave blank. This function is not supported by
this channel.

– Async Reply Context Value: Leave blank. This function is not supported by
this channel.

v Apache SOAP channel 2
– Channel Name: ApacheSOAPChannel2
– Home Location: ApacheSOAPChannel2Bean
– End Point Address: http://host:port/wsgwsoap2
– Async Reply Context Name: Leave blank. This function is not supported by

this channel.
– Async Reply Context Value: Leave blank. This function is not supported by

this channel.

Removing channels from the Web Services Gateway
Use this task to remove a channel from the Web Services Gateway.

To remove a channel, complete the following steps:

Steps for this task
1. Display the Web services Gateway administrative user interface.
2. In the navigation pane, click the following link:

Channels

v Remove

The main pane is updated with a list of all the channels that are deployed to
the Web Services Gateway. Alongside each entry in the list is a check box, and
information on the number of Web services that currently use the channel.

3. (Optional) Click the name of a channel in the list.
A form is displayed through which you can view the current deployment
details for this channel, including a list of the Web services that currently use
the channel.

4. Select the check box for every channel that you want to remove.
Note: When you remove a channel that is currently used by one or more Web
services, the gateway removes the channel from the channel list for each
associated Web service.

5. Click OK.

Results

Chapter 6. Enabling Web services through the IBM Web Services Gateway 159

If the processing completes successfully, the list of deployed channels is updated.
Otherwise, an error message is displayed.

Working with filters
Use this task to administer filters

Before you begin

Before you can work with a filter, you must install the filter application in
WebSphere Application Server as described in the penultimate step of Installing the
gateway into a deployment manager cell and Installing the gateway into a
standalone application server.

From the navigation pane of the Web services Gateway administrative user
interface, you can choose the following actions for Filters:
v List to list the deployed filters, and modify their deployment details.
v Deploy to deploy a filter.
v Remove to remove filters.

Filters - service interceptors for the Web Services Gateway
Filters are used to intercept service invocations which come into the Web services
Gateway, and responses which leave it. Filters can perform a wide range of tasks,
from logging messages, to transforming their content, to terminating an incoming
request. Filters are deployed to the Web Services Gateway as described in
Deploying filters to the Web Services Gateway, then registered for use with
individual Web services as described in ″Working with Web services″.

Listing and managing gateway-deployed filters
Use this task to list the filters that are deployed to the Web services Gateway, and
modify their deployment details.

To list the filters that are currently deployed to the Web services Gateway, and
view and modify their deployment details, complete the following steps:

Steps for this task
1. Display the Web services Gateway administrative user interface.
2. In the navigation pane, click the following link:

Filters

v List

The main pane is updated with a list of all the filters that are deployed to the
Web Services Gateway.

3. Click the name of a filter in the list. A form is displayed through which you
can view and modify the current deployment details for this filter.

4. Modify the following deployment detail:

Home Location
Type the name of the new home for this filter.

5. Click Apply changes.

Results

If the processing completes successfully, the list of deployed filters is redisplayed.
Otherwise, an error message is displayed.

160 IBM WebSphere Application Server Network Deployment, Version 5: Servers

Deploying filters to the Web Services Gateway
Before you begin

Use this task to deploy a filter to the Web Services Gateway.

Note: The deployed filter will not be used until you deploy a Web Service that
uses the filter.

Before you can deploy a filter, you must install the filter application in WebSphere
Application Server as described in the penultimate step of Installing the gateway
into a deployment manager cell and Installing the gateway into a standalone
application server.

Note: You can deploy multiple instances of a filter by entering different filter
names.

To deploy a filter, complete the following steps:

Steps for this task
1. Display the Web services Gateway administrative user interface.
2. In the navigation pane, click the following link:

Filters

v Deploy

A form is displayed for you to specify the deployment details.
3. Type the following filter deployment details:

Filter Name
Type the name by which the filter will be known within the Web
Services Gateway (and by which it will be listed using the Filters > List
option). This name must be unique within the Web Services Gateway.

Home Location
Type the name of the home for this filter.

4. Click OK.

Results

If the processing completes successfully, the list of deployed filters is updated to
include the new filter. Otherwise, an error message is displayed.

Removing filters from the Web Services Gateway
To remove a filter, complete the following steps:

Steps for this task
1. Display the Web services Gateway administrative user interface.
2. In the navigation pane, click the following link:

Filters

v Remove

The main pane is updated with a list of all the filters that are deployed to the
Web Services Gateway. Alongside each entry in the list is a check box, and
information on the number of Web services that currently use the filter.

3. (Optional) Click the name of a filter in the list.

Chapter 6. Enabling Web services through the IBM Web Services Gateway 161

A form is displayed through which you can view the current deployment
details for this filter, including a list of the Web services that currently use the
filter.

4. Select the check box for every filter that you want to remove.
Note: When you remove a filter that is currently used by one or more Web
services, the gateway removes the filter from the filter lists for each associated
Web service.

5. Click OK.

Results

If the processing completes successfully, the list of deployed filters is updated.
Otherwise, an error message is displayed.

Working with UDDI references
Use this task to administer UDDI references.

A UDDI Reference is a pointer to a UDDI Registry. This may be a private UDDI
Registry such as the (IBM WebSphere UDDI Registry), or a public UDDI Registry.
For more information about UDDI and UDDI Registries, see the UDDI community

at (http://uddi.org).

From the navigation pane of the Web Services Gateway administrative user
interface, you can choose the following actions for UDDI References:
v List to list the deployed UDDI references, and modify their deployment details.
v Deploy to deploy a UDDI reference.
v Remove to remove UDDI references.

Listing and managing gateway-deployed UDDI references
Use this task to list the UDDI references that are deployed to the Web Services
Gateway, and modify their deployment details.

To list the UDDI references that are currently deployed to the Web services
Gateway, and view and modify their deployment details, complete the following
steps:

Steps for this task
1. Display the Web services Gateway administrative user interface.
2. In the navigation pane, click the following link:

UDDI References

v List

The main pane is updated with a list of all the UDDI references that are
deployed to the Web Services Gateway.

3. Click the name of a UDDI reference in the list. A form is displayed through
which you can view and modify the current deployment details for this UDDI
reference.

4. Modify the following deployment details:

Inquiry URL
Type the new URL that provides access to this registry for the SOAP
inquiry API.

162 IBM WebSphere Application Server Network Deployment, Version 5: Servers

http://uddi.org

Publish URL
Type the new URL that provides access to this registry for the SOAP
publish API.

User Name
Type the new user ID that has update access to the UDDI registry.

Password
Type the password for the new user ID specified in the User Name
field.

Confirm Password
Type the password for the new user ID specified in the User Name
field. This must match the password specified in the Password field.

5. Click Apply changes.

Results

If the processing completes successfully, the list of deployed UDDI references is
redisplayed. Otherwise, an error message is displayed.

Deploying UDDI references to the Web Services Gateway
Before you begin

Use this task to deploy a UDDI reference to the Web Services Gateway.

Note: The deployed UDDI reference will not be used until you deploy a Web
Service that uses the UDDI reference.

To deploy a UDDI reference, complete the following steps:

Steps for this task
1. Display the Web services Gateway administrative user interface.
2. In the navigation pane, click the following link:

UDDI References

v Deploy

A form is displayed for you to specify the deployment details.
3. Type the following UDDI Reference deployment details:

Reference Name
Type the name by which the UDDI reference will be known within the
Web Services Gateway (and by which it will be listed using the UDDI
References > List option). This name must be unique within the Web
Services Gateway.

Inquiry URL
Type the URL that provides access to this registry for the SOAP inquiry
API.

Publish URL
Type the URL that provides access to this registry for the SOAP publish
API.

User Name
Type the user ID that has update access to the UDDI registry.

Password
Type the password for the user ID specified in the User Name field.

Chapter 6. Enabling Web services through the IBM Web Services Gateway 163

Confirm Password
Type the password for the user ID specified in the User Name field.
This must match the password specified in the Password field.

Note:

The values you enter here for User Name and Password must match those of
the owner of the corresponding business in UDDI. You can see the owning user
ID in UDDI by looking at the business details under the ″Authorized Name″
field.

If the values you enter here do not match the ″Authorized Name″ values for
the business that owns the service, then the service will not be published or
found.

If the business that owns the service has more than one ″Authorized Name″,
you might want to set up multiple UDDI references (each with a different user
ID) to the same UDDI registry .

4. Click OK.

Results

If the processing completes successfully, the list of deployed UDDI references is
updated to include the new UDDI reference. Otherwise, an error message is
displayed.

Removing UDDI references from the Web Services Gateway
To remove a UDDI reference, complete the following steps:

Steps for this task
1. Display the Web services Gateway administrative user interface.
2. In the navigation pane, click the following link:

UDDI References

v Remove

The main pane is updated with a list of all the UDDI references that are
deployed to the Web Services Gateway. Alongside each entry in the list is a
check box, and information on the number of Web services that currently use
the UDDI reference.

3. (Optional) Click the name of a UDDI reference in the list.
A form is displayed through which you can view the current deployment
details for this UDDI reference, including a list of the Web services that
currently use the UDDI reference.

4. Select the check box for every UDDI reference that you want to remove.
Note: When you remove a UDDI reference that is currently used by one or
more Web services, the gateway removes the UDDI reference from the UDDI
reference list for each associated Web service.

5. Click OK.

Results

If the processing completes successfully, the list of deployed UDDI references is
updated. Otherwise, an error message is displayed.

164 IBM WebSphere Application Server Network Deployment, Version 5: Servers

Working with Web services
Use this task to configure a Web service.

Before you begin

If you change the Namespace URI, you break the link back to the Web Services
Gateway for every Web service that you have already deployed. So you must set
the Namespace URI before you deploy any Web services.

When you configure a Web service, you choose the following resources:
v The channels on which the service is available.
v Any filters that apply to the service.
v Any UDDI references to UDDI registries in which the service is deployed.

Each of these choices is made from a list of resources that have already been
deployed to the Web Services Gateway. So you must deploy your channels, filters
and UDDI references to the Web Services Gateway before you deploy the Web
services that use those resources.

From the navigation pane of the Web services Gateway administrative user
interface, you can choose the following actions for Services:
v List to list the deployed Web services, and modify their deployment details.
v Deploy to deploy a Web service.
v Remove to remove Web services.

Listing and managing gateway-deployed Web services
Use this task to list the Web services that are deployed to the Web Services
Gateway, and modify their deployment details.

Before you begin

There is no point in deploying multiple target services to the same gateway service
unless you have a filter implementation that is capable of selecting the required
target service.

To list the Web services that are currently deployed to the Web services Gateway,
and view and modify their deployment details (including adding or removing
multiple target services) complete the following steps:

Steps for this task
1. Display the Web services Gateway administrative user interface.
2. In the navigation pane, click the following link:

Services

v List

The main pane is updated with a list of all the Web services that are deployed
to the Web Services Gateway.

3. Click the name of a Web service in the list. A form is displayed through which
you can view and modify the current deployment details for this Web service,
and add or remove multiple target services.

4. At the level of the gateway service itself (in the Gateway Service Properties
section) you can change the following settings. When you have finished
making changes, click Apply Changes.

Chapter 6. Enabling Web services through the IBM Web Services Gateway 165

a. Authorization Policy - Control access to this service. Use this check box
to enable or disable operation-level authorization for this gateway service.

b. Audit Policy - Log requests to this service. The Audit policy indicates
whether the MessageWarehouse object, if present, should be used to log
requests and responses for this service. If you have a Message Warehouse
implementation, use this check box to enable or disable logging of requests
and responses for this Web service.

c. In this release of the gateway, the Annotation URL field is not used.
d. If you want to publish the service to one or more UDDI registries (selected

in the UDDI References section below), enter the UDDI business key in
the field provided under UDDI Publication Properties. This key identifies
the business category under which you want your service to appear in
UDDI. To get a list of valid business keys, look up businesses in a UDDI
registry. This is an example of a UDDI business key: 08A536DC-3482-4E18-
BFEC-2E2A23630526

5. In the Target Services section, you can add or remove single instances of
multiple target services for this gateway service. To add a new target service
instance, complete the following steps:
a. WSDL Location. Type the location of the ″internal″ WSDL file that

describes the Web service to be deployed. This value is either a URL, or (if
the WSDL is located in a UDDI Registry) the service key that the UDDI
registry has assigned to the service. This is an example of a UDDI service
key: 34280367-0ECF-46CE-B804-14C21D6D0FB1
Note: When the Web Services Gateway deploys the Web service, it
generates a matching ″external″ WSDL file that it makes available to
gateway users. This ″external″ WSDL file also describes the service, but is
located at a new URL and is generated and maintained by the Web
Services Gateway itself.

b. Location Type. Select the type of location (either URL or UDDI) where the
″internal″ WSDL file is held.

c. Target Service Name. If the Web service WSDL contains more than one
service, type the target service’s name from the target service WSDL.

d. Target Service Namespace. If the Web service WSDL contains more than
one service, type the namespace of the target service’s name from the
target service WSDL.

e. Target Service Identity Information. Type the identity by which the target
service is known within the Web Services Gateway. This identity need not
be unique.
Note: If you are mapping multiple target services, and also , you might
use the Target Service Identity Information to select a particular target
service from the set.

f. Click add.
6. In the Channels section, you can add or remove channels from the list of

deployed channels through which this service is available.
7. In the Request Filters section, you can add or remove filters from the list of

deployed filters that are applied to the request.
Note: The filters are executed in the order shown. To add a filter into the list
at a particular position, use the at position menu.

8. In the Response Filters section, you can add or remove filters from the list of
deployed filters that are applied to the response.
Note: The filters are executed in the order shown. To add a filter into the list
at a particular position, use the at position menu.

166 IBM WebSphere Application Server Network Deployment, Version 5: Servers

9. In the UDDI References section, you can add or remove UDDI references
from the list of deployed UDDI references to UDDI registries in which this
service is published. If you select one or more UDDI references in this step,
you must also enter a UDDI business key in the field provided under UDDI
Publication Properties as described above.

10. In the Exported WSDL definitions section there are two pairs of WSDL links.
Both pairs link to (a) the external WSDL implementation definition, and (b)
the external WSDL interface definition.
v To view details of the associated external WSDL for the service, use the first

pair.
v To return the WSDL for use by application programs that need the WSDL

definitions for the service, use the second pair.

If there is an error generating the WSDL then a blank page is returned.

Note: To help your service users locate the WSDL documents for services that

are deployed to the Web Services Gateway, the gateway also supports the
(http://www.ibm.com/developerworks/webservices/library/ws-
wsilspec.html). To open a WS-Inspection document which contains references
to the WSDL documents for all of the gateway-deployed services, you issue an
HTTP GET against
http://host:port/wsgw/wsinspection.wsil

where host and port are the host name and port number that your HTTP
server is listening on.

Deploying Web services to the Web Services Gateway
Use this task to deploy a Web service to the Web Services Gateway.

Before you begin

Before you deploy a Web service, deploy the resources (channels, filters, and UDDI
references) that the Web service uses.

For Web services deployed with Java bindings (or EJB bindings where the Web
service is on a different server), make the additional classes available to the
gateway as described in Deploying Web services with Java bindings.

To deploy a Web service, complete the following steps:

Steps for this task
1. Display the Web services Gateway administrative user interface.
2. In the navigation pane, click the following link:

Services

v Deploy

A form is displayed for you to specify the deployment details.
3. Type the following Web service deployment details:

a. Gateway Service Name. Type the name by which the Web service will be
known within the Web Services Gateway (and by which it will be listed
using the Services > List option). This name must be unique within the Web
Services Gateway and must not contain any spaces.

Chapter 6. Enabling Web services through the IBM Web Services Gateway 167

http://www.ibm.com/developerworks/webservices/library/ws-wsilspec.html
http://www.ibm.com/developerworks/webservices/library/ws-wsilspec.html

Note: If you have several implementations of the same Web service, you can
map them all to the same deployed gateway service. You use the Deploy
option (this option) to deploy just one instance of a given gateway service.
To add more target services to a deployed gateway service, you use the
Services > List option.

b. Choose between the two types of Message part representation:

Generic classes
Select this option if there are no EJB or Java bindings, or if there are
such bindings but they are not used at runtime.

Deployed Java classes
Select this option if the target services for the gateway service
contain EJB bindings or Java bindings.

Note: When you choose this option, you must also ensure that the
specific java classes that have been generated for the Web service
are deployed to the application server (for example by copying the
JAR file into the WebSphere Application Server’s
/AppServer/lib/app directory, then restarting the application
server).

c. (Optional) Authorization Policy - Control access to this service. If you
want to enable operation-level authorization for this Web service, enable this
check box.

d. (Optional) Audit Policy - Log requests to this service. The Audit policy
indicates whether the MessageWarehouse object, if present, should be used
to log requests and responses for this service. If you have a Message
Warehouse implementation, and you want it to log requests and responses
for this Web service, enable this check box.

e. In this release of the gateway, the Annotation URL field is not used.
f. Select the deployed resources that the Web service is to use, from the

following lists:

Channels
Select one or more deployed channels through which this service is
to be available.

Request Filters
Select zero or more deployed filters to apply to the request.

Response Filters
Select zero or more deployed filters to apply to the response.

UDDI References
In this field you can select zero or more deployed UDDI references
to UDDI registries in which this service is to be registered. If you
select one or more UDDI references in this step, you must also enter
a UDDI business key in step 3h below.

Note: There may be more than one UDDI Reference for the same
business in the same UDDI Registry. This is because a business can
have more than one entry (each with a different ″Authorized Name″)
in the same UDDI registry. For more information see Deploying
UDDI references to the Web Services Gateway.

g. Specify the Target Service Properties for the Web service:

WSDL Location
Type the location of the ″internal″ WSDL file that describes the Web
service to be deployed. This value is either a URL, or (if the WSDL

168 IBM WebSphere Application Server Network Deployment, Version 5: Servers

is located in a UDDI Registry) the service key that the UDDI
registry has assigned to the service. This is an example of a UDDI
service key: 34280367-0ECF-46CE-B804-14C21D6D0FB1

Note: When the Web Services Gateway deploys the Web service, it
generates a matching ″external″ WSDL file that it makes available to
gateway users. This ″external″ WSDL file also describes the service,
but is located at a new URL and is generated and maintained by the
Web Services Gateway itself.

Location Type
Select the type of location (either URL or UDDI) where the
″internal″ WSDL file is held.

Target Service Name
If the Web service WSDL contains more than one service, type the
target service’s name from the target service WSDL.

Target Service Namespace
If the Web service WSDL contains more than one service, type the
namespace of the target service’s name from the target service
WSDL.

Target Service Identity Information
Type the identity by which the Web service is known within the
Web Services Gateway. This identity need not be unique.

Note: If you later add more target services to this gateway service,
and also , you might use the Target Service Identity Information to
select a particular target service from the set.

h. If you want to publish the service to one or more UDDI registries (selected
in step 3f above), enter the UDDI business key in the field provided under
UDDI Publication Properties. This key identifies the business category
under which you want your service to appear in UDDI. To get a list of
valid business keys, look up businesses in a UDDI registry. This is an
example of a UDDI business key: 08A536DC-3482-4E18-BFEC-2E2A23630526

4. Click OK.

Results

If the processing completes successfully, the list of deployed Web services is
updated to include the new Web service. Otherwise, an error message is displayed.

What to do next

After deployment, use the list deployed Web services option to change the
resources (channels, filters, and UDDI references) that the Web service uses, or to
add multiple target services for this gateway service.

If you enabled the check box ’Authorization Policy - Control access to this service,
you must now complete the task Enabling Web service operation-level
authorization.

Deploying Web services with Java bindings: For Web services deployed with
Java bindings (or EJB bindings where the Web service is on a different server) you
must make additional classes available to the gateway.

Chapter 6. Enabling Web services through the IBM Web Services Gateway 169

For EJB bindings, make the EJB client JAR file available. If the Web service is
deployed on the same server as the gateway, the necessary interfaces and classes
are already visible. If not, you should implement one of the following options:
v Copy the EJB client JAR file into the WAS_root/lib or WAS_root/lib/app directory

(where WAS_root is the root directory for your installation of IBM WebSphere
Application Server).

v Update the application server class path to include the EJB client JAR file.

For Java bindings, make the Java classes for the Web service available by
implementing one of the following options:
v Copy the JAR or class files that contain the Java classes into the WAS_root/lib or

WAS_root/lib/app directory.
v Update the application server class path to include the JAR file.
v Wrap the Java classes in an enterprise bean and deploy it on the same

application server. WebSphere Application Server will then make the classes
available to the gateway application.

Removing Web services from the Web Services Gateway
Use this task to remove a Web service from the Web Services Gateway.

To remove a Web service, complete the following steps:

Steps for this task
1. Display the Web services Gateway administrative user interface.
2. In the navigation pane, click the following link:

Services

v Remove

The main pane is updated with a list of all the Web services that are deployed
to the Web Services Gateway. Alongside each entry in the list is a check box.

3. Select the check box for every Web service that you want to remove.
4. Click OK.

Results

If the processing completes successfully, the list of deployed Web services is
updated. Otherwise, an error message is displayed.

Running the Web Services Gateway samples
Use this task to run the samples provided with the Web services Gateway.

There are two pre-built samples available for use with the Web Services Gateway:
v The standard Stock Quote service sample, that requires an Internet connection.
v The Address Book service sample, that allows the storing and retrieval of names

and addresses.

Results

These samples, and documentation on how to use them, are available through the

Web Services Gateway samples link on the

170 IBM WebSphere Application Server Network Deployment, Version 5: Servers

(http://www.ibm.com/websphere/developer/library/samples/AppServer.html)
page of the IBM WebSphere Developer Domain Web site.

What to do next

If you want to test the gateway taking service definitions from a private UDDI
Registry such as the (IBM WebSphere UDDI Registry), you should complete the
following additional steps:
1. Publish the WSDL for each of these samples to UDDI. (For detailed information

on how to do this, see the documentation for your private UDDI Registry).
2. Instruct the gateway to locate the service through the UDDI Registry, as

described in Deploying Web services to the Web Services Gateway.

Administering security for the Web Services Gateway
The Web Services Gateway provides a basic authentication and authorization
mechanism based upon the security features of WebSphere Application Server.
Security can be applied at two levels, as described in the following topics:
1. Enabling gateway-level authentication.
2. Enabling Web service operation-level authorization.

Note:

v If you want to enable operation-level authorization, you must first enable
gateway-level authentication.

v If you want to change the default gateway-level authentication settings, you
must do so before you install any channels.

v After gateway-level authentication has been enabled, filters have access to the
requestor’s authentication information.

The Web Services Gateway can also invoke web services that include https:// in
their addresses, if the Java and WebSphere security properties have been
configured to allow it. To check your security property settings, see the following
topic:
v Invoking web services over HTTPS

What to do next

For hints on solving security-related problems, see ″Web Services Gateway
troubleshooting tips″.

Enabling gateway-level authentication
A number of default gateway-level authentication settings are included in the
gateway. There is a default role of AuthenticatedUsers which includes the special
group ’AllAuthenticatedUsers’. When security is enabled, you must supply a user
ID and password to use the gateway administrative interface or invoke a gateway
service.

This task covers the three main areas in which you might want to make changes:
v Changing the default gateway-level authentication settings.
v Enabling Gateway-level authentication.
v Assigning users and groups to roles.

Note:

Chapter 6. Enabling Web services through the IBM Web Services Gateway 171

http://www.ibm.com/websphere/developer/library/samples/AppServer.html

v If you want to change the default gateway-level authentication settings, you
must do so before you install any channels. When you run the script that installs
the gateway itself (either into a deployment manager cell or into a standalone
application server) you also install SOAP channel 1. So if you change the default
Gateway-level authentication settings after you install the gateway, you then
need to re-run the gateway install.

v You can enable gateway-level authentication, and assign users and groups to
roles, at any time.

v After gateway-level authentication has been enabled, filters have access to the
requestor’s authentication information.

Steps for this task
1. To change the default gateway-level authentication settings, use the WebSphere

Application Server Application Assembly Tool (AAT) to complete the following
steps:
a. Set up a role and realm for the gateway on WebSphere Application Server’s

Web server and servlet container.
b. Define the user ID and password that is used by the gateway to access the

role and realm.
c. Modify the gateway’s channel applications so that they only give access to

the gateway to service requestors that supply the correct user ID and
password for that role and realm.

2. To enable Gateway-level authentication, complete the following steps:
a. Start the WebSphere Application Server administrative server.
b. Start the administrative console.
c. In the navigation pane, select Security -> Global Security.
d. In the main pane, on the Configuration tab, enable the ″Enabled″ check

box.
e. Save the settings.
f. Stop then restart the application server.
g. Close the administrative console.

3. You can use the AAT or the administrative console to assign users and groups
to roles. To map users to roles using the administrative console, complete the
following steps:
a. Start the WebSphere Application Server administrative server.
b. Start the administrative console.
c. In the navigation pane, select Application -> Enterprise Applications ->

wsgw.
In the main pane, an option to map security roles to users and groups
appears in the Additional Properties table.

d. Modify the security roles and save the settings.
e. Repeat the previous two steps for each enterprise application that you want

to modify.
f. Stop then restart the application server.
g. Close the administrative console.

For more information see Assigning users and groups to roles.

172 IBM WebSphere Application Server Network Deployment, Version 5: Servers

Note: The current jacl install scripts do not let you assign users to roles as part
of installing the gateway into a deployment manager cell or into a standalone
application server.

What to do next

You might now want to enable operation-level authorization, or install the
gateway.

Enabling operation-level authorization
Use this task to apply security to individual methods in a Web Service.

Before you begin

Before you begin this task you must first enable gateway-level authentication.

You can only apply operation-level authorization to a Web service that has already
been deployed to the gateway with the check box ’Authorization Policy - Control
access to this service’ enabled.

This task involves making changes to the file /lib/wsgwauth.ear. To protect the
installation version of this file, you should make a backup copy of it before you
change it.

For operation-level authorization you create an enterprise bean with methods
matching the Web Service operations. These EJB methods perform no operation
and are just entities for applying security. Existing WebSphere Application Server
authentication mechanisms can be applied to the enterprise bean. Before any Web
service operation is invoked, a call is made to the EJB method. If authorization is
granted, the Web service is invoked.

Your target Web service is protected by wrapping it in an EAR file, and applying
role-based authorization to the EAR file. This process is explained in general terms
in Web service security - role-based authorization.

The EAR file that now contains your Web service is then imported into
wsgwauth.ear (which contains all of the gateway’s protected Web services) and
wsgwauth.ear is modified to set the roles and assign them to methods. Finally, this
modified wsgwauth.ear file is deployed in Websphere Application Server and users
are assigned to the previously defined roles.

To enable Web service operation-level authorization, complete the following steps:

Steps for this task
1. To create your_webservice.ear, complete the following steps:

a. Open a command prompt.
b. Go to directory /WSGW/scripts/auth

c. Enter the command WSGWAuthGen location your_webservice

where
v location is the URL for the gateway (this must include the root context)
v your_webservice is the name of the service as deployed in the gateway

(this is case-sensitive)

Chapter 6. Enabling Web services through the IBM Web Services Gateway 173

For example WSGWAuthGen http://host:port/wsgw AddressBook where host
and port are the host name and port number for the application server on
which the gateway is installed.

Note: The Web service name and operation name can contain characters
(such as ″-″,″.″,&) that are disallowed in an EJB class name and method
name. So these are translated during the generation process of
your_webservice.ear. A message appears informing you of the name
change.

your_webservice.ear is created in directory /WSGW/scripts. There is also a
temporary directory /WSGW/scripts/ejb, which you can delete.

2. To finish assigning roles and protecting methods, use the WebSphere
Application Server Application Assembly Tool (AAT) to complete the following
steps:
a. Start the AAT.
b. From the File menu select File > Open, and browse to select file

/lib/wsgwauth.ear.
c. To import your_webservice.ear into wsgwauth.ear, complete the following

steps:
v In the navigation pane, open the pop-up menu for EJB Modules and

select Import

v Browse to select file /WSGW/scripts/your_webservice.ear. The Select
modules to import window opens.

v In the Select modules to import window, select your_webservice and click
OK.

v The Confirm values window opens. Click OK.
v In the navigation pane, expand EJB Modules to confirm that

your_webservice.ear has been imported.
d. In the navigation pane, expand EJB Modules > your_webservice.ear and

select Security Roles.
e. For every security role that you want to create, repeat the following steps:

v From the pop-up menu for Security Roles, select New.
v Type the name and description of the new security role, and click OK.

f. In the navigation pane, expand EJB Modules > your_webservice.ear and
select Method Permissions.

g. For every defined role that you want to assign to a Web service method,
repeat the following steps:
v From the pop-up menu for Method Permissions, select New. The New

Method Permission window opens.
v Type the name of the new method permission, and click ADD for

Methods. The Add Methods window opens.
v In the Add Methods window, expand the tree for remote methods and

select the method to be protected. Click OK. The Add Methods window
closes.

v In the New Method Permission window, click ADD for Roles. Select a
previously defined role from the list then click OK.

h. To ensure that the authorization enterprise bean can reference the
newly-imported enterprise bean, complete the following steps:
v In the navigation pane, expand WSGW Authorization group > Session

Beans > Authorization and select EJB References.

174 IBM WebSphere Application Server Network Deployment, Version 5: Servers

v From the pop-up menu for EJB References, select New. The New EJB
Reference window opens.

v In the New EJB Reference window, on the General tab, type a name for
the reference then use the ’Link’ combination box to select the
newly-imported EJB (all the other fields on this tab are populated
automatically).

v In the New EJB Reference window, on the Bindings tab, type the JNDI
name as it appears in the bindings tab of the service enterprise bean (this
should be in the form websphere/WSGW/Security/your_webservice).

v Click OK. The New EJB Reference window closes.
i. From the AAT File menu, select File > Generate Code For Deployment.
j. Make a note of the name of the modified ear file, then click Generate Now.
k. From the AAT File menu, select File > Save to save the modifed copy of

wsgwauth.ear.
l. Close the AAT.

3. To install the modifed copy of Deployed_wsgwauth.ear, complete the following
steps:
a. Start the WebSphere Application Server Administrative Console.
b. In the navigation pane, select Applications > Install an Application.
c. Use Install New Application to install Deployed_wsgwauth.ear. Select the

users or groups to be assigned to the roles when prompted.

Web service security - role-based authorization
During construction of an EAR file, roles can be defined and applied to methods.
At deployment of the EAR file, individual users or groups can be assigned to roles.
So you can use this feature of EAR files to add role-based security to your Web
service.

For example: You have a Web service that controls access to important information,
and you want to give read-only access to some users, and write access to others.
So when you build the EAR file you define two roles READ and WRITE, then you
apply the READ role to the getData method and the WRITE role to the writeData
method. When you deploy the EAR file in WebSphere Application Server, you
assign ’All Authenticated Users’ to the READ role and individual users to the
WRITE role. When a user tries to access WebService.getData, their user name and
password is checked by the operating system or by Lightweight Third Party
Authentication (LTPA).

Invoking web services over HTTPS
The Web Services Gateway can invoke web services that include https:// in their
addresses, if the Java and WebSphere security properties have been configured to
allow it. This means that one Gateway can send a SOAP/HTTPS message direct to
another Gateway, rather than having to export services and have clients invoke
them using HTTPS.

To enable your Gateway to send and receive SOAP/HTTPS messages, confirm that
your Java and WebSphere security properties are configured as described in the
following steps:

Steps for this task
1. Check that there is a copy of file ibmjsse.jar in directory

WAS_root/java/jre/lib/ext (where WAS_root is the root directory for your
installation of IBM WebSphere Application Server).

Chapter 6. Enabling Web services through the IBM Web Services Gateway 175

2. Edit the security properties file
WAS_root/java/jre/lib/security/java.security so that it includes entries for
both the Sun security provider and the IBM security provider. For example:
security.provider.1=sun.security.provider.Sun
security.provider.2=com.ibm.jsse.IBMJSSEProvider

Note: The order is significant. The Sun security provider must come before the
IBM provider.

3. Use the WebSphere Application Server Administative Console to set up the
following equivalent system properties:
// truststore location
System.setProperty("javax.net.ssl.trustStore",

"your_truststore_root_directory/TestSSL/key.jks");
// set truststore password
System.setProperty("javax.net.ssl.trustStorePassword",

"your_truststore_password");
//use ibm reference implementation
System.setProperty("java.protocol.handler.pkgs",

"com.ibm.net.ssl.internal.www.protocol");

Web Services Gateway troubleshooting tips
This topic provides hints to help you resolve problems you experience when using
the Web Services Gateway.

For information on resolving WebSphere-level problems, see Diagnosing and fixing
problems.

To identify and resolve gateway-related problems, you can use the standard
WebSphere Application Server trace and logging facilities. If you encounter a
problem that you think might be related to the gateway, you can check for error
messages in the WebSphere Application Server administrative console, and in the
application server’s stdout.log file. You can also enable the application server
debug trace to provide a detailed exception dump.

The gateway’s user interface uses cascading style sheets to lay out its pages, and
javascript to monitor progress and advise you as you fill in each on-screen form.
So your Web browser must support javascript and cascading style sheets, and it
must be configured so that javascript and style sheets are enabled. How you do
this depends on which browser you use. For example for Netscape, you select Edit
-> Preferences, click Advanced in the Category pane, then confirm that the Enable
Javascript and Enable style sheets check boxes are selected.

A list of the gateway runtime system messages, with details of what each message
means, is given in Message reference for the Web Services Gateway.

Here is a checklist of common problems:

You have managed to deploy your Web Service in the Web Services Gateway but
you are getting a class cast exception when you invoke the operation which
takes an integer parameter.

Check that your client is using the version of soap.jar that is supplied in
the WebSphere Application Server’s /AppServer/lib/app directory. If you
enable trace, you may see in the trace for the request <SOAP-ENV:Envelope
xmlns:SOAP-ENV=″http://schemas.xmlsoap.org/soap/envelope/″
xmlns:xsi=″http://www.w3.org/1999/XMLSchema-instance″
xmlns:xsd=″http://www.w3.org/1999/XMLSchema″>

176 IBM WebSphere Application Server Network Deployment, Version 5: Servers

The gateway expects the 2001 version of the XML schema. Older versions
of soap.jar (including 2.2) generate 1999 schema. If you have the soap.jar
that is supplied with WebSphere Application Server in the client’s class
path, you should see 2001 schema in the request, which should then work.

The persistent state of the Web Services Gateway has become out of sync with
the channel applications.

This can happen if you remove and reinstall the Apache SOAP
applications. If you need to do this, then either ensure that all
corresponding channels configured with the Web Services Gateway are
removed, or remove and reinstall the Web Services Gateway at the same
time.

Note: The Web Services Gateway application (wsgw.ear) must be installed
before channel and filter applications. If the gateway application needs to
be reinstalled, all channels and filters must be uninstalled first, then
reinstalled after the gateway application.

You are getting SOAP fault messages, but cannot determine the precise problem
from the fault message.

If you receive a SOAP fault message with a faultstring which is just the
value of one of the parameters of the invocation, that means that that
parameter’s value was invalid. For example if you have a service which
expects an int parameter and you send it a message containing the value
″1.1″, then the fault message you receive simply contains 1.1 as the fault
string:
<faultcode>SOAP-ENV:Client</faultcode>
<faultstring>1.1</faultstring>

Note: This is Apache SOAP behavior, and not something that the gateway
can do anything about.

If you receive a SOAP fault message containing an element that is not
present in the WSDL for the target service, then the error message thrown
can be difficult to identify. There are two possible scenarios:
v The WSDL is deployed to use Generic Classes. In this case the returned

SOAP message contains an IllegalArgument exception. For example:
[Attributes={}] [faultCode=SOAP-ENV:Server]
[faultString=com.ibm.wsgw.WSGWException:
WSGW0043E: Exception while executing operation createEntry service

ExchangeService.
Exception: org.apache.wsif.WSIFException:
SOAPException: SOAP-ENV:ClientNo mapping found for
’com.ibm.jrom.JROMValue’

using encoding style ’http://schemas.xmlsoap.org/soap/encoding/’.;
nested exception is:

[SOAPException: faultCode=SOAP-ENV:Client; msg=No mapping found
for ’com.ibm.jrom.JROMValue’ using encoding style
’http://schemas.xmlsoap.org/soap/encoding/’.;
targetException=java.lang.IllegalArgumentException:
No mapping found for ’com.ibm.jrom.JROMValue’ using encoding style
’http://schemas.xmlsoap.org/soap/encoding/’.]]

[faultActorURI=/wsgwsoap1/soaprpcrouter]
...

v The WSDL is deployed to use Deployed Classes. In this case an empty
message is returned. For example:
[Attributes={}] [faultCode=null] [faultString=null] [faultActorURI=null]
[DetailEntries=] [FaultEntries=]

Chapter 6. Enabling Web services through the IBM Web Services Gateway 177

Note: This is Apache SOAP behavior, and not something that the gateway
can do anything about.

You are enabling operation-level authorization, but when you install
wsgwauth.ear, an error message appears in the WebSphere Application Server
administrative console detailing a JNDI problem.

Check that you entered, in the authorization session bean’s ’EJB
References’, the correct JNDI name of the imported Web service enterprise
bean. Note that this is case sensitive.

You are trying to have a Web Services Gateway send an SOAP/HTTPS message
to another Web Services Gateway, and you are receiving a Malformed
URLException error.

The Web Services Gateway can invoke web services that include https://
in their addresses, if the Java and WebSphere security properties have been
configured to allow it. To check your security property settings, see the
topic Invoking web services over HTTPS

You deselect ’Authorization Policy - Control access to this service’ from the
deployment details for a Web service, and you find the service no longer works.

A number of tasks are required to disable security. Clearing the check box
’Authorization Policy - Control access to this service’ will still leave
WebSphere Application Server security in place, so basic authentication
might still be required. To disable security fully, use the WebSphere
Application Server administrative console’s Security Center to disable
Global Security.

Web Services Gateway messages
WebSphere system messages are logged from a variety of sources, including
application server components and applications. Messages logged by application
server components and associated IBM products start with a unique message
identifier that indicates the component or application that issued the message. For
more information about the message identifier format, see the topic Message
Format.

The rest of this topic contains a list of the Web Services Gateway runtime system
messages, with details of what each message means.

WSGW0001E: Channel name {0} from gateway configuration differs from that in
JNDI: {1}

Explanation: The name specified for the channel does not match the name
of the channel as defined within the EAR file.

User Response: Ensure that the channel name is specified correctly

WSGW0002E: Error storing endpoint address. Exception: {0}
Explanation: An unexpected exception occurred when storing the endpoint
address for a channel.

User Response: Contact IBM Support

WSGW0003E: Error retrieving endpoint address. Exception: {0}
Explanation: An unexpected exception occurred when retrieving the
endpoint address for a channel.

User Response: Contact IBM Support

WSGW0004E: Not used
Explanation:

178 IBM WebSphere Application Server Network Deployment, Version 5: Servers

User Response:

WSGW0005E: Error retrieving channel name. Exception: {0}
Explanation: An unexpected exception occurred when retrieving the
channel name from JNDI.

User Response: Contact IBM Support

WSGW0006E: Error deploying service to {1}. Exception: {0}
Explanation: An unexpected error occurred deploying the service to the
given component.

User Response: This error may be caused by a previous failure. Try
redeploying the service using a different gateway service name. If that
fails, reinstalling the channel and gateway applications may remove the
problem.

WSGW0007E: Error getting endpoint URL from channel {0}. Exception: {1}
Explanation: An unexpected error occurred generating the endpoint URL
for the given channel.

User Response: Contact IBM Support

WSGW0008E: Could not determine default port name for target service {0}
Explanation: There are no ports in the WSDL defined for the target service
that are supported by currently available WSIF providers or there is an
error in the WSDL file associated with the port definition or a namespace it
uses.

User Response: Either ensure that a WSIF provider is correctly configured
for the port in the WSDL, or ensure that the WSDL contains correctly
specified port information.

WSGW0009E: Failed to deploy service. Exception: {0}
Explanation: An unexpected error occurred trying to deploy the service.

User Response: Contact IBM Support

WSGW0010E: The namespaceURI attribute cannot be changed when there are
active services

Explanation: The namespaceURI is used to generate WSDL for Gateway
services. If this global setting is changed then current WSDL becomes
invalid.

User Response: Either remove all channels or all Gateway services from
the Gateway configuration and retry the change.

WSGW0011E: Not used
Explanation:

User Response:

WSGW0012E: Not used
Explanation:

User Response:

WSGW0013E: Could not locate home {0}. Exception: {1}
Explanation: The specified home location could not be found in JNDI.

User Response: Ensure that the home location is specified correctly, and
that it appears in JNDI.

WSGW0014E: Not used
Explanation:

Chapter 6. Enabling Web services through the IBM Web Services Gateway 179

User Response:

WSGW0015E: Could not create instance of class {0}. Exception: {1}
Explanation: The Gateway failed to create an instance of the specified Java
class.

User Response: Ensure that the Java class has a public constructor with no
parameters.

WSGW0016E: Could not locate class {0}. Exception: {1}
Explanation: The Gateway failed to locate the specified Java class.

User Response: Ensure that the Java class is visible to the Gateway
application’s classloader.

WSGW0017E: Not used
Explanation:

User Response:

WSGW0018E: Not used
Explanation:

User Response:

WSGW0019E: Failed to clone definition. Exception: {1}
Explanation: An unexpected error occurred cloning a WSDL definition.

User Response: Contact IBM Support

WSGW0020E: Error while loading mapped type class {0}. Exception: {1}
Explanation: An error occurred while trying to load the given Java class
which represents a type in the deployed WSDL for a target service.

User Response: Ensure that the Java class is visible to the Gateway
application’s classloader.

WSGW0021E: Expected WSDL definition to contain a <wsdl:type> element with
a schema from one of the ’{0}’, ’{1}’, or ’{2}’ namespaces

Explanation: Schema types in WSDL definitions must be declared using
one of the specified XML Schema namespaces.

User Response: Update the WSDL definition to use the appropriate
namespace.

WSGW0022E: Unexpected Schema->Java problem when parsing WSDL file.
Exception: {0}

Explanation: An unexpected exception occurred when parsing a WSDL
file. This may be due to unsupported elements in the WSDL.

User Response: Contact IBM Support

WSGW0023E: Unexpected Schema->JROM problem when parsing WSDL file.
Exception: {0}

Explanation: An unexpected exception occurred when parsing a WSDL
file. This may be due to unsupported elements in the WSDL.

User Response: Contact IBM Support

WSGW0024E: Channel {0} cannot be removed because it is being used by a
deployed service

Explanation: Channels can only be removed when they are not in use by
Gateway services.

User Response: Remove the channel from gateway services to which it is
deployed before removing the channel.

180 IBM WebSphere Application Server Network Deployment, Version 5: Servers

WSGW0025E: Target service identity cannot be specified as null
Explanation: A target service can only be selected using a non-null valid
for the identity.

User Response: Modify the calling code to ensure that the target service
identity value is never null.

WSGW0026E: Invalid gateway service name {0}. The name must be a valid XML
Schema NCNAME.

Explanation: The name specified for the Gateway service does not conform
to the required definition.

User Response: Correct the Gateway service name so that it is a valid
XML Schema NCNAME.

WSGW0027E: Port {0} does not exist for target service {1}
Explanation: The requested port does not exist for the target service.

User Response: Ensure that a valid port is requested, or update the target
service WSDL to contain a port of the requested name.

WSGW0028E: No binding for port {0} for target service {1}
Explanation: The requested port for the target service does not have a
binding defined in the WSDL definition of the service.

User Response: Ensure that the target service WSDL has a binding for the
requested port, or use a different port name.

WSGW0029E: No portType for binding {0} for port {1} for target service {2}
Explanation: The requested port for the target service does not have a
portType defined in the WSDL definition of the service.

User Response: Ensure that the target service WSDL has a portType for the
requested port, or use a different port name.

WSGW0030E: Not used
Explanation:

User Response:

WSGW0031E: Channel name {0} already exists
Explanation: The name specified for the channel is the same as that of a
channel that is currently deployed.

User Response: Choose a different name for the channel, or remove the
existing channel of the given name.

WSGW0032E: Channel name {0} not found
Explanation: No channel is currently deployed with the given name.

User Response: Use the name of a channel that is currently deployed.

WSGW0033E: Filter {0} cannot be removed because it is being used by a
deployed service

Explanation: Filters can only be removed when they are not in use by
Gateway services.

User Response: Remove the filter from gateway services to which it is
deployed before removing the filter.

WSGW0034W: Invocation of filter {0} failed. Exception: {1}
Explanation: An unexpected exception was thrown during processing of
the given filter.

User Response: Contact IBM Support

Chapter 6. Enabling Web services through the IBM Web Services Gateway 181

WSGW0035E: Filter context version {0} not supported
Explanation: The context version that the filter requires is not supported
by this version of the Gateway.

User Response: Ensure that the filter is requesting the correct context
version. It may be necessary to upgrade the Gateway to support the filter.

WSGW0036E: Target service identity information {0} not matched for gateway
service {1}

Explanation: A target service was requested by identity, but the identity
information does not match any currently deployed target service.

User Response: Ensure that the identity information is correct, and that
there is a target service deployed to the given gateway service with the
right identity information.

WSGW0037E: Filter name {0} already exists
Explanation: The name specified for the filter is the same as that of a filter
that is currently deployed.

User Response: Choose a different name for the filter, or remove the
existing filter of the given name.

WSGW0038E: Filter name {0} not found
Explanation: No filter is currently deployed with the given name.

User Response: Use the name of a filter that is currently deployed.

WSGW0039E: Error loading state from {0}. Exception {1}
Explanation: An unexpected exception occurred loading the state of the
Gateway from the given location.

User Response: Ensure that the given location is visible to the Gateway
application.

WSGW0040E: Failed to convert definition to string. Exception: {0}
Explanation: An unexpected exception occurred converting a WSDL
definition into a string in order to display it or return it to an application.

User Response: Contact IBM Support

WSGW0041E: Failed to save state. Exception {0}
Explanation: An unexpected exception occurred when saving the state of
the Gateway.

User Response: Contact IBM Support

2W_key=WSGW0042W: No target services available to get service definition
Explanation: A request was made for the WSDL definition for the Gateway
service, however no target services have been defined for the Gateway
service, so it is not possible to generate a WSDL definition.

User Response: Deploy one or more target services to the Gateway service.

WSGW0043E: Exception while executing operation {0} service {1}. Exception: {2}
Explanation: An unexpected exception occurred when passing a request on
to a target web service.

User Response: Ensure that the Gateway service and target service are
correctly deployed (using the correct message part representation). Ensure
that the target service is available and responds correctly to direct requests
(i.e. not through the Gateway).

182 IBM WebSphere Application Server Network Deployment, Version 5: Servers

WSGW0044E: Filter position {0} invalid
Explanation: The specified position for addition or removal of the filter
was not valid.

User Response: Ensure a valid value is specified. The value should be -1, 0
or a positive integer.

WSGW0045E: Filter not found in list
Explanation: An attempt was made to remove a filter from a Gateway
service specifying -1 as the index, but the filter is not in the list at all.

User Response: Ensure that the correct filter is specified.

WSGW0046E: Channel {0} already defined for gateway service {1}
Explanation: The given channel has already been defined for the Gateway
service.

User Response: Ensyre that the correct channel name is specified.

WSGW0047E: Channel {0} not defined for gateway service {1}
Explanation: The channel cannot be removed from the Gateway service as
it is not currently defined for the Gateway service.

User Response: Ensure that the correct channel name is specified.

WSGW0048E: UDDI reference {0} already defined for gateway service {1}
Explanation: The given UDDI reference has already been defined for the
Gateway service.

User Response: Ensure that the correct UDDI reference name is specified.

WSGW0049E: UDDI reference {0} not defined for gateway service {1}
Explanation: The UDDI reference cannot be removed from the Gateway
service as it is not currently defined for the Gateway service.

User Response: Ensure that the correct UDDI reference name is specified.

WSGW0050E: Target service with location {0} already defined for gateway service
{1} Explanation: The given target service location has already been defined for

the Gateway service.

User Response: Ensure that the correct target service location is specified.

WSGW0051E: Target service with location {0} not defined for gateway service {1}
Explanation: The target service location cannot be removed from the
Gateway service as it is not currently defined for the Gateway service.

User Response: Ensure that the correct target service location is specified.

WSGW0052E: Target service with location {0} was not found for gateway service
{1} Explanation: The target service WSDL definition could not be obtained

from the given location.

User Response: Ensure that the correct target service location is specified.

WSGW0053E: Gateway service {0} cannot be removed as active entities and force
not specified

Explanation: A Gateway service with one or more target services, channels,
filters or UDDI references cannot be removed.

User Response: Remove the target services, channels, filters and UDDI
references from the gateway service.

WSGW0054E: An exported definition for Gateway service {0} is not available as
there are no defined channels for the service

Explanation: A request was made for the WSDL definition for the Gateway

Chapter 6. Enabling Web services through the IBM Web Services Gateway 183

service, however no channels have been defined for the Gateway service,
so it is not possible to generate a WSDL definition.

User Response: Deploy one or more channels to the Gateway service.

WSGW0055E: Not used
Explanation:

User Response:

WSGW0056E: No default target service available for {0}
Explanation: The default target service location cannot be obtained for the
Gateway service as no target services are defined.

User Response: Ensure that one or more target services are defined for the
Gateway service.

WSGW0057E: No receiving channel name in context
Explanation: A request has reached the Gateway that does not contain the
receiving channel name in the context.

User Response: Contact the supplier of the channel application.

WSGW0058E: Channel {0} not defined for gateway service {1}
Explanation: A request has reached the gateway for the given service
through a channel which is not defined for that service. The request is
rejected.

User Response: If the channel should be valid for the service, add the
channel, otherwise check that the client of the request is making a valid
request. This exception may be thrown when a client is making a malicious
attack.

WSGW0059E: Gateway service {0} does not exist
Explanation: A request was made for a gateway service that does not exist.

User Response: Ensure that the correct gateway service name is specified.

WSGW0060E: Gateway service {0} already exists
Explanation: An attempt was made to create a new Gateway service using
a name that is used by an existing Gateway service.

User Response: Use a different name for the Gateway service.

WSGW0061E: Could not find Service in UDDI registry {0} with parameters {1},
{2}, {3} Explanation: The given parameters for UDDI lookup did not yield a

match.

User Response: Ensure that the parameters are correct. Also ensure that
the UDDI reference parameters are correct and correspond to those used to
publish the service to UDDI.

WSGW0062E: Target service WSDL contains no <service> elements
Explanation: The target service WSDL could be loaded but does not
contain a <service> element. This is necessary to be able to invoke the
target service.

User Response: Ensure that the target service WSDL contains one or more
<service> element.

WSGW0063E: Target service WSDL contains more than one service, and either
target service name or namespace not specified

Explanation: When adding a target service to a Gateway service, you must
specify both the service name and namespace values if there is more than
one <service> element in the target service WSDL.

184 IBM WebSphere Application Server Network Deployment, Version 5: Servers

User Response: Specify the target service name and namespace as well as
the location.

WSGW0064E: Target service name {0} does not match service name in WSDL: {1}
Explanation: A target service name was specified that is not the same as
any target service name in the WSDL at the given location.

User Response: Ensure that a valid target service name is specified.

WSGW0065E: Target service namespace {0} does not match service namespace in
WSDL: {1}

Explanation: A target service namespace was specified that is not the same
as any target service namespace in the WSDL at the given location.

User Response: Ensure that a valid target service namespace is specified.

WSGW0066E: Target service name {0} or namespace {1} not found in WSDL
definition

Explanation: A target service name and namespace were both specified,
but do not match any target service name and namespace combination in
the WSDL at the given location.

User Response: Ensure that a valid target service name and namespace
combination is specified.

WSGW0067E: UDDI reference {0} cannot be removed because it is being used by
a deployed service

Explanation: UDDI references can only be removed when they are not in
use by Gateway services.

User Response: Remove the UDDI reference from gateway services to
which it is deployed before removing the UDDI reference.

WSGW0068E: UDDI reference {0} already exists
Explanation: The name specified for the UDDI reference is the same as
that of a UDDI reference that is currently deployed.

User Response: Choose a different name for the UDDI reference, or
remove the existing UDDI reference of the given name.

WSGW0069E: UDDI reference {0} not found
Explanation: No UDDI reference is currently deployed with the given
name.

User Response: Use the name of a UDDI reference that is currently
deployed.

WSGW0070E: Invalid target service location type {0}
Explanation: The location type for the target service is not a valid value.

User Response: Ensure that a correct value is specified for the target
service location type.

WSGW0071E: Failed to load URL definition from {0}
Explanation: The URL location specified was incorrect, or the WSDL it
refers to cannot be loaded.

User Response: Ensure that the URL location is correct, and refers to a
valid WSDL document.

WSGW0072E: Failed to load UDDI definition from {0}
Explanation: The UDDI location specified was incorrect, or the WSDL it
refers to cannot be loaded.

Chapter 6. Enabling Web services through the IBM Web Services Gateway 185

User Response: Ensure that the UDDI location is correct, and refers to a
valid WSDL document.

WSGW0073W: Not used
Explanation:

User Response:

WSGW0074E: Not used
Explanation:

User Response:

WSGW0075E: Failed to set gateway end point address. Exception {0}
Explanation: An unexpected exception occurred when automatically
setting the Gateway’s end point address.

User Response: Contact IBM Support

WSGW0076E: Unable to access the Gateway configuration bean. Exception {0}
Explanation: An unexpected exception occurred looking up the Gateway’s
configuration bean in JNDI.

User Response: Restart the application server.

WSGW0077E: Failed to remove Gateway configuration session. Exception {0}
Explanation: An unexpected exception occurred removing the session bean
while access the Gateway’s configuration bean.

User Response: Contact IBM Support

WSGW0078E: Unable to access the Gateway EndPoint bean. Exception {0}
Explanation: An unexpected exception occurred looking up the Gateway’s
endpoint bean in JNDI.

User Response: Restart the application server.

WSGW0079E: Failed to remove endpoint session. Exception {0}
Explanation: An unexpected exception occurred removing the session bean
while access the Gateway’s endpoint bean.

User Response: Contact IBM Support

WSGW0080E: Performance monitoring error. Exception {0}
Explanation: An unexpected exception occurred when recording
performance monitoring information.

User Response: Contact IBM Support

WSGW0081E: Unexpected error in method {0}. Exception {1}
Explanation: An unexpected exception occurred in the given method.

User Response: Contact IBM Support

WSGW0082E: Unable to determine WAS security setting
Explanation: The WAS security setting could not be determined. It will be
assumed that security is enabled.

User Response: No action required.

WSGW0083W: Failed to authorize request for operation {0} on service {1}.
Exception {2}

Explanation: Authorization of the given request failed. The request has
been rejected.

186 IBM WebSphere Application Server Network Deployment, Version 5: Servers

User Response: Ensure that the required authorization bean has been
generated for the given service, and that the correct authorization policy is
defined.

WSGW0084W: Invocation of filter {0} version {1} failed. Exception {2}
Explanation: An exception was thrown during processing of the given
filter. Processing of the request continues.

User Response: Investigate the reason for the exception being thrown by
the filter. Refer to the documentation for the filter on how to resolve the
problem.

WSGW0085E: Failed to publish service {0} to UDDI registry {1}. Exception: {2}
Explanation: An unexpected exception occurred when publishing the given
service to a UDDI registry.

User Response: Ensure that the properties of the Gateway service and
UDDI reference are specified correctly.

WSGW0086E: Failed to unpublish service {0} from UDDI registry {1}. Exception:
{2} Explanation: An unexpected exception occurred when unpublishing the

given service from a UDDI registry.

User Response: Ensure that the properties of the Gateway service and
UDDI reference are specified correctly.

WSGW0087I: Published service {0} to UDDI registry {1}
Explanation: The service was successfully published to the UDDI registry.

User Response: None

WSGW0088I: Unpublished service {0} from UDDI registry {1}
Explanation: The service was successfully unpublished from the UDDI
registry.

User Response: None

WSGW0089I: No MessageWarehouse registered. Requests will not be logged
Explanation: A MessageWarehouse implementation was not found at the
expected location in JNDI, so none is being used.

User Response: If a MessageWarehouse has been implemented, ensure that
it is bound to JNDI at the correct location.

WSGW0090I: No ExceptionHandler registered. Exceptions will not be handled
Explanation: An ExceptionHandler implementation was not found at the
expected location in JNDI, so none is being used.

User Response: If an ExceptionHandler has been implemented, ensure that
it is bound to JNDI at the correct location.

WSGW0091I: Usage: java -jar GenAuth -DWAS_HOME=<was.install.directory>
<HostName> <ServiceName>

where <was.install.directory> is the location of
the WebSphere installation directory and <HostName> is the
url pointed to the installation of the gateway and <ServiceName>
is the name of the deployed gateway service.
(Please note the ServiceName is case sensitive).
For example (command shown split for publication):
java -jar GenAuth.jar

-DWAS_HOME=c:\\websphere\\AppServer
http://host.machine.name.com/wsgw ServiceName

Successful execution will generate a file named <ServiceName>.ear

Chapter 6. Enabling Web services through the IBM Web Services Gateway 187

Explanation: Usage statement. This messsage is used by the
WSGWAuthGen command line utility.

User Response: No action required.

WSGW0092I: Retrieving Service :
Explanation: Progress message indicating that the service definition is
being retrieved. This messsage is used by the WSGWAuthGen command
line utility.

User Response: No action required.

WSGW0093I: Retrieving Port Type :
Explanation: Progress message indicating that the port type information is
being retrieved. This messsage is used by the WSGWAuthGen command
line utility.

User Response: No action required.

WSGW0094I: Retrieving Methods :
Explanation: Progress message indicating that method information is being
retrieved. This messsage is used by the WSGWAuthGen command line
utility.

User Response: No action required.

WSGW0095I: Making Directory :
Explanation: Progress message indicating that a directory is being created.
This messsage is used by the WSGWAuthGen command line utility.

User Response: No action required.

WSGW0096I: Using Directory :
Explanation: Progress message indicating that a directory is being used.
This messsage is used by the WSGWAuthGen command line utility.

User Response: No action required.

WSGW0097I: About to compile....
Explanation: Progress message indicating that a compilation is about to
start. This messsage is used by the WSGWAuthGen command line utility.

User Response: No action required.

WSGW0098I: Command Status :
Explanation: General command status message. This messsage is used by
the WSGWAuthGen command line utility.

User Response: No action required.

WSGW0099I: About to create jar....
Explanation: Progress message indicating that a JAR file is about to be
created. This messsage is used by the WSGWAuthGen command line
utility.

User Response: No action required.

WSGW0100I: About to create ear....
Explanation: Progress message indicating that an EAR file is about to be
created. This messsage is used by the WSGWAuthGen command line
utility.

User Response: No action required.

188 IBM WebSphere Application Server Network Deployment, Version 5: Servers

WSGW0101E: Error retrieving port from service {1}
Explanation: An error occurred retrieving the port from the service in the
WSDL. This messsage is used by the WSGWAuthGen command line utility.

User Response: Ensure that the service name is specified correctly and is
deployed to the Gateway with at least one target service and one channel.

WSGW0102E: Error retrieving service {0}
Explanation: An error occurred retrieving the service. This messsage is
used by the WSGWAuthGen command line utility.

User Response: Ensure that the service name is specified correctly and is
deployed to the Gateway with at least one target service and one channel.

WSGW0103E: Exception while retrieving service definition from URL:
{0}/ServiceDefinition?name={1}. Exception: {2}

Explanation: An unexpected exception occurred retrieving WSDL from the
given location. This messsage is used by the WSGWAuthGen command
line utility.

User Response: Ensure that the service name is specified correctly and is
deployed to the Gateway with at least one target service and one channel.

WSGW0104E: Error retrieving methods from service {0}
Explanation: An unexpected exception occurred retrieving the methods
that correspond to operations on the service.

User Response: Contact IBM Support

WSGW0105E: Error retrieving WAS_HOME environment variable
Explanation: The value of the WAS_HOME environment variable could
not be retrieved.

User Response: Ensure that the WAS_HOME variable is set correctly in the
environment under which the command is being executed.

WSGW0106E: Error compiling files
Explanation: An unexpected error occurred compiling the generated Java
files.

User Response: Contact IBM Support

WSGW0107E: Error executing JAR command
Explanation: An unexpected error occurred generating a JAR file.

User Response: Contact IBM Support

WSGW0110E: A client attempted to load imported URL {0} for gateway service
{1}. This URL is not imported by the definition for that service.

Explanation: An attempt was made to use the Gateway’s import mapping
servlet to load information from a URL that does not correspond to one
that is referenced by the WSDL definition for that service.

User Response: Ensure that the client is making a valid request. This may
be a malicious attempt to obtain information that the client does not have
access to.

WSGW0111W: Unsupported elements within the WSDL definition for target
service {0} were ignored. The functionality of this service may be compromised.

Explanation: In order to be able to use the given WSDL definition within
the Gateway, certain elements of the definition were ignored.

User Response: Refer to the service provider’s documentation to determine
whether this will affect the use of the service.

Chapter 6. Enabling Web services through the IBM Web Services Gateway 189

WSGW0120E: Exception while removing ConversationPart {0} from Correlation
Service. Exception {1}

Explanation: An unexpected exception occurred when using the
Correlation Service.

User Response: Contact IBM Support

WSGW0121E: Exception while accessing ConversationPart {0} from Correlation
Service. Exception {1}

Explanation: An unexpected exception occurred when using the
Correlation Service.

User Response: Contact IBM Support

WSGW0122E: Exception while storing Serializable {0} at Correlation Service.
Exception {1}

Explanation: An unexpected exception occurred when using the
Correlation Service.

User Response: Contact IBM Support

WSGW0123E: Exception while storing Serializable {0} with id {1} at Correlation
Service. Exception {1}

Explanation: An unexpected exception occurred when using the
Correlation Service.

User Response: Contact IBM Support

Web Services Gateway: Resources for learning
Use the following links to find supplementary information about getting started
with the Web Services Gateway. The information resides on IBM and non-IBM
Internet sites, whose sponsors control the technical accuracy of the information.

These links are provided for convenience. Often, the information is not specific to
the IBM WebSphere Application Server product, but is useful all or in part for
understanding the product. When possible, links are provided to technical papers
and Redbooks that supplement the broad coverage of the release documentation
with in-depth examinations of particular product areas.

Because the concept of a Web services gateway is so new, there is (as yet) very
little supplementary information about it.

v Inside WebSphere Application Server 5 (http://advisor.com/doc/09808) .
This article from WebSphere Advisor Magazine (August 2002) mentions the
gateway as part of a general discussion of the new features in this version of
WebSphere Application Server.

v Web Services Gateway (http://www.alphaworks.ibm.com/tech/wsgw) .
The Web Services Gateway area on the IBM alphaWorks Web site. This area
provides a discussion forum for early adopters.

v The IBM Web Services Gateway: Technical Overview
(http://www-3.ibm.com/software/integration/busconn/gateway.html) . A
different version of the gateway is available as a component of a product called
IBM WebSphere Business Connection. This brief technical summary from
WebSphere Business Connection applies equally well to the version of the
gateway in WebSphere Application Server.

190 IBM WebSphere Application Server Network Deployment, Version 5: Servers

http://advisor.com/doc/09808
http://www.alphaworks.ibm.com/tech/wsgw
http://www-3.ibm.com/software/integration/busconn/gateway.html

For supplementary information about Web services in general, see Web services:
Resources for learning.

The gateway builds on the Web Services Invocation Framework (WSIF), which
allows the gateway to pass on Web service invocations to any WSDL-defined Web
service. For supplementary information about WSIF, see WSIF: Resources for
learning.

Chapter 6. Enabling Web services through the IBM Web Services Gateway 191

	Contents
	Trademarks and service marks
	Chapter 1. Welcome to Servers
	Chapter 2. Configuring application servers
	Application servers
	Creating application servers
	Configuring application servers for UTF-8 encoding

	Managing application servers
	Application server collection
	Name
	Node
	Status
	Application server settings

	Starting servers
	Running servers as non-root using the console
	Detecting and handling problems with run-time components
	Stopping servers

	Transports
	Configuring transports
	HTTP transport collection
	Host
	Port
	SSL Enabled

	HTTP transport settings
	Host
	Port
	SSL Enabled
	SSL

	Example: Manually editing transport settings in the server.xml file

	Custom services
	Developing custom services
	Custom service collection
	External Configuration URL
	Classname
	Display Name
	Startup
	Custom service settings

	Process definition
	Defining application server processes
	Process definition settings
	Executable Name
	Executable Arguments
	Working Directory
	Process execution settings
	Process logs settings
	Monitoring policy settings

	Java virtual machines (JVMs)
	Using the JVM
	Java virtual machine settings
	Classpath
	Boot Classpath
	Verbose Class Loading
	Verbose Garbage Collection
	Verbose JNI
	Initial Heap Size
	Maximum Heap Size
	Run HProf
	HProf Arguments
	Debug Mode
	Debug Arguments
	Generic JVM Arguments
	Executable JAR File Name
	Disable JIT
	Operating System Name

	Example: Configuring JVM sendRedirect calls to use context root

	Preparing to host applications
	Application servers: Resources for learning

	Chapter 3. Managing Object Request Brokers
	Object Request Brokers
	Object Request Broker tuning guidelines
	Object Request Broker service settings in administrative console
	Request timeout
	Request retries count
	Request retries delay
	Connection cache maximum
	Connection cache minimum
	ORB tracing
	Locate request timeout
	Force tunneling
	Tunnel agent URL
	Pass by reference

	Object Request Broker service settings that can be added to the administrative console
	Object Request Broker communications trace
	Client-side programming tips for the Java Object Request Broker service
	Character codeset conversion support for the Java Object Request Broker service
	Object Request Brokers: Resources for learning

	Chapter 4. Balancing workloads with clusters
	Workload management (WLM)
	Techniques for managing state

	Clusters
	Creating clusters
	Server cluster collection
	Name
	Status
	Server cluster settings

	Creating cluster members
	Cluster member collection
	Name
	Node
	Status
	Cluster member settings

	Replication
	Replication entry
	Replication domain

	Replicating data
	Internal replication domain collection
	Name
	Internal replication domain settings

	Starting clusters
	Stopping clusters
	Tuning a workload management configuration
	Workload management run-time exceptions
	Clustering and workload management: Resources for learning

	Chapter 5. IBM WebSphere UDDI Registry
	UDDI Registry Terminology
	UDDI Registry Definitions

	An overview of IBM UDDI Registries
	Migrating from the IBM WebSphere UDDI Registry on WebSphere Application Server 4.0
	Installing and Setting up a UDDI Registry
	Installing the UDDI Registry into a deployment manager cell
	Setting up the UDDI Registry to use Cloudscape within a deployment manager cell
	Setting up the UDDI Registry to use DB2 within a deployment manager cell

	Installing the UDDI Registry into a single appserver
	Setting up the UDDI Registry to use Cloudscape in a single appserver
	Setting up the UDDI Registry to use DB2 in a single appserver

	Reinstalling the UDDI Registry application
	Removing the UDDI Registry application from a deployment manager cell
	Removing the UDDI Registry application from a single appserver
	Configuring the UDDI Registry
	Configuring global UDDI properties
	Modifying the database userid and password
	Configuring security properties
	Configuring the UDDI User Console (GUI) for multiple language encoding support
	Customizing the UDDI User Console (GUI)
	Configuring SOAP interface properties
	Configuring SOAP properties with the AAT
	Configuring SOAP properties in the deployment descriptor
	Configuring WebSphere to use HTTPS and SSL

	Administering the UDDI Registry
	Running the UDDI Registry
	Backing up and restoring the UDDI Registry database

	UDDI user console
	Displaying the user console

	SOAP Application Programming Interface for the UDDI Registry
	Programming the UDDI SOAP API
	SOAP API error handling tips in the UDDI Registry

	UDDI Registry application programming interface
	Inquiry API for the UDDI Registry
	Browse pattern for the UDDI Registry
	Drilldown pattern for the UDDI Registry
	Invocation pattern for the UDDI Registry
	Inquiry API functions in the UDDI Registry

	Publish API for the UDDI Registry

	UDDI EJB Interface for the UDDI Registry
	Datatypes package in the UDDI Registry
	EJB Interface Methods in the UDDI Registry

	UDDI Troubleshooting Tips
	Turning on UDDI trace

	Messages
	UDAI (Web Services UDDI) messages
	UDCF (Web Services UDDI) messages
	UDDA (Web Services UDDI) messages
	UDDM (Web Services UDDI) messages
	UDEJ (Web Services UDDI) messages
	UDEX (Web Services UDDI) messages
	UDIN (Web Services UDDI) messages
	UDLC (Web Services UDDI) messages
	UDPR (Web Services UDDI) messages
	UDRS (Web Services UDDI) messages
	UDSC (Web Services UDDI) messages
	UDSP (Web Services UDDI) messages
	UDUC (Web Services UDDI) messages
	UDUU (Web Services UDDI) messages

	Running the UDDI Samples
	Installation Verification Program (IVP)
	Reporting Problems with the IBM WebSphere UDDI Registry
	Feedback

	Chapter 6. Enabling Web services through the IBM Web Services Gateway
	Web Services Gateway - Frequently Asked Questions
	Web Services Gateway - What is new in this release
	Web Services Gateway - Completing the installation
	Web Services Gateway - prerequisites and constraints
	Establishing requirements for using a database with the gateway
	Installing the gateway into a deployment manager cell
	Installing the gateway into a standalone application server
	Testing the Web Services Gateway installation

	Administering the Web Services Gateway
	Setting the namespace URI and WSDL URI for the Web Services Gateway
	Working with channels
	Channels - entry points to the Web Services Gateway
	Listing and managing gateway-deployed channels
	Deploying channels to the Web Services Gateway
	Removing channels from the Web Services Gateway

	Working with filters
	Filters - service interceptors for the Web Services Gateway
	Listing and managing gateway-deployed filters
	Deploying filters to the Web Services Gateway
	Removing filters from the Web Services Gateway

	Working with UDDI references
	Listing and managing gateway-deployed UDDI references
	Deploying UDDI references to the Web Services Gateway
	Removing UDDI references from the Web Services Gateway

	Working with Web services
	Listing and managing gateway-deployed Web services
	Deploying Web services to the Web Services Gateway
	Removing Web services from the Web Services Gateway

	Running the Web Services Gateway samples
	Administering security for the Web Services Gateway
	Enabling gateway-level authentication
	Enabling operation-level authorization
	Web service security - role-based authorization

	Invoking web services over HTTPS

	Web Services Gateway troubleshooting tips
	Web Services Gateway messages

	Web Services Gateway: Resources for learning

