

Principles of
dynamic e-business:

 Build- to-integrate

 WebSphere Application Server Version 5

Jeff Reser
IBM WebSphere Application Server

2

Comprehensive build-to-integrate platform
Being able to cleanly interoperate and integrate with new and existing applications and
enterprise systems is a key success factor in building a dynamic and flexible e-business
infrastructure. IBM WebSphere® Application Server, Version 5 and IBM WebSphere Studio tools
provide an approach to application integration based on open standards provided by J2EE and
Web services. Using standards improves reuse of application components and simplifies
integration. It also helps dissolve traditional barriers between application developers and
integrators. WebSphere tools for developing business objects, business logic and integration
logic are compatible, using one repository for metadata and a single approach for defining data
handling and transformation.

Out of these premises for build-to-integrate comes a set of requirements that address the main
business pain points toward an integrated and dynamic e-business environment.

WebSphere Application Server, Version 5 fulfills these requirements through additional and
enhanced support for services, open standards, connectivity, interoperability and messaging.
Customers are looking for better ways to both smoothly integrate their businesses and manage
sophisticated transactions. They want a way to update all critical resources inside of a
transaction with high integrity. They want support for long-running transactions, with
automated compensation in the event of a system failure. These are examples of deep
transactional integration that provide both business and technical value.

Enable dynamic application interactions

Enabling dynamic, flexible application interactions is a key attribute for those companies
looking to build integration capabilities in their new application logic or to create new
applications that are ready to be integrated with other systems, for example, companies
looking to build-to-integrate.

A powerful part of integration is being able to build new applications that initiate and respond
to asynchronous invocations, conversations, and broadcasts. WebSphere Application Server
Version 5 delivers extended services for mixed synchronous and asynchronous transactional
environments as part of the native J2EE 1.3 and Web services environment. A comprehensive,
self-contained Java™ Message Service (JMS) implementation is included that encompasses
queue management and publish/subscribe components.

Java Message Service (JMS) relies on concepts established in the application messaging market
for a number of years. JMS is based on the concept of a JMS consumer application (for example
and Enterprise JavaBean or EJB components) listening for the arrival of a message on a queue,
and then executing some business logic based on the message (for example updates to an
online catalog), and possibly put a response (such as an acknowledgement) on a response
queue. A new specification in J2EE 1.3, EJB 2.0 Message-Driven Beans includes the concept of a
listener interface with the EJB container which monitors the appropriate queues.

WebSphere Application Server, Version 5 adds value on top of the core EJB 2.0 specification by
delivering container-managed messaging as a way of simplifying the development of these
asynchronous applications. Container-managed messaging shifts responsibility for interacting
with the messaging services to the EJB container, allowing EJB components to exploit
messaging facilities without having to make explicit JMS calls. Container-managed messaging is

3

analogous to container-managed persistence, where data in entity EJB components can be
persisted to the database tables without developers having to implement any database calls.

WebSphere Application Server, Version 5 also implements a publish and subscribe message
broker, where messages are published to a broker against an identifying topic. The messages
are then distributed to subscribers whose registered subscriptions match the published
messages. All of this is done within an environment that provides fault-tolerant clustering and
load balancing, as well as full support for distributed transactions for a more robust
implementation of JMS—offering high-performance publish and subscribe technology.

Another aspect of this paradigm is the utilization of a process manager that allows application
interactions to be modeled from the perspective of the business process. The modeled business
flow potentially invokes applications, and transactional application flows can be managed.

An example of dynamic application interactions is externally administering business policies.
For industries such as insurance, there are many policies and many variable business practices
that need to be maintained (such as defining the risk category for each policy holder). Many
industries also need to respond quickly to regulatory and legislative changes, and doing this
through programmer intervention can be prohibitively costly. What's desired is a framework for
defining business policies that can be invoked from business logic. Imagine a world in which
these same policies could easily be maintained and scheduled by business analysts. That level
of flexibility would promote truly dynamic e-business. This flexibility is provided by WebSphere
Application Server, Version 5.

Yet another aspect of flexibility is the capability to provide on-demand access to information
that's needed by the business model. The ability to express queries for information in a way
that efficiently maps to the business problem being solved is valuable. This represents another
example for which WebSphere Application Server, Version 5 delivers on the promise of dynamic
e-business.

Reuse and integrate disparate systems and applications

The ability to leverage existing systems and applications was a primary requirement since Web
application servers were first created about five years ago. Integral to information and data
connectivity is building new applications which integrate multiple back-end systems requiring
data transformation and transactional integrity.

WebSphere Application Server, Version 5 delivers a productive environment for visually
creating dynamic application adapters that can be easily integrated with others within
complex, multi-mode transactional schemes. The J2EE Connector Architecture (JCA) provides a
consistent way of connecting to and communicating with a wide range of enterprise systems
and applications, as well as advanced transaction coordination. This, coupled with XML based
Web services, provide simple to sophisticated application connections and data aggregation.

The J2EE Connector Architecture defines function that WebSphere Application Server provides
and which back-end system vendors (for example, IBM CrossWorlds®, SAP, PeopleSoft, Siebel,
Oracle, and/or third-party connector developers) can use to plug into J2EE.

JCA has two basic components:

• The Common Client Interface (CCI) manages flow of data between the application and
the back-end system and does not have any visibility into what the container and
application server are doing.

4

• Set of system-specific services. WebSphere Application Server implements this as part
of its base J2EE platform.

CCI is a programming interface that application developers and client programs can use to
connect and access back-end systems. It is a low-level API and similar to Java Database
Connectivity (JDBC). Unlike JDBC, however, CCI can work with non-relational systems.
Although it 's possible for application developers to call the CCI directly, in most cases, an
application developer will write to an abstraction layer, provided by the connector provider or
enterprise application integration (EAI) framework vendor—simplifying the development
process.

On the platform side, JCA defines a set of service contracts that a connector developer can
expect will be available to the adapter at application runtime. The three services defined in
1.0 and implemented in WebSphere Application Server, Version 5 include:

• Connection management enables WebSphere Application Server to create and manage
connections to back-end systems. WebSphere Application Server also implements
connection pooling, since connections to back-end systems are expensive. Connection
pooling enables an EJB server to pool connections to back-end systems, so rather than
opening connections on an as-needed basis, connections with data and services are
established, configured, cached and reused automatically by the application server.
This contract enables an application server to offer its own services for transaction and
security management.

• Transaction management supports transactional access to underlying resource
managers. This service enables the transaction manager provided within the EJB server
to manage transactions across multiple back-end systems. Connector developers define
what level of transaction support they need—for example, none, local (with a single
back-end system and its resource manager) or XA, with either single- or two-phase
commit—for working across multiple back-end systems and their associated resource
managers.

• Security management enables the developer to define security between the EJB server
and the back-end system. The specific security mechanism that is used is dependent on
the security mechanism provided by the back-end system. For example, if a system
requires Kerberos, then the connection developer will include it. Under the contract,
the connector provider must also support user authentication, user authorization and
any specific security contracts required by the back-end system.

Unleash powerful Web services

A key set of market requirements for an integrating platform today involves merging Web
services into the infrastructure. Web services provide another method of integrating
applications and systems using de facto standards within self-contained software components.
These software components can be described, published, located, and invoked over the Web.
Web services perform encapsulated business functions from simple request-reply to full
business process interactions.

Examples of these services include stock quotes and charting, credit card verification and
payment processing, integrated travel planning and auctioning. Services can be mixed and
matched to create complete end-to-end business processes, enabling dynamic integration with
decreased human interactions.

5

New business opportunities can be created by exposing business and application services for
integration by other businesses, organizations or platforms. Web services are pervasive and
integral to an open cross-platform software strategy, key to dynamic business integration, and
provide real business value within leading-edge integration solutions.

Many facets of application integration are evolving into Web services-based solutions, with
WebSphere Application Server, Version 5 leading the charge:

• Application integration provides friendly, intuitive interfaces using the latest Web
services standards like Simple Object Access Protocol (SOAP) and Web Services
Description Language (WSDL).

• Process integration is achieved using business rules engines and management systems
powered by Web services.

• Information connectivity is solidified with prebuilt and tailored application adapters
using the latest Web services standards for generation and service choreography.

• Access integration is expanded with flexible services in a network-aware business
environment, with privacy and protection being provided for directories and registries
such as UDDI (Universal Description, Discovery and Integration).

• The latest Web services standards for access and security are embedded in Version 5,
along with native integration into the J2EE programming model.

• The Web services-based invocation framework provides protocol flexibility and easy-to-
use tools that generate Web services applications that help you connect.

WebSphere Application Server Version 5, supports the latest Web services open standards.
SOAP allows for easy, standardized access to public and private registries and other Web
services applications. SOAP is the Web services version of Remote Procedure Call (RPC), an
XML-based protocol and encoding format for inter-application communications. SOAP is widely
viewed as the backbone to a new generation of cross-platform, cross-language distributed
computing applications, termed Web services.

SOAP has evolved through several generations and the current spec, SOAP 1.1, is fast growing
in popularity and usage. The third generation of Apache SOAP uses event-based parsing to
achieve significantly greater speed than earlier versions of Apache SOAP. The Apache SOAP
architecture, which is incorporated in WebSphere Application Server, Version 5, gives the
developer complete freedom to insert extensions into the engine for custom header processing
and system management. Apache SOAP defines a set of stable, published interfaces for
component-oriented deployment. Apache SOAP also provides a clean and simple abstraction for
designing transports (for example, senders and listeners for SOAP over various protocols—such
as SMTP, FTP, message-oriented middleware), and the core of the engine is completely
independent of the transport.

Finally, private UDDI registries offer protection and security for Web services applications and
data access. There will be two basic models by which UDDI registries are used:

6

• Public registries enable anyone to publish their services and for other, effectively
anonymous users to locate them and understand how to use them. This is not to imply
that anyone can use the actual service. Normal access restrictions will still apply from
a technical and business perspective. These are operated currently by IBM and
Microsoft®, and will be shortly joined by HP and SAP.

• Private registries provided by WebSphere Application Server, Version 5 can be used
within the enterprise or between closed groups of trusted partners. In such an
environment, you simply e-mail others the information required to use your Web
services; However, UDDI provides a dynamic mechanism by which they can be
published and consumed. WebSphere Application Server, Version 5 provides support for
both types of UDDI registries. The private UDDI implementation allows organizations to
install an in-house private directory for the Web services applications.

WebSphere Application Server, Version 5 also includes support for Web services gateways.
These gateways offer more security and protection by filtering Web services access to registries
and other applications.

Choreograph application interactions

Being able to choreograph application interactions easily helps create real-time adaptive
applications. With new WebSphere Application Server, Version 5 features, new applications can
be generated with adaptable intra-application flows and behaviors that can be changed
dynamically via human interactions or rules engines.

As a result, businesses can maximize both programmer productivity and short-term return on
investments by facilitating the reuse of development assets and automating the process of
building, deploying, and managing applications. WebSphere Application Server, Version 5
features an open approach to transforming any application asset into a modular component—
accessible for reuse by other developers within an integrated development and deployment
environment.

Choreographing and managing application interactions continue to be a strong market need in
dynamic e-business infrastructures. Workflow can be we broken out into two types: macro and
micro. While macro-flow management deals with applications, processes, servers, and
systems—micro-flow management deals with controlling individual, synchronized, and
asynchronous transactions.

WebSphere Application Server, Version 5 addresses both flow models by controlling the
distributed service flows from and to the Web application server environment. Flow
management and state management are done within WebSphere Application Server, Version 5.
In addition, WebSphere Studio offers visual tools that help create and assemble Web services
applications through application usage profiling and a business rules engine that can be
populated dynamically for controlling a Web services-oriented architecture—as well as EJB
transactions. This all enables you to build new applications requiring flexible and real-time
adaptable intra-application flows and behaviors.

Another key requirement that companies place on their Web Application Server is support for
process automation facilities. The ability to host and schedule a living business model in the
application server environment brings new opportunities for seamless process integration. This

7

is accomplished through service choreography and it includes scripted interactions with
Enterprise Information Systems and other services as well as longer running workflows that tie
together activities into more course-grained business process steps.

Related to this is support for business entities that adapt themselves to diverse business
processes. Companies are looking for a cost-effective application-serving environment in which
these process integration capabilities can be easily leveraged, with a single administrative and
operational view of the runtime environment. This includes the ability to not only run business
processes, but to also monitor them. WebSphere Application Server, Version 5 introduces all
the capabilities to provide effective service choreography for application interactions.

8

© Copyright IBM Corporation 2002

IBM Corporation
Software Group
Route 100
Somers, NY 10889
U.S.A.

Produced in the United States of America
06-02
All Rights Reserved

CrossWorlds, the e-business logo, IBM, the IBM logo
and WebSphere are trademarks or registered
trademarks of International Business Machines
Corporation in the United States, other countries or
both.

Microsoft is a trademark of Microsoft Corporation in the
United States, other countries or both.

Java and all Java-based trademarks and logos are
trademarks of Sun Microsystems, Inc. in the United
States, other countries or both.

Other company, product and service names may be
trademarks or service marks of others.

This document contains information relating to future or
anticipated releases of products and represents IBM's
current intentions, goals and objectives. The information
in this document is subject to change or withdrawal
without additional or prior notice. This Product will be
available in multiple configurations and for that reason
not all functions discussed in this document are
included in all configurations of this Product or will be
available upon the initial release of a configuration of the
Product.

