
WebSphere® Application Server – Express, Version 6

Administering applications and their environment

���

Note

Before using this information, be sure to read the general information under “Notices” on page 2073.

Compilation date: January 20, 2005

© Copyright International Business Machines Corporation 2004. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

How to send your comments . ix

Chapter 1. Overview and new features for administering applications and their environments . . 1

Overview of administering applications and their environments 2

Getting started with WebSphere Application Server . 2

Introduction: System administration . 3

Introduction: Administrative console . 4

Introduction: Administrative scripting (wsadmin) . 4

Introduction: Administrative commands . 5

Introduction: Administrative programs . 5

Introduction: Administrative configuration data . 5

Introduction: Servers . 5

Introduction: Application servers . 6

Introduction: Web servers . 7

Introduction: Environment . 7

Chapter 2. How do I administer applications and their environments? 9

Chapter 3. Setting up the application serving environment 15

Planning the installation (diagrams) . 15

Planning to install WebSphere Application Server - Express 17

Planning to install Web server plug-ins . 22

Planning to install WebSphere Application Server Clients 25

Planning to create application server environments 26

Queuing network . 27

Configuring the product after installation . 32

firststeps command . 33

Using the Profile creation wizard . 36

wasprofile command . 43

Using the installation verification test . 53

Configuring ports . 55

Port number settings in WebSphere Application Server versions 56

Communicating with Web servers . 57

Web server plug-in properties settings . 59

Web server plug-in custom properties . 66

Web server plug-in configuration service properties settings 67

Application Server property settings for a Web server plug-in 67

Web server plug-in configuration properties . 69

Web server plug-in connections . 71

Web server plug-in remote user information processing 72

Web server plug-ins . 72

Checking your IBM HTTP Server version . 73

Web server tuning parameters . 73

Gskit install images files . 77

Plug-ins: Resources for learning . 77

Web server plug-in tuning tips . 77

Tuning Web servers . 79

Setting up the administrative architecture . 79

Administration service settings . 79

Administrative agents: Resources for learning . 86

Configuring the environment . 86

Virtual hosts . 87

Configuring virtual hosts . 89

© Copyright IBM Corp. 2004 iii

Variables . 93

Configuring WebSphere variables . 94

Shared library files . 97

Managing shared libraries . 97

Environment: Resources for learning . 104

Working with server configuration files . 104

Configuration documents . 104

Configuration document descriptions . 106

Object names . 108

Configuration repositories . 108

Handling temporary configuration files resulting from session timeout 108

Changing the location of temporary configuration files 109

Changing the location of backed-up configuration files 109

Changing the location of temporary workspace files 110

Backing up and restoring administrative configurations 110

Transformation of configuration files . 110

Server configuration files: Resources for learning 110

Administering application servers . 111

Application servers . 111

Creating application servers . 112

Managing application servers . 113

Creating generic servers . 124

Configuring transport chains . 126

Custom services . 142

Developing custom services . 142

Process definition . 145

Defining application server processes . 145

Java virtual machines (JVMs) . 155

Using the JVM . 155

Preparing to host applications . 162

Java memory tuning tips . 163

Tuning application servers . 167

Web services client to Web container optimized communication 168

Application servers: Resources for learning . 169

Chapter 4. Using the administrative clients . 171

Using the administrative console . 171

Starting and stopping the administrative console 171

Setting the session timeout for the administrative console 174

Administrative console areas . 175

Specifying console preferences . 180

Accessing help and product information from the administrative console 184

Administrative console: Resources for learning . 184

Using scripting (wsadmin) . 185

Getting started with scripting . 186

Deploying applications using scripting . 254

Managing deployed applications using scripting . 256

Configuring servers with scripting . 283

Configuring connections to Webservers with scripting 300

Managing servers with scripting . 301

Configuring security with scripting . 310

Configuring data access with scripting . 312

Configuring messaging with scripting . 328

Configuring mail, URLs, and resource environment entries with scripting 341

Troubleshooting with scripting . 354

Scripting reference material . 358

iv IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Using Ant to automate tasks . 626

ws_ant command . 627

Ant tasks for deployment and server operation . 627

Ant tasks for building application code . 627

Using administrative programs (JMX) . 627

Creating a custom Java administrative client program using WebSphere Application Server

administrative Java APIs . 628

Extending the WebSphere Application Server administrative system with custom MBeans 633

Developing administrative programs for multiple Java 2 Platform, Enterprise Edition application

servers . 638

Deploying and managing a custom Java administrative client program with multiple Java 2

Platform, Enterprise Edition application servers 641

Migrating Java Management Extensions V1.0 to Java Management Extensions V1.2 642

Java Management Extensions interoperability . 642

Managing applications through programming . 643

Using command line tools . 668

Example: Security and the command line tools . 669

startServer command . 669

stopServer command . 670

startManager command . 671

stopManager command . 673

startNode command . 674

stopNode command . 675

addNode command . 677

serverStatus command . 681

removeNode command . 682

cleanupNode command . 683

syncNode command . 684

backupConfig command . 685

restoreConfig command . 686

EARExpander command . 687

GenPluginCfg command . 688

Chapter 5. Starting and stopping quick reference 691

Chapter 6. Class loading . 693

Class loaders . 693

Configuring class loaders of a server . 697

Class loader collection . 698

Class loader ID . 698

Class loader mode . 698

Class loader settings . 699

Configuring application class loaders . 699

Configuring Web module class loaders . 700

Configuring class preloading . 701

Class loading: Resources for learning . 702

Chapter 7. Deploying and administering applications 705

Enterprise (J2EE) applications . 705

System applications . 705

Installing application files . 706

Installable module versions . 706

Ways to install applications or modules . 707

Installing application files with the console . 709

Example: Installing an EAR file using the default bindings 719

Installing J2EE modules with JSR-88 . 720

Contents v

Customizing modules using DConfigBeans . 721

Enterprise application collection . 722

Name . 723

Status . 723

Enterprise application settings . 723

Configuring an application . 727

Application bindings . 728

Mapping modules to servers . 732

Starting and stopping applications . 733

Disabling automatic starting of applications . 734

Target mapping collection . 734

Exporting applications . 736

Exporting DDL files . 736

Updating applications . 736

Ways to update application files . 739

Preparing for application update settings . 740

Hot deployment and dynamic reloading . 744

Uninstalling applications . 752

Removing a file . 752

Deploying and administering applications: Resources for learning 753

Chapter 8. Developing WebSphere applications . 755

Web applications . 755

Task overview: Developing and deploying Web applications 755

Task overview: Managing HTTP sessions . 792

Modifying the default Web container configuration 803

Configuring session management by level . 808

Configuring session tracking . 809

Configuring session tracking for Wireless Application Protocol (WAP) devices 813

Configuring for database session persistence . 814

EJB applications . 817

Task overview: Using enterprise beans in applications 817

Using access intent policies . 822

Managing EJB containers . 831

Deploying EJB modules . 837

Client applications . 839

Using application clients . 839

Running application clients . 852

Installing Application Client for WebSphere Application Server 869

Deploying J2EE application clients on workstation platforms 874

Web services . 952

Implementing Web services applications . 952

Deploying Web services . 964

Configuring Web service client bindings . 966

Configuring the scope of a Web service port . 969

Web Services Invocation Framework (WSIF): Enabling Web services 971

Getting started with UDDI Registry . 975

Planning to use Web services . 977

Setting up and deploying a new UDDI Registry . 981

Publishing WSDL files . 992

Configuring endpoint URL information for JMS bindings 995

Configuring Web services applications with the wsadmin tool 997

WSIF system management and administration . 997

Using the UDDI Registry . 1004

Removing and reinstalling UDDI Registry . 1108

Configuring the UDDI Registry Application . 1110

vi IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Managing the UDDI Registry . 1114

Data access resources . 1126

Task overview: Accessing data from applications 1126

Deploying data access applications . 1156

Messaging resources . 1242

Learning about messaging with WebSphere Application Server 1242

Installing and configuring a JMS provider . 1252

Using asynchronous messaging . 1253

Maintaining Version 5 default messaging resources 1253

Using JMS resources of WebSphere MQ . 1286

Using JMS resources of a generic provider . 1353

Administering support for message-driven beans 1361

Mail, URLs, and other J2EE resources . 1378

Using mail . 1378

Using URL resources within an application . 1382

Resource environment entries . 1385

Configuring mail providers and sessions . 1389

Security . 1393

Securing applications and their environments . 1393

Planning to secure your environment . 1394

Implementing security considerations at installation time 1404

Integrating IBM WebSphere Application Server security with existing security systems 1409

Administering security . 1417

Deploying secured applications . 1767

Naming and directory . 1779

Using naming . 1779

Configuring name servers . 1789

Configuring and viewing name space bindings . 1790

Developing applications that use JNDI . 1794

Developing applications that use CosNaming (CORBA Naming interface) 1809

Object Request Broker . 1813

Managing Object Request Brokers . 1813

Transactions . 1831

Configuring transaction properties for an application server 1831

Using the transaction service . 1840

Managing active and prepared transactions . 1850

Managing transaction logging for optimum server availability 1851

Interoperating transactionally between application servers 1854

Using one-phase and two-phase commit resources in the same transaction 1854

WebSphere programming extensions . 1858

ActivitySessions . 1858

Application profiling . 1872

Asynchronous beans . 1884

Dynamic cache . 1901

Dynamic query . 1949

Internationalization . 1978

Object pools . 1988

Scheduler . 1994

Startup beans . 2019

Work area . 2020

Chapter 9. Troubleshooting deployment . 2047

Errors or problems deploying, installing, or promoting applications 2047

Troubleshooting testing and first time run problems 2051

Errors starting an application . 2052

The application does not start or starts with errors 2056

Contents vii

A web resource does not display . 2057

Cannot uninstall an application or remove a node or application server 2059

Chapter 10. Troubleshooting administration . 2061

Administration and administrative console troubleshooting tips 2061

Installation completes but the administrative console does not start 2063

Errors connecting to the administrative console from a browser 2064

When a single user that uses multiple instances of the Mozilla browser logs into the

administrative console, the first user ID that logs into the administrative console is the current

user. . 2064

A user on Mozilla browser Version 1.4 selects a check box on a collection table, presses Enter,

and receives an error. . 2064

A user on Mozilla browser Version 1.4 enters an invalid ID or password, presses Enter, and

receives an error message . 2065

Web server plug-in troubleshooting tips . 2065

The server process does not start or starts with errors 2067

The stopServer.sh hangs and creates a Java core dump (Red Hat Linux) 2068

Problems starting or using the wsadmin command 2068

Problems using tracing, logging or other troubleshooting features 2071

Notices . 2073

Trademarks and service marks . 2075

viii IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

How to send your comments

Your feedback is important in helping to provide the most accurate and highest quality information.

v To send comments on articles in the WebSphere Application Server Information Center

1. Display the article in your Web browser and scroll to the end of the article.

2. Click on the Feedback link at the bottom of the article, and a separate window containing an e-mail

form appears.

3. Fill out the e-mail form as instructed, and click on Submit feedback .

v To send comments on PDF books, you can e-mail your comments to: wasdoc@us.ibm.com or fax

them to 919-254-0206.

Be sure to include the document name and number, the WebSphere Application Server version you are

using, and, if applicable, the specific page, table, or figure number on which you are commenting.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information

in any way it believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 2004 ix

x IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Chapter 1. Overview and new features for administering

applications and their environments

This topic summarizes the contents and organization of the administration documentation, including links

to conceptual overviews and descriptions of new features.

v Overview of administering applications and their environments

v What is new for administrators

Sections in the administration documentation:

Chapter 3, “Setting up the application serving environment,” on page 15

This section is for the administrator who is responsible for integrating application serving

capabilities into an existing network environment. It looks at the product as part of a larger system,

typically a production environment or realistic test environment. This section reiterates some

installation and customization activities, including topology planning and creating product

configurations. It carries the focus into the administrative realm, discussing port configuration and

other network concerns. See also ″Overview and new features for installing an application serving

environment″ in the information center.

 This information expands the topology planning discussion by describing how to set up and

maintain logical administrative domains of cells and nodes, and how to balance workload through

clustering and high availability configurations.

Chapter 4, “Using the administrative clients,” on page 171

This section describes the many options available for administering your applications and the

servers to which the applications are deployed. Options include the graphical administrative

console; scripting with the wsadmin tool; programmatic administration using Java Management

Extensions (JMX) and MBeans; and a wide array of command-line tools, including ANT.

Chapter 5, “Starting and stopping quick reference,” on page 691

This section summarizes what can be started and stopped, including applications and the

application servers on which these applications are deployed.

Chapter 6, “Class loading,” on page 693

This section describes how to configure class loaders. It includes both configuration that is

performed during application assembly (packaging) and configuration performed at the server. The

product run-time environment uses class loaders to find and load new classes for an application.

Class loaders are part of the Java virtual machine (JVM) code and are responsible for finding and

loading class files.

Chapter 7, “Deploying and administering applications,” on page 705

This section describes how to deploy applications onto application servers, and then how to

administer the deployed applications. It includes installing applications, starting applications,

exporting application files, updating applications, removing applications, and other common tasks.

Administer WebSphere applications

This section provides administrative instructions that are specific to the various types of

applications. For example, you can focus on administering your Web applications in their Web

container; or aspects of Web services support; or the messaging or security subsystems.

Chapter 9, “Troubleshooting deployment,” on page 2047

This section describes how to identify and handle a variety of problems encountered during

development, assembly, and deployment activities.

Chapter 10, “Troubleshooting administration,” on page 2061

This section describes how to identify and handle a variety of problems encountered during

administrative activities.

© Copyright IBM Corp. 2004 1

Overview of administering applications and their environments

This topic provides links to conceptual overviews of administering your applications and application serving

environment.

What is new for administrators

 This topic provides an overview of new and changed features of system administration.

“Introduction: System administration” on page 3

 This topic describes the administration of WebSphere Application Server, Version 6 products and

the applications that run on them.

Presentations from Education on Demand

 The following presentations provide a quick overview:

v System management architecture

v Administrative security

v Administrative clients overview

– Start, stop, and monitor processes

– Other commands

– Browser-based administrative console

– Scripting - wsadmin

– Custom Java administrative client (JMX)

v Topologies and logical administrative domains

– Resource scoping

v Applications and application resources

– Application management overview

– JDBC

– Installing and uninstalling applications

– Managed application resources - Enhanced EAR files

– Fine grained application updates

v Servers

– Server templates

– Custom services

– Manage Web server nodes

v Configuration management

– Configuration repository

– Configuration archives

– File synchronization

Getting started with WebSphere Application Server

Note:

If you prefer to browse PDF versions of this documentation using Adobe Reader, see the

Getting Started PDF files that are available from

www.ibm.com/software/webservers/appserv/infocenter.html.

2 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

http://www.ibm.com/developerworks/websphere/library/tutorials/ondemand/
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_SM_Architecture/player.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_SM_Admin_Security/player.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_SM_AdminClient/player.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_SM_StartStop_Monitor/player.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_SM_Commands/player.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_SM_AdminConsole/player.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_SM_ScriptingAdmin/player.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_SM_Custom_Java_Client/player.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_SM_Res_Scopes/player.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_SM_App_Admin_Overview/player.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_SM_JDBC/player.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_SM_App_Install/player.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/ApplicationManagement/LabInstructions/WASv6_EnhancedEARLab.pdf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/ApplicationManagement/LabInstructions/WASv6_ ApplUpdateLab.pdf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_SM_Server_Templates/player.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_SM_Custom_Services/player.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/WebServer_And_Plugin/Presentations/WASv6_WebServer/player.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_SM_ConfigRepository/player.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_SM_Configuration_Archives/player.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_SM_ND_FileSync/player.html
http://www.adobe.com/products/acrobat/readermain.html
http://www.ibm.com/software/webservers/appserv/infocenter.html

IBM WebSphere Application Server products provide a next-generation application server on an

industry-standard foundation. Each product addresses a distinct set of scenarios and needs. WebSphere

Application Server, Version 6 product offerings are described in ″Packaging″ in the information center.

Planning

See ″Task overview: Installing″ in the information center for a description of typical scenarios for each

WebSphere Application Server product.

Installing

See ″Task overview: Installing″ for a description of installing the WebSphere Application Server product

and other installable components on the product disc.

Configuring

See ″Using the Profile creation wizard″ in the information center for a description of installing other

stand-alone Application Servers on your machine.

Migrating

See ″Migration and coexistence overview″ and ″Migrating and coexisting″ in the information center for a

description of how to migrate applications and configuration data from a previous version of WebSphere

Application Server.

Using the Samples Gallery

See ″Accessing the Samples (Samples Gallery)″ in the information center for a description of the set of

Samples that ship with each product. The Samples demonstrate common Web application tasks.

Deploying applications

The information center describes a way to sample WebSphere Application Server functionality by quickly

deploying Web components, such as servlets and JSP files. The method is not recommended as an

official development method. See ″Fast paths for WebSphere Application Server″ in the information center

to get started.

Introduction: System administration

A variety of tools are provided for administering the WebSphere Application Server product:

v Console

The administrative console is a graphical interface that provides many features to guide you through

deployment and systems administration tasks. Use it to explore available management options.

For more information, refer to “Introduction: Administrative console” on page 4.

v Scripting

The WebSphere administrative (wsadmin) scripting program is a powerful, non-graphical command

interpreter environment enabling you to run administrative operations in a scripting language. You can

also submit scripting language programs to run. The wsadmin tool is intended for production

environments and unattended operations.

For more information, refer to “Introduction: Administrative scripting (wsadmin)” on page 4.

v Commands

Command-line tools are simple programs that you run from an operating system command-line prompt

to perform specific tasks, as opposed to general purpose administration. Using the tools, you can start

and stop application servers, check server status, add or remove nodes, and complete similar tasks.

Chapter 1. Overview and new features for administering applications and their environments 3

For more information, refer to “Introduction: Administrative commands” on page 5.

v Programming

The product supports a Java programming interface for developing administrative programs. All of the

administrative tools supplied with the product are written according to the API, which is based on the

industry standard Java Management Extensions (JMX) specification.

For more information, refer to “Introduction: Administrative programs” on page 5.

v Data

Product configuration data resides in XML files that are manipulated by the previously-mentioned

administrative tools.

For more information, refer to “Introduction: Administrative configuration data” on page 5.

Introduction: Administrative console

The administrative console is a graphical interface for performing deployment and system administration

tasks. It runs in your Web browser. Your actions in the console modify a set of XML configuration files.

You can use the console to perform tasks such as:

v Add, delete, start, and stop application servers

v Deploy new applications to a server

v Start and stop existing applications, and modify certain configurations

v Add and delete Java 2 Platform, Enterprise Edition (J2EE) resource providers for applications that

require data access, mail, URLs, and so on

v Manage variables, shared libraries, and other configurations that can span multiple application servers

v Configure product security, including access to the administrative console

v Collect data for performance and troubleshooting purposes

v Find the product version information. It is located on the front page of the console.

See the Using the administrative clients PDF for information on how you begin using the console. See also

the Reference > Administrator > Settings section of the Information Center navigation. It lists the

settings or properties you can configure.

Introduction: Administrative scripting (wsadmin)

The WebSphere administrative (wsadmin) scripting program is a powerful, non-graphical command

interpreter environment enabling you to run administrative operations in a scripting language. The wsadmin

tool is intended for production environments and unattended operations. You can use the wsadmin tool to

perform the same tasks that you can perform using the administrative console.

The following list highlights the topics and tasks available with scripting. See the Administering applications

and their environment PDF for more information on how to perform these tasks.

v Getting started with scripting Provides an introduction to WebSphere Application Server scripting and

information about using the wsadmin tool. Topics include information about the scripting languages and

the scripting objects, and instructions for starting the wsadmin tool.

v Deploying applications Provides instructions for deploying and uninstalling applications. For example,

stand-alone Java archive files and Web archive files, the administrative console, remote enterprise

archive (EAR) files, file transfer applications, and so on.

v Managing deployed applications Includes tasks that you perform after the application is deployed. For

example, starting and stopping applications, checking status, modifying listener address ports, querying

application state, configuring a shared library, and so on.

v Configuring servers Provides instructions for configuring servers, such as creating a server, modifying

and restarting the server, configuring the Java virtual machine, disabling a component, disabling a

service, and so on.

4 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

v Configuring connections to Web servers Includes topics such as regenerating the plug-in, creating new

virtual host templates, modifying virtual hosts, and so on.

v Managing servers Includes tasks that you use to manage servers. For example, stopping nodes,

starting and stopping servers, querying a server state, starting a listener port, and so on.

v Configuring security Includes security tasks, for example, enabling and disabling global security,

enabling and disabling Java 2 security, and so on.

v Configuring data access Includes topics such as configuring a Java DataBase Connectivity (JDBC)

provider, defining a data source, configuring connection pools, and so on.

v Configuring messaging Includes topics about messaging, such as Java Message Service (JMS)

connection, JMS provider, WebSphere queue connection factory, MQ topics, and so on.

v Configuring mail, URLs, and resource environment entries Includes topics such as mail providers, mail

sessions, protocols, resource environment providers, reference tables, URL providers, URLs, and so on.

v Dynamic caching Includes caching topics, for example, creating, viewing and modifying a cache

instance.

v Troubleshooting Provides information about how to troubleshoot using scripting. For example, tracing,

thread dumps, profiles, and so on.

v Obtaining product information Includes tasks such as querying the product identification.

v Scripting reference material Includes all of the reference material related to scripting. Topics include the

syntax for the wsadmin tool and for the administrative command framework, explanations and examples

for all of the scripting object commands, the scripting properties, and so on.

Introduction: Administrative commands

Command-line tools are simple programs that you run from an operating system command-line prompt to

perform specific tasks, as opposed to general purpose administration. Using the tools, you can start and

stop application servers, check server status, add or remove nodes, and complete similar tasks.

See Reference > Commands in the information center navigation for the names and syntax of all the

commands that are available with the product. A subset of these commands are particular to system

administration purposes.

Introduction: Administrative programs

The product supports a Java programming interface for developing administrative programs. All of the

administrative tools supplied with the product are written according to the API, which is based on the

industry standard Java Management Extensions (JMX) specification. You can write a Java program that

performs any of the administrative features of the WebSphere Application Server administrative tools. You

can also extend the basic WebSphere Application Server administrative system to include your own

managed resources.

Introduction: Administrative configuration data

The WebSphere Application Server product includes an implementation of the Java Management

Extension (JMX) specification. All operations on managed resources in the product go through JMX

functions. This setup means a more standard framework underlying your administrative operations as well

as the ability to tap into the systems management infrastructure programmatically.

Introduction: Servers

Application servers

Application servers provide the core functionality of the WebSphere Application Server product family. They

extend the ability of a Web server to handle Web application requests, and much more. An application

server enables a server to generate a dynamic, customized response to a client request.

Chapter 1. Overview and new features for administering applications and their environments 5

For additional overview, refer to “Introduction: Application servers.”

Introduction: Application servers

Overview

An application server is a Java Virtual Machine (JVM) that is running user applications. The application

server collaborates with the Web server to return a dynamic, customized response to a client request.

Application code, including servlets, JavaServer Pages (JSP) files, enterprise beans and their supporting

classes, runs in an application server. Conforming to the Java 2 platform, Enterprise Edition (J2EE)

component architecture, servlets and JSP files run in a Web container, and enterprise beans run in an

Enterprise JavaBeans (EJB) container.

To begin creating and managing an application server, see “Administering application servers” on page

111.

You can define multiple application servers, each running its own JVM. Enhance the operation of an

application server by using the following options:

v Configure transport chains to provide networking services to such functions as the service integration

bus component of IBM service integration technologies, WebSphere Secure Caching Proxy, and the

high availability manager core group bridge service. See “Configuring transport chains” on page 126 for

more information.

v Plug into an application server to define a hook point that runs when the server starts and shuts down.

See “Custom services” on page 142 for more information.

v Define command-line information that passes to a server when it starts or initializes. See the Using the

administrative clients PDF for more information.

v “Tuning application servers” on page 167

v Enhance the performance of the application server JVM. See “Using the JVM” on page 155 for more

information.

v Use an Object Request Broker (ORB) for RMI/IIOP communication. See the Developing and deploying

applications PDF for more information.

Asynchronous messaging

The product supports asynchronous messaging based on the Java Messaging Service (JMS) of a JMS

provider that conforms to the JMS specification version 1.1.

The JMS functions of the default messaging provider in WebSphere Application Server are served by one

or more messaging engines (in a service integration bus) that runs within application servers.

Generic Servers

In distributed platforms, the Generic Servers feature allows you create a generic server as an application

server instance within the WebSphere Application Server administration, and associate it with a

non-WebSphere server or process. The generic server can be associated with any server or process

necessary to support the application server environment, including:

v A Java server

v A C or C++ server or process

v A CORBA server

v A Remote Method Invocation (RMI) server

After you define a generic server, you can use the Application Server administrative console to start, stop,

and monitor the associated non-WebSphere server or process when stopping or starting the applications

that rely on them.

For more information, refer to “Creating generic servers” on page 124.

6 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Introduction: Web servers

In the WebSphere Application Server product, an application server works with a Web server to handle

requests for dynamic content, such as servlets, from Web applications. Go to

http://www.ibm.com/software/webservers/appserv/doc/latest/prereq.html for the most current information

about supported Web servers.

The application server and Web server communicate using “Web server plug-ins” on page 72.

“Communicating with Web servers” on page 57 describes how to set up your Web server and Web server

plug-in environment and how to create a Web server definition. The Web server definition associates a

Web server with an application server. After you create a Web server definition, you can use the

administrative console to perform the following functions for that Web server:

v Check the status of the Web server

v Generate a plug-in configuration file for that Web server.

If the Web server is an IBM HTTP Server (IHS) and the IHS Administration server is installed and properly

configured, you can also:

v Display the IBM HTTP Server Error log (error.log) and Access log (access.log) files.

v Start and stop the server.

v Display and edit the IBM HTTP Server configuration file (httpd.conf).

v Propagate the plug-in configuration file after it is generated.

You can not propagate a plug-in configuration file for a non-IHS Web server. You must manually install an

updated plug-in configuration file on that Web server.

After you set up your Web server and Web server plug-in, whenever you deploy a Web application, you

must specify a Web server as the deployment target that serves as a router for requests to the Web

application. The configuration settings in the plug-in configuration file (plugin-cfg.xml) for each Web server

are based on the applications that are routed through that Web server. If the Web server plug-in

configuration service is enabled, a Web server plug-in’s configuration file is automatically regenerated

whenever a new application is associated with that Web server.

Note: Before starting the Web server, make sure you are authorized to run any Application Response

Measurement (ARM) agent associated with that Web server.

Refer to your Web server documentation for information on how to administer that Web server. For tips on

tuning your Web server plug-in, see “Web server plug-in tuning tips” on page 77.

Introduction: Environment

The environment of the product applies to the configuring of Web server plug-ins, variables, and objects

that you want consistent throughout a cell.

Web servers

In the WebSphere Application Server product, an application server works with a Web server to handle

requests for Web applications. The application Server and Web server communicate using a WebSphere

HTTP plug-in for the Web server.

For more information, refer to “Introduction: Web servers.”

Chapter 1. Overview and new features for administering applications and their environments 7

http://www.ibm.com/software/webservers/appserv/doc/latest/prereq.html

Variables

A variable is a configuration property that can be used to provide a parameter for any value in the system.

A variable has a name and a value to use in place of that name wherever the variable name is located

within the system.

For more information, refer to “Configuring WebSphere variables” on page 94.

8 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Chapter 2. How do I administer applications and their

environments?

v Establish the application serving environment

v Secure the application serving environment - see Security

v Set up Web access for applications

v Set up resources for applications to use

v Configure class loaders - see development and deployment

v Deploy and administer applications

v Use the administrative clients

v Troubleshoot deployment and administration

Legend for ″How do I?...″ links

 Documentation Show me Tell me Guide me Teach me

Refer to the detailed

steps and reference

Watch a brief

multimedia

demonstration

View the presentation

for an overview

Be led through the

console pages

Perform the tutorial

with sample code

Approximate time:

Varies

Approximate time: 3

to 5 minutes

Approximate time:

10 minutes+

Approximate time:

1/2 hour+

Approximate time: 1

hour+

Establish the application serving environment

The following tasks involve establishing application serving capability in your network environment,

whether you use single or clustered application servers. Servers can be grouped into administrative

domains known as nodes and cells.

See also the overview:

v Version 6 topology and terminology

--

Create WebSphere profiles

 Profiles are the files that define a stand-alone Application Server node, a managed node, or a

deployment manager node. A profile also includes all of the files that the node can change.

 Documentation Show me:

v Standalone node

Tell me

--

Administer configurations

 Application server configuration files define the available application servers, their configurations,

and their contents. You should periodically save changes to your administrative configuration. You

can change the default locations of configuration files, as needed.

© Copyright IBM Corp. 2004 9

ftp://ftp.software.ibm.com/software/eod/WAS_6-0/BigPicture/Presentations/WASXv6_Topology_Terminology/player.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/Install_Migration/Simulations/WASv6_Profile_Exp_SNode.viewlet/WASv6_Profile_Exp_SNode_viewlet_swf.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/Install_Migration/Presentations/WASv6_Profiles/player.html

Documentation Tell me:

v Repository

v Archives

--

Administer application servers

 Create, configure, and operate application server processes. An application server configuration

provides settings that control how an application server provides services for running enterprise

applications and their components.

 Documentation:

v Console

v Scripting -

configure

v Scripting -

administer

Show me Tell me

--

Administer other server types

 One step in the process of creating an application server is to specify a template. A server

template is used to define the configuration settings of the new server. You have the option of

specifying the default server template or choosing a template that is based on a server that

already exists. The default template will be used if you do not specify a different template when

you create the server.

 You can create other types of servers, to represent Web servers in your topology, or for other

purposes. There are two types of generic servers: (1) Non-Java applications or processes, or (2)

Java applications or processes. A custom service provides the ability to plug into a WebSphere

application server to define a hook point that runs when the server starts and shuts down.

 Documentation:

v Generic servers

v Custom services

 Tell me:

v Generic servers

v Templates

v Custom services

Guide me (Web

servers)

--

Administer the UDDI registry

 The UDDI Registry is supplied as a J2EE application file, uddi.ear. Change its configuration

properties using the assembly tools. You can use either the WebSphere Application Server

administrative console or the Java Management Extensions (JMX) management interface to

manage UDDI Registries.

 Documentation:

v Configure

v Administer

Show me Tell me Teach me

--

10 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_SM_ConfigRepository/player.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_SM_Configuration_Archives/player.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Simulations/WASv6_AppServer_Admin.viewlet/WASv6_AppServer_Admin_viewlet_swf.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_SM_StartStop_Monitor/player.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_SM_GenericServer/player.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_SM_Server_Templates/player.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_SM_Custom_Services/player.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/WebServices/Simulations/WASv6_UDDI.viewlet/WASv6_UDDI_viewlet_swf.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/WebServices/Presentations/WASv6_UDDI/player.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/WebServices/LabInstructions/WASv6_UDDI.pdf

Set up Web access for applications

These tasks involve enabling HTTP requests for applications on the application server.

--

Administer communication with Web servers (plug-ins)

 The product provides plug-ins for supported Web servers, to enable the Web servers to pass

requests to the application server, for applications running on the application server. See also the

Web server related tasks in How do I install an application serving environment?.

 Documentation:

v Console

v Scripting

Show me Tell me Guide me

--

Administer HTTP sessions

 Configure the service that the product provides for managing HTTP sessions: Session Manager.

 Documentation:

v Console

v Scripting

Show me

--

Administer IBM HTTP Server Version 6.x

 The product provides a complementary Web server with its own documentation that can be

installed into the information center.

 --

Set up resources for applications to use

Make a variety of resources available to your applications that are deployed on the application server.

--

Provide access to naming and directory resources (JNDI)

 Configure naming. Naming is used by clients of WebSphere Application Server applications to

obtain references to objects related to those applications, such as Enterprise JavaBeans (EJB)

homes. These objects are bound into a mostly hierarchical structure, referred to as a name space.

The name space structure consists of a set of name bindings, each consisting of a name relative

to a specific context and the object bound with that name.

 Documentation:

v Name server

v Bindings

Show me Tell me

--

Provide access to relational databases (JDBC resources)

Chapter 2. How do I administer applications and their environments? 11

ftp://ftp.software.ibm.com/software/eod/WAS_6-0/WebServer_And_Plugin/Simulations/WASv6_IHS_Definition_and_AppMapping.viewlet/WASv6_IHS_Definition_and_AppMapping_viewlet_swf.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/WebServer_And_Plugin/Presentations/WASv6_WebServer/player.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Simulations/WASv6_SM_HTTP_Sessions.viewlet/WASv6_SM_HTTP_Sessions_viewlet_swf.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/Runtime/Simulations/WASv6_Naming.viewlet/WASv6_Naming_viewlet_swf.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/Runtime/Presentations/WASv6_Naming/player.html

Configure data sources that applications use to access the data from databases.

 Documentation:

v Console

v Scripting

Show me:

v Cloudscape

v DB2

v Oracle

Tell me Guide me

--

Provide access to messaging resources (default messaging provider)

 Use one of various ways to implement a messaging provider for use with WebSphere Application

Server. A messaging provider enables use of the Java Messaging Service (JMS) and other

message resources in the product.

 Documentation:

v Console

v Scripting

Show me Tell me Teach me

--

Use IBM service integration technologies

 Tell me:

v Overview

v Architecture

v Mediation

 Teach me

--

Access Service Integration (SI) bus resources

 Show me Tell me:

v Service integration

bus resources

v JMS resources for

service integration

bus

--

Deploy and administer applications

These tasks involve deploying applications onto the application server, then administering the applications.

--

Install applications

 Installable modules include enterprise archive (EAR), enterprise bean (EJB), Web archive (WAR),

resource adapter (connector or RAR), and application client files.

 Documentation

v Console

v Scripting

Show me Tell me

--

12 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Simulations/WASv6_New_CS_jdbc.viewlet/WASv6_New_CS_jdbc_viewlet_swf.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Simulations/WASv6_New_DB2_jdbc.viewlet/WASv6_New_DB2_jdbc_viewlet_swf.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Simulations/WASv6_New_Oracle_jdbc.viewlet/WASv6_New_Oracle_jdbc_viewlet_swf.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_SM_JDBC/player.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/WPM/Simulations/WASv6_WPM_JMSResource.viewlet/WASv6_WPM_JMSResource_viewlet_swf.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/WPM/Presentations/WASv6_WPM_JMS/player.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/WPM/LabInstructions/WASv6_WPM_MDB.pdf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/WPM/Presentations/WASv6_WPM_Overview/player.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/WPM/Presentations/WASv6_WPM_Architecture/player.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/WPM/Presentations/WASv6_WPM_Mediation/player.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/WPM/LabInstructions/WASv6_WPM_MDB.pdf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/WPM/Simulations/WASv6_WPM_Define_SIBus_Resource.viewlet/WASv6_WPM_Define_SIBus_Resource_viewlet_swf.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/WPM/Presentations/WASv6_WPM_SIBResource/player.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/WPM/Presentations/WASv6_WPM_SIBResource/player.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/WPM/Presentations/WASv6_WPM_JMSResource/player.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/WPM/Presentations/WASv6_WPM_JMSResource/player.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/WPM/Presentations/WASv6_WPM_JMSResource/player.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Simulations/WASv6_Install_WebSphereBank.viewlet/WASv6_Install_WebSphereBank_viewlet_swf.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_SM_App_Install/player.html

Start and stop applications

 You can start an application that is not running (has a status of Stopped) or stop an application

that is running (has a status of Started).

 Documentation:

v Console

v Scripting

Show me Tell me

--

Update applications

 Update deployed applications or modules using the administrative console or wsadmin scripting.

Learn which changes are candidates for hot deployment and dynamic reloading, in which you can

make various changes to applications and their modules without having to stop the server and

start it again.

 Documentation:

v Console

v Scripting

 Tell me Teach me

--

Deploy applications rapidly (WebSphere Rapid Deployment)

 Take advantage of new rapid deployment capabilities. WebSphere rapid deployment offers the

following advantages: You do not need to assemble your J2EE application files prior to

deployment. You do not need to use other installation tools mentioned in this table to deploy the

files. Refer to the Rapid deployment tools documentation in the information center.

 --

Enhanced EAR files

 Tell me Teach me

--

Deploy and administer Web services applications

 To deploy Web services that are based on the Web Services for Java 2 platform, Enterprise

Edition (J2EE) specification, you need an enterprise application, also known as an enterprise

archive (EAR) file that has been configured and enabled for Web services. You can use either the

administrative console or the wsadmin scripting interface to deploy an EAR file.

 Documentation Show me Tell me Teach me

--

Use the administrative clients

A variety of tools are provided for administering the product.

--

Choose an administrative client

 Learn about and decide among the available administrative clients, including a graphical console,

scripting (wsadmin), command line tools, and Java Management Extensions (JMX) programs.

Chapter 2. How do I administer applications and their environments? 13

ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Simulations/WASv6_SM_ApplMgmt.viewlet/WASv6_SM_ApplMgmt_viewlet_swf.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_SM_App_Admin_Overview/player.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_SM_App_Update/player.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/LabInstructions/WASv6_ ApplUpdateLab.pdf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_Managed_App_Resources/player.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/LabInstructions/WASv6_EnhancedEARLab.pdf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/WebServices/Simulations/WASv6_DeployingWebServiceWithAdminConsole.viewlet/WASv6_DeployingWebServiceWithAdminConsole_viewlet_swf.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/WebServices/Presentations/WASv6_WebServices/player.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/WebServices/LabInstructions/WASv6_DeployWebServiceApplication_Lab.pdf

Documentation Tell me

--

Use the administrative console

 The administrative console is a Web-based tool that you use to administer the product. The

administrative console supports a full range of product administrative activities.

 Documentation Show me Tell me

--

Use scripting (wsadmin)

 Scripting is a non-graphical alternative that you can use to configure and manage WebSphere

Application Server. The WebSphere Application Server wsadmin tool provides the ability to run

scripts. The tool supports a full range of product administrative activities.

 Documentation Tell me

--

See also:

v Start, stop, monitor processes

v Other administrative commands

v Custom Java administrative clients (JMX)

Troubleshoot deployment and administration

Troubleshoot problems that occur when you are deploying applications onto the application server, or

when you are administering an established application serving environment.

--

Troubleshoot deployment

 Troubleshoot problems that occur either during deployment or shortly afterwards, when you try to

access an application that you just deployed for the first time.

 Documentation

--

Troubleshoot administration

 Review some possible causes, based on the error you are seeing.

 Documentation

--

14 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_SM_AdminClient/player.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Simulations/WASv6_SM_AdminConsole.viewlet/WASv6_SM_AdminConsole_viewlet_swf.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_SM_AdminConsole/player.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_SM_ScriptingAdmin/player.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_SM_StartStop_Monitor/player.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_SM_Commands/player.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_SM_Custom_Java_Client/player.html

Chapter 3. Setting up the application serving environment

This topic summarizes the contents of the documentation that helps you set up your application serving

environment. This information is for administrators, particularly those performing installation, customization,

and maintenance of topologies.

“Planning the installation (diagrams)”

 In preparation for installation, this topic describes common product topologies that you can install

with WebSphere Application Server, Version 6 products.

“Configuring the product after installation” on page 32

 This topic describes what to do after installing the product.

 You can display the First Steps tool, an easy way to get started with the product.

“Configuring ports” on page 55

 This topic provides information about port number settings for Version 6 and previous versions, for

use in coexistence and interoperability situations.

“Communicating with Web servers” on page 57

 This topic describes how to install and configure WebSphere plug-ins for Web servers, enabling

communication between Web servers and application servers.

“Setting up the administrative architecture” on page 79

 This topic describes how to configure administrative services.

“Configuring the environment” on page 86

 This topic describes how to configure settings for virtual hosts, variables, and shared libraries to

assist in handling requests among Web applications, Web containers, and application servers.

“Working with server configuration files” on page 104

 This topic describes how to change the default locations of configuration files, as needed.

Application server configuration files define the available application servers, their configurations,

and their contents.

“Administering application servers” on page 111

 This topic describes how to configure individual application servers to provides services for running

enterprise applications and their components.

Planning the installation (diagrams)

This topic describes common product topologies that you can install with the product.

Use this topic to understand the capabilities of your product package. Knowing what you can do with the

product might influence how you install the product and other installable components on the product disc.

This topic describes topology diagrams and shows you how to create the topologies by showing what

components to install for each topology.

Phased installation roadmap

To install a Version 6 production environment, you install the following components:

v The WebSphere Application Server product on your product CD

v A supported Web server, such as the IBM HTTP Server V6 on the product CD

v A binary plug-in module for your Web server from the product CD

© Copyright IBM Corp. 2004 15

You can also use the product CD to install an application client environment on a client machine. Running

Java 2 Platform, Enterprise Edition (J2EE) and thin application clients that communicate with WebSphere

Application Server requires that elements of the Application Server are installed on the machine on which

the client runs. However, if the machine does not have the Application Server installed, you can install

Application Server clients to provide a stand-alone client run-time environment for your client applications.

You can use the Rational Web Developer CD in the primary packet of discs to install a fully integrated

development environment that includes an exact replica of the Application Server for development testing.

Installation features

Installation features in V6 include:

 Feature Description

The Express product includes

Application Server nodes.

You can use the Profile creation wizard to create stand-alone application server

nodes after installing the Express product. You do not have to reinstall the

product to create additional application servers. All application servers on a

machine share the same core product files.

The product CD includes all of the

installable components that are

required to create an e-business

environment.

You can use the product CD to install the IBM HTTP Server, the Web server

plug-ins, and the WebSphere Application Server Clients. You do not have to use

separate CDs. Separate installation programs exist within component directories

on the product CD.

Each installable component has its

own installation program.

You can use the V6 launchpad to install any installable component on the

product CD. Or you can install each component directly using the install

command in each component directory.

The launchpad can install any

installable product in the primary

packet of compact discs.

The launchpad for the Express product can also install the Rational Web

Developer on Windows and Linux (Intel) systems. Rational Web Developer is on

separate CDs, which requires you to change discs to launch the installation.

Review topology diagrams for each of the following installable components to determine which topology

best fits your needs. The diagrams and their accompanying procedures can serve as a roadmap for

installing a similar topology.

This topic describes installation scenarios for the following installable components:

v WebSphere Application Server - Express

v Web server plug-ins

v Application clients

In addition to product installation diagrams for the installable components, this topic also links to a

roadmap for using the Profile creation wizard, which is new for Version 6. The Profile creation wizard lets

you create run-time environments for application server processes.

Each of the following installation scenarios includes topology diagrams and associated installation steps.

Each step links to a specific procedure for installing a component or to a description of a command or tool.

1. Review the installation scenarios for the Express product, as described in “Planning to install

WebSphere Application Server - Express” on page 17.

2. Review the installation scenarios for the WebSphere Application Server plug-ins, as described in

“Planning to install Web server plug-ins” on page 22.

3. Review the installation scenarios for the application clients, as described in “Planning to install

WebSphere Application Server Clients” on page 25.

4. Review the installation scenarios for the Profile creation wizard, as described in “Planning to create

application server environments” on page 26.

5. Optional: Review interoperability and coexistence diagrams to know what is possible with Version 6.

16 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

WebSphere Application Server V6 can interoperate with your other e-business systems, including other

versions of WebSphere Application Server. Interoperability provides a communication mechanism for

WebSphere Application Server nodes that are at different versions. Coexistence describes multiple

versions or instances running on the same machine, at the same time.

Interoperability support enhances migration scenarios with more configuration options. It often is

convenient or practical to interoperate during the migration of a configuration from an earlier

WebSphere Application Server version to a later one when some machines are at the earlier version

and some machines are at the later version. The mixed environment of machines and application

components at different software version levels requires interoperability and coexistence.

It is often impractical, or even physically impossible, to migrate all the machines and applications within

an enterprise at the same time. Understanding multiversion interoperability and coexistence is

therefore an essential part of a migration between version levels.

See the following topics for more information:

a. Interoperating

b. Setting up Version 4.0.x and Version 6 coexistence

c. Setting up Version 5 and Version 6 coexistence

d. Setting up Version 6 coexistence

6. Optional: Consider performance when designing your network, as described in “Queuing network” on

page 27.

You can review installation scenarios to identify the specific steps to follow when installing more than one

component on a single machine or on separate machines.

After determining an appropriate installation scenario, you are ready to install the necessary components

and to configure the products for the system that you selected.

Planning to install WebSphere Application Server - Express

This topic describes common installation scenarios and links to component installation procedures for each

scenario.

IBM WebSphere Application Server - Express, Version 6 is an integrated platform that contains an

Application Server, Web development tools, a Web server, and additional supporting software and

documentation.

The following information describes scenarios for installing the product in various topologies on one or

more machines:

v Scenario 1: Single-machine installation of WebSphere Application Server - Express

v Scenario 2: Single-machine installation of WebSphere Application Server - Express and a Web server

v Scenario 3: Two-machine installation of WebSphere Application Server - Express and a Web server

v Scenario 4: Creating multiple profiles that use one installation of WebSphere Application Server -

Express

v Scenario 5: Single-machine installation of Rational Web Developer

v Scenario 6: Multiple-machine installation of WebSphere Application Server - Express, Rational Web

Developer, and a Web server

Each scenario includes a diagram and a list of detailed installation steps.

v Scenario 1: Install WebSphere Application Server - Express on a single machine.

Installing WebSphere Application Server - Express by itself on a single machine creates a stand-alone

application server, which is server1. Installing Express creates a set of system files and a profile for the

application server. The profile is a separate set of files that define the application server environment.

Chapter 3. Setting up the application serving environment 17

In this scenario, the application server uses its internal HTTP transport chain for communication, which

is suitable for handling an application with a relatively low request work load. For example, this type of

installation can support a simple test environment or a departmental intranet environment.

Machine A

Shared product binaries

(system files)

WebSphere Application Server, Version 6.0

Profile01

1. Install WebSphere Application Server - Express. See the Installing your application serving

environment PDF.

v Scenario 2: Install WebSphere Application Server - Express and a Web server on a single machine.

Installing a Web server, such as IBM HTTP Server, on the same machine as the application server

provides a more robust Web server environment. Installing a Web server plug-in is a requirement for the

Web server to communicate with the application server. This type of installation supports rigorous

testing environments or production environments that do not require a firewall. However, this is not a

typical production environment.

HTTP server

Plug-in

Application

server

optional

Client

HTTP

requests optional

1. Install WebSphere Application Server - Express See the Installing your application serving

environment PDF.

2. Install IBM HTTP Server or another supported Web server. See your Web server documentation.

3. Install the Web server plug-ins and configure the Web server using the Plug-ins installation wizard.

See the Installing your application serving environment PDF.

v Scenario 3: Install WebSphere Application Server - Express and a Web server on separate machines.

In the typical production environment, the application server on one machine communicates with a Web

server on a separate (remote) machine through the Web server plug-in. Optional firewalls can provide

additional security for the application server machine.

18 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Machine A

Data tier, optionalMachine B Machine A

Internet Intranet

Web server
Web client

(browser)

Application

Server

Application

data

Firewall Firewall

Plug-in

1. Install WebSphere Application Server - Express on Machine A. See the Installing your application

serving environment PDF.

2. Install IBM HTTP Server or another supported Web server on Machine B. See your Web server

documentation.

3. Install the Web server plug-ins and configure the Web server using the Plug-ins installation wizard

on Machine B. See the Installing your application serving environment PDF.

4. The Plug-ins installation wizard creates a script named configureWeb_server_name in the

plugins_install_root/bin directory on Machine B. Copy the script to the install_root/bin directory on

Machine A.

5. Run the configureWeb_server_name script to create a Web server definition in the administrative

console. You can then use the administrative console to manage the Web server.

6. Propagate the plugin-cfg.xml file from the application server to the Web server using the

administrative console. Click Servers > Web server > Propagate Plug-in. (Web servers other than

IBM HTTP Server require manual propagation.)

v Scenario 4: Install multiple stand-alone application servers on one machine and a Web server on a

separate machine.

A profile is a separate data partition containing the files that define the run-time environment for an

application server. A default profile is created during the installation of the Express product. Create

additional profiles using the Profile creation wizard. Each profile defines a separate stand-alone

application server that has its own administrative interface.

After creating a profile and installing a dedicated Web server, use the Plug-ins installation wizard to

install a Web server plug-in and to update the Web server configuration file. The Web server can then

communicate with the application server.

This topology lets each profile have unique applications, configuration settings, data, and log files, while

sharing the same set of core product files. Creating multiple profiles creates multiple application server

environments that you can dedicate to different purposes.

For example, each application server on a Web site can serve a different application. In another

example, each application server can be a separate test environment that you assign to a programmer

or a development team.

Updating the core product files

Another feature of having multiple profiles is enhanced serviceability. When a refresh pack or fix pack

updates the core product files on a machine, all of the application server profiles that were created from

the core product files begin using the updated files. In some situations, you might prefer to not update

all of the application servers on a machine. In such situations, simply install the product a second time

to create a second set of core product files. Create application server profiles from both installations to

manage the product updates incrementally.

Chapter 3. Setting up the application serving environment 19

Web client

(browser)

Internet

Data tier, optional

Application

data

Firewall Firewall

Machine A

Application

Server

Machine A

Application

Server 1

application 1

Intranet

Profile01

Machine A

Application

Server 2

application 2

Profile02

Machine B

Web server

Plug-in

Web server

Plug-in

1. Install WebSphere Application Server - Express on Machine A. See the Installing your application

serving environment PDF.

 2. Install IBM HTTP Server or another supported Web server on Machine B. See your Web server

documentation.

 3. Install the Web server plug-ins and configure the Web server using the Plug-ins installation wizard

on Machine B. See the Installing your application serving environment PDF.

 4. The Plug-ins installation wizard creates a script named configureWeb_server_name in the

plugins_install_root/bin directory on Machine B. Copy the script to the install_root/bin directory on

Machine A.

 5. Run the configureWeb_server_name script to create a Web server definition in the administrative

console. You can then use the administrative console to manage the Web server.

 6. Propagate the plugin-cfg.xml file from the application server to the Web server using the

administrative console. Click Servers > Web server > Propagate Plug-in. (Web servers other

than IBM HTTP Server require manual propagation.)

 7. Create the second Application Server profile using the Profile creation wizard on Machine A. Make

the profile the default profile during the profile creation by selecting the check box on the

appropriate panel.

The script that the Plug-ins installation wizard creates works on the default profile only. So, this

script can only create a Web server definition on the profile that is the default profile at the time

that the script runs.

 8. Install a second IBM HTTP Server or another supported Web server on Machine B. See your Web

server documentation.

 9. On Machine B, install the Web server plug-ins to configure the second Web server using the

Plug-ins installation wizard. Both Web servers share a single installation of the plug-in binaries but

must be configured individually. See the Installing your application serving environment PDF.

10. The Plug-ins installation wizard creates a script named configureWeb_server_name for the second

Web server. The script is in the plugins_install_root/bin directory on Machine B. Copy the script to

the install_root/bin directory on Machine A.

11. Run the configureWeb_server_name script to create a Web server definition in the administrative

console. You can then use the administrative console to manage the Web server.

12. Propagate the plugin-cfg.xml file from the second application server to the Web server using the

administrative console. Click Servers > Web server > Propagate Plug-in. (Web servers other

than IBM HTTP Server require manual propagation.)

v Scenario 5: Install Rational Web Developer on a single machine.

Install Rational Web Developer by itself to create an integrated development environment. Developers

can test applications in the test environment for V6 that is included in the Rational Web Developer

product.

20 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

1. Install Rational Web Developer.

v Scenario 6: Install WebSphere Application Server - Express, Rational Web Developer, and a Web

server on multiple machines.

In this integrated testing environment, install the application server behind an optional firewall on one

machine and the Web server on a separate (remote) machine. The Web server plug-in lets the

application server and Web server communicate with each other. Install Rational Web Developer on a

separate Linux (Intel) or Windows machine. This type of installation is useful for quality assurance

because the test environment closely mirrors the typical production environment.

Machine A

Data tier

optional

Machine B Machine A

Internet Intranet

Web client

(browser) server1
Application

data

Firewall

Web server

Plug-in

Machine C

Application

development

environment

Rational Web Developer

(Linux for Intel and Windows
only)

Testing

environment

WebSphere

Application

Server V6

1. Install WebSphere Application Server - Express on Machine A. See the Installing your application

serving environment PDF.

2. Install IBM HTTP Server or another supported Web server on Machine B. See your Web server

documentation.

3. Install the Web server plug-ins and configure the Web server using the Plug-ins installation wizard

on Machine B. See the Installing your application serving environment PDF.

4. The Plug-ins installation wizard creates a script named configureWeb_server_name in the

plugins_install_root/bin directory on Machine B. Copy the script to the install_root/bin directory on

Machine A.

5. Run the configureWeb_server_name script to create a Web server definition in the administrative

console. You can then use the administrative console to manage the Web server.

6. Propagate the plugin-cfg.xml file from the application server to the Web server using the

administrative console. Click Servers > Web server > Propagate Plug-in. (Web servers other than

IBM HTTP Server require manual propagation.)

7. Install Rational Web Developer on Machine C.

Chapter 3. Setting up the application serving environment 21

You can review common installation scenarios to find a possible match for the topology that you intend to

install. Each product installation diagram provides a high-level procedure for installing the components that

comprise the topology.

After determining a possible topology, you are ready to follow the detailed installation instructions for each

product that you plan to install.

Planning to install Web server plug-ins

This topic describes common installation scenarios and links to component installation procedures for each

scenario.

The primary production configuration is an application server on one machine and a Web server on a

separate machine. This configuration is referred to as a remote configuration. Contrast the remote

configuration to the local configuration, where the application server and the Web server are on the same

machine.

The Plug-ins installation wizard has four main tasks:

v Installs the binary plug-in module on the Web server machine.

v Configures the Web server configuration file on the Web server machine to point to the binary plug-in

module and to the XML configuration file for the binary module.

v Installs a temporary XML configuration file for the binary module (plugin-cfg.xml) on the Web server

machine in remote scenarios.

v Creates the configuration for a Web server definition on the application server machine. The wizard

processes the creation of the Web server definition differently depending on the scenario:

– Recommended remote stand-alone Application Server installation:

Creates a configuration script that you run on the application server machine. Install the Web server

and its plug-in on a different machine than the application server. This configuration is recommended

for a production environment.

– Local stand-alone Application Server installation:

Detects the default profile on a local application server machine and creates the Web server

definition for it directly. Install the Web server and its plug-in on the same machine with the

application server. This configuration is for development and test environments.

Select a link to go to the appropriate steps in the following procedure.

v Set up a remote Web server installation.

The remote Web server configuration is recommended for production environments.

The remote installation installs the Web server plug-in on the Web server machine when the application

server is on a separate machine, such as shown in the following graphic:

Machine B Machine A

Web server

Plug-in

WebSphere

Application

Server

Firewall
optional

Remote installation scenario

22 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Table 1. Installation and configuration

Step Machine Task

1 A Install your WebSphere Application Server product. See ″Installing the product and

additional software″ in the information center.

2 B Install IBM HTTP Server or another supported Web server. See ″Installing IBM HTTP

Server″ in the information center.

3 B Install the binary plug-in module using the Plug-ins installation wizard. See ″Configuring

a Web server and an application server on separate machines (remote)″ in the

information center.

The script for creating and configuring the Web server is created under the

plug-ins_install_root/ bin directory.

4 B Copy the configureWeb_server_name script to Machine A. If one machine is running

under Linux or UNIX and the other machine is running under Windows, copy the script

from the plug-ins_install_root/ bin/ crossPlatformScripts directory.

5 A Paste the configureWeb_server_name script from Machine B to the was_install_root/

bin directory on Machine A.

6 A Run the script from a command line.

7 A Verify that the application server is running. Open the administrative console and save

the changed configuration.

8 B

Run the plug-ins_install_root/setupPluginCfg.sh script for a

Domino Web Server before starting a Domino Web server.Otherwise, start the Web

server.

9 B Run the snoop servlet. See ″Troubleshooting installation″ in the information center.

To verify with your own application, regenerate and propagate the plugin-cfg.xml file

after installing the application.

Regeneration of the plugin-cfg.xml file

During the installation of the plug-ins, the temporary plugin-cfg.xml file is installed on Machine B in the

plug-ins_install_root/ config/ web_server_name directory.

The Web server plug-in configuration service regenerates the plugin-cfg.xml file automatically.

To use the real plugin-cfg.xml file from the application server, propagate the plugin-cfg.xml file as

described in the next section.

Propagation of the plugin-cfg.xml file

The Web server plug-in configuration service propagates the plugin-cfg.xml file automatically for IBM

HTTP Server 6.0 only.

For all other Web servers, propagate the plug-in configuration file manually. Copy the plugin-cfg.xml

file from the profiles_install_root/ config/ cells/ cell_name/ nodes/ Web_server_name_node/

servers/ web_server_name directory on Machine A. Paste the file into the plug-ins_install_root/

config/ web_server_name directory on Machine B.

v Set up a local Web server configuration.

The local Web server configuration is recommended for a development or test environment.

A local installation includes the Web server plug-in, the Web server, and the application server on the

same machine:

Chapter 3. Setting up the application serving environment 23

Machine A

Web server

Plug-in

WebSphere

Application

Server

Local installation scenario

 Table 2. Installation and configuration

Step Machine Task

1 A Install your WebSphere Application Server product. See ″Installing the product and

additional software″ in the information center.

2 A Install IBM HTTP Server or another supported Web server. See ″Installing IBM HTTP

Server″ in the information center.

3 A Install the binary plug-in module using the Plug-ins installation wizard. See ″Configuring

a Web server and an application server on separate machines (remote)″ in the

information center.

The Web server definition is automatically created and configured during the installation

of the plug-ins.

4 A Verify that the application server is running. Open the administrative console and save

the changed configuration.

5 B

Run the plug-ins_install_root/setupPluginCfg.sh script for a

Domino Web Server before starting a Domino Web server.Otherwise, start the Web

server.

6 B Run the snoop servlet.

To verify with your own application, regenerate and propagate the plugin-cfg.xml file

after installing the application.

Regeneration of the plugin-cfg.xml file

The Web server plug-in configuration service regenerates the plugin-cfg.xml file automatically.

The plugin-cfg.xml file is generated in the profiles_install_root/ profile_name/ config/ cells/

cell_name/ nodes/ Web_server_name_node/ servers/ web_server_name directory. The generation occurs

when the Web server definition is created.

Propagation of the plugin-cfg.xml file

The local file does not require propagation.

You can set up a remote or local Web server by installing Application Server, the Web server, and then the

Web server plug-ins.

See Web server configuration for more information about the files involved in configuring a Web server.

See ″Editing Web server configuration files″ in the information center for details for information about the

logic behind the processing scenarios for the Plug-ins installation wizard.

See Editing Web server configuration files for information about how the Plug-ins installation wizard

configures supported Web servers.

24 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

See Installing Web server plug-ins for information about other installation scenarios for installing Web

server plug-ins.

Planning to install WebSphere Application Server Clients

This topic helps you examine typical topologies and uses for WebSphere Application Server Clients.

This topic is one in a series of topics described in “Planning the installation (diagrams)” on page 15.

Consider all of the planning scenarios that are mentioned in the parent article to determine the best

approach to installing your e-business network. This topic describes installing and using the WebSphere

Application Server Clients.

In a traditional client server environment, the client requests a service and the server fulfills the request.

Multiple clients use a single server. Clients can also access several different servers. This model persists

for Java clients except that now these requests use a client run-time environment.

In this model, the client application requires a servlet to communicate with the enterprise bean, and the

servlet must reside on the same machine as the WebSphere Application Server.

The Application Client for WebSphere Application Server, Version 6 now consists of the following models:

v ActiveX application client

v Applet client

v J2EE application client

v Pluggable and thin application clients

The following graphic shows a topology for installing the Application Client and using client applications:

Chapter 3. Setting up the application serving environment 25

The example shows two types of application clients installed in a topology that uses client applications to

access applications and data on Machine A:

v The ActiveX application client on Machine B is a Windows only client that uses the Java Native

Interface (JNI) architecture to programmatically access the Java virtual machine (JVM) API. The JVM

code exists in the same process space as the ActiveX application (Visual Basic, VBScript, or Active

Server Pages (ASP) files) and remains attached to the process until that process terminates.

v The J2EE application client on Machine C is a Java application program that accesses enterprise

beans, Java Database Connectivity (JDBC) APIs, and Java Message Service message queues. The

application program must configure the execution environment of the J2EE application client and use

the Java Naming and Directory Interface (JNDI) name space to access resources.

Use the following procedure as a roadmap for installing the Application Client.

1. Install the WebSphere Application Server product from your product CD on Machine A to establish the

core product files.

2. Use the Profile creation wizard to create the additional stand-alone application server profile.

3. Use the administrative console of each application server to deploy any user applications.

4. Use the administrative console of each application server to create a Web server configuration for the

Web server.

5. Use the administrative console of each application server to regenerate each plugin-cfg.xml file in the

local Web server configuration.

6. Install the IBM HTTP Server from the product CD on Machine A.

7. Use the Plug-ins installation wizard to install the plug-in for IBM HTTP Server on Machine A.

The wizard automatically configures the HTTP Server to communicate with the first application server.

8. Install the Application Client from your product CD on Machine B.

a. Select the Custom install type.

b. Select the ActiveX to EJB Bridge feature.

c. Select to add the Java run time to the system path.

d. Select the Java run time as the default JRE, which adds the Java run time path to the beginning of

the system path.

9. Install the Application Client from your product CD on Machine C.

a. Select the Custom install type.

b. Select the J2EE application client feature.

This topic can help you plan run-time environments for client applications.

See “Application Client for WebSphere Application Server” on page 839 for information about creating

client applications.

Planning to create application server environments

Application server profiles are the run-time environments for application server processes. This topic

describes common scenarios for creating application server profiles and provides links to profile creation

procedures for each scenario.

Install the core product files for a WebSphere Application Server product before using the Profile creation

wizard to create additional application server run-time environments.

This topic describes how to use the Profile creation wizard to create application server profiles. Each

profile is a run-time environment for the application server that it defines, with data files, configuration files,

applications, and an administrative console.

26 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Create a stand-alone application server, as described in “Using the Profile creation wizard to create an

application server” on page 38.

The installation procedure creates an application server during installation named server1. However, you

can use the Profile creation wizard to create more stand-alone application servers on a machine where

server1 or another application server already exists.

You can create additional application server processes using the Profile creation wizard.

After installing the product and optionally adding more application servers with the Profile creation wizard,

you are ready to deploy applications to test the environment.

Queuing network

WebSphere Application Server contains interrelated components that must be harmoniously tuned to

support the custom needs of your end-to-end e-business application. These adjustments help the system

achieve maximum throughput while maintaining the overall stability of the system. This group of

interconnected components is known as a queuing network. These queues or components include the

network, Web server, Web container, EJB container, data source, and possibly a connection manager to a

custom back-end system. Each of these resources represents a queue of requests waiting to use that

resource. Various queue settings include:

v IBM HTTP Server: MaxClients for UNIX and ThreadsPerChild for Windows NT and Windows 2000

systems described in “Web server tuning parameters” on page 73.

v Web container: Maximum size described in “Thread pool settings” on page 120,

MaxKeepAliveConnections and MaxKeepAliveRequests described in “HTTP transport custom

properties” on page 132.

v Tuning Object Request Brokers explained in “Tuning application servers” on page 167.

v Data source connection pooling and statement cache size are explained in the Developing and

deploying applications PDF.

Chapter 3. Setting up the application serving environment 27

Web

server

Network

Clients

EJB

container

Figure Reference 1: WebSphere queuing network

Servlet

engine

Data

source

Database

Most of the queues that make up the queuing network are closed queues. A closed queue places a limit

on the maximum number of requests present in the queue, while an open queue has no limit. A closed

queue supports tight management of system resources. For example, the Web container thread pool

setting controls the size of the Web container queue. If the average servlet running in a Web container

creates 10MB of objects during each request, a value of 100 for thread pools limits the memory consumed

by the Web container to 1GB.

In a closed queue, requests can be active or waiting. An active request is doing work or waiting for a

response from a downstream queue. For example, an active request in the Web server is doing work,

such as retrieving static HTML, or waiting for a request to complete in the Web container. A waiting

request is waiting to become active. The request remains in the waiting state until one of the active

requests leaves the queue.

All Web servers supported by WebSphere Application Server are closed queues, as are WebSphere

Application Server data sources. You can configure Web containers as open or closed queues. In general,

it is best to make them closed queues. EJB containers are open queues. If there are no threads available

in the pool, a new one is created for the duration of the request.

If enterprise beans are called by servlets, the Web container limits the number of total concurrent requests

into an EJB container, because the Web container also has a limit. The Web container limits the number of

total concurrent requests only if enterprise beans are called from the servlet thread of execution. Nothing

prevents you from creating threads and bombarding the EJB container with requests. Therefore, servlets

should not create their own work threads.

Queuing and clustering

Cloning application servers can be a valuable asset in configuring highly-scalable production

environments, especially when the application is experiencing bottlenecks that are preventing full CPU

utilization of symmetric multiprocessing (SMP) servers. When adjusting the WebSphere Application Server

system queues in clustered configurations, remember that when a server is added to a cluster, the server

downstream receives twice the load.

28 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Web

server

Network

Clients

Figure Reference 1: Clustering and queuing

Servlet

engine

Servlet

engine

Data

source

Database

Two servlet engines are located between a Web server and a data source. It is assumed that the Web

server, servlet engines and data source, but not the database, are all running on a single SMP server.

Given these constraints, the following queue considerations must be made:

v Double the Web server queue settings to ensure ample work is distributed to each Web container.

v Reduce the Web container thread pools to avoid saturating a system resource like CPU or another

resource that the servlets are using.

v Reduce the data source to avoid saturating the database server.

v Reduce Java heap parameters for each instance of the application server. For versions of the Java

virtual machine (JVM) shipped with WebSphere Application Server, it is crucial that the heap from all

JVMs remain in physical memory. For example, if a cluster of four JVMs is running on a system,

enough physical memory must be available for all four heaps.

Queue configuration tips

The following section outlines a methodology for configuring the WebSphere Application Server queues.

Moving the database server onto another machine or providing more powerful resources, for example a

faster set of CPUs with more memory, can dramatically change the dynamics of your system.

There are four tips for queuing:

v Minimize the number of requests in WebSphere Application Server queues.

In general, requests wait in the network in front of the Web server, rather than waiting in WebSphere

Application Server. This configuration only supports those requests that are ready for processing to

enter the queuing network. Specify that the queues furthest upstream or closest to the client are slightly

larger, and queues further downstream or furthest from the client are progressively smaller.

Chapter 3. Setting up the application serving environment 29

Web

server

(N=75)

Network

Clients

Data

source

(N=25)

Figure Reference 1: Upstream queuing network

Database

Arriving requests Arriving requests

Waiting requests Waiting requests Waiting requests

25 25

25

5075200

125

Servlet

engine

(N=50)

Queues in the queuing network become progressively smaller as work flows downstream. When 200

client requests arrive at the Web server, 125 requests remain queued in the network because the Web

server is set to handle 75 concurrent clients. As the 75 requests pass from the Web server to the Web

container, 25 requests remain queued in the Web server and the remaining 50 are handled by the Web

container. This process progresses through the data source until 25 user requests arrive at the final

destination, the database server. Because there is work waiting to enter a component at each point

upstream, no component in this system must wait for work to arrive. The bulk of the requests wait in the

network, outside of WebSphere Application Server. This type of configuration adds stability, because no

component is overloaded.

v Draw throughput curves to determine when the system capabilities are maximized.

You can use a test case that represents the full spirit of the production application by either exercising

all meaningful code paths or using the production application. Run a set of experiments to determine

when the system capabilities are fully stressed or when it has reached the saturation point. Conduct

these tests after most of the bottlenecks are removed from the application. The goal of these tests is to

drive CPUs to near 100% utilization. For maximum concurrency through the system, start the initial

baseline experiment with large queues. For example, start the first experiment with a queue size of 100

at each of the servers in the queuing network: Web server, Web container and data source. Begin a

series of experiments to plot a throughput curve, increasing the concurrent user load after each

experiment. For example, perform experiments with one user, two users, five, 10, 25, 50, 100, 150 and

200 users. After each run, record the throughput requests per second, and response times in seconds

per request. The curve resulting from the baseline experiments resembles the following typical

throughput curve shown as follows:

30 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Throughput curve

Saturation point

Light load zone Heavy load zone Buckle zone

T
h

ro
u

g
h

p
u

t
re

q
u

e
s
ts

p
e

r
s
e

c
o

n
d

Concurrent users

CBA

0

10

20

30

40

50

60

The WebSphere Application Server throughput is a function of the number of concurrent requests

present in the total system. Section A, the light load zone, shows that the number of concurrent user

requests increases, the throughput increases almost linearly with the number of requests. At light loads,

concurrent requests face very little congestion within the WebSphere Application Server system queues.

At some point, congestion starts to develop and throughput increases at a much lower rate until it

reaches a saturation point that represents the maximum throughput value, as determined by some

bottleneck in the WebSphere Application Server system. The most manageable type of bottleneck

occurs when the WebSphere Application Server machine CPUs become fully utilized because adding

CPUs or more powerful CPUs fixes the bottleneck.

In the heavy load zone or Section B, as the concurrent client load increases, throughput remains

relatively constant. However, the response time increases proportionally to the user load. That is, if the

user load is doubled in the heavy load zone, the response time doubles. At some point, represented by

Section C, the buckle zone, one of the system components becomes exhausted. At this point,

throughput starts to degrade. For example, the system might enter the buckle zone when the network

connections at the Web server exhaust the limits of the network adapter or if the requests exceed

operating system limits for file handles.

If the saturation point is reached by driving CPU utilization close to 100%, you can move on to the next

step. If the saturation CPU occurs before system utilization reaches 100%, it is likely that another

bottleneck is being aggravated by the application. For example, the application might be creating Java

objects causing excessive garbage collection bottlenecks in the Java code.

There are two ways to manage application bottlenecks: remove the bottleneck or clone the bottleneck.

The best way to manage a bottleneck is to remove it. You can use a Java-based application profiler,

such as Rational Application Developer, Performance Trace Data Visualizer (PTDV), Borland’s

Optimizeit, JProbe or Jinsight to examine overall object utilization.

v Decrease queue sizes while moving downstream from the client.

The number of concurrent users at the throughput saturation point represents the maximum

concurrency of the application. For example, if the application saturates WebSphere Application Server

at 50 users, using 48 users might produce the best combination of throughput and response time. This

value is called the Max Application Concurrency value. Max Application Concurrency becomes the

preferred value for adjusting the WebSphere Application Server system queues. Remember, it is

desirable for most users to wait in the network; therefore, queue sizes should increase when moving

downstream farther from the client. For example, given a Max Application Concurrency value of 48, start

Chapter 3. Setting up the application serving environment 31

with system queues at the following values: Web server 75, Web container 50, data source 45. Perform

a set of additional experiments adjusting these values slightly higher and lower to find the best settings.

To help determine the number of concurrent users, view the Servlet Engine Thread Pool and

Concurrently Active Threads metric in the Tivoli Performance Viewer.

v Adjust queue settings to correspond to access patterns.

In many cases, only a fraction of the requests passing through one queue enters the next queue

downstream. In a site with many static pages, a number of requests are fulfilled at the Web server and

are not passed to the Web container. In this circumstance, the Web server queue can be significantly

larger than the Web container queue. In the previous example, the Web server queue was set to 75,

rather than closer to the value of Max Application Concurrency. You can make similar adjustments when

different components have different execution times.

For example, in an application that spends 90% of its time in a complex servlet and only 10% of its time

making a short JDBC query, on average 10% of the servlets are using database connections at any

time, so the database connection queue can be significantly smaller than the Web container queue.

Conversely, if the majority of servlet execution time is spent making a complex query to a database,

consider increasing the queue values at both the Web container and the data source. Always monitor

the CPU and memory utilization for both the WebSphere Application Server and the database servers to

verify that the CPU or memory are not saturating.

Configuring the product after installation

This topic summarizes how to configure the application serving environment.

Use the First steps console to configure and test the WebSphere Application Server environment after

installation.

This procedure uses the First steps console to launch the installation verification test (IVT) that tests and

verifies your WebSphere Application Server - Express environment. This procedure also uses the First

steps console to launch the Profile creation wizard to create an additional Application Server.

1. Start the First steps console by selecting the check box on the last panel of the wizard.

The First steps console can start automatically at the end of the installation. Select the check box on

the last panel of the Installation wizard.

The First steps console is an easy way to start using the product. The console provides one-stop

access to the administrative console, Samples Gallery, Profile creation wizard, installation verification

test, Migration wizard, and other activities.

See the description of the “firststeps command” on page 33 for more information.

2. Click Installation verification on the First steps console.

The installation verification test starts the Application Server process named server1 and runs several

tests to verify that the server1 process can start without errors.

See “Using the installation verification test” on page 53 for more information.

3. Click Profile creation wizard on the First steps console to create an Application Server profile.

You can create multiple Application Servers on your system without installing the product again.

See “Using the Profile creation wizard to create an application server” on page 38.

4. Start the First steps console by selecting the check box on the last panel of the Profile creation wizard.

This First steps console belongs to the Application Server profile that you just created. Each profile has

its own First steps console.

5. Click Installation verification on the First steps console.

The installation verification test starts the new Application Server process named server1 and runs

several tests to verify that the server1 process can start without error.

This procedure results in configuring and testing the Application Server environment.

32 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

See “Planning to install WebSphere Application Server - Express” on page 17 for diagrams of topologies

that you can create using the First steps console and the Profile creation wizard.

firststeps command

The firststeps command starts the First steps console.

The First steps console

The First steps console is a post-installation ease-of-use tool for directing WebSphere Application Server

elements from one place. Options display dynamically on the First steps console, depending on features

you install. With all of the options present, you can use the First steps console to start or stop the

application server, verify the installation, access the information center, access the administrative console,

launch the Migration wizard, or access the Samples gallery.

Select the check box to start the First steps console at the end of the product installation.

You can also start the First steps console from the command line as described later.

Installation verification

This option starts the installation verification test (IVT). The test consists of starting and monitoring

the application server during its start up.

 If this is the first time that you have used the First steps console since creating an application

server profile, click Installation verification to verify that all is well with your installation. The

verification process starts the application server.

 If you select the Installation verification option, the Start the server option is grayed out while

the IVT is running.

 The IVT provides the following useful information about the application server:

v The server name: server1

v The name of the profile

v The profile file path

v The type of profile: default

v The cell name

v The node name

v The current encoding

v The port number for the administrative console

v Various informational messages that include the location of the SystemOut.log file and how

many errors are listed within the file

v A completion message

Start the server

This option toggles to Stop the server when the application server is running.

 After selecting the Start the server option, an output screen displays with status messages. The

success message informs you that the server is open for e-business. Then the menu item

changes to Stop the server.

 If you select the Start the server option, the Installation verification option is grayed out while

the application server is running.

Administrative console

This option is grayed out until the application server is running.

 The administrative console is a configuration editor that runs in a Web browser. The administrative

console lets you work with XML configuration files for the application server. To launch the

Chapter 3. Setting up the application serving environment 33

administrative console, click Administrative console. You can also point your browser to

http://localhost:9060/ibm/console to start the administrative console. Substitute your own host

name in the address if the localhost variable does not resolve correctly. As the administrative

console opens, it prompts you for a login name. This is not a security item, but merely a tag to

identify configuration changes that you make during the session. Secure signon is also available.

Profile creation wizard

This option starts the Profile creation wizard. The wizard lets you create additional application

servers. A profile consists of files that define the run-time environment for the application server.

Each environment has its own administrative interface. This means that the new application server

has its own administrative console.

 Each application server has its own First steps console. The location of the command is within the

set of files in the profile. A prompt to launch the First steps console displays on the last panel of

the Profile creation wizard.

Samples gallery

This option starts the Samples gallery. The option is grayed out until you start the application

server. The option displays when you have installed the Samples during installation. The typical

installation includes the Samples by default.

 From the First steps console, click Samples gallery to explore the application Samples.

Alternatively you can point your browser directly to http://localhost:9080/WSsamples. Substitute

your own host name in the address if the localhost variable does not resolve correctly. The Web

address is case sensitive. Substitute your own host name in the address.

Information center for WebSphere Application Server

This option links you to the online information center at the

http://publib.boulder.ibm.com/infocenter/ws60help/index.jsp IBM Web address.

Migration wizard

This option starts the Migration wizard. The Migration wizard is a new graphical interface to the

migration tools. The migration tools are described in ″WASPreUpgrade command″ and

″WASPostUpgrade command″ in the information center.

Exit This option closes the First steps console.

Location of the command file

Installing the product creates a default profile for the server1 application server. The location of the First

steps console for the default profile is:

v

install_root/profiles/default/firststeps/firststeps.sh

v

install_root\profiles\default\firststeps\firststeps.bat

The location of the firststeps.sh or firststeps.bat script for any profile is:

v

install_root/profiles/profile_name/firststeps/firststeps.sh

v

install_root\profiles\profile_name\firststeps\firststeps.bat

Parameters

No parameters are associated with this command.

Syntax for the firststeps command

Use the following syntax for the command:

v

./firststeps.sh

34 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

http://localhost:9060/ibm/console
http://localhost:9080/WSsamples
http://publib.boulder.ibm.com/infocenter/ws60help/index.jsp

v

firststeps.bat

Usage tips

The following links exist on the First steps console for the WebSphere Application Server - Express

product:

 Option Link

Installation verification Calls the ivt command.

The location of the installation verification test varies per platform:

v

install_root/profiles/profile_name/bin/ivt.sh

v

install_root\profiles\profile_name\bin\ivt.bat

Start the server Calls the startServer command.

The location of the startServer command varies per platform:

v

install_root/profiles/profile_name/bin/startServer.sh

server1

v

install_root\profiles\profile_name\bin\startServer.bat

server1

When you have more than one application server on the same machine, the

command starts the same application server that is associated with the First

steps console.

Stop the server Calls the stopServer command.

The location of the stopServer command varies per platform:

v

install_root/profiles/profile_name/bin/stopServer.sh

server1

v

install_root\profiles\profile_name\bin\stopServer.bat

server1

Administrative console Opens the default browser to the http://localhost:9060/ibm/console Web

address.

When you have more than one application server on the same machine, the

port varies. The First steps console starts the administrative console that is

associated with the First steps console.

Chapter 3. Setting up the application serving environment 35

http://localhost:9060/ibm/console

Option Link

Profile creation wizard Calls the pctplatform command.

The command is in the install_root/bin/ProfileCreator directory. The name

of the command varies per platform:

v

pctAIX.bin

v

pctHPUX.bin

v

64-bit platforms: pctHPUXIA64.bin

v

pctLinux.bin

v

64-bit platforms: pct.bin

v

Power platforms: pctLinuxPPC.bin

v

pctSolaris.bin

v

pctWindows.exe

v

64-bit platforms: pctWindowsIA64.exe

Samples Gallery Opens the default browser to the http://localhost:9080/WSsamples Web

address.

If you do not install Samples, the option does not appear on the First steps

console. If you do not install the Samples during the initial installation of the

product, the option does not display on the First steps console. You can

perform an incremental installation to add the Samples feature. After adding

the Samples, the options displays on the First steps console.

When you have more than one profile on the same machine, the port

varies. The First steps console starts the Samples gallery that is associated

with the First steps console.

Information center for WebSphere

Application Server products

Opens the default browser to the online information center at the

http://publib.boulder.ibm.com/infocenter/ws60help/index.jsp Web address.

Migration wizard Calls the migration command.

The location of the migration command is:

v

install_root/bin/migration.sh

v

install_root\bin\migration.bat

The migration tools are also in the /migration folder on the product disc.

Using the Profile creation wizard

This topic describes how to create run-time environments for WebSphere Application Server. Each

run-time environment is created within a profile. A profile is the set of files that define the run-time

environment. The Profile creation wizard creates the profile for each run-time environment.

Before using the Profile creation wizard, install the core product files.

The Profile creation wizard is the wizard interface to the profile creation tool, wasprofile. See the

description of the “wasprofile command” on page 43 for more information.

36 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

http://localhost:9080/WSsamples
http://publib.boulder.ibm.com/infocenter/ws60help/index.jsp

An error can occur when you have not provided enough system temporary space to create a profile. Verify

that you have a minimum of 40 MB of temp space available before creating a profile.

You must have 200 MB of available disk space in the directory where you create an Application Server

profile.

Manually verify that the required space for creating a profile is available on AIX. A known

problem in the underlying InstallShield for Multiplatforms (ISMP) code prevents proper space checking on

AIX systems at the time that the product disc was created.

Important: Concurrent profile creation is not supported at this time for one set of core product files.

Concurrent attempts to create profiles result in a warning about a profile creation already in

progress.

The installation procedure creates one profile named default for an application server named server1.

You can use the Profile creation wizard to create more application server processes. For example, a

second profile can allow two different teams in a department to test independently of one another using

the same machine.

Each use of the Profile creation wizard or the wasprofile command line tool creates one profile.

1. Install the product to create the core product files.

2. Start the Profile creation wizard to create a new run-time environment.

Several ways exist to start the wizard.

One way to start the wizard is to issue the command directly from a command line.

The command is in the install_root/bin/ProfileCreator directory. The name of the command varies

per platform:

v

pctAIX.bin

v

pctHPUX.bin

v

64-bit platforms: pctHPUXIA64.bin

v

pctLinux.bin

v

64-bit platforms: pct.bin

v

Power platforms: pctLinuxPPC.bin

v

pctSolaris.bin

v

pctWindows.exe

v

64-bit platforms: pctWindowsIA64.exe

Another way to start the Profile creation wizard is to select the wizard from the First steps console.

a. Open a command window.

b. Change directories to the firststeps directory in the installation root directory:

The installation root varies by platform:

v

/usr/IBM/WebSphere/AppServer/firststeps

v

/opt/IBM/WebSphere/AppServer/firststeps

v

C:\Program Files\IBM\WebSphere\AppServer\firststeps

c. Issue the firststeps command to start the console:

Chapter 3. Setting up the application serving environment 37

v

./firststeps.sh

v

firststeps.bat

d. Select the Profile creation wizard option on the console.

The Profile creation wizard is an InstallShield for Multiplatforms application. The wizard loads the

Java 2 SDK and then displays its Welcome panel.

See the description of the “firststeps command” on page 33 for more information.

3. Create another stand-alone application server.

See “Using the Profile creation wizard to create an application server.”

The installation procedure creates a stand-alone application server during installation. However, you

can use the Profile creation wizard to create additional stand-alone application servers.

See the description of the “wasprofile command” on page 43 to learn more about the command-line

alternative method of creating a profile, and to see examples of using the command.

See “Planning the installation (diagrams)” on page 15 for examples of configurations that you can create

by creating profiles.

Using the Profile creation wizard to create an application server

The Profile creation wizard can create an application server profile on any machine where the core product

files exist.

Before using the Profile creation wizard, install the core product files.

The Profile creation wizard is the wizard interface to the profile creation tool, wasprofile. See the

description of the “wasprofile command” on page 43 for more information.

An error can occur when you have not provided enough system temporary space to create a profile. Verify

that you have a minimum of 40 MB of temp space available before creating a profile.

You must have 200 MB of available disk space in the directory where you create an Application Server

profile.

Manually verify that the required space for creating a profile is available on AIX. A known

problem in the underlying InstallShield for Multiplatforms (ISMP) code prevents proper space checking on

AIX systems at the time that the product disc was created.

The Installation wizard creates an application server profile with a server named server1. You can create

additional profiles. Each additional profile is an application server named server1.

This procedure describes creating an application server profile using the graphical user interface provided

by the Profile creation wizard.

You can also use the wasprofile command to create an application server profile. See the description of

the “wasprofile command” on page 43 for more information.

 1. Start the Profile creation wizard to create a new run-time environment.

Several ways exist to start the wizard.

One way to start the wizard is to issue the command directly from a command line.

The command is in the install_root/bin/ProfileCreator directory. The name of the command varies

per platform:

v

pctAIX.bin

38 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

v

pctHPUX.bin

v

64-bit platforms: pctHPUXIA64.bin

v

pctLinux.bin

v

64-bit platforms: pct.bin

v

Power platforms: pctLinuxPPC.bin

v

pctSolaris.bin

v

pctWindows.exe

v

64-bit platforms: pctWindowsIA64.exe

Another way to start the Profile creation wizard is to select the wizard from the First steps console.

a. Open a command window.

b. Change directories to the firststeps directory in the installation root directory:

The installation root varies by platform:

v

/usr/IBM/WebSphere/AppServer/firststeps

v

/opt/IBM/WebSphere/AppServer/firststeps

v

C:\Program Files\IBM\WebSphere\AppServer\firststeps

c. Issue the firststeps command to start the console:

v

./firststeps.sh

v

firststeps.bat

d. Select the Profile creation wizard option on the console.

The Profile creation wizard is an InstallShield for Multiplatforms application. The wizard loads the

Java 2 SDK and then displays its Welcome panel.

See the description of the “firststeps command” on page 33 for more information.

 2. Click Next on the Welcome panel.

The wizard displays the Profile type selection panel.

 3. Click Next.

The wizard displays the Profile name panel.

Each profile that you create must have a name. The name is the name of the folder that contains all

of the files that define the run-time environment for the profile. When you have more than one profile,

you can tell them apart at their highest level by this name.

 4. Specify a name for the profile, then click Next.

Profile naming guidelines: The profile name can be any unique name with the following restrictions.

Do not use any of the following characters when naming your profile:

v Spaces

v Illegal special characters that are not allowed within the name of a directory on your operating

system, such as *&?

v Slashes (/) or (\)

Double-byte characters are allowed.

The default profile

The first profile that you create on a machine is the default profile. The default profile is the default

target for commands issued from the bin directory in the product installation root. When only one

profile exists on a machine, every command works on the only server process in the configuration.

Chapter 3. Setting up the application serving environment 39

Addressing a profile in a multi-profile environment

When two or more profiles exist on a machine, certain commands require that you specify the profile

to which the command applies. These commands use the -profileName parameter to identify which

profile to address. You might find it easier to use the commands that in the bin directory of each

profile.

A command in the profiles/profile_name/bin directory has two lines. The first line sets the

WAS_USER_SCRIPT environment variable for the command window. The variable sets up the

command environment to address the profile. The second line calls the actual command in the

install_root/bin directory.

The actual command queries the command shell to determine the calling profile and to autonomically

address the command to the calling profile.

The wizard then displays the Profile directory panel.

 5. Accept the default directory or specify a non-default location, then click Next. Or click Browse to

select a different location.

If you click Back and change the name of the profile, you must manually change the name on this

panel when it displays again.

The wizard displays the Node and host name panel.

 6. Specify the characteristics for the application server, then click Next.

Use unique names for each application server that you create.

Reserved names: Avoid using reserved folder names as field values. The use of reserved folder

names can cause unpredictable results. The following words are reserved:

v cells

v nodes

v servers

v clusters

v applications

v deployments

 Field name Default value Constraints Description

Node name Name of your

machine

Avoid using the reserved

words.

Pick any name you want. To help organize

your installation, use a unique name if you

plan to create more than one application

server on the machine.

Host name DNS name of your

machine

Addressable through your

network.

Use the actual DNS name or IP address of

your machine to enable communication with

your machine. See additional information

about the host name following this table.

Node name considerations:

The installation directory path must be no longer than 60 characters.

Host name considerations:

The host name is the network name for the physical machine on which the node is installed. The host

name must resolve to a physical network node on the server. When multiple network cards exist in

the server, the host name or IP address must resolve to one of the network cards. Remote nodes use

the host name to connect to and to communicate with this node. Selecting a host name that other

machines can reach within your network is extremely important. Do not use the generic localhost

identifier for this value.

40 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

If you define coexisting nodes on the same computer with unique IP addresses, define each IP

address in a domain name server (DNS) look-up table. Configuration files for stand-alone Application

Servers do not provide domain name resolution for multiple IP addresses on a machine with a single

network address.

The value that you specify for the host name is used as the value of the hostName property in

configuration documents for the stand-alone Application Server. Specify the host name value in one of

the following formats:

v Fully qualified domain name servers (DNS) host name string, such as

xmachine.manhattan.ibm.com

v The default short DNS host name string, such as xmachine

v Numeric IP address, such as 127.1.255.3

The fully qualified DNS host name has the advantage of being totally unambiguous and also flexible.

You have the flexibility of changing the actual IP address for the host system without having to

change the Application Server configuration. This value for host name is particularly useful if you plan

to change the IP address frequently when using Dynamic Host Configuration Protocol (DHCP) to

assign IP addresses. A format disadvantage is being dependent on DNS. If DNS is not available, then

connectivity is compromised.

The short host name is also dynamically resolvable. A short name format has the added ability of

being redefined in the local hosts file so that the system can run the Application Server even when

disconnected from the network. Define the short name to 127.0.0.1 (local loopback) in the hosts file to

run disconnected. A format disadvantage is being dependent on DNS for remote access. If DNS is

not available, then connectivity is compromised.

A numeric IP address has the advantage of not requiring name resolution through DNS. A remote

node can connect to the node you name with a numeric IP address without DNS being available. A

format disadvantage is that the numeric IP address is fixed. You must change the setting of the

hostName property in Express configuration documents whenever you change the machine IP

address. Therefore, do not use a numeric IP address if you use DHCP, or if you change IP addresses

regularly. Another format disadvantage is that you cannot use the node if the host is disconnected

from the network.

After specifying application server characteristics, the wizard displays the Port value assignment

panel.

 7. Verify that the ports specified for the stand-alone application server are unique, then click Next.

After specifying port assignments, the wizard displays the Windows service definition

panel, if you are installing on a Windows platform.

 8.

Choose whether to run the application server as a Windows service on a Windows

platform and click Next.

Version 6 attempts to start Windows services for application server processes started by a

startServer command. For example, if you configure an application server as a Windows service and

issue the startServer command, the wasservice command attempts to start the defined service.

If you chose to install a local system service, you do not have to specify your user ID or password. If

you create a specified user type of service, you must specify the user ID and the password for the

user who is to run the service. The user must have Log on as a service authority for the service to

run properly.

To perform this installation task, the user ID must not have spaces in its name. The ID must also

belong to the administrator group and must have the advanced user rights Act as part of the

operating system and Log on as a service. The Installation wizard grants the user ID the advanced

user rights if it does not already have them, if the user ID belongs to the administrator group.

You can also create other Windows services after the installation is complete, to start other server

processes. See “Automatically restarting server processes” on page 149 for more information.

The installation wizard shows which components are selected for installation in a pre-installation

summary panel.

Chapter 3. Setting up the application serving environment 41

9. Click Next to create the application server or click Back to change the characteristics of the

application server.

The wizard displays the Installation status panel that shows which components are installing.

When the installation is complete, the wizard displays the Profile creation is complete panel.

10. Click Finish to exit, then click Profile creation wizard on the First steps console to start the wizard

again to create other application servers.

You can create an application server profile. The node within the profile has an application server named

server1.

Refer to the description of the “wasprofile command” on page 43 to learn about creating this type of profile

using a command instead of a wizard.

Deploy an application to get started!

See Fast paths for WebSphere Application Server to get started deploying applications.

Deleting a profile

This topic describes how to manually delete a profile.

Before using the manual procedure to remove a profile, try the wasprofile command with the -delete

option. For example, issue one of the following commands:

./wasprofile.sh -delete

 -profileName profile_name | -profilePath profile_path

wasprofile.bat -delete

 -profileName profile_name | -profilePath profile_path

See “wasprofile command” on page 43.

If the command does not work, use this procedure to delete the profile.

This procedure describes how to manually delete a profile when the wasprofile -delete command results

in the following message:

INSTCONFFAILED: Cannot delete profile

1. Delete the profiles_install_root/profile_name directory.

2. If the install_root/properties/profileRegistry.xml file exists, edit the file in a flat-file editor to delete

the entry for the profile, if the entry is present.

The entry resembles the following example:

<profile isDefault="true"

 name="BadProfile"

 path="E:\IBM\WebSphere\AppServer\profiles\BadProfile"

 template="E:\IBM\WebSphere\AppServer\profileTemplates\default"/>

3.

Compare the two batch files, install_root/ properties/ fsdb/

_was_profile_default/ default.sh and install_root/ properties/ fsdb/ bad_profile_name.sh.

If the files are identical, delete the install_root/ properties/ fsdb/ _was_profile_default directory

and the install_root/ properties/ fsdb/ bad_profile_name.sh file.

If the files are not identical, delete only the install_root/ properties/ fsdb/ bad_profile_name.sh file.

42 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

4.

Compare the two batch files, install_root\ properties\ fsdb\ _was_profile_default\

default.bat and install_root\ properties\ fsdb\ bad_profile_name.bat.

If the files are identical, delete the install_root\ properties\ fsdb\ _was_profile_default directory

and the install_root\ properties\ fsdb\ bad_profile_name.bat file.

If the files are not identical, delete only the install_root\ properties\ fsdb\ bad_profile_name.bat file.

See the description of the “wasprofile command” to learn more about the command-line method of working

with profiles.

See “Using the Profile creation wizard” on page 36 for more information about creating profiles with the

Profile creation wizard.

wasprofile command

The wasprofile command line tool creates all Application Server run-time environments in Version 6. The

command creates a profile, which is the set of files that define the run-time environment for a stand-alone

Application Server.

The wasprofile command is also referred to as the profile creation tool.

Introduction to terms that describe Version 6 profiles

The wasprofile command creates the run-time environment for a WebSphere Application Server process

in a set of files called a profile. The profile defines the run-time environment and includes all of the files

that the server processes in the run-time environment can change. The profile creation tool and its

graphical user interface, the Profile creation wizard, are the only ways to create run-time environments in

V6.

The Profile creation wizard is an InstallShield for Multiplatforms (ISMP) application. You can use the wizard

to enter most of the parameters that are described in this topic. Some parameters, however, require you to

use the wasprofile command. You must use the wasprofile command to delete a profile, for instance,

because the Profile creation wizard does not provide a deletion function.

However, the Profile creation wizard also performs tasks that the wasprofile command does not. For

instance, the wizard can create a Windows service for each profile that it creates. It can also assign

non-conflicting ports based on previous Version 6 port assignments.

Core product files: The core product files are the shared product binaries. The binary files are shared

by all profiles.

The directory structure for V6 has two major divisions of files in the installation root directory for the

product:

v The core product files are shared product binary files that do not change unless you install a refresh

pack, a fix pack, or an interim fix. Some log information is also updated.

v The profiles directory is the default directory for creating profiles. The configuration for every defined

Application Server process is within the profiles directory unless you specify a new directory when you

create a profile. These files change as often as you create a new profile, reconfigure an existing profile,

or delete a profile.

All of the folders except for the profiles directory and a few others such as the logs directory and the

properties directory do not change unless you install service fixes. The profiles directory, however,

changes each time you add, change, or delete a profile. The profiles directory is the default repository for

profiles. However, you can put a profile anywhere on the machine provided there is enough available disk

space.

Chapter 3. Setting up the application serving environment 43

If you put a profile in another existing folder in the installation root directory, a risk exists that the profile

might be affected by the installation of a service fix that applies maintenance to the folder. Use a directory

outside of the installation root directory when using a directory other than the profiles directory for

creating profiles.

WebSphere Application Server profile: The wasprofile command line tool defines each Application

Server instance of a Version 6 product.

You must run the wizard or the command line tool each time that you want to create a stand-alone

Application Server. A need for more than one stand-alone Application Server on a machine is common.

Administration is greatly enhanced when using V6 profiles instead of multiple product installs. Not only is

disk space saved, but updating the product is simplified when you only maintain a single set of product

core files. Also, creating new profiles is faster and less prone to error than full product installs, allowing a

developer to create new disposable profiles of the product for development and testing.

You can run the Profile creation wizard or the profile creation tool to create a new Application Server

environment on the same machine as an existing one. Simply define unique characteristics (such as

profile name and node name) for the new profile. Each profile has its own administrative console and

administrative scripting interface. Each Application Server process shares all run-time scripts, libraries, the

Software Development Kit, and other core product files.

The installation program for WebSphere Application Server - Express uses the profile creation tool to

create an Application Server profile named default.

Installed file set: You decide where to install the files that define a profile. The default location is in the

profiles directory in the installation root directory. But you can change the location on the Profile creation

wizard or in a parameter when using the command line tool. For example, assume that you create two

profiles on a Linux platform with host name devhost1. The profile directories resemble the following

example if you do not relocate them:

/opt/IBM/WebSphere/AppServer/profiles/devhost1Profile01

/opt/IBM/WebSphere/AppServer/profiles/devhost1Profile02

Suppose that you specify a different directory, such as /opt/profiles, for the profile directory field in the

wizard. The profile directories resemble the following example:

/opt/profiles/devhost1Profile01

/opt/profiles/devhost1Profile02

The following directories exist within a profile. This example assumes that a profile named

devhost1Profile01 exists:

 /opt/IBM/WebSphere/AppServer/profiles/devhost1Profile01/bin

 /opt/IBM/WebSphere/AppServer/profiles/devhost1Profile01/config

 /opt/IBM/WebSphere/AppServer/profiles/devhost1Profile01/etc

 /opt/IBM/WebSphere/AppServer/profiles/devhost1Profile01/firststeps

 /opt/IBM/WebSphere/AppServer/profiles/devhost1Profile01/installableApps

 /opt/IBM/WebSphere/AppServer/profiles/devhost1Profile01/installedApps

 /opt/IBM/WebSphere/AppServer/profiles/devhost1Profile01/installedConnectors

 /opt/IBM/WebSphere/AppServer/profiles/devhost1Profile01/installedFilters

 /opt/IBM/WebSphere/AppServer/profiles/devhost1Profile01/logs

 /opt/IBM/WebSphere/AppServer/profiles/devhost1Profile01/properties

 /opt/IBM/WebSphere/AppServer/profiles/devhost1Profile01/samples

 /opt/IBM/WebSphere/AppServer/profiles/devhost1Profile01/temp

 /opt/IBM/WebSphere/AppServer/profiles/devhost1Profile01/tranlog

44 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

/opt/IBM/WebSphere/AppServer/profiles/devhost1Profile01/wstemp

The profile repository: The profile repository is the default location of profile-related metadata. The

repository is the default location for new profiles, which is often referred to as the profiles installation root

directory.

However, you can decide where to install a profile. The default location of the profile repository is the

install_root/profiles directory. In the earlier example, creating two profiles on a Linux platform with host

name devhost1 results in the following example directories in the profile repository:

/opt/IBM/WebSphere/AppServer/profiles/devhost1Profile01

/opt/IBM/WebSphere/AppServer/profiles/devhost1Profile02

When you specify a directory, such as /opt/profiles, the profiles are no longer in the default repository,

which is not a problem. For example, the following locations are valid:

/opt/profiles/devhost1Profile01

/opt/profiles/devhost1Profile02

Location of the command file

The command file is located in the install_root/bin directory. The command file is a script named

wasprofile.sh for Linux and UNIX platforms or wasprofile.bat for Windows platforms.

The Profile creation wizard is the graphical user interface to the command line tool. The file name of the

command that calls the Profile creation wizard varies per operating system platform. See “Using the Profile

creation wizard” on page 36 for more information.

Logging

The wasprofile command creates a log for every profile that it creates. The logs are in the

install_root/logs/wasprofile directory. The files are named in this pattern:

wasprofile_create_profile_name.log.

The command also creates a log for every profile that it deletes. The logs are in the

install_root/logs/wasprofile directory. The files are named in this pattern:

wasprofile_delete_profile_name.log.

Required disk space

Manually verify that the required space for creating a profile is available on AIX. A known

problem in the underlying InstallShield for Multiplatforms (ISMP) code prevents proper space checking on

AIX systems at the time that the product disc was created.

An error can occur when you have not provided enough system temporary space to create a profile. Verify

that you have a minimum of 40 MB of temp space available before creating a profile.

You must have 200 MB of available disk space in the directory where you create an Application Server

profile.

Concurrent profile creation

Important: Concurrent profile creation is not supported at this time for one set of core product files.

Concurrent attempts to create profiles result in a warning about a profile creation already in

progress.

Entering lengthy commands on more than one line

The length of the wasprofile command can exceed the normal shell window limit for one line of 256

characters. If your command is longer than the limit, issue the command on multiple lines by ending a line

with a backward slash, pressing Enter, and continuing the command on the next line.

Chapter 3. Setting up the application serving environment 45

For example, on a Solaris system, the following command requires input on multiple lines:

./wasprofile.sh \

-create -profileName bladetcb6profile \

-profilePath /usr/IBM/WebSphere/AppServer/profiles/bladetcb6profile \

-templatePath /usr/WebSphere/AppServer/profileTemplates/default \

-nodeName bladetcb6node \

-cellName bladetcb6Cell \

-hostName bladetcb6.rtp.raleigh.ibm.com

Omit the line continuation character from the last line to signal the end of the command to the operating

system.

wasprofile.sh command syntax

List existing profiles:

./wasprofile.sh -listProfiles

 [-debug]

Delete profiles:

./wasprofile.sh -delete

 -profileName profile_name | -profilePath profile_path

 [-debug]

Create new profiles:

wasprofile.sh -create

 -profileName profile_name

 -profilePath fully_qualified_profile_path

 -templatePath template_path

 -nodeName node_name

 -cellName cell_name

 -hostName host_name

 -server iSeries_server_name

 [-startingPort starting_port | -portsFile filepath]

 -winserviceCheck true | false

 -winserviceAccountType specifieduser | localsystem

 -winserviceUserName yourusername

 -winservicePassword yourpassword

 -winserviceStartupType manual | automatic | disabled

 [-debug]

Get name of existing profile from path:

./wasprofile.sh -getName

 -profilePath profile_path

 [-debug]

Get path of existing profile from name:

./wasprofile.sh -getPath

 -profileName profile_name

 [-debug]

Check the integrity of the profile registry:

./wasprofile.sh -validateRegistry

 [-debug]

Check the integrity of the profile registry, removing profiles that are not found:

./wasprofile.sh -validateAndUpdateRegistry

 [-backup file_name]

 [-debug]

wasprofile.bat command syntax

List existing profiles:

46 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

wasprofile.bat -listProfiles

 [-debug]

Delete profiles:

wasprofile.bat -delete

 -profileName profile_name | -profilePath profile_path

 [-debug]

Create new profiles:

wasprofile.bat -create

 -profileName profile_name

 -profilePath fully_qualified_profile_path

 -templatePath template_path

 -nodeName node_name

 [-cellName cell_name]

 -hostName host_name

 -server iSeries_server_name

 [-startingPort starting_port | -portsFile filepath]

 -winserviceCheck true | false

 -winserviceAccountType specifieduser | localsystem

 -winserviceUserName yourusername

 -winservicePassword yourpassword

 -winserviceStartupType manual | automatic | disabled

 [-debug]

When the -startingPort parameter is not used, the profile creation tool uses the default port settings

specified in the serverindex.xml file.

Get name of existing profile from path:

wasprofile.bat -getName

 -profilePath fully_qualified_profile_path

 [-debug]

Get path of existing profile from name:

wasprofile.bat -getPath

 -profileName profile_name

 [-debug]

Check integrity of profile registry:

wasprofile.bat -validateRegistry

 [-debug]

Check integrity of profile registry, removing unfound profiles:

wasprofile.bat -validateAndUpdateRegistry

 [-backup file_name]

 [-debug]

Parameters

Supported arguments include:

-augment

Refreshes or augments the given profile using the template in the templatePath parameter.

-backup file_name

Backs up the profile registry file to a file with the file name specified.

-cellname file_name

Specifies the cell name of the profile.

 This is an optional parameter. If you omit the parameter, a default cell name is assigned.

Chapter 3. Setting up the application serving environment 47

-create

Creates the profile.

-debug

Turns on the debug function of the Ant utility, which the wasprofile command uses.

-delete

Deletes the profile.

-getName

Gets the name for a profile registered at a given file system path. Requires the –profilePath parameter.

-getPath

Gets the file system location for a profile of a given name. Requires the –profileName parameter.

-hostName host_name

Specifies the host name where you are creating the profile. This should match the host name that you

specified during installation of the initial product.

-listProfiles

Llists all defined profiles.

-nodeName node_name

Specifies the node name for the node that is created with the new profile. Use a unique value or on

the machine. Each profile that shares the same set of product binaries must have a unique node

name.

-portsFile file_path

An optional parameter that specifies the path to a file that defines port settings for the new profile.

When omitted, the wasprofile tool looks for the install_root /profileTemplates/profile_type

/actions/portsUpdate/bin/portdef.props file.

 Do not use this parameter when using the startingPort parameter.

-profileName profile_name

Specifies the name of the profile. Use a unique value when creating a profile. Each profile that shares

the same set of product binaries must have a unique name.

-profilePath profile_path

Specifies the fully qualified path to the profile.

If the fully qualified path contains spaces, enclose the value in quotation marks.

 Specifies the name of the server on an iSeries platform.

-startingPort startingPort

Specifies the starting port number for generating all ports for the profile. If not specified, the

wasprofile command uses default ports specified in the serverindex.xml file.

-templatePath template_path

Specifies the path to the templates in the shared binaries.

-validateAndUpdateRegistry registry_file backup_file

Checks all of the profiles that are listed in the profile registry to see if the profiles are present on the

file system. Removes any missing profiles from the registry. Returns a list of the missing profiles that

were deleted from the profile.

-validateRegistry registry_file

Checks all of the profiles that are listed in the profile registry to see if the profiles are present on the

file system. Returns a list of missing profiles.

48 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

-winserviceAccountType type_of_owner_account

The type of the owner account of the Windows service created for the profile can be either

specifieduser or localsystem. The Windows service can run under the local account of the user who is

creating the profile.

winserviceCheck value

The value can be either true or false. Specify true to create a Windows service for the server process

that is created within the profile. Specify false to not create the Windows service.

-winservicePassword yourpassword

Specify the password for the specified user or the local account that is to own the Windows service.

-winserviceStartupType startup_type

Possible startup_type values are:

v manual

v automatic

v disabled

See ″WASService command″ in the Installation PDF for more information about Windows services.

-winserviceUserName user_ID

Specify your user ID so that Windows can verify you as an ID that is capable of creating a Windows

service. Your user ID must belong to the administrator group and have the following advanced user

rights, Act as part of the operating system and Log on as a service

Use case scenarios

Use cases are a description of common tasks for which the tool is used.

Scenario: Deleting a profile: The following command is on more than one line for clarity. Enter the

command on one line to delete the profile named shasti:

wasprofile.sh -delete

 -profileName shasti

Scenario: Using predefined port numbers: When you use the wasprofile tool without the -startingPort

parameter, the tool uses the /profileTemplates/profile_type /actions/portsUpdate/bin/portdef.props

file to set the initial ports.

Example of using the -portsFile parameter

Copy the file, edit the port settings, and use your copy by using the -portsFile parameter as shown in the

following example:

wasprofile.bat

 -create

 -profileName Wow_Profile

 -profilePath

 C:\ExpressV6\IBM\WebSphere\AppServer\profiles\Wow_Profile

 -templatePath

 C:\ExpressV6\IBM\WebSphere\AppServer\profileTemplates\default

 -nodeName Wow_node

 -cellName Wow_cell

 -hostName loyAllen

 -portsFile C:\temp\ports\portdef.props

Suppose that the portdef.props file has the following values:

WC_defaulthost=39080

WC_adminhost=39060

WC_defaulthost_secure=39443

Chapter 3. Setting up the application serving environment 49

WC_adminhost_secure=39043

BOOTSTRAP_ADDRESS=32809

SOAP_CONNECTOR_ADDRESS=38880

SAS_SSL_SERVERAUTH_LISTENER_ADDRESS=39401

CSIV2_SSL_SERVERAUTH_LISTENER_ADDRESS=39403

CSIV2_SSL_MUTUALAUTH_LISTENER_ADDRESS=39402

ORB_LISTENER_ADDRESS=39100

DCS_UNICAST_ADDRESS=39353

SIB_ENDPOINT_ADDRESS=37276

SIB_ENDPOINT_SECURE_ADDRESS=37286

SIB_MQ_ENDPOINT_ADDRESS=35558

SIB_MQ_ENDPOINT_SECURE_ADDRESS=35578

As you run the command, messages similar to the following appear in the output stream:

replaceRegExpAllInstancesOfGivenTokenWithGivenValueForTheGivenFile:

 [echo] File C:\ExpressV6\IBM\WebSphere\AppServer\profiles\

 Wow_Profile/config/templates/default/serverentry-template.xml:

 setting CSIV2_SSL_SERVERAUTH_LISTENER_ADDRESS to 39403

...

replaceRegExpAllInstancesOfGivenTokenWithGivenValueForTheGivenFile:

 [echo] File C:\ExpressV6\IBM\WebSphere\AppServer\profiles\

 Wow_Profile/config/templates/default/serverentry-template.xml:

 setting CSIV2_SSL_MUTUALAUTH_LISTENER_ADDRESS to 39402

...

The resulting serverindex.xml file looks similar to the following example:

<?xml version="1.0" encoding="UTF-8"?>

<serverindex:ServerIndex xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"

...

 <specialEndpoints xmi:id="NamedEndPoint_..."

 endPointName="BOOTSTRAP_ADDRESS">

 <endPoint xmi:id="EndPoint_..." host="IBMmachine" port="32809"/>

 </specialEndpoints>

 <specialEndpoints xmi:id="NamedEndPoint_..."

 endPointName="SOAP_CONNECTOR_ADDRESS">

 <endPoint xmi:id="EndPoint_..." host="IBMmachine" port="38880"/>

 </specialEndpoints>

 <specialEndpoints xmi:id="NamedEndPoint_..."

 endPointName="SAS_SSL_SERVERAUTH_LISTENER_ADDRESS">

 <endPoint xmi:id="EndPoint_..." host="IBMmachine" port="39401"/>

 </specialEndpoints>

 <specialEndpoints xmi:id="NamedEndPoint_..."

 endPointName="CSIV2_SSL_SERVERAUTH_LISTENER_ADDRESS">

 <endPoint xmi:id="EndPoint_..." host="IBMmachine" port="39403"/>

 </specialEndpoints>

 <specialEndpoints xmi:id="NamedEndPoint_..."

 endPointName="CSIV2_SSL_MUTUALAUTH_LISTENER_ADDRESS">

 <endPoint xmi:id="EndPoint_..." host="IBMmachine" port="39402"/>

 </specialEndpoints>

 <specialEndpoints xmi:id="NamedEndPoint_..."

 endPointName="WC_adminhost">

 <endPoint xmi:id="EndPoint_..." host="*" port="39060"/>

 </specialEndpoints>

 <specialEndpoints xmi:id="NamedEndPoint_..."

 endPointName="WC_defaulthost">

 <endPoint xmi:id="EndPoint_..." host="*" port="39080"/>

 </specialEndpoints>

 <specialEndpoints xmi:id="NamedEndPoint_..."

 endPointName="DCS_UNICAST_ADDRESS">

 <endPoint xmi:id="EndPoint_..." host="IBMmachine" port="39353"/>

 </specialEndpoints>

 <specialEndpoints xmi:id="NamedEndPoint_..."

 endPointName="WC_adminhost_secure">

 <endPoint xmi:id="EndPoint_..." host="*" port="39043"/>

 </specialEndpoints>

50 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

<specialEndpoints xmi:id="NamedEndPoint_..."

 endPointName="WC_defaulthost_secure">

 <endPoint xmi:id="EndPoint_..." host="*" port="39443"/>

 </specialEndpoints>

 <specialEndpoints xmi:id="NamedEndPoint_..."

 endPointName="SIB_ENDPOINT_ADDRESS">

 <endPoint xmi:id="EndPoint_..." host="*" port="37276"/>

 </specialEndpoints>

 <specialEndpoints xmi:id="NamedEndPoint_..."

 endPointName="SIB_ENDPOINT_SECURE_ADDRESS">

 <endPoint xmi:id="EndPoint_..." host="*" port="37286"/>

 </specialEndpoints>

 <specialEndpoints xmi:id="NamedEndPoint_..."

 endPointName="SIB_MQ_ENDPOINT_ADDRESS">

 <endPoint xmi:id="EndPoint_..." host="*" port="35558"/>

 </specialEndpoints>

 <specialEndpoints xmi:id="NamedEndPoint_..."

 endPointName="SIB_MQ_ENDPOINT_SECURE_ADDRESS">

 <endPoint xmi:id="EndPoint_..." host="*" port="35578"/>

 </specialEndpoints>

 <specialEndpoints xmi:id="NamedEndPoint_..."

 endPointName="ORB_LISTENER_ADDRESS">

 <endPoint xmi:id="EndPoint_..." host="IBMmachine" port="39100"/>

 </specialEndpoints>

 </serverEntries>

</serverindex:ServerIndex>

The wasprofile command creates a copy of the current portdefs.props file in the

install_root\profiles\profile_name\logs directory.

Do not use the portsFile parameter when using the startingPort parameter. The two parameters are

mutually exclusive.

Scenario: Incrementing default port numbers from a starting point: The wasprofile command can

assign port numbers based on a starting port value that you give on the command line, using the

-startingPort parameter. The tool assigns port numbers sequentially from the starting port number value.

The order of port assignments is arbitrary. Predicting assignments is not possible.

For example, ports created with -startingPort 20002 would appear similar to the following example:

Assigned ports for an Application Server profile

WC_defaulthost=20002

WC_adminhost=20003

WC_defaulthost_secure=20004

WC_adminhost_secure=20005

BOOTSTRAP_ADDRESS=20006

SOAP_CONNECTOR_ADDRESS=20007

SAS_SSL_SERVERAUTH_LISTENER_ADDRESS=20008

CSIV2_SSL_SERVERAUTH_LISTENER_ADDRESS=20009

CSIV2_SSL_MUTUALAUTH_LISTENER_ADDRESS=20010

ORB_LISTENER_ADDRESS=20011

DCS_UNICAST_ADDRESS=20012

SIB_ENDPOINT_ADDRESS=20013

SIB_ENDPOINT_SECURE_ADDRESS=20014

SIB_MQ_ENDPOINT_ADDRESS=20015

SIB_MQ_ENDPOINT_SECURE_ADDRESS=20016

Example of startingPort parameter use

The following example of using the wasprofile command creates ports from an initial value of 20002, with

the content shown in the previous example:

Chapter 3. Setting up the application serving environment 51

wasprofile.bat -create

 -profileName shasti

 -profilePath G:\shasti\WebSphere

 -templatePath template_path

 -nodeName W2K03

 -cellName W2K03_Cell01

 -hostName planetnt

 -startingPort 20002

Scenario: Setting up and using the profile environment: Most tasks that you perform in a profile are

done using the -profileName attribute on the command line tools that you use. Such a scenario might be:

1. Create the server process using the install_root/bin/wasprofile.sh (or wasprofile.bat) script from the

original installation. Assume that you create the Profile02 profile.

2. In that command window or in another, change directories to the /bin directory of the new server

process.

3. Establish a temporary override for the normal WebSphere Application Server environment by using the

-profileName attribute on a command you issue. In the same window, start server1 by changing

directories to the install_root/bin directory of the original installation and issuing the command.

There is no such command in the /bin directory of the server process:

startServer.sh server1 -profileName Profile02

4. Notice the changes in the environment. Display all of the ports for the machine to see the ports that

you set for the server process. For example, in a Linux bash shell or in the command window on a

Windows platform, type:

netstat -a

5. Open a browser window and point it at the port defined for the HTTP_TRANSPORT_ADMIN port of

the new process. For example, suppose the setting is HTTP_TRANSPORT_ADMIN=20003. Open the

administrative console for server1 by pointing your browser at:

http://hostname_orIP_address:20003/ibm/console/

Scenario: Profile creation for a non-root user: Two methods exist for a non-root user to create a

profile:

v The root user creates the profile and assigns ownership to the non-root user.

v A non-root user creates a profile after getting write permission to the appropriate directories.

Remember: An ease-of-use limitation exists for non-root users who create profiles. Mechanisms within

the Profile creation wizard that suggest unique names and port values are disabled for

non-root users. The non-root user must change the default field values in the Profile creation

wizard for the profile name, node name, and port assignments. Consider assigning non-root

users a range of values for each of the fields. You can assign responsibility to the non-root

profilers for adhering to their proper value ranges and for maintaining the integrity of their

own definitions.

Root creates the profile and assigns ownership to a non-root user: The root user can create a profile and

assigns ownership of the profile directory to a non-root user.

1. The root user creates the profile with the following command:

./wasprofile.sh -create -profileName profile01 -profilePath install_root/profiles/profile01

2. The root user changes ownership of the directory for the profile to the non-root user with the following

command:

chown -R user1 install_root/profiles/profile01

A non-root user creates the profile (advanced option): The root user can grant write permission to the

appropriate files and directories to a non-root user. The non-root user can then create the profile. You can

create a group for users who are authorized to create profiles. Or you can give everyone the ability to

create profiles. The following example shows how to create a group that is authorized to create profiles.

52 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

1. Log on to the Application Server system as root.

2. Create the profilers group that you can use to create profiles.

3. Create a user named user1 to create profiles.

4. Add users root and user1 to the profilers group.

5. Log off and back on as root to pick up the new group.

6. As root, use operating system tools to change file permissions.

The following example assumes that the installation root directory is /opt/IBM/WebSphere/AppServer:

mkdir /opt/IBM/WebSphere/AppServer/logs/wasprofile

chgrp profilers /opt/IBM/WebSphere/AppServer/logs/wasprofile

chmod g+wr /opt/IBM/WebSphere/AppServer/logs/wasprofile

chgrp profilers /opt/IBM/WebSphere/AppServer/properties

chmod g+wr /opt/IBM/WebSphere/AppServer/properties

chmod g+wr /opt/IBM/WebSphere/AppServer/properties/profileRegistry.xml

You might have to change the permissions on additional /opt/IBM/WebSphere/AppServer directories if

you encounter permission problems.

7. The non-root user who belongs to the profilers group can then create a profile in any directory to which

the non-root user has write permission.

If the non-root user does not have write access to any directories, it is up to the root user to change

that situation. If the non-root user does not have write access to the /tmp directory, it is up to the root

user to change that as well.

The commands listed in step 6 give users assigned to the profilers group the ability to write to the

/opt/IBM/WebSphere/AppServer/logs/wasprofile directory and to the

/opt/IBM/WebSphere/AppServer/properties directory. It is not necessary to write to any other

directories in the installation root of your WebSphere Application Server product.

Have non-root users create a profiles directory in their own area, not in the installation root directory

of the product.

Using the installation verification test

This topic describes how to use the installation verification test (IVT). The IVT verifies that the installation

of the application server profile was successful. A profile consists of files that define the run-time

environment for an application server. Each profile has its own IVT command.

After installing the product, you are ready to use the installation verification test (IVT).

The IVT program scans product log files for errors and verifies core functionality of the product installation.

After installing the product, the Installation wizard displays a prompt for starting the First steps console.

Installation verification is the first option on the First steps console.

The test consists of starting and monitoring the application server during its start up.

1. Select Installation verification on the First steps console after installing the product.

You can also start the First steps console from the command line, as described in “firststeps

command” on page 33.

You can also start the “ivt command” on page 54 directly from the bin directory of the profile:

v

install_root/profiles/default/bin/ivt.sh

v

install_root\profiles\default\bin\ivt.bat

If you create additional profiles, the ivt script location is within the profile_home/bin directory.

2. Observe the results in the First steps status window.

The log file for installation verification is the install_root/profiles/default/logs/ivtClient.log file. If

you create additional profiles, the file path is profile_home/logs/ivtClient.log.

Chapter 3. Setting up the application serving environment 53

The IVT provides the following useful information about the application server:

v The application server name

v The name of the profile

v The profile file path

v The type of profile

v The node name

v The current encoding

v The port number for the administrative console

v Various informational messages that include the location of the SystemOut.log file and how many

errors are listed within the file

v A completion message

As the IVT starts the application server on a Windows platform, the IVT attempts to start the Windows

service for the application server, if a Windows service exists. This is true even though the Windows

service might have a manual startup type.

See “Automatically restarting server processes” on page 149 for more information.

3. If the log shows that errors occurred during the installation verification, correct the errors and run the

IVT again. If necessary, create a new profile after correcting the error, and run the IVT on the new

profile.

The IVT program starts the server process automatically if the server is not running. Once the server

initializes, the IVT runs a series of verification tests. The tool displays pass or fail status in a console

window. The tool also logs results to the profile_home/logs/ivtClient.log file. As the IVT verifies your

system, the tool reports any detectable errors in the SystemOut.log file.

Return to the ″Task overview: Installing″ topic in the information center to continue.

ivt command

The ivt command starts the installation verification test (IVT) program. The IVT verifies that the installation

of the application server profile was successful. A profile consists of files that define the run-time

environment for an application server. Each profile has its own IVT command.

The IVT program starts the application server automatically if the server process is not already running.

After the server process initializes, the IVT runs a series of verification tests and displays pass or fail

status in a console window.

The IVT program scans the SystemOut.log file for errors and verifies core functionality of the profile.

You can start the IVT program from the command line or from the First steps console.

Location of the command file

Installing the product creates a default profile for the server1 application server. The location of the

installation verification test program for the default profile is:

v

install_root/profiles/default/bin/ivt.sh

v

install_root\profiles\default\bin\ivt.bat

The location of the ivt.sh or ivt.bat script for any profile is:

v

install_root/profiles/profile_name/bin/ivt.sh

v

install_root\profiles\profile_name\bin\ivt.bat

54 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Parameters

The following parameters are associated with this command.

server_name

Required parameter that identifies the name of the server process, such as server1.

profile_name

Required parameter that identifies the name of the profile that contains the server definition.

-p server_port_number

Optional parameter that identifies the default_host port when the port is not 9080, which is the default.

-host machine_host_name

Optional parameter that identifies the host machine of the profile to test. The default is localhost.

Syntax for the ivt command

Use the following syntax for the command:

v

install_root/profiles/profile_name/bin/ivt.sh

v

install_root\profiles\profile_name\bin\ivt.bat

Logging

The ivt command logs results to the install_root/profiles/profile name/logs/ivtClient.log file.

Example

The following examples test the server1 process in the profile01 profile on the myhost machine using the

default_host on port 9081.

ivt.bat server1 profile01 -p 9081 -host myhost

ivt.sh server1 profile01 -p 9081 -host myhost

Configuring ports

This topic discusses configuring ports, particularly in coexistence scenarios.

1. Review “Port number settings in WebSphere Application Server versions” on page 56.

This topic provides reference information about identifying port numbers in versions of WebSphere

Application Server, as a means of determining port conflicts that might occur when you intend for an

earlier version to coexist with Version 6.

2. You can change port settings on the port assignment panel while using the Installation wizard orthe

Profile creation wizard.

See “Using the Profile creation wizard” on page 36 and the Installing your application serving

environment PDF for more information.

3. After installation, edit the

profiles_install_root/profile_name/config/cells/cell_name/nodes/node_name/serverindex.xml file to

change the port settings, or use scripting to change the values.

See the Administering applications and their environment PDF for more information.

Chapter 3. Setting up the application serving environment 55

Port number settings in WebSphere Application Server versions

This topic provides reference information about identifying port numbers in versions of WebSphere

Application Server, as a means of determining port conflicts that might occur when you intend for an

earlier version to coexist or interoperate with Version 6.

Version 6 port numbers

 Table 3. Port definitions for WebSphere Application Server Version 6

Port name

WebSphere Application

Server File

Value

HTTP_TRANSPORT 9080

serverindex.xml and

virtualhosts.xml

HTTP Admin Console Port

(HTTP_TRANSPORT_ADMIN)

9060

HTTPS Transport Port (HTTPS_TRANSPORT) 9443

HTTPS Admin Console Secure Port

(HTTPS_TRANSPORT_ADMIN)

9043

BOOTSTRAP_ADDRESS 2809

serverindex.xml

SOAP_CONNECTOR_ADDRESS 8880

SAS_SSL_SERVERAUTH_LISTENER_ADDRESS 9401

CSIV2_SSL_SERVERAUTH_LISTENER_ADDRESS 9403

CSIV2_SSL_MUTUALAUTH_LISTENER_ADDRESS 9402

ORB_LISTENER_ADDRESS 9100

DCS_UNICAST_ADDRESS 9353

SIB_ENDPOINT_ADDRESS 7276

SIB_ENDPOINT_SECURE_ADDRESS 7286

SIB_MQ_ENDPOINT_ADDRESS 5558

SIB_MQ_ENDPOINT_SECURE_ADDRESS 5578

Internal JMS Server

(JMSSERVER_SECURITY_PORT)

5557

IBM HTTP Server Port 80 virtualhosts.xml,

IBM HTTP Server Admin Port 8008 IHSinstall_root/conf/ admin.conf

NODE_MULTICAST_IPV6_DISCOVERY_ADDRESS 5001 serverindex.xml

Version 5.x port numbers

Version 4.0.x port numbers

For WebSphere Application Server Advanced Single Server Edition, Version 4.0.x: Inspect the

server-cfg.xml file to find the Web container HTTP transports port values for the configuration.

For WebSphere Application Server Advanced Edition, Version 4.0.x: When the administrative server is

running, use this command to extract the configuration from the database:

xmlConfig -export config.xml -nodeName theNodeName

Look for the Web container HTTP transports port assignments.

56 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Table 4. Port definitions for WebSphere Application Server V4.0.x

Port name Value

Advanced Edition

IBM WebSphere

Business Integration

Server Foundation

Edition

Advanced Single

Server Edition

File

bootstrapPort 900

admin.config admin.config

server-cfg.xml

lsdPort 9000

LSDSSLPort 9001

HTTP transport port 9080

database database

HTTPS transport port 9443

Admin Console HTTP

transport port

9090

ObjectLevelTrace 2102

diagThreadPort 7000

Communicating with Web servers

The WebSphere Application Server works with a Web server to route requests for dynamic content, such

as servlets, from Web applications. The Web servers are necessary for directing traffic from browsers to

the applications that run in WebSphere Application Server. The Web server plug-in uses the XML

configuration file to determine whether a request is from the Web server or the Application Server.

The Web server plug-ins for distributed platform Web servers are provided on a separate CD from the

WebSphere Application Server products. A Web Server Plug-in Installation Wizard is also provided on that

CD. Installing Web server plug-ins describes how to install a Web server plug-in and create a Web server

definition.

1. Install your Web server if it is not already installed. If you want to use an IBM HTTP Server, see

Installing IBM HTTP Server. Otherwise, see the installation information provided with your Web server.

2. Ensure that your Web server is configured to perform operations required by Web applications, such

as GET and POST. Typically, this involves setting a directive in the Web server configuration file (such

as the httpd.conf file for an IBM HTTP Server). Refer to the Web server documentation for instructions.

If an operation is not enabled when a servlet or JSP file requiring the operation is accessed, an error

message displays, such as this one from the IBM HTTP Server:

HTTP method POST is not supported by this URL.

3. Use the Plug-in Installation wizard to install the appropriate plug-in file to your Web server and run the

script configureWeb_server_name created by the wizard to create and configure the Web server

definition in the WebSphere configuration repository. The following substeps are performed during the

plug-in installation process. See the Plug-in Installation Roadmap for additional information.

a. A Web server definitions is created. You can also use either use the administrative console or use

the ConfigureWebServerDefintion.jacl script to create a Web server definition.

If you use the administrative console:

1) Select the node that was created in the preceding step, and in the Server name field, enter the

local name of the Web server for which you are creating a Web server definition.

2) Use the wizard to complete the Web server definition.

b. An application or modules are mapped to a Web server. If an application that you want to use with

this Web server is already installed, the application is automatically mapped to the Web server. If

the application is not installed, select this Web server during the Map modules to servers step of

the application installation process.

Chapter 3. Setting up the application serving environment 57

c. Master repository is updated and saved.

4. Optional: Configure the plug-in. Use either the administrative console, or issue the “GenPluginCfg

command” on page 688 to create your plugin-cfg.xml file.

When setting up your Web server plug-in, you must decide whether or not to have the configuration

automatically generated in response to a configuration change. When the Web server plug-in

configuration service is enabled and any of the following conditions occur, the plug-in configuration file

is automatically generated:

v When the Web server is created or saved.

v When an application is installed.

v When an application is uninstalled.

v When the virtual host definition is updated

Generating or regenerating the configuration file might take a while to complete. After it finishes, all

objects in the administrative cell use their newest settings, which the Web server can access. If the

Application Server is on the same physical machine as the Web server, the regeneration usually takes

about 30 to 60 seconds to complete. The regeneration takes longer if they are not both on the same

machine.

Important: When the plug-in configuration file is first generated, it does not include admin_host on the

list of virtual hosts. ″Allowing Web servers to access the administrative console″ in the

information center describes how to add it to the list.

To use the administrative console:

a. Select Servers > Web Servers > webserver > plug-in properties.

b. Select Automatically generate plug-in configuration file or click on one or more of the following

topics to manually configure the plugin-cfg.xml file:

v Caching

v Request and response

v Request routing

v Service

Web server plug-in configuration properties maps each property to one of these topics.

c. Click OK.

d. You might need to stop the application server and then start the application server again to enable

the Web server to locate the plugin-cfg.xml file.

5. If you want to use Secure-socket layer (SSL) with this configuration, use the plug-in’s installation

wizard to install the appropriate GSKIT installation image file on your workstation. See “Configuring the

Web server plug-in for Secure Sockets Layer” on page 1693 for information on how to configure

GSKIT.

6. If you want to enable the Web server plug-in to use private headers, define an SSL configuration

repertoire that defines a trust file. Then in the administrative console, select Application servers >

server1 > Web Container Settings > Web Container Transport Chains > transport_chain > SSL

Inbound Channel (SSL_2) and specify this repertoire for that transport chain. If you try to use private

headers without setting up an SSL configuration repertoire that does not include a trust file definition,

the private headers will be ignored. If the private headers are ignored, the application server might not

locate the requested application.

After you enable the use of private headers, the transport chain’s SSL inbound channel trusts all

private headers it receives. Therefore, you must ensure that all paths to the transport chain’s SSL

inbound channel are trusted.

7. Tune your Web server with Web server tuning parameters.

8. Propagate the plug-in configuration. The plug-in configuration file (plugin-cfg.xml) is automatically

propagated to the Web server if the Web server plug-in configuration service is enabled, and one of

the following is true:

58 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

v The Web server is a local Web server. (It are located on the same machine as an application

server.)

v The Web server is a remote IBM HTTP Server (IHS) Version 6.0 that has a running IHS

Administrative server.

If neither of these conditions is true, the plugin-cfg.xml file must be manually copied to the remote Web

server’s installation location.

The configuration is complete. To activate the configuration, stop and restart the Web server. If you

encounter problems restarting your Web server, check the http_plugin.log file for information on what

portion of the plugin-cfg.xml file contains an error. The log file states the line number on which the error

occurred along with other details that might help you diagnose why the Web server did not start. You can

then use the administrative console to update the plugin-cfg.xml file.

If applications are infrequently installed or uninstalled, which is usually the situation in a production

environment, or if you can tolerate the performance impact of generating and distributing the plug-in

configuration file each time any of the previously listed actions occur, you should consider enabling this

service.

If you are making a series of simultaneous changes, like installing numerous applications, you might want

the configuration service disabled until after you make the last change. The Web server plug-in

configuration service is enabled by default. To disable this service, in the administrative console click elect

Servers > Application Servers > server_name > Administration Services >Web server plug-in

configuration service and then unselect the Enable automated Web server configuration processing

option.

Tip: If your installation uses a firewall, make sure you configure the Web server plug-in to use a port that

has been opened. (See your security administrator for information on how to obtain an open port.

Web server plug-in properties settings

Use this page to view or change the settings of a Web server plug-in configuration file. The plug-in

configuration file, plugin_cfg.xml, provides properties for establishing communication between the Web

server and the Application Server.

To view this administrative console page, click Servers > Web Servers >Web_server_name Plug-in

Properties.

On the Configuration tab, you can edit fields. On the Runtime tab, you can look at read-only information.

The Runtime tab is available only when this Web server has accessed applications running on application

servers and there is an http_plugin.log file.

Plug-in log file name

Specifies the fully qualified path to the log file to which the plug-in will write error messages. The default

file path is plugin_install_root/logs/web_server_name/http_plugin.log .

If the file does not exist then it will be created. If the file already exists, it will be opened in append mode

and the previous plug-in log messages will remain.

This field corresponds to the RequestMetrics loggingEnabled element in the plugin-cfg.xml file.

 Data type String

Default for Linux and UNIX platforms plugin_install_root/logs/web_server_name/http_plugin.log

Default for Windows platforms plugin_install_root/logs/web_server_name/http_plugin.log

Chapter 3. Setting up the application serving environment 59

Plug-in installation location

Specifies the fully qualified path to where the plug-in configuration file is installed.

 Data type String

Default The default value is the installation root directory.

If you select a Web server plug-in during installation, the installer program configures the Web server to

identify the location of the plugin-cfg.xml file, if possible. The Web server is considered installed on a

local machine if it is on the same machine as the application server. It is considered installed on a remote

machine if the Web server and the application server are on different machines.

v If the Web server is installed on a remote machine, the plug-in configuration file, by default, will be

installed in the plugin_install_root/config/web_server_name directory.

v If the Web server is installed on a local standalone machine, the plug-in configuration file, by default will

be installed in the profile_install_root/config/cells/cell_name/nodes/web_server_name

_node/servers/web_server_name directory.

The installer program adds a directive to the Web server configuration that specifies the location of the

plugin-cfg.xml file.

For remote Web servers, you must copy the file from the local directory where the Application Server is

installed to the remote machine. This is known as propagating the plug-in configuration file. If you are

using an IBM HTTP Server (IHS) V6 for your Web server, WebSphere Application Server can automatically

propagate the plug-in configuration file for you to remote machines provided there is a working HTTP

transport mechanism to propagate the file.

Plug-in configuration file name

Specifies the file name of the configuration file for the plug-in. The Application Server generates the

plugin-cfg.xml file by default. The configuration file identifies applications, Application Servers, clusters,

and HTTP ports for the Web server. The Web server uses the file to access deployed applications on

various Application Servers.

 Data type String

Default plugin-cfg.xml

If you select a plug-in during installation, the installer program configures the Web server to identify the

location and name of the plugin-cfg.xml file, if possible.

You can change the name of the plug-in configuration file. However, if you do change the file name, you

must also change the Web server configuration to point to the new plug-in configuration file.

Automatically generate plug-in configuration file

To automatically generate a plug-in configuration file to a remote Web server:

v This field must be checked.

v The plug-in configuration service must be enabled

When the plug-in configuration service is enabled, a plug-in configuration file is automatically generated for

a Web server whenever:

v The WebSphere Application Server administrator defines new Web server.

v An application is deployed to an Application Server.

v An application is uninstalled.

v A virtual host definition is updated and saved.

Clear the check box if you want to manually generate a plug-in configuration file for this Web server.

60 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Important: When the plug-in configuration file is generated, it does not include admin_host on the list of

virtual hosts. ″Allowing Web servers to access the administrative console″ in the information

center describes how to add it to the list.

Automatically propagate plug-in configuration file

To automatically propagate a copy of a changed plug-in configuration file to a Web server:

v This field must be checked.

v The plug-in configuration service must be enabled

v A WebSphere Application Server node agent must be on the node that hosts the Web server associated

with the changed plug-in configuration file.

Note: The plug-in configuration file can only be automatically propagated to a remote Web server if that

Web server is an IHS V6.0 Web server and its administration server is running.

Ignore DNS failures during Web server startup

Specifies whether the plug-in ignores DNS failures within a configuration when starting.

This field corresponds to the IgnoreDNSFuilures element in the plugin-cfg.xml file.

When set to true, the plug-in ignores DNS failures within a configuration and starts successfully if at least

one server in each ServerCluster is able to resolve the host name. Any server for which the host name

can not be resolved is marked unavailable for the life of the configuration. No attempts to resolve the host

name are made later on during the routing of requests. If a DNS failure occurs, a log message is written to

the plug-in log file and the plug-in initialization continues rather than causing the Web server not to start.

When false is specified, DNS failures cause the Web server not to start.

 Data type String

Default false

Refresh configuration interval

Specifies the time interval, in seconds, at which the plug-in should check the configuration file to see if

updates or changes have occurred. The plug-in checks the file for any modifications that have occurred

since the last time the plug-in configuration was loaded.

In a development environment in which changes are frequent, a lower setting than the default setting of 60

seconds is preferable. In production, a higher value than the default is preferable because updates to the

configuration will not occur so often. If the plug-in reload fails for some reason, a message is written to the

plug-in log file and the previous configuration is used until the plug-in configuration file successfully

reloads. If you are not seeing the changes you made to your plug-in configuration, check the plug-in log

file for indications of the problem.

 Data type Integer

Default 60 seconds.

Plug-in logging

Specifies the location and name of the http_plugin.log file. Also specifies the scope of messages in the

log.

This field corresponds to the RequestMetrics traceLevel element in the plugin-cfg.xml file.

The log describes the location and level of log messages that are written by the plug-in. If a log is not

specified within the configuration file, then, in some cases, log messages are written to the Web server

error log.

Chapter 3. Setting up the application serving environment 61

On a distributed platform, if the log file does not exist then it will be created. If the log file already exists, it

will be opened in append mode and the previous plug-in log messages will remain.

Log file name - The fully qualified path to the log file to which the plug-in will write error messages.

 Data type String

Default plugin_install_root/logs/web_server_name/http_plugin.log

Specify the file path of the http_plugin.log file.

Log level- The level of detail of the log messages that the plug-in should write to the log. You can specify

one of the following values for this attribute:

v Trace. All of the steps in the request process are logged in detail.

v Stats. The server selected for each request and other load balancing information relating to request

handling is logged.

v Warn. All warning and error messages resulting from abnormal request processing are logged.

v Error. Only error messages resulting from abnormal request processing are logged.

If a Log level is not specified, the default value Error is used.

Be careful when setting the level to Trace. A lot of messages are logged at this level which can cause the

disk space/file system to fill up very quickly. A Trace setting should never be used in a normally functioning

environment as it adversely affects performance.

 Data type String

Default Error

Web server plug-in request and response optimization properties settings

Use this page to view or change the request and response optimization properties for a Web server

plug-in.

To view this administrative console page, click Servers > Web Servers >web_server_name Plug-in

Properties > Request and Response.

On the Configuration tab, you can edit fields. On the Runtime tab, you can look at read-only information.

The Runtime tab is available only when this Web server has accessed applications running on application

servers and there is an http_plugin.log file.

Maximum chunk size used when reading the response body:

Specifies the maximum chunk size the plug-in can use when reading the response body.

 This field corresponds to the ResponseChunkSize element in the plugin-cfg.xml file.

The plug-in reads the response body in 64K chunks until all of the response data is read. This approach

causes a performance problem for requests whose response body contains large amounts of data.

If the content length of the response body is unknown, the values specified for this property is used as the

size of the buffer that is allocated. The response body is then read in this size chunks, until the entire body

is read. If the content length is known, then a buffer size of either the content length or the specified size

(whichever is less) is used to read the response body.

 Data type Integer

62 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Default 64 kilobytes

Specify the size in kilobytes (1024 byte blocks).

Enable Nagle algorithm for connections to the Application Server:

When checked, the Nagle algorithm is enabled for connections between the plug-in and the Application

Server.

 This field corresponds to the ASDisableNagle element in the plugin-cfg.xml file.

The Nagle algorithm is named after engineer John Nagle, who invented this standard part of the

transmission control protocol/internet protocol (TCP/IP). The algorithm reduces network overhead by

adding a transmission delay (usually 20 milliseconds) to a small packet, which lets other small packets

arrive and be included in the transmission. Because communications has an associated cost that is not as

dependent on packet size as it is on frequency of transmission, this algorithm potentially reduces overhead

with a more efficient number of transmissions.

Clear the check box to disable the Nagle algorithm.

Enable Nagle Algorithm for the IIS Web Server:

When checked, the Nagle algorithm is used for connections from the Microsoft Internet Informations

Services (IIS) Web Server to the Application Server.

 This field corresponds to the IHSDisableNagle element in the plugin-cfg.xml file. It only appears if you are

using the Microsoft Internet Informations Services (IIS) Web server. Clear the check box to disable the

Nagle algorithm for this connection.

Chunk response to the client:

When checked, responses to the client are broken into chunks if a Transfer-Encoding : Chunked

response header is present in the response.

 This field corresponds to the ChunkedResponse element in the plugin-cfg.xml file. It only appears if you

are using a Microsoft Internet Informations Services (IIS) Web Server, a Java System Web server, or a

Domino Web server. The IHS Web server automatically handles breaking the response into chunks to

send to the client.

Clear the check box to if you do not want responses broken into chunks.

Accept content for all requests: This field corresponds to the AcceptAllContent element in the

plugin-cfg.xml file.

When selected, users can include content in POST, PUT, GET, and HEAD requests when a

Content-Length or Transfer-encoding header is contained in the request header.

Virtual host matching:

When selected, virtual host mapping is performed by physically using the port number for which the

request was received.

 This field corresponds to the VHostMatchingCompat element in the plugin-cfg.xml file.

If this field is not selected, matching is done logically using the port number contained in the host header.

Chapter 3. Setting up the application serving environment 63

Use the radio buttons to make your physical or logical port selection.

Application server port preference:

Specifies which port number the Application Server should use to build URI’s for a sendRedirect.

 This field corresponds to the AppServerPortPreference element in the plugin-cfg.xml file.

Specify:

v webserverPort if the port number from the host header of the HTTP request coming in is to be used.

v hostHeader if the port number on which the Web server received the request is to be used.

The default is webserverPort.

Priority used by the IIS Web server when loading the plug-in configuration file:

Specifies the priority in which the Microsoft Internet Informations Services (IIS) Web server loads the

WebSphere Web server plug-in.

 This field corresponds to the IISPluginPriority element in the plugin-cfg.xml file. It only appears if you are

using the IIS Web server. Because the IIS Web server uses this value during startup, the Web server must

be restarted before a change to this field takes effect.

Select one of the following priorities:

v High

v Medium

v Low

The default value of High ensures that all requests are handled by the Web server plug-in before they are

handled by any other filter/extensions. If problems occur while using a priority of Medium or Low, you will

have to rearrange the order or change the priority of the interfering filter/extension.

Web server plug-in caching properties settings

Use this page to view or change the caching properties for a Web server plug-in.

To view this administrative console page, click Servers > Web Servers >Web_server_name Plug-in

Properties > Caching Properties.

On the Configuration tab, you can edit fields. On the Runtime tab, you can look at read-only information.

The Runtime tab is available only when this Web server has accessed applications running on application

servers and there is an http_plugin.log file.

Enable Edge Side Include (ESI) processing to cache the responses:

Specifies whether to enable Edge Side Include processing to cache the responses.

 This field corresponds to the esiEnable element in the plugin-cfg.xml file.

When selected, Edge Side Include (ESI) processing is used to cache responses. If ESI processing is

disabled for the plug-in, the other ESI plug-in properties are ignored. Clear the checkbox to disable Edge

Side Include processing.

Enable invalidation monitor to receive notifications:

When checked, the ESI processor receives invalidations from the Application Server.

64 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

This field corresponds to the ESIInvalidationMonitor element in the plugin-cfg.xml file. It is ignored if Edge

Side Include (ESI) processing is not enabled for the plug-in.

Maximum cache size:

Specifies, in 1K byte units, the maximum size of the cache. The default maximum size of the cache is

1024K bytes (1 megabyte). If the cache is full, the first entry to be evicted from the cache is the entry that

is closest its expiration time.

 This field corresponds to the esiMaxCacheSize element in the plugin-cfg.xml file.

 Data type Integer

Default 1024 kilobytes

Specify the size in kilobytes (1024 byte blocks).

Web server plug-in request routing properties settings

Use this page to view or change the request routing properties for a Web server plug-in.

To view this administrative console page, click Servers > Web Servers >Web_server_name Plug-in

Properties > Plug-in server_cluster_name Properties.

On the Configuration tab, you can edit fields. On the Runtime tab, you can look at read-only information.

The Runtime tab is available only when this Web server has accessed applications running on application

servers and there is an http_plugin.log file.

Load balancing option:

Specifies the load balancing option that the plug-in uses in sending requests to the various application

servers associated with that Web server.

 This field corresponds to the LoadBalanceWeight element in the plugin-cfg.xml file.

Select the appropriate load balancing option:

v Round robin

v Random

The Round Robin implementation has a random starting point. The first application server is picked

randomly. Round Robin is then used to pick application servers from that point forward. This

implementation ensures that in multiple process based Web servers, all of the processes don’t start up by

sending the first request to the same Application Server.

The default load balancing type is Round Robin.

Retry interval:

Specifies the length of time, in seconds, that should elapse from the time an application server is marked

down to the time that the plug-in retries a connection.

 This field corresponds to the ServerWaitforContinue element in the plugin-cfg.xml file.

 Data type Integer

Default 60 seconds

Chapter 3. Setting up the application serving environment 65

Maximum size of request content:

Select whether there is a limit on the size of request content. If limited, this field also specifies the

maximum number of bytes of request content allowed in order for the plug-in to attempt to send the

request to an application server.

 This field corresponds to the PostSizeLimit element in the plugin-cfg.xml file.

When a limit is set, the plug-in fails any request that is received that is greater than the specified limit.

Select whether to limit the size of request content:

v No limit

v Set limit

If Set limit is selected, specify a limit size.

 Data type Integer

Default -1, which indicates there is no limit for the post size.

Specify the size in kilobytes (1024 byte blocks).

Remove special headers:

When checked, the plug-in will remove any headers from incoming requests before adding the headers the

plug-in is supposed to add before forwarding the request to an application server.

 This field corresponds to the RemoveSpecialHeaders element in the plugin-cfg.xml file.

The plug-in adds special headers to the request before it is forwarded to the application server. These

headers store information about the request that will need to be used by the application. Not removing the

headers from incoming requests introduces a potential security exposure.

Clear the check box to retain special headers.

Clone separator change:

When checked, the plug-in expects the plus character (+) as the clone separator.

 This field corresponds to the ServerCloneID element in the plugin-cfg.xml file.

Some pervasive devices cannot handle the colon character (:) used to separate clone IDs in conjunction

with session affinity. If this field is checked, you must also change the configurations of the associated

application servers such that the application servers separates clone IDs with the plus character as well.

Clear the checkbox to use the colon character to separate clone IDs.

Web server plug-in custom properties

If you are using a Web server plug-in, you can add the following custom property to the configuration

settings for that plug-in.

To add a custom property:

1. In the administrative console, click In the administrative console, click Servers > Web Servers >

Web_server_name > Plug-in properties > Custom properties > New

66 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

2. Under General Properties specify the name of the custom property in the Name field and a value for

this property in the Value field. You can also specify a description of this property in the Description

field.

3. Click Apply or OK.

4. Click Save to save your configuration changes.

5. Restart the server.

Following is a list of Web server plug-in custom properties that are provided with the Application Server.

These properties are not shown on the properties settings pages for the plug-in.

StashfileLocation

Use this element to set a value for the stashfile initialization parameter.

 Data type String

KeyringLocation

Use this element to set a value for the keyring initialization parameter.

 Data type String

Web server plug-in configuration service properties settings

Use this page to view or change the configuration settings for the Web server plug-in configuration service.

To view this administrative console page, click Application Servers >server_name > Administration

Services > Web server plug-in configuration service.

On the Configuration tab, you can edit fields. On the Runtime tab, you can look at read-only information.

Enable automated Web server configuration processing

When selected, the Web server plug-in configuration service automatically generates the plug-in

configuration file whenever the Web server environment changes. For example, the plug-in configuration

file is regenerated whenever one of the following activities occurs:

v A new application is deployed on an associated application server.

v The Web server definition is saved.

v An application is removed from an associated application server.

v A new virtual host is defined.

Whenever a virtual host definition is updated, the plug-in configuration file is automatically regenerated for

all of the Web servers.

Application Server property settings for a Web server plug-in

Use this page to view or change application server settings for a Web server plug-in.

To view this administrative console page, click Application Servers >server_name > Web Server Plug-in.

On the Configuration tab, you can edit fields. On the Runtime tab, you can look at read-only information.

The Runtime tab is available only when this Web server has accessed applications running on application

servers and there is an http_plugin.log file.

Chapter 3. Setting up the application serving environment 67

Server role

Specifies the role this application server is assigned.

Select Primary to add this application server to the list of primary application servers. The plug-in initially

attempts to route requests to the application servers on this list.

Select Backup to add this application server to the list of backup application servers. The plug-in does not

load balance across the backup application servers. A backup server is only used if a primary server is not

available. When the plug-in determines that a backup application server is required, it goes through the list

of backup servers, in order, until no servers are left in the list or until a request is successfully sent and a

response received from one of the servers on this list.

Connect timeout

Specifies whether or not there is a limited amount of time the Application Server will maintain a connection

with the Web server.

You can select either No timeout or Set timeout. If you select Set timeout you, must specify, in seconds,

the length of time a connection with the Web server is to be maintained.

This property enables the plug-in to perform non-blocking connections with the application server.

Non-blocking connections are beneficial when the plug-in is unable to contact the destination to determine

whether or not the port is available. If no value is specified for this property, the plug-in performs a

blocking connect in which the plug-in sits until an operating system times out (which could be as long as 2

minutes depending on the platform) and allows the plug-in to mark the server unavailable.

A value of 0 causes the plug-in to perform a blocking connect. A value greater than 0 specifies the number

of seconds you want the plug-in to wait for a successful connection. If a connection does not occur after

that time interval, the plug-in marks the server unavailable and fails over to another application server

defined for the requested application.

 Data type Integer

Maximum number of connections that can be handled by the Application Server

Specifies the maximum number of pending connections to an Application Server that can be flowing

through a Web server process at any point in time.

This field corresponds to the ServerMaxConnections element in the plugin-cfg.xml file.

You can select either No limit or Set limit. If you select Set limit you, must specify the maximum number

of connections that can exist between the Web server and the Application Server at any given point in

time.

If this attribute is set to either zero or -1, there is no limit to the number of pending connections to the

Application Servers.

 Data type Integer

Default -1

Use extended handshake to check whether Application Server is running

When selected, the Web server plug-in will use an extended handshake to check whether or not the

Application Server is running.

This field corresponds to the ServerExtendedHandshake element in the plugin-cfg.xml file.

Select this property if a proxy firewall is between the plug-in and the application server.

68 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

The plug-in marks a server as down when the connect() fails. However, when a proxy firewall is in

between the plug-in and the application server, the connect() will succeed, even though the back end

application server is down. This causes the plug-in to not failover correctly to other application servers.

If the plug-in performs some handshaking with the application server to ensure that it is started before it

sends a request it can failover to another application server if it detects that the application server with

which it is attempting to perform a handshake is down.

Send the header ″100 Continue″ before sending the request content

This field corresponds to the WaitForContinue element in the plugin-cfg.xml file.

When selected, the Web server plug-in will send the header ″100 Continue″ to the Application Server

before it sends the request content.

Web server plug-in configuration properties

The following table indicates which panel in the administrative console you need to use to manually

configure a Web server plug-in property.

 Table 5. Web server plug-in configuration properties

Administrative console panel Field name Configuration property name

In the administrative console, click

Servers > Web Servers

>Web_server_name > Plug-in

properties

Refresh configuration interval RefreshInterval

In the administrative console, click

Servers > Web Servers >

Web_server_name > Plug-in

properties

Plug-in log file name Log->name

In the administrative console, click

Servers > Web Servers >

Web_server_name > Plug-in

properties

Plug-in logging Log->LogLevel

In the administrative console, click

Servers > Web Servers >

Web_server_name > Plug-in

properties

Ignore DNS failures during Web

server startup

IgnoreDNSFailures

In the administrative console, click

Servers > Web Servers >

Web_server_name > Plug-in

properties > Custom properties >

New

KeyringLocation Keyring

In the administrative console, click

Servers > Web Servers >

Web_server_name > Plug-in

properties > Custom properties >

New

StashfileLocation Stashfile

In the administrative console, click

Servers > Web Servers >

Web_server_name > Plug-in

properties > Request routing

Load balancing option LoadBalance

In the administrative console, click

Servers > Web Servers >

Web_server_name > Plug-in

properties > Request Routing

Clone separator change CloneSeparatorChange

Chapter 3. Setting up the application serving environment 69

Table 5. Web server plug-in configuration properties (continued)

In the administrative console, click

Servers > Web Servers >

Web_server_name > Plug-in

properties > Request Routing

Retry interval RetryInterval

In the administrative console, click

Servers >Web server_name >

Plug-in properties > Request

routing

Maximum size of request content PostSizeLimit

In the administrative console, click

Servers > Web Servers >

Web_server_name > Plug-in

properties > Request routing

Remove special headers RemoveSpecialHeaders

In the administrative console, click

Application Servers >server_name >

Web server plug-in properties

Server role PrimaryServers and BackupServers

list

In the administrative console, click

Application Servers >server_name >

Web server plug-in properties

Connect timeout Server ConnectTimeout

In the administrative console, click

Application Servers >server_name >

Web server plug-in properties

Use extended handshake to check

whether Application Server is running

Server Extended Handshake

In the administrative console, click

Application Servers >server_name >

Web server plug-in properties

Send the header ″100 Continue″

before sending the request content

WaitForContinue

In the administrative console, click

Application Servers >server_name >

Web server plug-in properties

Maximum number of connections that

can be handled by the Application

Server

Server MaxConnections

In the administrative console, click

Servers > Web Servers >

Web_server_name > Plug-in

properties > Request and

Response

Application server port preference AppServerPortPreference

In the administrative console, click

Servers > Web Servers >

Web_server_name > Plug-in

properties > Request and

Response

Enable Nagle algorithm for

connections to the Application Server

ASDisableNagle

In the administrative console, click

Servers > Web Servers >

Web_server_name > Plug-in

properties > Request and

Response

Enable Nagle Algorithm for the IIS

Web Server

IISDisableNagle

In the administrative console, click

Servers > Web Servers >

Web_server_name > Plug-in

properties > Request and

Response

Virtual host matching VHostMatchingCompat

In the administrative console, click

Servers > Web Servers >

Web_server_name > Plug-in

properties > Request and

Response

Maximum chunk size used when

reading the response body

ResponseChunkSize

70 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Table 5. Web server plug-in configuration properties (continued)

In the administrative console, click

Servers > Web Servers >

Web_server_name > Plug-in

properties > Request and

Response

Accept content for all requests AcceptAllContent

In the administrative console, click

Servers > Web Servers >

Web_server_name > Plug-in

properties > Request and

Response

Chunk response to the client ChunkedResponse

In the administrative console, click

Servers > Web Servers >

Web_server_name > Plug-in

properties > Request and

Response

Priority used by the IIS Web server

when loading the plug-in configuration

file

IISPluginPriority

In the administrative console, click

Servers > Web Servers >

Web_server_name > Plug-in

properties > Caching

Enable Edge Side Include (ESI)

processing to cache the responses

ESIEnable

In the administrative console, click

Servers > Web Servers >

Web_server_name > Plug-in

properties > Caching

Maximum cache size ESIMaxCacheSize

In the administrative console, click

Servers > Web Servers >

Web_server_name > Plug-in

properties > Caching

Enable invalidation monitor to receive

notifications

ESIInvalidationMonitor

Web server plug-in connections

The WebSphere Application Server Web server plug-ins are used to establish and maintain persistent

HTTP and HTTPS connections to Application Servers .

When the plug-in is ready to send a request to the application server, it first checks its connection pool for

existing connections. If an existing connection is available the plug-in checks its connection status. If the

status is still good, the plug-in uses that connection to send the request. If a connection does not exist, the

plug-in creates one. If a connection exists but has been closed by the application server, the plug-in closes

that connection and opens a new one.

After a connection is established between a plug-in and an application server, it will not be closed unless

the application server closes it for one of the following reasons:

v If the Use Keep-Alive property is selected and the time limit specified on the Read timeout or Write

timeout property for the HTTP inbound channel has expired.

v The maximum number of persistent requests which can be processed on an HTTP inbound channel has

been exceeded. (This number is set using the HTTP inbound channel’s Maximum persistent requests

property.)

v The Application Server is shutting down.

Even if the application server closes a connection, the plug-in will not know that it has been closed until it

tries to use it again. The connection will be closed if one of the following events occur:

v The plug-in receives a new HTTP request and tries to reuse the existing connection.

Chapter 3. Setting up the application serving environment 71

v The number of httpd processes drop because the Web server is not receiving any new HTTP requests.

(For the IHS Web server, the number of httpd processes that are kept alive depends on the value

specified on the Web server’s MinSpareServers directive.)

v The Web server is stopped and all httpd processes are terminated, and their corresponding sockets are

closed.

Note: Sometimes, if a heavy request load is stopped or decreased abruptly on a particular application

server, a lot of the plug-in’s connections to that application server will be in CLOSE_WAIT state.

Because these connections will be closed the first time the plug-in tries to reuse them, having a

large number of connections in CLOSE-WAIT state should not affect performance

Web server plug-in remote user information processing

You can configure your Web server with a third-party authentication module and then configure the Web

server plug-in to route requests to the Application Server. If an application calls the getRemoteUser()

method, it relies on a private HTTP header that contains the remote user information and is parsed by the

plug-in. The plug-in sets the private HTTP header value whenever a Web server authentication module

populates the remote user in the Web server data structure. If the private HTTP header value is not set,

the application’s call to getRemoteUser() returns a null value.

v In the case of an Apache and IBM HTTP Server (IHS) Web server, the plug-in builds the private header

from the information contained in the associated request record.

v In the case of a Sun One Web server, the plug-in builds the private header from the information

contained in the auth_user property associated with the request. The private header is usually set to

the name of the local HTTP user of the Web browser, if HTTP access authorization is activated for the

URL.

v In the case of a Domino Web server, the plug-in builds the private header from the information

contained in the REMOTE_USER environment variable. The plug-in sets this variable to anonymous

for users who have not logged in and to the username for users who are logged into the application.

v In the case of an Internet Information Services (IIS) Web server, the plug-in builds the private header

from the information contained in the REMOTE_USER environment variable. The plug-in sets this

variable to the name of the user as it is derived from the authorization header sent by the client.

If the private header is not being set in the Sun One, IIS, or Domino Web server plug-in, make sure the

request record includes information about the user requesting the data.

Note: If an application’s call to getRemoteUser() returns a null value, or if the correct remote user

information is not being added to the Web server plug-in’s data structure, make sure the remote

user parameter within the WebAgent is still set to YES. (Sometimes this parameter gets set to NO

when service is applied.)

Web server plug-ins

Web server plug-ins enable the Web server to communicate requests for dynamic content, such as

servlets, to the application server. A Web server plug-in is associated with each Web server definition. The

configuration file (plugin-cfg.xml) that is generated for each plug-in is based on the applications that are

routed through the associated Web server.

A Web server plug-in is used to forward HTTP requests from a supported Web server to an application

server. Using a Web server plug-in to provide communication between a Web server and an application

server has the following advantages:

v XML-based configuration file

v Standard protocol recognized by firewall products

v Security using HTTPS, replacing proprietary Open Servlet Engine (OSE) over Secure Sockets Layer

(SSL)

72 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Each of the supported distributed platform Web server plug-ins run on a number of operating systems.

See Supported Hardware and Software at

http://www.ibm.com/software/webservers/appserv/doc/latest/prereq.htmlfor the product for the most

current information about supported Web servers.

Checking your IBM HTTP Server version

At times, you might need to determine the version of your IBM HTTP Server installation.

1. Change directory to the installation root of the Web server. For example, this is /opt/IBMIHS on a

Solaris machine.

2. Find the subdirectory that contains apache.exe (on a Windows platforms) or apachectl (on a

UNIX-based platforms, such as z/OS, Solaris, Linux, and HP-UX)

3. On a Windows platform, issue:

apache.exe -V

4. On a UNIX-based platforms issue:

./apachectl -V 4

The version is shown in the ″Server version:″ field and will looks something like the following:

Server version: IBM_HTTP_Server/2.0.47 Apache/2.0.47

Server built: July 2 2004 20:38:36

Server’s Module Magic Number: 20020903:4.

Web server tuning parameters

WebSphere Application Server provides plug-ins for several Web server brands and versions. Each Web

server operating system combination has specific tuning parameters that affect the application

performance.

v IBM HTTP Server

The IBM HTTP Server V6.0 is a multi-process, multi-threaded server.

– Access logs

- Description: Collects all incoming HTTP requests. Logging degrades performance because IO

operation overhead causes logs to grow significantly in a short time.

- How to view or set:

1. Open the IBM HTTP Server httpd.conf file, located in the directory

IBM_HTTP_Server_root_directory/conf.

2. Search for a line with the text CustomLog.

3. Comment out this line by placing # in front of the line.

4. Save and close the httpd.conf file.

5. Stop and restart the IBM HTTP Server.
- Default value: Logging of every incoming HTTP request is enabled.

- Recommended value: Disable the access logs.
– MaxClients

- Description: The MaxClients directive controls the maximum number of simultaneous connections

or users that the web server can service at any one time. If, at peak usage, your web server

needs to support 200 active users at once, you should set MaxClients to 220 (200 plus an extra

10% for load growth). Setting MaxClients too low could cause some users to believe the web

server is not responding. You should have sufficient RAM in your web server machines to support

each connected client. For IBM HTTP Server V6.0 on UNIX, you should allocate around 1.5MB

MaxClients of RAM for use by the IBM HTTP Server. For IBM HTTP Server V6.0 on Windows,

you should allocate around 300KB MaxClients of RAM for use by the IBM HTTP Server. Some

third party modules can significantly increase the amount of RAM used per connected client.

- How to view or set: Edit the MaxClients directive in the IBM HTTP Server httpd.conf file,

located in the directory IBM_HTTP_Server_root_directory/conf.

- Default value: 150

Chapter 3. Setting up the application serving environment 73

http://www.ibm.com/software/webservers/appserv/doc/latest/prereq.html

- Recommended value: The maximum number of users normally simultaneously connected to your

web server, plus an additional 10% for buffer. Note: The KeepAliveTimeout setting can affect how

long a user is connected to the webserver.
– MinSpareServers, MaxSpareServers, and StartServers

- Description: Pre-allocates and maintains the specified number of processes so that few

processes are created and destroyed as the load approaches the specified number of processes.

Specifying similar values reduces the CPU usage for creating and destroying HTTPD processes.

Adjust this parameter if the time waiting for IBM HTTP Server to start more servers, so that it can

handle HTTP requests, is not acceptable.

- How to view or set: Edit the MinSpareServers, MaxSpareServers and StartServers directives in

the httpd.conf file located in the IBM_HTTP_Server_root_directory/conf directory.

- Default value: MinSpareServers 5, MaxSpareServers 10, StartServers 5

- Recommended value: For optimum performance, specify the same value for the

MinSpareServers and the StartServers parameters. If MaxSpareServers is set to less than

MinSpareServers, IBM HTTP Server resets MaxSpareServer=MinSpareServer+1. Setting the

StartServers too high can cause swapping if memory is not sufficient, degrading performance.
– ListenBackLog

- Description: Sets the length of a pending connections queue. When several clients request

connections to the IBM HTTP Server, and all threads used, a queue exists to hold additional client

requests. However, if you use the default Fast Response Cache Accelerator (FRCA) feature of

IBM HTTP Server V6.0 on Windows, the ListenBackLog directive is not used since FRCA has its

own internal queue.

- How to view or set: For non-FRCA: Edit the IBM HTTP Server httpd.conf file. Then, add or

view the ListenBackLog directive.

- Default value: For HTTP Server V6.0: 1024 with FRCA enabled, 511 with FRCA disabled

- Recommended value: Use the defaults.
v IBM HTTP Server - Linux

– MaxRequestsPerChild

- Description: Sets the limit on the number of requests that an individual child server process

handles. After the number of requests reaches the value set for the MaxRequestsPerChild

parameter, the child process dies. Adjust this parameter if destroying and creating child processes

is degrading your Web server performance.

- How to view or set:

1. Edit the IBM HTTP server httpd.conf file located in the IBM_HTTP_Server_root_directory/conf

directory.

2. Change the value of the parameter.

3. Save the changes and restart the IBM HTTP server.
- Default value: 500

- Recommended value: Should normally be set to 0. Non-zero settings can be useful if child

memory usage is observed to steadly increase over time. Memory leaks have occasionally been

observed in third party modules and various OS runtime libraries used by the IBM HTTP Server.
v IBM HTTP Server - Windows 2000 and Windows 2003

– ThreadsPerChild

- Description: Sets the number of concurrent threads running at any one time within the IBM HTTP

Server.

- How to view or set: Edit the IBM HTTP Server file httpd.conf file located in the directory

IBM_HTTP_Server_root_directory/conf. Change the value of the parameter. Save the changes and

restart the IBM HTTP Server.

There are two ways to find how many threads are used under load:

1. Use the Windows 2000 and Windows 2003 Performance Monitor under the desktop Start

menu:

a. Right-click the status bar on your desktop. Click Task Manager.

b. Select the Processes tab.

c. Click View > Select Columns.

d. Select Thread Count.

e. Click OK.

74 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

The Processes tab shows the number threads for each process under the column name

Threads, including Apache.

2. Use the IBM HTTP Server server-status (this choice works on all platforms, not just

Windows):

a. Edit the IBM HTTP Server httpd.conf file as follows: Remove the comment character #

from the following lines: #LoadModule status_module, modules/ApacheModuleStatus.dll,

#<Location/server-status>, #SetHandler server-status, and #</Location>.

b. Save the changes and restart the IBM HTTP Server.

c. In a Web browser, go to the URL: http://yourhost/server-status. Alternatively,

d. Click Reload to update status.

e. (Optional) If the browser supports refresh, go to http://your_host/server-
status?refresh=5 to refresh every five seconds. You will see five requests currently

processing 45 idle servers.
- Default value: 250 for IBM HTTP Server V6.0.

- Recommended value: Set this value to prevent bottlenecks, allowing just enough traffic through

to the application server.
– Web server configuration reload interval

- Description: Tracks a variety of configuration information about WebSphere Application Server

resources. The Web server needs to understand some of this information, such as Uniform

Resource Identifiers (URIs) pointing to WebSphere Application Server resources. This

configuration data is pushed to the Web server through the WebSphere Application Server plug-in

at intervals specified by this parameter. Periodic updates add new servlet definitions without

having to restart any of the WebSphere Application Server servers. However, the dynamic

regeneration of this configuration information is costly in terms of performance. Adjust this

parameter in a stable production environment.

- How to view or set:Use the Refresh configuration interval Web server plug-in property to change

the current setting for this parameter. In the administrative console, click Servers > Web Servers

>Web_server_name > Plug-in properties.

- Default value: The default reload interval is 60 seconds.

- Recommended value: Increase the reload interval to a value that represents an acceptable wait

time between the servlet update and the Web server update.

For more information about the plugin-cfg.xml file see the topic “Web server plug-ins” on page 72.
v Sun Java System Web server, Enterprise Edition (formerly Sun ONE) - Solaris operating

environment

The default configuration of the Sun ONE Web server, Enterprise Edition provides a single-process,

multi-threaded server.

– Active threads

- Description: Specifies the current number of threads active in the server. After the server reaches

the limit set with this parameter, the server stops servicing new connections until it finishes old

connections. If this setting is too low, the server can become throttled, resulting in degraded

response times. To tell if the Web server is being throttled, consult its perfdump statistics. Look at

the following data:

v WaitingThreads count: If WaitingThreads count is getting close to zero, or is zero, the server

is not accepting new connections.

v BusyThreads count: If the WaitingThreads count is close to zero, or is zero, BusyThreads is

probably very close to its limit.

v ActiveThreads count: If ActiveThreads count is close to its limit, the server is probably limiting

itself.
- How to view or set: Use the Maximum number of simultaneous requests parameter in the

Enterprise Server Manager interface to control the number of active threads within Sun ONE Web

server, Enterprise Edition. This setting corresponds to the RqThrottle parameter in the

magnus.conf file.

- Default value: 512

- Recommended value: Increase the thread count until the active threads parameters show

optimum behavior.

Chapter 3. Setting up the application serving environment 75

v Microsoft Internet Information Server (IIS) - Windows NT and Windows 2000

– IIS permission properties

- Description: The Web server has several properties that dramatically affect the performance of

the application server. The default settings are usually acceptable. However, because other

products can change the default settings without user knowledge, make sure to check the IIS

settings for the Home Directory permissions of the Web server. The permissions should be set to

Script and not to Execute. If the permissions are set to Execute, no error messages are returned,

but the performance of WebSphere Application Server is decreased.

- How to view or set: To check or change these permissions, perform the following procedure in

the Microsoft management console:

1. Select the Web site (usually default Web site).

2. Right-click and select the Properties option.

3. Click the Home Directory tab. To set the permissions of the Home Directory:

a. In the Application settings, select the Script check box in the Permissions list and clear

the Execute check box.

b. (Optional) Check the permissions of the sePlugin:

1) Expand the Web server.

2) Right-click the sePlugin and select Properties.

3) Confirm that the Execute permissions are set to Execute.
- Default value: Script

- Recommended value: Script
– Number of expected hits per day

- Description: Controls the memory that IIS allocates for connections.

- How to view or set: Using the performance window, set the parameter to More than 100000 in

the Web site properties panel of the Microsoft management console.

- Default value: Fewer than 100000

- Recommended value: More than 100000
– ListenBackLog parameter

- Description: Alleviates failed connections under heavy load conditions, if you are using IIS on

Windows NT and Windows 2000. Failure typically occurs when you are using more than 100

clients. ListenBackLog increases the number of requests that IIS keeps in its queue. Consider

raising this value if you see intermittent Unable to locate server errors in the Netscape

browser.

- How to view or set:

1. Use a command prompt to issue the regedit command to access the operating system

registry.

2. In the registry window, locate the parameter in the

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\

InetInfo\Parameters\ListenBackLog directory.

3. Right-click the parameter to adjust the setting according to the server load.
- Default value: 25 (decimal)

- Recommended value: You can set the ListenBackLog parameter can be set as high as 200,

without negative impact on performance and with an improvement in load handling.

Modifying the WebSphere plug-in to improve performance

You can improve the performance of IBM HTTP Server V6.0 (with the WebSphere Web server plug-in) by

modifying the plug-in’s RetryInterval configuration. The RetryInterval is the length of time to wait before

trying to connect to a server that has been marked temporarily unavailable. Making this change can help

the IBM HTTP Server V6.0 to scale higher than 400 users.

The plug-in marks a server temporarily unavailable if the connection to the server fails. Although a default

value is 60 seconds, it is recommended that you lower this value in order to increase throughput under

heavy load conditions. Lowering the RetryInterval is important for IBM HTTP Server V6.0 on UNIX

operating systems that have a single thread per process, or for IBM HTTP Server 2.0 if it is configured to

have fewer than 10 threads per process.

76 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

How can lowering the RetryInterval affect throughput? If the plug-in attempts to connect to a particular

application server while the application server threads are busy handling other connections, which

happens under heavy load conditions, the connection times out and the plug-in marks the server

temporarily unavailable. If the same plug-in process has other connections open to the same server and a

response is received on one of these connections, the server is marked again. However, when you use

the IBM HTTP Server V6.0 on a UNIX operating system, there is no other connection since there is only

one thread and one concurrent request per plug-in process. Therefore, the plug-in waits for the

RetryInterval before attempting to connect to the server again.

Since the application server is not really down, but is busy, requests are typically completed in a small

amount of time. The application server threads become available to accept more connections. A large

RetryInterval causes application servers that are marked temporarily unavailable, resulting in more

consistent application server CPU utilization and a higher sustained throughput.

Note: Although lowering the RetryInterval can improve performance, if all the application servers are

running, a low value can have an adverse affect when one of the application servers is down. In

this case, each IBM HTTP Server V6.0 process attempts to connect and fail more frequently,

resulting in increased latency and decreased overall throughput.

Gskit install images files

The Global Security Kit (GSKit) installation image files for the WebSphere Web server plug-ins are

packaged on the CD with the Web server plug-in files. You can download the appropriate GSKIT file to the

workstation on which your Web server is running. Use the following table to assist you in selecting the

correct GSKIT installation image file.

 Operating system GSKit 7 Installation image file

Windows No image name

AIX gskta.rte

HP-UX gsk7bas

Solaris Operating Environment gsk7bas

Linux gsk7bas_7.0.3.1.i386.rpm

Linux390 gsk7bas-7.0.3.1.s390.rpm

LinuxPPC gsk7bas-7.0.3.1.ppc.rpm

Plug-ins: Resources for learning

See this topic in the V6 Information Center to find links links to relevant supplemental information about

Web server plug-ins. The information resides on IBM and non-IBM Internet sites, whose sponsors control

the technical accuracy of the information.

These links are provided for convenience. Often, the information is not specific to the IBM WebSphere

Application Server product, but is useful all or in part for understanding the product. When possible, links

are provided to technical papers and Redbooks that supplement the broad coverage of the release

documentation with in-depth examinations of particular product areas.

Web server plug-in tuning tips

Balancing workloads:

In a distributed environment, you can limit the number of connections that can be handled by an

applications server. To do this, go to the Servers > Web Servers > webserver > Plug-in properties page

in the administrative console and select Set limit for the Minimum number of connections that can be

handled by the Application Server field. Then specify in the Connections field the maximum number of

Chapter 3. Setting up the application serving environment 77

connections you want to allow. When this maximum number of connections is reached, the plug-in returns

an HTTP 503 response code to the client. This code indicates that the server is currently unable to handle

the request because it is experiencing a temporary overloading or because maintenance is being

performed.

When this maximum number of connections is reached, the plug-in, when establishing connections,

automatically skips that application server, and tries the next available application server. If no application

servers are available, an HTTP 503 response code will be returned to the client. This code indicates that

the server is currently unable to handle the request because it is experiencing a temporary overloading or

because maintenance is being performed.

Limiting the number of connections that can be established with an application server works best for Web

servers that follow the threading model instead of the process model, and only one process is started.

The IBM HTTP Server V6.0.x follows the threading model. To prevent the IBM HTTP Server from starting

more than one process, change the following properties in the Web server configuration file (httpd.conf)

to the indicated values:

ServerLimit 1

ThreadLimit 4000

StartServers 1

MaxClients 1024

MinSpareThreads 1

MaxSpareThreads 1024

ThreadsPerChild 1024

MaxRequestsPerChild 0

Improving performance in a high stress environment:

If you use the default settings for a Microsoft Windows operating system, you might encounter Web server

plug-in performance problems if you are running in a high stress environment. To avoid these problems,

consider tuning the the TCP/IP setting for this operating system. Two of the keys setting to tune are

TcpTimedWaitDelay and MaxUserPort.

To tune the TcpTimedWaitDelay setting, change the value of the tcp_time_wait_interval parameter from the

default value of 240 seconds, to 30 seconds:

1. Locate in the Windows Registry:

HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\tcpip\Parameters\TcpTimedWaitDelay

If this entry does not exist in your Windows Registry, create it by editing this entry as a new DWORD

item.

2. Specify, in seconds, a value between 30 and 300 inclusive for this entry. (It is recommended that you

specify a value of 30.)

To tune the MaxUserPort setting:

1. Locate in the Windows Registry:

HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\tcpip\Parameters\MaxUserPort

If this entry does not exist in your Windows Registry, create it by editing this entry as a new DWORD

item.

2. Set the maximum number of ports to a value between 5000 and 65534 ports, inclusive. (It is

recommended that you specify a value of 65534,)

See the Microsoft Web site for more information about these settings.

78 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

http://www.microsoft.com

Tuning Web servers

“Web server tuning parameters” on page 73 lists tuning parameters specific to Web servers. The listed

parameters may not apply to all of the supported Web servers. Check your Web server documentation

before using any of these parameters.

Setting up the administrative architecture

If your system uses administrative services, you can specify settings for the service.

Use the settings page for an administrative service to configure administrative services.

Administration service settings

Use this page to view and change the configuration for an administration service.

To view this administrative console page, click Servers > Application Servers >server_name >

Administration > Administration Services

Standalone

Specifies whether the server process is a participant in a Network Deployment cell or not. If the box is

checked (true), the server does not participate in distributed administration. If the box is unchecked (false),

the server participates in the Network Deployment system.

The default value for base WebSphere Application Server installations is true. When addNode runs to

incorporate the server into a Network Deployment cell, the value switches to false.

 Data type Boolean

Default true

Preferred Connector

Specifies the preferred JMX Connector type. Available options, such as SOAPConnector or RMIConnector,

are defined using the JMX Connectors page.

 Data type String

Default SOAP

Extension MBean Providers collection

Use this page to view and change the configuration for JMX extension MBean providers.

You can configure JMX extension MBean providers to be used to extend the existing WebSphere

managed resources in the core administrative system. Each MBean provider is a library containing an

implementation of a JMX MBean and its MBean XML Descriptor file.

To view this administrative console page, click Servers > Application Servers >server_name >

Administration > Administration Services > Extension MBean Providers

Name The name used to identify the Extension MBean provider library.

Description

An arbitrary descriptive text for the Extension MBean Provider configuration.

Classpath

The path to the Java archive (JAR) file that contains the Extension MBean provider library. This

class path is automatically added to the Application Server class path.

Extension MBean Provider settings:

Chapter 3. Setting up the application serving environment 79

Use this page to view and change the configuration for a JMX extension MBean provider.

 You can configure a library containing an implementation of a JMX MBean, and its MBean XML Descriptor

file, to be used to extend the existing WebSphere managed resources in the core administrative system

To view this administrative console page, click Servers > Application Servers >server_name >

Administration > Administration Services > Extension MBean Providers >provider_library_name

Classpath: The path to the Java archive (JAR) file that contains the Extension MBean provider library.

This class path is automatically added to the Application Server class path. The class loader needs this

information to load and parse the Extension MBean XML Descriptor file.

Description: An arbitrary descriptive text for the Extension MBean Provider configuration. Use this field for

any text that helps identify or differentiate the provider configuration.

Name: The name used to identify the Extension MBean provider library.

Extension MBean collection

You can configure Java Management Extension (JMX) MBeans to extend the existing WebSphere

Application Server managed resources in the administrative console. Use this page to register JMX

MBeans. Any MBeans that are listed have already been registered.

To view this administrative console page, click Servers > Application Servers >server name >

Administration > Administration Services > Extension MBean Providers > provider library name>

Extension MBean

DescriptorURI

Specifies the location, relative to the provider class path, where the MBean XML descriptor file is

located.

Type Specifies the type to use for registering this MBean. The type must match the type that is declared

in the MBean descriptor file.

Extension MBean settings:

Use this page to view and configure Java Management Extension (JMX) MBeans.

 To view this administrative console page, click Servers > Application Servers >server name>

Administration > Administration Services > Extension MBean Providers > provider library name>

Extension MBean >Extension MBean name

descriptorURI: Specifies the location, relative to the provider class path, where the MBean XML

descriptor file is located.

type: Specifies the type to use for registering this MBean. The type must match the type that is declared

in the MBean descriptor file.

Java Management Extensions connector properties

A Java Management Extensions (JMX) connector can either be a Remote Method Invocation (RMI)

connector or a Simple Object Access Protocol (SOAP) connector.

Depending on the property, you can specify or set a property in the administrative console, the wsadmin

tool, Application Server commands, scripts run from a command line interface, or a custom Java

administrative client program that you write. You can also set SOAP connector properties in the

soap.client.props file.

For specific information on how to code the JMX connector properties for the wsadmin tool, the Application

Server commands, or scripts, see the particular tool or command. For specific information on how to code

80 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

the JMX connector properties for a custom Java administrative client program, see the ″Java API

documentation for Application Server″ topic in the Information Center.

For the administrative console, this article specifies the coding of the particular setting or property. Coding

of properties in the soap.client.props file that are specific to JMX connectors is specified. These

properties begin with com.ibm.SOAP. Other properties in the soap.client.props file that contain

information that can be set elsewhere in the Application Server are not documented here. The coding for

the com.ibm.ssl.contextProvider property, which can be set only in the soap.client.props file, is specified.

Each profile has a property file at installation root/profiles/profile

name/properties/soap.client.props. These property files allow you to set different properties, including

security and timeout properties. These properties are the default for all administrative connections that use

the SOAP JMX connector between processes executing in a particular profile. For instance, the wsadmin

program executing under a particular profile uses the property values from that file for the SOAP connector

behavior unless the properties are overridden by some other programmatic means.

To view the JMX connector custom properties administrative console panel that goes with this article, click

one of the following paths:

v Servers -> Application servers ->server name -> Server Infrastructure -> Administration ->

Administration Services -> Additional properties -> JMX Connectors->connector type -> Additional

Properties -> Custom properties

v System administration -> Deployment manager ->Additional Properties -> Administration

Services -> Additional Properties -> JMX Connectors->connector type-> Additional Properties ->

Custom properties

v System administration -> Node agents ->node agent name -> Additional Properties ->

Administration Services -> Additional Properties -> JMX Connectors->connector type-> Additional

Properties -> Custom properties

SOAP connector properties

This section discusses JMX connector properties that pertain to SOAP connectors.

SOAP Request timeout

Specifies the SOAP client request timeout. The value that you choose depends on a number of factors

such as the size and the number of the applications that are installed on the server, the speed of your

machine, and the level of usage of your machine.

The program default value for the request timeout is 600 seconds. However, other components that

connect to the SOAP client can override the default. Components that use the soap.client.props file have

a default value of 180 seconds.

You can set the property by using one of the following options:

v Scripts run from a command line interface.

v The soap.client.props file.

 Property com.ibm.SOAP.requestTimeout

Data type Integer

Range in seconds 0 to n

If the property is zero (0), the request never times out.

Default 180

v The administrative console. Specify the property and the value as a name-value pair on the JMX

connector custom properties panel of the administrative console.

Chapter 3. Setting up the application serving environment 81

Property requestTimeout

Data type Integer

Range in seconds 0 to n

If the property is zero (0), the request never times out.

Default 600

v A Java administrative client. The property is AdminClient.CONNECTOR_SOAP_REQUEST_TIMEOUT.

Configuration URL

Specifies the Universal Resource Locator (URL) of the soap.client.props file. Specify the configuration

URL property if you want a program to read SOAP properties from this file. You can set the property by

using one of the following options:

v Scripts run from a command line interface. Scripts can pass the Configuration URL property to the

Application Server on the com.ibm.SOAP.ConfigURL system property.

v The administrative console. Specify the property and the value as a name-value pair on the JMX

connector custom properties panel of the administrative console.

 Property ConfigURL

Data type String

Valid Value http://Path/soap.client.props

Default None

v A Java administrative client. The property is AdminClient.CONNECTOR_SOAP_CONFIG.

Security context provider

Specifies the Secure Sockets Layer (SSL) implementation to use between the Application Server and the

SOAP client. You can specify either IBM Java Secure Sockets Extension (IBMJSSE) or IBM Java Secure

Sockets Extension that has undergone Federal Information Processing Standards certification

(IBMJSSEFIPS).

You can set the property by using the soap.client.props file.

 Property com.ibm.ssl.contextProvider

Data type String

Valid Values IBMJSSE

IBMJSSEFIPS

IBMJSSE2

Default IBMJSSE2

Secure Sockets Layer (SSL) security

Use this property to enable SSL security between Application Server and the SOAP client. You can set the

property by using one of the following options:

v Scripts run from a command line interface.

v The soap.client.props file.

 Property com.ibm.SOAP.securityEnabled

Data type Boolean

Default False

v The administrative console. Specify the property and the value as a name-value pair on the JMX

connector custom properties panel of the administrative console.

82 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Property securityEnabled

Data type Boolean

Default False

v A Java administrative client. The property is AdminClient.CONNECTOR_SECURITY_ENABLED.

SOAP and RMI connector properties

This section discusses JMX connector properties that pertain to both SOAP connectors and RMI

connectors.

Connector type

Specify a connector type of SOAP or RMI, depending on whether Application Server connects to a SOAP

server or an RMI server. You can set the property by using one of the following options:

v The wsadmin tool.

v Scripts run from a command line interface.

v The administrative console. Specify the property and the value as a name-value pair on the JMX

connector custom properties panel of the administrative console.

 Property Type

Data type String

Valid values SOAPConnector

RMIConnector

Default SOAP

v A Java administrative client. The property is AdminClient.CONNECTOR_TYPE. Specify by using the

AdminClient.CONNECTOR_TYPE_RMI or the AdminClient.CONNECTOR_TYPE_SOAP constants.

Host

Use the host property to specify the host name or the IP address of the server to which Application Server

connects. The server can be a SOAP server or an RMI server. You can set the property by using one of

the following options:

v The wsadmin tool.

v Scripts run from a command line interface.

v The administrative console. Specify the property and the value as a name-value pair on the JMX

connector custom properties panel of the administrative console.

 Property host

Data type String

Valid values Host name or IP address

Default None

v A Java administrative client. The property is AdminClient.CONNECTOR_HOST.

Port

Use the port property to specify the port number of the server to which Application Server connects. The

server can be a SOAP server or an RMI server. You can set the property by using one of the following

options:

v The wsadmin tool.

v Scripts run from a command line interface.

Chapter 3. Setting up the application serving environment 83

v The administrative console. Specify the property and the value as a name-value pair on the JMX

connector custom properties panel of the administrative console.

 Property port

Data type Integer

Valid value Port number

Default None

v A Java administrative client. The property is AdminClient.CONNECTOR_PORT.

User name

Specifies the user name that Application Server uses to access the SOAP server or the RMI server. You

can set the property by using one of the following options:

v The wsadmin tool.

v Scripts run from a command line interface.

v The soap.client.props file.

 Property com.ibm.SOAP.loginUserid

Data type String

Valid value The value must match the global SSL settings for SOAP

or RMI.

Default None

v The administrative console. Specify the property and the value as a name-value pair on the JMX

connector custom properties panel of the administrative console.

 Property username

Data type String

Valid value The value must match the global SSL settings for SOAP

or RMI.

Default None

v A Java administrative client. The property is AdminClient.USERNAME.

Password

Specifies the password that Application Server uses to access the SOAP server or the RMI server. You

can set the property by using one of the following options:

v The wsadmin tool.

v Scripts run from a command line interface.

v The soap.client.props file.

 Property com.ibm.SOAP.loginPassword

Data type String

Valid values The value must match the global SSL settings for SOAP

or RMI.

Default None

v The administrative console. Specify the property and the value as a name-value pair on the JMX

connector custom properties panel of the administrative console.

 Property password

Data type String

84 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Valid values The value must match the global SSL settings for SOAP

or RMI.

Default None

v A Java administrative client. The property is AdminClient.PASSWORD.

Java Management Extensions connectors

Use this page to view and change the configuration for Java Management Extensions (JMX) connectors.

To view this administrative console page, click Servers > Application Servers >server_name >

Administration > Administration Services > JMX Connectors

Java Management Extensions (JMX) connectors communicate with WebSphere Application Server when

you invoke a scripting process. There is no default for the type and parameters of a connector. The

wsadmin.properties file specifies the Simple Object Access Protocol (SOAP) connector and an appropriate

port number. You can also use the Remote Method Invocation (RMI) connector.

Use one of the following methods to select the connector type and attributes:

v Specify properties in a properties file.

v Indicate options on the command line.

Type:

Specifies the type of the JMX connector.

 Data type Enum

Default SOAPConnector

Range SOAPConnector

For JMX connections using Simple Object Access

Protocol (SOAP).

RMIConnector

For JMX connections using Remote Method

Invocation (RMI).

JMX connector settings:

Use this page to view the configuration for a Java Management Extensions (JMX) connector.

 To view this administrative console page, click Servers > Application Servers >server_name >

Administration Services > JMX Connectors >connector_type

Type:

Specifies the type of the JMX connector.

 Data type Enum

Default SOAPConnector

Range SOAPConnector

For JMX connections using Simple Object Access

Protocol (SOAP).

RMIConnector

For JMX connections using Remote Method

Invocation (RMI).

Repository service settings

Use this page to view and change the configuration for an administrative service repository.

Chapter 3. Setting up the application serving environment 85

To view this administrative console page, click Servers > Application Servers >server_name >

Administration Services > Repository Service.

Audit Enabled:

Specifies whether to audit repository updates in the log file. The default is to audit repository updates.

 Data type Boolean

Default true

Administrative agents: Resources for learning

Use the following links to find relevant supplemental information about WebSphere Application Server

administrative agents and distributed administration. The information resides on IBM and non-IBM Internet

sites, whose sponsors control the technical accuracy of the information.

These links are provided for convenience. Often, the information is not specific to the IBM WebSphere

Application Server product, but is useful all or in part for understanding the product. When possible, links

are provided to technical papers and Redbooks that supplement the broad coverage of the release

documentation with in-depth examinations of particular product areas.

View links to additional information:

Administration

v IBM WebSphere Application Server Redbooks at http://publib-
b.boulder.ibm.com/Redbooks.nsf/portals/WebSphere.

This site contains a listing of all WebSphere Application Server Redbooks.

v IBM developerWorks WebSphere at http://www.software.ibm.com/wsdd/.

This site is the home of technical information for developers working with WebSphere products. You can

download WebSphere software, take a fast path to developerWorks zones, such as VisualAge Java or

WebSphere Application Server, learn about WebSphere products through a newcomers page, tutorials,

technology previews, training, and Redbooks, get answers to questions about WebSphere products, and

join the WebSphere community, where you can keep up with the latest developments and technical

papers.

v WebSphere Application Server Support page at

http://www.ibm.com/software/webservers/appserv/support.html.

Take advantage of the Web-based Support and Service resources from IBM to quickly find answers to

your technical questions. You can easily access this extensive Web-based support through the IBM

Software Support portal and search by product category, or by product name. For example, if you are

experiencing problems specific to WebSphere Application Server, click WebSphere Application Server

in the product list. The WebSphere Application Server Support page appears.

Configuring the environment

To assist in handling requests among Web applications, Web containers, and application servers, you can

configure settings for virtual hosts, variables and shared libraries.

1. Configure virtual hosts.

2. Configure variables.

3. If your deployed applications use shared library files, define the shared library files needed.

See “Managing shared libraries” on page 97.

86 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

http://publib-b.boulder.ibm.com/Redbooks.nsf/Portals/WebSphere
http://www7b.software.ibm.com/wsdd/
http://www-3.ibm.com/software/webservers/appserv/support.html

Virtual hosts

A virtual host is a configuration that enables a single host machine to resemble multiple host machines.

Resources associated with one virtual host cannot share data with resources associated with another

virtual host, even if the virtual hosts share the same physical machine.

Each virtual host has a logical name and a list of one or more DNS aliases by which it is known. A DNS

alias is the TCP/IP hostname and port number that is used to request the servlet, for example

yourHostName:80. When no port number is specified, 80 is assumed.

When a servlet request is made, the server name and port number entered into the browser are compared

to a list of all known aliases in an effort to locate the correct virtual host and serve the servlet. If no match

is found, an error is returned to the browser.

An application server provides a default virtual host with some common aliases, such as the machine’s IP

address, short host name, and fully qualified host name. The alias comprises the first part of the path for

accessing a resource such as a servlet. For example, it is localhost:80 in the request

http://localhost:80/myServlet.

A virtual host is not associated with a particular machine. It is a configuration, rather than a ″live object,″

explaining why you can create it, but cannot start or stop it. For many users, creating virtual hosts is

unnecessary because the default_host is provided.

Adding a localhost to the virtual hosts adds the host name and IP address of the localhost machine to the

alias table. This allows a remote user to access the administrative console.

Why you would use virtual hosting

Virtual hosts let you manage a single application server on a single machine as if the application server

were multiple application servers each on their own host machine. Resources associated with one virtual

host cannot share data with resources associated with another virtual host. This is true even though the

virtual hosts share the same application server on the same physical machine.

Virtual hosts allow the administrator to isolate and independently manage multiple sets of resources on the

same physical machine.

Suppose an Internet service provider (ISP) has two customers with Internet sites hosted on the same

machine. The ISP keeps the two sites isolated from one another, despite their sharing a machine, by using

virtual hosts. The ISP associates the resources of the first company with VirtualHost1 and the resources of

the second company with VirtualHost2. Both virtual hosts map to the same application server.

Further suppose that both company sites offer the same servlet. Each site has its own instance of the

servlet, and is unaware of the same servlet on the other site. If the company whose site is organized on

VirtualHost2 is past due in paying its account with the ISP, the ISP can refuse all servlet requests that are

routed to VirtualHost2. Even though the same servlet is available on VirtualHost1, the requests directed at

VirtualHost2 do not go to the other virtual host.

The servlets on one virtual host do not share their context with the servlets on the other virtual host.

Requests for the servlet on VirtualHost1 can continue as usual. This is true even though VirtualHost2 is

refusing to fill requests for the servlet with the same name.

You associate a servlet or other application with a virtual host instead of the actual DNS address.

The default virtual host (default_host)

The product provides a default virtual host (named default_host).

The virtual host configuration uses wildcard entries with the ports for its virtual host entries.

Chapter 3. Setting up the application serving environment 87

v The default alias is *:80, using an internal port that is not secure.

v Aliases of the form *:9080 use the secure internal port.

v Aliases of the form *:9443 use the external port that is not secure.

v Aliases of the form *:443 use the secure external port.

Unless you specifically want to isolate resources from one another on the same physical machine, you

probably do not need any virtual hosts in addition to the default host.

How requests map to virtual host aliases

Virtual hosts let you manage a single application server on a single machine as if the application server

were multiple application servers that are each on their own host machine. Resources associated with one

virtual host cannot share data with resources associated with another virtual host, even though the virtual

hosts share the same application server on the same physical machine.

When you request a resource, WebSphere Application Server tries to map the request to an alias of a

defined virtual host.

Mappings are both case sensitive and insensitive. For example, the portion ″http://host:port/″ is case

insensitive, but the URL that follows is case sensitive. The match must be alphanumerically exact. Also,

different port numbers are treated as different aliases.

For example, the request http://www.myhost.com/myservlet maps successfully to

http://WWW.MYHOST.COM/myservlet but not to http://WWW.MYHOST.COM/MYSERVLET or

Www.Myhost.Com/Myservlet. In the latter two cases, these mappings fail due to case sensitivity. The

request http://www.myhost.com/myservlet does not map successfully to http://myhost/myservlet or to

http://myhost:9876/myservlet. These mappings fail because they are not alphanumerically correct.

You can use wildcard entries for aliases by port and specify that all valid host name and address

combinations on a particular port map to a particular virtual host.

If you request a resource using an alias that cannot be mapped to an alias of a defined virtual host, you

receive a 404 error in the browser that was used to issue the request. A message states that the virtual

host could not be found.

Two sets of associations occur for virtual hosts. Application deployment associates an application with a

virtual host. Virtual host definitions associate the network address of the machine and the HTTP transport

or Web server port assignment of the application server with the virtual host. Looking at the flow from the

Web client request for the snoop servlet, for example, the following actions occur:

1. The Web client asks for the snoop servlet: at Web address

http://www.some_host.some_company.com:9080/snoop

2. The some_host machine has the 9080 port assigned to the stand-alone WebSphere Application

Server, server1.

3. The server1 Application Server looks at the virtual host assignments to determine the virtual host that

is assigned to the alias some_host.some_company.com:9080.

4. The application server finds that no explicit alias for that DNS string exists. However, a wild card

assignment for host name * at port 9080 does exist. This is a match. The virtual host that defines the

match is default_host.

5. The application server looks at the applications deployed on the default_host and finds the snoop

servlet.

6. The application server serves the application to the Web client and the requester is able to use the

snoop servlet.

88 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

You can have any number of aliases for a virtual host. You can even have overlapping aliases, such as:

 Virtual host Alias Port

default_host * 9080

localhost 9080

my_machine 9080

my_machine.my_company.com 9080

localhost 80

The Application Server looks for a match using the explicit address specified on the Web client address.

However, it might resolve the match to any other alias that matches the pattern before matching the

explicit address. Simply defining an alias first in the list of aliases does not guarantee the search order

when WebSphere Application Server is looking for a matching alias.

A problem can occur if you use the same alias for two different virtual hosts. For example, assume that

you installed the default application and the snoop servlet on the default_host. You also have another

virtual host called the admin_host. However, you have not installed the default application or the snoop

servlet on the admin_host.

Assume that you define overlapping aliases for both virtual hosts because you accidentally defined port

9080 for the admin_host instead of port 9060:

 Virtual host Alias Port

default_host * 9080

localhost 9080

admin_host * 9060

my_machine.com 9080

Assume that a Web client request comes in for http://my_machine.com:9080/snoop.

If the application server matches the request against *:9080, the application is served from the

default_host. If the application server matches the request to my.machine.com:9080, the application cannot

be found. A 404 error occurs in the browser that issues the request. A message states that the virtual host

could not be found.

This problem is the result of not finding the requested application in the first virtual host that has a

matching alias. The correct way to code aliases is for the alias name on an incoming request to match

only one virtual host in all of your virtual host definitions. If the URL can match more than one virtual host,

you can see the problem just described.

Configuring virtual hosts

Virtual hosts enable you to isolate and independently manage multiple sets of resources on the same

physical machine.

1. Create a virtual host using the “Virtual host collection” on page 90 of the administrative console. Click

Environment > Virtual Hosts from the navigation tree of the console. Click New. On the “Virtual host

settings” on page 91 page that displays, specify an administrative name for the virtual host. When you

create a virtual host, a default set of 90 MIME entries is created for the virtual host.

2. There must be a virtual host alias corresponding to each port used by an HTTP transport. There is one

HTTP transport in each Web container, usually assigned to the virtual host named default_host. You

can change the default assignment to any valid virtual host.

Chapter 3. Setting up the application serving environment 89

You must create a virtual host for each HTTP port in the following cases:

v You are using the internal HTTP transport with a port other than the default of 9080. You must

define the port that you are using.

v You are using the default port 9080, but the port is no longer defined. You must define port 9080.

v You have created multiple Application Servers (either stand-alone servers or cluster members) that

use the same virtual host. Because each server must be listening on a different HTTP transport

port, you must define a virtual host alias for the transport port of each server.

If you define new virtual host aliases, identify the port values that the aliases use on the “HTTP

transport collection” on page 130 page.

3. If necessary, create a virtual host alias for each HTTP transport port.

From the “Virtual host collection” page, click your virtual host. On the “Virtual host settings” on page 91

page for the virtual host, click Host aliases. To define a virtual host alias on the “Host alias collection”

on page 91 page, click New. On the “Host alias settings” on page 92 page for the virtual host alias,

specify a host name and a port. Configure the virtual host to contain an alias for the port number. For

example, specify an alias of *:9082 if 9082 is the port number in use by the transport.

4. When you enter the URL for the application into a Web browser, include the port number in the URL.

For example, if 9082 is the port number, specify a URL such as

http://localhost:9082/wlm/SimpleServlet

5. If MIME entries are not specified at the Web module level, define MIME object types and their file

name extensions. For each needed MIME entry on the “MIME type collection” on page 92 page, click

New. On the “MIME type settings” on page 93 page, specify a MIME type and extension.

6. After you configure a virtual host alias or change a configuration, you must regenerate the Web server

plug-in configuration and restart WebSphere Application Server.

Virtual host collection

Use this page to create and manage configurations that each let a single host machine resemble multiple

host machines. Such configurations are known as virtual hosts.

To view this administrative console page, click Environment > Virtual Hosts.

Each virtual host has a logical name (which you define on this panel) and is known by its list of one or

more domain name system (DNS) aliases. A DNS alias is the TCP/IP host name and port number used to

request the servlet, for example yourHostName:80. (Port 80 is the default.)

You define one or more alias associations by clicking an existing virtual host or by adding a new virtual

host.

When a servlet request is made, the server name and port number entered into the browser are compared

to a list of all known aliases in an effort to locate the correct virtual host to serve the servlet. No match

returns an error to the browser.

An application server profile provides a default virtual host with some common aliases, such as the

internet protocol (IP) address, the DNS short host name, and the DNS fully qualified host name. The alias

comprises the first part of the path for accessing a resource such as a servlet.

For example, the alias is localhost:80 in the request http://localhost:80/myServlet.

A virtual host is not associated with a particular profile or node (machine), but is associated with a

particular server instead. It is a configuration, rather than a ″live object.″ You can create a virtual host, but

you cannot start or stop it.

For many users, creating virtual hosts is unnecessary because the default_host that is provided is

sufficient.

90 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Adding the host name and IP address of the localhost machine to the alias table lets a remote user

access the administrative console.

Resources associated with one virtual host cannot share data with resources associated with another

virtual host, even if the virtual hosts share the same physical machine.

Name:

Specifies a logical name for configuring Web applications to a particular host name. The default virtual

host is suitable for most simple configurations.

 Virtual hosts enable you to isolate, and independently manage, multiple sets of resources on the same

physical machine. Determine whether you need a virtual host alias for each port associated with an HTTP

transport channel or an HTTP transport. There must be a virtual host alias corresponding to each port

used by an HTTP transport channel or an HTTP transport. There is one HTTP transport channel or HTTP

transport associated with each Web container, and there is one Web container in each application server.

When you create a virtual host, a default set of 90 MIME entries is created for the virtual host.

You must create a virtual host for each HTTP port in the following cases:

v You use the internal HTTP transport with a port other than the default value of 9080, or for some reason

the virtual host does not contain the usual entry for port 9080.

v You create multiple application servers (stand-alone servers, managed servers, or cluster members) that

are using the same virtual host. Because each server must be listening on a different HTTP port, you

need a virtual host alias for the HTTP port of each server.

Virtual host settings:

Use this page to configure a virtual host instance.

 To view this administrative console page, click Environment > Virtual Hosts >virtual_host_name.

Name:

Specifies a logical name for configuring Web applications to a particular host name. The default virtual

host is suitable for most simple configurations.

 Data type String

Default default_host

Host alias collection:

Use this page to manage host name aliases defined for a virtual host. An alias is the DNS host name and

port number that a client uses to form the URL request for a Web application resource.

 To view this administrative console page, click Environment > Virtual Hosts >virtual_host_name > Host

Aliases.

Host Name:

Specifies the IP address, DNS host name with domain name suffix, or just the DNS host name, used by a

client to request a Web application resource (such as a servlet, JavaServer Pages (JSP) file, or HTML

page). For example, the host alias name is myhost in a DNS name of myhost:8080.

Chapter 3. Setting up the application serving environment 91

The product provides a default virtual host (named default_host). The virtual host configuration uses the

wildcard character * (asterisk) along with the port number for its virtual host entries. Unless you specifically

want to isolate resources from one another on the same node (physical machine), you probably do not

need any virtual hosts in addition to the default host.

Port:

Specifies the port for which the Web server has been configured to accept client requests. For example,

the port assignment is 8080 in a DNS name of myhost:8080. A URL refers to this DNS as:

http://myhost:8080/servlet/snoop.

Host alias settings:

Use this page to view and configure a host alias.

 To view this administrative console page, click Environment > Virtual Hosts >virtual_host_name > Host

Aliases >host_alias_name.

Host name:

Specifies the IP address, domain name system (DNS) host name with domain name suffix, or the DNS

host name that clients use to request a Web application resource, such as a servlet, JSP file, or HTML

page.

 For example, when the DNS name is myhost, the host alias is myhost:8080, where 8080 is the port. A URL

request can refer to the snoop servlet on the host alias as: http://myhost:8080/servlet/snoop.

When there is no port number specified for a host alias, the default port is 80. For existing virtual hosts,

the default host name and port reflect the values specified at product installation or configuration. For new

virtual hosts, the default can be * to allow any value or no specification.

 Data type String

Default *

You can also use the IP address or the long or short DNS

name.

Port:

Specifies the port where the Web server accepts client requests. Specify a port value in conjunction with

the host name.

 The default reflects the value specified at product setup. The default might be 80, 81, 9060 or a similar

value.

 Data type Integer

Default 9060

MIME type collection:

Use this page to view and configure multi-purpose internet mail extensions (MIME) object types and their

file name extensions.

 The list shows a collection of MIME type extension mappings defined for the virtual host. Virtual host

MIME entries apply when you do not specify MIME entries at the Web module level.

92 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

To view a list of current virtual host Mime types in the administrative console, click Environment > Virtual

Hosts >virtual_host_name > MIME Types.

MIME Type:

Specifies a MIME type, which can be application, audio, image, text, video, www, or x-world. An example

value for MIME type is text/html.

Extensions:

Specifies file extensions of files that map the MIME type. Do not specify the period before the extension.

Example extensions for a text/html MIME type are htm and html.

MIME type settings:

Use this page to configure a multi-purpose internet mail extensions (MIME) object type.

 To view this administrative console page, click Environment > Virtual Hosts >virtual_host_name > MIME

Types >MIME_type.

MIME Type:

Specifies a MIME type, which can be application, audio, image, text, video, www, or x-world. An example

value for MIME type is text/html.

 An example value for MIME type is text/html. A default value appears only if you are viewing the

configuration for an existing instance.

 Data type String

Extensions:

Specifies file extensions of files that map the MIME type. Do not specify the period before the extension.

Example extensions for a text/html MIME type are htm and html.

 File extensions for a text/html MIME type are .htm and .html. A default value appears only if you are

viewing the configuration for an existing MIME type.

 Data type String

Variables

A variable is a configuration property that can be used to provide a parameter for some values in the

system. A variable has a name and a value.

WebSphere variables are used for:

v Configuring WebSphere Application Server path names, such as JAVA_HOME, and

APP_INSTALL_ROOT.

v Configuring certain customization values.

Each variable has a scope. A scope is the range of locations in the WebSphere Application Server network

where the variable is applicable.

v A variable with a node-level scope is available only on the node and the servers on that node. If a

node-level variable has the same name as a cell-wide variable, the node-level variable value takes

precedence.

Chapter 3. Setting up the application serving environment 93

v A server variable is available only on the one server process. A server variable takes precedence over a

variable with the same name that is defined at a higher level.

You can use variables in configuration values such as file system path settings. Use the following syntax

to refer to a variable:

${variable_name}

The value of a variable can contain a reference to another variable. The value of the variable is computed

by substituting the value of the referenced variable recursively.

Variables are useful when concatenating two path variables when the specification does not accept the

AND operator. For example, suppose that the following variables exist:

 Variable name Variable value

ROOT_DIR /

HOME_DIR ${ROOT_DIR}home

USER_DIR ${HOME_DIR}/myuserdir

The variable reference ${USER_DIR} resolves to the value /home/myuserdir.

Configuring WebSphere variables

This topic describes how to create a WebSphere Application Server variable.

You can define a WebSphere Application Server variable to provide a parameter for some values in the

system. After you define the name and value for a variable, the value is used in place of the variable

name. Variables most often specify file paths. However, some system components also support the use of

variables.

WebSphere variables are used for:

v Configuring WebSphere Application Server path names, such as JAVA_HOME, and

APP_INSTALL_ROOT.

v Configuring certain customization values.

The scope of a variable can be cell-wide, node-wide, or applicable to only one server process.

Define variables on the Environment > WebSphere Variables console page.

Define the scope to apply a variable node-wide or to only one server process. A variable resolves to its

new value when used in a component that supports the use of variables.

1. Click Environment > WebSphere Variables in the administrative console to define a new variable.

2. Specify the scope of the variable. Declare the new variable for the Node or Server and click Apply.

The variable exists at the level you specify. Define a variable at multiple levels to use multiple values.

The more granular definition overrides the higher level setting.

For instance, if you specify the same variable on a node and a server, the server setting overrides the

node setting.

Scoping variables is particularly important when testing data source objects. Variable scoping can

cause a data source to fail the test connection, but to succeed at run time, or to pass the test

connection, but fail at run time.

See the Developing and deploying applications PDF for more information.

3. Click New on the WebSphere Variables page.

4. Specify a name, a value, and a description on the Variable page. Click OK.

94 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

5. Verify that the variable is displayed in the list of variables. The administrative console does not pick up

typing errors. The variable is ignored if it is referred to incorrectly.

6. Save your configuration.

7. Stop the server and start the server again to put the variable configuration into effect.

WebSphere variables collection

Use this page to view and change a list of substitution variables with their values and scope.

To view this administrative console page, click Environment > WebSphere Variables.

For information on a variable, click the variable and read the value in the Description field.

Name:

Specifies the symbolic name for a WebSphere Application Server variable. For example, a variable name

might represent a physical path or URL root used by WebSphere Application Server.

Value:

Specifies the value that the symbolic name represents. For example, the value might be an absolute path

value for a file or URL root.

Scope:

Specifies the level at which a WebSphere Application Server variable is visible on the administrative

console panel.

 A resource can be visible in the administrative console collection table at the node or server scope.

Variable settings:

Use this page to define the name and value of a WebSphere Application Server substitution variable.

 To view this administrative console page, click Environment > WebSphere Variables

>WebSphere_variable_name.

Name:

Specifies the symbolic name for a WebSphere Application Server variable. For example, a variable name

might represent a physical path or URL root that is used by WebSphere Application Server.

 WebSphere variables are used for:

v Configuring WebSphere Application Server path names, such as JAVA_HOME, and

APP_INSTALL_ROOT.

v Configuring certain customization values.

WebSphere Application Server substitutes the symbolic name wherever its value displays in the system.

For example, ″JAVA_HOME″ is the symbolic name representing the file system path to the installation

directory for the Java Virtual Machine (JVM). For example, the value is

/opt/IBM/WebSphere/AppServer/java for the WebSphere Application Server product on a Linux machine.

You can create new variables for use in WebSphere Application Server components that support the use

of variables.

Chapter 3. Setting up the application serving environment 95

Data type String

Value:

Specifies the value that the symbolic name represents. For example, the value might be an absolute path

value for a file or URL root.

 For example, /opt/IBM/WebSphere/AppServer/java is the value on a Linux machine for a variable named

JAVA_HOME.

 Data type String

Description:

Documents the purpose of a variable.

 Data type String

IBM Toolbox for Java JDBC driver

WebSphere Application Server supports the IBM Toolbox for Java JDBC driver. The IBM Toolbox for Java

JDBC driver is included with the IBM Toolbox for Java product.

IBM Toolbox for Java is a library of Java classes that are optimized for accessing iSeries and AS/400 data

and resources. You can use the IBM Toolbox for Java JDBC driver to access local or remote DB2 UDB

for iSeries 400 databases from server-side and client Java applications that run on any platform that

supports Java.

IBM Toolbox for Java is available in these versions:

IBM Toolbox for Java licensed program

The licensed program is available with every OS/400 release, starting with Version 4 Release 2

(V4R2). You can install the licensed program on your iSeries 400 system, and then either copy the

IBM Toolbox for Java JAR file (jt400.jar) to your system or update your system classpath to locate

the server installation. Product documentation for IBM Toolbox for Java is available from the

iSeries information center: http://publib.boulder.ibm.com/iseries/v5r1/ic2924/index.htm

Locate the documentation by traversing the following path in the left-hand navigation window of

the iSeries information center: Programming > Java > IBM Toolbox for Java.

JTOpen

JTOpen is the open source version of IBM Toolbox for Java, and is more frequently updated than

the licensed program version. You can download JTOpen from http://www-
1.ibm.com/servers/eserver/iseries/toolbox/downloads.htm. You can also download the JTOpen

Programming Guide. The guide includes instructions for installing JTOpen and information about

the JDBC driver.

The JDBC driver for both versions supports JDBC 2.0. For more information about IBM Toolbox for Java

and JTOpen, see the product Web site at http://www-
1.ibm.com/servers/eserver/iseries/toolbox/index.html.

Note: If you are using WebSphere Application Server on platforms other than iSeries, use the JTOpen

version of the Toolbox JDBC driver.

96 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

http://publib.boulder.ibm.com/iseries/v5r1/ic2924/index.htm
http://www-1.ibm.com/servers/eserver/iseries/toolbox/downloads.htm
http://www-1.ibm.com/servers/eserver/iseries/toolbox/downloads.htm
http://www-1.ibm.com/servers/eserver/iseries/toolbox/index.html
http://www-1.ibm.com/servers/eserver/iseries/toolbox/index.html

Configure and use the jt400.jar file

1. Download the jt400.jar file from the JTOpen URL at http://www-
1.ibm.com/servers/eserver/iseries/toolbox/downloads.htm. Place it in a directory on your

workstation such as C:\JDBC_Drivers\Toolbox.

2. Open the administrative console.

3. Select Environment.

4. Select Managed WebSphere Variables.

5. Set the managed variable OS400_TOOLBOX_JDBC_DRIVER_PATH at the Node level.

6. Double click OS400_TOOLBOX_JDBC_DRIVER_PATH.

7. Set the value to the full directory path to the jt400.jar file downloaded in step one. Do not include

jt400.jar in this value. For example,

OS400_TOOLBOX_JDBC_DRIVER_PATH == "C:\JDBC_Drivers\Toolbox"

When you choose a Toolbox driver from the list of possible resource providers the Classpath field

looks like:

Classpath == ${OS400_TOOLBOX_JDBC_DRIVER_PATH}/jt400.jar

Shared library files

Shared library files in WebSphere Application Server consist of a symbolic name, a Java class path, and a

native path for loading Java Native Interface (JNI) libraries.

You can define a shared library at the cell, node, or server level. Defining a library at one of the three

levels does not cause the library to be placed into the application server’s class loader. You must

associate the library to an application or server in order for the classes represented by the shared library

to be loaded in either a server-wide or application-specific class loader.

A separate class loader is used for shared libraries that are associated with an application server. This

class loader is the parent of the application class loader, and the WebSphere Application Server

extensions class loader is its parent. Shared libraries that are associated with an application are loaded by

the application class loader.

Managing shared libraries

Shared libraries are files used by multiple applications. Using the administrative console, you can define a

shared library at the cell, node, or server level. You can then associate the library to an application or

server to load the classes represented by the shared library in either a server-wide or application-specific

class loader. Using an installed optional package, you can associate a shared library to an application by

declaring the dependent library .jar file in the MANIFEST.MF file of the application. Refer to the Java 2

Platform, Enterprise Edition (J2EE) 1.4 specification, section 8.2 for an example.

If your deployed applications use shared library files, define shared libraries for the library files and

associate the libraries with specific applications or with an application server. Associating a shared library

file with a server associates the file with all applications on the server. Use the Shared Libraries page to

define new shared library files to the system and remove them.

v Use the administrative console to define a shared library.

1. Create a shared library for each library file that your applications need.

2. Associate each shared library with an application or a server.

– Associate a shared library with an application that uses the shared library file.

– Associate a shared library with an application server so every application on the server can use

the shared library file.

v Use an installed optional package to declare a shared library for an application.

v Remove a shared library.

Chapter 3. Setting up the application serving environment 97

http://www-1.ibm.com/servers/eserver/iseries/toolbox/downloads.htm
http://www-1.ibm.com/servers/eserver/iseries/toolbox/downloads.htm

1. Click Environment > Shared Libraries in the console navigation tree to access the Shared

Libraries page.

2. Select the library to be removed.

3. Click Delete.

The list of shared libraries is refreshed. The library file no longer displays in the list.

Creating shared libraries

Shared libraries are files used by multiple applications.

The first step for making a library file available to multiple applications deployed on a server is to create a

shared library for each library file that your applications need. When you create the shared libraries, set

variables for the library files.

Use the Shared Libraries page to create and configure shared libraries.

1. Go to the Shared Libraries page. Click Environment > Shared Libraries in the console navigation

tree.

2. Change the scope of the collection table to see what shared libraries are in a cell, node, or server.

a. Select the cell, a node, or a server.

b. Click Apply.

3. Click New.

4. Configure the shared library.

a. On the settings page for a shared library, specify the name, class path, and any other variables for

the library file that are needed.

b. Click Apply.

5. Repeat steps 1 through 4 until you define a shared library instance for each library file that your

applications need.

Using the administrative console, associate your shared libraries with specific applications or with the class

loader of an application server. Associating a shared library file with a server class loader associates the

file with all applications on the server.

Alternatively, you can use an installed optional package to associate your shared libraries with an

application.

Shared library collection

Use this page to define a list of shared library files that deployed applications can use.

To view this administrative console page, click Environment > Shared Libraries.

By default, a shared library is accessible to applications deployed (or installed) on the same node as the

shared library file. Use the Scope field to change the scope to a different node or to a specific server.

Name:

Specifies a name for the shared library.

Description:

Describes the shared library file.

Shared library settings:

Use this page to make a library file available to deployed applications.

98 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

To view this administrative console page, click Environment > Shared Libraries >shared_library_name.

Name:

Specifies a name for the shared library.

 Data type String

Description:

Describes the shared library file.

 Data type String

Classpath:

Specifies the class path used to locate the JAR files for the shared library support.

 Data type String

Units Class path

Native Library Path:

Specifies the class path for locating platform-specific library files for shared library support; for example,

.dll, .so, or *SRVPGM objects.

 Data type String

Units Class path

Associating shared libraries with applications

You can associate a shared library with an application. Classes represented by the shared library are then

loaded in the application’s class loader, making the classes available to the application.

This article assumes that you have defined a shared library at the cell, node, or server level. The shared

library represents a library file used by multiple deployed applications.

This article also assumes that you want to use the administrative console, and not an installed optional

package, to associate a shared library with an application.

To associate a shared library with an application, create and configure a library reference using the

administrative console. A library reference specifies the name of the shared library file.

If you associate a shared library with an application, do not associate the same shared library with a

server class loader.

1. Click Applications > Enterprise Applications >application_name > Libraries in the console

navigation tree to access the Library Ref page.

2. Click Add.

3. On the settings page for a library reference, specify variables for the library reference as needed. The

variables identify the shared library file that your application uses.

4. Click Apply.

The name of the library reference is shown in the list on the Library Ref page.

Chapter 3. Setting up the application serving environment 99

Repeat steps 2 through 4 until you define a library reference instance for each shared library that your

application requires.

Associating shared libraries with servers

You can associate shared libraries with the class loader of a server. Classes represented by the shared

library are then loaded in a server-wide class loader, making the classes available to all applications

deployed on the server.

This article assumes that you have defined a shared library at the cell, node, or server level. The shared

library represents a library file used by multiple deployed applications.

To associate a shared library with the class loader of a server, create and configure a library reference

using the administrative console. A library reference specifies the name of the shared library file.

If you associate a shared library with a server class loader, do not associate the same shared library with

an application.

1. Configure class loaders for applications deployed on the server.

a. Click Servers > Application Servers > server_name to access the settings page for the

application server.

b. Set values for the application Class loader policy and Class loading mode of the server. For

information on these settings, see “Application server settings” on page 115 and class loaders.

2. Create a library reference for each shared library file that your application needs.

a. Go to the settings page for a class loader.

b. Click Libraries to access the Library Ref page.

c. Click Add.

d. On the settings page for a library reference, specify variables for the library reference as needed.

The variables identify the shared library file that your application uses.

e. Click Apply. The name of the library reference is shown in the list on the Library Ref page.

Repeat the previous steps until you define a library reference for each shared library that your

application needs.

Installed optional packages

Installed optional packages enable applications to use the classes in Java archive (.jar) files without

having to include them explicitly in a class path. An installed optional package is a .jar file containing

specialized tags in its manifest file that enable the application server to identify it. An installed optional

package declares one or more shared library .jar files in the manifest file of an application. When the

application is installed on a server, the classes represented by the shared libraries are loaded in the class

loader of the application, making the classes available to the application.

When a Java 2 Platform, Enterprise Edition (J2EE) application is installed on a server, dependency

information is specified in its manifest file. WebSphere Application Server reads the dependency

information of the application (.ear file) to automatically associate the application with an installed optional

package .jar file. WebSphere Application Server adds the .jar files in associated optional packages to

the application class path. Classes in the installed optional packages are then available to application

classes.

Installed optional packages used by WebSphere Application Server are described in section 8.2 of the

J2EE specification, Version 1.4 at http://java.sun.com/j2ee/j2ee-1_4-fr-spec.pdf.

WebSphere Application Server supports using the manifest file (manifest.mf) in shared library .jar files

and application .ear files. WebSphere Application Server does not support the Java 2 Platform Standard

Edition (J2SE) Installed Optional Package semantics used in the J2SE specification

100 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

http://java.sun.com/j2ee/j2ee-1_4-fr-spec.pdf

(http://java.sun.com/j2se/1.3/docs/guide/extensions/spec.html), which primarily serve the applet

environment. WebSphere Application Server ignores applet-specific tags within manifest files.

Sample manifest.mf file

A sample manifest file follows for an application app1.ear that refers to a single shared library file

util.jar:

app1.ear:

 META-INF/application.xml

 ejb1.jar:

 META-INF/MANIFEST.MF:

 Extension-List: util

 util-Extension-Name: com/example/util

 util-Specification-Version: 1.4

 META-INF/ejb-jar.xml

util.jar:

 META-INF/MANIFEST.MF:

 Extension-Name: com/example/util

 Specification-Title: example.com’s util package

 Specification-Version: 1.4

 Specification-Vendor: example.com

 Implementation-Version: build96

The syntax of a manifest entry depends on whether the entry applies to a member with a defining role (the

shared library) or a member with a referencing role (a J2EE application or a module within a J2EE

application).

Manifest entry tagging

Main tags used for manifest entries include the following:

Extension-List

A required tag with variable syntax. Within the context of the referencing role (application’s

manifest), this is a space delimited list that identifies and constructs unique Extension-Name,

Extension-Specification tags for each element in the list. Within the context of the defining role

(shared library), this tag is not valid.

Extension-Name

A required tag that provides a name and links the defining and referencing members. The syntax

of the element within the referencing role is to prefix the element with the <ListElement> string.

For each element in the Extension-List, there is a corresponding <ListElement>-Extension-Name

tag. The defining string literal value for this tag (in the above sample com/example/util1) is used

to match (in an equality test) the corresponding tags between the defining and referencing roles.

Specification-Version

A required tag that identifies the specification version and links the defining and referencing

members.

Implementation-Version

An optional tag that identifies the implementation version and links the defining and referencing

members.

Further information on these tags is in the .jar file specification at

http://java.sun.com/j2se/1.4.2/docs/guide/jar/jar.html#Manifest%20Specification.

Using installed optional packages

You can associate one or more shared libraries with an application using an installed optional package

that declares the shared libraries in the application’s manifest file. Classes represented by the shared

libraries are then loaded in the application’s class loader, making the classes available to the application.

Chapter 3. Setting up the application serving environment 101

http://java.sun.com/j2se/1.3/docs/guide/extensions/spec.html
http://java.sun.com/j2se/1.4.2/docs/guide/jar/jar.html#Manifest%20Specification

Read about installed optional packages in “Installed optional packages” on page 100 and in section 8.2 of

the Java 2 Platform, Enterprise Edition (J2EE) specification, Version 1.4 at

http://java.sun.com/j2ee/j2ee-1_4-fr-spec.pdf.

WebSphere Application Server does not support the Java 2 Platform Standard Edition (J2SE) Installed

Optional Package semantics used in the J2SE specification

(http://java.sun.com/j2se/1.3/docs/guide/extensions/spec.html), which primarily serve the applet

environment. WebSphere Application Server ignores applet-specific tags within manifest files.

Installed optional packages expand the existing shared library capabilities of an application server. Prior to

Version 6, an administrator was required to associate a shared library to an application or server. Installed

optional packages enable an administrator to declare a dependency in an application’s manifest file to a

shared library, with installed optional package elements listed in the manifest file, and automatically

associate the application to the shared library. During application installation, the shared library .jar file is

added to the class path of the application class loader.

If you use an installed optional package to associate a shared library with an application, do not associate

the same shared library with an application class loader or a server class loader using the administrative

console.

1. Assemble the library file, including the manifest information that identifies it as an extension. Two

sample manifest files follow. The first sample manifest file has application app1.ear refer to a single

shared library file util.jar:

app1.ear:

 META-INF/application.xml

 ejb1.jar:

 META-INF/MANIFEST.MF:

 Extension-List: util

 util-Extension-Name: com/example/util

 util-Specification-Version: 1.4

 META-INF/ejb-jar.xml

util.jar:

 META-INF/MANIFEST.MF:

 Extension-Name: com/example/util

 Specification-Title: example.com’s util package

 Specification-Version: 1.4

 Specification-Vendor: example.com

 Implementation-Version: build96

The second sample manifest file has application app1.ear refer to multiple shared library .jar files:

app1.ear:

 META-INF/application.xml

 ejb1.jar:

 META-INF/MANIFEST.MF:

 Extension-List: util1 util2 util3

 Util1-Extension-Name: com/example/util1

 Util1-Specification-Version: 1.4

 Util2-Extension-Name: com/example/util2

 Util2-Specification-Version: 1.4

 Util3-Extension-Name: com/example/util3

 Util3-Specification-Version: 1.4

 META-INF/ejb-jar.xml

util1.jar:

 META-INF/MANIFEST.MF:

 Extension-Name: com/example/util1

 Specification-Title: example.com’s util package

 Specification-Version: 1.4

 Specification-Vendor: example.com

 Implementation-Version: build96

102 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

http://java.sun.com/j2ee/j2ee-1_4-fr-spec.pdf
http://java.sun.com/j2se/1.3/docs/guide/extensions/spec.html

util2.jar:

 META-INF/MANIFEST.MF:

 Extension-Name: com/example/util2

 Specification-Title: example.com’s util package

 Specification-Version: 1.4

 Specification-Vendor: example.com

 Implementation-Version: build96

util3.jar:

 META-INF/MANIFEST.MF:

 Extension-Name: com/example/util3

 Specification-Title: example.com’s util package

 Specification-Version: 1.4

 Specification-Vendor: example.com

 Implementation-Version: build96

2. Create a shared library that represents the library file assembled in step 1. This installs the library file

as a WebSphere Application Server shared library.

3. Assemble the application, declaring in the application manifest file dependencies to the library files

named the manifest created for step 1.

4. Install the application on the server.

During application installation, the shared library .jar files are added to the class path of the application

class loader.

Library reference collection

Use this page to view and manage library references that define how to use global libraries. For example,

you can use this page to associate shared library files with a deployed application.

To view this administrative console page, click Applications > Enterprise Applications

>application_name > Libraries.

If no shared libraries are defined, after you click Add a message is displayed stating that you must define

a shared library before you can create a library reference. A shared library is a container-wide library file

that can be used by deployed applications. To define a shared library, click Environment > Shared

Libraries and specify the scope of the container. Then, click New and specify a name and one or more

paths for the shared library. After you define a shared library, return to this page, click Add, and create a

library reference.

Library name:

Specifies a name for the library reference.

Library reference settings:

Use this page to define library references, which specify how to use global libraries.

 To view this administrative console page, click Applications > Enterprise Applications

>application_name > Libraries >library_reference_name. A shared library must be defined to view this

page.

A shared library is a container-wide library file that can be used by deployed applications. To define a

shared library, click Environment > Shared Libraries and specify the scope of the container. Then, click

New and specify a name and one or more paths for the shared library.

Library name:

Specifies the name of the shared library to use for the library reference.

Chapter 3. Setting up the application serving environment 103

Data type String

Environment: Resources for learning

Use the following links to find relevant supplemental information about configuring the WebSphere

Application Server environment. The information resides on IBM and non-IBM Internet sites, whose

sponsors control the technical accuracy of the information.

These links are provided for convenience. Often, the information is not specific to the IBM WebSphere

Application Server product, but is useful all or in part for understanding the product. When possible, links

are provided to technical papers and Redbooks that supplement the broad coverage of the release

documentation with in-depth examinations of particular product areas.

Programming instructions and examples

v WebSphere Application Server education at http://www.ibm.com/software/websphere/technical.

Administration

v Listing of all IBM WebSphere Application Server Redbooks at http://publib-
b.boulder.ibm.com/Redbooks.nsf/Portals/WebSphere.

Working with server configuration files

Application server configuration documents define the available application servers, their configurations,

and their contents.

You should periodically save changes to your administrative configuration. You can change the default

locations of configuration files, as needed.

1. Edit configuration files. The master repository is comprised of .xml configuration files. You can edit

configuration files using the administrative console, scripting, wsadmin commands, programming, or by

editing a configuration file directly.

2. Save changes made to configuration files. Using the console, you can save changes as follows:

a. Click Save on the taskbar of the administrative console.

b. On the Save page, click Save.

3. Handle temporary configuration files resulting from a session timing out.

4. Change the location of temporary configuration files.

5. Change the location of backed-up configuration files.

6. Change the location of temporary workspace files.

7. Back up and restore configurations.

Configuration documents

WebSphere Application Server stores configuration data for servers in several documents in a cascading

hierarchy of directories. The configuration documents describe the available application servers, their

configurations, and their contents. Most configuration documents have XML content.

Hierarchy of directories of documents

The cascading hierarchy of directories and the documents’ structure support multinode replication to

synchronize the activities of all servers in a cell. In a Network Deployment environment, changes made to

configuration documents in the cell repository, are automatically replicated to the same configuration

documents that are stored on nodes throughout the cell.

104 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

http://www-306.ibm.com/software/websphere/technical/
http://publib-b.boulder.ibm.com/Redbooks.nsf/Portals/WebSphere

At the top of the hierarchy is the cells directory. It holds a subdirectory for each cell. The names of the cell

subdirectories match the names of the cells. For example, a cell named cell1 has its configuration

documents in the subdirectory cell1.

On the Network Deployment node, the subdirectories under the cell contain the entire set of documents for

every node and server throughout the cell. On other nodes, the set of documents is limited to what applies

to that specific node. If a configuration document only applies to node1, then that document exists in the

configuration on node1 and in the Network Deployment configuration, but not on any other node in the

cell.

Each cell subdirectory has the following files and subdirectories:

v The cell.xml file, which provides configuration data for the cell

v Files such as security.xml, virtualhosts.xml, resources.xml, and variables.xml, which provide

configuration data that applies across every node in the cell

v The clusters subdirectory, which holds a subdirectory for each cluster defined in the cell. The names of

the subdirectories under clusters match the names of the clusters.

Each cluster subdirectory holds a cluster.xml file, which provides configuration data specifically for that

cluster.

v The nodes subdirectory, which holds a subdirectory for each node in the cell. The names of the nodes

subdirectories match the names of the nodes.

Each node subdirectory holds files such as variables.xml and resources.xml, which provide

configuration data that applies across the node. Note that these files have the same name as those in

the containing cell’s directory. The configurations specified in these node documents override the

configurations specified in cell documents having the same name. For example, if a particular variable is

in both cell- and node-level variables.xml files, all servers on the node use the variable definition in the

node document and ignore the definition in the cell document.

Each node subdirectory holds a subdirectory for each server defined on the node. The names of the

subdirectories match the names of the servers. Each server subdirectory holds a server.xml file, which

provides configuration data specific to that server. Server subdirectories might hold files such as

security.xml, resources.xml and variables.xml, which provide configuration data that applies only to

the server. The configurations specified in these server documents override the configurations specified

in containing cell and node documents having the same name.

v The applications subdirectory, which holds a subdirectory for each application deployed in the cell. The

names of the applications subdirectories match the names of the deployed applications.

Each deployed application subdirectory holds a deployment.xml file that contains configuration data on

the application deployment. Each subdirectory also holds a META-INF subdirectory that holds a J2EE

application deployment descriptor file as well as IBM deployment extensions files and bindings files.

Deployed application subdirectories also hold subdirectories for all .war and entity bean .jar files in the

application. Binary files such as .jar files are also part of the configuration structure.

An example file structure is as follows:

cells

 cell1

 cell.xml resources.xml virtualhosts.xml variables.xml security.xml

 nodes

 nodeX

 node.xml variables.xml resources.xml serverindex.xml

 serverA

 server.xml variables.xml

 nodeAgent

 server.xml variables.xml

 nodeY

 node.xml variables.xml resources.xml serverindex.xml

 applications

 sampleApp1

 deployment.xml

 META-INF

Chapter 3. Setting up the application serving environment 105

application.xml ibm-application-ext.xml ibm-application-bnd.xml

 sampleApp2

 deployment.xml

 META-INF

 application.xml ibm-application-ext.xml ibm-application-bnd.xml

Changing configuration documents

You can use one of the administrative tools (console, wsadmin, Java APIs) to modify configuration

documents or edit them directly. It is preferable to use the administrative console because it validates

changes made to configurations. ″“Configuration document descriptions”″ states whether you can edit a

document using the administrative tools or must edit it directly.

Configuration document descriptions

Most configuration documents have XML content. The table below describes the documents and states

whether you can edit them using an administrative tool or must edit them directly.

If possible, edit a configuration document using the administrative console because it validates any

changes that you make to configurations. You can also use one of the other administrative tools (wsadmin

or Java APIs) to modify configuration documents. Using the administrative console or wsadmin scripting to

update configurations is less error prone and likely quicker and easier than other methods.

However, you cannot edit some files using the administrative tools. Configuration files that you must edit

manually have an X in the Manual editing required column in the table below.

Document descriptions

(Locations split for publishing)

 Configuration file Locations Purpose Manual editing required

admin-authz.xml config/cells/

cell_name/

Define a role for

administrative operation

authorization.

X

app.policy config/cells/

cell_name/

nodes/node_name/

Define security permissions

for application code.

X

cell.xml config/cells/

cell_name/

Identify a cell.

cluster.xml config/cells/

cell_name/

clusters/

cluster_name/

Identify a cluster and its

members and weights.

This file is only available

with the Network

Deployment product.

deployment.xml config/cells/

cell_name/

applications/

application_name/

Configure application

deployment settings such

as target servers and

application-specific server

configuration.

filter.policy config/cells/

cell_name/

Specify security

permissions to be filtered

out of other policy files.

X

integral-jms-
authorizations.xml

config/cells/

cell_name/

Provide security

configuration data for the

integrated messaging

system.

X

106 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

library.policy config/cells/

cell_name/

nodes/node_name/

Define security permissions

for shared library code.

X

multibroker.xml config/cells/

cell_name/

Configure a data replication

message broker.

namestore.xml config/cells/

cell_name/

Provide persistent name

binding data.

X

naming-authz.xml config/cells/

cell_name/

Define roles for a naming

operation authorization.

X

node.xml config/cells/

cell_name/

nodes/node_name/

Identify a node.

pmirm.xml config/cells/

cell_name/

Configure PMI request

metrics.

X

resources.xml config/cells/

cell_name/

config/cells/

cell_name/

nodes/node_name/

config/cells/

cell_name/

nodes/node_name/

servers/

server_name/

Define operating

environment resources,

including JDBC, JMS,

JavaMail, URL, JCA

resource providers and

factories.

security.xml config/cells/

cell_name/

Configure security, including

all user ID and password

data.

server.xml config/cells/

cell_name/

nodes/

node_name/

servers/

server_name/

Identify a server and its

components.

serverindex.xml config/cells/

cell_name/

nodes/

node_name/

Specify communication

ports used on a specific

node.

spi.policy config/cells/

cell_name/

nodes/

node_name/

Define security permissions

for service provider libraries

such as resource providers.

X

variables.xml config/cells/

cell_name/

config/cells/

cell_name/

nodes/

node_name/

 config/cells/

cell_name/

nodes/node_name/

servers/

server_name/

Configure variables used to

parameterize any part of

the configuration settings.

Chapter 3. Setting up the application serving environment 107

virtualhosts.xml config/cells/

cell_name/

Configure a virtual host and

its MIME types.

Object names

When you create a new object using the administrative console or a wsadmin command, you often must

specify a string for a name attribute. Most characters are allowed in the name string. However, the name

string cannot contain the following characters. The name string also cannot contain leading and trailing

spaces.

 / forward slash

\ backslash

* asterisk

, comma

: colon

; semi-colon

= equal sign

+ plus sign

? question mark

| vertical bar

< left angle bracket

> right angle bracket

& ampersand (and sign)

% percent sign

’ single quote mark

″ double quote mark

]]> No specific name exists for this character combination.

. period (not valid if first character; valid if a later character)

Configuration repositories

A configuration repository stores configuration data. By default, configuration repositories reside in the

config subdirectory of the product installation root directory.

Handling temporary configuration files resulting from session timeout

If the console is not used for 15 minutes or more, the session times out. The same thing happens if you

close the browser window without saving the configuration file. Changes to the file are saved to a

temporary file when the session times out, after 15 minutes.

When a session times out, the configuration file in use is saved under the userid/timeout directory under

the ServletContext’s temp area. This is the value of the javax.servlet.context.tempdir attribute of the

ServletContext. By default, it is: install_root/temp/hostname/Administration/admin/admin.war

You can change the temp area by specifying it as a value for the tempDir init-param of the action servlet in

the deployment descriptor (web.xml) of the administrative application.

The next time you log on to the console, you are prompted to load the saved configuration file. If you

decide to load the saved file:

1. If a file with the same name exists in the install_root/config directory, that file is moved to the

userid/backup directory in the temp area.

2. The saved file is moved to the install_root/config directory.

3. The file is then loaded.

If you decide not to load the saved file, it is deleted from the userid/timeout directory in the temp area.

108 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

The configuration file is also saved automatically when the same user ID logs into the non-secured

console again, effectively starting a different session. This process is equivalent to forcing the existing user

ID out of session, similar to a session timing out.

Changing the location of temporary configuration files

The configuration repository uses copies of configuration files and temporary files while processing

repository requests. It also uses a backup directory while managing the configuration. You can change the

default locations of these files from the configuration directory to a directory of your choice using system

variables or the administrative console.

The default location for the configuration temporary directory is CONFIG_ROOT/temp. Change the location

by doing either of the following:

v Set the system variable was.repository.temp to the location you want for the repository temporary

directory. Set the system variable when launching a Java process using the -D option. For example, to

set the default location of the repository temporary directory, use the following option:

-Dwas.repository.temp=%CONFIG_ROOT%/temp

v Use the administrative console to change the location of the temporary repository file location for each

server configuration. For example, on the Network Deployment product, to change the setting for a

deployment manager, do the following:

1. Click System Administration > Deployment Manager in the navigation tree of the administrative

console. Then, click Administration Services, Repository Service, and Custom Properties.

2. On the Properties page, click New.

3. On the settings page for a property, define a property for the temporary file location. The key for this

property is was.repository.temp. The value can include WebSphere Application Server variables

such as ${WAS_TEMP_DIR}/config. Then, click OK.

The system property set using the first option takes precedence over the configuration property set using

the second option.

Changing the location of backed-up configuration files

During administrative processes like adding a node to a cell or updating a file, configuration files are

backed up to a backup location. The default location for the backup configuration directory is

CONFIG_ROOT/backup. Change the location by doing either of the following:

v Set the system variable was.repository.backup to the location you want as the repository backup

directory. Set the system variable when launching a Java process using the -D option. For example, to

set the default location of the repository backup directory, use the following option:

-Dwas.repository.backup=%CONFIG_ROOT%/backup

v Use the administrative console to change the location of the repository backup directory for each server

configuration. For example, on the Network Deployment product, do the following to change the setting

for a deployment manager:

1. Click System Administration > Deployment Manager in the navigation tree of the administrative

console. Then, click Administration Services, Repository Service, and Custom Properties.

2. On the Properties page, click New.

3. On the settings page for a property, define a property for the backup file location. The key for this

property is was.repository.backup. The value can include WebSphere Application Server variables

such as ${WAS_TEMP_DIR}/backup. Then, click OK.

The system property set using the first option takes precedence over the configuration property set using

the second option.

Chapter 3. Setting up the application serving environment 109

Changing the location of temporary workspace files

The administrative console workspace allows client applications to navigate the configuration. Each

workspace has its own repository location defined either in the system property or the property passed to

a workspace manager when creating the workspace: workspace.user.root or workspace.root, which is

calculated as %workspace.root%/user_ID/workspace/wstemp.

The default workspace root is calculated based on the user installation root: %user.install.root%/wstemp.

You can change the default location of temporary workspace files by doing the following:

v Distributed platforms: Change the setting for the system variable workspace.user.root or workspace.root

so its value is no longer set to the default location. Set the system variable when launching a Java

process using the -D option. For example, to set the default location the full path of the root of all users’

directories, use the following option:

-Dworkspace.user.root=full_path_for_root_of_all_user_directories

Backing up and restoring administrative configurations

WebSphere Application Server represents its administrative configurations as XML files. You should back

up configuration files on a regular basis.

1. Run the backupConfig command to back up configuration files.

2. Run the restoreConfig command to restore configuration files. Specify backup files that do not contain

invalid or inconsistent configurations.

Transformation of configuration files

The WebSphere Application Server master configuration repository stores configuration files for all the

nodes in the cell. When you upgrade the deployment manager from one release of WebSphere Application

Server to another, the configuration files that are stored in the master repository for the nodes on the old

release are converted into the format of the new release.

With this conversion, the deployment manager can process the configuration files uniformly. However,

nodes on an old release cannot readily use configuration files that are in the format of the new release.

WebSphere Application Server addresses the problem when it synchronizes the configuration files from the

master repository to a node on an old release. The configuration files are first transformed into the old

release format before they ship to the node. WebSphere Application Server performs the following

transformations on configuration documents:

v Changes the XML name space from the format of the new release to the format of the old release

v Strips out attributes of cell-level documents that are applicable to the new release only

v Strips out new resource definitions that are not understood by old release nodes

Server configuration files: Resources for learning

Use the following links to find relevant supplemental information about administering WebSphere

Application Server configuration files. The information resides on IBM and non-IBM Internet sites, whose

sponsors control the technical accuracy of the information.

These links are provided for convenience. Often, the information is not specific to the IBM WebSphere

Application Server product, but is useful all or in part for understanding the product. When possible, links

are provided to technical papers and Redbooks that supplement the broad coverage of the release

documentation with in-depth examinations of particular product areas.

View links to additional information:

110 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Administration

v IBM WebSphere Application Server Redbooks at http://publib-
b.boulder.ibm.com/Redbooks.nsf/Portals/WebSphere.

This site contains a listing of all WebSphere Application Server Redbooks.

v IBM developerWorks WebSphere at http://www.software.ibm.com/wsdd.

This site is the home of technical information for developers working with WebSphere products. You can

download WebSphere software, take a fast path to developerWorks zones, such as VisualAge Java or

WebSphere Application Server, learn about WebSphere products through a newcomers page, tutorials,

technology previews, training, and Redbooks, get answers to questions about WebSphere products, and

join the WebSphere community, where you can keep up with the latest developments and technical

papers.

v WebSphere Application Server Support page at

http://www.ibm.com/software/webservers/appserv/support.html.

Take advantage of the Web-based Support and Service resources from IBM to quickly find answers to

your technical questions. You can easily access this extensive Web-based support through the IBM

Software Support portal at URL http://www-3.ibm.com/software/support/ and search by product

category, or by product name. For example, if you are experiencing problems specific to WebSphere

Application Server, click WebSphere Application Server in the product list. The WebSphere Application

Server Support page appears.

Administering application servers

An application server configuration provides settings that control how an application server provides

services for running enterprise applications and their components.

This section describes how to create and configure application servers in an existing application server

environment.

A WebSphere Application Server administrator can configure one or more application servers and perform

tasks such as the following:

1. Create application servers.

2. Manage application servers.

3. Configure transport chains.

4. Develop custom services.

5. Define processes for the application server. As part of defining processes, you can define:

6. Use the Java virtual machine.

After preparing a server, deploy an application or component on the server. See “Preparing to host

applications” on page 162 for a sample procedure that you might follow in configuring the application

server runtime and resources.

Application servers

Application servers extend a Web server’s capabilities to handle Web application requests, typically using

Java technology. An application server makes it possible for a server to generate a dynamic, customized

response to a client request.

For example, suppose--

1. A user at a Web browser on the public Internet visits a company Web site. The user requests to use

an application that provides access to data in a database.

2. The user request flows to the Web server.

3. The Web server determines that the request involves an application containing resources not handled

directly by the Web server (such as servlets). It forwards the request to a WebSphere Application

Server product.

Chapter 3. Setting up the application serving environment 111

http://publib-b.boulder.ibm.com/Redbooks.nsf/Portals/WebSphere
http://www7b.software.ibm.com/wsdd/
http://www-3.ibm.com/software/webservers/appserv/support.html

4. The WebSphere Application Server product forwards the request to one of its application servers on

which the application is running.

5. The invoked application then processes the user request. For example:

v An application servlet prepares the user request for processing by an enterprise bean that performs

the database access.

v The application produces a dynamic Web page containing the results of the user query.
6. The application server collaborates with the Web server to return the results to the user at the Web

browser.

The WebSphere Application Server product provides multiple application servers that can be either

separately configured processes or nearly identical clones.

Creating application servers

For the Express and Base products, you must use scripting to create a new application server (see the

Administering applications and their environment PDF). The server you create cannot be managed using

the administrative console. Also note that the only server you can manage using the administrative console

is the default server (server1).

With WebSphere Application Server Version 6.0, you can now upgrade a portion of the nodes in a cell,

while leaving others at the older release level. This means that, for a period of time, you may be managing

servers that are at the current release and servers that are running the newer release in the same cell. In

this mixed environment, there are restrictions on what you can do with servers at the older release level.

They are:

v You can only create new server definitions on nodes that are running WebSphere Application Server

Version 6.0.

v When you create a new server definition, you must use a server configuration template, and that

template must be created from a WebSphere Application Server Version 6.0 server instance. You

cannot create (or use) a template from a WebSphere Application Server Version 5.x server instance.

There are no restrictions on what you can do with the servers running on the newer release level.

The steps below describe how to use the Create New Application Server page.

1. Create the new application server using the wsadmin createApplicationServer command. For

information, see the Administering applications and their environment PDF.

2. To use multiple language encoding support in the administrative console, configure an application

server with UTF-8 encoding enabled.

The new application server appears in the list of servers on the Application Servers page.

Note that the application server created has many default values specified for it. An application server has

many properties that can be set and creating an application server on the Create New Application Server

page specifies values for only a few of the important properties. To view all of the properties of your

application server and to customize your application server further, click on the name of your application

server on the Application Servers page and change the settings for your application server as needed.

Configuring application servers for UTF-8 encoding

To use multiple language encoding support in the administrative console, you must configure an

application server with UTF-8 encoding enabled.

1. Create an application server or use an existing application server.

2. On the Application Server page, click on the name of the server you want enabled for UTF-8.

3. On the settings page for the selected application server, under Server Infrastructure, click Java and

Process Management > Process Definition.

112 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

4. On the Process Definition page, click Java Virtual Machine.

5. On the Java Virtual Machine page, specify -Dclient.encoding.override=UTF-8 for Generic JVM

Arguments and click OK.

6. Click Save on the console task bar.

7. Restart the application server.

Note that the autoRequestEncoding option does not work with UTF-8 encoding enabled. The default

behavior for WebSphere Application Server is, first, to check if charset is set on content type header. If it

is, then the product uses content type header for character encoding; if it is not, then the product uses

character encoding set on server using the system property default.client.encoding. If charset is not

present and the system property is not set, then the product uses ISO-8859-1. Enabling

autoRequestEncoding on a Web module changes the default behavior: if charset it not present on an

incoming request header, the product checks the Accept-Language header of the incoming request and

does encoding using the first language found in that header. If there is no charset on content type header

and no Accept language header, then the product uses character encoding set on server using the system

property default.client.encoding. As with the default behavior, if charset is not present and the system

property is not set, then the product uses ISO-8859-1.

Managing application servers

To view information about an application server, use the Application Servers panel on the administrative

console.

You must use the “Getting started with scripting” on page 186 to create a new application server. The

server you create cannot be managed using the administrative console. Also note that the only server you

can manage using the administrative console is the default server (server1).

1. Access the Application Servers page. Click Servers > Application Servers in the console navigation

tree.

2. View information about application servers.

The Application Servers page lists application servers in the cells holding the application servers.

To view additional information about a particular application server or to further configure an application

server, click on the application server name under Name. This accesses the settings page for an

application server.

To view product information for an application server:

a. Verify that the application server is running.

b. Display the Runtime tab on the settings page for an application server.

c. Click Product Information.

The Product Information page displayed lists the WebSphere Application Server products installed for

the application server, the version and build levels for the products, the build dates, and any interim

fixes applied to the application server.

Note: You can also get this information by using the versionInfo command. For more information, see

″versionInfo command″ in the information center.

3. Create an application server using the wsadmin createApplicationServer command. For information,

see “Commands for the AdminTask object” on page 489.

4. Monitor the running of application servers.

Server collection

Use this page to view information about and manage application servers, generic servers, Java Message

Service (JMS) servers, and Web servers.

Application Servers

Chapter 3. Setting up the application serving environment 113

The Application Servers page lists the application servers in the cell. You can use this page to create new

application servers, create application server templates, or delete existing application servers. You can

also use this page to start and stop these application servers.

To view this administrative console page, click Application Servers.

Generic Servers

The Generic Servers page lists the generic servers in the cell. You can use this page to create new

generic servers, create generic server templates, or delete existing generic servers. You can also use this

page to start and stop these generic servers.

The Network Deployment product also shows the status of the generic servers. The status indicates

whether a server is running, stopped, or encountering problems.

You can use this page to add or delete application servers.

To view this administrative console page, click Generic Servers.

Java Message Service (JMS) Servers

The JMS Servers page lists the JMS servers in the cell. You can use this page to start and stop these

JMS servers.

Each JMS server provides the functions of the JMS provider for a node in your administrative domain.

There can be at most one JMS server on each node in the administration domain, and any application

server within the domain can access JMS resources served by any JMS server on any node in the

domain.

Note: JMS servers apply only to WebSphere Application Server Version 5.x nodes. You cannot create a

JMS server on a node that is running WebSphere Application Server 6.0, but the existing Version

5.x JMS servers will continue to be displayed, and you can modify their properties. You can also

delete Version 5.x JMS servers.

To view this administrative console page, click JMS Servers.

Web Servers

The Web Servers page lists the Web servers in your administrative domain. You can use this page to

generate and propagate a Web server plug-in configuration file, create new Web servers, create new Web

server templates, or delete existing Web servers. You can also use this page to start and stop these Web

servers.

To view this administrative console page, click Web Servers.

Name:

Specifies a logical name for the server. For WebSphere Application Server, server names must be unique

within a node.

Node:

Specifies the name of the node holding the server.

Version:

114 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Specifies the version of the WebSphere Application Server product on which the server runs.

Status:

Indicates whether the server is started or stopped. (Network Deployment only)

 Note that if the status is Unavailable, the node agent is not running in that node and you must restart the

node agent before you can start the server.

Application server settings:

An application server is a server which provides services required to run enterprise applications. Use this

page to view or change the settings of an application server instance.

 To view this administrative console page, click Servers > Application Servers >server_name.

On the Configuration tab, you can edit fields. On the Runtime tab, you can look at read-only information.

The Runtime tab is available only when the server is running.

Name:

Specifies a logical name for the server. Server names must be unique within a node. However, for multiple

nodes within a cluster, you may have different servers with the same server name as long as the server

and node pair are unique.

 For example, a server named server1 in a node named node1 in the same cluster with a server named

server1 in a node named node2 is allowed. Configuring two servers named server1 in the same node is

not allowed. WebSphere Application Server uses the server name for administrative actions, such as

referencing the server in scripting.

 Data type String

Default server1

Run in development mode:

Enabling this option may reduce the startup time of an application server. This may include JVM settings

such as disabling bytecode verification and reducing JIT compilation costs. Do not enable this setting on

production servers. This setting is only available on application servers running WebSphere Application

Server Version 6.0 and later.

 Specifies that you want to use the JVM settings -Xverify and -Xquickstart on startup. After selecting this

option, save the configuration and restart the server to activate development mode.

The default setting for this option is false, which indicates that the server will not be started in

development mode. Setting this option to true specifies that the server will be started in development

mode (with settings that will speed server startup time).

 Data type Boolean

Default false

Parallel start:

Select this field to start the server on multiple threads. This might shorten the startup time.

Chapter 3. Setting up the application serving environment 115

Specifies that you want the server components, services, and applications to start in parallel rather than

sequentially.

The default setting for this option is true, which indicates that the server be started using multiple threads.

Setting this option to false specifies that the server will not be started in using multiple threads (which

may lengthen startup time).

Note that the order in which the applications start depends on the weights you assigned to each them.

Applications that have the same weight are started in parallel. You set an application’s weight with the

Starting weight option on the Applications > Enterprise Applications > application_name page of the

Administrative Console. For more information about the Starting weight option, see the Installing your

application serving environment PDF.

 Data type Boolean

Default true

Class loader policy:

Select whether there is a single class loader to load all applications or a different class loader for each

application.

Class loading mode:

Specifies whether the class loader should search in the parent class loader or in the application class

loader first to load a class. The standard for Developer Kit class loaders and WebSphere Application

Server class loaders is Parent first.

 If you select Parent last, your application can override classes contained in the parent class loader, but

this action can potentially result in ClassCastException or linkage errors if you have mixed use of

overridden classes and non-overridden classes.

Process Id:

The native operating system’s process ID for this server.

 The process ID property is read only. The system automatically generates the value.

Cell name:

The name of the cell in which this server is running.

 The Cell name property is read only.

Node name:

The name of the node in which this server is running.

 The Node name property is read only.

State:

The run-time execution state for this server.

 The State property is read only.

Ports collection:

116 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Use this page to view and manage communication ports used by run-time components running within a

process. Communication ports provide host and port specifications for a server.

 To view this administrative console page, click Servers > Application Servers >server_name

Communications > Ports.

Note that this page displays only when you are working with ports for application servers.

Port Name:

Specifies the name of a port. Each name must be unique within the server.

Host:

Specifies the IP address, domain name server (DNS) host name with domain name suffix, or just the DNS

host name, used by a client to request a resource (such as the naming service, or administrative service).

Port:

Specifies the port for which the service is configured to accept client requests. The port value is used in

conjunction with the host name.

Transport Details:

Provides a link to the transport chains associated with this port. If no transport chains are associated with

this port, the string ″No associated transports″ appears in this column.

Ports settings:

Use this to view and change the configuration for a communication port used by run-time components

running within a process. A communication port provides host and port specifications for a server.

 For base WebSphere Application Server, you can view this administrative console page, by clicking

Servers > Application Servers >server_name > Ports >port_name

Port Name:

Specifies the name of the port. The name must be unique within the server.

 Note that this field displays only when you are defining a port for an application server. You can select a

radio button to:

Well-known Port

select a previously defined port from the drop down list

User-defined Port

create a port with a new name by entering the name in the text box

 Data type String

Host:

Specifies the IP address, domain name server (DNS) host name with domain name suffix, or just the DNS

host name, used by a client to request a resource (such as the naming service, administrative service, or

JMS broker).

 For example, if the host name is myhost, the fully qualified DNS name can be myhost.myco.com and the IP

address can be 155.123.88.201.

Chapter 3. Setting up the application serving environment 117

Host names on the ports can be resolvable names or IP addresses. The server will bind to the specific

host name or IP address that is supplied. That port will only be accessible through the IP address that is

resolved from the given host name or IP address. The IP address may be of the IPv4 (Internet Protocol

Version 4) format for all platforms, and IPv6 (Internet Protocol Version 6) format on specific operating

systems where the server supports IPv6.

 Data type String

Default * (asterisk)

Port:

Specifies the port for which the service is configured to accept client requests. The port value is used in

conjunction with the host name.

 Port numbers in the server can be reused among multiple ports as long as they have host names that

resolve to unique IP addresses and there is not a port with the same port number and a wildcard (*) host

name. A port number is valid in the range of 0 and 65535. 0 specifies that the server should bind to any

ephemeral port available.

 Data type Integer

Default None

Range 1-65536

Custom property collection:

Use this page to view and manage arbitrary name-value pairs of data, where the name is a property key

and the value is a string value that can be used to set internal system configuration properties.

 The administrative console contains several Custom Properties pages that work similarly. To view one of

these administrative pages, click a Custom Properties link.

Name:

Specifies the name (or key) for the property.

 Do not start your property names with was. because this prefix is reserved for properties that are

predefined in WebSphere Application Server.

Value:

Specifies the value paired with the specified name.

Description:

Provides information about the name-value pair.

Custom property settings:

Use this page to configure arbitrary name-value pairs of data, where the name is a property key and the

value is a string value that can be used to set internal system configuration properties. Defining a new

property enables you to configure a setting beyond that which is available in the administrative console.

 For base WebSphere Application Server you can view this administrative console page by, clicking

Servers > Application Servers >server_name. Then, under Server Infrastructure, click Administration >

Custom Properties

118 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Name:

Specifies the name (or key) for the property.

 Do not start your property names with was. because this prefix is reserved for properties that are

predefined in WebSphere Application Server.

 Data type String

Value:

Specifies the value paired with the specified name.

 Data type String

Description:

Provides information about the name and value pair.

 Data type String

Server component collection:

Use this page to view information about and manage server component types such as application servers,

messaging servers, or name servers.

 To view this administrative console page, click Servers > Application Servers >server_name. Then,

under Server Infrastructure, click Administration > Server Components.

Type:

Specifies the type of internal server.

Server component settings:

Use this page to view or configure a server component instance.

 To view this administrative console, click Servers > Application Servers >server_name. Then, under

Server Infrastructure, click Administration > Server Components >server_component_name.

Name:

Specifies the name of the component.

 Data type String

Initial State:

Specifies the desired state of the component when the server process starts. The options are: Started and

Stopped. The default is Started.

 Data type String

Default Started

Chapter 3. Setting up the application serving environment 119

Thread pool collection:

Use this page to select or create a group of threads that an application server uses. Requests are sent to

the server through any of the HTTP transports. A thread pool enables components of the server to reuse

threads to eliminate the need to create new threads at run time. Creating new threads expends time and

resources.

 To view this administrative console page, click Servers > Application Servers >server_name > Thread

Pools. (You can reach this page through more than one navigational route.)

Thread pool settings:

Use this page to configure a group of threads that an application server uses. Requests are sent to the

server through any of the HTTP transport channels or HTTP transports. A thread pool enables components

of the server to reuse threads to eliminate the need to create new threads at run time. Creating new

threads expends time and resources.

 To view this administrative console page, click Servers > Application Servers >server_name > Thread

Pools, then select the thread pool. (You can reach this page through more than one navigational route.)

Minimum size:

Specifies the minimum number of threads to allow in the pool.

 Data type Integer

Default 10

Maximum size:

Specifies the maximum number of threads to allow in the pool.

 If your Tivoli Performance Viewer shows the Percent Maxed metric to remain consistently in the double

digits, consider increasing the Maximum size. The Percent Maxed metric indicates the amount of time that

the configured threads are used. If there are several simultaneous clients connecting to the server-side

ORB, increase the size to support up to 1000 clients.

 Data type Integer

Default 50

Recommended 50 (25 on Linux systems)

Thread inactivity timeout:

Specifies the number of milliseconds of inactivity that should elapse before a thread is reclaimed. A value

of 0 indicates not to wait and a negative value (less than 0) means to wait forever.

Note: The administrative console does not allow you to set the inactivity timeout to a negative number. To

do this you must modify the value directly in the server.xml file.

 Data type Integer

Units Milliseconds

Default 3500

Allow thread allocation beyond maximum thread size:

120 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Specifies whether the number of threads can increase beyond the maximum size configured for the thread

pool.

 Data type Boolean

Default Not enabled (false)

Generic server settings:

Use this page to view or change the settings of a generic server.

 A generic server is a server that is managed in the WebSphere Application Server administrative domain,

although it is not a server that is supplied by the WebSphere Application Server product. The generic

server can be any server or process that is necessary to support the Application Server environment,

including a Java server, a C or C++ server or process, or a Remote Method Invocation (RMI) server.

To view this administrative console page, click Servers > Generic Servers >server_name.

On the Configuration tab, you can edit fields. On the Runtime tab, you can look at read-only information.

The Runtime tab is available only when the server is running.

Name:

Specifies a logical name for the generic server.

 It is highly recommended that you use a naming scheme that makes it easy to distinguish your generic

application servers from regular WebSphere Application Servers. This will enable you to quickly determine

whether to use the Terminate or Stop button in the administrative console to stop a specific application

server.

You must use the Terminate button to stop a generic application server.

 Data type String

Default

Starting servers

Starting a server starts a new server process based on the process definition settings of the current server

configuration.

If you need to restart a server, follow the directions in this article for starting servers. The procedure that

applies to starting servers also applies to restarting servers.

Note: If you created a new server definition using a base WebSphere Application Server, you cannot start,

stop, or manage the new server using the original base Application Server.

There are several options for starting an Application Server:

v

If you are using Windows, you can use the Start menu to start the Application Server. If you

are using the Express version of the product, click Start > Programs > IBM WebSphere > Express

v6.0 > Start the server. You can check that the server has successfully started by checking the

startServer.log file. If the server has successfully started, the last two lines of the startServer.log file

reads:

Server launched. Waiting for initialization status.

Server server1 open for e-business; process id is 1932.

Chapter 3. Setting up the application serving environment 121

The startServer.log file is located in the <drive>:\Program

Files\IBM\WebSphere\AppServer\profiles\profile_name\logs\server1 directory if you have installed

your server with the default settings. The server name and process id vary depending on your settings.

v On distributed platforms, use the startServer command to start an Application Server from the

command line.

v

On AIX, you can use the command line to start the server. Use the startServer command

from the /usr/WebSphere/AppServer/bin directory, as shown below. To start a server that is associated

with a non-default profile, issue the startServer command from the

/opt/WebSphere/AppServer/profiles/profile_name/bin directory.

./startServer.sh server1

You can check that the server has successfully started by checking the startServer.log file. If the

server has successfully started, the last two lines of the startServer.log file reads:

Server launched. Waiting for initialization status.

Server server1 open for e-business; process id is 1932.

On AIX, the startServer.log file is located in the

/usr/IBM/WebSphere/AppServer/profiles/profile_name/logs/server1/ directory.

v Start an Application Server for tracing and debugging.

To start the Application Server with standard Java debugging enabled:

1. Click Servers > Application Servers from the administrative console navigation tree. Then, click

the Application Server whose processes you want to trace and debug, then Java and Process

Management > Process Definition > Java Virtual Machine.

2. On the Java Virtual Machine page, place a checkmark in the check box for the Debug Mode setting

to enable the standard Java debugger. If needed, set debug arguments. Then, click OK.

3. Save the changes to a configuration file.

4. Stop the Application Server.

5. Start the Application Server again as described previously.

Once the server is started, you can install your applications.

Running application servers from a non-root user

By default, each base WebSphere Application Server server on a Linux and UNIX platform uses the root

user ID to run all application server processes. However, you can run all application server processes

under the same non-root user and user group. This task describes how to run an application server

process from a non-root user.

If global security is enabled, the user registry must not be Local OS. Using the Local OS user registry

requires the application server to run as root. Refer to the Securing applications and their environment

PDF for details.

Run your application servers as non-root when you no longer want to use root authority. For security or

administrative reasons, you may want to change to non-root user IDs. Perform this task at any time to

change the permissions of an application server. You must restart the application server in order for the

changes to take effect. .

Note: If you are using the Tivoli Access Manager (TAM) to perform authentication or authorization for

WebSphere Application Server, it is important to be aware of potential permissions problems. For

more information, see the Securing applications and their environment PDF.

For the following steps, assume that:

v was1 is the user to run the application server

v wasgroup is the primary user group for user was1

122 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

v wasnode is the node name

v server1 is the application server

v /opt/WebSphere/AppServer is the installation root

v nodeProfile1 is the profile name.

Note: For information about creating a profile, see the Administering applications and their environment

PDF.

To configure an application server to run as non-root, complete the following steps.

 1. Log on to the application server system as the root user.

 2. Create the user ID was1 with a primary user group of wasgroup. The user ID, was1, is an example. You

can name the user something else.

 3. Log off and back on as root.

 4. Start server1 as root. Run the startServer.sh script from the /bin directory of the installation root:

startServer.sh server1

 5. Specify user and group ID values for the Run As User and Run As Group settings for a server:

a. Start the administrative console.

b. Go to the Process execution page of the administrative console. You must define all three

properties in the following table. Click Servers > Application Servers > server1 > Server

Infrastructure > Java and Process Management > Process Execution and change all of the

following values:

 Property Value

Run As User was1

Run As Group wasgroup

UMASK 022

c. Click OK.

d. Save the configuration.

 6. Stop the application server. Use the stopServer.sh script from the /bin directory of the installation

root:

stopServer.sh server1

 7. Change file permissions as the root user. The following example assumes that the installation root

directory for WebSphere Application Server is /opt/WebSphere/AppServer:

chgrp wasgroup /opt/WebSphere

chgrp wasgroup /opt/WebSphere/AppServer

chgrp -R wasgroup /opt/WebSphere/AppServer/cloudscape

chgrp -R wasgroup /opt/WebSphere/AppServer/profiles/nodeProfile1

chmod g+wr /opt/WebSphere

chmod g+wr /opt/WebSphere/AppServer

chmod -R g+wr /opt/WebSphere/AppServer/cloudscape

chmod -R g+wr /opt/WebSphere/AppServer/profiles/nodeProfile1

 8. Log on to the application server system as was1.

 9. Start server1 as was1. Run the startServer.sh script from the /bin directory of the installation root:

startServer.sh server1

10. If creating another server with a different user ID, follow this procedure again for the new user ID and

server name.

The two user IDs must share the same group, wasgroup.

You can start an application server from a non-root user.

Chapter 3. Setting up the application serving environment 123

Detecting and handling problems with run-time components

You must monitor the status of run-time components to ensure that, once started, they remain operational

as needed.

1. Regularly examine the status of run-time components. Browse messages displayed under Websphere

Runtime Messages in the status area at the bottom of the console. The run-time event messages

marked with a red X provide detailed information on event processing. You can also use the Logging

and Tracing page of the administrative console to monitor the status of run-time components. Click

Troubleshooting > Logs and Trace in the console navigation tree to access the page.

2. If an application stops running when it should be operational, examine the application’s status on an

Applications page and try restarting the application.

3. If the run-time components do not restart, reexamine the messages and read information on problem

determination to help you to restart the components.

Stopping servers

Stopping an application server stops a server process based on the process definition settings in the

current application server configuration.

v

In Windows, you can use the Start menu to stop your application server. Click Start >

Programs > IBM WebSphere > Express v6.0 > Stop the server. When the server stops successfully,

the stopServer.log file contains the following in the last two lines:

Server stop request issued. Waiting for stop status.

Server server1 stop completed.

The server name varies depending on your settings.

v Use the stopServer command to stop an application server from the command line.

A warning message appears if you are stopping the application server that is running the administrative

console application.

v Stop the application server from the command line. In distributed environments, you can use the

stopServer command to stop a single server. In AIX, use the stopServer or the stopManager

command from the /usr/WebSphere/AppServer/bin directory:

./stopServer.sh server1

./stopManager.sh

Creating generic servers

There are two types of generic application servers:

v Non-Java applications or processes.

v Java applications or processes

You can use the wsadmin tool or the Generic servers panel of the administrative console to create either

type.

Note: For the Base WebSphere Application Server product, although you can use the administrative

console to create a generic application server definition, you cannot use it to start, stop or, in any

way, control or manage that application server. The Base product administrative console can only

be used to create server definitions and, if necessary, adjust the server definitions that it creates. To

manage Base generic application servers, use the wsadmin tool.

v Create a non-Java application as a generic server. The following steps describe how to use the

administrative console to create a non-Java application as a generic application server.

 1. Select Servers > Generic servers

 2. Click New. You can then specify the name of the generic server you are creating.

124 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

3. Type in a name for the generic server. The name must be unique within the application server. It is

highly recommended that you use a naming scheme that makes it easy to distinguish your generic

application servers from regular Websphere Application Servers. This will enable you to quickly

determine whether to use the Terminate or Stop button in the administrative console to stop

specific application server. You must use the Terminate button to stop a generic application server.

 4. Select a template to use in creating the new server. You can use a default application server

template for your new server or use an existing application server as a template. The new

application server will inherit all properties of the template server. If you create the new server

using an existing application server do not enable the option to map applications from the existing

server to the new server. This option does not apply for a generic server.

 5. Click Next

 6. Click Finish. The generic server now appears as an option on the Generic servers panel in the

administrative console.

 7. On the Generic servers panel, click on the name of the generic server.

 8. Under Additional Properties click Process Definition.

 9. In the Executable name field under General Properties, enter the name of the non-WebSphere

Application Server program that is to be launched when you start this generic server. Executable

target type and Executable target properties are not used for non-Java applications. Executable

target type and Executable target properties are only used for Java applications

10. Click OK.

v Create a Java application as a generic server: The following steps describe how to use the

administrative console to create a Java application as a generic application server.

 1. Select Servers > Generic servers

 2. Click New. You can then specify the name of the generic server you are creating.

 3. Type in a name for the generic server. The name must be unique within the application server. It is

highly recommended that you use a naming scheme that makes it easy to distinguish your generic

application servers from regular Websphere Application Servers. This will enable you to quickly

determine whether to use the Terminate or Stop button in the administrative console to stop

specific application server. You must use the Terminate button to stop a generic application server.

 4. Click Next

 5. Click Finish. The generic server now appears as an option on the Applications Server panel in

the administrative console.

 6. Click Finish. The generic server now appears as an option on the Generic servers panel in the

administrative console.

 7. On the Generic servers panel, click on the name of the generic server.

 8. Under Additional Properties click Process Definition.

 9. In the Executable name field under General Properties, enter the path for Websphere Application

Server’s default JVM (${JAVA_HOME}/bin/java), which will be used to run the Java application

when you start this generic server.

10. In the Executable target type field under General Properties, select whether a Java class name,

JAVA_CLASS, or the name of an executable JAR file, EXECUTABLE_JAR, will be used as the

executable target of this Java process. The default for Websphere Application Server is

JAVA_CLASS.

11. In the Executable target field under General Properties, enter the name of the executable target.

(Depending on the executable target type, this will be either a Java class containing a main()

method, or the name of an executable JAR file.) The default for Websphere Application Server is

com.ibm.ws.runtime.WsServer.

12. Click OK.

Chapter 3. Setting up the application serving environment 125

Note: If the generic server is to run an application server other than the WebSphere Application

Server, leave the Executable name field set to the default value and specify the Java class

containing the main function for your application serve in the Executable target field.

You can now start and terminate the generic server whenever you want to start or terminate the

non-WebSphere Application Server server or process associated with this server.

Starting and terminating generic servers

This topic describes how to start and terminate generic servers.

If you created a generic server on a Base WebSphere Application Server, you cannot start, terminate, or

monitor this server with the Base Application Server administrative console. You must use the wsadmin

tool to manage Base generic servers.

Starting generic servers

There are two ways to start a generic server in a Network Deployment environment:

v Use the administrative console:

1. From the administrative console navigation tree, select Servers > Application Servers.

2. Select the check box beside the name of the generic server, and then click Start.

3. View the Status value and any messages or logs to see whether the generic server starts.

v Use the MBean NodeAgent launchProcess operation of the wsadmin tool.

Terminating generic servers

There are two ways to terminate a generic server in a Network Deployment environment:

v Use the administrative console:

1. From the administrative console navigation tree, select Servers > Application Servers.

2. Select the check box beside the name of the generic server, and then click Terminate.

3. View the Status value and any messages or logs to see whether the generic server terminates.

Note: The Stop and Stop Immediate buttons on the administrative console do not work for generic

servers.

v Use the MBean terminate launchProcess operation of the wsadmin tool.

Configuring transport chains

You need to configure transport chains to provide networking services to such functions as the service

integration bus component of IBM service integration technologies, WebSphere Secure Caching Proxy,

and the high availability manager core group bridge service.

A transport chain consists of one or more types of channels, each of which supports a different type of I/O

protocol, such as TCP or HTTP. Network ports can be shared among all of the channels within a chain.

The channel framework function automatically distributes a request arriving on that port to the correct I/O

protocol channel for processing. To define these channels:

1. Create a transport chain: You can either use the administrative console or wsadmin commands to

create a transport chain. If you want to use the administrative console:

a. Ensure that a port is available for the new transport chain.

b. In the administrative console, click Servers > Application servers >server_name, and then click

on one of the following:

v Under Web container settings, click Web container transport chains.

126 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

v Under Server messaging, click either Messaging engine inbound transports or WebSphere

MQ link inbound transports.

c. Click New. The Create New Transport Chain wizard initializes. During the transport chain creation

process, you are asked to:

v Specify a name for the new chain.

v Select a transport chain template

v Select a port, if one is available to which the new transport chain will be bound. If a port is not

available or you want to define a new port, specify a port name, the host name or IP address for

that port, and a valid port number.

When you click Finish, the new transport chain is added to the list of defined transport chains on

the Transport chain panel.

2. Click on the transport chain’s name to view the configuration settings that are in effect for the transport

channels contained in this chain. To change any of these settings:

a. Click on the channel that requires changes to its settings.

b. Make your changes to the configuration settings. Some of the settings, such as the port number

are determined by what is specified for the transport chain when it is created and cannot be

changed.

c. Click on Custom properties to set any custom properties that have been defined for your system.

3. When you have made all of your changes, click OK.

4. Stop the application server and start it again. You must stop the application server and start it again

before the configuration changes you made take affect.

Transport chains

Transport chains represent a network protocol stack that is used for I/O operations within an application

server environment. Transport chains are part of the channel framework function that provides a common

networking service for all components, including the service integration bus component of IBM service

integration technologies, WebSphere Secure Caching Proxy, and the high availability manager core group

bridge service.

A transport chain consists of one or more types of channels, each of which supports a different type of I/O

protocol, such as TCP, DCS or HTTP. Network ports can be shared among all of the channels within a

chain. The channel framework function automatically distributes a request arriving on that port to the

correct I/O protocol channel for processing.

The transport chain configuration settings determine which I/O protocols are supported for that chain.

Following are some of the more common types of channels. Custom channels that support requirements

unique to a particular customer or environment can also be added to a transport chain.

TCP channel

Used to provide client applications with persistent connections within a Local Area Network (LAN).

When configuring a TCP channel, you can specify a list of IP addresses that are allowed to make

inbound connections and a list of IP addresses that are not allowed to make inbound connections.

You can also specify the thread pool that this channel uses, which allows you to segregate work

by the port that the application server is listening on.

HTTP channel

Used to enable communication with remote servers. It implements the HTTP 1.0 and 1.1

standards and is used by other channels, such as the Web container channel, to server HTTP

requests and to send HTTP specific information to servlets expecting this type of information.

HTTP Tunnel channel

Used to provide client applications with persistent HTTP connections to remote hosts that are

either blocked by firewalls or require an HTTP proxy server (including authentication) or both. An

HTTP Tunnel channel enables the exchange of application data in the body of an HTTP request or

response that is sent to or received from a remote server. An HTTP Tunnel channel also enables

Chapter 3. Setting up the application serving environment 127

client-side applications to poll the remote host and to use HTTP requests to either send data from

the client or to receive data from an application server. In either case, neither the client nor the

application server is aware that HTTP is being used to exchange the data.

Web container channel

Used to create a bridge in the transport chain between an HTTP inbound channel and a servlet

and JavaServer Pages (JSP) engine.

DCS channel

Used by the core group bridge service, the data replication service (DRS), and the high availability

manger to transfer data, objects, or events among application servers.

MQ channel

Used in combination with other channels, such as a TCP channel, within the confines of

WebSphere MQ support to facilitate communications between a WebSphere System Integration

Bus and a WebSphere MQ client or queue manager.

JFAP channel

Used by the Java Message Service (JMS) server to create connections to JMS resources on a

service integration bus.

SSL channel

Used to associate an SSL configuration repertoire with the transport chain. This channel is only

available when Secure Sockets Layer (SSL) support is enabled for the transport chain. An SSL

configuration repertoire is defined in the administrative console, under security, on the SSL

configuration repertoires > SSL configuration repertoires page.

HTTP transport channel custom property

If you are using an HTTP transport channel, you can add the following custom property to the

configuration settings for that HTTP transport channel.

To add a custom property:

1. In the administrative console, click Application servers > server_name Web container settings >

Web container transport chains >chain_name > HTTP Inbound Channel > Custom Properties >

New

2. Under General Properties specify the name of the custom property in the Name field and a value for

this property in the Value field. You can also specify a description of this property in the Description

field.

3. Click Apply or OK.

4. Click Save to save your configuration changes.

5. Restart the server.

Following is a list of custom properties provided with the application server. These properties are not

shown on the settings page for an HTTP transport channel.

inProcessLogFilenamePrefix

Use to specify a prefix for the filename of the network log file. Normally, when inprocess optimization is

enabled, requests through the inprocess path are logged based on the logging attributes set up for the

Web container’s network channel chain. You can use this property to add a prefix to the filename of the

network log file. This new filename is then used as the filename for the log file for inprocess requests.

Requests sent through the inprocess path are logged to this file instead of to the network log file. For

example, if the log file for a network transport chain is named .../httpaccess.log, and this property is set

to local for the HTTP channel in that chain, the filename of the log file for inprocess requests to the host

associated with that chain is .../localhttpaccess.log.

 Data type String

128 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

HTTP Tunnel transport channel custom property

If you are using an HTTP Tunnel transport channel, you can add the following custom property to the

configuration settings for that HTTP Tunnel transport channel.

To add a custom property:

1. In the administrative console, click Servers > Application servers >server_name > Ports. Click on

View associated transports for the HTTP Tunnel port to whose configuration settings you want to

add this custom property.

2. Click New.

3. Under General Properties specify the name of the custom property in the Name field and a value for

this property in the Value field. You can also specify a description of this property in the Description

field.

4. Click Apply or OK.

5. Click Save to save your configuration changes.

6. Restart the server.

Following is a description of the custom property that is provided with the application server. This property

is not shown on the settings page for an HTTP Tunnel transport channel.

pluginConfigurable

Indicates whether or not the configuration settings for the HTTP Tunnel transport channel are

included in the plugin-cfg.xml file for the Web server associated with the application server that is

using this channel. Configuration settings for each of the Web container transport channels defined

for an application server are automatically included in the plugin-cfg.xml file for the Web server

associated with that application server.

 Data type Boolean

Default False

Troubleshooting transport chain problems

TCP transport channel fails to bind to a specific host/port combination

If a TCP transport channel fails to bind to a specific port, one of the following situations might have

occurred:

v You are trying to bind the channel to a port that is already bound to another application, such as

another instance of a WebSphere Application Server.

v You are trying to bind to a port that is in a transitional state waiting for closure. This socket must

transition to closed before you restart the server. The port might be in TIME_WAIT, FIN_WAIT_2, or

CLOSE_WAIT state. Issue the netstat -a command from a command prompt window to display the

state of the port to which you are trying to bind. If you need to change the amount of elapse time that

must occur before TCP/IP can release a closed connection and reuse its resources, see the

Troubleshooting and support PDF.

Configuring HTTP transports

Important: On a distributed platform, HTTP transport support is deprecated. Therefore, the administrative

console page used to configure an HTTP transport is not available unless your migrated an

HTTP transport from your V5 environment. You must define an HTTP transport channel

instead of an HTTP transport to handle your HTTP requests.

An HTTP transport is the request queue between a WebSphere Application Server plug-in for Web servers

and a Web container in which the Web modules of an application reside. To define the characteristics of

the connections between that plug-in and the Web container, you must specify:

Chapter 3. Setting up the application serving environment 129

v How the transport is to handle a set of connections. For example, you must specify the number of

concurrent requests that is to be allowed.

v Whether to secure the connections with SSL.

v The Host and IP information for the transport participants.

1. Change the configuration for an existing HTTP transport.

a. Ensure that virtual host aliases include port values for the transport your are changing.

b. Go to the HTTP Transports page and click on the transport under Host whose configuration you

want to change.

Remember, on a distributed platform, HTTP transport support is deprecated. Therefore you cannot

view this administrative console page unless you are a V5.x user who, during the V6 migration

process, indicated that you want to continue using the HTTP transports that are defined for your V5

environment.

c. On the settings page for an HTTP transport, which might have the page title DefaultSSLSettings,

change the specified values as needed, then click OK.

d. Custom properties page, add and set any custom properties you want to use.

2. Stop the WebSphere Application Server and start it again. You must stop the WebSphere Application

Server and start it again before the configuration changes you made take affect.

If the Web server is located on a machine remote from the Application Server, copy the plugin-cfg.xml

file to the remote Web server and replace the file that is there. See ″Editing Web server configuration files″

in the information center for information about copying the plugin-cfg.xml and binary plug-in module to a

remote Web server and configuring the Web server to use the files.

HTTP transport collection:

Use this page to view or manage HTTP transports. Transports provide request queues between

WebSphere Application Server plug-ins for Web servers and Web containers in which the Web modules of

applications reside. When you request an application in a Web browser, the request is passed to the Web

server, then along the transport to the Web container.

 On a distributed platform, if, when migrating from WebSphere Application Server Version 5.x, you indicate

that you want to continue using an HTTP transport to handle your HTTP requests, your Version 5.x

transports are migrated for you. If you are not migrating from Version 5.x, you must set up an HTTP

transport channel to handle your HTTP requests.

To view the HTTP Transport administrative console page, click Servers > Application Servers

>server_name > Web Container Settings > Web Container > HTTP Transports.

the HTTP Transport panel on the administrative console

Host:

Specifies the host IP address to bind for transport. If the application server is on a local machine, the host

name might be localhost.

Port:

 Specifies the port to bind for transport. The port number can be any port that currently is not in use on the

system. The port number must be unique for each application server instance on a given machine.

For distributed platforms, there is no limit to the number of HTTP ports that are allowed per process.

SSL Enabled:

130 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Specifies whether to protect connections between the WebSphere plug-in and application server with

Secure Sockets Layer (SSL). The default is not to use SSL.

HTTP transport settings:

Use this page to view and configure an HTTP transport. The name of the page might be that of an SSL

setting such as DefaultSSLSettings.

 On a distributed platform, if, when migrating from Version 5, you indicate that you want to continue using

an HTTP transport to handle your HTTP requests, your Version 5 transports are migrated for you. If you

are not migrating from WebSphere Application Server Version 5.x, you must set up an HTTP transport

channel to handle your HTTP requests.

To view the HTTP Transport panel on the administrative console, click Servers > Application Servers

>server_name > Web Container Settings > Web Container > HTTP Transports >host_name.

Host:

Specifies the host IP address to bind for transport.

 If the application server is on a local machine, the host name might be localhost.

 Data type String

Port:

Specifies the port to bind for transport. Specify a port number between 1 and 65535. The port number

must be unique for each application server on a given machine.

 Data type Integer

Range 1 to 65535

SSL Enabled:

Specifies whether to protect connections between the WebSphere Application Server plug-in and

application server with Secure Sockets Layer (SSL). The default is not to use SSL.

 Data type Boolean

Default false

SSL:

Specifies the Secure Sockets Layer (SSL) settings type for connections between the WebSphere

Application Server plug-in and application server. The options include one or more SSL settings defined in

the Security Center; for example, DefaultSSLSettings, ORBSSLSettings, or LDAPSSLSettings.

 Data type String

Default An SSL setting defined in the Security Center

Transports:

Chapter 3. Setting up the application serving environment 131

A transport is the request queue between a WebSphere Application Server plug-in for Web servers and a

Web container in which the Web modules of an application reside. When a user at a Web browser

requests an application, the request is passed to the Web server, then along the transport to the Web

container.

 Transports define the characteristics of the connections between a Web server and an application server,

across which requests for applications are routed. Specifically, they define the connection between the

Web server plug-in and the Web container of the application server.

Administering transports is closely related to administering WebSphere Application Server plug-ins for Web

servers. Indeed, without a plug-in configuration, a transport configuration is of little use.

On a distributed platform, when migrating from WebSphere Application Server Version 5.x, you indicate

that you want to continue using an HTTP transport to handle your HTTP requests, your Version 5.x

transports are migrated for you. If you are not migrating from Version 5.x, you must set up an HTTP

transport channel to handle your HTTP requests.

The internal transport

The internal HTTP transport allows HTTP requests to be routed to the application server directly through a

Web server plug-in. Logging is provided for debug purposes.

Prior to WebSphere Application Server Version 5.0.2, the HTTP transport functionality existed only as a

means of accepting HTTP requests forwarded by an HTTP plug-in that was connected to a Web server. In

WebSphere Application Server Version 5.0.2, HTTP transport functionality is now a supported internal Web

server. By default, the internal HTTP transport listens for HTTP requests on port 9080 and for HTTPS

requests on port 9443.

For example, use the URL http://localhost:9080/snoop to send requests to the snoop servlet on the

local machine over HTTP and https://localhost:9443/snoop to send requests to the snoop servlet on the

local machine over HTTPS.

The transport configuration is a part of the Web container configuration. You can configure the internal

transport to use ports other than 9080 and 9443. However, you must also adjust your virtual host alias and

what you type into the Web browser.

HTTP transport custom properties:

Use this page to set custom properties for an HTTP transport.

 On a distributed platform, HTTP transport support is deprecated. Therefore you cannot create a new HTTP

transport. Instead you must create an HTTP transport channel to handle your HTTP requests. If you are a

WebSphere Application Server Version 5.x user who has migrated to Version 6, and during the migration

process you indicated that you want to continue using an HTTP transport to handle your HTTP requests,

your Version 5.x transports are still available for your use.

If you are using HTTP transports, you can set the following custom properties on either the Web Container

or HTTP Transport Custom Properties panel on the administrative console. When set on the Web

container Custom Properties page, all transports inherit the properties. Setting the same properties on a

transport overrides like settings defined for a Web container.

To specify values for these custom properties for a specific transport on the HTTP Transport Custom

Properties page:

1. In the console navigation tree, click Servers > Application Servers >server_name > Web Container

settings > Web Container >HTTP Transport

132 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

To specify a custom property:

1. Click on the HOST whose properties you want to set.

2. Under Additional Properties select Custom Properties.

3. On the Custom Properties page, click New.

4. On the settings page, enter the property you want to configure in the Name field and the value you

want to set it to in the Value field.

5. Click Apply or OK.

6. Click Save on the console task bar to save your configuration changes.

7. Restart the server.

Following is a list of custom properties provided with the Application Server. These properties are not

shown on the settings page for an HTTP transport.

ConnectionIOTimeOut:

Use the ConnectionIOTimeOut property to specify the maximum number of seconds to wait when trying to

read or process data during a request.

 Data type Integer

Default For distributed platforms: 5 seconds

ConnectionKeepAliveTimeout:

Use the ConnectionKeepAliveTimeout property to specify the maximum number of seconds to wait for the

next request on a keep alive connection.

 Data type Integer

MaxConnectBacklog:

Use the MaxConnectBacklog property to specify the maximum number of outstanding connect requests that

the operating system will buffer while it waits for the application server to accept the connections. If a

client attempts to connect when this operating system buffer is full, the connect request will be rejected.

 Set this value to the number of concurrent connections that you would like to allow. Keep in mind that a

single client browser might need to open multiple concurrent connections (perhaps 4 or 5); however, also

keep in mind that increasing this value consumes more kernel resources. The value of this property is

specific to each transport.

 Data type Integer

Default 511

MaxKeepAliveRequests:

Use the MaxKeepAliveRequests property to specify the maximum number of requests which can be

processed on a single keep alive connection. This parameter can help prevent denial of service attacks

when a client tries to hold on to a keep-alive connection. The Web server plug-in keeps connections open

to the application server as long as it can, providing optimum performance.

 Data type Integer

Default For distributed platforms: 100 requests

Chapter 3. Setting up the application serving environment 133

KeepAliveEnabled:

This property is only valid in a distributed environment. Use the KeepAliveEnabled property to specify

whether or not to keep connections alive

 Data type String

Default true

Trusted:

This property is only valid in a distributed environment. Use the Trusted property to indicate that the

application server can use the private headers that the Web server plug-in adds to requests.

 Data type String

Default false

Configuring error logging for internal Web server HTTP transport:

To debug potential problems with using the HTTP transport as an internal Web server, you can use the

following error logging capabilities.

1. Turn error logging on. To turn error logging on, add the following custom property to the HTTP

Transport’s configuration settings, and set the value to false:

Property name: ErrorLogDisable

Value: True/False

Default: Error log is disabled by default

When you are ready to turn error logging off, set the value of the ErrorLogDisable property back to

true.

2. To specify your own error log file, add the following property to the transport section of the server.xml

file:

Property name: ErrorLog

Value: <filename>

Default: logs/<server instance>/http.log

The error log property is used to specify where to place the error log. For example:<properties

xmi:id=″WebContainer_Property_6″ name=″ErrorLog″ value=″logs/<server instance>/http.log″/>

Note: The error log should appear in each instance of the server.

If you are going to be using error logging for multiple HTTP transports in a single HTTP server,

make sure you specify a unique filename for the error log file associated with each HTTP

transport.

3. Add the LogLevel property to the transport section of the server.xml file to specify the level of

messages to log in the error log file.

Property name: LogLevel

Value: <level> (Levels include: debug, info, warn, error, crit)

Default: warn (warn includes error and crit; debug includes all levels)

Scope: Virtual/Global

Log levels specify the type of message that appears in the error log. The warn, error, and crit

messages are logged by default.

4. Restart the server.

If you have enabled error logging and encounter an error, there should be an error log message in the

error log file you specified.

134 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Configuring access logging for internal Web server HTTP transport:

To debug potential problems with using the HTTP transport as an internal Web server, you can use the

following access logging capabilities.

1. Turn access logging on. To turn access logging on, add the following custom property to the HTTP

Transport’s configuration settings, and set the value to false:

Property name: AccessLogDisable

Values: True/False

Default: Access log is disabled by default

When you are ready to turn access logging off, set the value of the AccessLogDisable property back

to true.

2. To specify your own access log file, add the following property to the transport section of the

server.xml file:

Property name: AccessLog

Value: <filename>

Default Value: logs/<server instance>/http_access.log

The default access log file is logs/<server_instance>/http_access.log. Access log entries should

have the format:

<hostname or IP> <user agent> [<local time> -<status code>] <thread id> <http request> <status code> <bytecount>

Note: If you are going to be using access logging for multiple HTTP transports in a single HTTP

server, make sure you specify a unique filename for the access log file associated with each

HTTP transport.

3. Restart the server.

If you have enabled access logging, there will be an access log in the location you specified.

Transport chains collection

Use this page to view or manage transport chains. Transport chains enable communication through

transports, or protocol stacks, which are usually socket based.

A transport chain consists of one or more types of channels, each of which supports a different type of I/O

protocol, such as TCP or HTTP. Network ports can be shared among all of the channels within a chain.

The Channel Framework function automatically distributes a request arriving on that port to the correct I/O

protocol channel for processing.

The Transport chains page lists the transport chains defined for the selected application server. Transport

chains represent network protocol stacks operating within this application server.

To view this administrative console page, click Servers > Application servers > server_name > Ports.

Click on View associated transports for the port whose transport chains you want to view.

Name: Specifies a unique identifier for the transport chain. For WebSphere Application Server, transport

name must be unique within a WebSphere Application Server configuration. Click on the name of a

transport chain to change its configuration settings.

Enabled: When set to true, the transport chain is activated at application server startup.

Host: Specifies the host IP address to bind for transport. If the application server is on a local machine,

the host name might be localhost.

Port: Specifies the port to bind for transport. The port number can be any port that currently is not in use

on the system, might be localhost or the wildcard character * (an asterisk). The port number must be

unique for each application server instance on a given machine

Chapter 3. Setting up the application serving environment 135

SSL Enabled: When set to true, users are notified if there is a channel that enables Secure Sockets

Layer (SSL) in the listed chain. When SSL is enabled, all traffic going through this transport is encrypted

and digitally secured.

Transport chain settings

This page lists the types of transport channels configured for the selected transport chain. A transport

chain consists of one or more types of channels, each of which supports a different type of I/O protocol,

such as TCP, HTTP, or DCS.

To view this administrative console page, click Servers > Application servers > server_name > Ports.

Click on View associated transports for the port whose transport chains you want view and then click on

the name of a specific chain.

Name:

Specifies the name of the selected transport chain.

 You can edit this field to rename this transport chain. However, remember that the name must be unique

within a WebSphere Application Server configuration.

Enabled: When checked, this transport chain is activated at application server startup.

Transport channels: Lists the transport channels configured for this transport chain and their

configuration settings. To change a transport channel’s configuration settings, click on the name of that

transport channel.

HTTP tunnel transport channel settings

Use this page to view and configure an HTTP tunnel transport channels. Inbound connections sent

through this channel are tunneled over HTTP, allowing intermediates to view this data as the body of an

HTTP message instead of in its natural format. This type of channel is often used to circumvent firewalls

with protocol restrictions.

To view this administrative console page, click Servers > Application servers >server_name > Ports .

Click on View associated transports for the port associated with the HTTP Tunnel transport channel

whose settings you want to look at.

Transport channel name:

Specifies the name of the HTTP tunnel transport channel.

 This name must be unique across all channels in a WebSphere Application Server environment. For

example DCS and TCP transport channels cannot have the same name if they reside within the same

system.

Discrimination weight:

Specifies the priority this channel has in relation to the other channels in this transport chain. This property

is only used when port sharing is enabled and the channel chain includes multiple channels to which it

might forward data. The channel in the chain with the lowest discrimination weight is the first one given the

opportunity to look at incoming data and determine whether or not it owns that data.

 Data type Positive integer

Default 10

136 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

HTTP transport channel settings

Use this page to view and configure an HTTP transport channel. This type of transport channel handles

HTTP requests from a remote client.

An HTTP transport channel parses HTTP requests and then finds an appropriate application channel to

handle the request and send a response.

To view this administrative console page, click Servers > Application servers >server_name > Ports .

Click on View associated transports for the port associated with the HTTP transport channel whose

settings you want to look at.

Transport channel name:

Specifies the name of the HTTP transport channel.

 This name must be unique across all channels in a WebSphere Application Server environment. For

example, an HTTP transport channel and a TCP transport channel cannot have the same name if they

reside within the same system.

Discrimination weight:

Specifies the priority this channel has in relation to the other channels in this transport chain. This property

is only used when port sharing is enabled and the channel chain includes multiple channels to which it

might forward data. The channel in the chain with the lowest discrimination weight is the first one given the

opportunity to look at incoming data and determine whether or not it owns that data.

 Data type Positive integer

Default 10

Maximum persistent requests:

Specifies the maximum number of persistent (keep-alive) requests that are allowed on a single HTTP

connection. If a value of 0 (zero) is specified, only one request is allowed per connection. If a value of -1 is

specified, an unlimited number of requests is allowed per connection.

 Data type Integer

Default 100

Use Keep-Alive: When selected, the HTTP transport channel, when sending an outgoing HTTP

message, uses a persistent connection (keep-alive connection) instead of a connection that closes after

one request or response exchange occurs.

Note: If a value other than 0 is specified for the maximum persistent requests property, the Use

Keep-Alive property setting is ignored.

The default for this property is selected.

Read timeout:

Specifies the amount of time, in seconds, the HTTP transport channel waits for a read request to complete

on a socket after the first read request occurs. The read being waited for could be an HTTP body (such as

a POST) or part of the headers if they were not all read as part of the first read request on the socket.

 Data type Integer

Default 60 seconds

Chapter 3. Setting up the application serving environment 137

Write timeout:

Specifies the amount of time, in seconds, that the HTTP transport channel waits on a socket for each

portion of response data to be transmitted. This timeout usually only occurs in situations where the writes

are lagging behind new requests. This can occur when a client has a low data rate or the server’s network

interface card (NIC) is saturated with I/O.

 Data type Integer

Default 60 seconds

Persistent timeout:

Specifies the amount of time, in seconds, that the HTTP transport channel allows a socket to remain idle

between requests.

 Data type Integer

Default 30 seconds

Enable NCSA access logging:

When selected, the HTTP transport channel performs NCSA access and error logging. Enabling NCSA

access and error logging slows server performance.

 To configure NCSA access and error logging, click HTTP error and NCSA access logging under Related

Items. Even if HTTP error and NCSA access logging is configured, it is not enabled unless the Enable

NCSA access logging property is selected.

The default value for the Enable NCSA access logging property is not selected.

TCP transport channel settings

Use this page to view and configure an TCP transport channels. This type of transport channel handles

inbound TCP/IP requests from a remote client.

To view this administrative console page, click Servers > Application servers >server_name > Ports > .

Click on View associated transports for the port associated with the TCP transport channel whose

settings you want to view.

Transport channel name:

Specifies the name of the TCP transport channel.

 This name must be unique across all channels in a WebSphere Application Server environment. For

example, a TCP transport channel and an HTTP transport channel cannot have the same name if they

reside within the same system.

Port: Specifies the TCP/IP port this transport channel uses to establish connections between a client and

an application server. The TCP transport channel binds to the hostnames and ports listed for the Port

property. You can specify the wildcard * (an asterisk), for the hostname if you want this channel to listen to

all hosts that are available on this system. However, before specifying the wildcard value, make sure this

TCP transport channel does not have to bind to a specific hostname.

Thread pool: Select from the drop-down list of available thread pools the thread pool you want the TCP

transport channel to use when dispatching work.

138 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Maximum open connections:

Specifies the maximum number of connections that can be open at one time.

 Data type Integer between 1 and 20,000 inclusive

Default 20,000

Inactivity timeout: Specifies the amount of time, in seconds, that the TCP transport channel waits for a

read or write request to complete on a socket.

Note: The value specified for this property might be overridden by the wait times established for channels

above this channel. For example, the wait time established for an HTTP transport channel overrides

the value specified for this property for every operation except the initial read on a new socket.

 Data type Integer

Default 60 seconds

Address exclude list:

Lists the IP addresses that are not allowed to make inbound connections. Use a comma to separate the

IPv4 or IPv6 or both addresses to which you want to deny access on inbound TCP connection requests.

 All four numeric values in an IPv4 address must be represented by a number or the wildcard character *

(an asterisk).

Following are examples of valid IPv4 addresses that can be included in an Address exclude list:

*.1.255.0

254.*.*.9

1.*.*.*

All eight numeric values of an IPv6 address must be represented by a number or the wildcard character *

(an asterisk). No shortened version of the IPv6 address should be used. Even though a shortened version

is processed with no error given, it does not function correctly in this list. Each numeric entry should be a

1- 4 digit hexadecimal number.

Following are examples of valid IPv6 addresses that can be included in an Address exclude list:

0:*:*:0:007F:0:0001:0001

F:FF:FFF:FFFF:1:01:001:0001

1234:*:4321:*:9F9f:*:*:0000

Note: The Address include list and Host name include list are processed before the Address exclude

list and the Host name exclude list. If all four lists are defined:

v An address that is defined on either inclusion list will be allowed access provided it is not

included on either of the exclusion lists.

v If an address is included in both an inclusion list and in an exclusion list, it will not be allowed

access.

Address include list:

Lists the IP addresses that are allowed to make inbound connections. Use a comma to separate the IPv4

or IPv6 or both addresses to which you want to grant access on inbound TCP connection requests.

 All four numeric values in an IPv4 address must be represented by a number or the wildcard character *

(an asterisk).

Chapter 3. Setting up the application serving environment 139

Following are examples of valid IP addresses that can be included in an Address include list:

 *.1.255.0

 254.*.*.9

 1.*.*.*

All eight numeric values of an IPv6 address must be represented by a number or the wildcard character *

(an asterisk). No shortened version of the IPv6 address should be used. Even though a shortened version

is processed with no error given, it does not function correctly in this list. Each numeric entry should be a

1- 4 digit hexadecimal number.

Following are examples of valid IPv6 addresses that can be included in an Address include list:

0:*:*:0:007F:0:0001:0001

F:FF:FFF:FFFF:1:01:001:0001

1234:*:4321:*:9F9f:*:*:0000

Note: The Address include list and Host name include list are processed before the Address exclude

list and the Host name exclude list. If all four lists are defined:

v An address that is defined on either inclusion list will be allowed access provided it is not

included on either of the exclusion lists.

v If an address is included in both an inclusion list and in an exclusion list, it will not be allowed

access.

Host name exclude list:

List the host names that are not allowed to make connections. Use a comma to separate the URL

addresses to which you want to deny access on inbound TCP connection requests.

 A URL address can start with the wildcard character * (an asterisk) followed by a period; for example,

*.Rest.Of.Address. If a period does not follow the wildcard character, the asterisk will be treated as a

normal non-wildcard character. The wildcard character can not appear any where else in the address. For

example, ibm.*.com is not a valid hostname.

Following are examples of valid URL addresses that can be included in a Host name exclude list:

*.ibm.com

www.ibm.com

*.com

Note: The Address include list and Host name include list are processed before the Address exclude

list and the Host name exclude list. If all four lists are defined:

v An address that is defined on either inclusion list will be allowed access provided it is not

included on either of the exclusion lists.

v If an address is included in both an inclusion list and in an exclusion list, it is not allowed access.

Host name include list:

Lists the host names that are allowed to make inbound connections. Use a comma to separate the URL

addresses to which you want to grant access on inbound TCP connection requests.

 A URL address can start with the wildcard character * (an asterisk) followed by a period; for example,

*.Rest.Of.Address. If a period does not follow the wildcard character, the asterisk will be treated as a

normal non-wildcard character. The wildcard character can not appear any where else in the address. For

example, ibm.*.com is not a valid hostname.

Following are examples of valid URL addresses that can be included in a Host name include list:

140 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

*.ibm.com

www.ibm.com

*.com

Note: The Address include list and Host name include list are processed before the Address exclude

list and the Host name exclude list. If all four lists are defined:

v An address that is defined on either inclusion list will be allowed access provided it is not

included on either of the exclusion lists.

v If an address is included in both an inclusion list and in an exclusion list, it is not allowed access.

DCS transport channel settings

Use this page to view and configure an DCS transport channels. This type of transport channel handles

inbound Distribution and Consistency Services (DCS) messages.

By default, two channel transport chains are defined for an application server that contains a DCS

channel:

v The chain named DCS contains a TCP and a DCS channel.

v The chain named DCS-Secure contains a TCP, an SSL, and a DCS channel.

Both of these chains terminate in, or use the same TCP channel instance. This TCP channel is associated

with the DCS_UNICAST_ADDRESS port and is not used in any other transport chains. One instance of an

SSL channel is reserved for use in the DCS-Secure chain. It also is not used in any other transport chains.

To view this administrative console page, click Servers > Application servers >server_name > Ports > .

Click on View associated transports for the port associated with the DCS transport channel whose

settings you want to look at.

Transport channel name:

Specifies the name of the DCS transport channel.

 This name must be unique across all channels in a WebSphere Application Server environment. For

example DCS and TCP transport channels cannot have the same name if they reside within the same

system.

Discrimination weight:

Specifies the priority this channel has in relation to the other channels in this transport chain. This property

is only used when port sharing is enabled and the channel chain includes multiple channels to which it

might forward data. The channel in the chain with the lowest discrimination weight is the first one given the

opportunity to look at incoming data and determine whether or not it owns that data.

 The discrimination weight of the DCS channel in a DCS-Secure transport chain should always be less than

the discrimination weight of the SSL channel that is in that chain. Other SSL channels in other chains

might have different discrimination values.

 Data type Positive integer

Default 1 for the DCS channel 2 for the SSL channel

Web container transport channel settings

Use this page to view and configure a Web container inbound channel transport. This type of channel

transport handles inbound Web container requests from a remote client.

To view this administrative console page, click Servers > Application servers > server_instance > Web

container settings > Web container transport chains > transport_chain > Web Container Inbound

Channel .

Chapter 3. Setting up the application serving environment 141

Transport Channel Name:

This name must be unique across all channels in a WebSphere Application Server environment. This

means that TCP transport channels and HTTP transport channels cannot have the same name if they

reside within the same system.

Discrimination weight:

Specifies the priority that this transport chain has in relation to other transport chains if this transport

channel is shared amongst several transport chains.

Write buffer size:

Specifies the amount of content in bytes to buffer unless the servlet explicitly calls flush/close on the

response/writer output stream.

 Data type bytes

Default 9192 bytes

Custom services

A custom service provides the ability to plug into a WebSphere Application Server application server to

define a hook point that runs when the server starts and shuts down.

A developer implements a custom service containing a class that implements a particular interface. The

administrator configures the custom service in the administrative console, identifying the class created by

the developer. When an application server starts, any custom services defined for the application server

are loaded and the server runtime calls their initialize methods.

Developing custom services

The following restrictions apply to the WebSphere Application Server custom services implementation:

v The init and shutdown methods must return control to the runtime.

v No work is dispatched into the server instance until all custom service initialize methods return.

v The init and shutdown methods are called only once on each service, and once for each operating

system process that makes up the server instance. File I/O is supported.

v Initialization of process level static data, without leaving the process, is supported.

v Only JDBC RMLT (resource manager local transaction) operations are supported. Every unit of work

(UOW) must be completed before the methods return.

v Creation of threads is not supported.

v Creation of sockets and I/O, other than file I/O, is not supported. Running standard J2EE code (client

code, servlets, enterprise beans) is not supported.

v The JTA interface is not available. This feature is available in J2EE server processes and distributed

generic server processes only.

v While the runtime makes an effort to call shutdown, there is no guarantee that shutdown will be called

prior to process termination.

Note that these restrictions apply to the shutdown and init methods equally. Some JNDI operations are

available.

Develop a custom service class that implements the com.ibm.websphere.runtime.CustomService interface.

The properties passed by the application server runtime to the initialize method can include one for an

external file containing configuration information for the service (retrieved with externalConfigURLKey). In

142 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

addition, the properties can contain any name-value pairs that are stored for the service, along with the

other system administration configuration data for the service. The properties are passed to the initialize

method of the service as a Properties object.

There is a shutdown method for the interface as well. Both methods of the interface declare that they may

create an exception, although no specific exception subclass is defined. If an exception is created, the

runtime logs it, disables the custom service, and proceeds with starting the server.

As mentioned above, your custom services class must implement the CustomService interface. In addition,

your class must implement the initialize and shutdown methods. Suppose the name of the class that

implements your custom service is ServerInit, your code would declare this class as shown below. The

code below assumes that your custom services class needs a configuration file. It shows how to process

the input parameter in order to get the configuration file. If your class does not require a configuration file,

the code that processes configProperties is not needed.

public class ServerInit implements CustomService

{

/**

* The initialize method is called by the application server run-time when the

* server starts. The Properties object passed to this method must contain all

* configuration information necessary for this service to initialize properly.

*

* @param configProperties java.util.Properties

*/

 static final java.lang.String externalConfigURLKey =

 "com.ibm.websphere.runtime.CustomService.externalConfigURLKey";

 static String ConfigFileName="";

 public void initialize(java.util.Properties configProperties) throws Exception

 {

 if (configProperties.getProperty(externalConfigURLKey) != null)

 {

 ConfigFileName = configProperties.getProperty(externalConfigURLKey);

 }

 // Implement rest of initialize method

 }

/**

* The shutdown method is called by the application server run-time when the

* server begins its shutdown processing.

*

* @param configProperties java.util.Properties

*/

 public void shutdown() throws Exception

 {

 // Implement shutdown method

 }

Custom service collection

Use this page to view a list of services available to the application server and to see whether the services

are enabled. A custom service provides the ability to plug into a WebSphere application server and define

code that runs when the server starts or shuts down.

To view this administrative console page, click Servers > Application servers >server_name. Then, under

Server Infrastructure, click Administration > Custom Services.

External Configuration URL:

Specifies the URL for a custom service configuration file.

Chapter 3. Setting up the application serving environment 143

If your custom services class requires a configuration file, the value provides a fully-qualified path name to

that configuration file. This file name is passed into your custom service class.

Classname:

Specifies the class name of the service implementation. This class must implement the Custom Service

interface.

Display Name:

Specifies the name of the service.

Enable service at server startup:

Specifies whether the server attempts to start and initialize the service when its containing process (the

server) starts. By default, the service is not enabled when its containing process starts.

Custom service settings:

Use this page to configure a service that runs in an application server.

 To view this administrative console page, click Servers > Application servers >server_name. Then, under

Server Infrastructure, click Administration > Custom services >custom_service_name.

Enable service at server startup:

Specifies whether the server attempts to start and initialize the service when its containing process (the

server) starts. By default, the service is not enabled when its containing process starts.

 Data type Boolean

Default false

External Configuration URL:

Specifies the URL for a custom service configuration file.

 If your custom services class requires a configuration file, specify the fully-qualified path name to that

configuration file for the value. This file name is passed into your custom service class.

 Data type String

Units URL

Classname:

Specifies the class name of the service implementation. This class must implement the Custom Service

interface.

 Data type String

Units Java class name

Display Name:

Specifies the name of the service.

 Data type String

144 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Description:

Describes the custom service.

 Data type String

Classpath:

Specifies the class path used to locate the classes and JAR files for this service.

 Data type String

Units Class path

Process definition

A process definition specifies the run-time characteristics of an application server process.

A process definition can include characteristics such as JVM settings, standard in, error and output paths,

and the user ID and password under which a server runs.

Defining application server processes

To enhance the operation of an application server, you can define command-line information for starting or

initializing an application server process. Such settings define run-time properties such as the program to

run, arguments to run the program, and the working directory.

1. Go to the settings page for a process definition in the administrative console. Click Servers >

Application Servers in the console navigation tree, click on an application server name and then Java

and Process Management > Process Definition. Note that you can also define application server

processes using the wsadmin tool. For more information, see the Administering applications and their

environment PDF.

2. On the settings page for a process definition, specify the name of the executable to run, any

arguments to pass when the process starts running, and the working directory in which the process will

run. Then click OK.

3. Specify process execution statements for starting or initializing a UNIX process.

4. Specify monitoring policies to track the performance of a process.

5. Specify process logs to which standard out and standard error streams write. Complete this step if you

do not want to use the default file names.

6. Specify name-value pairs for properties needed by the process definition.

7. Stop the application server and then restart the server.

8. Check the application server to ensure that the process definition runs and operates as intended.

Process definition settings

Use this page to view or change settings for a process definition. For WebSphere Application Server, this

page provides command-line information for starting or initializing a process.

To view this administrative console page, click Servers > Application Servers >server_name. Then under

Server Infrastructure click Java Process Management > Process Definition.

 Related concepts

 “Process definition”
A process definition specifies the run-time characteristics of an application server process.

 Related tasks

Chapter 3. Setting up the application serving environment 145

“Defining application server processes” on page 145

 Related reference

 “Administrative console page features” on page 178
This topic provides information about the basic elements of an administrative console page, such as

the various tabs.

 “Java virtual machine settings” on page 155
Use this page to view and change the Java virtual machine (JVM) configuration for the application

server’s process.

 “Custom property collection” on page 118
Use this page to view and manage arbitrary name-value pairs of data, where the name is a property

key and the value is a string value that can be used to set internal system configuration properties.

Executable Name:

This command applies to base WebSphere Application Server only. It specifies the executable name that

is invoked to start the process.

 Data type String

Executable Arguments:

This command applies to base WebSphere Application Server only. It specifies the arguments that are

passed to the executable when starting the process.

 For example, the executable target program might expect three arguments: arg1 arg2 arg3.

 Data type String

Units Java command-line arguments

Working Directory:

Specifies the file system directory that the process uses as its current working directory.

 The process uses this directory to determine the locations of input and output files with relative path

names.

Passivated enterprise beans are placed in the current working directory of the application server on which

the beans are running. Make sure the working directory is a known directory under the root directory of the

WebSphere Application Server product.

 Data type String

Process execution settings:

Use this page to view or change the process execution settings for a server process that applies to either

an application server, a node agent or a deployment manager.

 To view this administrative console page for an application server, click Servers > Application Servers

>server_name. Then, under Server Infrastructure , click Java and Process Management > Process

Execution.

To view this administrative console page for a node agent, click System Administration > Node agents

>node_agent_name. Then, under Server Infrastructure , click Java and Process Management > Process

Definition > Process Execution.

146 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

To view this administrative console page for a deployment manager, click System Administration >

Deployment manager. Then, under Server Infrastructure , click Java and Process Management >

Process Definition > Process Execution.

Process Priority:

Specifies the operating system priority for the process. The administrative process that launches the server

must have root operating system authority in order to honor this setting.

 Data type Integer

Default 20 for WebSphere Application Server on all operating

systems.

UMASK:

Specifies the user mask under which the process runs (the file-mode permission mask).

 Data type Integer

Run As User:

Specifies the user that the process runs as.

 Data type String

Run As Group:

Specifies the group that the process is a member of and runs as.

 On OS/400, the Run As Group setting is ignored.

 Data type String

Run In Process Group:

Specifies a specific process group for the process. This process group is useful for such things as

processor partitioning. A system administrator can assign a process group to run on, for example, 6 of 12

processors. The default (0) is not to assign the process to any specific group.

 On OS/400, the Run In Process Group setting is ignored.

 Data type Integer

Default 0

Process logs settings:

Use this page to view or change settings for specifying the files to which standard out and standard error

streams write.

 To view this administrative console page, click Servers > Application Servers >server_name. Then,

under Troubleshooting, click Logging and Tracing > Process Logs.

Stdout File Name:

Chapter 3. Setting up the application serving environment 147

Specifies the file to which the standard output stream is directed. The file name can include a symbolic

path name defined in the variable entries.

 Use the field on the configuration tab to specify the file name. Use the field on the Runtime tab to select a

file for viewing. View the file by clicking View.

Direct server output to the administrative console or to the process that launched the server, by either

deleting the file name or specifying console on the configuration tab.

 Data type String

Units File path name

Stderr File Name:

Specifies the file to which the standard error stream is directed. The file name can include a symbolic path

name defined in the variable entries.

 Use the field on the configuration tab to specify the file name. Use the field on the runtime tab to select a

file for viewing. View the file by clicking View.

 Data type String

Units File path name

Monitoring policy settings:

Use this page to view or change settings that control how the node agent monitors and restarts a process.

 To view this administrative console page, click Servers > Application Servers >server_name. Then,

under Server Infrastructure, click Java and Process Management > Process Definition > Monitoring

Policy.

Maximum Startup Attempts:

Specifies the maximum number of times to attempt to start the application server before giving up.

 Data type Integer

Ping Interval:

Specifies the frequency of communication attempts between the parent process, such as the node agent,

and the process it has spawned, such as an application server. Adjust this value based on your

requirements for restarting failed servers. Decreasing the value detects failures sooner; increasing the

value reduces the frequency of pings, reducing system overhead.

 Data type Integer

Range Set the value greater than or equal to 0 (zero) and less

than 2147483.

Ping Timeout:

When a parent process is spawning a child process, such as when a process manager spawns a server,

the parent process pings the child process to see whether the child was spawned successfully. This value

specifies the number of seconds that the parent process should wait (after pinging the child process)

before assuming that the child process failed.

148 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Data type Integer

Units Seconds

Range Set the value greater than or equal to 0 (zero) and less

than 2147483.

Automatic Restart:

Specifies whether the process should restart automatically if it fails. The default is to restart the process

automatically.

 Data type Boolean

Default true

Node Restart State:

Specifies the desired state for the process after the node completely shuts down and restarts.

 Data type String

Default STOPPED

Range Valid values are STOPPED, RUNNING, or PREVIOUS. If

you want the process to return to its current state after the

node restarts, use PREVIOUS.

Automatically restarting server processes

There are several server processes related to WebSphere Application Server products that the operating

system can monitor and automatically restart when the server processes stop abnormally. This task

describes how to set up these monitored processes.

To set up this function on a Linux or UNIX-based operating system, you must have root authority to edit

the inittab file.

On a Windows operating system, you must belong to the Administrator group and have the following

advanced user rights:

v Act as part of the operating system

v Log on as a service

The Installation wizard grants you the user rights if your user ID is part of the administrator group. If you

are running on a Microsoft Windows 2000 Operating System, the Installation wizard displays a message

that states that although the advanced user rights are now effective, they do not display as effective until

the next time you log on to the Windows machine.

You can also add the advanced user rights manually if you are performing a silent installation on a

Windows platform. For example, to grant the user rights to your administrator group user ID on a Windows

2000 Server platform, perform the following procedure:

 1. Click Administrative Tools in the Control Panel.

 2. Click Local Security Policy.

 3. Click Local Policies.

 4. Click User Rights Assignments.

 5. Right click Act as part of the operating system.

 6. Click Security.

 7. Click Add.

 8. Click your user ID.

Chapter 3. Setting up the application serving environment 149

9. Click Add.

10. Click OK.

11. Click OK.

12. Right click Log on as a service.

13. Click Security.

14. Click Add.

15. Click OK.

16. Click OK.

17. Reboot your machine to make the settings effective.

Consult your Windows help system for more information.

You can use this function to automatically restart Express servers. You can restart the server1 process, for

example.

You must manually create a shell script that automatically starts any of the processes previously

mentioned, on a Linux and UNIX-based operating system. Each Windows service or UNIX shell script

controls a single process, such as a stand-alone WebSphere Application Server instance. Multiple

stand-alone Application Server processes require multiple Windows service or UNIX scripts, which you can

define.

If you do not install the WebSphere Application Server base product as a Windows service during

installation, you can use the WASService command in the install_root/bin directory to do so at a later

time. You can use the tool to add any WebSphere Application Server process as a Windows service. The

operating system can then monitor each server process and restart the process if it stops.

1. Use the installation wizard to set up a Windows service to automatically monitor and restart

processes related to the WebSphere Application Server product.

v Perform the following procedure from the installation wizard to select services that the installation

wizard can set up:

a. Click Run WebSphere Application Server as a service.

If you select this option, the installation wizard creates the following service during the

installation:

IBMWAS6Service - node_name

The IBMWAS6Service -node_name service controls the node_name process.

After you complete and verify the installation, use the Windows Services panel to change the

IBMWAS6Service -node_name service to an automatic startup type.

1) Right click IBMWAS6Service -node_name and click Properties.

2) Click Automatic from the Startup type list box and click OK.
b. Click Run IBM HTTP Server as a service.

Select this option on the machine where you are installing the IBM HTTP Server.

If you select this option, the installation wizard creates the following services during the

installation:

– IBM HTTP Server 2.0.x

– IBM HTTP Administration 2.0.x

The installation wizard defines the startup type of these services as automatic. It is not

necessary for you to change the type from manual to automatic.

c. Enter your user ID and password and click Next.

In a coexistence environment, you can change the default service names to make them unique. In a

same version coexistence scenario for IBM HTTP Server 2.0.x on a Windows platform, you cannot

use the default service names created by the installer because they are common.

To work around this problem:

150 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

a. Install the first copy of IBM HTTP Server, either by itself or with WebSphere Application Server

and select to install the services.

b. Customize the service names for the first install by running the following commands from the

first install location:

 apache -k install -n "IHS 2.0(1)"

 apache -k install -f conf\admin.conf -n "IHS 2.0 Administration (1)"

c. Edit the AdminAlias directive in the installLocation 1\conf\admin.conf file to point to the new

service name, such as IHS 2.0(1).

d. Remove the default service names installed by the first install by running the following

commands:

 apache -k uninstall -n "IBM HTTP Server 2.0"

 apache -k uninstall -n "IBM HTTP Administration 2.0"

e. Install the second copy of IBM HTTP Server, either by itself or with WebSphere Application

Server. The default service names correspond to the second install.

Note: Customized service names must be unique on your system.

2. After installing, you can use the WASService.exe utility in the install_root\bin directory to manually

define a Windows service for another installation instance or for another configuration instance of the

server1 process.

You can use the net start and net stop commands to control the IBM HTTP Server services on a

Windows system. For more information about these commands, see the Windows help file. Access these

commands from the Start menu, clicking Start > Programs > IBM HTTP Server.

You can also use the Start the Server and Stop the Server commands to control the IBM WebSphere

Application Server process on a Windows system. Access these commands from the Start menu, clicking

Start > Programs > IBM WebSphere > Application Server V6.

Processes started by a startServercommand are not running as monitored processes, regardless of how

you have configured them.

For example, you can configure a server1 process as a monitored process. However, if you start the

server1 process using the startServer command, the operating system does not monitor or restart the

server1 process because the operating system did not originally start the process as a monitored process.

Return to Defining application server processes to continue.

WASService command:

The WASService command line tool lets you create a Windows service for any WebSphere Application

Server Java process.

 You can create Windows services for WebSphere Application Server Java processes. Potential Windows

services include the following server processes:

v The default server1 process on an application server node

v Application server processes that you create on an application server node

When the installation wizard creates a Windows service, the uninstaller program can remove the Windows

service. If you use the WASService command to create a service yourself, it is your responsibility to

remove the service when it is no longer valid. The uninstaller program does not remove Windows services

that you create with the WASService command.

Location of the command file: The WASService.exe command file is located in the install_root\bin

directory.

Command syntax:

Chapter 3. Setting up the application serving environment 151

WASService.exe command syntax for starting an existing service

The command syntax is as follows:

WASService.exe [-start] "service_name" [optional startServer.bat parameters]

WASService.exe command syntax for creating a service or updating an existing service

The command syntax is as follows:

WASService.exe -add "service_name"

 -serverName server

 -profilePath server_profile_directory

 [-wasHome install_root]

 [-configRoot configuration_repository_directory]

 [-startArgs additional_start_arguments]

 [-stopArgs additional_stop_arguments]

 [-userid user_id -password password]

 [-logFile service_log_file]

 [-logRoot server_log_directory]

 [-restart true | -restart false]

 [-startType automatic | manual | disabled]

WASService.exe command syntax for deleting a service

The command syntax is as follows:

WASService.exe -remove "service_name"

WASService.exe command syntax for stopping a running service

The command syntax is as follows:

WASService.exe -stop "service_name" [optional stopServer.bat parameters]

WASService.exe command syntax for retrieving service status

The command syntax is as follows:

WASService.exe -status "service_name"

WASService.exe command syntax for encoding parameters

The command syntax is as follows:

WASService.exe -encodeParams "service_name"

Parameters: Supported arguments include:

-add ″service_name″

Creates a service named service_name or updates an existing Windows service. The syntax is the

same for both cases.

-configRoot configuration_repository_directory

Optional parameter that identifies the configuration directory of the installation root directory of a

WebSphere Application Server product.

-encodeParams service_name

Optional parameter that forces the service to encode the -startArgs and -stopArgs so that the

arguments cannot be determined by editing the registry. Use the parameter when creating a service

with the -add parameter by adding -encodeParams to the command line with no arguments. Or

encode the parameters of an existing service:

WASService -encodeParams service_name

152 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

-logFile service_log_file

Optional parameter that identifies a log file that the WASService command uses to record its activity.

-logRoot server_log_directory

Required parameter that identifies the server log directory for the profile. The WASService command

looks for a file named server_name.pid to determine if the server is running.

-profilePath server_profile_directory

Specifies the directory path of the profile that defines the server process.

-remove service_name

Deletes the specified service.

-restart true | false

Restarts the existing service automatically if the service fails when set to true.

-serverName Server_name

Identifies the server that the service controls.

-start ″service_name″ [optional startServer.bat parameters]

Starts the existing service.

-startArgs additional_start_arguments

Optional parameter that identifies additional parameters.

-startType automatic | manual | disabled

Defines the startup type of the new service. An automatic startup type starts automatically when the

system starts or when the service is called for the first time. You must start a manual service before

the operating system can load it and make it available. You cannot start a disabled service before

changing the startup type.

-status service_name

Returns the current status of the service, which includes whether the service is running or stopped.

-stop service_name [optional stopServer.bat parameters]

Stops the specified service.

-stopArgs additional_stop_arguments

Optional parameter that identifies additional parameters.

-userid user_ID -password password

Optional parameters that identify a privileged user ID and password that the Windows service will run

as.

-wasHome install_root

Optional parameter that identifies the installation root directory of the WebSphere Application Server

product.

Default names for Windows services that are created by the wizard: The name of the Windows service

that is created by the Installation wizard is IBM WebSphere Application Server V6 - DefaultNode.

Viewing the Windows services panel: To view Windows services, open the Control panel and click

Administrative Tools > Services. Select a service to view information about it. Right click the service and

click Properties. Four tabs provide information and functionality. For example, select the Setup type field

on the General tab to change the setup type.

Examples:

Creating an Application Server service

This example creates a service called IBM WebSphere Application Server V6 - server2 that starts an

Application Server process:

Chapter 3. Setting up the application serving environment 153

WASService -add server2

 -servername server2

 -profilePath "C:\Program Files\IBM\WebSphere\AppServer\

 profiles\CustomProfile"

 -wasHome "C:\Program Files\IBM\WebSphere\AppServer"

 -logfile "C:\Program Files\IBM\WebSphere\AppServer\

 profiles\CustomProfile\logs\startNode.log"

 -logRoot "C:\Program Files\IBM\WebSphere\AppServer\

 profiles\CustomProfile\logs"

 -restart true

After entering the command, messages that are similar to those in the following example display in the

command window:

Adding Service: server2

 Config Root: C:\Program Files\IBM\WebSphere\AppServer\

 profiles\CustomProfile\config

 Server Name: server2

 Profile Path: C:\Program Files\IBM\WebSphere\AppServer\

 profiles\CustomProfile

 Was Home: C:\Program Files\IBM\WebSphere\AppServer\

 Start Args:

 Restart: 1

IBM WebSphere Application Server V6 - server2 service successfully added.

Updating an existing Application Server service

This example updates an existing service called IBM WebSphere Application Server V6 - server2 with

additional stop arguments, username and password. The user name and password are required by the

stopServer command to stop the application server with security enabled.

WASService -add server2

 -servername server2

 -profilePath "C:\Program Files\IBM\WebSphere\AppServer\

 profiles\CustomProfile"

 -stopArgs "-username user_name -password password"

 -encodeParams server2

Starting and stopping a server process after creating a Windows service: If you issue the startServer

server1 command or the stopServer server1 after creating a Windows service for server1, a message

that is similar to the following example displays:

Because server1 is registered to run as a Windows Service, the

request to start this server will be completed by starting the

associated Windows Service.

Stopping a server after enabling security

If you enable security while a Windows service is running, you cannot stop the server from the command

line, even when using the username and password parameters on the stopServer command. A message

similar to the following example is displayed:

Could not stop the IBM WebSphere Application Server V6 -

server_name service on Local Computer. The service

did not return an error. This could be an internal Windows

error or an internal service error. If the problem persists,

contact your system administrator.

The problem is due to the service control of the process. You must change the service to use the proper

stop-server arguments for a secure server.

Use the -stopArgs parameter and the -encodeParams parameter to update the service as described in the

″Updating an existing application server service″ example.

154 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Java virtual machines (JVMs)

The Java virtual machine (JVM) is an interpretive computing engine responsible for running the byte codes

in a compiled Java program. The JVM translates the Java byte codes into the native instructions of the

host machine. The application server, being a Java process, requires a JVM in order to run, and to support

the Java applications running on it. JVM settings are part of an application server configuration.

Using the JVM

As part of configuring an application server, you might define settings that enhance your system’s use of

the Java virtual machine (JVM).

To view and change the JVM configuration for an application server’s process, use the Java Virtual

Machine page of the administrative console or use the wsadmin tool to change the configuration through

scripting.

1. Access the Java Virtual Machine page.

a. Click Servers > Application Servers in the console navigation tree.

b. On the Application Server page, click on the name of the server whose JVM settings you want to

configure.

c. On the settings page for the selected application server, click Java and Process Management >

Process Definition.

d. On the Process Definition page, click Java Virtual Machine.

2. On the Java Virtual Machine page, specify values for the JVM settings as needed and click OK.

3. Click Save on the console task bar.

4. Restart the application server.

″“Configuring application servers for UTF-8 encoding” on page 112″ provides an example that involves

specifying a value for the Generic JVM Arguments property on the Java Virtual Machine page to enable

UTF-8 encoding on an application server. Enabling UTF-8 allows multiple language encoding support to be

used in the administrative console.

″“Configuring JVM sendRedirect calls to use context root” on page 159″ provides an example that involves

defining a property for the JVM.

Java virtual machine settings

Use this page to view and change the Java virtual machine (JVM) configuration for the application server’s

process.

To view this administrative console page, click Servers > Application Servers >server_name > Process

Definition > Java Virtual Machine.

Classpath:

Specifies the standard class path in which the Java virtual machine code looks for classes.

 Enter each classpath entry into a table row. You do not need to add the colon or semicolon at the end of

each entry.

 Data type String

Units Class path

Boot Classpath:

Chapter 3. Setting up the application serving environment 155

Specifies bootstrap classes and resources for JVM code. This option is only available for JVM instructions

that support bootstrap classes and resources. You can separate multiple paths by a colon (:) or semi-colon

(;), depending on operating system of the node.

 Data type String

Verbose Class Loading:

Specifies whether to use verbose debug output for class loading. The default is not to enable verbose

class loading.

 Data type Boolean

Default false

Verbose Garbage Collection:

Specifies whether to use verbose debug output for garbage collection. The default is not to enable verbose

garbage collection.

 Data type Boolean

Default false

Verbose JNI:

Specifies whether to use verbose debug output for native method invocation. The default is not to enable

verbose Java Native Interface (JNI) activity.

 Data type Boolean

Default false

Initial Heap Size:

Specifies the initial heap size available to the JVM code, in megabytes.

 Increasing the minimum heap size can improve startup. The number of garbage collection occurrences are

reduced and a 10% gain in performance is realized.

Increasing the size of the Java heap improves throughput until the heap no longer resides in physical

memory, in general. After the heap begins swapping to disk, Java performance suffers drastically.

 Data type Integer

Default The default is 50.

Maximum Heap Size:

Specifies the maximum heap size available to the JVM code, in megabytes.

 Increasing the heap size can improve startup. By increasing heap size, you can reduce the number of

garbage collection occurrences with a 10% gain in performance.

Increasing the size of the Java heap improves throughput until the heap no longer resides in physical

memory, in general. After the heap begins swapping to disk, Java performance suffers drastically. Set the

maximum heap size low enough to contain the heap within physical memory.

156 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Data type Integer

Default 0 for iSeries, 256 for all other platforms. Keep the value

low enough to avoid paging or swapping-out-memory-to-
disk.

Run HProf:

This setting applies to base WebSphere Application Server only. It specifies whether to use HProf profiler

support. To use another profiler, specify the custom profiler settings using the HProf Arguments setting.

The default is not to enable HProf profiler support.

 If you set the Run HProf property to true, then you must specify command-line profiler arguments as

values for the HProf Arguments property.

 Data type Boolean

Default false

HProf Arguments:

This setting applies to base WebSphere Application Server only. It specifies command-line profiler

arguments to pass to the JVM code that starts the application server process. You can specify arguments

when HProf profiler support is enabled.

 HProf arguments are only required if the Run HProf property is set to true.

 Data type String

Debug Mode:

Specifies whether to run the JVM in debug mode. The default is not to enable debug mode support.

 If you set the Debug Mode property to true, then you must specify command-line debug arguments as

values for the Debug Arguments property.

 Data type Boolean

Default false

Debug Arguments:

Specifies command-line debug arguments to pass to the JVM code that starts the application server

process. You can specify arguments when Debug Mode is enabled.

 Debug arguments are only required if the Debug Mode property is set to true. If you enable debugging on

multiple application servers on the same server, make sure that the servers are using different address

arguments, which define the port for debugging. For example, if you enable debugging on two servers and

leave the default debug port for each server as address=7777, the servers could fail to start properly.

 Data type String

Units Java command-line arguments

Generic JVM Arguments:

Chapter 3. Setting up the application serving environment 157

Specifies command line arguments to pass to the Java virtual machine code that starts the application

server process.

 The following are optional command line arguments that you can use by entering them into the General

JVM Arguments field. If you enter more than one argument, separate each argument by a space.

Note: If the argument says it is for the IBM Developer Kit only, you cannot use the argument with another

JVM, such as the Sun JDK or the HP JDK.

v -Xquickstart: You can use -Xquickstart for initial compilation at a lower optimization level than in

default mode. Later, depending on sampling results, you can recompile to the level of the initial compile

in default mode. Use -Xquickstart for applications where early moderate speed is more important than

long run throughput. In some debug scenarios, test harnesses and short-running tools, you can improve

startup time between 15-20%.

The -Xquickstart option is not supported on OS/400.

v -Xverify:none: When using this value, the class verification stage is skipped during class loading . By

using -Xverify:none with the just in time (JIT) compiler enabled, startup time is improved by 10-15%.

The -Xverify:none option is not supported on OS/400.

v -Xnoclassgc: You can use this value to disable class garbage collection, which leads to more class

reuse and slightly improved performance. The trade-off is that you won’t be collecting the resources

owned by these classes. You can monitor garbage collection using the verbose:gc configuration setting,

which will output class garbage collection statistics. Examining these statistics will help you understand

the trade-off between the reclaimed resources and the amount of garbage collection required to reclaim

the resources. However, if the same set of classes are garbage collected repeatedly in your workload,

you should disable garbage collection. Class garbage collection is enabled by default.

v -Xgcthreads: You can use several garbage collection threads at one time, also known as parallel

garbage collection. When entering this value in the Generic JVM Arguments field, also enter the

number of processors that your machine has, for example, -Xgcthreads=number_of_processors. On a

node with n processors, the default number of threads is n. You should use parallel garbage collection if

your machine has more than one processor. This argument is valid only for the IBM Developer Kit.

The -Xgcthreads option is not supported on OS/400.

v -Xnocompactgc: This value disables heap compaction which is the most expensive garbage collection

operation. Avoid compaction in the IBM Developer Kit. If you disable heap compaction, you eliminate all

associated overhead.

v -Xinitsh: You can use this value to set the initial heap size where class objects are stored. The method

definitions and static fields are also stored with the class objects. Although the system heap size has no

upper bound, set the initial size so that you do not incur the cost of expanding the system heap size,

which involves calls to the operating system memory manager. You can compute a good initial system

heap size by knowing the number of classes loaded in the WebSphere Application Server product,

which is about 8,000 classes, and their average size. Having knowledge of the applications helps you

include them in the calculation. You can use this argument only with the IBM Developer Kit.

v -Xgpolicy: You can use this value to set the garbage collection policy. If the garbage collection policy

(gcpolicy) is set to optavgpause, concurrent marking is used to track application threads starting from

the stack before the heap becomes full. The garbage collector pauses become uniform and long pauses

are not apparent. The trade-off is reduced throughput because threads might have to do extra work.

The default, recommended value is optthruput. Enter the value as

-Xgcpolicy:[optthruput|optavgpause]. You can use this argument only with the IBM Developer Kit.

v -XX: The Sun-based Java Development Kit (JDK) Version 1.4.2 has generation garbage collection,

which allows separate memory pools to contain objects with different ages. The garbage collection cycle

collects the objects independently from one another depending on age. With additional parameters, you

can set the size of the memory pools individually. To achieve better performance, set the size of the

pool containing short lived objects so that objects in the pool do not live through more then one garbage

collection cycle. The size of new generation pool is determined by the NewSize and MaxNewSize

parameters. Objects that survive the first garbage collection cycle are transferred to another pool. The

size of the survivor pool is determined by parameter SurvivorRatio. If garbage collection becomes a

bottleneck, you can try customizing the generation pool settings. To monitor garbage collection statistics,

158 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

use the object statistics in Tivoli Performance Viewer or the verbose:gc configuration setting. Enter the

following values: -XX:NewSize (lower bound) , -XX:MaxNewSize (upper bound), and

-XX:SurvivorRatio=NewRatioSize. The default values are:NewSize=2m MaxNewSize=32m SurvivorRatio=2

However, if you have a JVM with more than 1 GB heap size, you should use the values:

-XX:newSize=640m -XX:MaxNewSize=640m -XX:SurvivorRatio=16, or set 50 to 60% of total heap size to a

new generation pool.

The -XX option is not supported on OS/400.

v -Xminf: You can use this value to specify the minimum free heap size percentage. The heap grows if

the free space is below the specified amount. In reset enabled mode, this option specifies the minimum

percentage of free space for the middleware and transient heaps. This is a floating point number, 0

through 1. The default is .3 (30%).

v -server | -client: Java HotSpot Technology in the Sun-based Java Development Kit (JDK) Version 1.4.2

introduces an adaptive JVM containing algorithms for optimizing byte code execution over time. The

JVM runs in two modes, -server and -client. If you use the default -client mode, there will be a faster

startup time and a smaller memory footprint, but lower extended performance. You can enhance

performance by using -server mode if a sufficient amount of time is allowed for the HotSpot JVM to

warm up by performing continuous execution of byte code. In most cases, use -server mode, which

produces more efficient run-time execution over extended periods. You can monitor the process size

and the server startup time to check the difference between -client and-server.

The -server | -client option is not supported on OS/400.

 Data type String

Units Java command line arguments

Executable JAR File Name:

Specifies a full path name for an executable JAR file that the JVM code uses.

 Data type String

Units Path name

Disable JIT:

Specifies whether to disable the just in time (JIT) compiler option of the JVM code.

 If you disable the JIT compiler, throughput decreases noticeably. Therefore, for performance reasons, keep

JIT enabled.

 Data type Boolean

Default false (JIT enabled)

Recommended JIT enabled

Operating System Name:

Specifies JVM settings for a given operating system. When started, the process uses the JVM settings for

the operating system of the server.

 Data type String

Configuring JVM sendRedirect calls to use context root

If the com.ibm.websphere.sendredirect.compatibility property is not set and your application servlet code

has statements such as sendRedirect(″/home.html″), your Web browser might display messages such as

Error 404: No target servlet configured for uri: /home.html. To instruct the server not to use the Web

Chapter 3. Setting up the application serving environment 159

server’s document root and to use instead the Web application’s context root for sendRedirect() calls,

configure the JVM by setting the com.ibm.websphere.sendredirect.compatibility property to a true or false

value.

1. Access the settings page for a property of the JVM.

a. Click Servers > Application Servers in the console navigation tree.

b. On the Application Server page, click on the name of the server whose JVM settings you want to

configure.

c. On the settings page for the selected application server, under Server Infrastructure, click Java and

Process Management > Process Definition.

d. On the Process Definition page, click Java Virtual Machine.

e. On the Java Virtual Machine page, click Custom Properties.

f. On the Custom Properties page, click New.

2. On the settings page for a property, specify a name of

com.ibm.websphere.sendredirect.compatibility and either true or false for the value, then click OK.

3. Click Save on the console task bar.

4. Stop the application server and then restart the application server.

Setting custom JVM properties

In the WebSphere Application Server administrative console, you can change the values of the following

custom JVM properties:

com.ibm.websphere.network.useMultiHome

 For a distributed platform:

 Set this property in a multihomed environment where WebSphere Application Server is restricted

to listen only on a specific IP address for Discovery and SOAP messages.

 The settings for the com.ibm.websphere.network.useMultiHome property are as follows:

v Setting this property to false specifies that WebSphere Application Server will listen on all IP

addresses on the host for Discovery and SOAP messages.

v Setting this property to true specifies that WebSphere Application Server will only listen on the

configured host name for Discovery and SOAP messages. If you set this property to true, you

should have a host name configured on WebSphere Application Server that resolves to a

specific IP address.

v Setting this property to null specifies that WebSphere Application Server will only listen on the

default IP address only.

If you cannot contact the server, check the setting for

com.ibm.websphere.network.useMultihome to ensure it is correct.

 You can change the value through the administrative console. Modify the defaults by setting the

value for the server, deployment manager, and node agent. In order for these changes to take

place, you must restart the server.

 Steps for this task

1. To set this property, connect to the administrative console and navigate to the indicated page.

 Application server Servers > Application Servers >server1> Process

Definition >Control > Java Virtual Machine > Custom

Properties

Deployment manager System Administration > Deployment Manager >

Process definition > Control > Java Virtual Machine >

Custom Properties

160 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Node agent System Administration >Node Agent > nodeagent >

Process definition >Control > Java Virtual Machine >

Custom Properties

2. If the com.ibm.websphere.network.useMultiHome property is not present in the list, create a

new property name and indicate its value.

3. Restart the server.

com.ibm.websphere.deletejspclasses

Deletes JavaServer Pages classes for all applications after those applications have been deleted

or updated. By default, the value of this property is true.

 Steps for this task

1. Connect to the administrative console and navigate to the Java Virtual Machine Custom

Properties panel.

For a distributed platform:

 Base configuration Servers > Application Servers >server1. Then, under

Server Infrastructure, click Java and Process

Management > Process definition > Java Virtual

Machine > Custom Properties

ND configuration System Administration > Node Agents >nodeagent.

Then, under Server Infrastructure, click Java and

Process Management > Process definition > Java

Virtual Machine > Custom Properties

2. If the com.ibm.websphere.deletejspclasses property is not present in the list, create a new

property name.

3. Enter the name and value.

com.ibm.websphere.deletejspclasses.delete

Deletes JavaServer Pages classes for all applications after those applications have been deleted,

but not after they have been updated. By default, the value of this property is true.

 Steps for this task

1. Connect to the administrative console and navigate to the Java Virtual Machine Custom

Properties panel.

For a distributed platform:

 Base configuration Servers > Application Servers >server1 > Process

definition > Java Virtual Machine > Custom Properties

ND configuration System Administration > Node Agents >nodeagent.

Then, under Server Infrastructure, click Java and

Process Management > Process definition > Java

Virtual Machine > Custom Properties

2. If the com.ibm.websphere.deletejspclasses.delete property is not present in the list, create a

new property name.

3. Enter the name and value.

com.ibm.websphere.deletejspclasses.update

Deletes JavaServer Pages classes for all applications after those applications have been updated,

but not after they have been deleted. By default, the value of this property is true.

 Steps for this task

1. Connect to the administrative console and navigate to the Java Virtual Machine Custom

Properties panel.

Chapter 3. Setting up the application serving environment 161

For a distributed platform:

 Base configuration Servers > Application Servers >server1. Then, under

Server Infrastructure, click Java and Process

Management > Process definition > Java Virtual

Machine > Custom Properties

ND configuration System Administration > Node Agents >nodeagent.

Then, under Server Infrastructure, click Java and

Process Management > Process definition > Java

Virtual Machine> Custom Properties

2. If the com.ibm.websphere.deletejspclasses.update property is not present in the list, create

a new property name.

3. Enter the name and value.

Tuning Java virtual machines

The application server, being a Java process, requires a Java virtual machine (JVM) to run, and to support

the Java applications running on it. As part of configuring an application server, you can fine-tune settings

that enhance system use of the JVM. In addition to the following tuning parameters, see also “Java

memory tuning tips” on page 163.

Use the following JVM parameters, including garbage collection options for IBM Developer Kit 1.4.2, to

tune the Java virtual machine. For instructions on view and change the JVM configuration , go to “Using

the JVM” on page 155. For information on specifying any of the following settings, go to “Java virtual

machine settings” on page 155.

v Specify any or all of the following generic JVM arguments. These optional command line arguments

are passed to the Java virtual machine code that starts the application server process.

– Quickstart (-Xquickstart)

– Avoiding class verification (-Xverify:none)

– Class garbage collection (-Xnoclassgc)

– Garbage collection threads (-Xgcthreads)

– Garbage collection policy (-Xgcpolicy)

– Sun JDK 1.4.2 Generational Garbage Collection (-XX)

You can find more information about generational garbage collection at

http://java.sun.com/docs/hotspot/gc/index.html.

– Sun Java Development Kit 1.4.2 HotSpot JVM warm-up (-server)

– Heap compaction (-Xnocompactgc)

– Initial system heap size (-Xinitsh)

v Set the initial heap size.

v Set the maximum heap size.

Preparing to host applications

Rather than use the default application server provided with the product, you can configure a new server

and set of resources.

The default application server and a set of default resources are available to help you begin quickly. You

can choose instead to configure a new server and set of resources. Here is what you need to do in order

to set up a run-time environment to support applications.

 1. Create an application server.

 2. Create a virtual host.

 3. Configure a Web container.

 4. Configure an EJB container.

162 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

http://java.sun.com/docs/hotspot/gc/index.html

5. Create resources for data access.

 6. Create a JDBC provider and data source.

 7. Create a URL and URL provider.

 8. Create a JavaMail session.

 9. Create resources for session support.

10. Configure a Session Manager.

Java memory tuning tips

Enterprise applications written in the Java language involve complex object relationships and utilize large

numbers of objects. Although, the Java language automatically manages memory associated with object

life cycles, understanding the application usage patterns for objects is important. In particular, verify the

following:

v The application is not over-utilizing objects

v The application is not leaking objects

v The Java heap parameters are set properly to handle a given object usage pattern

Understanding the effect of garbage collection is necessary to apply these management techniques.

The garbage collection bottleneck

Examining Java garbage collection gives insight to how the application is utilizing memory. Garbage

collection is a Java strength. By taking the burden of memory management away from the application

writer, Java applications are more robust than applications written in languages that do not provide

garbage collection. This robustness applies as long as the application is not abusing objects. Garbage

collection normally consumes from 5% to 20% of total execution time of a properly functioning application.

If not managed, garbage collection is one of the biggest bottlenecks for an application, especially when

running on symmetric multiprocessing (SMP) server machines. The Java virtual machine (JVM) uses a

parallel garbage collector to fully exploit an SMP during most garbage collection cycles where the Sun

HotSpot 1.3.1 JVM has a single-threaded garbage collector. For more information about garbage collection

in a Solaris operating environment see ″Performance: Resources for learning″ in the information center.

The garbage collection gauge

You can use garbage collection to evaluate application performance health. By monitoring garbage

collection during the execution of a fixed workload, you gain insight as to whether the application is

over-utilizing objects. Garbage collection can even detect the presence of memory leaks.

You can monitor garbage collection statistics using object statistics in the Tivoli Performance Viewer, or

using the verbose:gc JVM configuration setting. The verbose:gc format is not standardized between

different JVMs or release levels. For a description of the IBM verbose:gc output and more information

about the IBM garbage collector, see ″Performance: Resources for learning″ in the information center.

For this type of investigation, set the minimum and maximum heap sizes to the same value. Choose a

representative, repetitive workload that matches production usage as closely as possible, user errors

included.

To ensure meaningful statistics, run the fixed workload until the application state is steady. It usually takes

several minutes to reach a steady state.

Detecting over-utilization of objects

You can use the Tivoli Performance Viewer to check if the application is overusing objects, by observing

the counters for the JVM runtime. You have to set the -XrunpmiJvmpiProfiler command line option, as

well as the JVM module maximum level in order to enable the Java virtual machine profiler interface

Chapter 3. Setting up the application serving environment 163

(JVMPI) counters. The best result for the average time between garbage collections is at least 5-6 times

the average duration of a single garbage collection. If you do not achieve this number, the application is

spending more than 15% of its time in garbage collection.

If the information indicates a garbage collection bottleneck, there are two ways to clear the bottleneck. The

most cost-effective way to optimize the application is to implement object caches and pools. Use a Java

profiler to determine which objects to target. If you can not optimize the application, adding memory,

processors and clones might help. Additional memory allows each clone to maintain a reasonable heap

size. Additional processors allow the clones to run in parallel.

Detecting memory leaks

Memory leaks in the Java language are a dangerous contributor to garbage collection bottlenecks.

Memory leaks are more damaging than memory overuse, because a memory leak ultimately leads to

system instability. Over time, garbage collection occurs more frequently until the heap is exhausted and

the Java code fails with a fatal Out of Memory exception. Memory leaks occur when an unused object has

references that are never freed. Memory leaks most commonly occur in collection classes, such as

Hashtable because the table always has a reference to the object, even after real references are deleted.

High workload often causes applications to crash immediately after deployment in the production

environment. This is especially true for leaking applications where the high workload accelerates the

magnification of the leakage and a memory allocation failure occurs.

The goal of memory leak testing is to magnify numbers. Memory leaks are measured in terms of the

amount of bytes or kilobytes that cannot be garbage collected. The delicate task is to differentiate these

amounts between expected sizes of useful and unusable memory. This task is achieved more easily if the

numbers are magnified, resulting in larger gaps and easier identification of inconsistencies. The following

list contains important conclusions about memory leaks:

v Long-running test

Memory leak problems can manifest only after a period of time, therefore, memory leaks are found

easily during long-running tests. Short running tests can lead to false alarms. It is sometimes difficult to

know when a memory leak is occurring in the Java language, especially when memory usage has

seemingly increased either abruptly or monotonically in a given period of time. The reason it is hard to

detect a memory leak is that these kinds of increases can be valid or might be the intention of the

developer. You can learn how to differentiate the delayed use of objects from completely unused objects

by running applications for a longer period of time. Long-running application testing gives you higher

confidence for whether the delayed use of objects is actually occurring.

v Repetitive test

In many cases, memory leak problems occur by successive repetitions of the same test case. The goal

of memory leak testing is to establish a big gap between unusable memory and used memory in terms

of their relative sizes. By repeating the same scenario over and over again, the gap is multiplied in a

very progressive way. This testing helps if the number of leaks caused by the execution of a test case is

so minimal that it is hardly noticeable in one run.

You can use repetitive tests at the system level or module level. The advantage with modular testing is

better control. When a module is designed to keep the private module without creating external side

effects such as memory usage, testing for memory leaks is easier. First, the memory usage before

running the module is recorded. Then, a fixed set of test cases are run repeatedly. At the end of the test

run, the current memory usage is recorded and checked for significant changes. Remember, garbage

collection must be suggested when recording the actual memory usage by inserting System.gc() in the

module where you want garbage collection to occur, or using a profiling tool, to force the event to occur.

v Concurrency test

Some memory leak problems can occur only when there are several threads running in the application.

Unfortunately, synchronization points are very susceptible to memory leaks because of the added

complication in the program logic. Careless programming can lead to kept or unreleased references.

164 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

The incident of memory leaks is often facilitated or accelerated by increased concurrency in the system.

The most common way to increase concurrency is to increase the number of clients in the test driver.

Consider the following points when choosing which test cases to use for memory leak testing:

– A good test case exercises areas of the application where objects are created. Most of the time,

knowledge of the application is required. A description of the scenario can suggest creation of data

spaces, such as adding a new record, creating an HTTP session, performing a transaction and

searching a record.

– Look at areas where collections of objects are used. Typically, memory leaks are composed of

objects within the same class. Also, collection classes such as Vector and Hashtable are common

places where references to objects are implicitly stored by calling corresponding insertion methods.

For example, the get method of a Hashtable object does not remove its reference to the retrieved

object.

Tivoli Performance Viewer can help find memory leaks. For best results, repeat experiments with

increasing duration, like 1000, 2000, and 4000-page requests. The Tivoli Performance Viewer graph of

used memory should have a sawtooth shape. Each drop on the graph corresponds to a garbage

collection. There is a memory leak if one of the following occurs:

v The amount of memory used immediately after each garbage collection increases significantly. The

sawtooth pattern looks more like a staircase.

v The sawtooth pattern has an irregular shape.

Also, look at the difference between the number of objects allocated and the number of objects freed. If

the gap between the two increases over time, there is a memory leak.

Heap consumption indicating a possible leak during a heavy workload (the application server is

consistently near 100% CPU utilization), yet appearing to recover during a subsequent lighter or near-idle

workload, is an indication of heap fragmentation. Heap fragmentation can occur when the JVM can free

sufficient objects to satisfy memory allocation requests during garbage collection cycles, but the JVM does

not have the time to compact small free memory areas in the heap to larger contiguous spaces.

Another form of heap fragmentation occurs when small objects (less than 512 bytes) are freed. The

objects are freed, but the storage is not recovered, resulting in memory fragmentation until a heap

compaction has been run.

To avoid heap fragmentation, turn on the -Xcompactgc flag in the JVM advanced settings command line

arguments. The -Xcompactgc function verifies that each garbage collection cycle eliminates fragmentation.

However, compaction is a relatively expensive operation. See the heap compaction command line

argument (-Xnocompactgc) in “Java virtual machine settings” on page 155 for more information.

Java heap parameters

The Java heap parameters also influence the behavior of garbage collection. Increasing the heap size

supports more object creation. Because a large heap takes longer to fill, the application runs longer before

a garbage collection occurs. However, a larger heap also takes longer to compact and causes garbage

collection to take longer. Refer to the sections on Java Heap sizes in “Java virtual machine settings” on

page 155 for more information.

For performance analysis, the initial and maximum heap sizes should be equal.

When tuning a production system where the working set size of the Java application is not understood, a

good starting value for the initial heap size is 25% of the maximum heap size. The JVM then tries to adapt

the size of the heap to the working set size of the application.

Chapter 3. Setting up the application serving environment 165

Varying Java Heap Settings

Time
0

20

40

60

80

100

-ms128M, -mx128M Time spent in Garbage Collection

C
P

U
%

Processor #1

Processor #2

C
P

U
%

0

20

40

60

80

100

-ms64M, -mx64M Time spent in Garbage Collection

Time

Processor #1

Processor #2

-ms256M, -mx256M Time spent in Garbage Collection

Time

C
P

U
%

0

20

40

60

80
100 Processor #1

Processor #2

The illustration represents three CPU profiles, each running a fixed workload with varying Java heap

settings. In the middle profile, the initial and maximum heap sizes are set to 128MB. Four garbage

collections occur. The total time in garbage collection is about 15% of the total run. When the heap

parameters are doubled to 256MB, as in the top profile, the length of the work time increases between

garbage collections. Only three garbage collections occur, but the length of each garbage collection is also

increased. In the third profile, the heap size is reduced to 64MB and exhibits the opposite effect. With a

smaller heap size, both the time between garbage collections and the time for each garbage collection are

shorter. For all three configurations, the total time in garbage collection is approximately 15%. This

example illustrates an important concept about the Java heap and its relationship to object utilization.

There is always a cost for garbage collection in Java applications.

Run a series of test experiments that vary the Java heap settings. For example, run experiments with

128MB, 192MB, 256MB, and 320MB. During each experiment, monitor the total memory usage. If you

expand the heap too aggressively, paging can occur. Use the vmstat command or the Windows NT or

Windows 2000 Performance Monitor to check for paging. If paging occurs, reduce the size of the heap or

add more memory to the system. When all the runs are finished, compare the following statistics:

v Number of garbage collection calls

v Average duration of a single garbage collection call

v Ratio between the length of a single garbage collection call and the average time between calls

If the application is not over-utilizing objects and has no memory leaks, the state of steady memory

utilization is reached. Garbage collection also occurs less frequently and for short duration.

If the heap free space settles at 85% or more, consider decreasing the maximum heap size values

because the application server and the application are under-utilizing the memory allocated for heap.

For more information about garbage collection see ″Performance: Resources for learning″ in the

information center.

For current information available from IBM Support on known problems and their resolution, see the IBM

Support page.

166 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCMPCY
http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCMPCY

IBM Support has documents that can save you time gathering information needed to resolve this problem.

Before opening a PMR, see the IBM Support page.

Tuning application servers

The WebSphere Application Server contains interrelated components that must be harmoniously tuned to

support the custom needs of your end-to-end e-business application.

This group of interrelated components is known as the “Queuing network” on page 27. The queuing

network helps the system achieve maximum throughput while maintaining the overall stability of the

system.

The follow steps describe various tuning tasks that may improve your application server performance. You

can choose to implement any of these application server settings.

v Tune the object request broker. An Object Request Broker (ORB) manages the interaction between

clients and servers, using the Internet InterORB Protocol (IIOP). It supports client requests and

responses received from servers in a network-distributed environment. You can tune the ORB with the

following parameters:

– Set Pass by reference (com.ibm.CORBA.iiop.noLocalCopies) as described in “Object Request

Broker service settings” on page 1816.

– Set the Connection cache minimum (com.ibm.CORBA.MaxOpenConnections) as described in

“Object Request Broker service settings” on page 1816.

– Set Maximum size as described in “Thread pool settings” on page 120

– Set com.ibm.CORBA.ServerSocketQueueDepth as described in “Object Request Broker custom

properties” on page 1819.

– Set the com.ibm.CORBA.FragmentSize as described in “Object Request Broker custom properties”

on page 1819.

The “Object Request Broker tuning guidelines” on page 1815 offer tips on using these parameters to

tune the ORB.

v Tune the XML parser definitions.

– Description: Facilitates server startup by adding XML parser definitions to the jaxp.properties and

xerxes.properties files in the ${install_root}/jre/lib directory. The XMLParserConfiguration value

might change as new versions of Xerces are provided.

– How to view or set: Insert the following lines in both files:

javax.xml.parsers.SAXParserFactory=org.apache.xerces.jaxp.SAXParserFactoryImpl

javax.xml.parsers.DocumentBuildFactory=org.apache.xerces.jaxp.

 DocumentBuilderFactoryImpl

org.apache.xerces.xni.parser.XMLParserConfiguration=org.apache.xerces.parsers.

 StandardParserConfiguration

– Default value: None

– Recommended value: None

v Tune the dynamic cache service. Using the dynamic cache service can improve performance. See

“Task overview: Using the dynamic cache service to improve performance” on page 1901 for information

about using the dynamic cache service and how it can affect your application server performance.

v Tune the Web container. The WebSphere Application Server Web container manages all HTTP

requests to servlets, JSPs and Web services. Requests flow through a transport chain to the Web

container. The transport chain defines the important tuning parameters for performance for the Web

container. There is a transport chain for each TCP port that WebSphere Application Server is listening

on for HTTP requests. For example, the default HTTP port 9080 is defined in Web container inbound

channel chain. Use the following parameters to tune the Web container:

– HTTP requests are processed by a pool of server threads. The minimum and maximum thread pool

size for the Web container can be configured for optimal performance. Generally, 5 to 10 threads per

server CPU will provide the best throughput. The number of threads configured does not represent

the number of requests WebSphere can process concurrently. Requests are queued in the transport

chain when all threads are busy. To specify the thread pool settings:

Chapter 3. Setting up the application serving environment 167

http://www-1.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCMPCY&q=mustgather

1. Click Servers > Application Servers >server_name Web Container Settings> Web Container

> Web container transport chains.

2. Select the normal inbound chain for serving requests. This will usually be named

WCInboundDefault, on port 9080.

3. Click TCP Inbound Channel (TCP_2).

4. Set Thread Pools under Related Items.

5. Select WebContainer.

6. Enter values for Minimum Size and Maximum Size.
– The HTTP 1.1 protocol provides a ″keep-alive″ feature to enable the TCP connection between HTTP

clients and the server to remain open between requests. By default WebSphere Application Server

will close a given client connection after a number of requests or a timeout period. After a connection

is closed, it will be recreated if the client issues another request. Early closure of connections can

reduce performance. Enter a value for the maximum number of persistent requests to (keep-alive) to

specify the number of requests that are allowed on a single HTTP connection. Enter a value for

persistent timeouts to specify the amount of time, in seconds, that the HTTP transport channel allows

a socket to remain idle between requests. To specify values for Maximum persistent requests and

Persistent timeout:

1. Click Servers > Application Servers >server_name Web Container Settings> Web Container

> Web container transport chains.

2. Select the normal inbound chain for serving requests. This will usually be named

WCInboundDefault, on port 9080.

3. Click HTTP Inbound Channel (HTTP_2).

4. Enter values for Maximum persistent requests and Persistent timeout.

v Tune the EJB container. An EJB container is automatically created when you create an application

server. After the EJB container is deployed, you can use the following parameters to make adjustments

that improve performance.

– Set the Cleanup interval and the Cache size as described in “EJB cache settings” on page 834.

– Break CMP enterprise beans into several enterprise bean modules while assembling EJB

modules. See ″Assembling EJB modules″ in the information center for more information.

See also “EJB method Invocation Queuing” on page 820.

v Tune the session management. The installed default settings for session management are optimal for

performance. See “Tuning session management” on page 797 and “Tuning parameter settings” on page

798 for more information about tuning session management.

v Tune the data sources. A data source is used to access data from the database. The following

parameters reveal how the number of physical connections within a connection pool can change

performance.

– Review information on “Connection pooling” on page 1137.

– Set the Maximum connection pool and Minimum connection pool as described in “Connection

pool settings” on page 1199.

– Set the Statement cache size as described in “Data source settings” on page 1173.

Web services client to Web container optimized communication

To improve performance, there is an optimized communication path between a Web services client

application and a Web container that are located in the same application server process. Requests from

the Web services client that are normally sent to the Web container using a network connection are

delivered directly to the Web container using an optimized local path. The local path is available because

the Web services client application and the Web container are running in the same process.

This direct communication eliminates the need for clients and web containers that are in the same process

to communicate over the network. For example, a Web services client might be running in an application

server. Instead of accessing the network to communicate with the Web container, the Web services client

can communicate with the Web container using the optimized local path. This optimized local path

improves the performance of the application server by allowing Web services clients and Web containers

to communicate without using network transports.

168 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

In a clustered environment, there is typically an HTTP server (such as IBM HTTP server) that handles

incoming client requests, distributing them to the correct application server in the cluster. The HTTP server

uses information about the requested application and the defined virtual hosts to determine which

application server receives the request. The Web services client also uses the defined virtual host

information to determine whether the request can be served by the local Web container. You must define

unique values for the host and port on each application server. You cannot define the values of host and

port as wild cards denoted by the asterisk symbol (*) when you enable the optimized communication

between the Web services application and the Web container. Using wild cards indicate that the local Web

container can handle Web services requests for all destinations.

The optimized local communication path is disabled by default. You can enable the local communication

path with the enableInProcessConnections custom property. Before configuring this custom property, make

sure that you are not using wild cards for host names in your Web container end points. Set this property

to true in the Web container to enabled the optimized local communication path. When disabled, the Web

services client and the Web container communicate using network transports.

For information about how to configure the enableInProcessConnections custom property, see the

Developing and deploying applications PDF.

When the optimized local communication path is enabled, logging of requests through the local path uses

the same log attributes as the network channel chain for the Web container. To use a different log file for

in process requests than the log file for network requests, use a custom property on the HTTP Inbound

Channel in the transport chain. Use the inProcessLogFilenamePrefix custom property to specify a string

that is added to the beginning of the network log file name to create a file name that is unique. Requests

through the local process path are logged to this specified file. For example, if the log filename is

../httpaccess.log for a network chain, and the inProcesslLogFilenamePrefix custom property is set to

“local” on the HTTP channel in that transport chain, the local log file name for requests to the host

associated with that chain is /localhttpaccess.log.

Application servers: Resources for learning

Use the following links to find relevant supplemental information about configuring application servers. The

information resides on IBM and non-IBM Internet sites, whose sponsors control the technical accuracy of

the information.

These links are provided for convenience. Often, the information is not specific to the IBM WebSphere

Application Server product, but is useful all or in part for understanding the product. When possible, links

are provided to technical papers and Redbooks that supplement the broad coverage of the release

documentation with in-depth examinations of particular product areas.

View links to additional information about:

v Programming instructions and examples

v Programming specifications

v Administration

Programming instructions and examples

v WebSphere Application Server education at http://www.ibm.com/software/webservers/learn/.

Programming specifications

v The JavaTM Virtual Machine Specification, Second Edition at http://java.sun.com/docs/books/vmspec/.

v Sun’s technology forum for the JavaTM Virtual Machine Specification at

http://forum.java.sun.com/forum.jsp?forum=37

Administration

v Listing of all IBM WebSphere Application Server Redbooks at http://publib-
b.boulder.ibm.com/Redbooks.snf/Portals/WebSphere.

Chapter 3. Setting up the application serving environment 169

http://www.ibm.com/software/webservers/learn/
http://java.sun.com/docs/books/vmspec/
http://forum.java.sun.com/forum.jsp?forum=37
http://publib-b.boulder.ibm.com/Redbooks.nsf/Portals/WebSphere

170 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Chapter 4. Using the administrative clients

The product provides a variety of administrative clients for deploying and administering your applications

and application serving environment, including configurations and logical administrative domains.

v “Using the administrative console”

The administrative console is a graphical, browser-based tool.

v “Getting started with scripting” on page 186

Scripting is a non-graphical alternative that you can use to configure and administer your applications

and application serving environment. The WebSphere Application Server wsadmin tool provides the

ability to run scripts. The wsadmin tool supports a full range of product administrative activities.

v “Using Ant to automate tasks” on page 626

To support using Apache Ant with Java 2 Platform, Enterprise Edition (J2EE) applications running on

IBM WebSphere Application Server, the product provides a copy of the Ant tool and a set of Ant tasks

that extend the capabilities of Ant to include product-specific functions.

v “Using administrative programs (JMX)” on page 627

The product supports access to the administrative functions through a set of Java classes and methods,

under the Java Management Extensions (JMX) specification. You can write a Java program that

performs any of the administrative features of the other administrative clients. You also can extend the

basic product administrative system to include your own managed resources.

v “Using command line tools” on page 668

Several command-line tools are available that you can use to start, stop, and monitor WebSphere

server processes and nodes. These tools work on local servers and nodes only. They cannot operate

on a remote server or node.

Using the administrative console

The administrative console is a Web-based tool that you use to manage the IBM WebSphere Application

Server product as well as the Network Deployment product. The administrative console supports a full

range of product administrative activities.

1. Distributed platforms: Start the server for the administrative console.

2. Access the administrative console.

3. Change the session timeout for the administrative console. (Optional)

4. Browse the administrative console.

5. Specify console preferences.

6. Access help.

Starting and stopping the administrative console

This topic describes how to set up the administrative console environment, to access the administrative

console, and to log out of the administrative console.

To access the administrative console, you must start it and then log in. After you finish working in the

console, save your work and log out.

1. Start the administrative console.

a. Distributed platforms: Verify that the administrative console runs on the server1 application server

for the WebSphere base product.

b. Enable cookies in the Web browser that you use to access the administrative console for the

administrative console to work correctly.

c. Distributed platforms: In the same Web browser, type

http://your_fully_qualified_server_name:9060/ibm/console, where

© Copyright IBM Corp. 2004 171

your_fully_qualified_server_name is the fully qualified host name for the machine that contains the

administrative server. When the administrative console is on the local machine,

your_fully_qualified_server_name can be localhost unless security is enabled. On Windows

platforms, use the actual host name if localhost is not recognized. If security is enabled, your

request is redirected to https://your_fully_qualified_server_name:9043/ibm/console, where

your_fully_qualified_server_name is the fully qualified host name for the machine that contains the

administrative server.

For a listing of supported Web browsers, see WebSphere Application Server system requirements

at

http://www.ibm.com/software/webservers/

appserv/doc/latest/prereq.html

The Web address appears on two lines for printing purposes. Enter the Web address on one line in

your browser.

d. Wait for the console to load into the browser. A Login page is displayed after the console starts.

If you cannot start the administrative console because the console port conflicts with an application

that is already running on the machine, change the port number in the install_root/profiles/profile

name/config/cells/cell_name/ nodes/node_name/servers/server_name/server.xml file and the

install_root/profiles/profile name/config/cells/cell_name/virtualhosts.xml files. Change all the

occurrences of port 9060 (or the port that is selected during profile creation for WebSphere Application

Server) to the port for the console. Alternatively, shut down the other application that uses the

conflicting port before starting the WebSphere Application Server product.

2. Log into the console.

a. Enter your user name or user ID.

The user ID lasts only for the duration of the session for which it was used to log in.

Changes made to server configurations are saved to the user ID. Server configurations also are

saved to the user ID if a session timeout occurs.

If you enter an ID that is already in use (and in session), you are prompted to do one of the

following actions:

v Force the existing user ID out of session. The configuration file that is used by the existing user

ID is saved in the temporary area.

v Wait for the existing user ID to log out or time out of the session.

v Specify a different user ID.

b. If the console is secure, you must also enter a password for the user name. The console is secure

if someone has taken the following actions for the console:

v Specified security user IDs and passwords

v Enabled global security

c. Click OK.

3. Stop the administrative console. Click System administration > Save changes to Master Repository

> Save to save work. Then click Logout to exit the console.

If you close the browser before saving your work, when you next log in under the same user ID, you

can recover any unsaved changes.

Login settings

Use this page to specify the user for the WebSphere Application Server administrative console. If you are

using global security, then you must also specify a password.

When you specify a user, you can resume work done previously with the product. After you type in a user

ID, and password if you are using global security, click OK to proceed to the next page and access the

administrative console.

To view this page, start the administrative console.

172 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

http://www.ibm.com/software/webservers/appserv/doc/latest/prereq.html

Logging into the administrative console: When you log into the administrative console, you can

optionally specify a user ID if the console is not secure. If the administrative console is secure, you must

specify a user ID and password.

User ID

Specifies a string that identifies the user. The user ID must be unique to the administrative server.

Concurrent administrative console sessions must use unique user IDs.

Work that you do with the product and then save before exiting the product is saved to a configuration that

is identified by the user ID that you enter. To later access work done under that user ID, specify the same

user ID in the Login page.

 Data type String

Password

If you use global security, specify a password.

Resolving conflicts during login: Conflicts can result if you log into the administrative console with a

user ID that is already in use.

Another user is currently logged in with the same user name

Specifies whether to log out the user and to continue work with the user ID that is specified, or to return to

the Login page and specify a different user ID, or wait for the user to log out.

This field is displayed if:

v The user closed a Web browser while browsing the administrative console and did not first log out, then

opened a new browser and tried to access the administrative console with the same user ID.

v The user opened a Web browser to access the administrative console while accessing the

administrative console in another open Web browser with the same user ID.

v The user opens a Web browser and attempts to log into the console with the same user ID that is

already in use by another user who logged into the console from another Web browser on another

computer.

Recovering prior changes: You can either recover changes that you made to the configuration from a

prior session or use the master configuration. The default is to recover changes from a prior session.

Recover changes made in a prior session

When enabled, this setting specifies that you want to use the same administrative configuration used for

the last user’s session. This option recovers changes made by the user since the last saving of the

administrative configuration for the user’s session.

This field is displayed only if the user changed the administrative configuration and then logged out without

saving the changes.

Work with the master configuration

When enabled, this setting specifies to use the default administrative configuration instead of the

configuration that was last used for the user’s session. Changes that are made to the user’s session since

the last saving of the administrative configuration are lost.

Chapter 4. Using the administrative clients 173

This field is displayed only if the user changed the administrative configuration and then logged out without

saving the changes.

Resolving login failures: When the administrative console is enabled with global security, you must type

in a valid user ID and password. If the user ID, password, or both are not valid, you receive the following

message:

 Unable to process login. Please check User ID and password and try again.

Resolve the problem by entering a valid user ID and password as defined in the WebSphere Application

Server security documentation.

Save changes to the master configuration

Use this page to update the master repository with your administrative console changes, to discard your

administrative console changes and continue working with the master repository, or to continue working

with your administrative console changes that are not saved to the master repository.

Until you save changes to the master repository, the administrative console uses a local workspace to

track your changes.

Total changed documents: Specifies the total number of documents that you changed for your session,

but that are not saved to the master repository. By clicking the +/- toggle key, you can see additional

information about the changed documents:

v Changed items

When you change your local configuration, each path and configuration file that you can apply the

update to in the master repository is displayed in the list.

v Status

Can contain the following options:

– Added: If you save your changes to the master repository, a new configuration file is created on the

indicated path.

– Updated: If you save your changes to the master repository, an existing configuration file is updated

on the indicated path.

– Deleted: If you save your changes to the master repository, an existing configuration file is deleted

on the indicated path.

Synchronize changes with nodes: Specifies whether you want to force node synchronization at the

time that you save your changes to the master repository rather than when node synchronization normally

occurs.

Setting the session timeout for the administrative console

This topic describes how to change the session timeout from the default value for the administrative

console.

Ensure that you have the proper permissions to change the

${WAS_HOME}/systemApps/adminconsole.ear/deployment.xml file.

Determine whether the default session timeout value of 30 minutes is acceptable. Some reasons that you

might change the default value are:

v Users in secure environments might need shorter session timeout periods to ensure security, encase

they leave their machine and forget to log off the console.

v Users might need longer session timeout periods if they respond slower than typical users for

accessibility reasons.

v Users in secure environments might not want the administrative console timeout value to conflict with

Lightweight Third-Party Authentication (LTPA) cookie timeouts

174 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Do the following actions to change the timeout value:

1. Edit the ${WAS_HOME}/systemApps/adminconsole.ear/deployment.xml file in a text editor.

2. Locate the xml statement <tuningParams xmi:id="TuningParams_1088453565469"

maxInMemorySessionCount="1000" allowOverflow="true" writeFrequency="TIME_BASED_WRITE"

writeInterval="10" writeContents="ONLY_UPDATED_ATTRIBUTES" invalidationTimeout="30">

3. Change the invalidationTimeout value to the desired session timeout. The default is 30.

4. Save the ${WAS_HOME}/systemApps/adminconsole.ear/deployment.xml file.

5. Restart the console.

Once you restart the console, the change takes effect.

Manage WebSphere Application Server through the administrative console.

Administrative console areas

Use the administrative console to create and manage objects in the WebSphere Application Server

configuration such as resources, applications, and servers. Additionally, use the administrative console to

view product messages. This topic describes the main areas that display on the administrative console.

To view the administrative console, ensure that the application server for the administrative console is

running. Point a Web browser at the Web address for the administrative console, enter your user ID and, if

needed, a password on the Login page.

You can resize the width of the navigation tree and workspace simultaneously by dragging the border

between them to the left or the right. The change in width does not persist between administrative console

user sessions.

The console has the following main areas.

Taskbar

The taskbar offers options for logging out of the console, accessing product information, and accessing

support.

Navigation tree

The navigation tree on the left side of the console offers links to console pages that you use to create and

manage components in a WebSphere Application Server administrative cell.

Click a plus sign (+) beside a tree folder or item to expand the tree for the folder or item. Click a minus

sign (-) to collapse the tree for the folder or item. Click an item in the tree view to toggle its state between

expanded and collapsed.

Workspace

The workspace on the right side of the console contains pages that you use to create and manage

configuration objects such as servers and resources. Click links in the navigation tree to view the different

types of configured objects. Within the workspace, click configured objects to view their configurations,

run-time status, and options. Click Welcome in the navigation tree to display the workspace Home page,

which contains links to information on using the WebSphere Application Server product.

Administrative console buttons

This page describes the button choices that are available on various pages of the administrative console,

depending on which product features you enable.

v Check all. Selects each resource that is listed on the administrative console panel, in preparation for

performing an action against the selected resources.

v Uncheck all. Removes all the listed resources from each selection so that no action is performed

against any of the resources.

Chapter 4. Using the administrative clients 175

v Filter the view. Produces a dialog box for specifying the resources to view in the table on this

administrative console page.

Hide the filter view. Hides the dialog box for specifying the resources to view in the table on this

administrative console page.

When you produce the dialog box, select the column to filter and enter the filter criteria.

Column to filter

Select the column to filter from the drop-down list. When you apply the filter, only those items in

the selected column that meet the filter criteria are displayed.

 For example, select Names to enter criteria by which to filter application server names.

Filter criteria

Enter a string that must be found in the name of a collection entry to qualify the entry to display

in the collection table. The string can contain percent sign (%), asterisk (*), or question mark (?)

symbols as wildcard characters. For example, enter *App* to find any application server whose

name contains the string App.

 Prefix each of the following characters () ^ * % { } \ + $ with a backslash (\) so that the

regular expression engine performing the search correctly matches the search criteria. For

example, to search for all Java DataBase Connectivity (JDBC) providers containing (XA) in the

provider name, specify the following string:

*\(XA\)

v Clear filter criteria. Clears your filter changes and restores the most recently saved values.

v Abort. Stops a transaction that is not yet in the prepared state. All operations that the transaction

completed are undone.

v Activate. Activates a group member.

v Add. Adds the selected or typed item to a list, or produces a dialog for adding an item to a list.

v Apply. Saves your changes to a page without exiting the page.

v Back. Displays the previous page or item in a sequence. The administrative console does not support

using the Back and Forward options of a browser, which can cause intermittent problems. Use Back or

Cancel on the administrative console panels instead.

v Balance. Balances active members in high availability groups across servers that host the high

availability groups. The administrator must first determine which groups have active members and select

those groups before selecting Balance.

v Browse. Opens a dialog that enables you to look for a file on your system.

v Calculate groups. Calculates the number of high availability groups that are returned based on the

match set.

v Cancel. Exits the current page or dialog, discarding unsaved changes. The administrative console does

not support using the Back and Forward options of a browser, which can cause intermittent problems.

Use Cancel on the administrative console panels instead.

v Change. In the context of security, you can search the user registry for a user ID for an application to

run under. In the context of container properties, you can change the data source that the container is

using.

v Clear. Clears your changes and restores the most recently saved values.

v Clear selections. Clears any selected cells in the tables on this tabbed page.

v Close. Exits the dialog.

v Commit. Releases all locks that are held by a prepared transaction and forces the transaction to

commit.

v Copy. Creates copies of the selected application servers.

v Create. Saves your changes to all the tabbed pages in a dialog and exits the dialog.

v Create tables. Develops scheduler database tables.

v Deactivate. Deactivates a group member. The group member must be in the active state to be

deactivated. The deactivate option causes the group member to move to the idle state. The group policy

overrides which members are activated and deactivated for a group. The policy is enforced for every

member state change. If the deactivate option conflicts with the group policy, the policy resets who is

the active member of the group.

v Delete. Removes the selected instance.

176 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

v Details. Shows the details about a transaction.

v Disable. Disables a group or group member. When you disable a group or group member, the active

group or group member is first deactivated. If the deactivate option is successful, the group or group

member moves to the disable state. A disabled group or group member cannot be activated.

v Done. Saves your changes to all the tabbed pages in a dialog and exits the dialog.

v Down. Moves through a list.

v Drop tables. Removes scheduler database tables.

v Dump. Activates a dump of a traced application server.

v Edit. Lets you edit the selected item in a list, or produces a dialog box for editing the item.

v Enable. Enables a group or a group member.

v Export. Accesses a page for exporting enterprise archive (EAR) files for an enterprise application.

v Export DDL. Accesses a page for exporting data definition language (DDL) files for an enterprise

application.

v Export Keys. Exports Lightweight Third-Party Authentication (LTPA) keys to other domains.

v Export route table. Exports the route table information for a selected cluster to a binary file in the

configuration.

v Filter. Produces a dialog box for specifying the resources to view in the tables on this tabbed page.

v Finish. Forces a transaction to finish, regardless of whether its outcome has been reported to all

participating applications.

v First. Displays the first record in a series of records.

v Generate keys. Generates new LTPA keys. When security is turned on for the first time with LTPA as

the authentication mechanism, LTPA keys are automatically generated with the password entered in the

panel. To generated new keys, use this option after the server is up with security turned on. Clicking this

option generates the keys and propagates them to all active servers (cell, node, and application

servers). The new keys can be used to encrypt and decrypt the LTPA tokens. Click Save on the console

taskbar to save the new keys and the password in the repository.

v Immediate stop. Stops the server, but bypasses the normal server quiesce process that supports

in-flight requests to complete before shutting down the entire server process. This shutdown mode is

faster than the normal server stop processing, but some application clients can receive exceptions.

v Import keys. Imports new LTPA keys from other domains. To support single signon (SSO) in

WebSphere Application Server across multiple WebSphere domains (cells), share LTPA keys and a

password among the domains. After exporting the keys from one of the cells into a file, click this option

to import the keys into all the active servers (cell, node, and application servers). The new keys can be

used to encrypt and decrypt the LTPA token. Click Save on the console taskbar to save the new keys

and the password in the repository.

v Install. Displays the Preparing for application installation page, which you use to deploy an application,

an enterprise bean, or a Web component onto an application server.

v Install RAR. Opens a dialog that is used to install a Java 2 Platform, Enterprise Edition Connector

Architecture (JCA) connector and to create a resource adapter.

v Manage transactions. Displays a list of active transactions running on a server. You can forcibly finish

any transaction that has stopped processing because a transactional resource is not available.

v Modify. Opens a dialog that is used to change a specification.

v Move. Moves the selected application servers to a different location in the administrative cell. When

prompted, specify the target location.

v Move down. Moves downward through a list.

v Move up. Moves upward through a list.

v New. Displays a page that you use to define a new instance. For example, clicking New on the

Application Servers page displays a page on which you can configure a new application server.

v Next. Displays the next page, frame, or item in a sequence.

v OK. Saves your changes and exits the page.

v Ping. Attempts to contact selected application servers.

v Previous. Displays the previous page, frame, or item in a sequence.

v Quit. Exits a dialog box and discards any unsaved changes.

v Refresh. Refreshes the view of data for instances that are currently listed on this tabbed page.

v Remove. Deletes the selected item.

v Remove file. Removes the specified file from the selected application or module.

Chapter 4. Using the administrative clients 177

v Reset. Clears your changes on the tab or page and restores the most recently saved values.

v Restart. Stops the selected objects and starts them again.

v Retrieve new. Retrieves a new record.

v Rollout update. Sequentially updates an application that is installed on multiple cluster members

across a cluster. After you update application files or a configuration, click Rollout update to install the

configuration or the updated files for an application on all the cluster members of a cluster on which the

application is installed. The Rollout update option applies the following steps to each cluster member in

sequence:

1. Saves an updated configuration.

2. Stops the cluster member.

3. Updates the application on the node by synchronizing the configuration.

4. Restarts the cluster member.

This action enables you to update an application on multiple cluster members while providing

continuous availability of the application.

v Save. Saves the changes in your local configuration to the master configuration.

v Select. For resource analysis, lets you select a scope in which to monitor resources.

v Set. Saves your changes to settings in a dialog.

v Settings. Displays a dialog for editing servlet-related resource settings.

v Settings in use. Displays a dialog showing the settings in use.

v Show groups. Displays a collection of high availability groups, based on the match set.

v Show servers. Displays a collection of servers that are contained in the high availability groups that

match the match set.

v Start. In the context of application servers, starts selected application servers. In the context of data

collection, starts collecting data for the tables on this tabbed page.

v Stop. In the context of server components such as application servers, stops the selected server

components. In the context of a data collection, stops collecting data for the tables on a tabbed page.

v Terminate. Deletes the Application Server process or another process that cannot be stopped by the

Stop or Immediate Stop commands. Some application clients can receive exceptions. Always attempt

an immediate stop before using this option.

v Uninstall. Deletes a deployed application from the WebSphere Application Server configuration

repository. Also deletes application binary files from the file system.

v Update. Replaces an application that is deployed on a server with an updated application. As part of

the updating, you might need to complete steps on the Preparing for application installation and Update

application pages.

v Update resource list. Updates the data on a table. Discovers and adds new instances to the table.

v Verify tables. Validates the mapping between the table names, scheduler resource, and data sources.

v View. Opens a dialog on a file.

Administrative console page features

This topic provides information about the basic elements of an administrative console page, such as the

various tabs.

Administrative console pages are arranged in a few basic patterns. Understanding their layout and

behavior will help you use them more easily.

Collection pages

Use collection pages to manage a collection of existing administrative objects. A collection page typically

contains one or more of the following elements:

Scope and Preferences

These are described in “Administrative console scope settings” on page 182 and “Administrative

console preference settings” on page 182.

Table of existing objects

The table displays existing administrative objects of the type specified by the collection page. The

table columns summarize the values of the key settings for these objects. If no objects exist yet,

an empty table is displayed. Use the available buttons to create a new object.

178 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Buttons for performing actions

The available buttons are described on the Administrative console buttons help panel. In most

cases, you need to select one or more of the objects in the table, then click a button. The action

will be applied to the selected objects.

Sort toggle buttons

Following column headings in the table are icons for sort ascending (^) and sort descending (v).

By default, items such as names are sorted in descending order (alphabetically). To enable

another sorting order, click on the icons for the column whose items you want sorted.

 Detail pages

Use detail pages to configure specific administrative objects, such as an application server. A detail page

typically contains one or more of the following elements:

Configuration tabbed page

This tabbed page is for modifying the configuration of an administrative object. Each configuration

page has a set of general properties specific to the administrative object. Other sets of properties

display on the page, but vary depending on the administrative object.

Runtime tabbed page

This tabbed page displays the configuration that is currently in use for the administrative object. It

is read-only in most cases. Some detail pages do not have runtime tabs.

Local Topology tabbed page

This tabbed page displays the topology that is currently in use for the administrative object. View

the topology by expanding and collapsing the different levels of the topology. Some detail pages

do not have local topology tabs.

Buttons for performing actions

Buttons to perform specific actions display on the configuration tabbed page and the runtime

tabbed page. The displayed buttons vary based on the administrative object. The available buttons

are described on the Administrative console buttons help panel.

 Wizard pages

Use wizard pages to complete a configuration process comprised of several steps. Be aware that wizards

show or hide certain steps depending on the characteristics of the specific object you are configuring.

Administrative console navigation tree actions

Use the navigation tree of the administrative console to access pages for creating and managing servers,

applications, resources, and other components.

To view the navigation tree, go to the WebSphere Application Server administrative console and look at

the tree on the left side of the console. The tree provides navigation to configuration tasks and run-time

information. The main topics available on the navigation tree are detailed in the following section. To use

the tree, expand a main topic and select an item from the expanded list to display a page on which you

can perform the administrative task.

Servers:

Configure application servers, clusters, generic servers, Web servers, and core groups.

Applications:

Install applications onto servers and manage the installed applications.

Resources:

Configure resources and to view information on resources that exist in the administrative cell.

Chapter 4. Using the administrative clients 179

Security:

Access the Security Center, which you use to secure applications and servers.

Environment:

Configure hosts, WebSphere Application Server variables, and other components.

System Administration:

Configure console settings, and manage components and users of a Network Deployment product.

Troubleshooting:

Check for configuration errors and problems, view log files, and enable and disable tracing on a distributed

platform.

Monitoring and Tuning:

Monitor and tune your Application Server performance and analyze performance data.

Service Integration:

Iimplement message-oriented and service-oriented applications.

UDDI:

Publish and discover information about Web services.

Administrative console taskbar actions

Use the taskbar of the administrative console to log out of the administrative console and to access the

console help.

To view the taskbar, go to the WebSphere Application Server administrative console and look at the

horizontal bar near the top of the console. The taskbar provides the following actions.

Logout: Logs you out of the administrative console session and displays the Login page. If you made

changes to the administrative configuration since last saving the configuration to the master repository, the

Save page is displayed before returning to the Login page.

v Click Save to save the changes to the master repository.

v Click Discard to exit the session without saving changes.

v Click Logout to exit the session without saving changes but with the opportunity to recover your

changes when you return to the console.

Help: Opens a new Web browser to online help for the WebSphere Application Server product.

Support: Displays support links that vary based on the products that extend the WebSphere Application

Server. Use the support page to access product information such as Frequently Asked Questions (FAQs),

technical notes (Technotes), hints and tips, and news. You can additionally install the Support Advisor

Search application so that when you click on the support link, a new Web browser that contains the

Support Advisor Search application opens. The Support Advisor Search application displays the support

links on the support page, but additionally provides federated search capabilities into IBM knowledge

databases.

Specifying console preferences

Use this topic to customize how much data displays on an administrative console panel.

180 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Throughout the administrative console are pages that have Preferences fields, Scope fields, and Filter

radio buttons. By selecting these fields and radio buttons you can customize how much data is shown.

For example, examine the Preferences field for the Enterprise Applications page:

1. Go to the navigation tree of the administrative console and click Applications > Enterprise

Applications.

2. Expand Preferences.

3. For the Maximum rows field, specify the maximum number of rows to display when the collection is

large. The default is 20. Rows that exceed the maximum number display on subsequent pages.

4. Select Retain filter criteria if you want to retain the last filter criteria that is entered in the filter

function. When you return to the Applications page, the page initially uses the retained filter criteria to

display the collection of applications in the table following the preferences. Otherwise, clear Retain

filter criteria and the last filter criteria is not retained.

5. Click Apply to apply your selections or click Reset to return to the default values. The default is not to

enable (not have a check mark beside) Retain filter criteria.

Other pages have similar fields and radio buttons that you can use to specify console preferences. While

Preferences fields, Scope fields, and Filter buttons control how much data is shown in the console, the

Preferences option controls general behavior of the console. Click System administration > Console

settings > Preferences to view the Preferences page.

Preferences settings

Use the Preferences page to specify whether you want the administrative console workspace to refresh

automatically after changes, the default scope to be the administrative console node, confirmation dialogs

to display, and the workspace banner and descriptions to display.

To view this administrative console page, click System administration > Console settings >

Preferences.

Turn on workSpace auto-refresh:

Specifies whether you want the administrative console workspace to redraw automatically after the

administrative configuration changes.

 The default is for the workspace to redraw automatically. If you direct the console to create a new instance

of, for example, an application server, the Application Servers page refreshes automatically and shows the

new server name in the collection of servers.

Specifying that the workspace not redraw automatically means that you must access a page again by

clicking the console navigation tree or links on collection pages to see the changes that are made to the

administrative configuration.

 Default true (selected)

No confirmation on workspace discard:

Specifies whether the confirmation dialog is displayed after a request is receive to discard the workspace.

The default is to display confirmation dialogs.

 Default false (cleared)

Use default scope (administrative console node):

Chapter 4. Using the administrative clients 181

Specifies whether the default scope is the administrative console node. The default scope not is not the

console node.

 Default false (cleared)

Show banner:

Specifies whether the WebSphere Application Server banner along the top of the administrative console is

displayed. The default is for the banner to display.

 Default true (selected)

Show Descriptions:

Specifies whether information on the right of the console is shown. The default is to show the information.

 Data type Boolean

Default true

Administrative console preference settings

Use the preference settings to specify how you want information displayed on an administrative console

page.

Maximum rows: Indicates the maximum number of rows to display per page when the collection is large.

Filter history: Indicates whether to use the same filter criteria to display this page the next time you visit

it.

Select the Retain filter criteria check box to retain the last filter criteria entered. When you return to the

page, retained filter criteria control the application collection that is displayed n the table.

Show confirmation for stop command: Select the check box if you want a confirmation that the stop

command is successful.

Show confirmation for immediate stop command: Select the check box if you want a confirmation that

the immediate stop command is successful.

Show confirmation for terminate command: Select the check box if you want a confirmation that the

terminate command is successful.

Administrative console scope settings

Use this page to specify the level at which a resource is visible on the administrative console panel. A

resource can be visible in the administrative console collection table at the cell, node, cluster, or server

scope. By changing the value for Scope you can see other variables that apply to a resource and might

change the contents of the collection table.

Click Browse next to a field to see choices for limiting the scope of the field. If a field is read-only, you

cannot change the scope. For example, if only one server exists, you cannot switch the scope to a

different server.

You always create resources at the current scope that is selected in the administrative console panel,

even though the resources might be visible at more than one scope.

182 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Resources such as JDBC providers, namespace bindings, or shared libraries can be defined at multiple

scopes. Resources that are defined at more specific scopes override duplicate resources that are defined

at more general scopes.

v The application scope has precedence over all the scopes.

v The server scope has precedence over the node, cell, and cluster scopes.

v The cluster scope has precedence over the node and cell scopes.

v The node scope has precedence over the cell scope.

Despite the scope of a defined resource, the resource properties only apply at an individual server level.

For example, if you define the scope of a data source at the cell level, all the users in that cell can look up

and use that data source, which is unique within that cell. However, resource property settings are local to

each server in the cell. For example, if you define the maximum connections as 10, then each server in

that cell can have 10 connections.

The cell scope is the most general scope and does not override any other scope. The recommendation is

that you generally specify a more specific scope than the cell scope. When you define a resource at a

more specific scope, you provide greater isolation for the resource. When you define a resource at a more

general scope, you provide less isolation. Greater exposure to cross-application conflicts occur for a

resource that you define at a more general scope.

Cell Limits the visibility to all servers on the named cell. The resource factories within the cell scope

are:

v Defined for all servers within this cell

v Overridden by any resource factories that are defined within application, server, cluster and

node scopes that are in this cell and have the same Java Naming and Directory Interface

(JNDI) name

The resource providers that are required by the resource factories must be installed on every node

within the cell before applications can bind or use them.

Cluster

Limits the visibility to all the servers on the named cluster. All cluster members must at least be at

Version 6 to use cluster scope for the cluster. The resource factories that are defined within the

cluster scope:

v Are available for all the members of this cluster to use

v Override any resource factories that have the same JNDI name that is defined within the cell

scope

The resource factories that are defined within the cell scope are available for this cluster to use, in

addition to the resource factories, that are defined within this cluster scope.

Node Limits the visibility to all the servers on the named node. The node scope is the default scope for

most resource types. The resource factories that are defined within the node scope:

v Are available for servers on this node to use

v Override any resource factories that have the same JNDI name defined within the cell scope

The resource factories that are defined within the cell scope are available for servers on this node

to use, in addition to the resource factories that are defined within this node scope.

Server

Limits the visibility to the named server. The server scope is the most specific scope for defining

resources. The resource factories that are defined within the server scope:

v Are available for applications that are deployed on this server

v Override any resource factories that have the same JNDI name defined within the node and cell

scopes

The resource factories that are defined within the node and cell scopes are available for this

server to use, in addition to the resource factories that are defined within this server scope.

Application

Limits the visibility to the named application. Application scope resources cannot be configured

from the console. Use the WebSphere Application Server Toolkit (AST) or the wsadmin tool to

Chapter 4. Using the administrative clients 183

view or modify the application scope resource configuration. The resource factories that are

defined within the application scope are available for this application to use only. The application

scope overrides all other scopes.

 You can configure resources and WebSphere Application Server variables under all five scopes. You can

configure namespace bindings and shared libraries only under cell, node, and server scopes.

Accessing help and product information from the administrative

console

This topic describes how to use administrative console help and how to link to product documentation from

the administrative console.

You must have a connection to the Internet to access information about WebSphere Application Server

from the Welcome page of the administrative console.

All of the helps panels that you can access from the administrative console, you can access from the

WebSphere Application Server Information Center. This article describes how to access the help panels,

the information center, and other product documentation from the administrative console.

v Click Welcome on the administrative console navigation tree. In the workspace to the right of the

navigation tree, select the appropriate links to access the WebSphere Application Server Information

Center, the WebSphere Application Server product information, and the WebSphere Application Server

technical information on developerWorks.

v Access help in the following ways:

– Click Help on the administrative console task bar to open a new Web browser for online help.

- Click on the Help index tab and select from the list of help panels to view administrative console

help information.

- Click on the Search tab, provide search terms, and then click Search. Under Results, select a

help panel that contains the search information.

– Click the ? icon on the task bar for the particular administrative console panel to open a new Web

browser and view the help panel for the corresponding administrative console panel. The help panel

is displayed in the Help index for the administrative console.

– In the help portal that is on the right side of the administrative console panel, do one or all of the

following tasks:

- Click a field label or a list marker in the administrative console panel for the help to display under

Field help. Alternatively, place the cursor over the field label or the list marker for the

corresponding help to display at the cursor.

- Click the link under Page help to access the help panel for the administrative console panel. The

help panel is the same help panel that displays when you click the ? icon.

- Expand the task help to view related tasks.

You can continue to access help information from the administrative console. Alternatively, you can access

the help information from the WebSphere Application Server Information Center.

You can continue to access the WebSphere Application Server Information Center, the WebSphere

Application Server product information, and the WebSphere Application Server technical information on

developerWorks from the administrative console. Alternatively you can access the information from the

IBM Web site.

Administrative console: Resources for learning

Use the following links to find relevant supplemental information about the IBM WebSphere Application

Server administrative console. The information resides on IBM and non-IBM Internet sites, whose

sponsors control the technical accuracy of the information.

184 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

http://www.ibm.com/

These links are provided for convenience. Often, the information is not specific to the IBM WebSphere

Application Server product, but is useful all or in part for understanding the product. When possible, links

are provided to technical papers and Redbooks that supplement the broad coverage of the release

documentation with in-depth examinations of particular product areas.

View links to additional information:

Administration

v IBM WebSphere Application Server Redbooks

This site contains a listing of all WebSphere Application Server Redbooks.

v IBM developerWorks WebSphere

This site is the home of technical information for developers working with WebSphere products. You can

download WebSphere software, take a fast path to developerWorks zones, such as VisualAge Java or

WebSphere Application Server, learn about WebSphere products through a newcomers page, tutorials,

technology previews, training, and Redbooks, get answers to questions about WebSphere products, and

join the WebSphere community, where you can keep up with the latest developments and technical

papers.

v WebSphere Application Server Support page

Take advantage of the Web-based Support and Service resources from IBM to quickly find answers to

your technical questions. You can easily access this extensive Web-based support through the IBM

Software Support portal at URL http://www-3.ibm.com/software/support/ and search by product

category, or by product name. For example, if you are experiencing problems specific to WebSphere

Application Server, click WebSphere Application Server in the product list. The WebSphere Application

Server Support page appears.

Using scripting (wsadmin)

The WebSphere administrative (wsadmin) scripting program is a powerful, non-graphical command

interpreter environment enabling you to run administrative operations in a scripting language. The wsadmin

tool is intended for production environments and unattended operations. You can use the wsadmin tool to

perform the same tasks that you can perform using the administrative console.

The following list highlights the topics and tasks available with scripting:

v Getting started with scripting Provides an introduction to WebSphere Application Server scripting and

information about using the wsadmin tool. Topics include information about the scripting languages and

the scripting objects, and instructions for starting the wsadmin tool.

v Deploying applications Provides instructions for deploying and uninstalling applications. For example,

stand-alone Java archive files and Web archive files, the administrative console, remote Enterprise

Archive (EAR) files, file transfer applications, and so on.

v Managing deployed applications Includes tasks that you perform after the application is deployed. For

example, starting and stopping applications, checking status, modifying listener address ports, querying

application state, configuring a shared library, and so on.

v Configuring servers Provides instructions for configuring servers, such as creating a server, modifying

and restarting the server, configuring the Java virtual machine, disabling a component, disabling a

service, and so on.

v Configuring connections to Web servers Includes topics such as regenerating the plug-in, creating new

virtual host templates, modifying virtual hosts, and so on.

v Managing servers Includes tasks that you use to manage servers. For example, stopping nodes,

starting and stopping servers, querying a server state, starting a listener port, and so on.

v Configuring security Includes security tasks, for example, enabling and disabling global security,

enabling and disabling Java 2 security, and so on.

v Configuring data access Includes topics such as configuring a Java DataBase Connectivity (JDBC)

provider, defining a data source, configuring connection pools, and so on.

Chapter 4. Using the administrative clients 185

http://publib-b.boulder.ibm.com/Redbooks.nsf/Portals/WebSphere
http://www7b.software.ibm.com/wsdd/
http://www-3.ibm.com/software/webservers/appserv/support.html

v Configuring messaging Includes topics about messaging, such as Java Message Service (JMS)

connection, JMS provider, WebSphere queue connection factory, MQ topics, and so on.

v Configuring mail, URLs, and resource environment entries Includes topics such as mail providers, mail

sessions, protocols, resource environment providers, referenceables, URL providers, URLs, and so on.

v Troubleshooting Provides information about how to troubleshoot using scripting. For example, tracing,

thread dumps, profiles, and so on.

v Scripting reference material Includes all of the reference material related to scripting. Topics include the

syntax for the wsadmin tool and for the administrative command framework, explanations and examples

for all of the scripting object commands, the scripting properties, and so on.

Getting started with scripting

Scripting is a non-graphical alternative that you can use to configure and manage WebSphere Application

Server. The WebSphere Application Server wsadmin tool provides the ability to run scripts. The wsadmin

tool supports a full range of product administrative activities.

The following figure illustrates the major components involved in a wsadmin scripting solution:

M Bean

Server

M Beans

M Beans

Connector

Resources

Java virtual machine

External tools

and programs

Figure 1: A WebSphere Application Server scripting solution

The wsadmin tool supports two scripting languages: Jacl and Jython. Five objects are available when you

use scripts:

v AdminControl: Use to run operational commands.

v AdminConfig: Use to run configurational commands to create or modify WebSphere Application Server

configurational elements.

v AdminApp: Use to administer applications.

v AdminTask: Use to run administrative commands.

v Help: Use to obtain general help.

The scripts use these objects to communicate with MBeans that run in WebSphere Application Server

processes. MBeans are Java objects that represent Java Management Extensions (JMX) resources. JMX

is an optional package addition to Java 2 Platform Standard Edition (J2SE). JMX is a technology that

provides a simple and standard way to manage Java objects.

To perform a task using scripting, you must first perform the following steps:

1. Choose a scripting language. The wsadmin tool only supports Jacl and Jython scripting languages.

Jacl is the language specified by default. If you want to use the Jython scripting language, use the

-lang option or specify it in the wsadmin.properties file.

2. Start the wsadmin scripting client interactively, as an individual command, in a script, or in a profile.

Before you perform any task using scripting, make sure that you are familiar with the following concepts:

v Java Management Extensions (JMX)

v WebSphere Application Server configuration model

v wsadmin tool

186 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

v Jacl syntax or Jython syntax

v Scripting objects

Optionally, you can customize your scripting environment. For more information, see Scripting environment

properties.

After you become familiar with the scripting concepts, choose a scripting language, and start the scripting

client, you are ready to perform tasks using scripting.

Java Management Extensions (JMX)

Java Management Extensions (JMX) is a framework that provides a standard way of exposing Java

resources, for example, application servers, to a system management infrastructure. Using the JMX

framework, a provider can implement functions, such as listing the configuration settings, and editing the

settings. This framework also includes a notification layer that management applications can use to

monitor events such as the startup of an application server.

JMX key features

The key features of the WebSphere Application Server Version 6 implementation of JMX include:

v All processes that run the JMX agent.

v All run-time administration that is performed through JMX operations.

v Connectors that are used to connect a JMX agent to a remote JMX-enabled management application.

The following connectors are supported:

– SOAP JMX Connector

– Remote Method Invocation over the Internet Inter-ORB Protocol (RMI-IIOP) JMX Connector

v Protocol adapters that provide a management view of the JMX agent through a given protocol.

Management applications that connect to a protocol adapter are usually specific to a given protocol.

v The ability to query and update the configuration settings of a run-time object.

v The ability to load, initialize, change, and monitor application components and resources during

run-time.

JMX architecture

The JMX architecture is structured into three layers:

v Instrumentation layer - Dictates how resources can be wrapped within special Java beans, called

managed beans (MBeans).

v Agent layer - Consists of the MBean server and agents, which provide a management infrastructure.

The services that are implemented include:

– Monitoring

– Event notification

– Timers

v Management layer - Defines how external management applications can interact with the underlying

layers in terms of protocols, APIs, and so on. This layer uses an implementation of the distributed

services specification (JSR-077), which is not yet part of the Java 2 platform, Enterprise Edition (J2EE)

specification.

The layered architecture of JMX is summarized in the following figure:

Chapter 4. Using the administrative clients 187

Management Application

Connector

MBean Server

Agent Layer

Agent

services

Agent

services

Resource 1

MBean

Resource 2

MBean

Resource 1 Resource 2

Manages Manages

Instrumentation Layer

Agent Services

(as MBeans)

Managed Resources

Java virtual machine

Adapter

Figure 1: JMX architecture

JMX distributed administration

The following figure shows how the JMX architecture fits into the overall distributed administration topology

of a Network Deployment environment:

JMX

ConnectorMBean

Server

MBean

Proxy

MBean

Proxy

Application Server

Node Agent

MBeans

MBeans

JMX

ConnectorMBean

Server

MBean

Proxy

MBean

Proxy

MBeans

MBeans

Clients, Multi-cell,
management, & other EMS

(Tivoli, BMC)

To other

Nodes

To Other

Application Servers

Configuration

Repository Service

Configuration

Distribution ServiceJMX

ConnectorMBean

Server

MBeans

MBeans

Master

files

EAR

files

Configuration

files

Deployment Manager

Figure 2: WebSphere Application Server distributed administration of JMX

The key points of this distributed administration architecture include:

188 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

v Internal MBeans that are local to the Java virtual machine (JVM) register with the local MBean server.

v External MBeans have a local proxy to their MBean server. The proxy registers with the local MBean

server. Using the MBean proxy the local MBean server can pass the message to an external MBean

server that is located on:

– A node agent that has an MBean proxy for all the servers within its node. The MBean proxies for

other nodes are not used.

– The deployment manager has MBean proxies for all the node agents in the cell.

JMX Mbeans

WebSphere Application Server provides a number of MBeans, each of which have different functions and

operations available. For example, an application server MBean can expose operations such as start and

stop. An application MBean can expose operations such as install and uninstall. Some JMX usage

scenarios that you can encounter include:

v External programs that are written to control the Network Deployment run time and its WebSphere

resources by programmatically accessing the JMX API.

v Third-party applications that include custom JMX MBeans as part of the deployed code, supporting the

JMX API management of application components and resources.

The following example illustrates how to obtain an MBean:

Using Jacl:

set am [$AdminControl queryNames type=ApplicationManager,process=server1,*]

Using Jacl:

am = AdminControl.queryNames(’type=ApplicationManager,process=server1,*’)

Each WebSphere Application Server runtime MBean may have attributes, operations, and notifications.

The complete documentation for each MBean supplied with WebSphere Application Server is available in

an html table that is installed in each copy of the WebSphere Application Server product. Under the main

install directory for the product, there is a directory named web. And under that directory is another

directory called mbeanDocs. In the mbeanDocs directory are several html files, one for each supplied with

WebSphere Application Server. There is also an index.html file that ties all the individual MBean files

together in a top-level navigation tree. Each MBean provides summary of its attributes, operations, and

notifications.

JMX benefits

The use of JMX for management functions in WebSphere Application Server provides the following

benefits:

v Enables the management of Java applications without significant investment.

v Relies on a core-managed object server that acts as a management agent.

v Java applications can embed a managed object server and make some of its functionality available as

one or several MBeans that are registered with the object server.

v Provides a scalable management architecture.

v Every JMX agent service is an independent module that can be plugged into the management agent.

v The API is extensible, allowing new WebSphere Application Server and custom application features to

be easily added and exposed through this management interface.

v Integrates existing management solutions.

v JMX smart agents are capable of being managed through HTML browsers or by various management

protocols such as Web services, Java Message Service (JMS), and Simple Network Management

Protocol (SNMP).

Chapter 4. Using the administrative clients 189

v Each process is self sufficient when it comes to the management of its resources. No central point of

control exists. In principle, a JMX-enabled management client can be connected to any managed

process and interact with the MBeans that are hosted by that process.

v JMX provides a single, flat, domain-wide approach to system management. Separate processes interact

through MBean proxies that support a single management client to seamlessly navigate through a

network of managed processes.

v Defines the interfaces that are necessary for management only.

v Provides a standard API for exposing application and administrative resources to management tools.

WebSphere Application Server configuration model

Configuration data is stored in several XML files. The server runtime reads these files when started and

responds to the component settings stored there. The configuration data includes settings for the runtime

itself, such as JVM options, thread pool sizes, container setting, and port numbers the server will use.

Other configuration files define J2EE resources to which the server will connect to obtain data needed by

the application logic. Security settings are stored in a separate document from the server and resource

configuration. Applcation-specific configuration, such as deployment target lists, session configuration, and

cache settings, are stored in files under the root directory of each application.

The configuration model for WebSphere Application Server is large and complex. When viewing the XML

data in the various configuration files, you can discern relationship between the configuration objects.

Understanding these relationships between configuration objects is essential when writing wsadmin scripts

that perform configuration functions.

Full documentation of all of the WebSphere configuration objects is available in an html table that is

installed in each copy of the WebSphere product. Under the main install directory for the product, there is

a directory named web. And under that directory is another directory called configDocs. In the configDocs

directory are several subdirectories, one for each configuration package in the model. There is also an

index.html file that ties all the individual configuration packages together in a top-level navigation tree.

Each configuration package lists all the supported configuration classes. Each configuration class lists all

the supported properties. Properties with names that end with the special @ character imply that property

is actually a reference to some other configuration object within the configuration data. Properties with

names that end with an * imply that property is actaully a list of other configuration objects.

Jacl

Jacl is an alternate implementation of TCL, and is written entirely in Java code.

The wsadmin tool uses Jacl V1.3.1. The following information is a basic summary of the Jacl syntax:

Basic syntax:

The basic syntax for a Jacl command is the following:

Command arg1 arg2 arg3 ...

The command is either the name of a built-in command or a Jacl procedure. For example:

puts stdout {Hello, world!}

=> Hello, world!

In this example, the command is puts which takes two arguments, an I/O stream identifier and a string.

The puts command writes the string to the I/O stream along with a trailing new line character. The

arguments are interpreted by the command. In the example, stdout is used to identify the standard output

stream. The use of stdout as a name is a convention employed by the puts command and the other I/O

commands. stderr identifies the standard error output, and stdin identifies the standard input.

Variables

190 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

The set command assigns a value to a variable. This command takes two arguments: the name of the

variable and the value. Variable names can be any length and are case sensitive. You do not have to

declare Jacl variables before you use them. The interpreter will create the variable when it is first assigned

a value. For example:

set a 5

=> 5

set b $a

=> 5

The second example assigns the value of variable a to variable b. The use of dollar sign ($) is indicates

variable substitution. You can delete a variable with the unset command, for example:

unset varName1 varName2 ...

You can pass any number of variables to the unset command. The unset command will give error if a

variable is not already defined. You can delete an entire array or just a single array element with the unset

command. Using the unset command on an array is a easy way to clear out a big data structure. The

existence of a variable can be tested with the info exists command. You may have to test for the

existence of the variable because the incr parameter requires that a variable exist first, for example:

if ![info exists foobar] {set foobar 0} else {incr foobar}

Command substitution:

The second form of substitution is command substitution. A nested command is delimited by square

brackets, []. The Jacl interpreter evaluates everything between the brackets and evaluates it as a

command. For example:

set len [string length foobar]

=> 6

In this example, the nested command is the following: string length foobar. The string command

performs various operations on strings. In this case, the command asks for the length of the string foobar.

If there are several cases of command substitution within a single command, the interpreter processes

them from left bracket to right bracket. For example:

set number "1 2 3 4"

=> 1 2 3 4

set one [lindex $number 0]

=> 1

set end [lindex $number end]

=> 4

set another {123 456 789}

=> 123 456 789

set stringLen [string length [lindex $another 1]]

=> 3

set listLen [llength [lindex $another 1]

=> 1

Math expressions:

The Jacl interpreter does not evaluate math expressions. Use the expr command to evaluate math

expressions. The interpreter treats the expr command similar to other commands and leaves the

expression parsing up the expr command implementation. The implementation of the expr command

takes all arguments, concatenates them into a single string, and parses the string as a math expression.

After the expr command computes the answer, it his formatted into a string and returned. For example:

expr 7.2 / 3

=> 2.4

Backslash substitution:

Chapter 4. Using the administrative clients 191

The final type of substitution done by the Jacl interpreter is backslash substitution. Use this to quote

characters that have special meaning to the interpreter. For example, you can specify a literal dollar sign,

brace, or bracket by quoting it with a backslash. If you are using lots of backslashes, instead you can

group things with curly braces to turn off all interpretation of special characters. There are cases where

backslashes are required. For example:

set dollar "This is a string \$contain dollar char"

=> This is a string $contain dollar char

set x $dollar

=> This is a string $contain dollar char

set group {$ {} [] { [}]}

=> $ {} [] { [}]

You can also use backslashes to continue long commands on multiple lines. A new line without the

backslash terminates a command. A backslashes that are the last character on a line convert into a space.

For example:

set totalLength [expr [string length "first string"] + \

[string length "second string"]]

=> 25

Grouping with braces and double quotes:

Use double quotes and curly braces to group words together. Quotes allow substitutions to occur in the

group and curly braces prevent substitution. This rule applies to command, variable, and backslash

substitutions. For example:

set s Hello

=> Hello

puts stdout "The length of $s is [string length $s]."

=> The length of Hello is 5.

puts stdout {The length of $s is [string length $s].}

=> The length of $s is [string length $s].

In the second example, the Jacl interpreter performs variable and command substitution on the second

argument from the puts command. In the third command, substitutions are prevented so the string is

printed as it is.

On distributed systems, special care must also be taken with path descriptions because the Jacl language

uses the backslash character (\) as an escape character. To fix this, either replace each backslash with a

forward slash, or use double backslashes in distributed path statements. For example: C:/ or C:\\

Procedures and scope:

Jacl uses the proc command to define procedures. The basic syntax to define a procedure is the

following:

proc name arglist body

The first argument is the name of the procedure being defined. The name is case sensitive, and in fact it

can contain any characters. Procedure names and variable names do not conflict with each other. The

second argument is a list of parameters to the procedures. The third argument is a command, or more

typically a group of commands that form the procedure body. Once defined, a Jacl procedure is used just

like any of the built-in commands. For example:

proc divide {x y} {

set result [expr x/y]

puts $result

}

192 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Inside the script, this is how to call devide procedure:

divide 20 5

And it will give the result like below:

4

It is not really necessary to use the variable c in this example. The procedure body could also written as:

return [expr sqrt($a * $a + $b * $b)]

The return command is optional in this example because the Jacl interpreter returns the value of the last

command in the body as the value of the procedure. So, the procedure body could be reduced to:

expr sqrt($a * $a + $b * $b)

The result of the procedure is the result returned by the last command in the body. The return command

can be used to return a specific value.

There is a single, global scope for procedure names. You can define a procedure inside another

procedure, but it is visible everywhere. There is a different name space for variables and procedures

therefore you may have a procedure and a variable with the same name without a conflict. Each

procedure has a local scope for variables. Variables introduced in the procedures only exist for the

duration of the procedure call. After the procedure returns, those variables are undefined. If the same

variable name exists in an outer scope, it is unaffected by the use of that variable name inside a

procedure. Variables defined outside the procedure are not visible to a procedure, unless the global scope

commands are used.

v global command - Global scope is the top level scope. This scope is outside of any procedure. You

must make variables defined at the global scope accessible to the commands inside procedure by using

the global command. The syntax for the global command is the following:

global varName1 varName2 ...

Comments

Use the pound character (#) to make comments.

Command line arguments

The Jacl shells pass the command line arguments to the script as the value of the argv variable. The

number of command line arguments is given by argc variable. The name of the program, or script, is not

part of argv nor is it counted by argc. Instead, it is put into the argv0 variable. The argv variable is a list.

Use the lindex command to extract items from the argument list, for example:

set first [lindex $argv 0]

set second [lindex $argv 1]

Strings and pattern matching

String are the basic data item in the Jacl language. There are multiple commands that you can use to

manipulate strings. The general syntax of the string command is the following:

string operation stringvalue otherargs

The operation argument determines the action of the string. The second argument is a string value. There

may be additional arguments depending on the operation.

The following table includes a summary of the string command:

 Command Description

Chapter 4. Using the administrative clients 193

string compare str1 str2 Compares strings lexicographically. Returns 0 if equal, -1

if str1 sorts before str2, else1.

string first str1 str2 Returns the index in str2 of the first occurrences of str1,

or -1 if str1 is not found.

string index string index Returns the character at the specified index.

string last str1 str2 Returns the index in str2 of the last occurence of str1, or

-1 if str1 is not found.

string length string Returns the number of character in string.

string match pattern str Returns 1 if str matches the pattern, else 0.

string range str i j Returns the range of characters in str from i to j

string tolower string Returns string in lower case.

string toupper string Returns string in upper case.

string trim string ?chars? Trims the characters in chars from both ends of string.

chars defaults to white space.

string trimleft string ?chars? Trims the characters in chars from the beginning of string.

chars defaults to white space.

string trimright string ?chars? Trims the characters in chars from the end of string.

chars defaults to white space.

string wordend str ix Returns the index in str of the character after the word

containing the character at index ix.

string wordstart str ix Returns the index in str of the first character in the word

containing the character at index ix.

The append command

The first argument of the append command is a variable name. It concatenates the remaining arguments

onto the current value of the named variable. For example:

set foo z

=> z

append foo a b c

=> zabc

The regexp command

The regexp command provides direct access to the regular expression matcher. The syntax is the

following:

regexp ?flags? pattern string ?match sub1 sub2 ...?

The return value is 1 if some part of the string matches the pattern. Otherwise, the return value will be 0.

The pattern does not have to match the whole string. If you need more control than this, you can anchor

the pattern to the beginning of the string by starting the pattern with ^, or to the end of the string by ending

the pattern with dollar sign, $. You can force the pattern to match the whole string by using both

characters. For example:

set text1 "This is the first string"

=> This is the first string

regexp "first string" $text1

=> 1

regexp "second string" $text1

=> 0

194 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Jacl data structures

The basic data structure in the Jacl language is a string. There are two higher level data structures: lists

and arrays. Lists are implemented as strings and the structure is defined by the syntax of the string. The

syntax rules are the same as for commands. Commands are a particular instance of lists. Arrays are

variables that have an index. The index is a string value so you can think of arrays as maps from one

string (the index) to another string (the value of the array element).

Jacl lists

The lists of the Jacl language are strings with a special interpretation. In the Jacl language, a list has the

same structure as a command. A list is a string with list elements separated by white space. You can use

braces or quotes to group together words with white space into a single list element.

The following table includes commands that are related to lists:

 Command Description

list arg1 arg2 Creates a list out of all its arguments.

lindex list i Returns the i’th element from list.

llength list Returns the number of elements in list.

lrange list i j Returns the i’th through j’th elements from list.

lappend listVar arg arg ... Appends elements to the value of listVar

linsert list index arg arg ... Inserts elements into list before the element at position

index. Returns a new list.

lreplace list i j arg arg ... Replaces elements i through j of list with the args. Return

a new list.

lsearch mode list value Returns the index of the element in list that matches the

value according to the mode, which is -exact, -glob, or

-regexp, -glob is the default. Return -1 if not found.

lsort switches list Sorts elements of the list according to the switches:

-ascii, -integer, -real, -increasing, -decreasing, -command

command. Return a new list.

concat arg arg arg ... Joins multiple lists together into one list.

join list joinString Merges the elements of a list together by separating them

with joinString.

split string splitChars Splits a string up into list elements, using (and discarding)

the characters in splitChars as boundaries between list

elements.

Arrays

Arrays are the other primary data structure in the Jacl language. An array is a variable with a string-valued

index, so you can think of an array as a mapping from strings to strings. Internally an array is implemented

with a hash table. The cost of accessing each element is about the same. The index of an array is

delimited by parentheses. The index can have any string value, and it can be the result of variable or

command substitution. Array elements are defined with the set command, for example:

set arr(index) value

Substitute the dollar sign ($) to obtain the value of an array element, for example:

set foo $arr(index)

For example:

Chapter 4. Using the administrative clients 195

set fruit(best) kiwi

=> kiwi

set fruit(worst) peach

=> peach

set fruit(ok) banana

=> banana

array get fruit

=> ok banana worst peach best kiwi

array exists fruit

=> 1

The following table includes array commands:

 Command Description

array exists arr Returns 1 if arr is an array variable.

array get arr Returns a list that alternates between an index and the

corresponding array value.

array names arr ?pattern? Return the list of all indices defined for arr, or those that

match the string match pattern.

array set arr list Initializes the array arr from list, which should have the

same form as the list returned by get.

array size arr Returns the number of indices defined for arr.

array startsearch arr Returns a search token for a search through arr.

array nextelement arr id Returns the value of the next element in array in the

search identified by the token id. Returns an empty string

if no more elements remain in the search.

array anymore arr id Returns 1 if more elements remain in the search.

array donesearch arr id Ends the search identified by id.

Control flow commands

The following looping commands exist:

v while

v foreach

v for

The following are conditional commands:

v if

v switch

The following is an error handling command:

v catch

The following commands fine-tune control flow:

v break

v continue

v return

v error

196 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

If Then Else

The if command is the basic conditional command. If an expression is true, then execute one command

body, otherwise execute another command body. The second command body (the else clause) is optional.

The syntax of the command is the following:

if boolean then body1 else body2

The then and else keywords are optional. For example:

if {$x == 0} {

 puts stderr "Divide by zero!"

} else {

 set slope [expr $y/$x]

}

Switch

Use the switch command to branch to one of many commands depending on the value of an expression.

You can choose based on pattern matching as well as simple comparisons. Any number of pattern-body

pairs can be specified. If multiple patterns match, only the body of the first matching pattern is evaluated.

The general form of the command is the following:

switch flags value pat1 body1 pat2 body2 ...

You can also group all the pattern-body pairs into one argument:

switch flags value {pat1 body1 pat2 body2 ...}

There are four possible flags that determines how value is matched.

v -exact Matches the value exactly to one of the patterns.

v -glob Uses glob-style pattern matching.

v -regexp Uses regular expression pattern matching.

v -- No flag (or end of flags). Useful when value can begin with a dash (-).

For example:

switch -exact -- $value {

 foo {doFoo; incr count(foo)}

 bar {doBar; return $count(foo)}

 default {incr count(other)}

}

If the pattern that is associated with the last body is default, then the command body is started if no other

patterns match. The default keyword only works on the last pattern-body pair. If you use the default

pattern on an earlier body, it will be treated as a pattern to match the literal string default.

Foreach

The foreach command loops over a command body and assigns a loop variable to each of the values in a

list. The syntax is the following:

foreach loopVar valueList commandBody

The first argument is the name of a variable. The command body runs one time for each element in the

loop with the loop variable having successive values in the list. For example:

set numbers {1 3 5 7 11 13}

foreach num $numbers {

puts $num

}

Chapter 4. Using the administrative clients 197

The result from the previous example will be the following output, assuming that only one server exists in

the environment. If there is more than one server, the information for all servers returns:

1

3

5

7

11

13

While

The while command takes two arguments; a test and a command body, for example:

while booleanExpr body

The while command repeatedly tests the boolean expression and runs the body if the expression is true

(non-zero). For example:

set i 0

while {$i < 5} {

puts "i is $i"

incr i}

The result from the previous example will be like the following output, assuming that there is only one

server. If there is more then one servers, it will print all of the servers:

i is 0

i is 1

i is 2

i is 3

i is 4

For

The for command is similar to the C language for statement. It takes four arguments, for example:

for initial test final body

The first argument is a command to initialize the loop. The second argument is a boolean expression

which determines if the loop body will run. The third argument is a command that runs after the loop body:

For example:

set numbers {1 3 5 7 11 13}

for {set i 0} {$i < [llength $numbers]} {incr i 1} {

puts "i is $i"

}

The result from previous example will be like the following output, assuming that there is only one server

in the environment. If there is more then one server, it will print all of the servers:

i is 1

i is 3

i is 5

i is 7

i is 11

i is 13

Break and continue

You can control loop execution with the break and continue commands. The break command causes an

immediate exit from a loop. The continue command causes the loop to continue with the next iteration.

Catch

198 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

An error will occur if you call a command with the wrong number of arguments or if the command detects

some error condition particular to its implementation. An uncaught error prevents a script from running.

Use the catch command trap such errors. The catch command takes two arguments, for example:

catch command ?resultVar?

The first argument is a command body. The second argument is the name of a variable that will contain

the result of the command or an error message if the command raises an error. The catch command

returns a value of zero if no error was caught or a value of one if the command catches an error. For

example:

catch {expr 20 / 5} result

==> 0

puts $result

==> 4

catch {expr text / 5} result

==> 1

puts $result

==> syntax error in expression "text / 5"

Return

The return command is used to return from a procedure. It is needed if you want something to return

before the end of the procedure body or if a contrast value needs to be returned.

Namespaces

Jacl keeps track of named entities such as variables, in namespaces. The wsadmin tool also adds entries

to the global namespace for the scripting objects, such as, the AdminApp object

When you run a proc command, a local namespace is created and initialized with the names and the

values of the parameters in the proc command. Variables are held in the local namespace while you run

the proc command. When you stop the proc command, the local namespace is erased. The local

namespace of the proc command implements the semantics of the automatic variables in languages such

as C and Java.

While variables in the global namespace are visible to the top level code, they are not visible by default

from within a proc command. To make them visible, declare the variables globally using the global

command. For the variable names that you provide, the global command creates entries in the local

namespace that point to the global namespace entries that actually define the variables.

If you use a scripting object provided by the wsadmin tool in a proc, you must declare it globally before

you can use it, for example:

proc { ... } {

 global AdminConfig

 ... [$AdminConfig ...]

}

For more information about Jacl, see the Scripting: Resources for Learning article.

Jython

Jython is an alternate implementation of Python, and is written entirely in Java.

The wsadmin tool uses Jython V2.1. The following information is a basic summary of the Jython syntax:

Basic function

The function is either the name of a built-in function or a Jython function. For example:

Chapter 4. Using the administrative clients 199

print "Hello, World!"

=> Hello, World!

import sys

sys.stdout.write("Hello World!\n")

=> Hello World!

In the example, print identifies the standard output stream. You can use the built-in module by running

import statements such as the previous example. The statement import runs the code in a module as part

of the importing and returns the module object. sys is a built-in module of the Python language. In the

Python language, modules are name spaces which are places where names are created. Names that

reside in modules are called attributes. Modules correspond to files and the Python language creates a

module object to contain all the names defined in the file. In other words, modules are name spaces.

Variable

To assign objects to names, the target of an assignment should be on the left side of an equal sign (=)

and the object that you are assigning on the right side. The target on the left side can be a name or object

component, and the object on the right side can be an arbitrary expression that computes an object. The

following rules exist for assigning objects to names:

v Assignments create object references.

v Names are created when you assign them.

v You must assign a name before referencing it.

Variable name rules are similar to the rules for the C language, for example:

v An underscore character (_) or a letter plus any number of letters, digits or underscores

The following reserved words can not be used for variable names:

and assert break class continue

def del elif else except

exec inally for from global

if importin is lambda

not or pass print raise

return try while

For example:

a = 5

print a

=> 5

b = a

print b

=> 5

text1, text2, text3, text4 = ’good’, ’bad’, ’pretty’, ’ugly’

print text3

=> pretty

The second example assigns the value of variable a to variable b.

Types and operators

The following list contains a few of the built-in object types:

v Numbers. For example:

200 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

8, 3.133, 999L, 3+4j

num1 = int(10)

print num1

=> 10

v Strings. For example:

’name’, "name’s", ’’

print str(12345)

=> ’12345’

v Lists. For example:

x = [1, [2, ’free’], 5]

y = [0, 1, 2, 3]

y.append(5)

print y

=> [0, 1, 2, 3, 5]

y.reverse()

print y

=> [5, 3, 2, 1, 0]

y.sort()

print y

=> [0, 1, 2, 3, 5]

print list("apple")

=> [’a’, ’p’, ’p’, ’l’, ’e’]

print list((1,2,3,4,5))

=> [1, 2, 3, 4, 5]

test = "This is a test"

test.index("test")

=> 10

test.index(’s’)

=> 3

The following list contains a few of the operators:

v x or y

y is evaluated only if x is false. For example:

print 0 or 1

=> 1

v x and y

y is evaluated only if x is true. For example:

print 0 and 1

=> 0

v x +y , x - y

Addition and concatenation, subtraction. For example:

print 6 + 7

=> 13

text1 = ’Something’

text2 = ’ else’

print text1 + text2

=> Something else

list1 = [0, 1, 2, 3]

list2 = [4, 5, 6, 7]

print list1 + list2

Chapter 4. Using the administrative clients 201

=> [0, 1, 2, 3, 4, 5, 6, 7]

print 10 - 5

=> 5

v x * y, x / y, x % y

Multiplication and repetition, division, remainder and format. For example:

print 5 * 6

=> 30

print ’test’ * 3

=> test test test

print 30 / 6

=> 5

print 32 % 6

=> 2

v x[i], x[i:j], x(...)

Indexing, slicing, function calls. For example:

test = "This is a test"

print test[3]

=> s

print test[3:10]

=> s is a

print test[5:]

=> is a test

print x[:-4]

=> This is a print len(test)

=> 14

v <, <=, >, >=, ==, <>, !=, is is not

Comparison operators, identity tests. For example:

l1 = [1, (’a’, 3)]

l2 = [1, (’a’, 2)]

l1 < l2, l1 == l2, l1 > l2, l1 <> l2, l1 != l2, l1 is l2, l1 is not l2

=> (0, 0, 1, 1, 1, 0, 1)

Backslash substitution

If a statement needs to span multiple lines, you can also add a black slash (\) at the end of the previous

line to indicate you are continuing on the next line. For example:

text = "This is a tests of a long lines" \

" continuing lines here."

print text

=> This is a tests of a long lines continuing lines here.

Functions and scope

Jython uses the def statement to define functions. Functions related statements include:

v def, return

The def statement creates a function boject and assigns it to a name. Thereturn statement sends a

result object back to the caller. This is optional, and if it is not present, a function exits so that control

flow falls off the end of the function body.

v global

202 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

The global statement declares module-level variables that are to be assigned. By default, all names

assigned in a function are local to that function and exist only while the function runs. To assign a name

in the enclosing module, list functions in a global statement.

The basic syntax to define a function is the following:

def name (arg1, arg2, ... ArgN):

statements

return value

where name is the name of the function being defined. It is followed by an open parenthesis, a close

parenthesis and a colon. The arguments inside parenthesis include a list of parameters to the procedures.

The next line after the colon is the body of the function. A group of commands that form the body of the

function. After you define a Jython function, it is used just like any of the built-in functions. For example:

def intersect(seq1, seq2):

 try:

 res = []

 for x in seq1:

 if x in seq2:

 res.append(x)

 return res

 except:

To call the function above, use the following command:

s1 = "SPAM"

s2 = "SCAM"

intersect(s1, s2)

=> [S, A, M]

intersect([1,2,3], (1.4))

=> [1]

Comments

Make comments in the Jython language with the pound character (#).

Command line arguments

The Jython shells pass the command line arguments to the script as the value of the sys.argv. The name

of the program, or script, is not part of sys.argv. sys.argv is an array, so you use the index command to

extract items from the argument list, for example:

import sys

first = sys.argv[0]

second = sys.argv[1]

arglen = len(sys.argv)

Basic statements

There are two looping statements: while and for. The conditional statement is if. The error handling

statement is try. Finally, there are some statements to fine-tune control flow: break, continue and pass.

The following is a list of syntax rules in Python:

v Statements run one after another until you say otherwise. Statements normally end at the end of the

line they appear on. When statements are too long to fit on a single line you can also add a back sash

(\) at the end of the prior line to indicate you are continuing on the next line.

v Block and statement boundaries are detected automatically. There are no braces, or begin or end

delimiter, around blocks of code. Instead, the Python language uses the indentation of statements under

a header in order to group the statements in a nested block. Block boundaries are detected by line

indentation. All statements indented the same distance to the right belong to the same block of code

until that block is ended by a line less indented.

Chapter 4. Using the administrative clients 203

v Compound statements = header; ’:’, indented statements. All compound statements in the Python

language follow the same pattern: a header line terminated with a colon, followed by one or more

nested statements indented under the header. The indented statements are called a block.

v Spaces and comments are usually ignored. Spaces inside statements and expressions are almost

always ignored (except in string constants and indentation), so are comments.

If

The if statement selects actions to perform. The if statement may contain other statements, including

other if statements. The if statement can be followed by one or more optional elif statements and ends

with an optional else block.

The general format of an if looks like the following:

if test1

 statements1

elif test2

 statements2

else test3

 statements3

For example:

weather = ’sunny’

if weather == ’sunny’:

 print "Nice weather"

elif weather == ’raining’:

 print "Bad weather"

else:

 print "Uncertain, don’t plan anything"

While

The while statement consists of a header line with a test expression, a body of one or more indented

statements, and an optional else statement that runs if control exits the loop without running into a break

statement. The while statement repeatedly executes a block of indented statements as long as a test at

the top keeps evaluating a true value. The general format of an while looks like the following:

while test1

 statements1

else

 statements2

For example:

a = 0; b = 10

while a < b:

 print a

 a = a + 1

For

The for statement begins with a header line that specifies an assignment target or targets, along with an

object you want to step through. The header is followed by a block of indented statements which you want

to repeat.

The general format of an while looks like the following:

for target in object:

 statements

else:

 statements

204 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

It assigns items in the sequence object to the target, one by one, and runs the loop body for each. The

loop body typically uses the assignment target to refer to the current item in the sequence as if it were a

cursor stepping through the sequence. For example:

sum = 0

for x in [1, 2, 3, 4]:

 sum = sum + x

Break, continue, and pass

You can control running a loop the break, continue and pass statements. The break statement jumps out

of the closest enclosing loop (past the entire loop statement). The continue statements jumps to the top of

the closest enclosing loop (to the header line of the loop), and the pass statement is an empty statement

placeholder.

Try

A statement will raise an error if it is called with the wrong number of arguments, or if it detects some error

condition particular to its implementation. An uncaught error aborts execution of a script. The try statement

is used to trap such errors. Python try statements come in two flavors, one that handles exceptions and

one that executes finalization code whether exceptions occur or not. The try, except, else statement

starts with a try header line followed by a block of indented statements, then one or more optional except

clauses that name exceptions to be caught, and an optional else clause at the end. The try, finally

statements starts with a try header line followed by a block of indented statements, then finally clause that

always runs on the way out whether an exception occurred while the try block was running or not.

The general format of the try, except, else function looks like the following:

try:

 statements

except name:

 statements

except name, data:

 statements

else

 statements

For example:

try:

 myfunction()

except:

 import sys

 print ’uncaught exception’, sys.exc_type, sys.exc_value

try:

 myfilereader()

except EOFError:

 break

else:

 process next line here

The general format of a try and finally looks like the following:

try:

 statements

finally:

 statements

For example:

def divide(x, y):

 return x / y

Chapter 4. Using the administrative clients 205

def tester(y):

 try:

 print divide(8, y)

 finally:

 print ’on the way out...’

For more information about the Jython language, see the Scripting: Resources for Learning article.

Scripting objects

The wsadmin tool operates on configurations and running objects through the following set of management

objects: AdminConfig, AdminControl, AdminApp, AdminTask, and Help. Each of these objects has

commands that you can use to perform administrative tasks. To use the scripting objects, specify the

scripting object, a command, and command parameters. For example:

Using Jacl:

$AdminConfig attributes ApplicationServer

Using Jython:

print AdminConfig.attributes(’ApplicationServer’)

where AdminConfig is the scripting object, attributes is the command, and ApplicationServer is the

command parameter.

To find out more specific information about each of the scripting objects, including command and

command parameter information, see AdminConfig, AdminApp, AdminControl, AdminTask, or Help.

WebSphere Application Server system management separates administrative functions into two categories:

functions that work with the configuration of WebSphere Application Server installations, and functions that

work with the currently running objects in WebSphere Application Server installations.

Scripts work with both categories of objects. For example, an application server is divided into two distinct

entities. One entity represents the configuration of the server that resides persistently in a repository on

permanent storage. You can create, query, change, or remove this configuration without starting an

application server process. The AdminConfig object, the AdminTask object, and the AdminApp object

handle configuration functionality. You can invoke configuration functions with or without being connected

to a server.

The second entity represents the running instance of an application server by a Java Management

Extensions (JMX) MBean. This instance can have attributes that you can interrogate and change, and

operations that you can invoke. These operational actions taken against a running application server do

not have an effect on the persistent configuration of the server. The attributes that support manipulation

from an MBean differ from the attributes that the corresponding configuration supports. The configuration

can include many attributes that you cannot query or set from the running object. The WebSphere

Application Server scripting support provides functions to locate configuration objects, and running objects.

Objects in the configuration do not always represent objects that are currently running. The AdminControl

object manages running objects.

You can use the Help object to obtain information about the AdminConfig, AdminApp, AdminControl, and

AdminTask objects, to obtain interface information about running MBeans, and to obtain help for warnings

and error messages.

Help object for scripted administration: The Help object provides general help, online information

about running MBeans, and help on messages.

206 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Use the Help object to obtain general help for the other objects supplied by the wsadmin tool for scripting:

the AdminApp, AdminConfig, AdminTask, and AdminControl objects. For example, using Jacl, $Help

AdminApp or using Jython, Help.Adminapp(), provides information about the AdminApp object and the

available commands.

The Help object also to provides interface information about MBeans running in the system. The

commands that you use to get online information about the running MBeans include: all, attributes,

classname, constructors, description, notification, operations.

You can also use the Help object to obtain information about messages using the message command.

The message command provides aid to understand the cause of a warning or error message and find a

solution for the problem. For example, you receive a WASX7115E error when running the AdminApp install

command to install an application, use the following example:

Using Jacl:

$Help message WASX7115E

Using Jython:

print Help.message(’WASX7115E‘)

Example output:

Explanation: wsadmin failed to read an ear file when

preparing to copy it to a temporary location for AdminApp

processing. User action: Examine the wsadmin.traceout

log file to determine the problem; there may be file permission problems.

The user action specifies the recommended action to correct the problem. It is important to understand

that in some cases the user action may not be able to provide corrective actions to cover all the possible

causes of an error. It is an aid to provide you with information to troubleshoot a problem.

To see a list of all available commands for the Help object, see the Commands for the Help object article

or you can also use the Help command, for example:

Using Jacl:

$Help help

Using Jython:

print Help.help()

AdminApp object for scripted administration: Use the AdminApp object to manage applications. This

object communicates with the WebSphere Application Server run time application management object to

make application inquires and changes, for example:

v Installing and uninstalling applications

v Listing applications

v Editing applications or modules

Since applications are part of configuration data, any changes that you make to an application is kept in

the configuration session, similar to other configuration data. Be sure to save your application changes so

that the data transfers from the configuration session to the master repository.

With the application already installed, the AdminApp object can update application metadata, map virtual

hosts to Web modules, and map servers to modules. You must perform any other changes, such as,

specifying a library for the application to use or setting session management configuration properties,

using the AdminConfig object.

Chapter 4. Using the administrative clients 207

You can run the commands for the AdminApp object in local mode. If a server is running, it is not

recommended that you run the scripting client in local mode because any configuration changes that are

made in local mode will not be reflected in the running server configuration and vice versa. If you save a

conflicting configuration, you could corrupt the configuration. In a deployment manager environment,

configuration updates are available only if a scripting client is connected to a deployment manager. When

connected to a node agent or a managed application server, you will not be able to update the

configuration because the configuration for these server processes are copies of the master configuration

which resides in the deployment manager. The copies are created on a node machine when a

configuration synchronization occurs between the deployment manager and the node agent. Make

configuration changes to the server processes by connecting a scripting client to a deployment manager.

For this reason, to change a configuration, do not run a scripting client in local mode on a node machine.

It is not a supported configuration.

To see a list of all available commands for the AdminApp object, see the Commands for the AdminApp

object article or you can also use the Help command, for example:

Using Jacl:

$AdminApp help

Using Jython:

print AdminApp.help()

Listing applications with the wsadmin tool:

Before starting this task, the wsadmin tool must be running. See the “Starting the wsadmin scripting client”

on page 250 article for more information.

Query the configuration and create a list of installed applications, for example:

v Using Jacl:

$AdminApp list

v Using Jython:

AdminApp.list()

where:

 $ is a Jacl operator for substituting a variable name with its

value

AdminApp is an object allowing application objects management

list is an AdminApp command

Example output:

DefaultApplication

SampleApp

app1serv2

Editing application configurations with the wsadmin tool:

Before starting this task, the wsadmin tool must be running. See the “Starting the wsadmin scripting client”

on page 250 article for more information.

1. Edit the entire application or a single application module. Use one of the following commands:

v The following command uses the installed application and the command option information to edit

the application:

– Using Jacl:

208 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

$AdminApp edit appname {options}

– Using Jython list:

AdminApp.edit(’appname’, [’options’])

– Using Jython string:

AdminApp.edit(’appname’, ’[options]’)

where:

 $ is a Jacl operator for substituting a variable name with its

value

AdminApp is an object allowing application objects management

edit is an AdminApp command

appname is the name of application or application module to edit.

For the application module name, use the module name

returned from listModules command as the value.

{options} is a list of edit options and tasks similar to the ones for

the install command

v The following command changes the application information by prompting you through a series of

editing tasks:

– Using Jacl:

$AdminApp editInteractive appname

– Using Jython:

AdminApp.editInteractive(’appname’)

where:

 $ is a Jacl operator for substituting a variable name with its

value

AdminApp is an object allowing application objects management

editInteractive is an AdminApp command

appname is the name of application or application module to edit.

For the application module name, use the module name

returned from listModules command as the value.

2. Save the configuration changes. See the “Saving configuration changes with the wsadmin tool” on

page 232 article for more information.

3. In a network deployment environment only, synchronize the node. See the “Synchronizing nodes with

the wsadmin tool” on page 217 article for more information.

AdminControl object for scripted administration: The AdminControl scripting object is used for

operational control. It communicates with MBeans that represent live objects running a WebSphere server

process. It includes commands to query existing running objects and their attributes and invoke operation

on the running objects. In addition to the operational commands, the AdminControl object supports

commands to query information on the connected server, convenient commands for client tracing,

reconnecting to a server, and start and stop server for network deployment environment.

Many of the operational commands have two sets of signatures so that they can either invoke using string

based parameters or using Java Management Extension (JMX) objects as parameters. Depending on the

server process to which a scripting client is connected, the number and type of MBeans available varies. If

a scripting client is connected to a deployment manager, then all MBeans in all server processes are

visible. If a scripting client is connected to a node agent, all MBeans in all server processes on that node

are accessible. When connected to an application server, only MBeans running in that application server

are visible.

Chapter 4. Using the administrative clients 209

The following steps provide a general method to manage the cycle of an application:

v Install the application.

v Edit the application.

v Update the application.

v Uninstall the application.

To see a list of all available commands for the AdminControl object, see the Commands for the

AdminControl object article or you can also use the Help command, for example:

Using Jacl:

$AdminControl help

Using Jython:

print AdminControl.help()

ObjectName, Attribute, and AttributeList classes:

WebSphere Application Server scripting commands use the underlying Java Management Extensions

(JMX) classes, ObjectName, Attribute, and AttributeList, to manipulate object names, attributes and

attribute lists respectively.

 The WebSphere Application Server ObjectName class uniquely identifies running objects. The ObjectName

class consists of the following elements:

v The domain name WebSphere.

v Several key properties, for example:

– type - Indicates the type of object that is accessible through the MBean, for example,

ApplicationServer, and EJBContainer.

– name - Represents the display name of the particular object, for example, MyServer.

– node - Represents the name of the node on which the object runs.

– process - Represents the name of the server process in which the object runs.

– mbeanIdentifier - Correlates the MBean instance with corresponding configuration data.

When ObjectName classes are represented by strings, they have the following pattern:

[domainName]:property=value[,property=value]*

For example, you can specify WebSphere:name=″My Server″,type=ApplicationServer,node=n1,* to specify

an application server named My Server on node n1. (The asterisk (*) is a wildcard character, used so that

you do not have to specify the entire set of key properties.) The AdminControl commands that take strings

as parameters expect strings that look like this example when specifying running objects (MBeans). You

can obtain the object name for a running object with the getObjectName command.

Attributes of these objects consist of a name and a value. You can extract the name and value with the

getName and the getValue methods that are available in the javax.management.Attribute class. You can

also extract a list of attributes.

Example: Collecting arguments for the AdminControl object: Verify that the arguments parameter is a

single string. Each individual argument in the string can contain spaces. Collect each argument that

contains spaces in some way.

v An example of how to obtain an MBean follows:

Using Jacl:

set am [$AdminControl queryNames type=ApplicationManager,process=server1,*]

Using Jython:

am = AdminControl.queryNames(’type=ApplicationManager,process=server1,*’)

v Multiple ways exist to collect arguments that contain spaces. Choose one of the following alternatives:

210 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Using Jacl:

– $AdminControl invoke $am startApplication {″JavaMail Sample″}

– $AdminControl invoke $am startApplication {{JavaMail Sample}}

– $AdminControl invoke $am startApplication ″\″JavaMail Sample\″″

Using Jython:

– AdminControl.invoke(am, ’startApplication’, ’[JavaMail Sample]’)

– AdminControl.invoke(am, ’startApplication’, ’\″JavaMail Sample\″’)

Example: Identifying running objects: In the WebSphere Application Server, MBeans represent running

objects. You can interrogate the MBean server to see the objects it contains. Use the AdminControl object

to interact with running MBeans.

v Use the queryNames command to see running MBean objects. For example:

Using Jacl:

$AdminControl queryNames *

Using Jython:

print AdminControl.queryNames(’*’)

This command returns a list of all MBean types. Depending on the server to which your scripting client

attaches, this list can contain MBeans that run on different servers:

– If the client attaches to a stand-alone WebSphere Application Server, the list contains MBeans that

run on that server.

– If the client attaches to a node agent, the list contains MBeans that run in the node agent and

MBeans that run on all application servers on that node.

– If the client attaches to a deployment manager, the list contains MBeans that run in the deployment

manager, all of the node agents communicating with that deployment manager, and all application

servers on the nodes served by those node agents.
v The list that the queryNames command returns is a string representation of JMX ObjectName objects. For

example:

WebSphere:cell=MyCell,name=TraceService,mbeanIdentifier=TraceService,type=TraceService,node=MyNode,process=server1

This example represents a TraceServer object that runs in server1 on MyNode.

v The single queryNames argument represents the ObjectName object for which you are searching. The

asterisk (″*″) in the example means return all objects, but it is possible to be more specific. As shown in

the example, ObjectName has two parts: a domain, and a list of key properties. For MBeans created by

the WebSphere Application Server, the domain is WebSphere. If you do not specify a domain when you

invoke queryNames, the scripting client assumes the domain is WebSphere. This means that the first

example query above is equivalent to:

Using Jacl:

$AdminControl queryNames WebSphere:*

Using Jython:

AdminControl.queryNames(’WebSphere:*’)

v WebSphere Application Server includes the following key properties for the ObjectName object:

– name

– type

– cell

– node

– process

– mbeanIdentifier

These key properties are common. There are other key properties that exist. You can use any of these

key properties to narrow the scope of the queryNames command. For example:

Using Jacl:

$AdminControl queryNames WebSphere:type=Server,node=myNode,*

Using Jython:

Chapter 4. Using the administrative clients 211

AdminControl.queryNames(’WebSphere:type=Server,node=myNode,*’)

This example returns a list of all MBeans that represent server objects running the node myNode. The,

* at the end of the ObjectName object is a JMX wildcard designation. For example, if you enter the

following:

Using Jacl:

$AdminControl queryNames WebSphere:type=Server,node=myNode

Using Jython:

print AdminControl.queryNames(’WebSphere:type=Server,node=myNode’)

you get an empty list back because the argument to queryNames is not a wildcard. There is no Server

MBean running that has exactly these key properties and no others.

v If you want to see all the MBeans representing applications running on a particular node, invoke the

following example:

Using Jacl:

$AdminControl queryNames WebSphere:type=Application,node=myNode,*

Using Jython:

print AdminControl.queryNames(’WebSphere:type=Application,node=myNode,*’)

Specifying running objects using the wsadmin tool:

Before starting this task, the wsadmin tool must be running. See the “Starting the wsadmin scripting client”

on page 250 article for more information.

Perform the following steps to specify running objects:

1. Obtain the configuration ID with one of the following ways:

v Obtain the object name with the completeObjectName command, for example:

– Using Jacl:

set var [$AdminControl completeObjectName template]

– Using Jython:

var = AdminControl.completeObjectName(template)

where:

 set is a Jacl command

var is a variable name

$ is a Jacl operator for substituting a variable name with its

value

AdminControl is an object that enables the manipulation of MBeans

running in a WebSphere server process

completeObjectName is an AdminControl command

template is a string containing a segment of the object name to be

matched. The template has the same format as an object

name with the following pattern:

[domainName]:property=value[,property=value]*. See

Object name, Attribute, Attribute list for more information.

If there are several MBeans that match the template, the completeObjectName command only

retuns the first match. The matching MBean object name is then assigned to a variable.

To look for server1 MBean in mynode, use the following example:

– Using Jacl:

set server1 [$AdminControl completeObjectName node=mynode,type=Server,name=server1,*]

– Using Jython:

212 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

server1 = AdminControl.completeObjectName(’node=mynode,type=Server,name=server1,*’)

v Obtain the object name with the queryNames command, for example:

– Using Jacl:

set var [$AdminControl queryNames template]

– Using Jython:

var = AdminControl.queryNames(template)

where:

 set is a Jacl command

var is a variable name

$ is a Jacl operator for substituting a variable name with its

value

AdminControl is an object that enables the manipulation of MBeans

running in a WebSphere Application server process.

queryNames is an AdminControl command

template is a string containing a segment of the object name to be

matched. The template has the same format as an object

name with the following pattern:

[domainName]:property=value[,property=value]*

2. If there are more than one running objects returned from the queryNames command, the objects are

returned in a list syntax. One simple way to retrieve a single element from the list is to use the lindex

command in Jacl and split command in Jython. The following example retrieves the first running object

from the server list:

v Using Jacl:

set allServers [$AdminControl queryNames type=Server,*]

set aServer [lindex $allServers 0]

v Using Jython:

allServers = AdminControl.queryNames(’type=Server,*’)

get line separator

import java

lineSeparator = java.lang.System.getProperty(’line.separator’)

aServer = allServers.split(lineSeparator)[0]

For other ways to manipulate the list and then perform pattern matching to look for a specified

configuration object, refer to the Jacl syntax.

You can now use the running object in with other AdminControl commands that require an object name as

a parameter.

Identifying attributes and operations for running objects with the wsadmin tool:

Before starting this task, the wsadmin tool must be running. See the “Starting the wsadmin scripting client”

on page 250 article for more information.

Use the Help object attributes or operations commands to find information on a running MBean in the

server.

1. Specify a running object.

2. Use the attributes command to display the attributes of the running object:

v Using Jacl:

$Help attributes MBeanObjectName

v Using Jython:

Chapter 4. Using the administrative clients 213

Help.attributes(MBeanObjectName)

where:

 $ is a Jacl operator for substituting a variable name with its

value

Help is the object that provides general help and information

for running MBeans in the connected server process

attributes is a Help command

MBeanObjectName is the string representation of the MBean object name

obtained in step 2

3. Use the operations command to find out the operations supported by the MBean:

v Using Jacl:

$Help operations MBeanObjectname

or

$Help operations MBeanObjectname operationName

v Using Jython:

Help.operations(MBeanObjectname)

or

Help.operations(MBeanObjectname, operationName)

where:

 $ is a Jacl operator for substituting a variable name with its

value

Help is the object that provides general help and information

for running MBeans in the connected server process

operations is a Help command

MBeanObjectname is the string representation of the MBean object name

obtained in step number 2

operationName (optional) is the specified operation for which you want to

obtain detailed information

If you do not provide the operationName, all operations supported by the MBean return with the

signature for each operation. If you specify operationName, only the operation that you specify returns

and it contains details which include the input parameters and the return value. To display the

operations for the server MBean, use the following example:

v Using Jacl:

set server [$AdminControl completeObjectName type=Server,name=server1,*]

$Help operations $server

v Using Jython:

server = AdminControl.completeObjectName(’type=Server,name=server1,*’)

print Help.operations(server)

To display detailed information about the stop operation, use the following example:

v Using Jacl:

$Help operations $server stop

v Using Jython:

print Help.operations(server, ’stop’)

Performing operations on running objects using the wsadmin tool:

214 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Before starting this task, the wsadmin tool must be running. See the “Starting the wsadmin scripting client”

on page 250 article for more information.

Perform the following steps to perform operations on running objects:

1. Obtain the object name of the running object. For example:

v Using Jacl:

$AdminControl completeObjectName name

v Using Jython:

AdminControl.completeObjectName(name)

where:

 $ is a Jacl operator for substituting a variable name with its

value

AdminControl is an object that enables the manipulation of MBeans

running in a WebSphere server process

completeObjectName is an AdminControl command

name is a fragment of the object name. It is used to find the

matching object name. For example:

type=Server,name=serv1,*. It can be any valid

combination of domain and key properties. For example,

type, name, cell, node, process, etc.

2. Set the s1 variable to the running object, for example:

v Using Jacl:

set s1 [$AdminControl completeObjectName type=Server,name=server1,*]

v Using Jython:

s1 = AdminControl.completeObjectName(’type=Server,name=server1,*’)

where:

 set is a Jacl command

s1 is a variable name

$ is a Jacl operator for substituting a variable name with its

value

AdminControl is an object that enables the manipulation of MBeans

running in a WebSphere server process

completeObjectName is an AdminControl command

type is the object name property key

Server is the name of the object

name is the object name property key

server1 is the name of the server where the operation will be

invoked

3. Invoke the operation. For example:

v Using Jacl:

$AdminControl invoke $s1 stop

v Using Jython:

AdminControl.invoke(s1, ’stop’)

Chapter 4. Using the administrative clients 215

where:

 $ is a Jacl operator for substituting a variable name with its

value

AdminControl is an object that enables the manipulation of MBeans

running in a WebSphere server process

invoke is an AdminControl command

s1 is the ID of the server specified in step number 3

stop is an operation to be invoked on the server

The following example is for operations that require parameters:

v Using Jacl:

set traceServ [$AdminControl completeObjectName type=TraceService,process=server1,*]

$AdminControl invoke $traceServ appendTraceString "com.ibm.ws.management.*=all=enabled"

v Using Jython:

traceServ = AdminControl.completeObjectName(’type=TraceService,process=server1,*’)

AdminControl.invoke(traceServ, ’appendTraceString’, "com.ibm.ws.management.*=all=enabled")

Modifying attributes on running objects with the wsadmin tool:

Before starting this task, the wsadmin tool must be running. See the “Starting the wsadmin scripting client”

on page 250 article for more information.

Perform the following steps to modify attributes on running objects:

1. Obtain the name of the running object, for example:

v Using Jacl:

$AdminControl completeObjectName name

v Using Jython:

AdminControl.completeObjectName(name)

where:

 $ is a Jacl operator for substituting a variable name with its

value

AdminControl is an object that enables the manipulation of MBeans

running in a WebSphere server process

completeObjectName is an AdminControl command

name is a fragment of the object name. It is used to find the

matching object name. For example:

type=TraceService,node=mynode,*. It can be any valid

combination of domain and key properties. For example,

type, name, cell, node, process, etc.

2. Set the ts1 variable to the running object, for example:

v Using Jacl:

set ts1 [$AdminControl completeObjectName name]

v Using Jython:

ts1 = AdminControl.completeObjectName(name)

where:

 set is a Jacl command

216 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

ts1 is a variable name

$ is a Jacl operator for substituting a variable name with its

value

AdminControl is an object that enables the manipulation of MBeans

running in a WebSphere server process

completeObjectName is an AdminControl command

name is a fragment of the object name. It is used to find the

matching object name. For example:

type=TraceService,node=mynode,*. It can be any valid

combination of domain and key properties. For example,

type, name, cell, node, process, etc.

3. Modify the running object, for example:

v Using Jacl:

$AdminControl setAttribute $ts1 ringBufferSize 10

v Using Jython:

AdminControl.setAttribute(ts1, ’ringBufferSize’, 10)

where:

 $ is a Jacl operator for substituting a variable name with its

value

AdminControl is an object that enables the manipulation of MBeans

running in a WebSphere server process

setAttribute is an AdminControl command

ts1 evaluates to the ID of the server specified in step number

3

ringBufferSize is an attribute of modify objects

10 is the value of the ringBufferSize attribute

You can also modify multiple attribute name and value pairs, for example:

v Using Jacl:

set ts1 [$AdminControl completeObjectName type=TraceService,process=server1,*]

$AdminControl setAttributes $ts1 {{ringBufferSize 10} {traceSpecification com.ibm.*=all=disabled}}

v Using Jython list:

ts1 = AdminControl.completeObjectName(’type=TraceService,process=server1,*’)

AdminControl.setAttributes(ts1, [[’ringBufferSize’, 10], [’traceSpecification’, ’com.ibm.*=all=disabled’]])

v Using Jython string:

ts1 =AdminControl.completeObjectName(’type=TraceService,process=server1,*’)

AdminControl.setAttributes(ts1, ’[[ringBufferSize 10] [traceSpecification com.ibm.*=all=disabled]]’)

The new attribute values are returned to the command line.

Synchronizing nodes with the wsadmin tool:

This article only applies to network deployment installations. A node synchronization is necessary in order

to propagate configuration changes to the affected node or nodes. By default this occurs periodically, as

long as the node can communicate with the deployment manager. It is possible to cause this to happen

explicitly by performing the following steps:

1. Set the variable for node synchronize.

v Using Jacl:

set Sync1 [$AdminControl completeObjectName type=NodeSync,node=myNodeName,*]

Chapter 4. Using the administrative clients 217

v Using Jython:

Sync1 = AdminControl.completeObjectName(’type=NodeSync,node=myNodeName,*’)

where:

 set is a Jacl command

Sync1 is a variable name

$ is a Jacl operator for substituting a variable name with its

value

AdminControl is an object that enables the manipulation of MBeans

running in a WebSphere server process

completeObjectName is an AdminControl command

type=NodeSync,node=myNodeName is a fragment of the object name whose complete name

is returned by this command. It is used to find the

matching object name which is, in this case, the

SyncNode object for the node myNodeName, where

myNodeName is the name of the node that you use to

synchronize configuration changes. For example:

type=Server, name=serv1. It can be any valid

combination of domain and key properties. For example,

type, name, cell, node, process, etc.

Example output:

WebSphere:platform=common,cell=myNetwork,version=5.0,name=node

Sync,mbeanIdentifier=nodeSync,type=NodeSync,node=myBaseNode,

process=nodeagent

2. Synchronize by issuing the following command:

v Using Jacl:

$AdminControl invoke $Sync1 sync

v Using Jython:

AdminControl.invoke(Sync1, ’sync’)

where:

 $ is a Jacl operator for substituting a variable name with its

value

AdminControl is an object that enables the manipulation of MBeans

running in a WebSphere server process

invoke is an AdminControl command

Sync1 evaluates to the ID of the server specified in step number

7

sync is an attribute of modify objects

Example output:

true

You will receive an output value of true if the synchronization completes.

When the synchronization is complete, the files created in the c:/WebSphere/DeploymentManager/config

directory now exists on the mynode node in the c:/WebSphere/AppServer/config directory.

AdminConfig object for scripted administration: Use the AdminConfig object to manage the

configuration information that is stored in the repository. This object communicates with the WebSphere

218 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Application Server configuration service component to make configuration inquires and changes. You can

use it to query existing configuration objects, create configuration objects, modify existing objects, remove

configuration objects, and obtain help.

Updates to the configuration through a scripting client are kept in a private temporary area called a

workspace and are not copied to the master configuration repository until you run a save command. The

workspace is a temporary repository of configuration information that administrative clients including the

administrative console use. The workspace is kept in the wstemp subdirectory of your WebSphere

Application Server installation. The use of the workspace allows multiple clients to access the master

configuration. If the same update is made by more than one client, it is possible that updates made by a

scripting client will not save because there is a conflict. If this occurs, the updates will not be saved in the

configuration unless you change the default save policy with the setSaveMode command.

The AdminConfig commands are available in both connected and local modes. If a server is currently

running, it is not recommended that you run the scripting client in local mode because the configuration

changes made in the local mode is not reflected in the running server configuration and vice versa. In

connnected mode, the availability of the AdminConfig commands depend on the type of server to which a

scripting client is connected in a Network Deployment installation.

The AdminConfig commands are available only if a scripting client is connected to a deployment manager.

When connected to a node agent or an application server, the AdminConfig commands will not be

available because the configuration for these server processes are copies of the master configuration that

resides in the deployment manager. The copies are created in a node machine when configuration

synchronization occurs between the deployment manager and the node agent. You should make

configuration changes to the server processes by connecting a scripting client to a deployment manager.

For this reason, to change a configuration, do not run a scripting client in local mode on a node machine.

It is not a supported configuration.

The following steps provide a general method to update a configuration object:

v Identify the configuration type and the corresponding attributes.

v Query an existing configuration object to obtain a configuration ID to use.

v Modify the existing configuration object or create a one.

v Save the configuration.

To see a list of all available commands for the AdminConfig object, see the Commands for the

AdminConfig object article or you can also use the Help command, for example:

Using Jacl:

$AdminConfig help

Using Jython:

print AdminConfig.help()

Creating configuration objects using the wsadmin tool:

Before starting this task, the wsadmin tool must be running. See the “Starting the wsadmin scripting client”

on page 250 article for more information.

Perform this task if you want to create an object. To create new objects from the default template, use the

create command. Alternatively, you can create objects using an existing object as a template with the

createUsingTemplate command.

1. Use the AdminConfig object listTemplates command to list available templates:

v Using Jacl:

$AdminConfig listTemplates JDBCProvider

Chapter 4. Using the administrative clients 219

v Using Jython:

AdminConfig.listTemplates(’JDBCProvider’)

where:

 $ is a Jacl operator for substituting a variable name with its

value

AdminConfig is an object representing the WebSphere Application

Server configuration

listTemplates is an AdminConfig command

JDBCProvider is an object type

2. Assign the ID string that identifies the existing object to which the new object is added. You can add

the new object under any valid object type. The following example uses a node as the valid object

type:

v Using Jacl:

set n1 [$AdminConfig getid /Node:mynode/]

v Using Jython:

n1 = AdminConfig.getid(’/Node:mynode/’)

where:

 set is a Jacl command

$ is a Jacl operator for substituting a variable name with its

value

n1 is a variable name

AdminConfig is an object representing the WebSphere Application

Server configuration

getid is an AdminConfig command

Node is an object type

mynode is the host name of the node where the new object is

added

3. Specify the template that you want to use:

v Using Jacl:

set t1 [$AdminConfig listTemplates JDBCProvider "DB2 JDBC Provider (XA)"]

v Using Jython:

t1 = AdminConfig.listTemplates(’JDBCProvider’, ’DB2 JDBC Provider (XA)’)

where:

 set is a Jacl command

$ is a Jacl operator for substituting a variable name with its

value

t1 is a variable name

AdminConfig is an object representing the WebSphere Application

Server configuration

listTemplates is an AdminConfig command

JDBCProvider is an object type

DB2 JDBC Provider (XA) is the name of the template to use for the new object

If you supply a string after the name of a type, you get back a list of templates with display names that

220 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

contain the string you supplied. In this example, the AdminConfig listTemplates command returns the

JDBCProvider template whose name matches DB2 JDBC Provider (XA). This example assumes that

the variable that you specify here only holds one template configuration ID. If the environment contains

multiple templates with the same string, for example, DB2 JDBC Provider (XA), the variable will hold

the configuration IDs of all of the templates. Be sure to identify the specific template that you want to

use before you perform the next step, creating an object using a template.

4. Create the object with the following command:

v Using Jacl:

$AdminConfig createUsingTemplate JDBCProvider $n1 {{name newdriver}} $tl

v Using Jython:

AdminConfig.createUsingTemplate(’JDBCProvider’, n1, [[’name’, ’newdriver’]], t1)

where:

 $ is a Jacl operator for substituting a variable name with its

value

AdminConfig is an object representing the WebSphere Application

Server configuration

createUsingTemplate is an AdminConfig command

JDBCProvider is an object type

n1 evaluates the ID of the host node specified in step

number 3

name is an attribute of JDBCProvider objects

newdriver is the value of the name attribute

t1 evaluates the ID of the template specified in step number

4

All create commands use a template unless there are no templates to use. If a default template exists,

the command creates the object.

5. Save the configuration changes. See the “Saving configuration changes with the wsadmin tool” on

page 232 article for more information.

6. In a network deployment environment only, synchronize the node. See the “Synchronizing nodes with

the wsadmin tool” on page 217 article for more information.

Interpreting the output of the AdminConfig attributes command using scripting:

Before starting this task, the wsadmin tool must be running. See the “Starting the wsadmin scripting client”

on page 250 article for more information.

The attributes command is a wsadmin tool on-line help feature. When you issue the attributes command,

the information that displays does not represent a particular configuration object. It represents information

about configuration object types, or object metadata. This article discusses how to interpret the attribute

type display.

v Simple attributes

Using Jacl:

$AdminConfig attributes ExampleType1

"attr1 String"

Types do not display as fully qualified names. For example, String is used for java.lang.String. There

are no ambiguous type names in the model. For example, x.y.ztype and a.b.ztype. Using only the

final portion of the name is possible, and it makes the output easier to read.

v Multiple attributes

Using Jacl:

Chapter 4. Using the administrative clients 221

$AdminConfig attributes ExampleType2

"attr1 String" "attr2 Boolean" "attr3 Integer"

All input and output for the scripting client takes place with strings, but attr2 Boolean indicates that

true or false are appropriate values. The attr3 Integer indicates that string representations of

integers (″42″) are needed. Some attributes have string values that can take only one of a small

number of predefined values. The wsadmin tool distinguishes these values in the output by the special

type name ENUM, for example:

Using Jacl:

$AdminConfig attributes ExampleType3

"attr4 ENUM(ALL, SOME, NONE)"

where: attr4 is an ENUM type. When you query or set the attribute, one of the values is ALL, SOME, or

NONE. The value A_FEW results in an error.

v Nested attributes

Using Jacl:

$AdminConfig attributes ExampleType4

"attr5 String" "ex5 ExampleType5"

The ExampleType4 object has two attributes: a string, and an ExampleType5 object. If you do not know

what is contained in the ExampleType5 object, you can use another attributes command to find out.

The attributes command displays only the attributes that the type contains directly. It does not

recursively display the attributes of nested types.

v Attributes that represent lists

The values of these attributes are object lists of different types. The * character distinguishes these

attributes, for example:

Using Jacl:

$AdminConfig attributes ExampleType5

"ex6 ExampleType6*"

In this example, objects of the ExampleType5 type contain a single attribute, ex6. The value of this

attribute is a list of ExampleType6 type objects.

v Reference attributes

An attribute value that references another object. You cannot change these references using modify

commands, but these references display because they are part of the complete representation of the

type. Distinguish reference attributes using the @ sign, for example:

Using Jacl:

$AdminConfig attributes ExampleType6

"attr7 Boolean" "ex7 ExampleType7@"

ExampleType6 objects contain references to ExampleType7 type objects.

v Generic attributes

These attributes have generic types. The values of these attributes are not necessarily this generic type.

These attributes can take values of several different specific types. When you use the AdminConfig

attributes command to display the attributes of this object, the various possibilities for specific types are

shown in parentheses, for example:

Using Jacl:

$AdminConfig attributes ExampleType8

"name String" "beast AnimalType(HorseType, FishType, ButterflyType)"

In this example, the beast attribute represents an object of the generic AnimalType. This generic type is

associated with three specific subtypes. The wsadmin tool gives these subtypes in parentheses after the

name of the base type. In any particular instance of ExampleType8, the beast attribute can have a value

of HorseType, FishType, or ButterflyType. When you specify an attribute in this way, using a modify or

create command, specify the type of AnimalType. If you do not specify the AnimalType, a generic

AnimalType object is assumed (specifying the generic type is possible and legitimate). This is done by

specifying beast:HorseType instead of beast.

222 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Specifying configuration objects using the wsadmin tool:

Before starting this task, the wsadmin tool must be running. See the “Starting the wsadmin scripting client”

on page 250 article for more information.

To manage an existing configuration object, identify the configuration object and obtain configuration ID of

the object to be used for subsequent manipulation.

1. Obtain the configuration ID with one of the following ways:

v Obtain the ID of the configuration object with the getid command, for example:

– Using Jacl:

set var [$AdminConfig getid /type:name/]

– Using Jython:

var = AdminConfig.getid(’/type:name/’)

where:

 set is a Jacl command

var is a variable name

$ is a Jacl operator for substituting a variable name with its

value

AdminConfig is an object representing the WebSphere Application

Server configuration

getid is an AdminConfig command

/type:name/ is the hierarchical containment path of the configuration

object

type is the object type

Note: The name of the object type that you input here is

the one based on the XML configuration files and does

not have to be the same name that the administrative

console displays.

name is the optional name of the object

You can specify multiple /type:name/ in the string, for example, /type:name/type:name/type:name/.

If you just specify the type in the containment path without the name, include the colon, for example,

/type:/. The containment path must be a path containing the correct hierarchical order. For

example, if you specify /Server:server1/Node:node/ as the containment path, you will not receive a

valid configuration ID because Node is parent of Server and should come before Server in the

hierarchy.

This command returns all the configuration IDs that match the representation of the containment and

assigns them to a variable.

To look for all the server configuration IDs resided in mynode, use the following example:

– Using Jacl:

set nodeServers [$AdminConfig getid /Node:mynode/Server:/]

– Using Jython:

nodeServers = AdminConfig.getid(’/Node:mynode/Server:/’)

To look for server1 configuration ID resided in mynode, use the following example:

– Using Jacl:

set server1 [$AdminConfig getid /Node:mynode/Server:server1/]

– Using Jython:

server1 = AdminConfig.getid(’/Node:mynode/Server:server1/’)

To look for all the server configuration IDs, use the following example:

– Using Jacl:

Chapter 4. Using the administrative clients 223

set servers [$AdminConfig getid /Server:/]

– Using Jython:

servers = AdminConfig.getid(’/Server:/’)

v Obtain the ID of the configuration object with the list command, for example:

– Using Jacl:

set var [$AdminConfig list type]

or

set var [$AdminConfig list type scopeId]

– Using Jython:

var = AdminConfig.list(’type’)

or

var = AdminConfig.list(’type’, ’scopeId’)

where:

 set is a Jacl command

var is a variable name

$ is a Jacl operator for substituting a variable name with its

value

AdminConfig is an object representing the WebSphere Application

Server configuration

list is an AdminConfig command

type is the object type

Note: The name of the object type that you input here is

the one based on the XML configuration files and does

not have to be the same name that the administrative

console displays.

scopeId is the configuration ID of a cell, node, or server object

This command returns a list of configuration object IDs of a given type. If you specify the scopeId,

the list of objects returned is within the scope specified. The list returned is assigned to a variable.

To look for all the server configuration IDs, use the following example:

– Using Jacl:

set servers [$AdminConfig list Server]

– Using Jython:

servers = AdminConfig.list(’Server’)

To look for all the server configuration IDs in mynode, use the following example:

– Using Jacl:

set scopeid [$AdminConfig getid /Node:mynode/]

set nodeServers [$AdminConfig list Server $scopeid]

– Using Jython:

scopeid = AdminConfig.getid(’/Node:mynode/’)

nodeServers = AdminConfig.list(’Server’, scopeid)

2. If there are more than more configuration IDs returned from the getid or list command, the IDs are

returned in a list syntax. One way to retrieve a single element from the list is to use the lindex

command. The following example retrieves the first configuration ID from the server object list:

v Using Jacl:

set allServers [$AdminConfig getid /Server:/]

set aServer [lindex $allServers 0]

v Using Jython:

224 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

allServers = AdminConfig.getid(’/Server:/’)

 # get line separator

 import java

 lineSeparator = java.lang.System.getProperty(’line.separator’)

 arrayAllServers = allServers.split(lineSeparator)

 aServer = arrayAllServers[0]

For other ways to manipulate the list and then perform pattern matching to look for a specified

configuration object, refer to the Jacl syntax.

You can now use the configuration ID in any subsequent AdminConfig commands that require a

configuration ID as a parameter.

Listing attributes of configuration objects using the wsadmin tool:

Before starting this task, the wsadmin tool must be running. See the “Starting the wsadmin scripting client”

on page 250 article for more information.

Perform the following steps to create a list of attributes of configuration objects:

1. List the attributes of a given configuration object type, using the attributes command, for example:

v Using Jacl:

$AdminConfig attributes type

v Using Jython:

AdminConfig.attributes(’type’)

where:

 $ is a Jacl operator for substituting a variable name with its

value

AdminConfig is an object representing the WebSphere Application

Server configuration

attributes is an AdminConfig command

type is an object type

This command returns a list of attributes and its data type.

To get a list of attributes for the JDBCProvider type, use the following example command:

v Using Jacl:

$AdminConfig attributes JDBCProvider

v Using Jython:

AdminConfig.attributes(’JDBCProvider’)

2. List the required attributes of a given configuration object type, using the required command, for

example:

v Using Jacl:

$AdminConfig required type

v Using Jython:

AdminConfig.required(’type’)

where:

 $ is a Jacl operator for substituting a variable name with its

value

AdminConfig is an object representing the WebSphere Application

Server configuration

Chapter 4. Using the administrative clients 225

required is an AdminConfig command

type is an object type

This command returns a list of required attributes.

To get a list of required attributes for the JDBCProvider type, use the following example command:

v Using Jacl:

$AdminConfig required JDBCProvider

v Using Jython:

AdminConfig.required(’JDBCProvider’)

3. List attributes with defaults of a given configuration object type, using the defaults command, for

example:

v Using Jacl:

$AdminConfig defaults type

v Using Jython:

AdminConfig.defaults(’type’)

where:

 $ is a Jacl operator for substituting a variable name with its

value

AdminConfig is an object representing the WebSphere Application

Server configuration

defaults is an AdminConfig command

type is an object type

This command returns a list of all attributes, types, and defaults.

To get a list of attributes with defaults displayed for the JDBCProvider type, use the following example

command:

v Using Jacl:

$AdminConfig defaults JDBCProvider

v Using Jython:

AdminConfig.defaults(’JDBCProvider’)

Modifying configuration objects with the wsadmin tool:

Before starting this task, the wsadmin tool must be running. See the “Starting the wsadmin scripting client”

on page 250 article for more information.

Perform the following steps to modify a configuration object:

1. Retrieve the configuration ID of the objects that you want to modify, for example:

v Using Jacl:

set jdbcProvider1 [$AdminConfig getid /JDBCProvider:myJdbcProvider/]

v Using Jython:

jdbcProvider1 = AdminConfig.getid(’/JDBCProvider:myJdbcProvider/’)

where:

 set is a Jacl command

jdbcProvider1 is a variable name

$ is a Jacl operator for substituting a variable name with its

value

226 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

AdminConfig is an object representing the WebSphere Application

Server configuration

getid is an AdminConfig command

/JDBCProvider:myJdbcProvider/ is the hierarchical containment path of the configuration

object

JDBCProvider is the object type

myJdbcProvider is the optional name of the object

2. Show the current attribute values of the configuration object with the show command, for example:

v Using Jacl:

$AdminConfig show $jdbcProvider1

v Using Jython:

AdminConfig.show(jdbcProvider1)

where:

 $ is a Jacl operator for substituting a variable name with its

value

AdminConfig is an object representing the WebSphere Application

Server configuration

show is an AdminConfig command

jdbcProvider1 evaluates to the ID of host node specified in step number

2

3. Modify the attributes of the configuration object, for example:

v Using Jacl:

$AdminConfig modify $jdbcProvider1 {{description "This is my new description"}}

v Using Jython list:

AdminConfig.modify(jdbcProvider1, [[’description’, "This is my new description"]])

v Using Jython string:

AdminConfig.modify(jdbcProvider1, ’[[description "This is my new description"]]’)

where:

 $ is a Jacl operator for substituting a variable name with its

value

AdminConfig is an object representing the WebSphere Application

Server configuration

modify is an AdminConfig command

jdbcProvider1 evaluates to the ID of host node specified in step number

3

description is an attribute of server objects

This is my new description is the value of the description attribute

You can also modify several attributes at the same time. For example:

v Using Jacl:

{{name1 val1} {name2 val2} {name3 val3}}

v Using Jython list:

[[’name1’, ’val1’], [’name2’, ’val2’], [’name3’, ’val3’]]

v Using Jython string:

Chapter 4. Using the administrative clients 227

’[[name1 val1] [name2 val2] [name3 val3]]’

4. Save the configuration changes. See the “Saving configuration changes with the wsadmin tool” on

page 232 article for more information.

5. In a network deployment environment only, synchronize the node. See the “Synchronizing nodes with

the wsadmin tool” on page 217 article for more information.

Removing configuration objects with the wsadmin tool:

Before starting this task, the wsadmin tool must be running. See the “Starting the wsadmin scripting client”

on page 250 article for more information.

Use this task to delete a configuration object from the configuration repository. This action only affects the

configuration. If there is a running instance of a configuration object when you remove the configuration,

the change has no effect on the running instance.

1. Assign the ID string that identifies the server you want to remove:

Using Jacl:

set s1 [$AdminConfig getid /Node:mynode/Server:myserver/]

Using Jython:

s1 = AdminConfig.getid(’/Node:mynode/Server:myserver/’)

where:

 set is a Jacl command

s1 is a variable name

$ is a Jacl operator for substituting a variable name with its

value

AdminConfig is an object representing the WebSphere Application

Server configuration

getid is an AdminConfig command

Node is an object type

mynode is the host name of the node from which the server is

removed

Server is an object type

myserver is the name of the server to remove

2. Remove the configuration object. For example:

v Using Jacl:

$AdminConfig remove $s1

v Using Jython:

AdminConfig.remove(s1)

where:

 $ is a Jacl operator for substituting a variable name with its

value

AdminConfig is an object representing the WebSphere Application

Server configuration

remove is an AdminConfig command

s1 evaluates the ID of the server specified in step number 2

228 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

3. Save the configuration changes. See the “Saving configuration changes with the wsadmin tool” on

page 232 article for more information.

4. In a network deployment environment only, synchronize the node. See the “Synchronizing nodes with

the wsadmin tool” on page 217 article for more information.

The WebSphere Application Server configuration no longer contains a specific server object. Running

servers are not affected.

Changing the WebSphere Application Server configuration using wsadmin:

Before starting this task, the wsadmin tool must be running. See the “Starting the wsadmin scripting client”

on page 250 article for more information. For this task, the wsadmin scripting client must be connected to

the deployment manager server in a network deployment environment.

You can use the wsadmin AdminConfig and AdminApp objects to make changes to the WebSphere

Application Server configuration. The purpose of this article is to illustrate the relationship between the

commands used to change the configuration and the files used to hold configuration data. This discussion

assumes that you have a network deployment installation, but the concepts are very similar for a

WebSphere Application Server installation.

1. Set a variable for creating a server:

v Using Jacl:

set n1 [$AdminConfig getid /Node:mynode/]

v Using Jython:

n1 = AdminConfig.getid(’/Node:mynode/’)

where:

 set is a Jacl command

n1 is a variable name

$ is a Jacl operator for substituting a variable name with its

value

AdminConfig is an object representing the WebSphere Application

Server configuration

getid is an AdminConfig command

Node is the object type

mynode is the name of the object that will be modified

2. Create a server with the following command:

v Using Jacl:

set serv1 [$AdminConfig create Server $n1 {{name myserv}}]

v Using Jython list:

serv1 = AdminConfig.create(’Server’, n1, [[’name’, ’myserv’]])

v Using Jython string:

serv1 = AdminConfig.create(’Server’, n1, ’[[name myserv]]’)

where:

 set is a Jacl command

serv1 is a variable name

$ is a Jacl operator for substituting a variable name with its

value

Chapter 4. Using the administrative clients 229

AdminConfig is an object representing the WebSphere Application

Server configuration

create is an AdminConfig command

Server is an AdminConfig object

n1 evaluates to the ID of host node specified in step number

2

name is an attribute

myserv is the value of the name attribute

After this command completes, some new files can be seen in a workspace used by the deployment

manager server on behalf of this scripting client. A workspace is a temporary repository of configuration

information that administrative clients use. Any changes made to the configuration by an administrative

client are first made to this temporary workspace. For scripting, only when a save command is invoked

on the AdminConfig object, these changes are transferred to the real configuration repository.

Workspaces are kept in the wstemp subdirectory of a WebSphere Application Server installation.

3. Make a configuration change to the server with the following command:

v Using Jacl:

$AdminConfig modify $serv1 {{stateManagement {{initialState STOP}}}}

v Using Jython list:

AdminConfig.modify(serv1, [[’stateManagement’, [[’initialState’, ’STOP’]]]])

v Using Jython string:

AdminConfig.modify(serv1, ’[[stateManagement [[initialState STOP]]]]’)

where:

 $ is a Jacl operator for substituting a variable name with its

value

AdminConfig is an object representing the WebSphere Application

Server configuration

modify is an AdminConfig command

serv1 evaluates to the ID of host node specified in step number

3

stateManagement is an attribute

initialState is a nested attribute within the stateManagement attribute

STOP is the value of the initialState attribute

This command changes the initial state of the new server. After this command completes, one of the

files in the workspace is changed.

4. Install an application on the server.

5. Save the configuration changes. See the “Saving configuration changes with the wsadmin tool” on

page 232 article for more information.

6. In a network deployment environment only, synchronize the node. See the “Synchronizing nodes with

the wsadmin tool” on page 217 article for more information.

Modifying nested attributes with the wsadmin tool:

The attributes for a WebSphere Application Server configuration object are often deeply nested. For

example, a JDBCProvider object has an attribute factory, which is a list of the J2EEResourceFactory type

objects. These objects can be DataSource objects that contain a connectionPool attribute with a

ConnectionPool type that contains a variety of primitive attributes.

1. Invoke the AdminConfig object commands interactively, in a script, or use the wsadmin -c commands

from an operating system command prompt.

230 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

2. Obtain the configuration ID of the object, for example:

Using Jacl:

set t1 [$AdminConfig getid /DataSource:TechSamp/]

Using Jython:

t1=AdminConfig.getid(’/DataSource:TechSamp/’)

where:

 set is a Jacl command

t1 is a variable name

$ is a Jacl operator for substituting a variable name with its

value

AdminConfig is an object representing the WebSphere Application

Server configuration

getid is an AdminConfig command

DataSource is the object type

TechSamp is the name of the object that will be modified

3. Modify one of the object parents and specify the location of the nested attribute within the parent, for

example:

Using Jacl:

$AdminConfig modify $t1 {{connectionPool {{reapTime 2003}}}}

Using Jython list:

AdminConfig.modify(t1, [["connectionPool", [["reapTime", 2003]]]])

Using Jython string:

AdminConfig.modify(t1, ’[[connectionPool [[reapTime 2003]]]]’)

where:

 $ is a Jacl operator for substituting a variable name with its

value

AdminConfig is an object representing the WebSphere Application

Server configuration

modify is an AdminConfig command

t1 evaluates to the configuration ID of the datasource in step

number 2

connectionPool is an attribute

reapTime is a nested attribute within the connectionPool attribute

2003 is the value of the reapTime attribute

4. Save the configuration by issuing an AdminConfig save command. For example:

Using Jacl:

$AdminConfig save

Using Jython:

AdminConfig.save()

Use the reset command of the AdminConfig object to undo changes that you made to your workspace

since your last save.

An alternative way to modify nested attributes is to modify the nested attribute directly, for example:

Chapter 4. Using the administrative clients 231

Using Jacl:

set techsamp [$AdminConfig getid /DataSource:TechSamp/]

set pool [$AdminConfig showAttribute $techsamp connectionPool]

$AdminConfig modify $pool {{reapTime 2003}}

Using Jython list:

techsamp=AdminConfig.getid(’/DataSource:TechSamp/’)

pool=AdminConfig.showAttribute(techsamp,’connectionPool’)

AdminConfig.modify(pool,[[’reapTime’,2003]])

Using Jython string:

techsamp=AdminConfig.getid(’/DataSource:TechSamp/’)

pool=AdminConfig.showAttribute(techsamp,’connectionPool’)

AdminConfig.modify(pool,’[[reapTime 2003]]’)

In this example, the first command gets the configuration id of the DataSource, and the second command

gets the connectionPool attribute. The third command sets the reapTime attribute on the ConnectionPool

object directly.

Saving configuration changes with the wsadmin tool:

The wsadmin tool uses the workspace to hold configuration changes. You must save your changes to

transfer the updates to the master configuration repository. If a scripting process ends and you have not

saved your changes, the changes are discarded. Use the following commands to save the configuration

changes:

v Using Jacl:

$AdminConfig save

v Using Jython:

AdminConfig.save()

where:

 $ is a Jacl operator for substituting a variable name with its

value

AdminConfig is an object representing the WebSphere Application

Server configuration

save is an AdminConfig command

If you are using interactive mode with the wsadmin tool, you will be prompted to save your changes before

they are discarded. If you are using the -c option with the wsadmin tool, changes are automatically saved.

You can use the reset command of the AdminConfig object to undo changes that you made to your

configuration since your last save.

AdminTask object for scripted administration: Use the AdminTask object to access a set of

administrative commands that provide an alternative way to access the configuration commands and the

running object management commands. The administrative commands run simple and complex

commands. They provide more user friendly and task-oriented commands. The administrative commands

are discovered dynamically when you start a scripting client. The set of available administrative commands

depends on the edition of WebSphere Application Server you install. You can use the AdminTask object

commands to access these commands.

Administrative commands are grouped based on their function. You can use administrative command

groups to find related commands. For example, the administrative commands that are related to server

management are grouped into a server management command group. The administrative commands that

232 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

are related to the security management are grouped into a security management command group. An

administrative command can be associated with multiple command groups because it can be useful for

multiple areas of system management. Both administrative commands and administrative command

groups are uniquely identified by their name.

Two run modes are always available for each administrative command, namely the batch and interactive

mode. When you use an administrative command in interactive mode, you go through a series of steps to

collect your input interactively. This process provides users a text-based wizard and a similar user

experience to the wizard in the administrative console. You can also use the help command to obtain help

for any administrative command and the AdminTask object.

The administrative commands do not replace any existing configuration commands or running object

management commands but provide a way to access these commands and organize the inputs.

Depending on the administrative command, it can be available in connected or local mode. The set of

available administrative commands is determined when you start a scripting client in connected or local

mode. If a server is running, it is not recommended that you run the scripting client in local mode because

any configuration changes made in local mode are not reflected in the running server configuration and

vice versa. If you save a conflicting configuration, you could corrupt the configuration. In a deployment

manager environment, configuration updates are available only if a scripting client is connected to a

deployment manager. When connected to a node agent or a managed application server, you will not be

able to update the configuration because the configuration for these server processes are copies of the

master configuration which resides in the deployment manager. The copies are created on a node

machine when a configuration synchronization occurs between the deployment manager and the node

agent. Make configuration changes to the server processes by connecting a scripting client to a

deployment manager. For this reason, to change a configuration, do not run a scripting client in local mode

on a node machine. It is not a supported configuration.

Obtaining online help using scripting:

There are three levels of online help available with the administrative commands. The top level help

provides general information for the AdminTask object and the commands associated with it. The second

level help provides information about all of the available administrative commands and command groups.

The third level help provides specific help on a command group, a command, or a step. Command group

specific help provides descriptions for the command group that you specify and the commands that belong

to the associated group. Command specific help provides description for the specified command, its

parameters, and steps, if any. Step specific help provides a description for the specified step and the

associated parameters. For command and step specific help, required parameters are marked with a * in

the help output.

v To obtain general help, use the following examples:

Using Jacl:

$AdminTask help

Using Jython:

print AdminTask.help()

Example output:

WASX8001I: The AdminTask object enables the execution of available

 admin commands. AdminTask commands operate in two modes:

 the default mode is one which AdminTask communicates with the

 WebSphere server to accomplish its task. A local mode is also

 available in which no server communication takes place. The local

 mode of operation is invoked by bringing up the scripting client

 using the command line "-conntype NONE" option or setting the

 "com.ibm.ws.scripting.connectiontype=NONE" property in

 wsadmin.properties file.

The number of admin commands varies and depends on your WebSphere install.

Use the following help commands to obtain a list of supported commands

and their parameters:

Chapter 4. Using the administrative clients 233

help -commands

 list all the admin commands

help -commandGroups

 list all the admin command groups

help commandName

 display detailed information for

 the specified command

help commandName stepName

 display detailed information for

 the specified step belonging to

 the specified command

help commandGroupName

 display detailed information for

 the specified command group

There are various flavors to invoke an admin command:

commandName

 invokes an admin command that does not require any argument.

commandName targetObject

 invokes an admin command with the specified target object

 string, for example, the configuration object name of a

 resource adapter. The expected target object varies with

 the admin command invoked. Use help command to get

 information on the target object of an admin command.

commandName options

 invokes an admin command with the specified option

 strings. This invocation syntax is used to invoke an

 admin command that does not require a target object. It

 is also used to enter interactive mode if "-interactive"

 mode is included in the options string.

commandName targetObject options

 invokes an admin command with the specified target

 object and options strings. If "-interactive" is

 included in the options string, then interactive mode

 is entered. The target object and options strings vary

 depending on the admin command invoked. Use help

 command to get information on the target

 object and options.

v To list the available command groups, use the following examples:

Using Jacl:

$AdminTask help -commandGroups

Using Jython:

print AdminTask.help(’-commandGroups‘)

Example output:

WASX8005I: Available admin command groups:

ClusterConfigCommands - Commands for configuring application

server clusters and cluster members.

JCAManagement - A group of admin commands that helps to configure

Java2 Connector Architecture(J2C) related resources.

v To list the available commands, use the following examples:

Using Jacl:

$AdminTask help -commands

Using Jython:

print AdminTask.help(’-commands‘)

Example output:

234 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

WASX8004I: Available administrative commands:

copyResourceAdapter - copy the specified J2C resource adapter to the specified scope

createCluster - Creates a new application server cluster.

createClusterMember - Creates a new member of an application server cluster.

createJ2CConnectionFactory - Create a J2C connection factory

deleteCluster - Delete the configuration of an application server cluster.

deleteClusterMember - Deletes a member from an application server cluster.

listConnectionFactoryInterfaces - list all of the

defined connection factory interfaces on the

specified J2C resource adapter.

listJ2CConnectionFactories - List J2C connection factories that have a specified

connection factory interface defined in the specified J2C resouce adapter

createJ2CAdminObject - Create a J2C administrative object.

listAdminObjectInterfaces - List all the defined administrative object interfaces

on the specified J2C resource adapter.

interface on the specified J2C resource adapter.

listJ2CAdminObjects - List the J2C administrative objects that have a specified

administrative object interface defined in the specified J2C resource adapter.

createJ2CActivationSpec - Create a J2C activation specification.

listMessageListenerTypes - list all of the defined messageListener

type on the specified J2C resource adapter.

listJ2CActivationSpecs - List the J2C activation specifications that have a

specified message listener type defined in the specified J2C resource adapter.

v To obtain help about a command group, use the following examples:

Using Jacl:

$AdminTask help JCAManagement

Using Jython:

print AdminTask.help(’JCAManagement‘)

Example output:

WASX8007I: Detailed help for command group: JCAManagement

Description: A group of administrative commands that help to

configure Java 2 Connector Architecture (J2C)-related resources.

Commands:

createJ2CConnectionFactory - Create a J2C connection factory

listConnectionFactoryInterfaces - list all of the defined connection

factory interfaces on the specified J2C resource adapter.

listJ2CConnectionFactories - List J2C connection factories that have

a specified connection factory interface defined in the

specified J2C resouce adapter.

createJ2CAdminObject - Create a J2C administrative object.

listAdminObjectInterfaces - List all the defined administrative

object interfaces on the specified J2C resource adapter.

listJ2CAdminObjects - List the J2C administrative objects that have a

specified adminstrative object interface defined in the

specified J2C resource adapter.

createJ2CActivationSpec - Create a J2C activation specification.

listMessageListenerTypes - list all of the defined

message listener types on the specified J2C resource adapter.

listJ2CActivationSpecs - List the J2C activation specifications that

have a specified message listener type defined in the

specified J2C resource adapter.

copyResourceAdapter - copy the specified J2C resource

adapter to the specified scope.

v Obtaining help about an administrative command:

Using Jacl:

$AdminTask help createJ2CConnectionFactory

Using Jython:

print AdminTask.help(’createJ2CConnectionFactory‘)

Chapter 4. Using the administrative clients 235

Example output:

WASX8006I: Detailed help for command: createJ2CConnectionFactory

Description: Create a J2C connection factory

*Target object: The parent J2C resource adapter of the created J2C connection factory.

Arguments:

*connectionFactoryInterface - A connection factory interface that is defined in the deployment

 description of the parent J2C resource adapter.

*name - The name of the J2C connection factory.

*jndiName - The JNDI name of the created J2C connection factory.

description - The description for the created J2C connection factory.

authDataAlias - the authentication data alias of the created J2C connection factory.

Steps:

None

In the command specific help output previously listed, an administrative command is divided into three

input areas: target object, arguments, and steps. Each area can require input depending on the

administrative command. If an area requires input, each input is described by its name and a

description; except for the target object area which only contains the description of the target object.

When you use an administrative command in batch mode, you can use any input name that resides in

the argument area as the argument name. If an input is required, a * will be before the name. If an area

does not require an input, it is marked None. The following example uses the help output for the

createJ2CConnectionFactory command:

– Target object area requires the configuration object name of a J2CResourceAdapter to be provided.

– In the arguments area, there are five inputs with three being required inputs. The argument names

are connectionFactoryInterface, name, jndiName, description, and authDataAlias. These names are

used as the parameter names in the option string to execute an admin command in batch mode, for

example:

-connectionFactoryInterface javax.resource.cci.ConnectionFactory -name newConnectionFactory

 -jndiName CF/newConnectionFactory

See “Administrative command invocation syntax” on page 623 for more information about specifying

argument options.

– There is no step associated with this administrative command.

v Obtain help on a command step.

Step specific help provides the following:

– A description for the command step.

– Information indicating if this step supports collection. A collection includes objects of the same type.

In a command step, a collection contains objects that have the same set of parameters.

– Information regarding each step parameter with its name and description. If a step parameter is

required, a * exists in front of the name.

The following example obtain help on a command step:

Using Jacl:

$AdminTask help createCluster clusterConfig

Using Jython:

print AdminTask.help(’createCluster‘, ’clusterConfig‘)

Example output:

WASX8013I: Detailed help for step: clusterConfig

Description: Specifies the configuration of the new server cluster.

Collection: No

236 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Arguments:

 *clusterName - Name of server cluster.

 preferLocal - Enables node-scoped routing optimization for the cluster.

This example indicates the following:

– It does not support collection. Only one set of parameter values for the clusterName and perferLocal

parameters is allowed.

– It contains two input arguments with one argument indicated as required. The required arguments is

clusterName and the non-required parameter is perferLocal. The syntax to provide step parameter

values is different from the command argument values. You have to provide all argument values of a

step and provide them in the exact order as displayed in the step specific help. For any optional

argument that you do not want to specify a value, put double quotes (″″) in place of a value. If a

command step is a collection type, for example, it can contain multiple objects where each object

has the same set of arguments, you can specify multiple objects with each object enclosed by its

own pair of braces. To execute an administrative command in batch mode and to include this step in

the option string, use the following syntax:

Using Jacl:

-clusterConfig {{newCluster false}}

Using Jython:

-clusterConfig [[newCluster false]]

See “Administrative command invocation syntax” on page 623 for more information about specifying

parameter options.

Invoking an administrative command in batch mode:

Perform the following steps to invoke an administrative command in batch mode. To invoke an

administrative command in interactive mode, see “Invoking an administrative command in interactive

mode” on page 242.

1. Invoke the AdminTask object commands interactively, in a script, or use the wsadmin -c command

from an operating system command prompt.

2. Issue one of the following commands:

v If an administrative command does not have a target object and an argument, use the following

command:

Using Jacl:

$AdminTask commandName

Using Jython:

AdminTask.commandName()

where:

 $ is a Jacl operator for substituting a variable name with its

value

AdminTask is an object allowing administrative command

management

commandName is the name of the administrative command being invoked

v If an administrative command includes a target object but does not include any arguments or steps,

use the following command:

Using Jacl:

$AdminTask commandName targetObject

Using Jython:

AdminTask.commandName(targetObject)

Chapter 4. Using the administrative clients 237

where:

 $ is a Jacl operator for substituting a variable name with its

value

AdminTask is an object allowing administrative command

management

commandName is the name of the administrative command being invoked

targetObject is the target object string for the invoked administrative

command. The expect target object varies with each

administrative command. View the online help for the

invoked administrative command to learn more about

what you should specify as the target object.

v If an administrative command includes an argument or a step but does not include a target object,

use the following command:

Using Jacl:

$AdminTask commandName options

Using Jython:

AdminTask.commandName(options)

where:

 $ is a Jacl operator for substituting a variable name with its

value

AdminTask is an object allowing administrative command

management

commandName is the name of the administrative command being invoked

238 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

options is the option string for the invoked administrative

command. Depending on which administrative command

you are invoking, the administrative command can have

required or optional option values. The options string is

different for each administrative command. View the

online help for the invoked administrative command to

obtain more information about which options are

available. Arguments and steps listed on the online

administrative command help are specified as options in

the option string. Each option consists of a dash followed

immediately by an option name, and then followed by an

option value if the option requires a value. If the invoked

administrative command includes target objects,

arguments, or steps, then the –interactive option is

available to enter interactive mode. For example, using

the output of the following online help for listDataSource:

WASX8006I: Detailed help for command: exportServer

Description: export the configuration

of a server to a config archive.

Target object: None

Arguments:

*serverName - the name of a server

*nodeName - the name of a node. This parameter

becomes optional if the specified server name

is unique across the cell.

*archive - the fully qualified file path of a config

archive.

Steps:

None

Option names are specified with a dash before the

names. There are three required options for this

administrative command. The required options are

-serverName, -nodename, and -archive. In addition, the

-interactive option is available. Options are specified in

the option string which is enclosed by a pair of {} in Jacl

and a pair of [] in Jython.

v If an administrative command includes a target object, and arguments or steps:

Using Jacl:

$AdminTask commandName targetObject options

Using Jython:

AdminTask.commandName(targetObject, options)

where:

 $ is a Jacl operator for substituting a variable name with its

value

AdminTask is an object allowing administrative command

management

commandName is the name of the administrative command being invoked

Chapter 4. Using the administrative clients 239

targetObject is the target object string for the invoked administrative

command. The expected target object varies with each

administrative command. View the online help for the

invoked administrative command to obtain information

about what to specify as a target object. For example,

using the output of the following online help for

createJ2CConnectionFactory:

WASX8006I: Detailed help for command:

createJ2CConnectionFactory

Description: Create a J2C connection factory

*Target object: The parent J2C resource adapter of

the created J2C connection factory.

Arguments:

*connectionFactoryInterface - A connection factory

interface that is defined in the deployment description

of the parent J2C resource adapter.

*name - The name of the J2C connection factory.

*jndiName - The JNDI name of the created J2C

connection factory.

description - The description for the created J2C

connection factory.

authDataAlias - the authentication data alias of the

created J2C connection factory.

Steps:

None

The target object is a configuration object name of a

J2CResourceAdapter.

240 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

options is the option string for the invoked administrative

command. Depending on which administrative command

you are invoking, the administrative command can have

required or optional option values. The options string is

different for each administrative command. View the

online help for the invoked administrative command to

obtain more information about which options are

available. Arguments and steps listed on the online

administrative command help are specified as options in

the option string. Each option consists of a dash followed

immediately by an option name, and then followed by an

option value if the option requires a value. If the invoked

administrative command includes target objects,

arguments, or steps, then the –interactive option is

available to enter interactive mode. For example, using

the output of the following online help for listDataSource:

WASX8006I: Detailed help for command:

createJ2CConnectionFactory

Description: Create a J2C connection factory

*Target object: The parent J2C resource adapter

of the created J2C connection factory.

Arguments:

*connectionFactoryInterface - A connection factory

interface that is defined in the deployment description

of the parent J2C resource adapter.

*name - The name of the J2C connection factory.

*jndiName - The JNDI name of the created J2C

connection factory.

description - The description for the created J2C

connection factory.

authDataAlias - the authentication data alias of the

created J2C connection factory.

Steps:

None

Option names are specified with a dash before the

names. There are three required options for this

administrative command. The required options are

-connectionFactoryInterface, -name, and -jndiName.

There are two optional options. They are -description and

-authDataAlias. In addition, the -interactive option is

available. Options are specified in the option string which

is enclosed by a pair of {} in Jacl and a pair of [] in

Jython.

v The following example invokes an administrative command with no target object, argument, or step:

Using Jacl:

$AdminTask listNodes

Using Jython:

print AdminTask.listNodes()

Example output:

myNode

v The following example invokes an administrative command with a target object string:

Using Jacl:

Chapter 4. Using the administrative clients 241

set s1 [$AdminConfig getid /Server:server1/]

$AdminTask showServerInfo $s1

Using Jython:

s1 = AdminConfig.getid(’/Server:server1/’)

print AdminTask.showServerInfo(s1)

Example output:

{cell myCell}

{serverType APPLICATION_SERVER}

{com.ibm.websphere.baseProductVersion 6.0.0.0}

{node myNode}

{server server1}

v The following example invokes an administrative command with an option string:

Using Jacl:

$AdminTask getNodeMajorVersion {-nodeName myNode}

Using Jython:

print AdminTask.getNodeMajorVersion(’[-nodeName myNode]’)

Example output:

6

v The following example invokes an administrative command with target object and non-step option

strings:

Using Jacl:

set ra [$AdminConfig getid /J2CResourceAdapter:myResourceAdapter/]

$AdminTask createJ2CConnectionFactory

$ra {-name myJ2CCF -jndiName j2c/cf -connectionFactoryInterface javax.resource.cci.ConnectionFactory}

Using Jython:

ra = AdminConfig.getid(’/J2CResourceAdapter:myResourceAdapter/‘)

AdminTask.createJ2CConnectionFactory(ra,

’[-name myJ2CCF -jndiName j2c/cf -connectionFactoryInterface javax.resource.cci.ConnectionFactory]‘)

Example output:

myJ2CCF(cells/myCell/nodes/myNode|resources.xml#J2CConnectionFactory_1069690568269)

v The following example invokes an administrative command with a target object and a step option:

Using Jacl:

set serverCluster [$AdminConfig getid /ServerCluster:myCluster/]

$AdminTask createClusterMember $serverCluster {-memberConfig {{myNode myClusterMember "" "" false false}}}

Using Jython:

serverCluster = AdminConfig.getid(’/ServerCluster:myCluster/‘)

AdminTask.createClusterMember(serverCluster, ’[-memberConfig [[myNode myClusterMember "" "" false false]]]’)

Example output:

myClusterMember(cells/myCell/nodes/myNode|cluster.xml#ClusterMember_3673839301876)

Invoking an administrative command in interactive mode:

Perform the following steps to invoke an administrative command in interactive mode. To invoke an

administrative command in batch mode, see “Invoking an administrative command in batch mode” on page

237.

1. Invoke the AdminTask object commands interactively, in a script, or use the wsadmin -c command

from an operating system command prompt.

2. Invoke an administrative command in interactive mode by issuing one of the following commands:

v Use the following command invocation to enter interactive mode without providing another input in

the command invocation:

Using Jacl:

$AdminTask commandName {-interactive}

242 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Using Jython:

AdminTask.commandName(’[-interactive]‘)

where:

 $ is a Jacl operator for substituting a variable name with its

value

AdminTask is an object allowing administrative command

management

commandName is the name of the administrative command being invoked

-interactive is the interactive option

v Use the following command invocation to enter interactive mode using an administrative command

that takes a target object. You do not have to provide a target object to enter interactive mode.

Target objects provided in the command invocation will be applied to the command and displayed as

the current target object value during interactive prompting.

Using Jacl:

$AdminTask commandName targetObject {-interactive}

Using Jython:

AdminTask.commandName(targetObject, ’[-interactive]‘)

where:

 $ is a Jacl operator for substituting a variable name with its

value

AdminTask is an object allowing administrative command

management

commandName is the name of the administrative command being invoked

targetObject is the target object string for the invoked administrative

command. The target object is different for each

administrative command. View the online help for the

invoked administrative command to learn more about

what to specify as a target object.

-interactive is the interactive option

v Use the following command invocation to enter interactive mode for an administrative command that

takes options. You do not have to provide other options to enter interactive mode. Options provided

in the command invocation are applied to the command and the option values will be displayed as

the current values during interactive prompting.

Using Jacl:

$AdminTask commandName {-interactive commandOptions}

Using Jython:

AdminTask.commandName(’[-interactive commandOptions]‘)

where:

 $ is a Jacl operator for substituting a variable name with its

value

AdminTask is an object allowing administrative command

management

commandName is the name of the administrative command being invoked

-interactive is the interactive option

Chapter 4. Using the administrative clients 243

commandOptions is the command option available for the associated

administrative command. Available command options are

different for each administrative command. View the

online help for the invoked administrative command to

obtain more information about which options are

available. Arguments and steps listed on the online

administrative command help are specified as command

options. Each option consists of a dash followed

immediately by an option name, and then followed by an

option value if the option requires a value. For example,

using the output of the following online help for

createJ2CConnectionFactory:

WASX8006I: Detailed help for command: createJ2CConnectionFactory

Description: Create a J2C connection factory

*Target object: The parent J2C resource adapter of the created J2C co

Arguments:

*connectionFactoryInterface - A connection factory interface that is

*name - The name of the J2C connection factory.

*jndiName - The JNDI name of the created J2C connection factory.

description - The description for the created J2C connection factory.
authDataAlias - the authentication data alias of the created J2C conn

Steps:

None

In this example, there are five options available:

v -connectionFactoryInterface

v -name

v -jndiName

v -description

v -authDataAlias

Each requires an option value. Only three of the options

are required and are denoted with a *.

v Use the following command invocation to enter interactive mode for an administrative command that

has a target object and options. You do not have to specify a target object to enter interactive mode.

The values specified are applied to the command before the command data is displayed. As a

result, the values specified will be displayed as the current values during interactive prompting.

Using Jacl:

$AdminTask commandName targetObject {-interactive commandOptions}

Using Jython:

AdminTask.commandName(targetObject, ’[-interactive commandOptions]‘)

where:

 $ is a Jacl operator for substituting a variable name with its

value

AdminTask is an object allowing administrative command

management

commandName is the name of the administrative command being invoked

244 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

targetObject is the target object string for the invoked admin

command. The expect target object varies with each

admin command. Consult the on-line help on the invoked

admin command to learn more about what to specify as

target object.

-interactive is the interactive option

commandOptions is the command option available for the associated

administrative command. Available command options are

different for each administrative command. View the

online help for the invoked administrative command to

obtain more information about which options are

available. Arguments and steps listed on the online

administrative command help are specified as command

options. Each option consists of a dash followed

immediately by an option name, and then followed by an

option value if the option requires a value. For example,

using the output of the following online help for

createJ2CConnectionFactory:

WASX8006I: Detailed help for command: createJ2CConnectionFactory

Description: Create a J2C connection factory

*Target object: The parent J2C resource adapter of the created J2C

Arguments:

*connectionFactoryInterface - A connection factory interface that i
*name - The name of the J2C connection factory.

*jndiName - The JNDI name of the created J2C connection factory.

description - The description for the created J2C connection factor
authDataAlias - the authentication data alias of the created J2C co

Steps:

None

In this example, there are five options available:

v -connectionFactoryInterface

v -name

v -jndiName

v -description

v -authDataAlias

Each requires an option value. Only three of the options

are required and are denoted with a *.

v The following example invokes an administrative command in interactive mode by specifying the

-interactive option:

Using Jacl:

$AdminTask createJ2CConnectionFactory {-interactive}

Using Jython:

AdminTask.createJ2CConnectionFactory(’[-interactive]’)

Example output:

Create a J2C connection factory

*The J2C resource adapter: "WebSphere Relational ResourceAdapter

(cells/myCell/nodes/myNode|resources.xml#builtin_rra)"

A connection factory

interface (connectionFactoryInterface):javax.resource.cci.ConnectionFactory

Chapter 4. Using the administrative clients 245

*Name (name): myJ2CCF

*The JNDI name (jndiName): j2c/cf

Description (description):

authentication data alias (authDataAlias):

create J2C connection factory

F (Finish)

C (Cancel)

Select [F, C]: [F]

myJ2CCF(cells/myCell/nodes/myNode|resources.xml#J2CConnectionFactory_1069690568269)

v The following example invokes an administrative command using the –interactive option with a target

object specified in the command invocation:

Using Jacl:

set ra [$AdminConfig getid /J2CResourceAdapter:myResourceAdapter/]

$AdminTask createJ2CConnectionFactory $ra {-interactive}

Using Jython:

ra = AdminConfig.getid(’/J2CResourceAdapter:myResourceAdapter/’)

AdminTask.createJ2CConnectionFactory(ra, ’[-interactive]‘)

Example output:

Create a J2C connection factory

*The J2C resource adapter: ["WebSphere Relational ResourceAdapter

(cells/myCell/nodes/myNode|resources.xml#builtin_rra)"]

A connection factory interface (connectionFactoryInterface):

javax.resource.cci.ConnectionFactory

*Name (name): myJ2CCF

*The JNDI name (jndiName): j2c/cf

Description (description):

authentication data alias (authDataAlias):

create J2C Connection Factory

F (Finish)

C (Cancel)

Select [F, C]: [F]

myJ2CCF(cells/myCell/nodes/myNode|resources.xml#J2CConnectionFactory_1069690568269)

v The following example invokes an administrative command using the –interactive option where both the

target object and the additional command options are specified in the command invocation:

Using Jacl:

set ra [$AdminConfig getid /J2CResourceAdapter:myResourceAdapter/]

$AdminTask createJ2CConnectionFactory $ra {-name myNewCF -interactive}

Using Jython:

ra = AdminConfig.getid(’/J2CResourceAdapter:myResourceAdapter/’)

AdminTask.createJ2CConnectionFactory(ra, ’[-name myNewCF -interactive]‘)

Example output:

Create a J2C connection factory

*The J2C resource adapter: ["WebSphere Relational ResourceAdapter

(cells/myCell/nodes/myNode|resources.xml#builtin_rra)"]

A connection factory interface (connectionFactoryInterface):javax.resource.cci.ConnectionFactory

*Name (name): [myNewCF]

*The JNDI name (jndiName): j2c/cf

Description (description):

246 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

authentication data alias (authDataAlias):

create J2C Connection Factory

F (Finish)

C (Cancel)

Select [F, C]: [F]

myNewCF(cells/myCell/nodes/myNode|resources.xml#J2CConnectionFactory_3839439380269)

Administrative command interactive mode environment: An administrative command can be run in

interactive mode by providing the -interactive option in the options string when invoking the command. You

can still provide other options, even when using the interactive option. The options values that are

specified are applied to the command before the command data is displayed. Whether or not other options

are specified, the wsadmin tool steps the user through the command to collect command information.

The general interactive flow sequence is:

1. Collect user inputs for target object and parameters

2. If the command does not include a step, the command execution menu displays to run or cancel the

command.

3. If the command includes a step, the menu to select the step displays. When all the required inputs are

entered, the menu includes command execution.

4. When a step is selected, if the step supports collection, then the menu to select an object in the

collection displays and you can exit the step. If you exit the step, repeat steps 3-5.

5. Collect user inputs for the selected step or for an object in the collection

6. Repeat steps 4 and 5 if from the collection step menu

7. Repeat steps 3-5 if from step selection menu

Depending on what input area is enabled by an administrative command, you can go through part or all of

the interactive flow sequence. If an administrative command is run in interactive mode, the syntax to run

the command except for the deletion of collection object in batch mode is generated and logged as a

WASX7278I message in both the interactive session and in the wsadmin trace file.

Collect user inputs for target object and parameters

The following interactive prompt is used to collect inputs for the Target object and Arguments input areas

that are displayed in the command-specific help:

Command title

Command Description

*target object title [current or default value]:

*param1 title (param1 name) [choice1, choice2, ...]: [current/default value]

param2 title (param2 name) [choice1, choice2, ...]: [current/default value]

...

This screen is usually the first interactive screen that is displayed when an administrative command is

invoked interactively unless the invoked command does not contain any target object and non-step

command parameters.If a command does not have a target object, then the prompt for the target object is

skipped. The number of parameters depends on the number of arguments in the Argument area of the

command-specific help. If an input is required, then an asterisk (*) is placed in front of the title. The

parameter name is displayed for information and is the name that is used to set this parameter in batch

mode. If a parameter value is restricted to a set of values, then the valid choices are displayed. If current

or default value is available, it is displayed. You can accept the existing value by clicking Enter. To add or

change an existing value, enter a new value and click Enter.

Chapter 4. Using the administrative clients 247

Display command execution menu

If an administrative command does not contain a step, you are presented with the following menu after

collecting values for target object and parameters:

Command title

F (Finish)

C (Cancel)

Select [F, C]: F

The Finish option runs the command and the Cancel option cancels the command. The default selection is

F (Finish). This menu is the last menu that is displayed for a non-step command to exit interactive mode

by either canceling or running the command.

Display command step selection and execution menu

If an administrative command contains a step, the following menu is displayed after collecting values for

target object and parameters:

Command title

Command description

 -> *1. step1 title (step1 name)

 2. step2 title (step2 name)

 *3. step3 title (step3 name)

 (4. step4 title (step4 name))

 ...

 n. stepn title (stepn name)

S (Select)

N (Next)

P (Previous)

F (Finish)

C (Cancel)

H (Help)

Select [S, N, P, F, C, H]: S

The number of steps that is displayed in the menu depends on the adminstative command. The step name

is displayed for information and is the name that is used to set data in this step in batch mode. The

following notations are used to describe a step:

v A “->” before the step indicates the current step position.

v A “*” before the step indicates a required step.

v A () enclosing the entire step indicates a disabled step. You cannot navigate to this step by using the

Next or Previous options.

Using the menu, you can navigate through steps sequentially by selecting Previous or Next. Select selects

the current step, Finish runs the command, Cancel cancels the command, and Help provides on-line help

for the command. Not all menu choices are available. Previous is not available if current step is the first

step. Next is not be available if current step is the last step. Finish is not available if still steps are still

missing required inputs. The default selection is S (Select) if the current step is a valid step and there are

still steps missing required inputs. Default selection is F (Finish) if there is no missing required input in any

step.

For commands with steps, this is the menu to exit interactive mode by either canceling or executing the

command.

Display collection step menu

248 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

A step might or might not support collection. A collection refers to objects of the same type. In an

administrative command, a collection contains objects with each having the same set of parameters. If a

step supporting collection is selected, the wsadmin tool displays the following menu to add and select an

object in the collection:

Step title (step name)

 | key param1 title (key param1 name), key param2 title (key param2 name), ...

-> | object1 key param1 value, key param2 value, ...

 *| object2 key param1 value, key param2 value, ...

 ...

key param1 title, key param2 title, ... must be provided to specify a row in batch row.

S (Select Row)

N (Next)

P (Previous)

A (Add Row or Add Row Before)

D (Delete Row)

F (Finish)

H (Help)

Select [S, N, P, A, D, F, H]: F

The number of objects that display in the menu depends on the command step. Key parameters are

identified by the step to use to uniquely identify an object in a collection. Key parameter values are

displayed so as to identify an object to select. As with the command step selection menu, an arrow (->) is

used to indicate the current object position, and a asterisk (*) is used to indicate that required input is

missing in the object.

Use the menu to navigate through objects sequentially by selecting Previous or Next. Select Row selects

the current object, Add Row adds a new object, Add Row Before adds a new object before the current

object, Delete Row deletes the current object, Finish returns control back to the step selection and

execution menu, and Help provides on-line help for the step. Not all menu choices are available. Previous

is not available if there is no object in the collection or the first object is the current object. Next is not

available if there is no object in the collection or the last object is the current object. Select Row is

available only if there is a current object. Add Row is provided only if there is no object in the collection

and the step supports new object to be added. Add Row Before is provided if the step supports new object

to be added and there are existing objects in the collection. Delete Row is provided only if there is a

current object and the step allows object to be deleted. Finish is not available if there are still objects

missing required inputs. Default selection is A (Add Row) when there is no object in the collection and the

step supports objects to be added. Default selection is S (Select Row) if there is a current object and there

are still objects missing required inputs. Default selection is F (Finish) if there is no required input missing

in any object.

Collect user inputs for parameters of a collection object

After a collection object is selected, the parameter value for each parameter is prompted sequentially as

shown in the following example:

*param1 title (param1 name) [choice1, choice2, ...]: [current/default value]

param2 title (param2 name) [choice1, choice2, ...]: [current/default value]

...

The number of parameters depends on the number of arguments in the “Argument” area of the command

step specific help. The same “*” notation is used to denote required parameter. If a parameter value is

restricted to a set of values, then the valid choices are displayed. If current or default value is available, it

is displayed. For each writable parameter, you can accept the existing value by pressing the Enter key. To

add or change an existing value, user simply enters a new value and then presses Enter. For a read-only

parameter, the parameter and its value are displayed. However, user is not given the prompt to modify its

value. Once user steps through all the parameters, wsadmin leads user back to the collection step menu.

Chapter 4. Using the administrative clients 249

Collect user inputs for non-collection step

There are two parts for this step. The first part is to display the current or default parameter values for the

selected step as shown below:

Step title (step name)

*param1 title (param1 name) [choice1, choice2, ...]: [current/default value]

param2 title (param2 name) [choice1, choice2, ...]: [current/default value]

...

Select [C (Cancel), E (Edit)]: [E]

There is no prompting in this part. Instead, this part is more like a help providing parameter information on

the selected step. The number of parameters depends on the number of arguments in the argument area

of the command step specific help. The asterisk (*) notation denotes a required parameter. If a parameter

value is restricted to a set of values, then the valid choices will be displayed. If current or default value is

available, it is displayed. You can choose to cancel the step or continue to the next part to provide

parameter inputs. The default selection is Edit. Since it is possible that you are seeing default values

assigned to a new piece of data that is not yet set in the step, you should always accept the default

selection to continue to the next part. Otherwise, if there is no data in the selected step, selecting Cancel

will not result in creating the data.

If you accept the default Edit selection, collect user inputs for parameters sequentially just like “Collect

user inputs for parameters of a collection object”.

*param1 title (param1 name) [choice1, choice2, ...]: [current/default value]

param2 title (param2 name) [choice1, choice2, ...]: [current/default value]

...

For each writable parameter, you can accept the existing value by clicking Enter. To add or change an

existing value, enter a new value and then press Enter. For a read-only parameter, the parameter and its

value are displayed. You will not be given the prompt to modify the value of the parameter. As soon as you

step through all the parameters, the wsadmin tool will lead you back to the command step selection and

execution menu.

Starting the wsadmin scripting client

The WebSphere Application Server wsadmin tool provides the ability to run scripts. You can use the

wsadmin tool to manage a WebSphere Application Server V6.0 installation, as well as configuration,

application deployment, and server run-time operations. The WebSphere Application Server only supports

the Jacl and Jython scripting languages.

The wsadmin launcher makes several WebSphere Application Server scripting objects available:

AdminConfig, AdminControl, AdminApp, AdminTask, and Help. Scripts use these objects for application

management, configuration, operational control, and for communication with MBeans that run in

WebSphere Application Server processes.

You must start the wsadmin scripting client before you perform any other task using scripting.

1. Locate the command that starts the wsadmin scripting client.

The command for invoking a scripting process is located in the install_root/profiles/profile_name/bin

directory. Use the wsadmin.bat file for a Windows system, and the wsadmin.sh file for a Linux or a

UNIX system.

2. Start the wsadmin scripting client. You can start the wsadmin scripting client in several different ways.

To specify the method for running scripts, perform one of the following wsadmin tool options:

 Option for starting the

wsadmin scripting client:

Explanation: Examples:

250 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Run scripting commands

interactively

Run wsadmin with an option

other than -f or -c or without an

option.

An interactive shell is displayed

with a wsadmin prompt. From

the wsadmin prompt, enter any

Jacl or Jython command. You

can also invoke commands using

the AdminControl, AdminApp,

AdminConfig, AdminTask, or

Help wsadmin objects.

To leave an interactive scripting

session, use the quit or exit

commands. These commands do

not take any arguments.

Using Jacl on Windows systems:

wsadmin.bat

Using Jacl on Unix systems:

wsadmin.sh

If security is enabled:

wsadmin.sh -user wsadmin -password wsadmin

Using Jython on Windows systems:

wsadmin.bat -lang jython

Using Jython on Unix systems:

wsadmin.sh -lang jython

By default security is enabled:

wsadmin.sh -lang jython -user wsadmin

-password wsadmin

Example output:

WASX7209I: Connected to process server1 on

node myhost using SOAP connector;

The type of process is: UnManagedProcess

WASX7029I: For help, enter: "$Help help"

wsadmin>$AdminApp list

adminconsole

DefaultApplication

ivtApp

wsadmin>exit

Run scripting commands as

individual commands

Run the wsadmin tool with the -c

option.

Using Jacl on Windows systems:

wsadmin -c "$AdminApp list"

Using Jacl on Unix systems:

wsadmin.sh -c "\$AdminApp list"

or

wsadmin.sh -c ’$AdminApp list’

Using Jython on Windows systems:

wsadmin -lang jython

-c "AdminApp.list()"

Using Jython on Linux or Unix systems:

wsadmin.sh -lang jython -c ’AdminApp.list()’

Example output:

WASX7209I: Connected to process "server1"

on node myhost using SOAP connector;

The type of process is: UnManagedProcess

adminconsole

DefaultApplication

ivtApp

Chapter 4. Using the administrative clients 251

Run scripting commands in

a script

Run the wsadmin tool with the -f

option, and place the commands

that you want to run into the file.

Using Jacl on Windows systems:

wsadmin -f al.jacl

Using Jacl on Unix systems:

wsadmin.sh -f al.jacl

where the al.jacl file contains the following

commands:

set apps [$AdminApp list]

puts $apps

Using Jython on Windows systems:

wsadmin -lang jython -f al.py

Using Jython on Unix systems:

wsadmin.sh -lang jython -f al.py

where the al.py file contains the following

commands:

apps = AdminApp.list()

print apps

Example output:

WASX7209I: Connected to process "server1"

on node myhost using SOAP connector;

The type of process is: UnManagedProcess

 adminconsole

 DefaultApplication

 ivtApp

252 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Run scripting commands in

a profile script

A profile script is a script that

runs before the main script, or

before entering interactive mode.

You can use profile scripts to set

up a scripting environment that is

customized for the user or the

installation.

To run scripting commands in a

profile script, run the wsadmin

tool with the -profile option, and

include the commands that you

want to run into the profile script.

To customize the script

environment, specify one or

more profile scripts to run.

Using Jacl on Windows systems:

wsadmin.bat -profile alprof.jacl

Using Jacl on Linux or Unix systems:

wsadmin.sh -profile alprof.jacl

where the alprof.jacl file contains the following

commands:

set apps [$AdminApp list]

puts "Applications currently

installed:\n$apps"

Example output:

WASX7209I: Connected to process "server1"

on node myhost using SOAP connector;

The type of process is: UnManagedProcess

Applications currently installed:

 adminconsole

 DefaultApplication

 ivtApp

 WASX7029I: For help, enter: "$Help help"

 wsadmin>

Using Jython on Windows systems:

wsadmin.bat -lang jython -profile alprof.py

Using Jython on Linux or Unix systems:

wsadmin.sh -lang jython -profile alprof.py

where the alprof.py file contains the following

commands:

apps = AdminApp.list()

print "Applications currently installed:\n "

+ apps

Example output:

WASX7209I: Connected to process "server1" on

node myhost using SOAP connector;

The type of process is: UnManagedProcess

Applications currently installed:

 adminconsole

 DefaultApplication

 ivtApp

 WASX7029I: For help, enter: "Help.help()"

 wsadmin>

Scripting: Resources for learning

Use the following links to find relevant supplemental information about the Jacl and Jython scripting

languages, and about using scripting with WebSphere Application Server. The information resides on IBM

and non-IBM Internet sites, whose sponsors control the technical accuracy of the information.

These links are provided for convenience. Often, the information is not specific to the IBM WebSphere

Application Server product, but is useful all or in part for understanding the product. When possible, links

are provided to technical papers and Redbooks that supplement the broad coverage of the release

documentation with in-depth examinations of particular product areas.

Programming instructions and examples

v Java command language

v Jacl: A Tcl implementation in Java

Chapter 4. Using the administrative clients 253

http://utenti.lycos.it/yanorel6/2/ch55.htm
http://www.usenix.org/publications/library/proceedings/tcl97/full_papers/lam/lam.pdf

v Charming Jython

v Jython

v Sample scripts for WebSphere Application Server

Deploying applications using scripting

This topic contains the following tasks:

v Installing applications

v Uninstalling applications

Installing applications with the wsadmin tool

Before starting this task, the wsadmin tool must be running. See the “Starting the wsadmin scripting client”

on page 250 article for more information.

On a single server installation, the server must be running before you install an application. See the

“Starting servers using scripting” on page 302 article for more information. On a network deployment

installation, the deployment manager must be running before you install an application. See the

“startManager command” on page 671article for more information.

You can install the application in batch mode, using the install command, or you can install the application

in interactive mode using the installinteractive command. Interactive mode prompts you through a series

of tasks to provide information. Both the install command and the installinteractive command support a

set of options. See the “Options for the AdminApp object install, installInteractive, edit, editInteractive,

update, and updateInteractive commands” on page 437 article for a list of valid options for the install and

installinteractive commands. You can also obtain a list of supported options for an Enterprise Archive

(EAR) file using the options command, for example:

Using Jacl:

$AdminApp options

Using Jython:

AdminApp.options()

For more information for the options, install, or installinteractive commands, see the “Commands for the

AdminApp object” on page 415 article.

The application that you install must be an enterprise archive file (EAR), a Web archive (WAR) file, or a

Java archive (JAR) file. The archive file must end in .ear, .jar or .war for the wsadmin tool to be able to

install it. The wsadmin tool uses these extensions to figure out the archive type. If the file is a WAR or JAR

file, it will be automatically wrapped as an EAR file.

If you are installing an application that has the AdminApp useMetaDataFromBinary option specified, then

you can only install this application on a WebSphere Application Server V6.x deployment target. This also

applies to editing the application, using the AdminApp edit command, after you install it. If you use the

V5.x wsadmin tool to install or edit an application on a WebSphere Application Server V6.x cell, only the

steps available for the V5.x wsadmin tool will be shown.

Perform the following steps to install an application into the run time:

1. Install the application.

v Using batch mode:

– For a single server installation only, the following example uses the EAR file and the command

option information to install the application:

- Using Jacl:

254 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

http://www-106.ibm.com/developerworks/java/library/j-jython.html
http://www.jython.org
http://www-106.ibm.com/developerworks/websphere/library/samples/SampleScripts.html

$AdminApp install c:/MyStuff/application1.ear {-server serv2}

- Using Jython list:

AdminApp.install(’c:/MyStuff/application1.ear’, [’-server’, ’serv2’])

- Using Jython string:

AdminApp.install(’c:/MyStuff/application1.ear’, ’[-server serv2]’)

where:

 $ is a Jacl operator for substituting a variable name with its

value

AdminApp is an object supporting application object management

install is an AdminApp command

MyStuff/application1.ear is the name of the application to install

server is an installation option

serv2 is the value of the server option

– For a network deployment installation only, the following command uses the EAR file and the

command option information to install the application on a cluster:

- Using Jacl:

$AdminApp install c:/MyStuff/application1.ear {-cluster cluster1}

- Using Jython list:

AdminApp.install(’c:/MyStuff/application1.ear’, [’-cluster’, ’cluster1’])

- Using Jython string:

AdminApp.install(’c:/MyStuff/application1.ear’, ’[-cluster cluster1]’)

where:

 $ is a Jacl operator for substituting a variable name with its

value

AdminApp is an object allowing application objects to be managed

install is an AdminApp command

MyStuff/application1.ear is the name of the application to install

cluster is an installation option

cluster1 the value of the cluster option which will be cluster name

v Using interactive mode, the following command changes the application information by prompting

you through a series of installation tasks:

– Using Jacl:

$AdminApp installInteractive c:/MyStuff/application1.ear

– Using Jython:

AdminApp.installInteractive(’c:/MyStuff/application1.ear’)

where:

 $ is a Jacl operator for substituting a variable name with its

value

AdminApp is an object allowing application objects to be managed

installInteractive is an AdminApp command

MyStuff/application1.ear is the name of the application to install

2. Save the configuration changes. See the “Saving configuration changes with the wsadmin tool” on

page 232 article for more information.

Chapter 4. Using the administrative clients 255

3. In a network deployment environment only, synchronize the node. See the “Synchronizing nodes with

the wsadmin tool” on page 217 article for more information.

Uninstalling applications with the wsadmin tool

Before starting this task, the wsadmin tool must be running. See “Starting the wsadmin scripting client” on

page 250 for more information.

Steps to uninstall an application follow:

1. Uninstall the application:

Specify the name of the application you want to uninstall, not the name of the Enterprise ARchive

(EAR) file.

v Using Jacl:

$AdminApp uninstall application1

v Using Jython:

AdminApp.uninstall(’application1’)

where:

 $ is a Jacl operator for substituting a variable name with its

value

AdminApp is an object supporting application objects management

uninstall is an AdminApp command

application1 is the name of the application to uninstall

2. Save the configuration changes. See the “Saving configuration changes with the wsadmin tool” on

page 232 article for more information.

3. In a network deployment environment only, synchronize the node. See the “Synchronizing nodes with

the wsadmin tool” on page 217 article for more information.

Uninstalling an application removes it from the WebSphere Application Server configuration and from all

the servers that the application was installed on. The application binaries (EAR file contents) are deleted

from the installation directory. This occurs when the configuration is saved for single server WebSphere

Application Server editions or when the configuration changes are synchronized from deployment manager

to the individual nodes for network deployment configurations.

Managing deployed applications using scripting

This topic contains the following tasks:

v “Starting applications with scripting” on page 257

v “Updating installed applications with the wsadmin tool” on page 258

v “Stopping applications with scripting” on page 261

v “Listing the modules in an installed application with scripting” on page 262

v “Querying application state using scripting” on page 266

v “Disabling application loading in deployed targets using scripting” on page 267

v “Configuring applications for session management using scripting” on page 268

v “Configuring applications for session management in Web modules using scripting” on page 271

v “Exporting applications using scripting” on page 275

v “Configuring a shared library using scripting” on page 275

v “Configuring a shared library for an application using scripting” on page 279

v “Setting background applications using scripting” on page 282

256 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Starting applications with scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the wsadmin scripting client”

on page 250 article for more information.

Before starting an application, it must be installed. See the “Installing applications with the wsadmin tool”

on page 254 article for more information.

Perform the following steps to start an application:

1. Identify the application manager MBean for the server where the application resides and assign it the

appManager variable. The following example returns the name of the application manager MBean.

v Using Jacl:

 set appManager [$AdminControl queryNames cell=mycell,node=mynode,type=ApplicationManager,

 process=server1,*]

v Using Jython:

appManager = AdminControl.queryNames(’cell=mycell,node=mynode,type=ApplicationManager,

 process=server1,*’)

print appManager

where:

 set is a Jacl command

appManager is a variable name

$ is a Jacl operator for substituting a variable name with its

value

AdminControl is an object that enables the manipulation of MBeans

running in a WebSphere server process

queryNames is an AdminControl command

cell=mycell,node=mynode,type=ApplicationManager,

process=server1

is the hierarchical containment path of the configuration

object

print is a Jython command

Example output:

WebSphere:cell=mycell,name=ApplicationManager,mbeanIdentifier=ApplicationManager,type=ApplicationManager,

 node=mynode,process=server1

2. Start the application. The following example invokes the startApplication operation on the MBean,

providing the application name that you want to start.

v Using Jacl:

$AdminControl invoke $appManager startApplication myApplication

v Using Jython:

AdminControl.invoke(appManager, ’startApplication’, ’myApplication’)

where:

 $ is a Jacl operator for substituting a variable name with its

value

AdminControl is an object that enables the manipulation of MBeans

running in a WebSphere server process

invoke is an AdminControl command

appManager evaluates to the ID of the server specified in step number

1

startApplication is an attribute of modify objects

Chapter 4. Using the administrative clients 257

myApplication is the value of the startApplication attribute

Updating installed applications with the wsadmin tool

Before starting this task, the wsadmin tool must be running. See the “Starting the wsadmin scripting client”

on page 250 article for more information.

Before starting an application, it must be installed. See the “Installing applications with the wsadmin tool”

on page 254 article for more information.

Both the update command and the updateinteractive command support a set of options. See the

“Options for the AdminApp object install, installInteractive, edit, editInteractive, update, and

updateInteractive commands” on page 437 article for a list of valid options for the update and

updateinteractive commands. You can also obtain a list of supported options for an Enterprise Archive

(EAR) file using the options command, for example:

Using Jacl:

$AdminApp options

Using Jython:

print AdminApp.options()

For more information for the options, update, or updateinteractive commands, see the “Commands for

the AdminApp object” on page 415 article. Perform the following steps to update an application:

1. Update the installed application using one of the following options:

v The following command updates a single file in a deployed application:

– Using Jacl:

$AdminApp update app1 file {-operation update -contents c:/apps/app1/my.xml

 -contenturi app1.jar/my.xml}

– Using Jython string:

AdminApp.update(’app1‘, ’file‘, ’[-operation update -contents c:/apps/app1/my.xml

 -contenturi app1.jar/my.xml]‘)

– Using Jython list:

AdminApp.update(’app1‘, ’file‘, [’-operation‘, ’update‘, ’-contents‘, ’c:/apps/app1/my.xml‘,

 ’-contenturi‘, ’app1.jar/my.xml‘])

where:

 $ is a Jacl operator for substituting a variable name with its

value

AdminApp is an object supporting application objects management

update is an AdminApp command

app1 is the name of the application to update

file is the content type value

operation is an option of the update command

update is the value of the operation option

contents is an option of the update command

/apps/app1/my.xml is the value of the contents option

contenturi is an option of the update command

app1.jar/my.xml is the value of the contenturi option

258 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

v The following command adds a module to the deployed application, if the module does not exist.

Otherwise, the existing module will be updated.

– Using Jacl:

$AdminApp update app1 modulefile {-operation addupdate -contents

c:/apps/app1/Increment.jar -contenturi Increment.jar -nodeployejb

-BindJndiForEJBNonMessageBinding {{"Increment Enterprise Java Bean"

 Increment Increment.jar,META-INF/ejb-jar.xml Inc}}}

– Using Jython string:

AdminApp.update(’app1‘, ’modulefile‘, ’[-operation addupdate -contents

c:/apps/app1/Increment.jar -contenturi Increment.jar -nodeployejb

-BindJndiForEJBNonMessageBinding [["Increment Enterprise Java Bean

" Increment Increment.jar,META-INF/ejb-jar.xml Inc]]]’)

– Using Jython list:

bindJndiForEJBValue = [["Increment Enterprise Java Bean",

"Increment", " Increment.jar,

 META-INF/ejb-jar.xml", "Inc"]]

AdminApp.update(’app1‘, ’modulefile‘, [’-operation‘, ’addupdate‘, ’-contents‘,

’c:/apps/app1/Increment.jar‘, ’-contenturi‘,’Increment.jar‘ ’-nodeployejb’,

`-BindJndiForEJBNonMessageBinding’, bindJndiForEJBValue])

where:

 $ is a Jacl operator for substituting a variable name with its

value

AdminApp is an object supporting application objects management

update is an AdminApp command

app1 is the name of the application to update

modulefile is the content type value

operation is an option of the update command

addupdate is the value of the operation option

contents is an option of the update command

/apps/app1/Increment.jar is the value of the contents option

contenturi is an option of the update command

Increment.jar is the value of the contenturi option

nodeployejb is an option of the update command

BindJndiForEJBNonMessageBinding is an option of the update command

″Increment Enterprise Java Bean″ Increment

Increment.jar,META-INF/ejb-jar.xml Inc

is the value of the BindJndiForEJBNonMessageBinding

option

bindJndiForEJBValue is a Jython variable containing the value of the

BindJndiForEJBNonMessageBinding option

v The following command uses a partial application to update a deployed application:

– Using Jacl:

$AdminApp update app1 partialapp {-contents c:/apps/app1/app1Partial.zip}

– Using Jython string:

AdminApp.update(’app1‘, ’partialapp‘, ’[-contents c:/apps/app1/app1Partial.zip]’)

– Using Jython list:

AdminApp.update(’app1‘, ’partialapp‘, [’-contents‘, ’c:/apps/app1/app1Partial.zip‘])

Chapter 4. Using the administrative clients 259

where:

 $ is a Jacl operator for substituting a variable name with its

value

AdminApp is an object supporting application objects management

update is an AdminApp command

app1 is the name of the application to update

partialapp is the content type value

contents is an option of the update command

/apps/app1/app1Partial.zip is the value of the contents option

v The following command updates the entire deployed application:

– Using Jacl:

$AdminApp update app1 app {-operation update -contents c:/apps/app1/newApp1.jar

-usedefaultbindings -nodeployejb -BindJndiForEJBNonMessageBinding

{{"Increment Enterprise Java Bean" Increment Increment.jar,META-INF/ejb-jar.xml Inc}}}

– Using Jython string:

AdminApp.update(’app1‘, ’app‘, ’[-operation update -contents c:/apps/app1/newApp1.ear

-usedefaultbindings -nodeployejb -BindJndiForEJBNonMessageBinding

[["Increment Enterprise Java Bean" Increment Increment.jar,META-INF/ejb-jar.xml Inc]]]’)

– Using Jython list:

bindJndiForEJBValue = [["Increment Enterprise Java Bean", "Increment", " Increment.jar,

META-INF/ejb-jar.xml", "Inc"]]

AdminApp.update(’app1‘, ’app‘, [’-operation‘, ’update‘, ’-contents‘,

’c:/apps/app1/NewApp1.ear‘, ’-usedefaultbindings‘, ’-nodeployejb’,

`-BindJndiForEJBNonMessageBinding’, bindJndiForEJBValue])

where:

 $ is a Jacl operator for substituting a variable name with its

value

AdminApp is an object supporting application objects management

update is an AdminApp command

app1 is the name of the application to update

app is the content type value

operation is an option of the update command

update is the value of the operation option

contents is an option of the update command

/apps/app1/newApp1.ear is the value of the contents option

usedefaultbindings is an option of the update command

nodeployejb is an option of the update command

BindJndiForEJBNonMessageBinding is an option of the update command

″Increment Enterprise Java Bean″ Increment

Increment.jar,META-INF/ejb-jar.xml Inc

is the value of the BindJndiForEJBNonMessageBinding

option

bindJndiForEJBValue is a Jython variable containing the value of the

BindJndiForEJBNonMessageBinding option

2. Save the configuration changes. See the “Saving configuration changes with the wsadmin tool” on

page 232 article for more information.

260 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

3. In a network deployment environment only, synchronize the node. See the “Synchronizing nodes with

the wsadmin tool” on page 217 article for more information.

Stopping applications with scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the wsadmin scripting client”

on page 250 article for more information.

The following example stops all running applications on a server:

1. Identify the application manager MBean for the server where the application resides, and assign it to

the appManager variable.

v Using Jacl:

set appManager [$AdminControl queryNames cell=mycell,node=mynode,type=ApplicationManager,

 process=server1,*]

v Using Jython:

appManager = AdminControl.queryNames(’cell=mycell, node=mynode,type=ApplicationManager,

 process=server1,*’)

print appManager

where:

 set is a Jacl command

appManager is a variable name

$ is a Jacl operator for substituting a variable name with its

value

AdminControl is an object that enables the manipulation of MBeans

running in a WebSphere server process

queryNames is an AdminControl command

cell=mycell,node=mynode,type=ApplicationManager,

process=server1

is the hierarchical containment path of the configuration

object

print is a Jython command

This command returns the application manager MBean.

Example output:

WebSphere:cell=mycell,name=ApplicationManager,mbeanIdentifier=ApplicationManager,type=ApplicationManager,

 node=mynode,process=server1

2. Query the running applications belonging to this server and assign the result to the apps variable.

v Using Jacl:

set apps [$AdminControl queryNames cell=mycell,node=mynode,type=Application,process=server1,*]

v Using Jython:

get line separator

import java.lang.System as sys

lineSeparator = sys.getProperty(’line.separator’)

apps = AdminControl.queryNames(’cell=mycell,node=mynode,type=Application,process=server1,*’).split(lineSeparator)

print apps

where:

 set is a Jacl command

apps is a variable name

$ is a Jacl operator for substituting a variable name with its

value

Chapter 4. Using the administrative clients 261

AdminControl is an object that enables the manipulation of MBeans

running in a WebSphere server process

queryNames is an AdminControl command

cell=mycell,node=mynode,type=ApplicationManager,

process=server1

is the hierarchical containment path of the configuration

object

print is a Jython command

This command returns a list of application MBeans.

Example output:

WebSphere:cell=mycell,name=adminconsole,mbeanIdentifier=deployment.xml#ApplicationDeployment_1,

type=Application,node=mynode,Server=server1,process=server1,J2EEName=adminconsole

WebSphere:cell=mycell,name=filetransfer,mbeanIdentifier=deployment.xml#ApplicationDeployment_1,

type=Application,node=mynode,Server=server1,process=server1,J2EEName=filetransfer

3. Stop all the running applications.

v Using Jacl:

foreach app $apps {

 set appName [$AdminControl getAttribute $app name]

 $AdminControl invoke $appManager stopApplication $appName}

v Using Jython:

for app in apps:

 appName = AdminControl.getAttribute(app, ’name’)

 AdminControl.invoke(appManager, ’stopApplication’, appName)

This command stops all the running applications by invoking the stopApplication operation on the

MBean, passing in the application name to stop.

Once you complete the steps for this task, all running applications on the server are stopped.

Listing the modules in an installed application with scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the wsadmin scripting client”

on page 250 article for more information.

Use the AdminApp object listModules command to list the modules in an installed application. For

example:

v Using Jacl:

$AdminApp listModules DefaultApplication -server

v Using Jython:

print AdminApp.listModules(’DefaultApplication’, ’-server’)

where:

 $ is a Jacl operator for substituting a variable name with its

value

print is a Jython command

AdminApp is an object supporting application object management

listmodules is an AdminApp command

DefaultApplication is the name of the application

-server is an optional option specified

Example output:

262 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

DefaultApplication#IncCMP11.jar+META-INF/ejb-jar.xml#WebSphere:cell=mycell,node=mynode,server=myserver

DefaultApplication#DefaultWebApplication.war+WEB-INF/web.xml#WebSphere:cell=mycell,node=mynode,server=myserver

Example: Listing the modules in an application server: The following example lists all modules on all

enterprise applications installed on server1 in node1:

Note: * means that the module is installed on server1 node node1 and other node and/or server.

+ means that the module is installed on server1 node node1 only means that the module is not

installed on server1 node node1.

 1 #--

 2 # setting up variables to keep server name and node name

 3 #--

 4 set serverName server1

 5 set nodeName node1

 6 #--

 7 # setting up 2 global lists to keep the modules

 8 #--

 9 set ejbList {}

 10 set webList {}

11

12 #---

13 # gets all deployment objects and assigned it to deployments variable

14 #---

15 set deployments [$AdminConfig getid /Deployment:/]

16

17 #--

18 # lines 22 thru 148 Iterates through all the deployment objects to get the modules

19 # and perform filtering to list application that has at least one module installed

20 # in server1 in node myNode

21 #--

22 foreach deployment $deployments {

23

24 # ---

25 # reset the lists that hold modules for each application

26 #--

27 set webList {}

28 set ejbList {}

29

30 #--

31 # get the application name

32 #--

33 set appName [lindex [split $deployment (] 0]

34

35 #--

36 # get the deployedObjects

37 #--

38 set depObject [$AdminConfig showAttribute $deployment deployedObject]

39

40 #--

41 # get all modules in the application

42 #---

43 set modules [lindex [$AdminConfig showAttribute $depObject modules] 0]

44

45 #---

46 # initialize lists to save all the modules in the appropriate list to where they belong

47 #---

48 set modServerMatch {}

49 set modServerMoreMatch {}

50 set modServerNotMatch {}

51

52 #---

53 # lines 55 to 112 iterate through all modules to get the targetMappings

54 #---

55 foreach module $modules {

Chapter 4. Using the administrative clients 263

56 #---

57 # setting up some flag to do some filtering and get modules for server1 on node1

58 #---

59 set sameNodeSameServer "false"

60 set diffNodeSameServer "false"

61 set sameNodeDiffServer "false"

62 set diffNodeDiffServer "false"

63

64 #--

65 # get the targetMappings

66 #--

67 set targetMaps [lindex [$AdminConfig showAttribute $module targetMappings] 0]

68

69 #--

70 # lines 72 to 111 iterate through all targetMappings to get the target

71 #--

72 foreach targetMap $targetMaps {

73 #------------------------------

74 # get the target

75 #------------------------------

76 set target [$AdminConfig showAttribute $targetMap target]

77

78 #--

79 # do filtering to skip ClusteredTargets

80 #--

81 set targetName [lindex [split $target #] 1]

82 if {[regexp "ClusteredTarget" $targetName] != 1} {

83 set sName [$AdminConfig showAttribute $target name]

84 set nName [$AdminConfig showAttribute $target nodeName]

85

86 #--

87 # do the server name match

88 #--

89 if {$sName == $serverName} {

90 if {$nName == $nodeName} {

91 set sameNodeSameServer "true"

92 } else {

93 set diffNodeSameServer "true"

94 }

95 } else {

96 #---------------------------------------

97 # do the node name match

98 #---------------------------------------

99 if {$nName == $nodeName} {

100 set sameNodeDiffServer "true"

101 } else {

102 set diffNodeDiffServer "true"

103 }

104 }

105

106 if {$sameNodeSameServer == "true"} {

107 if {$sameNodeDiffServer == "true" || $diffNodeDiffServer == "true" ||

 $diffNodeSameServer == "true"} {

108 break

109 }

110 }

111 }

112 }

113

114 #---

115 # put it in the appropriate list

116 #---

117 if {$sameNodeSameServer == "true"} {

118 if {$diffNodeDiffServer == "true" || $diffNodeSameServer == "true" || $sameNodeDiffServer == "true"}

 {

119 set modServerMoreMatch [linsert $modServerMoreMatch end [$AdminConfig showAttribute

 $module uri]]

264 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

120 } else {

121 set modServerMatch [linsert $modServerMatch end [$AdminConfig showAttribute $module uri]]

122 }

123 } else {

124 set modServerNotMatch [linsert $modServerNotMatch end [$AdminConfig showAttribute $module uri]]

125 }

126 }

127

128

129 #--

130 # print the output with some notation as a mark

131 #--

132 if {$modServerMatch != {} || $modServerMoreMatch != {}} {

133 puts stdout "\tApplication name: $appName"

 134 }

 135

 136 #---

 137 # do grouping to appropriate module and print

 138 #---

 139 if {$modServerMatch != {}} {

 140 filterAndPrint $modServerMatch "+"

 141 }

 142 if {$modServerMoreMatch != {}} {

 143 filterAndPrint $modServerMoreMatch "*"

 144 }

 145 if {($modServerMatch != {} || $modServerMoreMatch != {}) "" $modServerNotMatch != {}} {

 146 filterAndPrint $modServerNotMatch ""

 147 }

 148}

 149

 150

 151 proc filterAndPrint {lists flag} {

 152 global webList

 153 global ejbList

 154 set webExists "false"

 155 set ejbExists "false"

 156

 157 #---

 158 # If list already exists, flag it so as not to print the title more then once

 159 # and reset the list

 160 #---

 161 if {$webList != {}} {

 162 set webExists "true"

 163 set webList {}

 164 }

 165 if {$ejbList != {}} {

 166 set ejbExists "true"

 167 set ejbList {}

 168 }

 169

 170 #--

 171 # do some filtering for web modules and ejb modules

 172 #--

 173 foreach list $lists {

 174 set temp [lindex [split $list .] 1]

 175 if {$temp == "war"} {

 176 set webList [linsert $webList end $list]

 177 } elseif {$temp == "jar"} {

 178 set ejbList [linsert $ejbList end $list]

 179 }

 180 }

 181

 182 #---------------------------------------

 183 # sort the list before printing

 184 #---------------------------------------

 185 set webList [lsort -dictionary $webList]

 186 set ejbList [lsort -dictionary $ejbList]

Chapter 4. Using the administrative clients 265

187

 188 #--

 189 # print out all the web modules installed in server1

 190 #--

 191 if {$webList != {}} {

 192 if {$webExists == "false"} {

 193 puts stdout "\t\tWeb Modules:"

 194 }

 195 foreach web $webList {

 196 puts stdout "\t\t\t$web $flag"

 197 }

 198 }

 199

 200 #--

 201 # print out all the ejb modules installed in server1

 202 #--

 203 if {$ejbList != {}} {

 204 if {$ejbExists == "false"} {

 205 puts stdout "\t\tEJB Modules:"

 206 }

 207 foreach ejb $ejbList {

 208 puts stdout "\t\t\t$ejb $flag"

 209 }

 210 }

 211}

Example output for server1 on node node1:

 Application name: TEST1

 EJB Modules:

 deplmtest.jar +

 Web Modules:

 mtcomps.war *

 Application name: TEST2

 Web Modules:

 mtcomps.war +

 EJB Modules:

 deplmtest.jar +

 Application name: TEST3

 Web Modules:

 mtcomps.war *

 EJB Modules:

 deplmtest.jar *

 Application name: TEST4

 EJB Modules:

 deplmtest.jar *

 Web Modules:

 mtcomps.war

Querying application state using scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the wsadmin scripting client”

on page 250 article for more information.

The following example queries for the presence of Application MBean to find out whether the application is

running.

Using Jacl:

$AdminControl completeObjectName type=Application,name=myApplication,*

Using Jython:

print AdminControl.completeObjectName(’type=Application,name=myApplication,*’)

266 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

where:

 $ is a Jacl operator for substituting a variable name with its

value

AdminControl is an object that enables the manipulation of MBeans

running in a WebSphere server process

completeObjectName is an AdminControl command

type=Application,name=myApplication is the hierarchical containment path of the configuration

object

print is a Jython command

If myApplication is running, then there should be an MBean created for it. Otherwise, the command returns

nothing. If myApplication is running, the following is the example output:

WebSphere:cell=mycell,name=myApplication,mbeanIdentifier=cells/mycell/applications/myApplication.ear/deployments/myApplic

Disabling application loading in deployed targets using scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the wsadmin scripting client”

on page 250 article for more information.

The following example uses the AdminConfig object to disable application loading in deployed targets:

1. Obtain the deployment object for the application and assign it to the deployments variable, for example:

v Using Jacl:

set deployments [$AdminConfig getid /Deployment:myApp/]

v Using Jython:

deployments = AdminConfig.getid("/Deployment:myApp/")

where:

 set is a Jacl command

deployments is a variable name

$ is a Jacl operator for substituting a variable name with its

value

AdminConfig is an object representing the WebSphere Application

Server configuration

getid is an AdminConfig command

Deployment is an attribute

myApp is the value of the attribute

Example output:

myApp(cells/mycell/applications/myApp.ear/deployments/myApp|deployment.xml#Deployment_1)

2. Obtain the target mappings in the application and assign them to the targetMappings variable, for

example:

v Using Jacl:

set deploymentObj1 [$AdminConfig showAttribute $deployments deployedObject]

set targetMap1 [lindex [$AdminConfig showAttribute $deploymentObj1 targetMappings] 0]

Example output:

(cells/mycell/applications/ivtApp.ear/deployments/ivtApp|deployment.xml#DeploymentTargetMapping_1)

v Using Jython:

Chapter 4. Using the administrative clients 267

deploymentObj1 = AdminConfig.showAttribute(deployments, ’deployedObject’)

targetMap1 = AdminConfig.showAttribute(deploymentObj1, ’targetMappings’)

targetMap1 = targetMap1[1:len(targetMap1)-1].split(" ")

print targetMap1

Example output:

[’(cells/mycell/applications/ivtApp.ear/deployments/ivtApp|deployment.xml#DeploymentTargetMapping_1)’]

where:

 set is a Jacl command

deploymentObj1 is a variable name

$ is a Jacl operator for substituting a variable name with its

value

AdminConfig is an object representing the WebSphere Application

Server configuration

showAttribute is an AdminConfig command

deployments evaluates to the ID of the deployment object specified in

step number 1

deployedObject is an attribute

targetMap1 a variable name

targetMappings is an attribute

lindex a Jacl command

print a Jython command

3. Disable the loading of the application on each deployed target, for example:

v Using Jacl:

foreach tm $targetMap1 {

 $AdminConfig modify $tm {{enable false}}

}

v Using Jython:

for targetMapping in targetMap1:

 AdminConfig.modify(targetMapping, [["enable", "false"]])

4. Save the configuration changes. See the “Saving configuration changes with the wsadmin tool” on

page 232 article for more information.

5. In a network deployment environment only, synchronize the node. See the “Synchronizing nodes with

the wsadmin tool” on page 217 article for more information.

Configuring applications for session management using scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the wsadmin scripting client”

on page 250 article for more information.

You can use the AdminApp object to set configurations in an application. Some configuration settings are

not available through the AdminApp object. The following example uses the AdminConfig object to

configure session manager for the application.

1. Identify the deployment configuration object for the application and assign it to the deployment

variable. For example:

v Using Jacl:

set deployments [$AdminConfig getid /Deployment:myApp/]

v Using Jython:

deployments = AdminConfig.getid(’/Deployment:myApp/’)

print deployment

268 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

where:

 set is a Jacl command

deployments is a variable name

$ is a Jacl operator for substituting a variable name with its

value

AdminConfig is an object representing the WebSphere Application

Server configuration

getid is an AdminConfig command

Deployment is an attribute

myApp is the value of the attribute

Example output:

myApp(cells/mycell/applications/myApp.ear/deployments/myApp|deployment.xml#Deployment_1)

2. Retrieve the applicaton deployment and assign it to the appDeploy variable. For example:

v Using Jacl:

set appDeploy [$AdminConfig showAttribute $deployments deployedObject]

v Using Jython:

appDeploy = AdminConfig.showAttribute(deployments, ’deployedObject’)

print appDeploy

where:

 set is a Jacl command

appDeploy is a variable name

$ is a Jacl operator for substituting a variable name with its

value

AdminConfig is an object representing the WebSphere Application

Server configuration

showAttribute is an AdminConfig command

deployments evaluates to the ID of the deployment object specified in

step number 1

deployedObject is an attribute

Example output:

(cells/mycell/applications/myApp.ear/deployments/myApp|deployment.xml#ApplicationDeployment_1)

3. To obtain a list of attributes you can set for session manager, use the attributes command. For

example:

v Using Jacl:

$AdminConfig attributes SessionManager

v Using Jython:

print AdminConfig.attributes(’SessionManager’)

where:

 $ is a Jacl operator for substituting a variable name with its

value

AdminConfig is an object representing the WebSphere Application

Server configuration

attributes is an AdminConfig command

SessionManager is an attribute

Chapter 4. Using the administrative clients 269

Example output:

"accessSessionOnTimeout Boolean"

"allowSerializedSessionAccess Boolean"

"context ServiceContext@"

"defaultCookieSettings Cookie"

"enable Boolean"

"enableCookies Boolean"

"enableProtocolSwitchRewriting Boolean"

"enableSSLTracking Boolean"

"enableSecurityIntegration Boolean"

"enableUrlRewriting Boolean"

"maxWaitTime Integer"

"properties Property(TypedProperty)*"

"sessionDRSPersistence DRSSettings"

"sessionDatabasePersistence SessionDatabasePersistence"

"sessionPersistenceMode ENUM(DATABASE, DATA_REPLICATION, NONE)"

"tuningParams TuningParams"

4. Set up the attributes for the session manager. The following example sets three top level attributes in

the session manager. You can modify the example to set other attributes of session manager including

the nested attributes in Cookie, DRSSettings, SessionDataPersistence, and TuningParms object types.

To list the attributes for those object types, use the attributes command of the AdminConfig object.

v Using Jacl:

set attr1 [list enableSecurityIntegration true]

set attr2 [list maxWaitTime 30]

set attr3 [list sessionPersistenceMode NONE]

set attrs [list $attr1 $attr2 $attr3]

set sessionMgr [list sessionManagement $attrs]

Example output using Jacl:

sessionManagement {{enableSecurityIntegration true} {maxWaitTime 30} {sessionPersistenceMode NONE}}

v Using Jython:

attr1 = [’enableSecurityIntegration’, ’true’]

attr2 = [’maxWaitTime’, 30]

attr3 = [’sessionPersistenceMode’, ’NONE’]

attrs = [attr1, attr2, attr3]

sessionMgr = [[’sessionManagement’, attrs]]

Example output using Jython:

[[sessionManagement, [[enableSecurityIntegration, true], [maxWaitTime, 30], [sessionPersistenceMode, NONE]]]

where:

 set is a Jacl command

attr1, attr2, attr3, attrs, sessionMgr are variable names

$ is a Jacl operator for substituting a variable name with its

value

enableSecurityIntegration is an attribute

true is a value of the enableSecurityIntegration attribute

maxWaitTime is an attribute

30 is a value of the maxWaitTime attribute

sessionPersistenceMode is an attribute

NONE is a value of the sessionPersistenceMode attribute

5. Create the session manager for the application. For example:

v Using Jacl:

$AdminConfig create ApplicationConfig $appDeploy [list $sessionMgr]

270 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

v Using Jython:

print AdminConfig.create(’ApplicationConfig’, appDeploy, sessionMgr)

where:

 $ is a Jacl operator for substituting a variable name with its

value

AdminConfig is an object representing the WebSphere Application

Server configuration

create is an AdminConfig command

ApplicationConfig is an attribute

appDeploy evaluates to the ID of the deployed application specified

in step number 2

list is a Jacl command

sessionMgr evaluates to the ID of the session manager specified in

step number 4

Example output:

(cells/mycell/applications/myApp.ear/deployments/myApp|deployment.xml#ApplicationConfig_1)

6. Save the configuration changes. See the “Saving configuration changes with the wsadmin tool” on

page 232 article for more information.

7. In a network deployment environment only, synchronize the node. See the “Synchronizing nodes with

the wsadmin tool” on page 217 article for more information.

Configuring applications for session management in Web modules using scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the wsadmin scripting client”

on page 250 article for more information.

You can use the AdminApp object to set configurations in an application. Some configuration settings are

not available through the AdminApp object. This example uses the AdminConfig object to configure

session manager for Web module in the application.

1. Identify the deployment configuration object for the application and assign it to the deployment

variable. For example:

v Using Jacl:

set deployments [$AdminConfig getid /Deployment:myApp/]

v Using Jython:

deployments = AdminConfig.getid(’/Deployment:myApp/’)

print deployments

where:

 set is a Jacl command

deployments is a variable name

$ is a Jacl operator for substituting a variable name with its

value

AdminConfig is an object representing the WebSphere Application

Server configuration

getid is an AdminConfig command

Deployment is an attribute

myApp is the value of the attribute

Example output:

Chapter 4. Using the administrative clients 271

myApp(cells/mycell/applications/myApp.ear/deployments/myApp|deployment.xml#Deployment_1)

2. Get all the modules in the application and assign it to the modules variable. For example:

v Using Jacl:

set appDeploy [$AdminConfig showAttribute $deployments deployedObject]

set mod1 [$AdminConfig showAttribute $appDeploy modules]

Example output:

(cells/mycell/applications/myApp.ear/deployments/myApp:deployment.xml#WebModuleDeployment_1)

(cells/mycell/applications/myApp.ear/deployments/myApp:deployment.xml#EJBModuleDeployment_1)

(cells/mycell/applications/myApp.ear/deployments/myApp:deployment.xml#WebModuleDeployment_2)

v Using Jython:

appDeploy = AdminConfig.showAttribute(deployments, ’deployedObject’)

mod1 = AdminConfig.showAttribute(appDeploy, ’modules’)

print mod1

Example output:

[(cells/mycell/applications/myApp.ear/deployments/myApp|deployment.xml#WebModuleDeployment_1)

(cells/mycell/applications/myApp.ear/deployments/myApp|deployment.xml#EJBModuleDeployment_1)

(cells/mycell/applications/myApp.ear/deployments/myApp|deployment.xml#EJBModuleDeployment_2)]

where:

 set is a Jacl command

appDeploy is a variable name

mod1 is a variable name

$ is a Jacl operator for substituting a variable name with its

value

AdminConfig is an object representing the WebSphere Application

Server configuration

showAttribute is an AdminConfig command

deployments evaluates to the ID of the deployment object specified in

step number 1

deployedObject is an attribute

3. To obtain a list of attributes you can set for session manager, use the attributes command. For

example:

v Using Jacl:

$AdminConfig attributes SessionManager

v Using Jython:

print AdminConfig.attributes(’SessionManager’)

where:

 $ is a Jacl operator for substituting a variable name with its

value

AdminConfig is an object representing the WebSphere Application

Server configuration

attributes is an AdminConfig command

SessionManager is an attribute

Example output:

"accessSessionOnTimeout Boolean"

"allowSerializedSessionAccess Boolean"

"context ServiceContext@"

"defaultCookieSettings Cookie"

"enable Boolean"

272 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

"enableCookies Boolean"

"enableProtocolSwitchRewriting Boolean"

"enableSSLTracking Boolean"

"enableSecurityIntegration Boolean"

"enableUrlRewriting Boolean"

"maxWaitTime Integer"

"properties Property(TypedProperty)*"

"sessionDRSPersistence DRSSettings"

"sessionDatabasePersistence SessionDatabasePersistence"

"sessionPersistenceMode ENUM(DATABASE, DATA_REPLICATION, NONE)"

"tuningParams TuningParams"

4. Set up the attributes for session manager. The following example sets four top level attributes in the

session manager. You can modify the example to set other attributes in the session manager including

the nested attributes in Cookie, DRSSettings, SessionDataPersistence, and TuningParms object types.

To list the attributes for those object types, use the attributes command of AdminConfig object.

v Using Jacl:

set attr0 [list enable true]

set attr1 [list enableSecurityIntegration true]

set attr2 [list maxWaitTime 30]

set attr3 [list sessionPersistenceMode NONE]

set attr4 [list enableCookies true]

set attr5 [list invalidationTimeout 45]

set tuningParmsDetailList [list $attr5]

set tuningParamsList [list tuningParams $tuningParmsDetailList]

set pwdList [list password 95ee608]

set userList [list userId Administrator]

set dsNameList [list datasourceJNDIName jdbc/session]

set dbPersistenceList [list $dsNameList $userList $pwdList]

set sessionDBPersistenceList [list $dbPersistenceList]

set sessionDBPersistenceList [list sessionDatabasePersistence $dbPersistenceList]

set kuki [list maximumAge 1000]

set cookie [list $kuki]

set cookieSettings [list defaultCookieSettings $cookie]

set sessionManagerDetailList [list $attr0 $attr1 $attr2 $attr3 $attr4 $cookieSettings

 $tuningParamsList $sessionDBPersistenceList]

set sessionMgr [list sessionManagement $sessionManagerDetailList]

set id [$AdminConfig create ApplicationConfig $appDeploy [list $sessionMgr] configs]

set targetMappings [lindex [$AdminConfig showAttribute $appDeploy targetMappings] 0]

set attrs [list config $id]

$AdminConfig modify $targetMappings [list $attrs]

Example output using Jacl:

sessionManagement {{enableSecurityIntegration true} {maxWaitTime 30} {sessionPersistenceMode NONE} {enabled true}}

v Using Jython:

attr0 = [’enable’, ’true’]

attr1 = [’enableSecurityIntegration’, ’true’]

attr2 = [’maxWaitTime’, 30]

attr3 = [’sessionPersistenceMode’, ’NONE’]

attr4 = [’enableCookies’, ’true’]

attr5 = [’invalidationTimeout’, 45]

tuningParmsDetailList = [attr5]

tuningParamsList = [’tuningParams’, tuningParmsDetailList]

pwdList = [’password’, ’95ee608’]

userList = [’userId’, ’Administrator’]

dsNameList = [’datasourceJNDIName’, ’jdbc/session’]

dbPersistenceList = [dsNameList, userList, pwdList]

sessionDBPersistenceList = [dbPersistenceList]

sessionDBPersistenceList = [’sessionDatabasePersistence’, dbPersistenceList]

kuki = [’maximumAge’, 1000]

cookie = [kuki]

cookieSettings = [’defaultCookieSettings’, cookie]

sessionManagerDetailList = [attr0, attr1, attr2, attr3, attr4, cookieSettings, tuningParamsList,

 sessionDBPersistenceList]

sessionMgr = [’sessionManagement’, sessionManagerDetailList]

Chapter 4. Using the administrative clients 273

id = AdminConfig.create(’ApplicationConfig’, appDeploy,[sessionMgr], ’configs’)

targetMappings = AdminConfig.showAttribute(appDeploy, ’targetMappings’)

targetMappings = targetMappings[1:len(targetMappings)-1]

print targetMappings

attrs = [’config’, id]

AdminConfig.modify(targetMappings,[attrs])

Example output using Jython:

[sessionManagement, [[enableSecurityIntegration, true], [maxWaitTime, 30], [sessionPersistenceMode, NONE]]

5. Set up the attributes for Web module. For example:

v Using Jacl:

set nameAttr [list name myWebModuleConfig]

set descAttr [list description "Web Module config post create"]

set webAttrs [list $nameAttr $descAttr $sessionMgr]

Example output:

{name myWebModuleConfig} {description {Web Module config post create}}

{sessionManagement {{enableSecurityIntegration true} {maxWaitTime 30}

{sessionPersistenceMode NONE} {enabled true}}}

v Using Jython:

nameAttr = [’name’, ’myWebModuleConfig’]

descAttr = [’description’, "Web Module config post create"]

webAttrs = [nameAttr, descAttr, sessionMgr]

Example output:

[[name, myWebModuleConfig], [description, "Web Module config post create"],

[sessionManagement, [[enableSecurityIntegration, true], [maxWaitTime, 30],

[sessionPersistenceMode, NONE], [enabled, true]]]]

where:

 set is a Jacl command

nameAttr, descAttr, webAttrs are variable names

$ is a Jacl operator for substituting a variable name with its

value

name is an attribute

myWebModuleConfig is a value of the name attribute

description is an attribute

Web Module config post create is a value of the description attribute

6. Create the session manager for each Web module in the application. You can modify the following

example to set other attributes of session manager in Web module configuration.

v Using Jacl:

foreach module $mod1 {

 if ([regexp WebModuleDeployment $module] == 1} {

 $AdminConfig create WebModuleConfig $module $webAttrs

 $AdminConfig save

 }

 }

v Using Jython:

arrayModules = mod1[1:len(mod1)-1].split(" ")

for module in arrayModules:

 if module.find(’WebModuleDeployment’) != -1:

 AdminConfig.create(’WebModuleConfig’, module, webAttrs)

 Adminconfig.save()

Example output:

myWebModuleConfig(cells/mycell/applications/myApp.ear/deployments/myApp|deployment.xml#WebModuleConfiguration_1)

274 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

7. Save the configuration changes. See the “Saving configuration changes with the wsadmin tool” on

page 232 article for more information.

8. In a network deployment environment only, synchronize the node. See the “Synchronizing nodes with

the wsadmin tool” on page 217 article for more information.

Exporting applications using scripting

You can export your applications before you update installed applications or before you migrate to a

different version of the WebSphere Application Server product.

Before starting this task, the wsadmin tool must be running. See the “Starting the wsadmin scripting client”

on page 250 article for more information.

Exporting applications enables you to back them up and preserve their binding information.

v Export an enterprise application to a location of your choice, for example:

– Using Jacl:

$AdminApp export app1 C:/mystuff/exported.ear

– Using Jython:

AdminApp.export(’app1’, ’C:/mystuff/exported.ear’)

where:

 $ is a Jacl operator for substituting a variable name with its

value

AdminApp is an object allowing application objects management

export is an AdminApp command

app1 is the name of the application that will be exported

/mystuff/exported.ear is the name of the file where the exported application will

be stored

v Export Data Definition Language (DDL) files in the enterprise bean module of an application to a

destination directory, for example:

– Using Jacl:

$AdminApp exportDDL app1 C:/mystuff

– Using Jython:

AdminApp.exportDDL(’app1’, ’C:/mystuff’)

where:

 $ is a Jacl operator for substituting a variable name with its

value

AdminApp is an object allowing application objects management

exportDDL is an AdminApp command

app1 is the name of the application whose DDL files will be

exported

/mystuff is the name of the directory where the DDL files export

from the application

Configuring a shared library using scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the wsadmin scripting client”

on page 250 article for more information.

Chapter 4. Using the administrative clients 275

Perform the following steps to configure an application server to use a shared library.

1. Identify the server and assign it to the server variable. For example:

v Using Jacl:

set serv [$AdminConfig getid /Cell:mycell/Node:mynode/Server:server1/]

v Using Jython:

serv = AdminConfig.getid(’/Cell:mycell/Node:mynode/Server:server1/’)

print serv

where:

 set is a Jacl command

serv is a variable name

$ is a Jacl operator for substituting a variable name with its

value

AdminConfig is an object representing the WebSphere Application

Server configuration

getid is an AdminConfig command

Cell is an attribute

mycell is the value of the attribute

Node is an attribute

mynode is the value of the attribute

Server is an attribute

server1 is the value of the attribute

Example output:

server1(cells/mycell/nodes/mynode/servers/server1|server.xml#Server_1)

2. Create the shared library in the server. For example:

v Using Jacl:

$AdminConfig create Library $serv {{name mySharedLibrary}

 {classPath c:/mySharedLibraryClasspath}}

v Using Jython:

print AdminConfig.create(’Library’, serv, [[’name’, ’mySharedLibrary’],

 [’classPath’, ’c:/mySharedLibraryClasspath’]])

where:

 $ is a Jacl operator for substituting a variable name with its

value

AdminConfig is an object representing the WebSphere Application

Server configuration

create is an AdminConfig command

Library is an attribute

serv evaluates the ID of the server specified in step number 1

name is an attribute

mySharedLibrary is a value of the name attribute

classPath is an attribute

/mySharedLibraryClasspath is the value of the classpath attribute

print is a Jython command

Example output:

276 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

MysharedLibrary(cells/mycell/nodes/mynode/servers/server1|libraries.xml#Library_1)

3. Identify the application server from the server and assign it to the appServer variable. For example:

v Using Jacl:

set appServer [$AdminConfig list ApplicationServer $serv]

v Using Jython:

appServer = AdminConfig.list(’ApplicationServer’, serv)

print appServer

where:

 set is a Jacl command

appServer is a variable name

$ is a Jacl operator for substituting a variable name with its

value

AdminConfig is an object representing the WebSphere Application

Server configuration

list is an AdminConfig command

ApplicationServer is an attribute

serv evaluates the ID of the server specified in step number 1

print is a Jython command

Example output:

server1(cells/mycell/nodes/mynode/servers/server1|server.xml#ApplicationServer_1

4. Identify the class loader in the application server and assign it to the classLoader variable. For

example:

v To use the existing class loader associated with the server, the following commands use the first

class loader:

– Using Jacl:

set classLoad [$AdminConfig showAttribute $appServer classloaders]

set classLoader1 [lindex $classLoad 0]

– Using Jython:

classLoad = AdminConfig.showAttribute(appServer, ’classloaders’)

cleanClassLoaders = classLoad[1:len(classLoad)-1]

classLoader1 = cleanClassLoaders.split(’ ’)[0]

where:

 set is a Jacl command

classLoad, classLoader1 is a variable name

$ is a Jacl operator for substituting a variable name with its

value

AdminConfig is an object representing the WebSphere Application

Server configuration

showAttribute is an AdminConfig command

appServer evaluates the ID of the application server specified in step

number 3

classloaders is an attribute

print is a Jython command

v To create a new class loader, do the following step:

– Using Jacl:

Chapter 4. Using the administrative clients 277

set classLoader1 [$AdminConfig create Classloader $appServer {{mode PARENT_FIRST}}]

– Using Jython:

classLoader1 = AdminConfig.create(’Classloader’, appServer, [[’mode’, ’PARENT_FIRST’]])

where:

 set is a Jacl command

classLoader1 is a variable name

$ is a Jacl operator for substituting a variable name with its

value

AdminConfig is an object representing the WebSphere Application

Server configuration

create is an AdminConfig command

Classloader is an attribute

appServer evaluates the ID of the application server specified in step

number 3

mode is an attribute

PARENT_FIRST is the value of the attribute

print is a Jython command

Example output:

(cells/mycell/nodes/mynode/servers/server1|server.xml#Classloader_1)

5. Associate the created shared library with the application server through the class loader. For example:

v Using Jacl:

$AdminConfig create LibraryRef $classLoader1 {{libraryName MyshareLibrary} {sharedClassloader true}}

v Using Jython:

print AdminConfig.create(’LibraryRef’, classLoader1, [[’libraryName’, ’MyshareLibrary’],

 [’sharedClassloader’, ’true’]])

where:

 $ is a Jacl operator for substituting a variable name with its

value

AdminConfig is an object representing the WebSphere Application

Server configuration

create is an AdminConfig command

LibraryRef is an attribute

classLoader1 evaluates the ID of the class loader specified in step

number 4

libraryName is an attribute

MyshareLibrary is the value of the attribute

sharedClassloader is an attribute

true is the value of the attribute

print is a Jython command

Example output:

(cells/mycell/nodes/mynode/servers/server1|server.xml#LibraryRef_1)

6. Save the configuration changes. See the “Saving configuration changes with the wsadmin tool” on

page 232 article for more information.

278 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

7. In a network deployment environment only, synchronize the node. See the “Synchronizing nodes with

the wsadmin tool” on page 217 article for more information.

Configuring a shared library for an application using scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the wsadmin scripting client”

on page 250 article for more information.

You can use the AdminApp object to set certain configurations in the application. This example uses the

AdminConfig object to configure a shared library for an application.

1. Identify the shared library and assign it to the library variable. You can either use an existing shared

library or create a new one, for example:

v To create a new shared library, perform the following steps:

a. Idenitfy the node and assign it to a variable, for example:

– Using Jacl:

set n1 [$AdminConfig getid /Cell:mycell/Node:mynode/]

– Using Jython:

n1 = AdminConfig.getid(’/Cell:mycell/Node:mynode/’)

print n1

where:

 set is a Jacl command

n1 is a variable name

$ is a Jacl operator for substituting a variable name with its

value

AdminConfig is an object representing the WebSphere Application

Server configuration

getid is an AdminConfig command

Cell is the object type

mycell is the name of the object that will be modified

Node is the object type

mynode is the name of the object that will be modified

Example output:

mynode(cells/mycell/nodes/mynode|node.xml#Node_1)

b. Create the shared library in the node. The following example creates a new shared library in the

node scope. You can modify it to use the cell or server scope.

– Using Jacl:

set library [$AdminConfig create Library $n1 {{name mySharedLibrary} {classPath c:/mySharedLibraryClasspath
– Using Jython:

library = AdminConfig.create(’Library’, n1, [[’name’, ’mySharedLibrary’], [’classPath’, ’c:/mySharedLibraryC
print library

where:

 set is a Jacl command

library is a variable name

$ is a Jacl operator for substituting a variable name with its

value

AdminConfig is an object representing the WebSphere Application

Server configuration

create is an AdminConfig command

Chapter 4. Using the administrative clients 279

Library is an AdminConfig object

n1 evaluates to the ID of host node specified in step number

1

name is an attribute

mySharedLibrary is the value of the name attribute

classPath is an attribute

/mySharedLibraryClasspath is the value of the classPath attribute

Example output:

MySharedLibrary(cells/mycell/nodes/mynode|libraries.xml#Library_1)

v To use an existing shared library, issue the following command:

– Using Jacl:

set library [$AdminConfig getid /Library:mySharedLibrary/]

– Using Jython:

library = AdminConfig.getid(’/Library:mySharedLibrary/’)

print library

where:

 set is a Jacl command

library is a variable name

$ is a Jacl operator for substituting a variable name with its

value

AdminConfig is an object representing the WebSphere Application

Server configuration

getid is an AdminConfig command

Library is an attribute

mySharedLibrary is the value of the Library attribute

Example output:

MySharedLibrary(cells/mycell/nodes/mynode|libraries.xml#Library_1)

2. Identify the deployment configuration object for the application and assign it to the deployment

variable. For example:

v Using Jacl:

set deployment [$AdminConfig getid /Deployment:myApp/]

v Using Jython:

deployment = AdminConfig.getid(’/Deployment:myApp/’)

print deployment

where:

 set is a Jacl command

deployment is a variable name

$ is a Jacl operator for substituting a variable name with its

value

AdminConfig is an object representing the WebSphere Application

Server configuration

getid is an AdminConfig command

Deployment is an attribute

myApp is the value of the Deployment attribute

print is a Jython command

280 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Example output:

myApp(cells/mycell/applications/myApp.ear/deployments/myApp|deployment.xml#Deployment_1)

3. Retrieve the application deployment and assign it to the appDeploy variable. For example:

v Using Jacl:

set appDeploy [$AdminConfig showAttribute $deployment deployedObject]

v Using Jython:

appDeploy = AdminConfig.showAttribute(deployment, ’deployedObject’)

print appDeploy

where:

 set is a Jacl command

appDeploy is a variable name

$ is a Jacl operator for substituting a variable name with its

value

AdminConfig is an object representing the WebSphere Application

Server configuration

showAttribute is an AdminConfig command

deployment evaluates the ID of the deployment configuration object

specified in step number 2

deployedObject is an attribute of modify objects

print is a Jython command

Example output:

(cells/mycell/applications/myApp.ear/deployments/myApp|deployment.xml#ApplicationDeployment_1)

4. Identify the class loader in the application deployment and assign it to the classLoader variable. For

example:

v Using Jacl:

set classLoad1 [$AdminConfig showAttribute $appDeploy classloader]

v Using Jython:

classLoad1 = AdminConfig.showAttribute(appDeploy, ’classloader’)

print classLoad1

where:

 set is a Jacl command

classLoad1 is a variable name

$ is a Jacl operator for substituting a variable name with its

value

AdminConfig is an object representing the WebSphere Application

Server configuration

showAttribute is an AdminConfig command

appDeploy evaluates the ID of the application deployment specified

in step number 3

classLoader is an attribute of modify objects

print is a Jython command

Example output:

(cells/mycell/applications/myApp.ear/deployments/myApp|deployment.xml#Classloader_1)

5. Associate the shared library in the application through the class loader. For example:

Chapter 4. Using the administrative clients 281

v Using Jacl:

$AdminConfig create LibraryRef $classLoad1 {{libraryName MyshareLibrary} {sharedClassloader true}}

v Using Jython:

print AdminConfig.create(’LibraryRef’, classLoad1, [[’libraryName’, ’MyshareLibrary’], [’sharedClassloader’, ’true’]

where:

 $ is a Jacl operator for substituting a variable name with its

value

AdminConfig is an object representing the WebSphere Application

Server configuration

create is an AdminConfig command

LibraryRef is an AdminConfig object

classLoad1 evaluates to the ID of class loader specified in step

number 4

libraryName is an attribute

MyshareLibrary is the value of the libraryName attribute

sharedClassloader is an attribute

true is the value of the sharedClassloader attribute

Example output:

(cells/mycell/applications/myApp.ear/deployments/myApp|deployment.xml#LibraryRef_1)

6. Save the configuration changes. See the “Saving configuration changes with the wsadmin tool” on

page 232 article for more information.

7. In a network deployment environment only, synchronize the node. See the “Synchronizing nodes with

the wsadmin tool” on page 217 article for more information.

Setting background applications using scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the wsadmin scripting client”

on page 250 article for more information.

Perform the following steps to enable or disable a background application. Background applications specify

whether the application must initialize fully before the server starts. The default setting is false and this

indicates that server startup will not complete until the application starts. If you set the value to true, the

application starts on a background thread and server startup continues without waiting for the application

to start. The application may not ready for use when the application server starts.

1. Locate the application deployment object for the application. For example:

v Using Jacl:

set applicationDeployment [$AdminConfig getid /Deployment:adminconsole/ApplicationDeployment:/]

v Using Jython:

applicationDeployment = AdminConfig.getid(’/Deployment:adminconsole/ApplicationDeployment:/’)

where:

 set is a Jacl command

applicationDeployment is a variable name

$ is a Jacl operator for substituting a variable name with its

value

AdminConfig is an object representing the WebSphere Application

Server configuration

getid is an AdminConfig command

282 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Deployment is a type

ApplicationDeployment is a type

adminconsole is the name of the application

2. Enable the background application. For example:

v Using Jacl:

$AdminConfig modify $applicationDeployment "{backgroundApplication true}"

v Using Jython:

AdminConfig.modify(applicationDeployment, [’backgroundApplication’, ’true’])

where:

 $ is a Jacl operator for substituting a variable name with its

value

AdminConfig is an object representing the WebSphere Application

Server configuration

modify is an AdminConfig command

applicationDeployment is a variable name that was set in step 1

backgroundApplication is an attribute

true is the value of the backgroundApplication attribute

3. Save the configuration changes. See the “Saving configuration changes with the wsadmin tool” on

page 232 article for more information.

4. In a network deployment environment only, synchronize the node. See the “Synchronizing nodes with

the wsadmin tool” on page 217 article for more information.

Configuring servers with scripting

This topic contains the following tasks:

v “Creating a server using scripting”

v “Configuring the Java virtual machine using scripting” on page 284

v “Configuring enterprise bean containers using scripting” on page 284

v “Configuring a Performance Manager Infrastructure service using scripting” on page 288

v “Limiting the growth of Java virtual machine log files using scripting” on page 290

v “Configuring an ORB service using scripting” on page 292

v “Configuring for processes using scripting” on page 293

v “Configuring transaction properties for a server using scripting” on page 295

v “Setting port numbers kept in the serverindex.xml file using scripting” on page 296

v “Disabling components using scripting” on page 297

v “Disabling services using scripting” on page 298

v “Dynamic caching with scripting” on page 299

Creating a server using scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the wsadmin scripting client”

on page 250 article for more information.

Creating an application server involves a configuration command. Perform the following steps to create a

server:

1. Obtain the configuration ID of the object and assign it to the node variable, for example:

Chapter 4. Using the administrative clients 283

Using Jacl:

set node [$AdminConfig getid /Node:mynode/]

Using Jython:

node = AdminConfig.getid(’/Node:mynode/’)

2. Create the server using the node that you specified in the first step:

Using Jacl:

$AdminConfig create Server $node {{name myserv} {outputStreamRedirect {{fileName myfile.out}}}}

Using Jython:

AdminConfig.create(’Server’, node, [[’name’, ’myserv’], [’outputStreamRedirect’, [[’fileName’, ’myfile.out’]]]])

3. Save the configuration changes. See the “Saving configuration changes with the wsadmin tool” on

page 232 article for more information.

4. In a network deployment environment only, synchronize the node. See the “Synchronizing nodes with

the wsadmin tool” on page 217 article for more information.

Configuring the Java virtual machine using scripting

An example modifying the Java virtual machine (JVM) of a server to turn on debug follows:

v Identify the server and assign it to the server1 variable.

Using Jacl:

set server1 [$AdminConfig getid /Cell:mycell/Node:mynode/Server:server1/]

Using Jython:

server1 = AdminConfig.getid(’/Cell:mycell/Node:mynode/Server:server1/’)

print server1

Example output:

server1(cells/mycell/nodes/mynode/servers/server1|server.xml#Server_1)

v Identify the JVM belonging to this server and assign it to the jvm variable.

Using Jacl:

set jvm [$AdminConfig list JavaVirtualMachine $server1]

Using Jython:

jvm = AdminConfig.list(’JavaVirtualMachine’, server1)

print jvm

Example output:

(cells/mycell/nodes/mynode/servers/server1:server.xml#JavaVirtualMachine_1)

v Modify the JVM to turn on debug.

Using Jacl:

$AdminConfig modify $jvm {{debugMode true} {debugArgs "-Djava.compiler=NONE -Xdebug -Xnoagent

 -Xrunjdwp:transport=dt_socket,server=y,suspend=n,address=7777"}}

Using Jython:

AdminConfig.modify(jvm, [[’debugMode’, ’true’], [’debugArgs’, "-Djava.compiler=NONE -Xdebug -Xnoagent

 -Xrunjdwp:transport=dt_socket,server=y,suspend=n,address=7777"]])

v Save the changes with the following command:

Using Jacl:

$AdminConfig save

Using Jython:

AdminConfig.save()

Configuring enterprise bean containers using scripting

Before starting this task, the wsadmin tool must be running. See “Starting the wsadmin scripting client” on

page 250 for more information.

284 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Perform the following steps to configure an enterprise bean container:

1. Identify the application server and assign it to the serv1 variable. For example:

v Using Jacl:

set serv1 [$AdminConfig getid /Cell:mycell/Node:mynode/Server:server1/]

v Using Jython:

serv1 = AdminConfig.getid(’/Cell:mycell/Node:mynode/Server:server1/’)

print serv1

where:

 set is a Jacl command

serv1 is a variable name

$ is a Jacl operator for substituting a variable name with its

value

AdminConfig is an object representing the WebSphere Application

Server configuration

getid is an AdminConfig command

/Cell:mycell/Node:mynode/Server:server1/ is the hierarchical containment path of the configuration

object

Cell is the object type

mycell is the optional name of the object

Node is the object type

mynode is the optional name of the object

Server is the object type

server1 is the optional name of the object

Example output:

server1(cells/mycell/nodes/mynode/servers/server1|server.xml#Server_1)

2. Identify the EJB container belonging to the server and assign it to the ejbc1 variable. For example:

v Using Jacl:

set ejbc1 [$AdminConfig list EJBContainer $serv1]

v Using Jython:

ejbc1 = AdminConfig.list(’EJBContainer’, serv1)

print ejbc1

where:

 set is a Jacl command

ejbc1 is a variable name

$ is a Jacl operator for substituting a variable name with its

value

AdminConfig is an object representing the WebSphere Application

Server configuration

list is an AdminConfig command

EJBContainer is the object type

Note: The name of the object type that you input here is

the one based on the XML configuration files and does

not have to be the same name that the administrative

console displays.

Chapter 4. Using the administrative clients 285

serv1 evaluates to the ID of the server specified in step number

1

Example output:

(cells/mycell/nodes/mynode/servers/server1|server.xml#EJBContainer_1)

3. View all the attributes of the enterprise bean container.

v The following example command does not show nested attributes:

– Using Jacl:

$AdminConfig show $ejbc1

Example output:

{cacheSettings (cells/mycell/nodes/mynode/servers/server1|server.xml#EJBCache_1)}

{components {}}

{inactivePoolCleanupInterval 30000}

{parentComponent (cells/mycell/nodes/mynode/servers/server1|server.xml#ApplicationServer_1)

{passivationDirectory ${USER_INSTALL_ROOT}/temp}

{properties {}}

{services {(cells/mycell/nodes/mynode/servers/server1|server.xml#MessageListenerService_1)}

{stateManagement (cells/mycell/nodes/mynode/servers/server1|server.xml#StateManageable_10)}

– Using Jython:

print AdminConfig.show(ejbc1)

Example output:

[cacheSettings (cells/mycell/nodes/myode/servers/server1|server.xml#EJBCache_1)]

[components []]

[inactivePoolCleanupInterval 30000]

[parentComponent (cells/mycell/nodes/myode/servers/server1|server.xml#ApplicationServer_1)

[passivationDirectory ${USER_INSTALL_ROOT}/temp]

[properties []]

[services [(cells/mycell/nodes/myode/servers/server1|server.xml#MessageListenerService_1)]

[stateManagement (cells/mycell/nodes/mynode/servers/server1|server.xml#StateManageable_10)]

where:

 $ is a Jacl operator for substituting a variable name with its

value

print is a Jython command

AdminConfig is an object representing the WebSphere Application

Server configuration

showall is an AdminConfig command

ejbc1 evaluates to the ID of the enterprise bean container

specified in step number 2

v The following command example includes nested attributes:

– Using Jacl:

$AdminConfig showall $ejbc1

Example output:

{cacheSettings {{cacheSize 2053}

 {cleanupInterval 3000}}}

{components {}}

{inactivePoolCleanupInterval 30000}

{parentComponent (cells/mycell/nodes/mynode/servers/server1|server.xml#ApplicationServer_1)}

{passivationDirectory ${USER_INSTALL_ROOT}/temp}

{properties {}}

{services {{{context (cells/mycell/nodes/mynode/servers/server1|server.xml#EJBContainer_1)}

 {listenerPorts {}}

 {properties {}}

 {threadPool {{inactivityTimeout 3500}

286 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

{isGrowable false}

 {maximumSize 50}

 {minimumSize 10}}}}}}

{stateManagement {{initialState START}

 {managedObject (cells/mycell/nodes/mynode/servers/server1|server.xml#EJBContainer_1)}}}

– Using Jython:

print AdminConfig.showall(ejbc1)

Example output:

[cacheSettings [[cacheSize 2053]

 [cleanupInterval 3000]]]

[components []]

[inactivePoolCleanupInterval 30000]

[parentComponent (cells/mycell/nodes/mynode/servers/server1|server.xml#ApplicationServer_1)]

[passivationDirectory ${USER_INSTALL_ROOT}/temp]

[properties []]

[services [[[context (cells/mycell/nodes/mynode/servers/server1|server.xml#EJBContainer_1)]

 [listenerPorts []]

 [properties []]

 [threadPool [[inactivityTimeout 3500]

 [isGrowable false]

 [maximumSize 50]

 [minimumSize 10]]]]]]

[stateManagement {{initialState START]

 [managedObject (cells/mycell/nodes/mynode/servers/server1|server.xml#EJBContainer_1)]]]

where:

 $ is a Jacl operator for substituting a variable name with its

value

print is a Jython command

AdminConfig is an object representing the WebSphere Application

Server configuration

showall is an AdminConfig command

ejbc1 evaluates to the ID of the enterprise bean container

specified in step number 2

4. Modify the attributes.

v The following example modifies the enterprise bean cache settings and it includes nested attributes:

– Using Jacl:

$AdminConfig modify $ejbc1 {{cacheSettings {{cacheSize 2500} {cleanupInterval 3500}}}}

– Using Jython:

AdminConfig.modify(ejbc1, [[’cacheSettings’, [[’cacheSize’, 2500], [’cleanupInterval’, 3500]]]])

where:

 $ is a Jacl operator for substituting a variable name with its

value

AdminConfig is an object representing the WebSphere Application

Server configuration

modify is an AdminConfig command

ejbc1 evaluates to the ID of the enterprise bean container

specified in step number 2

cacheSettings is an attribute of modify objects

cacheSize is an attribute of modify objects

2500 is the value of the cacheSize attribute

Chapter 4. Using the administrative clients 287

cleanupInterval is an attribute of modify objects

3500 is the value of the cleanupInterval attribute

v The following example modifies the cleanup interval attribute:

– Using Jacl:

$AdminConfig modify $ejbc1 {{inactivePoolCleanupInterval 15000}}

– Using Jython:

AdminConfig.modify(ejbc1, [[’inactivePoolCleanupInterval’, 15000]])

where:

 $ is a Jacl operator for substituting a variable name with its

value

AdminConfig is an object representing the WebSphere Application

Server configuration

modify is an AdminConfig command

ejbc1 evaluates to the ID of the enterprise bean container

specified in step number 2

inactivePoolCleanupInterval is an attribute of modify objects

15000 is the value of the inactivePoolCleanupInterval attribute

5. Save the changes. For example:

v Using Jacl:

$AdminConfig save

v Using Jython:

AdminConfig.save()

where:

 $ is a Jacl operator for substituting a variable name with its

value

AdminConfig is an object representing the WebSphere Application

Server configuration

save is an AdminConfig command

Configuring a Performance Manager Infrastructure service using scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the wsadmin scripting client”

on page 250 article for more information.

Use the following steps to configure the Performance Manager Infrastructure (PMI) service for an

application server:

1. Identify the application server and assign it to the s1 variable, for example:

v Using Jacl:

set s1 [$AdminConfig getid /Cell:mycell/Node:mynode/Server:server1/]

v Using Jython:

s1 = AdminConfig.getid(’Cell:mycell/Node:mynode/Server:server1/’)

where:

 set is a Jacl command

288 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

s1 is a variable name

$ is a Jacl operator for substituting a variable name with its

value

AdminConfig is an object representing the WebSphere Application

Server configuration

getid is an AdminConfig command

Cell is an attribute

mycell is the value of the Cell attribute

Node is an attribute

mynode is the value of the Node attribute

Server is an attribute

server1 is the value of the Server attribute

Example output:

server1(cells/mycell/nodes/mynode/servers/server1|server.xml#Server_1)

2. Identify the PMI service that belongs to the server and assign it to the pmi variable, for example:

v Using Jacl:

set pmi [$AdminConfig list PMIService $s1]

v Using Jython:

pmi = AdminConfig.list(’PMIService’, s1)

print pmi

where:

 set is a Jacl command

pmi is a variable name

$ is a Jacl operator for substituting a variable name with its

value

AdminConfig is an object representing the WebSphere Application

Server configuration

list is an AdminConfig command

PMIService is an AdminConfig object

s1 evaluates to the ID of the application server specified in

step number 1

Example output:

(cells/mycell/nodes/mynode/servers/server1|server.xml#PMIService_1)

3. Modify the attributes, for example:

v Using Jacl:

$AdminConfig modify $pmi {{enable true}

{initialSpecLevel beanModule=H:cacheModule=H:connectionPoolModule=

H:j2cModule=H:jvmRuntimeModule=H:orbPerfModule=H:servletSessionsModule

=H:systemModule=H:threadPoolModule=H:transactionModule=H:

webAppModule=H:webServicesModule=H:wlmModule=H:wsgwModule=H}}

v Using Jython:

AdminConfig.modify(pmi, [[’enable’, ’true’],

[’initialSpecLevel’, ’beanModule=H:cacheModule=H:connectionPoolModule=

H:j2cModule=H:jvmRuntimeModule=H:orbPerfModule=H:servletSessionsModule=

H:systemModule=H:threadPoolModule=H:transactionModule=H:webAppModule=H:

webServicesModule=H:wlmModule=H:wsgwModule=H’]])

Chapter 4. Using the administrative clients 289

This example enables PMI service and sets the specification levels for all of components in the server.

The following are the valid specification levels for the components:

 N represents none

L represents low

M represents medium

H represents high

X represents maximum

4. Save the configuration changes. See the “Saving configuration changes with the wsadmin tool” on

page 232 article for more information.

5. In a network deployment environment only, synchronize the node. See the “Synchronizing nodes with

the wsadmin tool” on page 217 article for more information.

Limiting the growth of Java virtual machine log files using scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the wsadmin scripting client”

on page 250 article for more information.

Use the following example to configure the rotation policy settings for Java virtual machine (JVM) logs:

1. Identify the application server and assign it to the server1 variable, for example:

v Using Jacl:

set s1 [$AdminConfig getid /Cell:mycell/Node:mynode/Server:server1/]

v Using Jython:

s1 = AdminConfig.getid(’/Cell:mycell/Node:mynode/Server:server1/’)

print s1

where:

 set is a Jacl command

s1 is a variable name

$ is a Jacl operator for substituting a variable name with its

value

AdminConfig is an object representing the WebSphere Application

Server configuration

getid is an AdminConfig command

Cell is the object type

mycell is the name of the object that will be modified

Node is the object type

mynode is the name of the object that will be modified

Server is the object type

server1 is the name of the object that will be modified

print a Jython command

Example output:

server1(cells/mycell/nodes/mynode/servers/server1|server.xml#Server_1)

2. Identify the stream log and assign it to the log variable, for example:

v The following example identifies the output stream log:

– Using Jacl:

set log [$AdminConfig showAttribute $s1 outputStreamRedirect]

290 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

– Using Jython:

log = AdminConfig.showAttribute(s1, ’outputStreamRedirect’)

v The following example identifies the error stream log:

– Using Jacl:

set log [$AdminConfig showAttribute $s1 errorStreamRedirect]

– Using Jython:

log = AdminConfig.showAttribute(s1, ’errorStreamRedirect’)

Example output:

(cells/mycell/nodes/mynode/servers/server1|server.xml#StreamRedirect_2)

3. List the current values of the stream log, for example:

v Using Jacl:

$AdminConfig show $log

v Using Jython:

AdminConfig.show(log)

Example output:

{baseHour 24}

{fileName ${SERVER_LOG_ROOT}/SystemOut.log}

{formatWrites true}

{maxNumberOfBackupFiles 1}

{messageFormatKind BASIC}

{rolloverPeriod 24}

{rolloverSize 1}

{rolloverType SIZE}

{suppressStackTrace false}

{suppressWrites false}

4. Modify the rotation policy for the stream log.

v The following example sets the rotation log file size to two megabytes:

– Using Jacl:

$AdminConfig modify $log {{rolloverSize 2}}

– Using Jython:

AdminConfig.modify(log, [’rolloverSize’, 2])

v The following example sets the rotation policy to manage itself. It is based on the age of the file with

the rollover algorithm loaded at midnight, and the log file rolling over every 12 hours:

– Using Jacl:

$AdminConfig modify $log {{rolloverType TIME} {rolloverPeriod 12} {baseHour 24}}

– Using Jython:

AdminConfig.modify(log, [[’rolloverType’, ’TIME’] [’rolloverPeriod’, 12] [’baseHour’, 24]])

v The following example sets the log file to roll over based on both time and size:

– Using Jacl:

$AdminConfig modify $log {{rolloverType BOTH} {rolloverSize 2} {rolloverPeriod 12} {baseHour 24}}

– Using Jython:

AdminConfig.modify(log, [[’rolloverType’, ’BOTH’] [’rolloverSize’, 2] [’rolloverPeriod’, 12] [’baseHour’, 24]])

5. Save the configuration changes. See the “Saving configuration changes with the wsadmin tool” on

page 232 article for more information.

6. In a network deployment environment only, synchronize the node. See the “Synchronizing nodes with

the wsadmin tool” on page 217 article for more information.

Chapter 4. Using the administrative clients 291

Configuring an ORB service using scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the wsadmin scripting client”

on page 250 article for more information.

Perform the following steps to modify the Object Request Broker (ORB) service for an application server:

1. Identify the application server and assign it to the server variable:

v Using Jacl:

set s1 [$AdminConfig getid /Cell:mycell/Node:mynode/Server:server1/]

v Using Jython:

s1 = AdminConfig.getid(’/Cell:mycell/Node:mynode/Server:server1/’)

print s1

where:

 set is a Jacl command

s1 is a variable name

$ is a Jacl operator for substituting a variable name with its

value

AdminConfig is an object representing the WebSphere Application

Server configuration

getid is an AdminConfig command

Cell is the object type

mycell is the name of the object that will be modified

Node is the object type

mynode is the name of the object that will be modified

Server is the object type

server1 is the name of the object that will be modified

print a Jython command

Example output:

server1(cells/mycell/nodes/mynode/servers/server1|server.xml#Server_1)

2. Identify the ORB belonging to the server and assign it to the orb variable:

v Using Jacl:

set orb [$AdminConfig list ObjectRequestBroker $s1]

v Using Jython:

orb = AdminConfig.list(’ObjectRequestBroker’, s1)

print orb

where:

 set is a Jacl command

orb is a variable name

$ is a Jacl operator for substituting a variable name with its

value

AdminConfig is an object representing the WebSphere Application

Server configuration

list is an AdminConfig command

ObjectRequestBroker is an AdminConfig object

s1 evaluates to the ID of server specified in step number 1

292 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

print a Jython command

Example output:

(cells/mycell/nodes/mynode/servers/server1|server.xml#ObjectRequestBroker_1)

3. Modify the attributes. The following example modifies the connection cache maximum and pass by

value attributes. You can modify the example to change the value of other attributes.

v Using Jacl:

$AdminConfig modify $orb {{connectionCacheMaximum 252} {noLocalCopies true}}

v Using Jython:

AdminConfig.modify(orb, [[’connectionCacheMaximum’, 252], [’noLocalCopies’, ’true’]])

where:

 $ is a Jacl operator for substituting a variable name with its

value

AdminConfig is an object representing the WebSphere Application

Server configuration

modify is an AdminConfig command

orb evaluates to the ID of ORB specified in step number 2

connectionCacheMaximum is an attribute

252 is the value of the connectionCacheMaximum attribute

noLocalCopies is an attribute

true is the value of the noLocalCopies attribute

4. Save the configuration changes. See the “Saving configuration changes with the wsadmin tool” on

page 232 article for more information.

5. In a network deployment environment only, synchronize the node. See the “Synchronizing nodes with

the wsadmin tool” on page 217 article for more information.

Configuring for processes using scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the wsadmin scripting client”

on page 250 article for more information.

Perform the following steps to configure a process:

1. Identify the server and assign it to the s1 variable. For example:

v Using Jacl:

set s1 [$AdminConfig getid /Cell:mycell/Node:mynode/Server:server1/]

v Using Jython:

s1 = AdminConfig.getid(’/Cell:mycell/Node:mynode/Server:server1/’)

print s1

where:

 set is a Jacl command

s1 is a variable name

$ is a Jacl operator for substituting a variable name with its

value

AdminConfig is an object representing the WebSphere Application

Server configuration

getid is an AdminConfig command

Chapter 4. Using the administrative clients 293

Cell is the object type

mycell is the name of the object that will be modified

Node is the object type

mynode is the name of the object that will be modified

Server is the object type

server1 is the name of the object that will be modified

print a Jython command

Example output:

server1(cells/mycell/nodes/mynode/servers/server1|server.xml#Server_1)

2. Identify the process definition belonging to this server and assign it to the processDef variable. For

example:

v Using Jacl:

set processDef [$AdminConfig list JavaProcessDef $s1]

set processDef [$AdminConfig showAttribute $s1 processDefinition]

v Using Jython:

processDef = AdminConfig.list(’JavaProcessDef’, s1)

print processDef

processDef = AdminConfig.showAttribute(s1, ’processDefinition’)

Example output:

(cells/mycell/nodes/mynode/servers/server1|server.xml#JavaProcessDef_1)

3. Change the attributes.

v On distributed systems, the following example changes the working directory.

– Using Jacl:

$AdminConfig modify $processDef {{workingDirectory c:/temp/user1}}

– Using Jython:

AdminConfig.modify(processDef, [[’workingDirectory’, ’c:/temp/user1’]])

v The following example modifies the stderr file name:

– Using Jacl:

set errFile [list stderrFilename \${LOG_ROOT}/server1/new_stderr.log]

set attr [list $errFile]

$AdminConfig modify $processDef [subst {{ioRedirect {$attr}}}]

– Using Jython:

errFile = [’stderrFilename’, ’\${LOG_ROOT}/server1/new_stderr.log’]

attr = [errFile]

AdminConfig.modify(processDef, [[’ioRedirect’, [attr]]])

v The following example modifies the process priority:

– Using Jacl:

$AdminConfig modify $processDef {{execution {{processPriority 15}}}}

– Using Jython:

AdminConfig.modify(processDef, [[’execution’, [[’processPriority’, 15]]]])

v The following example changes the maximum startup attempts. You can modify this example to

change other attributes in the process definition object.

– Using Jacl:

$AdminConfig modify $processDef {{monitoringPolicy {{maximumStartupAttempts 1}}}}

– Using Jython:

AdminConfig.modify(processDef, [[’monitoringPolicy’, [[’maximumStartupAttempts’, 1]]]])

4. Save the configuration changes. See the “Saving configuration changes with the wsadmin tool” on

page 232 article for more information.

5. In a network deployment environment only, synchronize the node. See the “Synchronizing nodes with

the wsadmin tool” on page 217 article for more information.

294 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Configuring transaction properties for a server using scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the wsadmin scripting client”

on page 250 article for more information.

Perform the following steps to configure the runtime transaction properties for an application server.

1. Identify the transaction service MBean for the application server. The following command returns the

transaction service MBean for server1.

v Using Jacl:

set ts [$AdminControl completeObjectName cell=mycell,node=mynode,process=server1,type=TransactionService,*]

v Using Jython:

ts = AdminControl.completeObjectName(’cell=mycell,node=mynode,process=server1,type=TransactionService,*’)

print ts

where:

 set is a Jacl command

ts is a variable name

$ is a Jacl operator for substituting a variable name with its

value

AdminControl is an object that enables the manipulation of MBeans

running in a WebSphere server process

completeObjectName is an AdminControl command

cell=mycell,node=mynode,process=server1,

type=TransactionService

is a fragment of the object name whose complete name

is returned by this command. It is used to find the

matching object name which is, in this case, the

transaction object MBean for the node mynode, where

mynode is the name of the node that you use to

synchronize configuration changes. For example:

type=TransactionService, process=server1. It can be

any valid combination of domain and key properties. For

example, type, name, cell, node, process, etc.

Example output:

WebSphere:cell=mycell,name=TransactionService,mbeanIdentifier=TransactionService,type=TransactionService,

 node=mynode,process=server1

2. Modify the attributes.

v Using Jacl:

$AdminControl invoke $ts {{transactionLogDirectory c:/WebSphere/AppServer/tranlog/server1}

 {clientInactivityTimeout 30} {totalTranLifetimeTimeout 180}}

v Using Jython:

AdminControl.invoke(ts, [[’transactionLogDirectory’, ’c:/WebSphere/AppServer/tranlog/server1’],

 [’clientInactivityTimeout’, 30], [’totalTranLifetimeTimeout’, 180]])

where:

 $ is a Jacl operator for substituting a variable name with its

value

AdminControl is an object that enables the manipulation of MBeans

running in a WebSphere server process

invoke is an AdminControl command

ts evaluates to the ID of the transaction service specified in

step number 1

transactionLogDirectory is an attribute

Chapter 4. Using the administrative clients 295

c:/WebSphere/AppServer/tranlog/server1 is the value of the transactionLogDirectory attribute

clientInactivityTimeout is an attribute

30 is the value of the clientInactivityTimeout attribute

specified in seconds. A value of 0 means that there is no

timeout limit.

totalTranLifetimeTimeout is an attribute

180 is the value of the totalTranLifetimeTimeout attribute

specified in milliseconds. A value of 0 means that there is

no timeout limit.

Setting port numbers kept in the serverindex.xml file using scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the wsadmin scripting client”

on page 250 article for more information.

This topic provides reference information about modifying port numbers in the serverindex.xml file. The

end points of the serverindex.xml file are part of different objects in the configuration.

Use the following attributes to modify the end point information of the end point attributes for a process:

v BOOTSTRAP_ADDRESS of server1 process

An attribute of the NameServer object that exists inside the server. It is used by the naming client to

specify the naming server to look up the initial context. To modify its end point, obtain the ID of the

NameServer object and issue a modify command, for example:

– Using Jacl:

set s [$AdminConfig getid /Cell:mycell/Node:mynode/Server:server1/]

set ns [$AdminConfig list NameServer $s]

$AdminConfig modify $ns {{BOOTSTRAP_ADDRESS {{port 2810} {host myhost}}}}

– Using Jython:

s = AdminConfig.getid(’/Cell:mycell/Node:mynode/Server:server1/’)

ns = AdminConfig.list(’NameServer’, s)

AdminConfig.modify(ns, [[’BOOTSTRAP_ADDRESS’, [[’host’, ’myhost’], [’port’, 2810]]]])

v SOAP_CONNECTOR-ADDRESS of server1 process

An attribute of the SOAPConnector object that exists inside the server. It is the port that is used by

HTTP transport for incoming SOAP requests. To modify its end point, obtain the ID of the

SOAPConnector object and issue a modify command, for example:

– Using Jacl:

set s [$AdminConfig getid /Cell:mycell/Node:mynode/Server:server1/]

set soap [$AdminConfig list SOAPConnector $s]

$AdminConfig modify $soap {{SOAP_CONNECTOR_ADDRESS {{host myhost} {port 8881}}}}

– Using Jython:

s = AdminConfig.getid(’/Cell:mycell/Node:mynode/Server:server1/’)

soap = AdminConfig.list(’SOAPConnector’, s)

AdminConfig.modify(soap, [[’SOAP_CONNECTOR_ADDRESS’, [[’host’, ’myhost’], [’port’, 8881]]]])

v DRS_CLIENT_ADDRESS of server1 process

An attribute of the SystemMessageServer object that exists inside the server. It is the port used to

configure the Data Replication Service (DRS) which is a JMS-based message broker system for

dynamic caching. The DRS_CLIENT_ADDRESS attribute is not available if a replication domain and a

replicator entry have not been added to the server.

To modify the end point of the DRS_CLIENT_ADDRESS attribute, obtain the ID of the

SystemMessageServer object and issue a modify command, for example:

– Using Jacl:

set s [$AdminConfig getid /Cell:mycell/Node:mynode/Server:server1/]

set sms [$AdminConfig list SystemMessageServer $s]

$AdminConfig modify $sms {{DRS_CLIENT_ADDRESS {{host myhost} {port 7874}}}}

296 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

– Using Jython:

s = AdminConfig.getid(’/Cell:mycell/Node:mynode/Server:server1/’)

sms = AdminConfig.list(’SystemMessageServer’, s)

AdminConfig.modify(sms, [[’DRS_CLIENT_ADDRESS’, [[’host’, ’myhost’], [’port’, 7874]]]])

v JMSSERVER_QUEUED_ADDRESS and JMSSERVER_DIRECT_ADDRESS of server1 process

An attribute of the JMSServer object that exists inside the server. These are ports used to configure the

WebSphere Application Server JMS provider topic connection factory settings. To modify its end point,

obtain the ID of the JMSServer object and issue a modify command, for example:

– Using Jacl:

set s [$AdminConfig getid /Cell:mycell/Node:mynode/Server:server1/]

set jmss [$AdminConfig list JMSServer $s]

$AdminConfig modify $jmss {{JMSSERVER_QUEUED_ADDRESS {{host myhost} {port 5560}}}}

$AdminConfig modify $jmss {{JMSSERVER_DIRECT_ADDRESS {{host myhost} {port 5561}}}}

– Using Jython:

s = AdminConfig.getid(’/Cell:mycell/Node:mynode/Server:server1/’)

jmss = AdminConfig.list(’JMSServer’, s)

AdminConfig.modify(jmss, [[’JMSSERVER_QUEUED_ADDRESS’, [[’host’, ’myhost’], [’port’, 5560]]]])

AdminConfig.modify(jmss, [[’JMSSERVER_DIRECT_ADDRESS’, [[’host’, ’myhost’], [’port’, 5561]]]])

v NODE_DISCOVERY_ADDRESS of nodeagent process

An attribute of the NodeAgent object that exists inside the server. It is the port used to receive the

incoming process discovery messages inside a node agent process. To modify its end point, obtain the

ID of the NodeAgent object and issue a modify command, for example:

– Using Jacl:

set nodeAgentServer [$AdminConfig getid /Cell:mycell/Node:mynode/Server:nodeagent/]

set nodeAgent [$AdminConfig list NodeAgent $nodeAgentServer]

$AdminConfig modify $nodeAgent {{NODE_DISCOVERY_ADDRESS {{host myhost} {port 7272}}}}

– Using Jython:

nodeAgentServer = AdminConfig.getid(’/Cell:mycell/Node:mynode/Server:nodeagent/’)

nodeAgent = AdminConfig.list(’NodeAgent’, nodeAgentServer)

AdminConfig.modify(nodeAgent, [[’NODE_DISCOVERY_ADDRESS’, [[’host’, ’myhost’], [’port’, 7272]]]])

v CELL_DISCOVERY_ADDRESS of dmgr process

An attribute of the deploymentManager object that exists inside the server. It is the port used to receive

the incoming process discovery messages inside a deployment manager process. To modify its end

point, obtain the ID of the deploymentManager object and issue a modify command, for example:

– Using Jacl:

set netmgr [$AdminConfig getid /Cell:mycell/Node:managernode/Server:dmgr/]

set deploymentManager [$AdminConfig list CellManager $netmgr]

$AdminConfig modify $deploymentManager {{CELL_MULTICAST_DISCOVERY_ADDRESS {{host myhost} {port 7272}}}}

$AdminConfig modify $deploymentManager {{CELL_DISCOVERY_ADDRESS {{host myhost} {port 7278}}}}

– Using Jython:

netmgr = AdminConfig.getid(’/Cell:mycell/Node:managernode/Server:dmgr/’)

deploymentManager = AdminConfig.list(’CellManager’, netmgr)

AdminConfig.modify(deploymentManager, [[’CELL_MULTICAST_DISCOVERY_ADDRESS’, [[’host’, ’myhost’], [’port’, 7272]]]]
AdminConfig.modify(deploymentManager, [[’CELL_DISCOVERY_ADDRESS’, [[’host’, ’myhost’], [’port’, 7278]]]])

Save the configuration changes. See the “Saving configuration changes with the wsadmin tool” on page

232 article for more information.

In a network deployment environment only, synchronize the node. See the “Synchronizing nodes with the

wsadmin tool” on page 217 article for more information.

Disabling components using scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the wsadmin scripting client”

on page 250 article for more information.

Chapter 4. Using the administrative clients 297

Perform the following steps to disable the name server component of a configured server. You can modify

this example to disable a different component.

1. Identify the server component and assign it to the nameServer variable.

v Using Jacl:

set nameServer [$AdminConfig list NameServer $server]

v Using Jython:

nameServer = AdminConfig.list(’NameServer’, server)

print nameServer

Example output:

(cells/mycell/nodes/mynode/servers/server1|server.xml#NameServer_1)

2. List the components belonging to the server and assign them to the components variable.

v Using Jacl:

set components [$AdminConfig list Component $server]

v Using Jython:

components = AdminConfig.list(’Component’, server)

print components

The components variable contains a list of components.

Example output:

(cells/mycell/nodes/mynode/servers/server1|server.xml#ApplicationServer_1)

(cells/mycell/nodes/mynode/servers/server1|server.xml#EJBContainer_1)

(cells/mycell/nodes/mynode/servers/server1|server.xml#NameServer_1)

(cells/mycell/nodes/mynode/servers/server1|server.xml#WebContainer_1)

3. Identify the name server component and assign it to the nameServer variable.

Since the name server component is the third element in the list, retrieve this element by using index

2.

v Using Jacl:

set nameServer [lindex $components 2]

v Using Jython:

get line separator

import java

lineSeparator = java.lang.System.getProperty(’line.separator’)

arrayComponents = components.split(lineSeparator)

nameServer = arrayComponents[2]

print nameServer

Example output:

(cells/mycell/nodes/mynode/servers/server1|server.xml#NameServer_1)

4. Disable the name server component by changing the nested initialState attribute belonging to the

stateManagement attribute. For example:

v Using Jacl:

$AdminConfig modify $nameServer {{stateManagement {{initialState STOP}}}}

v Using Jython:

AdminConfig.modify(nameServer, [[’stateManagement’, [[’initialState’, ’STOP’]]]])

5. Save the configuration changes. See the “Saving configuration changes with the wsadmin tool” on

page 232 article for more information.

6. In a network deployment environment only, synchronize the node. See the “Synchronizing nodes with

the wsadmin tool” on page 217 article for more information.

Disabling services using scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the wsadmin scripting client”

on page 250 article for more information.

298 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Perform the following steps to disable the trace service of a configured server. You can modify this

example to disable a different service.

1. Identify the server and assign it to the server variable. For example:

v Using Jacl:

set server [$AdminConfig getid /Cell:mycell/Node:mynode/Server:server1/]

v Using Jython:

server = AdminConfig.getid(’/Cell:mycell/Node:mynode/Server:server1/’)

print server

Example output:

server1(cells/mycell/nodes/mynode/servers/server1|server.xml#Server_1)

2. List all the services belonging to the server and assign them to the services variable. The following

example returns a list of services:

v Using Jacl:

set services [$AdminConfig list Service $server]

v Using Jython:

services = AdminConfig.list(’Service’, server)

print services

Example output:

(cells/mycell/nodes/mynode/servers/server1|server.xml#AdminService_1)

(cells/mycell/nodes/mynode/servers/server1|server.xml#DynamicCache_1)

(cells/mycell/nodes/mynode/servers/server1|server.xml#MessageListenerService_1)

(cells/mycell/nodes/mynode/servers/server1|server.xml#ObjectRequestBroker_1)

(cells/mycell/nodes/mynode/servers/server1|server.xml#PMIService_1)

(cells/mycell/nodes/mynode/servers/server1|server.xml#RASLoggingService_1)

(cells/mycell/nodes/mynode/servers/server1|server.xml#SessionManager_1)

(cells/mycell/nodes/mynode/servers/server1|server.xml#TraceService_1)

(cells/mycell/nodes/mynode/servers/server1|server.xml#TransactionService_1)

3. Identify the trace service and assign it to the traceService variable.

Since trace service is the 7th element in the list, retrieve this element by using index 6.

v Using Jacl:

set traceService [$AdminConfig list TraceService $server]

v Using Jython:

traceService = AdminConfig.list(’TraceService’, server)

print traceService

Example output:

(cells/mycell/nodes/mynode/servers/server1|server.xml#TraceService_1)

4. Disable the trace service by modifying the enable attribute. For example:

v Using Jacl:

$AdminConfig modify $traceService {{enable false}}

v Using Jython:

AdminConfig.modify(traceService, [[’enable’, ’false’]])

5. Save the configuration changes. See the “Saving configuration changes with the wsadmin tool” on

page 232 article for more information.

6. In a network deployment environment only, synchronize the node. See the “Synchronizing nodes with

the wsadmin tool” on page 217 article for more information.

Dynamic caching with scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the wsadmin scripting client”

on page 250 article for more information.

To see a list of parameters associated with dynamic caching, use the attributes command. For example:

Chapter 4. Using the administrative clients 299

$AdminConfig attributes DynamicCache

Perform the following steps to enable servlet caching:

1. Locate the server object. The following example selects the first server found:

Using Jacl:

set s1 [$AdminConfig getid /Server:server1/]

Using Jython:

s1 = AdminConfig.getid(’/Server:server1/’)

2. List the web containers and assign them to the wc variable, for example:

Using Jacl:

set wc [$AdminConfig list WebContainer $s1]

Using Jython:

wc = AdminConfig.list(’WebContainer’, s1)

3. Set the enableServletCaching attribute to true and assign it to the serEnable variable, for example:

Using Jacl:

set serEnable "{enableServletCaching true}"

Using Jython:

serEnable = [[’enableServletCaching’, ’true’]]

4. Enable caching, for example:

Using Jacl:

$AdminConfig modify $wc $serEnable

Using Jython:

AdminConfig.modify(wc, serEnable)

Configuring connections to Webservers with scripting

This topic contains the following tasks:

v “Regenerating the node plug-in configuration using scripting”

v “Creating new virtual hosts using templates with scripting” on page 301

Regenerating the node plug-in configuration using scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the wsadmin scripting client”

on page 250 article for more information.

Perform the following steps to regenerate the node plug-in configuration:

1. Identify the plug-in and assign it to the generator variable, for example:

Using Jacl:

set generator [$AdminControl completeObjectName type=PluginCfgGenerator,node=mynode,*]

Using Jython:

generator = AdminControl.completeObjectName(’type=PluginCfgGenerator,node=mynode,*’)

2. Regenerate the node plug-in:

Using Jacl:

$AdminControl invoke $generator generate "c:/WebSphere/DeloymentManager/config mycell mynode null plugin-cfg.xml"

Using Jython:

AdminControl.invoke(generator, ’generate’, "c:/WebSphere/DeloymentManager/config mycell mynode null plugin-cfg.xml")

300 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Creating new virtual hosts using templates with scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the wsadmin scripting client”

on page 250 article for more information.

Some configuration object types have templates that you can use when you create a virtual host. You can

create a new virtual host using a preexisting template or by creating a new custom template. Perform the

following steps to create a new virtual host using a template:

1. If you want to create a new custom template, perform the following steps:

a. Copy and paste the following file into a new file, myvirtualhostname.xml:

<WAS-ROOT>\config\templates\default\virtualhosts.xml

b. Edit and customize the new myvirtualhostname.xml file.

c. Place the new file in the following directory:

<WAS-ROOT>\config\templates\custom\

If you want the new custom template to appear with the list of templates, restart the deployment

manager on a network deployment edition, or use the AdminConfig object reset command. For

example:

v Using Jacl:

$AdminConfig reset

v Using Jython:

AdminConfig.reset()

The administrative console does not support the use of custom templates. The new template that you

create will not be visible in the administrative console panels.

2. Use the AdminConfig object listTemplates command to list available templates, for example:

v Using Jacl:

$AdminConfig listTemplates VirtualHost

v Using Jython:

print AdminConfig.listTemplates(’VirtualHost’)

Example output:

default_host(templates/default:virtualhosts.xml#VirtualHost_1)

my_host(templates/custom:virtualhostname.xml#VirtualHost_1)

3. Create a new virtual host. For example:

v Using Jacl:

set cell [$AdminConfig getid /Cell:NetworkDeploymentCell/]

set vtempl [$AdminConfig listTemplates VirtualHost my_host]

$AdminConfig createUsingTemplate VirtualHost $cell {{name newVirHost}} $vtempl

v Using Jython:

cell = AdminConfig.getid(’/Cell:NetworkDeploymentCell/’)

vtempl = AdminConfig.listTemplates(’VirtualHost’, ’my_host’)

AdminConfig.createUsingTemplate(’VirtualHost’, cell, [[’name’, ’newVirHost’]], vtempl)

4. Save the configuration changes. See the “Saving configuration changes with the wsadmin tool” on

page 232 article for more information.

5. In a network deployment environment only, synchronize the node. See the “Synchronizing nodes with

the wsadmin tool” on page 217 article for more information.

Managing servers with scripting

This topic contains the following tasks:

v “Stopping a node using scripting” on page 302

v “Starting servers using scripting” on page 302

Chapter 4. Using the administrative clients 301

v “Stopping servers using scripting” on page 303

v “Querying server state using scripting” on page 304

v “Listing running applications on running servers using scripting” on page 304

v “Starting listener ports using scripting” on page 306

v “Managing generic servers using scripting” on page 307

v “Setting development mode for server objects using scripting” on page 308

v “Disabling parallel startup using scripting” on page 308

v “Removing multicast endpoints using scripting” on page 309

v “Obtaining server version information with scripting” on page 309

Stopping a node using scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the wsadmin scripting client”

on page 250 article for more information.

Stopping the node agent on a remote machine process is an asynchronous action where the stop is

initiated, and then control returns to the command line. Perform the following task to stop a node:

1. Identify the node that you want to stop and assign it to a variable:

Using Jacl:

set na [$AdminControl queryNames type=NodeAgent,node=mynode,*]

Using Jython:

na = AdminControl.queryNames(’type=NodeAgent,node=mynode,*’)

2. Stop the node:

Using Jacl:

$AdminControl invoke $na stopNode

Using Jython:

AdminControl.invoke(na, ’stopNode’)

Starting servers using scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the wsadmin scripting client”

on page 250 article for more information.

Use the startServer command to start the server. This command has several syntax options. For

example:

v To start a server on a WebSphere Application Server single server edition, choose one of the following

options:

– The following examples specify the server name only:

Using Jacl:

$AdminControl startServer serverName

Using Jython:

AdminControl.startServer(’serverName’)

– The following example starts an application server with the node specified:

- Using Jacl:

$AdminControl startServer server1 mynode

- Using Jython:

print AdminControl.startServer(’server1’, ’mynode’)

Example output:

302 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

WASX7319I: The serverStartupSyncEnabled attribute is set to false. A start

will be attempted for server "server1" but the configuration information for

node "mynode" may not be current.

WASX7262I: Start completed for server "server1" on node "mynode"

– The following example specify the server name and wait time:

- Using Jacl:

$AdminControl startServer serverName 10

- Using Jython:

AdminControl.startServer(’serverName’, 10)

where 10 is the number of milliseconds that the process should wait before starting the server.

v To start a server on a WebSphere Application Server network deployment edition, choose one of the

following options:

– The following example specifies the server name and the node name:

- Using Jacl:

$AdminControl startServer serverName nodeName

- Using Jython:

AdminControl.startServer(’serverName’, ’nodeName’)

– The following example specifies the server name, the node name, and the wait time:

- Using Jacl:

$AdminControl startServer serverName nodeName 10

- Using Jython:

AdminControl.startServer(’serverName’, ’nodeName’, 10)

where 10 is the number of milliseconds that the process should wait before starting the server.

Stopping servers using scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the wsadmin scripting client”

on page 250 article for more information.

Use the stopServer command to stop the server. This command has several syntax options. For example:

v To stop a server on a WebSphere Application Server single server edition, choose one of the following

options:

– The following examples specify the server name only:

Using Jacl:

$AdminControl stopServer serverName

Using Jython:

AdminControl.stopServer(’serverName’)

– The following examples stop an application server with the node specified:

- Using Jacl:

$AdminControl stopServer serverName mynode

- Using Jython:

print AdminControl.stopServer(’serverName’, ’mynode’)

Example output:

WASX7337I: Invoked stop for server "serverName" Waiting for stop completion.

WASX7264I: Stop completed for server "serverName" on node "mynode"

– The following examples specify the server name and immediate:

- Using Jacl:

$AdminControl stopServer serverName immediate

- Using Jython:

Chapter 4. Using the administrative clients 303

AdminControl.stopServer(’serverName’, immediate)

v To stop a server on a WebSphere Application Server network deployment edition, choose one of the

following options:

– The following example specifies the server name and the node name:

- Using Jacl:

$AdminControl stopServer serverName nodeName

- Using Jython:

AdminControl.stopServer(’serverName’, ’nodeName’)

– The following example specifies the server name, the node name, and immediate:

- Using Jacl:

$AdminControl stopServer serverName nodeName immediate

- Using Jython:

AdminControl.stopServer(’serverName’, ’nodeName’, immediate)

Querying server state using scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the wsadmin scripting client”

on page 250 article for more information.

Perform the following steps to query the server state:

1. Identify the server and assign it to the server variable. The following example returns the server

MBean that matches the partial object name string:

v Using Jacl:

set server [$AdminControl completeObjectName cell=mycell,node=mynode,name=server1,type=Server,*]

v Using Jython:

server = AdminControl.completObjectName(’cell=mycell,node=mynode,name=server1,type=Server,*’)

print server

Example output:

WebSphere:cell=mycell,name=server1,mbeanIdentifier=server.xml#Server_1,type=Server,node=mynode,

 process=server1,processType=ManagedProcess

2. Query for the state attribute. For example:

v Using Jacl:

$AdminControl getAttribute $server state

v Using Jython:

print AdminControl.getAttribute(server, ’state’)

The getAttribute command returns the value of a single attribute.

Example output:

STARTED

Listing running applications on running servers using scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the wsadmin scripting client”

on page 250 article for more information.

Use the following example to list all the running applications on all the running servers on each node of

each cell:

v Using Jacl:

*Provide this example as a Jacl script file and run it with the "-f" option:

1 #--

2 # lines 4 and 5 find all the cell and process them one at a time

3 #--

304 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

4 set cells [$AdminConfig list Cell]

5 foreach cell $cells {

6 #---

7 # lines 10 and 11 find all the nodes belonging to the cell and

8 # process them at a time

9 #---

10 set nodes [$AdminConfig list Node $cell]

11 foreach node $nodes {

12 #--

13 # lines 16-20 find all the running servers belonging to the cell

14 # and node, and process them one at a time

15 #--

16 set cname [$AdminConfig showAttribute $cell name]

17 set nname [$AdminConfig showAttribute $node name]

18 set servs [$AdminControl queryNames type=Server,cell=$cname,node=$nname,*]

19 puts "Number of running servers on node $nname: [llength $servs]"

20 foreach server $servs {

21 #---

22 # lines 25-31 get some attributes from the server to display;

23 # invoke an operation on the server JVM to display a property.

24 #---

25 set sname [$AdminControl getAttribute $server name]

26 set ptype [$AdminControl getAttribute $server processType]

27 set pid [$AdminControl getAttribute $server pid]

28 set state [$AdminControl getAttribute $server state]

29 set jvm [$AdminControl queryNames type=JVM,cell=$cname,node=$nname,process=$sname,*]

30 set osname [$AdminControl invoke $jvm getProperty os.name]

31 puts " $sname ($ptype) has pid $pid; state: $state; on $osname"

32

j3 #---

34 # line 37-42 find the applications running on this server and

35 # display the application name.

35 #---

37 set apps [$AdminControl queryNames type=Application,cell=$cname,node=$nname,process=$sname,*]

38 puts " Number of applications running on $sname: [llength $apps]"

39 foreach app $apps {

40 set aname [$AdminControl getAttribute $app name]

41 puts " $aname"

42 }

43 puts "--"

44 puts ""

45

46 }

47 }

48 }

v Using Jython:

* Provide this example as a Jython script file and run it with the "-f" option:

1 #--

2 # lines 7 and 8 find all the cell and process them one at a time

3 #--

4 # get line separator

5 import java.lang.System as sys

6 lineSeparator = sys.getProperty(’line.separator’)

7 cells = AdminConfig.list(’Cell’).split(lineSeparator)

8 for cell in cells:

9 #---

10 # lines 13 and 14 find all the nodes belonging to the cell and

11 # process them at a time

12 #---

13 nodes = AdminConfig.list(’Node’, cell).split(lineSeparator)

14 for node in nodes:

15 #--

16 # lines 19-23 find all the running servers belonging to the cell

17 # and node, and process them one at a time

18 #--

19 cname = AdminConfig.showAttribute(cell, ’name’)

Chapter 4. Using the administrative clients 305

20 nname = AdminConfig.showAttribute(node, ’name’)

21 servs = AdminControl.queryNames(’type=Server,cell=’ + cname + ’,node=’ + nname + ’,*’).

 split(lineSeparator)

22 print "Number of running servers on node " + nname + ": %s \n" % (len(servs))

23 for server in servs:

24 #---

25 # lines 28-34 get some attributes from the server to display;

26 # invoke an operation on the server JVM to display a property.

27 #---

28 sname = AdminControl.getAttribute(server, ’name’)

29 ptype = AdminControl.getAttribute(server, ’processType’)

30 pid = AdminControl.getAttribute(server, ’pid’)

31 state = AdminControl.getAttribute(server, ’state’)

32 jvm = AdminControl.queryNames(’type=JVM,cell=’ +

 cname + ’,node=’ + nname + ’,process=’ + sname + ’,*’)

33 osname = AdminControl.invoke(jvm, ’getProperty’, ’os.name’)

34 print " " + sname + " " + ptype + " has pid " + pid + "; state: " + state + "; on " +

 osname + "\n"

35

36 #---

37 # line 40-45 find the applications running on this server and

38 # display the application name.

39 #---

40 apps = AdminControl.queryNames(’type=Application,cell=’ +

 Cname + ’,node=’ + nname + ’,process=’ + sname + ’,*’).split(lineSeparator)

41 print "Number of applications running on " + sname + ": %s \n" % (len(apps))

42 for app in apps:

43 aname = AdminControl.getAttribute(app, ’name’)

44 print aname + "\n"

45 print "--"

46 print "\n"

v Example output:

Number of running servers on node mynode: 2

mynode (NodeAgent) has pid 3592; state: STARTED; on Windows 2000

Number of applications running on mynode: 0

--

server1 (ManagedProcess) has pid 3972; state: STARTED; on Windows 2000

Number of applications running on server1: 0

--

Number of running servers on node mynodeManager: 1

dmgr (DeploymentManager) has pid 3308; state: STARTED; on Windows 2000

Number of applications running on dmgr: 2

adminconsole

filetransfer

--

Starting listener ports using scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the wsadmin scripting client”

on page 250 article for more information.

Perform the following steps to start a listener port on an application server. The following example returns

a list of listener port MBeans:

1. Identify the listener port MBeans for the application server and assign it to the lPorts variable.

v Using Jacl:

set lPorts [$AdminControl queryNames type=ListenerPort,cell=mycell,node=mynode,process=server1,*]

v Using Jython:

lPorts = AdminControl.queryNames(’type=ListenerPort,cell=mycell,node=mynode,process=server1,*’)

print lPorts

Example output:

306 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

WebSphere:cell=mycell,name=ListenerPort,mbeanIdentifier=server.xml#ListenerPort_1,type=ListenerPort,

 node=mynode,process=server1

WebSphere:cell=mycell,name=listenerPort,mbeanIdentifier=ListenerPort,type=server.xml#ListenerPort_2,

 node=mynode,process=server1

2. Start the listener port if it is not started. For example:

v Using Jacl:

foreach lPort $lPorts {

 set state [$AdminControl getAttribute $lport started]

 if {$state == "false"} {

 $AdminControl invoke $lPort start

 }

 }

v Using Jython:

get line separator

import java

lineSeparator = java.lang.System.getProperty(’line.separator’)

lPortsArray = lPorts.split(lineSeparator)

for lPort in lPortsArray:

 state = AdminControl.getAttribute(lPort, ’started’)

 if state == ’false’:

 AdminControl.invoke(lPort, ’start’)

These pieces of Jacl and Jython code loop through the listener port MBeans. For each listener port

MBean, get the attribute value for the started attribute. If the attribute value is set to false, then start

the listener port by invoking the start operation on the MBean.

Managing generic servers using scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the wsadmin scripting client”

on page 250 article for more information.

A generic server is a server that the WebSphere Application Server manages but did not supply. You can

use WebSphere Application Server to define, start, stop, and monitor generic servers.

v To define a generic server, use the following example:

– Using Jacl:

$AdminTask createGenericServer mynode {-name generic1 -ConfigProcDef

{{"/usr/bin/myStartCommand" "arg1 arg2" "" "" "/tmp/workingDirectory" "/tmp/stopCommand" "argy argz"}}}

$AdminConfig save

– Using Jython:

AdminTask.createGenericServer(’mynode’, ’[-name generic1 -ConfigProcDef

[[c:\tmp\myStartCommand.exe "a b c" "" "" C:\tmp\myStopCommand "x y z"]]]’)

AdminConfig.save()

v To start a generic server, use the launchProcess parameter, for example:

– Using Jacl:

set nodeagent [$AdminControl queryNames *:*,type=NodeAgent]

$AdminControl invoke $nodeagent launchProcess generic1

– Using Jython:

nodeagent = AdminControl.queryNames (’*:*,type=NodeAgent’)

AdminControl.invoke(nodeagent, ’launchProcess’, ’generic1’)

Example output:

true

or

false

v To stop a generic server, use the terminate parameter, for example:

– Using Jacl:

Chapter 4. Using the administrative clients 307

set nodeagent [$AdminControl queryNames *:*,type=NodeAgent]

$AdminControl invoke $nodeagent terminate generic1

– Using Jython:

nodeagent = AdminControl.queryNames (’*:*,type=NodeAgent’)

AdminControl.invoke(nodeagent, ’terminate’, ’generic1’)

Example output:

true

or

false

v To monitor the server state, use the getProcessStatus parameter, for example:

– Using Jacl:

$AdminControl invoke $nodeagent getProcessStatus generic1

Using Jython:

AdminControl.invoke(nodeagent, ’getProcessStatus’, ’generic1’)

Example output:

RUNNING

or

STOPPED

Setting development mode for server objects using scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the wsadmin scripting client”

on page 250 article for more information.

Perform the following steps to set the development mode for a server object:

1. Locate the server object. The following example selects the first server found:

v Using Jacl:

set server [$AdminConfig getid /Server:server1/]

v Using Jython:

server = AdminConfig.getid(’/Server:server1/’)

2. Enable development mode:

v Using Jacl:

$AdminConfig modify $server "{developmentMode true}"

v Using Jython:

AdminConfig.modify(server, [[’developmentMode’, ’true’]])

3. Save the configuration changes. See the “Saving configuration changes with the wsadmin tool” on

page 232 article for more information.

4. In a network deployment environment only, synchronize the node. See the “Synchronizing nodes with

the wsadmin tool” on page 217 article for more information.

Disabling parallel startup using scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the wsadmin scripting client”

on page 250 article for more information.

Perform the following steps to disable parallel startup:

1. Locate the server object. The following example selects the first server found:

v Using Jacl:

set server[$AdminConfig getid /Server:server1/]

v Using Jython:

308 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

server = AdminConfig.getid(’/Server:server1/’]

2. Enable development mode. For example:

v Using Jacl:

$AdminConfig modify $server "{parallelStartEnabled false}"

v Using Jython:

AdminConfig.modify(server, [[’parallelStartEnabled’, ’false’]])

3. Save the configuration changes. See the “Saving configuration changes with the wsadmin tool” on

page 232 article for more information.

4. In a network deployment environment only, synchronize the node. See the “Synchronizing nodes with

the wsadmin tool” on page 217 article for more information.

Removing multicast endpoints using scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the wsadmin scripting client”

on page 250 article for more information.

WebSphere Application Server uses multicast broadcasting at the node level to allow a node agent to

discover the managed processes in the node. The IPv4 and IPv6 multicast addresses are not compatible.

Both the IPv4 and IPv6 multicast addresses are defined in the node agent configuration and when a node

agent starts both addresses will be tried in sequence. It is recommended that you disable one of the

multicast addresses after installation. By limiting multicast discovery to one protocol, the node agent will

run more efficiently. Perform the following steps to remove a multicast endpoint:

1. Remove the multicast end point:

v Using Jacl:

set se [$AdminConfig getid /Node:y2001/ServerIndex:/]

set eprs [lindex [$AdminConfig showAttribute $se endPointRefs] 0]

foreach ep $eprs {

 set epName [$AdminConfig showAttribute $ep endPointName]

 if {$epName == "NODE_MULTICAST_DISCOVERY_ADDRESS"} {

 puts "Removing NODE_MULTICAST_DISCOVERY_ADDRESS..."

 $AdminConfig remove $ep

 }

}

v Using Jython:

se = AdminConfig.getid(’/Node:y2001/ServerIndex:/’)

import java

lineseparator = java.lang.System.getProperty(’line.separator’)

eprs = AdminConfig.showAttribute(se, [’endPointRefs’]).split(lineseparator)[0]

print eprs

for ep in eprs:

 epName = AdminConfig.showAttribute(ep, [’endPointName’])

 if (epName) == "[NODE_MULTICAST_DISCOVERY_ADDRESS]":

 print "Removing NODE_MULTICAST_DISCOVERY_ADDRESS..."

 AdminConfig.remove(ep)

2. Save the configuration changes. See the “Saving configuration changes with the wsadmin tool” on

page 232 article for more information.

3. In a network deployment environment only, synchronize the node. See the “Synchronizing nodes with

the wsadmin tool” on page 217 article for more information.

Obtaining server version information with scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the wsadmin scripting client”

on page 250 article for more information.

Perform the following steps to query the server version information:

1. Identify the server and assign it to the server variable.

Chapter 4. Using the administrative clients 309

v Using Jacl:

set server [$AdminControl completeObjectName type=Server,name=server1,node=mynode,*]

v Using Jython:

server = AdminControl.completeObjectName(’type=Server,name=server1,node=mynode,*’)

print server

Example output:

WebSphere:cell=mycell,name=server1,mbeanIdentifier=server.xml#Server_1,type=Server,node=mynode,

 process=server1,processType=ManagedProcess

2. Query the server version. The server version information is stored in the serverVersion attribute. The

getAttribute command returns the attribute value of a single attribute, passing in the attribute name.

v Using Jacl:

$AdminControl getAttribute $server1 serverVersion

v Using Jython:

print AdminControl.getAttribute(server1, ’serverVersion’)

Example output for a Network Deployment installation follows:

IBM WebSphere Application Server Version Report

 Platform Information

 --

 Name: IBM WebSphere Application Server

 Version: 5.0

 Product Information

 --

 ID: BASE

 Name: IBM WebSphere Application Server

 Build Date: 9/11/02

 Build Level: r0236.11

 Version: 5.0.0

 Product Information

 --

 ID: ND

 Name: IBM WebSphere Application Server for Network Deployment

 Build Date: 9/11/02

 Build Level: r0236.11

 Version: 5.0.0

 End Report

Configuring security with scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the wsadmin scripting client”

on page 250 article for more information.

If you enable security for a WebSphere Application Server cell, supply authentication information to

communicate with servers.

The sas.client.props and the soap.client.props files are located in the properties directory for each

WebSphere Application Server profile, profilePath/properties.

310 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

v The nature of the properties file updates required for running in secure mode depend on whether you

connect with a Remote Method Invocation (RMI) connector, or a Simple Object Access Protocol (SOAP)

connector:

– If you use a Remote Method Invocation (RMI) connector, set the following properties in the

sas.client.props file with the appropriate values:

com.ibm.CORBA.loginUserid=

com.ibm.CORBA.loginPassword=

Also, set the following property:

com.ibm.CORBA.loginSource=properties

The default value for this property is prompt in the sas.client.props file. If you leave the default

value, a dialog box appears with a password prompt. If the script is running unattended, it appears to

hang.

– If you use a Simple Object Access Protocol (SOAP) connector, set the following properties in the

soap.client.props file with the appropriate values:

com.ibm.SOAP.securityEnabled=true

com.ibm.SOAP.loginUserid=

com.ibm.SOAP.loginPassword=

v To specify user and password information, choose one of the following methods:

– Specify user name and password on a command line, using the -user and -password commands.

For example:

wsadmin.sh -conntype RMI -port 2809 -user u1 -password secret1

– Specify user name and password in the sas.client.props file for a RMI connector or the

soap.client.props file for a SOAP connector.

If you specify user and password information on a command line and in the sas.client.props file or the

soap.client.props file, the command line information overrides the information in the props file.

Warning: On UNIX system, the use of -password option may result in security exposure as the

password information becomes visible to the system status program such as ps command which can be

invoked by other user to display all the running processes. Do not use this option if security exposure is

a concern. Instead, specify user and password information in the soap.client.props file for SOAP

connector or sas.client.props file for RMI connector. The soap.client.props and sas.client.props files are

located in the properties directory of your WebSphere profile.

Enabling and disabling global security using scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the wsadmin scripting client”

on page 250 article for more information.

The default profile sets up procedures so that you can enable and disable global security based on

LocalOS registry.

v You can use the help command to find out the arguments that you need to provide with this call, for

example:

– Using Jacl:

securityon help

Example output:

Syntax: securityon user password

– Using Jython:

securityon()

Example output:

Syntax: securityon(user, password)

v To enable global security based on the LocalOS registry, use the following procedure call and

arguments:

Chapter 4. Using the administrative clients 311

– Using Jacl:

securityon user1 password1

– Using Jython:

securityon(’user1’, ’password1’)

v To disable global security based on the LocalOS registry, use the following procedure call:

– Using Jacl:

securityoff

– Using Jython:

securityoff()

Enabling and disabling Java 2 security using scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the wsadmin scripting client”

on page 250 article for more information.

Perform the following steps to enable or disable Java 2 security:

1. Identify the security configuration object and assign it to the security variable:

v Using Jacl:

set security [$AdminConfig list Security]

v Using Jython:

security = AdminConfig.list(’Security’)

print security

Example output:

(cells/mycell|security.xml#Security_1)

2. Modify the enforceJava2Security attribute to enable or disable Java 2 security. For example:

v To enable Java 2 security:

– Using Jacl:

$AdminConfig modify $security {{enforceJava2Security true}}

– Using Jython:

AdminConfig.modify(security, [[’enforceJava2Security’, ’true’]])

v To disable Java 2 security:

– Using Jacl:

$AdminConfig modify $security {{enforceJava2Security false}}

– Using Jython:

AdminConfig.modify(security, [[’enforceJava2Security’, ’false’]])

3. Save the configuration changes. See the “Saving configuration changes with the wsadmin tool” on

page 232 article for more information.

4. In a network deployment environment only, synchronize the node. See the “Synchronizing nodes with

the wsadmin tool” on page 217 article for more information.

Configuring data access with scripting

This topic contains the following tasks:

v “Configuring a JDBC provider using scripting” on page 313

v “Configuring new data sources using scripting” on page 314

v “Configuring new connection pools using scripting” on page 315

v “Configuring new data source custom properties using scripting” on page 315

v “Configuring new J2CAuthentication data entries using scripting” on page 316

312 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

v “Configuring new WAS40 data sources using scripting” on page 317

v “Configuring new WAS40 connection pools using scripting” on page 318

v “Configuring new WAS40 custom properties using scripting” on page 319

v “Configuring new J2C resource adapters using scripting” on page 320

v “Configuring custom properties for J2C resource adapters using scripting” on page 321

v “Configuring new J2C connection factories using scripting” on page 322

v “Configuring new J2C authentication data entries using scripting” on page 324

v “Configuring new J2C administrative objects using scripting” on page 326

v “Configuring new J2C activation specs using scripting” on page 325

v “Testing data source connections using scripting” on page 328

Configuring a JDBC provider using scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the wsadmin scripting client”

on page 250 article for more information.

Perform the following steps to configure a new JDBC provider:

1. Identify the parent ID and assign it to the node variable. The following example uses the node

configuration object as the parent. You can modify this example to use the cell, cluster, server, or

application configuration object as the parent.

v Using Jacl:

set node [$AdminConfig getid /Cell:mycell/Node:mynode/]

v Using Jython:

node = AdminConfig.getid(’/Cell:mycell/Node:mynode/’)

print node

Example output:

mynode(cells/mycell/nodes/mynode|node.xml#Node_1)

2. Identify the required attributes:

v Using Jacl:

$AdminConfig required JDBCProvider

v Using Jython:

print AdminConfig.required(’JDBCProvider’)

Example output:

Attribute Type

name String

implementationClassName String

3. Set up the required attributes and assign it to the jdbcAttrs variable. You can modify the following

example to setup non-required attributes for JDBC provider.

v Using Jacl:

set n1 [list name JDBC1]

set implCN [list implementationClassName myclass]

set jdbcAttrs [list $n1 $implCN]

Example output:

{name {JDBC1}} {implementationClassName {myclass}}

v Using Jython:

n1 = [’name’, ’JDBC1’]

implCN = [’implementationClassName’, ’myclass’]

jdbcAttrs = [n1, implCN]

print jdbcAttrs

Example output:

Chapter 4. Using the administrative clients 313

[[’name’, ’JDBC1’], [’implementationClassName’, ’myclass’]]

4. Create a new JDBC provider using node as the parent:

v Using Jacl:

$AdminConfig create JDBCProvider $node $jdbcAttrs

v Using Jython:

AdminConfig.create(’JDBCProvider’, node, jdbcAttrs)

Example output:

JDBC1(cells/mycell/nodes/mynode|resources.xml#JDBCProvider_1)

5. Save the configuration changes. See the “Saving configuration changes with the wsadmin tool” on

page 232 article for more information.

6. In a network deployment environment only, synchronize the node. See the “Synchronizing nodes with

the wsadmin tool” on page 217 article for more information.

Configuring new data sources using scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the wsadmin scripting client”

on page 250 article for more information.

Perform the following steps to configure a new data source:

1. Identify the parent ID:

v Using Jacl:

set newjdbc [$AdminConfig getid /Cell:mycell/Node:mynode/JDBCProvider:JDBC1/]

v Using Jython:

newjdbc = AdminConfig.getid(’/Cell:mycell/Node:mynode/JDBCProvider:JDBC1/’)

print newjdbc

Example output:

JDBC1(cells/mycell/nodes/mynode|resources.xml#JDBCProvider_1)

2. Obtain the required attributes:

v Using Jacl:

$AdminConfig required DataSource

v Using Jython:

print AdminConfig.required(’DataSource’)

Example output:

Attribute Type

name String

3. Setting up required attributes:

v Using Jacl:

set name [list name DS1]

set dsAttrs [list $name]

v Using Jython:

name = [’name’, ’DS1’]

dsAttrs = [name]

4. Create a data source:

v Using Jacl:

set newds [$AdminConfig create DataSource $newjdbc $dsAttrs]

v Using Jython:

newds = AdminConfig.create(’DataSource’, newjdbc, dsAttrs)

print newds

Example output:

DS1(cells/mycell/nodes/mynode|resources.xml#DataSource_1)

314 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

5. Save the configuration changes. See the “Saving configuration changes with the wsadmin tool” on

page 232 article for more information.

6. In a network deployment environment only, synchronize the node. See the “Synchronizing nodes with

the wsadmin tool” on page 217 article for more information.

Configuring new connection pools using scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the wsadmin scripting client”

on page 250 article for more information.

Perform the following steps to configure a new connection pool:

1. Identify the parent ID:

v Using Jacl:

set newds [$AdminConfig getid /Cell:mycell/Node:mynode/JDBCProvider:JDBC1/DataSource:DS1/]

v Using Jython:

newds = AdminConfig.getid(’/Cell:mycell/Node:mynode/JDBCProvider:JDBC1/DataSource:DS1/’)

Example output:

DS1(cells/mycell/nodes/mynode|resources.xml$DataSource_1)

2. Creating connection pool:

v Using Jacl:

$AdminConfig create ConnectionPool $newds {}

v Using Jython:

print AdminConfig.create(’ConnectionPool’, newds, [])

Example output:

(cells/mycell/nodes/mynode|resources.xml#ConnectionPool_1)

3. Save the configuration changes. See the “Saving configuration changes with the wsadmin tool” on

page 232 article for more information.

4. In a network deployment environment only, synchronize the node. See the “Synchronizing nodes with

the wsadmin tool” on page 217 article for more information.

Configuring new data source custom properties using scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the wsadmin scripting client”

on page 250 article for more information.

Perform the following steps to configure a new data source custom property:g

1. Identify the parent ID:

v Using Jacl:

set newds [$AdminConfig getid /Cell:mycell/Node:mynode/JDBCProvider:JDBC1/DataSource:DS1/]

v Using Jython:

newds = AdminConfig.getid(’/Cell:mycell/Node:mynode/JDBCProvider:JDBC1/DataSource:DS1/’)

print newds

Example output:

DS1(cells/mycell/nodes/mynode|resources.xml$DataSource_1)

2. Get the J2EE resource property set:

v Using Jacl:

set propSet [$AdminConfig showAttribute $newds propertySet]

v Using Jython:

propSet = AdminConfig.showAttribute(newds, ’propertySet’)

print propSet

Chapter 4. Using the administrative clients 315

Example output:

(cells/mycell/nodes/mynode|resources.xml#J2EEResourcePropertySet_8)

3. Get required attribute:

v Using Jacl:

$AdminConfig required J2EEResourceProperty

v Using Jython:

print AdminConfig.required(’J2EEResourceProperty’)

Example output:

Attribute Type

name String

4. Set up attributes:

v Using Jacl:

set name [list name RP4]

set rpAttrs [list $name]

v Using Jython:

name = [’name’, ’RP4’]

rpAttrs = [name]

5. Create a J2EE resource property:

v Using Jacl:

$AdminConfig create J2EEResourceProperty $propSet $rpAttrs

v Using Jython:

print AdminConfig.create(’J2EEResourceProperty’, propSet, rpAttrs)

Example output:

RP4(cells/mycell/nodes/mynode|resources.xml#J2EEResourceProperty_8)

6. Save the configuration changes. See the “Saving configuration changes with the wsadmin tool” on

page 232 article for more information.

7. In a network deployment environment only, synchronize the node. See the “Synchronizing nodes with

the wsadmin tool” on page 217 article for more information.

Configuring new J2CAuthentication data entries using scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the wsadmin scripting client”

on page 250 article for more information.

Perform the following steps to configure a new J2CAuthentication data entry:

1. Identify the parent ID:

v Using Jacl:

set security [$AdminConfig getid /Cell:mycell/Security:/]

v Using Jython:

security = AdminConfig.getid(’/Cell:mycell/Security:/’)

print security

Example output:

(cells/mycell|security.xml#Security_1)

2. Get required attributes:

v Using Jacl:

$AdminConfig required JAASAuthData

v Using Jython:

print AdminConfig.required(’JAASAuthData’)

Example output:

316 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Attribute Type

alias String

userId String

password String

3. Set up required attributes:

v Using Jacl:

set alias [list alias myAlias]

set userid [list userId myid]

set password [list password secret]

set jaasAttrs [list $alias $userid $password]

Example output:

{alias myAlias} {userId myid} {password secret}

v Using Jython:

alias = [’alias’, ’myAlias’]

userid = [’userId’, ’myid’]

password = [’password’, ’secret’]

jaasAttrs = [alias, userid, password]

print jaasAttrs

Example output:

[[’alias’, ’myAlias’], [’userId’, ’myid’], [’password’, ’secret’]]

4. Create JAAS auth data:

v Using Jacl:

$AdminConfig create JAASAuthData $security $jaasAttrs

v Using Jython:

print AdminConfig.create(’JAASAuthData’, security, jaasAttrs)

Example output:

(cells/mycell|security.xml#JAASAuthData_2)

5. Save the configuration changes. See the “Saving configuration changes with the wsadmin tool” on

page 232 article for more information.

6. In a network deployment environment only, synchronize the node. See the “Synchronizing nodes with

the wsadmin tool” on page 217 article for more information.

Configuring new WAS40 data sources using scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the wsadmin scripting client”

on page 250 article for more information.

Perform the following steps to configure a new WAS40 data source:

1. Identify the parent ID:

v Using Jacl:

set newjdbc [$AdminConfig getid "/JDBCProvider:Cloudscape JDBC Provider/"]

v Using Jython:

newjdbc = AdminConfig.getid(’/JDBCProvider:Cloudscape JDBC Provider/’)

print newjdbc

Example output:

JDBC1(cells/mycell/nodes/mynode|resources.xml$JDBCProvider_1)

2. Get required attributes:

v Using Jacl:

$AdminConfig required WAS40DataSource

v Using Jython:

print AdminConfig.required(’WAS40DataSource’)

Chapter 4. Using the administrative clients 317

Example output:

Attribute Type

name String

3. Set up required attributes:

v Using Jacl:

set name [list name was4DS1]

set ds4Attrs [list $name]

v Using Jython:

name = [’name’, ’was4DS1’]

ds4Attrs = [name]

4. Create WAS40DataSource:

v Using Jacl:

set new40ds [$AdminConfig create WAS40DataSource $newjdbc $ds4Attrs]

v Using Jython:

new40ds = AdminConfig.create(’WAS40DataSource’, newjdbc, ds4Attrs)

print new40ds

Example output:

was4DS1(cells/mycell/nodes/mynode|resources.xml#WAS40DataSource_1)

5. Save the configuration changes. See the “Saving configuration changes with the wsadmin tool” on

page 232 article for more information.

6. In a network deployment environment only, synchronize the node. See the “Synchronizing nodes with

the wsadmin tool” on page 217 article for more information.

Configuring new WAS40 connection pools using scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the wsadmin scripting client”

on page 250 article for more information.

Perform the following steps to configure a new WAS40 connection pool:

1. Identify the parent ID:

v Using Jacl:

set new40ds [$AdminConfig getid /Cell:mycell/Node:mynode/Server:server1/JDBCProvider:JDBC1/WAS40DataSource:was4DS1/]

v Using Jython:

new40ds = AdminConfig.getid(’/Cell:mycell/Node:mynode/Server:server1/JDBCProvider:JDBC1/WAS40DataSource:was4DS1/’)

print new40ds

Example output:

was4DS1(cells/mycell/nodes/mynodes:resources.xml$WAS40DataSource_1)

2. Get required attributes:

v Using Jacl:

$AdminConfig required WAS40ConnectionPool

v Using Jython:

print AdminConfig.required(’WAS40ConnectionPool’)

Example output:

Attribute Type

minimumPoolSize Integer

maximumPoolSize Integer

connectionTimeout Integer

idleTimeout Integer

orphanTimeout Integer

statementCacheSize Integer

3. Set up required attributes:

318 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

v Using Jacl:

set mps [list minimumPoolSize 5]

set minps [list minimumPoolSize 5]

set maxps [list maximumPoolSize 30]

set conn [list connectionTimeout 10]

set idle [list idleTimeout 5]

set orphan [list orphanTimeout 5]

set scs [list statementCacheSize 5]

set 40cpAttrs [list $minps $maxps $conn $idle $orphan $scs]

Example output:

{minimumPoolSize 5} {maximumPoolSize 30}

{connectionTimeout 10} {idleTimeout 5}

{orphanTimeout 5} {statementCacheSize 5}

v Using Jython:

minps = [’minimumPoolSize’, 5]

maxps = [’maximumPoolSize’, 30]

conn = [’connectionTimeout’, 10]

idle = [’idleTimeout’, 5]

orphan = [’orphanTimeout’, 5]

scs = [’statementCacheSize’, 5]

cpAttrs = [minps, maxps, conn, idle, orphan, scs]

print cpAttrs

Example output:

[[minimumPoolSize, 5], [maximumPoolSize, 30],

[connectionTimeout, 10], [idleTimeout, 5],

[orphanTimeout, 5], [statementCacheSize, 5]]

4. Create was40 connection pool:

v Using Jacl:

$AdminConfig create WAS40ConnectionPool $new40ds $40cpAttrs

v Using Jython:

print AdminConfig.create(’WAS40ConnectionPool’, new40ds, 40cpAttrs)

Example output:

(cells/mycell/nodes/mynode:resources.xml#WAS40ConnectionPool_1)

5. Save the configuration changes. See the “Saving configuration changes with the wsadmin tool” on

page 232 article for more information.

6. In a network deployment environment only, synchronize the node. See the “Synchronizing nodes with

the wsadmin tool” on page 217 article for more information.

Configuring new WAS40 custom properties using scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the wsadmin scripting client”

on page 250 article for more information.

Perform the following steps to configure a new WAS40 custom properties:

1. Identify the parent ID:

v Using Jacl:

set new40ds [$AdminConfig getid /Cell:mycell/Node:mynode/JDBCProvider:JDBC1/WAS40DataSource:was4DS1/]

v Using Jython:

new40ds = AdminConfig.getid(’/Cell:mycell/Node:mynode/JDBCProvider:JDBC1/WAS40DataSource:was4DS1/’)

print new40ds

Example output:

was4DS1(cells/mycell/nodes/mynodes|resources.xml$WAS40DataSource_1)

2. Get required attributes:

v Using Jacl:

Chapter 4. Using the administrative clients 319

set propSet [$AdminConfig showAttribute $newds propertySet]

v Using Jython:

propSet = AdminConfig.showAttribute(newds, ’propertySet’)

print propSet

Example output:

(cells/mycell/nodes/mynode|resources.xml#J2EEResourcePropertySet_9)

3. Get required attribute:

v Using Jacl:

$AdminConfig required J2EEResourceProperty

v Using Jython:

print AdminConfig.required(’J2EEResourceProperty’)

Example output:

Attribute Type

name String

4. Set up required attributes:

v Using Jacl:

set name [list name RP5]

set rpAttrs [list $name]

v Using Jython:

name = [’name’, ’RP5’]

rpAttrs = [name]

5. Create J2EE Resource Property:

v Using Jacl:

$AdminConfig create J2EEResourceProperty $propSet $rpAttrs

v Using Jython:

print AdminConfig.create(’J2EEResourceProperty’, propSet, rpAttrs)

Example output:

RP5(cells/mycell/nodes/mynode|resources.xml#J2EEResourceProperty_9)

6. Save the configuration changes. See the “Saving configuration changes with the wsadmin tool” on

page 232 article for more information.

7. In a network deployment environment only, synchronize the node. See the “Synchronizing nodes with

the wsadmin tool” on page 217 article for more information.

Configuring new J2C resource adapters using scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the wsadmin scripting client”

on page 250 article for more information.

Perform the following steps to configure a new J2C resource adapter:

1. Identify the parent ID and assign it to the node variable. The following example uses the node

configuration object as the parent. You can modify this example to use the cell, cluster, server, or

application configuration object as the parent.

v Using Jacl:

set node [$AdminConfig getid /Cell:mycell/Node:mynode/]

v Using Jython:

node = AdminConfig.getid(’/Cell:mycell/Node:mynode/’)

print node

Example output:

mynode(cells/mycell/nodes/mynode|node.xml#Node_1)

2. Identify the required attributes:

320 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

v Using Jacl:

$AdminConfig required J2CResourceAdapter

v Using Jython:

print AdminConfig.required(’J2CResourceAdapter’)

Example output:

Attribute Type

name String

3. Set up the required attributes:

v Using Jacl:

set rarFile c:/currentScript/cicseci.rar

set option [list -rar.name RAR1]

v Using Jython:

rarFile = ’c:/currentScript/cicseci.rar’

option = ’[-rar.name RAR1]’

4. Create a resource adapter:

v Using Jacl:

set newra [$AdminConfig installResourceAdapter $rarFile mynode $option]

v Using Jython:

newra = AdminConfig.installResourceAdapter(rarFile, ’mynode’, option)

print newra

Example output:

RAR1(cells/mycell/nodes/mynode|resources.xml#J2CResourceAdapter_1)

5. Save the configuration changes. See the “Saving configuration changes with the wsadmin tool” on

page 232 article for more information.

6. In a network deployment environment only, synchronize the node. See the “Synchronizing nodes with

the wsadmin tool” on page 217 article for more information.

Configuring custom properties for J2C resource adapters using scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the wsadmin scripting client”

on page 250 article for more information.

Perform the following steps to configure a new custom property for a J2C resource adapters:

1. Identify the parent ID and assign it to the newra variable.

v Using Jacl:

set newra [$AdminConfig getid /Cell:mycell/Node:mynode/J2CResourceAdapter:RAR1/]

v Using Jython:

newra = AdminConfig.getid(’/Cell:mycell/Node:mynode/J2CResourceAdapter:RAR1/’)

print newra

Example output:

RAR1(cells/mycell/nodes/mynode|resources.xml#J2CResourceAdapter_1)

2. Get the J2EE resource property set:

v Using Jacl:

set propSet [$AdminConfig showAttribute $newra propertySet]

v Using Jython:

propSet = AdminConfig.showAttribute(newra, ’propertySet’)

print propSet

Example output:

(cells/mycell/nodes/mynode|resources.xml#PropertySet_8)

3. Identify the required attributes:

Chapter 4. Using the administrative clients 321

v Using Jacl:

$AdminConfig required J2EEResourceProperty

v Using Jython:

print AdminConfig.required(’J2EEResourceProperty’)

Example output:

Attribute Type

name String

4. Set up the required attributes:

v Using Jacl:

set name [list name RP4]

set rpAttrs [list $name]

v Using Jython:

name = [’name’, ’RP4’]

rpAttrs = [name]

5. Create a J2EE resource property:

v Using Jacl:

$AdminConfig create J2EEResourceProperty $propSet $rpAttrs

v Using Jython:

print AdminConfig.create(’J2EEResourceProperty’, propSet, rpAttrs)

Example output:

RP4(cells/mycell/nodes/mynode|resources.xml#J2EEResourceProperty_8)

6. Save the configuration changes. See the “Saving configuration changes with the wsadmin tool” on

page 232 article for more information.

7. In a network deployment environment only, synchronize the node. See the “Synchronizing nodes with

the wsadmin tool” on page 217 article for more information.

Configuring new J2C connection factories using scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the wsadmin scripting client”

on page 250 article for more information.

Perform the following steps to configure a new J2C connection factory:

1. Identify the parent ID and assign it to the newra variable.

v Using Jacl:

set newra [$AdminConfig getid /Cell:mycell/Node:mynode/J2CResourceAdapter:RAR1/]

v Using Jython:

newra = AdminConfig.getid(’/Cell:mycell/Node:mynode/J2CResourceAdapter:RAR1/’)

print newra

Example output:

RAR1(cells/mycell/nodes/mynode|resources.xml#J2CResourceAdapter_1)

2. There are two ways to configure a new J2C connection factory. Perform one of the following:

v Using the AdminTask object:

a. List the connection factory interfaces:

– Using Jacl:

$AdminTask listConnectionFactoryInterfaces $newra

– Using Jacl:

AdminTask.listConnectionFactoryInterfaces(newra)

Example output:

javax.sql.DataSource

322 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

b. Create a J2CConnectionFactory:

– Using Jacl:

$AdminTask createJ2CConnectionFactory $newra { -name cf1 -jndiName eis/cf1

 -connectionFactoryInterface avax.sql.DataSource

– Using Jacl:

AdminTask.createJ2CConnectionFactory(newra, ’[’-name’, ’cf1’, ’-jndiName’, ’eis/cf1’,

 ’-connectionFactoryInterface’, ’avax.sql.DataSource’]’)

v Using the AdminConfig object:

a. Identify the required attributes:

– Using Jacl:

$AdminConfig required J2CConnectionFactory

– Using Jython:

print AdminConfig.required(’J2CConnectionFactory’)

Example output:

Attribute Type

connectionDefinition ConnectionDefinition@

b. If your resource adapter is JCA1.5 and you have multiple connection definitions defined, it is

required that you specify the ConnectionDefinition attribute. If your resource adapter is JCA1.5

and you have only one connection definition defined, it will be picked up automatically. If your

resource adapter is JCA1.0, you do not need to specify the ConnectionDefinition attribute.

Perform the following command to list the connection definitions defined by the resource

adapter:

– Using Jacl:

$AdminConfig list ConnectionDefinition $newra

– Using Jython:

print AdminConfig.list(’ConnectionDefinition’, $newra)

c. Set up the required attributes:

– Using Jacl:

set name [list name J2CCF1]

set j2ccfAttrs [list $name]

set jname [list jndiName eis/j2ccf1]

– Using Jython:

name = [’name’, ’J2CCF1’]

j2ccfAttrs = [name]

jname = [’jndiName’, eis/j2ccf1]

d. If you are specifying the ConnectionDefinition attribute, also set up the following:

– Using Jacl:

set cdattr [list connectionDefinition $cd]

– Using Jython:

cdattr = [’connectionDefinition’, $cd]

e. Create a J2C connection factory:

– Using Jacl:

$AdminConfig create J2CConnectionFactory $newra $j2ccfAttrs

– Using Jython:

print AdminConfig.create(’J2CConnectionFactory’, newra, j2ccfAttrs)

Example output:

J2CCF1(cells/mycell/nodes/mynode|resources.xml#J2CConnectionFactory_1)

3. Save the configuration changes. See the “Saving configuration changes with the wsadmin tool” on

page 232 article for more information.

Chapter 4. Using the administrative clients 323

4. In a network deployment environment only, synchronize the node. See the “Synchronizing nodes with

the wsadmin tool” on page 217 article for more information.

Configuring new J2C authentication data entries using scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the wsadmin scripting client”

on page 250 article for more information.

Perform the following steps to configure a new J2C authentication data entry:

1. Identify the parent ID and assign it to the security variable.

v Using Jacl:

set security [$AdminConfig getid /Security:mysecurity/]

v Using Jython:

security = AdminConfig.getid(’/Security:mysecurity/’)

2. Identify the required attributes:

v Using Jacl:

$AdminConfig required JAASAuthData

v Using Jython:

print AdminConfig.required(’JAASAuthData’)

Example output:

Attribute Type

alias String

userId String

password String

3. Set up the required attributes:

v Using Jacl:

set alias [list alias myAlias]

set userid [list userId myid]

set password [list password secret]

set jaasAttrs [list $alias $userid $password]

Example output:

{alias myAlias} {userId myid} {password secret}

v Using Jython:

alias = [’alias’, ’myAlias’]

userid = [’userId’, ’myid’]

password = [’password’, ’secret’]

jaasAttrs = [alias, userid, password]

Example output:

[[alias, myAlias], [userId, myid], [password, secret]]

4. Create JAAS authentication data:

v Using Jacl:

$AdminConfig create JAASAuthData $security $jaasAttrs

v Using Jython:

print AdminConfig.create(’JAASAuthData’, security, jaasAttrs)

Example output:

(cells/mycell/nodes/mynode|resources.xml#JAASAuthData_2)

5. Save the configuration changes. See the “Saving configuration changes with the wsadmin tool” on

page 232 article for more information.

6. In a network deployment environment only, synchronize the node. See the “Synchronizing nodes with

the wsadmin tool” on page 217 article for more information.

324 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Configuring new J2C activation specs using scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the wsadmin scripting client”

on page 250 article for more information.

Perform the following steps to configure a J2C activation specs:

1. Identify the parent ID and assign it to the newra variable.

v Using Jacl:

set newra [$AdminConfig getid /Cell:mycell/Node:mynode/J2CResourceAdapter:RAR1/]

v Using Jython:

newra = AdminConfig.getid(’/Cell:mycell/Node:mynode/J2CResourceAdapter:RAR1/’)

print newra

Example output:

RAR1(cells/mycell/nodes/mynode|resources.xml#J2CResourceAdapter_1)

2. There are two ways to configure a new J2C administrative object. Perform one of the following:

v Using the AdminTask object:

a. List the administrative object interfaces:

Using Jacl:

$AdminTask listMessageListenerTypes $newra

Using Jython:

AdminTask.listMessageListenerTypes(newra)

Example output:

javax.jms.MessageListener

b. Create a J2C administrative object:

Using Jacl:

$AdminTask createJ2CActivationSpec $newra { -name ac1 -jndiName eis/ac1

 -message ListenerType javax.jms.MessageListener}

Using Jython:

AdminTask.createJ2CActivationSpec(newra, [’-name’, ’ao1’, ’-jndiName’, ’eis/ao1’, ’-message’,

 ’ListenerType’, ’javax.jms.MessageListener’])

v Using the AdminConfig object:

a. Using Jacl:

$AdminConfig required J2CActivationSpec

Using Jython:

print AdminConfig.required(’J2CActivationSpec’)

Example output:

Attribute Type

activationSpec ActivationSpec@

b. If your resource adapter is JCA V1.5 and you have multiple activation specs defined, it is

required that you specify the activation spec attribute. If your resource adapter is JCA V1.5 and

you have only one activation spec defined, it will be picked up automatically. If your resource

adapter is JCA V1.0, you do not need to specify the activationSpec attribute. Perform the

following command to list the activation specs defined by the resource adapter:

Using Jacl:

$AdminConfig list ActivationSpec $newra

Using Jython:

print AdminConfig.list(’ActivationSpec’, $newra)

c. Set the administrative object that you need to a variable:

Using Jacl:

Chapter 4. Using the administrative clients 325

set ac ActivationSpecID

set name [list name J2CAC1]

set jname [jndiName eis/j2cac1]

set j2cacAttrs [list $name $jname]

Using Jython:

ac = ActivationSpecID

name = [’name’, ’J2CAC1’]

jname = [’jndiName’, ’eis/j2cac1’]

j2cacAttrs = [name, jname]

d. If you are specifying the ActivationSpec attribute, also set up the following:

Using Jacl:

set cdcttr [list activationSpec $ac]

Using Jython:

cdattr = [’activationSpec’, ac]

e. Create a J2C activation spec object:

Using Jacl:

$AdminConfig create J2CActivationSpec $newra $j2cacAttrs

Using Jython:

print AdminConfig.create(’J2CActivationSpec’, newra,j2cacAttrs)

Example output:

J2CAC1(cells/mycell/nodes/mynode|resources.xml#J2CActivationSpec_1)

3. Save the configuration changes. See the “Saving configuration changes with the wsadmin tool” on

page 232 article for more information.

4. In a network deployment environment only, synchronize the node. See the “Synchronizing nodes with

the wsadmin tool” on page 217 article for more information.

Configuring new J2C administrative objects using scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the wsadmin scripting client”

on page 250 article for more information.

Perform the following steps to configure a J2C administrative object:

1. Identify the parent ID and assign it to the newra variable.

v Using Jacl:

set newra [$AdminConfig getid /Cell:mycell/Node:mynode/J2CResourceAdapter:RAR1/]

v Using Jython:

newra = AdminConfig.getid(’/Cell:mycell/Node:mynode/J2CResourceAdapter:RAR1/’)

print newra

Example output:

RAR1(cells/mycell/nodes/mynode|resources.xml#J2CResourceAdapter_1)

2. There are two ways to configure a new J2C administrative object. Perform one of the following:

v Using the AdminTask object:

a. List the administrative object interfaces:

Using Jacl:

$AdminTask listAdminObjectInterfaces $newra

Using Jython:

AdminTask.listAdminObjectInterfaces(newra)

Example output:

com.ibm.test.message.FVTMessageProvider

b. Create a J2C administrative object:

326 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Using Jacl:

$AdminTask createJ2CAdminObject $newra { -name ao1 -jndiName eis/ao1

 -adminObjectInterface com.ibm.test.message.FVTMessageProvider }

Using Jython:

AdminTask.createJ2CAdminObject(newra, [’-name’, ’ao1’, ’-jndiName’, ’eis/ao1’, ’-adminObjectInterface’,

 ’com.ibm.test.message.FVTMessageProvider’])

v Using the AdminConfig object:

a. Using Jacl:

$AdminConfig required J2CAdminObject

Using Jython:

print AdminConfig.required(’J2CAdminObject’)

Example output:

Attribute Type

adminObject AdminObject@

b. If your resource adapter is JCA V1.5 and you have multiple administrative objects defined, it is

required that you specify the administrative object attribute. If your resource adapter is JCA V1.5

and you have only one administrative object defined, it will be picked up automatically. If your

resource adapter is JCA V1.0, you do not need to specify the administrative object attribute.

Perform the following command to list the administrative objects defined by the resource

adapter:

Using Jacl:

$AdminConfig list AdminObject $newra

Using Jython:

print AdminConfig.list(’AdminObject’, $newra)

c. Set the administrative objects that you need to a variable:

Using Jacl:

set ao AdminObjectId

set name [list name J2CAO1]

set jname [jndiName eis/j2cao1]

set j2caoAttrs [list $name $jname]

Using Jython:

ao = AdminObjectId

name = [’name’, ’J2CAO1’]

set jname = [’jndiName’, eis/j2cao1]

j2caoAttrs = [name, jname]

d. If you are specifying the AdminObject attribute, also set up the following:

Using Jacl:

set cdattr [list adminObject $ao]

Using Jython:

cdattr = [’adminObject’, ao]

e. Create a J2C administrative object:

Using Jacl:

$AdminConfig create J2CAdminObject $newra $j2caoAttrs

Using Jython:

print AdminConfig.create(’J2CAdminObject’, newra, j2caoAttrs)

Example output:

J2CAO1(cells/mycell/nodes/mynode|resources.xml#J2CAdminObject_1)

3. Save the configuration changes. See the “Saving configuration changes with the wsadmin tool” on

page 232 article for more information.

Chapter 4. Using the administrative clients 327

4. In a network deployment environment only, synchronize the node. See the “Synchronizing nodes with

the wsadmin tool” on page 217 article for more information.

Testing data source connections using scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the wsadmin scripting client”

on page 250 article for more information.

Perform the following steps to test a data source to ensure a connection to the database.

1. Identify the DataSourceCfgHelper MBean and assign it to the dshelper variable.

v Using Jacl:

set ds [$AdminConfig getid /DataSource:DS1/]

$AdminControl testConnection $ds

v Using Jython:

ds = AdminConfig.getid(’/DataSource:DS1/’)

AdminControl.testConnection(ds)

Example output:

WASX7217I: Connection to provided datasource was successful.

2. Test the connection. The following example invokes the testConnectionToDataSource operation on the

MBean, passing in the classname, userid, password, database name, JDBC driver class path,

language, and country.

v Using Jacl:

$AdminControl invoke $dshelper testConnectionToDataSource "COM.ibm.db2.jdbc.DB2XADataSource db2admin db2admin

{{databaseName sample}} c:/sqllib/java/db2java.zip en US"

v Using Jython:

print AdminControl.invoke(dshelper, ’testConnectionToDataSource’,

’COM.ibm.db2.jdbc.DB2XADataSource dbuser1 dbpwd1

 "{{databaseName jtest1}}" c:/sqllib/java12/db \"\" \"\"’)

Example output:

WASX7217I: Connection to provided data source was successful.

Configuring messaging with scripting

This topic contains the following tasks:

v “Configuring the message listener service using scripting”

v “Configuring new JMS providers using scripting” on page 330

v “Configuring new JMS destinations using scripting” on page 331

v “Configuring new JMS connections using scripting” on page 332

v “Configuring new WebSphere queue connection factories using scripting” on page 333

v “Configuring new WebSphere topic connection factories using scripting” on page 334

v “Configuring new WebSphere queues using scripting” on page 335

v “Configuring new WebSphere topics using scripting” on page 336

v “Configuring new MQ queue connection factories using scripting” on page 337

v “Configuring new MQ topic connection factories using scripting” on page 338

v “Configuring new MQ queues using scripting” on page 339

v “Configuring new MQ topics using scripting” on page 340

Configuring the message listener service using scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the wsadmin scripting client”

on page 250 article for more information.

328 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Perform the following steps to configure the message listener service for an application server:

1. Identify the application server and assign it to the server variable:

v Using Jacl:

set server [$AdminConfig getid /Cell:mycell/Node:mynode/Server:server1/]

v Using Jython:

server = AdminConfig.getid(’/Cell:mycell/Node:mynode/Server:server1/’)

print server

Example output:

server1(cells/mycell/nodes/mynode/servers/server1|server.xml#Server_1)

2. Identify the message listener service belonging to the server and assign it to the mls variable:

v Using Jacl:

set mls [$AdminConfig list MessageListenerService $server]

v Using Jython:

mls = AdminConfig.list(’MessageListenerService’, server)

print mls

Example output:

(cells/mycell/nodes/mynode/servers/server1|server.xml#MessageListenerService_1)

3. Modify various attributes with one of the following examples:

v This example command changes the thread pool attributes:

– Using Jacl:

$AdminConfig modify $mls {{threadPool {{inactivityTimeout 4000} {isGrowable true} {maximumSize 100}

 {minimumSize 25}}}}

– Using Jython:

AdminConfig.modify(mls, [[’threadPool’, [[’inactivityTimeout’, 4000], [’isGrowable’, ’true’],

 [’maximumSize’, 100], [’minimumSize’, 25]]]])

v This example modifies the property of the first listener port:

– Using Jacl:

set lports [$AdminConfig showAttribute $mls listenerPorts]

set lport [lindex $lports 0]

$AdminConfig modify $lport {{maxRetries 2}}

– Using Jython:

lports = AdminConfig.showAttribute(mls, ’listenerPorts’)

cleanLports = lports[1:len(lports)-1]

lport = cleanLports.split(" ")[0]

AdminConfig.modify(lport, [[’maxRetries’, 2]])

v This example adds a listener port:

– Using Jacl:

set new [$AdminConfig create ListenerPort $mls {{name my} {destinationJNDIName di}

 {connectionFactoryJNDIName jndi/fs}}]

$AdminConfig create StateManageable $new {{initialState START}}

– Using Jython:

new = AdminConfig.create(’ListenerPort’, mls, [[’name’, ’my’], [’destinationJNDIName’, ’di’],

 [’connectionFactoryJNDIName’, ’jndi/fsi’]])

print new

print AdminConfig.create(’StateManageable’, new, [[’initialState’, ’START’]])

Example output:

my(cells/mycell/nodes/mynode/servers/server1:server.xml#ListenerPort_1079471940692)

(cells/mycell/nodes/mynode/servers/server1:server.xml#StateManageable_107947182623)

4. Save the configuration changes. See the “Saving configuration changes with the wsadmin tool” on

page 232 article for more information.

Chapter 4. Using the administrative clients 329

5. In a network deployment environment only, synchronize the node. See the “Synchronizing nodes with

the wsadmin tool” on page 217 article for more information.

Configuring new JMS providers using scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the wsadmin scripting client”

on page 250 article for more information.

Perform the following steps to configure a new JMS provider:

1. Identify the parent ID:

v Using Jacl:

set node [$AdminConfig getid /Cell:mycell/Node:mynode/]

v Using Jython:

node = AdminConfig.getid(’/Cell:mycell/Node:mynode/’)

print node

Example output:

mynode(cells/mycell/nodes/mynode|node.xml#Node_1)

2. Get required attributes:

v Using Jacl:

$AdminConfig required JMSProvider

v Using Jython:

print AdminConfig.required(’JMSProvider’)

Example output:

Attribute Type

name String

externalInitialContextFactory String

externalProviderURL String

3. Set up required attributes:

v Using Jacl:

set name [list name JMSP1]

set extICF [list externalInitialContextFactory "Put the external initial context factory here"]

set extPURL [list externalProviderURL "Put the external provider URL here"]

set jmspAttrs [list $name $extICF $extPURL]

v Using Jython:

name = [’name’, ’JMSP1’]

extICF = [’externalInitialContextFactory’, "Put the external initial context factory here"]

extPURL = [’externalProviderURL’, "Put the external provider URL here"]

jmspAttrs = [name, extICF, extPURL]

print jmspAttrs

Example output:

{name JMSP1} {externalInitialContextFactory {Put the external initial context factory here }}

 {externalProviderURL {Put the external provider URL here}}

4. Create the JMS provider:

v Using Jacl:

set newjmsp [$AdminConfig create JMSProvider $node $jmspAttrs]

v Using Jython:

newjmsp = AdminConfig.create(’JMSProvider’, node, jmspAttrs)

print newjmsp

Example output:

JMSP1(cells/mycell/nodes/mynode|resources.xml#JMSProvider_1)

5. Save the configuration changes. See the “Saving configuration changes with the wsadmin tool” on

page 232 article for more information.

330 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

6. In a network deployment environment only, synchronize the node. See the “Synchronizing nodes with

the wsadmin tool” on page 217 article for more information.

Configuring new JMS destinations using scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the wsadmin scripting client”

on page 250 article for more information.

Perform the following steps to configure a new JMS destination:

1. Identify the parent ID:

v Using Jacl:

set newjmsp [$AdminConfig getid /Cell:mycell/Node:myNode/JMSProvider:JMSP1]

v Using Jython:

newjmsp = AdminConfig.getid(’/Cell:mycell/Node:myNode/JMSProvider:JMSP1’)

print newjmsp

Example output:

JMSP1(cells/mycell/nodes/mynode|resources.xml#JMSProvider_1)

2. Get required attributes:

v Using Jacl:

$AdminConfig required GenericJMSDestination

v Using Jython:

print AdminConfig.required(’GenericJMSDestination’)

Example output:

Attribute Type

name String

jndiName String

externalJNDIName String

3. Set up required attributes:

v Using Jacl:

set name [list name JMSD1]

set jndi [list jndiName jms/JMSDestination1]

set extJndi [list externalJNDIName jms/extJMSD1]

set jmsdAttrs [list $name $jndi $extJndi]

v Using Jython:

name = [’name’, ’JMSD1’]

jndi = [’jndiName’, ’jms/JMSDestination1’]

extJndi = [’externalJNDIName’, ’jms/extJMSD1’]

jmsdAttrs = [name, jndi, extJndi]

print jmsdAttrs

Example output:

{name JMSD1} {jndiName jms/JMSDestination1} {externalJNDIName jms/extJMSD1}

4. Create generic JMS destination:

v Using Jacl:

$AdminConfig create GenericJMSDestination $newjmsp $jmsdAttrs

v Using Jython:

print AdminConfig.create(’GenericJMSDestination’, newjmsp, jmsdAttrs)

Example output:

JMSD1(cells/mycell/nodes/mynode|resources.xml#GenericJMSDestination_1)

5. Save the configuration changes. See the “Saving configuration changes with the wsadmin tool” on

page 232 article for more information.

6. In a network deployment environment only, synchronize the node. See the “Synchronizing nodes with

the wsadmin tool” on page 217 article for more information.

Chapter 4. Using the administrative clients 331

Configuring new JMS connections using scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the wsadmin scripting client”

on page 250 article for more information.

Perform the following steps to configure a new JMS connection:

1. Identify the parent ID:

v Using Jacl:

set newjmsp [$AdminConfig getid /Cell:mycell/Node:myNode/JMSProvider:JMSP1]

v Using Jython:

newjmsp = AdminConfig.getid(’/Cell:mycell/Node:myNode/JMSProvider:JMSP1’)

print newjmsp

Example output:

JMSP1(cells/mycell/nodes/mynode|resources.xml#JMSProvider_1)

2. Get required attributes:

v Using Jacl:

$AdminConfig required GenericJMSConnectionFactory

v Using Jython:

print AdminConfig.required(’GenericJMSConnectionFactory’)

Example output:

Attribute Type

name String

jndiName String

externalJNDIName String

3. Set up required attributes:

v Using Jacl:

set name [list name JMSCF1]

set jndi [list jndiName jms/JMSConnFact1]

set extJndi [list externalJNDIName jms/extJMSCF1]

set jmscfAttrs [list $name $jndi $extJndi]

Example output:

{name JMSCF1} {jndiName jms/JMSConnFact1} {externalJNDIName jms/extJMSCF1}

v Using Jython:

name = [’name’, ’JMSCF1’]

jndi = [’jndiName’, ’jms/JMSConnFact1’]

extJndi = [’externalJNDIName’, ’jms/extJMSCF1’]

jmscfAttrs = [name, jndi, extJndi]

print jmscfAttrs

Example output:

[[name, JMSCF1], [jndiName, jms/JMSConnFact1], [externalJNDIName, jms/extJMSCF1]]

4. Create generic JMS connection factory:

v Using Jacl:

$AdminConfig create GenericJMSConnectionFactory $newjmsp $jmscfAttrs

v Using Jython:

print AdminConfig.create(’GenericJMSConnectionFactory’, newjmsp, jmscfAttrs)

Example output:

JMSCF1(cells/mycell/nodes/mynode|resources.xml#GenericJMSConnectionFactory_1)

5. Save the configuration changes. See the “Saving configuration changes with the wsadmin tool” on

page 232 article for more information.

6. In a network deployment environment only, synchronize the node. See the “Synchronizing nodes with

the wsadmin tool” on page 217 article for more information.

332 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Configuring new WebSphere queue connection factories using scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the wsadmin scripting client”

on page 250 article for more information.

Perform the following steps to configure a new WebSphere queue connection factory:

1. Identify the parent ID:

v Using Jacl:

set newjmsp [$AdminConfig getid /Cell:mycell/Node:mynode/JMSProvider:JMSP1/]

v Using Jython:

newjmsp = AdminConfig.getid(’/Cell:mycell/Node:myNode/JMSProvider:JMSP1/’)

print newjmsp

Example output:

JMSP1(cells/mycell/nodes/mynode|resources.xml#JMSProvider_1)

2. Get required attributes:

v Using Jacl:

$AdminConfig required WASQueueConnectionFactory

v Using Jython:

print AdminConfig.required(’WASQueueConnectionFactory’)

Example output:

Attribute Type

name String

jndiName String

3. Set up required attributes:

v Using Jacl:

set name [list name WASQCF]

set jndi [list jndiName jms/WASQCF]

set mqcfAttrs [list $name $jndi]

Example output:

{name WASQCF} {jndiName jms/WASQCF}

v Using Jython:

name = [’name’, ’WASQCF’]

jndi = [’jndiName’, ’jms/WASQCF’]

mqcfAttrs = [name, jndi]

print mqcfAttrs

Example output:

[[name, WASQCF], [jndiName, jms/WASQCF]]

4. Create was queue connection factories:

v Using Jacl:

$AdminConfig create WASQueueConnectionFactory $newjmsp $mqcfAttrs

v Using Jython:

print AdminConfig.create(’WASQueueConnectionFactory’, newjmsp, mqcfAttrs)

Example output:

WASQCF(cells/mycell/nodes/mynode|resources.xml#WASQueueConnectionFactory_1)

5. Save the configuration changes. See the “Saving configuration changes with the wsadmin tool” on

page 232 article for more information.

6. In a network deployment environment only, synchronize the node. See the “Synchronizing nodes with

the wsadmin tool” on page 217 article for more information.

Chapter 4. Using the administrative clients 333

Configuring new WebSphere topic connection factories using scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the wsadmin scripting client”

on page 250 article for more information.

Perform the following steps to configure a new WebSphere topic connection factory:

1. Identify the parent ID:

v Using Jacl:

set newjmsp [$AdminConfig getid /Cell:mycell/Node:mynode/JMSProvider:JMSP1/]

v Using Jython:

newjmsp = AdminConfig.getid(’/Cell:mycell/Node:myNode/JMSProvider:JMSP1/’)

print newjmsp

Example output:

JMSP1(cells/mycell/nodes/mynode|resources.xml#JMSProvider_1)

2. Get required attributes:

v Using Jacl:

$AdminConfig required WASTopicConnectionFactory

v Using Jython:

print AdminConfig.required(’WASTopicConnectionFactory’)

Example output:

Attribute Type

name String

jndiName String

port ENUM(DIRECT, QUEUED)

3. Set up required attributes:

v Using Jacl:

set name [list name WASTCF]

set jndi [list jndiName jms/WASTCF]

set port [list port QUEUED]

set mtcfAttrs [list $name $jndi $port]

Example output:

{name WASTCF} {jndiName jms/WASTCF} {port QUEUED}

v Using Jython:

name = [’name’, ’WASTCF’]

jndi = [’jndiName’, ’jms/WASTCF’]

port = [’port’, ’QUEUED’]

mtcfAttrs = [name, jndi, port]

print mtcfAttrs

Example output:

[[name, WASTCF], [jndiName, jms/WASTCF], [port, QUEUED]]

4. Create was topic connection factories:

v Using Jacl:

$AdminConfig create WASTopicConnectionFactory $newjmsp $mtcfAttrs

v Using Jython:

print AdminConfig.create(’WASTopicConnectionFactory’, newjmsp, mtcfAttrs)

Example output:

WASTCF(cells/mycell/nodes/mynode|resources.xml#WASTopicConnectionFactory_1)

5. Save the configuration changes. See the “Saving configuration changes with the wsadmin tool” on

page 232 article for more information.

6. In a network deployment environment only, synchronize the node. See the “Synchronizing nodes with

the wsadmin tool” on page 217 article for more information.

334 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Configuring new WebSphere queues using scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the wsadmin scripting client”

on page 250 article for more information.

Perform the following steps to configure a new WebSphere queue:

1. Identify the parent ID:

v Using Jacl:

set newjmsp [$AdminConfig getid /Cell:mycell/Node:mynode/JMSProvider:JMSP1/]

v Using Jython:

newjmsp = AdminConfig.getid(’/Cell:mycell/Node:myNode/JMSProvider:JMSP1/’)

print newjmsp

Example output:

JMSP1(cells/mycell/nodes/mynode|resources.xml#JMSProvider_1)

2. Get required attributes:

v Using Jacl:

$AdminConfig required WASQueue

v Using Jython:

print AdminConfig.required(’WASQueue’)

Example output:

Attribute Type

name String

jndiName String

3. Set up required attributes:

v Using Jacl:

set name [list name WASQ1]

set jndi [list jndiName jms/WASQ1]

set wqAttrs [list $name $jndi]

Example output:

{name WASQ1} {jndiName jms/WASQ1}

v Using Jython:

name = [’name’, ’WASQ1’]

jndi = [’jndiName’, ’jms/WASQ1’]

wqAttrs = [name, jndi]

print wqAttrs

Example output:

[[name, WASQ1], [jndiName, jms/WASQ1]]

4. Create was queue:

v Using Jacl:

$AdminConfig create WASQueue $newjmsp $wqAttrs

v Using Jython:

print AdminConfig.create(’WASQueue’, newjmsp, wqAttrs)

Example output:

WASQ1(cells/mycell/nodes/mynode|resources.xml#WASQueue_1)

5. Save the configuration changes. See the “Saving configuration changes with the wsadmin tool” on

page 232 article for more information.

6. In a network deployment environment only, synchronize the node. See the “Synchronizing nodes with

the wsadmin tool” on page 217 article for more information.

Chapter 4. Using the administrative clients 335

Configuring new WebSphere topics using scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the wsadmin scripting client”

on page 250 article for more information.

Perform the following steps to configure a new WebSphere topic:

1. Identify the parent ID:

v Using Jacl:

set newjmsp [$AdminConfig getid /Cell:mycell/Node:mynode/JMSProvider:JMSP1/]

v Using Jython:

newjmsp = AdminConfig.getid(’/Cell:mycell/Node:myNode/JMSProvider:JMSP1/’)

print newjmsp

Example output:

JMSP1(cells/mycell/nodes/mynode|resources.xml#JMSProvider_1)

2. Get required attributes:

v Using Jacl:

$AdminConfig required WASTopic

v Using Jython:

print AdminConfig.required(’WASTopic’)

Example output:

Attribute Type

name String

jndiName String

topic String

3. Set up required attributes:

v Using Jacl:

set name [list name WAST1]

set jndi [list jndiName jms/WAST1]

set topic [list topic "Put your topic here"]

set wtAttrs [list $name $jndi $topic]

Example output:

{name WAST1} {jndiName jms/WAST1} {topic {Put your topic here}}

v Using Jython:

name = [’name’, ’WAST1’]

jndi = [’jndiName’, ’jms/WAST1’]

topic = [’topic’, "Put your topic here"]

wtAttrs = [name, jndi, topic]

print wtAttrs

Example output:

[[name, WAST1], [jndiName, jms/WAST1], [topic, "Put your topic here"]]

4. Create was topic:

v Using Jacl:

$AdminConfig create WASTopic $newjmsp $wtAttrs

v Using Jython:

print AdminConfig.create(’WASTopic’, newjmsp, wtAttrs)

Example output:

WAST1(cells/mycell/nodes/mynode|resources.xml#WASTopic_1)

5. Save the configuration changes. See the “Saving configuration changes with the wsadmin tool” on

page 232 article for more information.

6. In a network deployment environment only, synchronize the node. See the “Synchronizing nodes with

the wsadmin tool” on page 217 article for more information.

336 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Configuring new MQ queue connection factories using scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the wsadmin scripting client”

on page 250 article for more information.

Perform the following steps to configure a new MQ queue connection factory:

1. Identify the parent ID:

v Using Jacl:

set newjmsp [$AdminConfig getid /Cell:mycell/Node:mynode/JMSProvider:JMSP1/]

v Using Jython:

newjmsp = AdminConfig.getid(’/Cell:mycell/Node:myNode/JMSProvider:JMSP1’)

print newjmsp

Example output:

JMSP1(cells/mycell/nodes/mynode|resources.xml#JMSProvider_1)

2. Get required attributes:

v Using Jacl:

$AdminConfig required MQQueueConnectionFactory

v Using Jython:

print AdminConfig.required(’MQQueueConnectionFactory’)

Example output:

Attribute Type

name String

jndiName String

3. Set up required attributes:

v Using Jacl:

set name [list name MQQCF]

set jndi [list jndiName jms/MQQCF]

set mqqcfAttrs [list $name $jndi]

Example output:

{name MQQCF} {jndiName jms/MQQCF}

v Using Jython:

name = [’name’, ’MQQCF’]

jndi = [’jndiName’, ’jms/MQQCF’]

mqqcfAttrs = [name, jndi]

print mqqcfAttrs

Example output:

[[name, MQQCF], [jndiName, jms/MQQCF]]

4. Set up a template:

v Using Jacl:

set template [lindex [$AdminConfig listTemplates MQQueueConnectionFactory] 0]

v Using Jython:

import java

lineseparator = java.lang.System.getProperty(’line.separator’)

template = AdminConfig.listTemplates(’MQQueueConnectionFactory’).split(lineseparator)[0]

print template

Example output:

Example non-XA WMQ QueueConnectionFactory(templates/

system:JMS-resource-provider-templates.xml

#MQQueueConnectionFactory_3)

5. Create MQ queue connection factory:

v Using Jacl:

Chapter 4. Using the administrative clients 337

$AdminConfig createUsingTemplate MQQueueConnectionFactory $newjmsp $mqqcfAttrs $template

v Using Jython:

print AdminConfig.createUsingTemplate(’MQQueueConnectionFactory’, newjmsp, mqqcfAttrs, template)

Example output:

MQQCF(cells/mycell/nodes/mynode:resources.xml#MQQueueConnectionFactory_1)

6. Save the configuration changes. See the “Saving configuration changes with the wsadmin tool” on

page 232 article for more information.

7. In a network deployment environment only, synchronize the node. See the “Synchronizing nodes with

the wsadmin tool” on page 217 article for more information.

Configuring new MQ topic connection factories using scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the wsadmin scripting client”

on page 250 article for more information.

Perform the following steps to configure a new MQ topic connection factory:

1. Identify the parent ID:

v Using Jacl:

set newjmsp [$AdminConfig getid /Cell:mycell/Node:mynode/JMSProvider:JMSP1/]

v Using Jython:

newjmsp = AdminConfig.getid(’/Cell:mycell/Node:myNode/JMSProvider:JMSP1’)

print newjmsp

Example output:

JMSP1(cells/mycell/nodes/mynode:resources.xml#JMSProvider_1)

2. Get required attributes:

v Using Jacl:

$AdminConfig required MQTopicConnectionFactory

v Using Jython:

print AdminConfig.required(’MQTopicConnectionFactory’)

Example output:

Attribute Type

name String

jndiName String

3. Set up required attributes:

v Using Jacl:

set name [list name MQTCF]

set jndi [list jndiName jms/MQTCF]

set mqtcfAttrs [list $name $jndi]

Example output:

{name MQTCF} {jndiName jms/MQTCF}

v Using Jython:

name = [’name’, ’MQTCF’]

jndi = [’jndiName’, ’jms/MQTCF’]

mqtcfAttrs = [name, jndi]

print mqtcfAttrs

Example output:

[[name, MQTCF], [jndiName, jms/MQTCF]]

4. Set up a template:

v Using Jacl:

set template [lindex [$AdminConfig listTemplates MQTopicConnectionFactory] 0]

338 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

v Using Jython:

import java

lineseparator = java.lang.System.getProperty(’line.separator’)

template = AdminConfig.listTemplates(’MQTopicConnectionFactory’).split(lineseparator)[0]

print template

Example output:

Example non-XA WMQ TopicConnectionFactory(templates/system:

JMS-resource-provider-templates.xml

#MQTopicConnectionFactory_5)

5. Create mq topic connection factory:

v Using Jacl:

$AdminConfig create MQTopicConnectionFactory $newjmsp $mqtcfAttrs $template

v Using Jython:

print AdminConfig.create(’MQTopicConnectionFactory’, newjmsp, mqtcfAttrs, template)

Example output:

MQTCF(cells/mycell/nodes/mynode:resources.xml#MQTopicConnectionFactory_1)

6. Save the configuration changes. See the “Saving configuration changes with the wsadmin tool” on

page 232 article for more information.

7. In a network deployment environment only, synchronize the node. See the “Synchronizing nodes with

the wsadmin tool” on page 217 article for more information.

Configuring new MQ queues using scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the wsadmin scripting client”

on page 250 article for more information.

Perform the following steps to configure a new MQ queue:

1. Identify the parent ID:

v Using Jacl:

set newjmsp [$AdminConfig getid /Cell:mycell/Node:mynode/JMSProvider:JMSP1/]

v Using Jython:

newjmsp = AdminConfig.getid(’/Cell:mycell/Node:myNode/JMSProvider:JMSP1’)

print newjmsp

Example output:

JMSP1(cells/mycell/nodes/mynode|resources.xml#JMSProvider_1)

2. Get required attributes:

v Using Jacl:

$AdminConfig required MQQueue

v Using Jython:

print AdminConfig.required(’MQQueue’)

Example output:

Attribute Type

name String

jndiName String

baseQueueName String

3. Set up required attributes:

v Using Jacl:

set name [list name MQQ]

set jndi [list jndiName jms/MQQ]

set baseQN [list baseQueueName "Put the base queue name here"]

set mqqAttrs [list $name $jndi $baseQN]

Example output:

Chapter 4. Using the administrative clients 339

{name MQQ} {jndiName jms/MQQ} {baseQueueName {Put the base queue name here}}

v Using Jython:

name = [’name’, ’MQQ’]

jndi = [’jndiName’, ’jms/MQQ’]

baseQN = [’baseQueueName’, "Put the base queue name here"]

mqqAttrs = [name, jndi, baseQN]

print mqqAttrs

Example output:

[[name, MQQ], [jndiName, jms/MQQ], [baseQueueName, "Put the base queue name here"]]

4. Set up a template:

v Using Jacl:

set template [lindex [$AdminConfig listTemplates MQQueue] 0]

v Using Jython:

import java

lineseparator = java.lang.System.getProperty(’line.separator’)

template = AdminConfig.listTemplates(’MQQueue’).split(lineseparator)[0]

print template

Example output:

Example.JMS.WMQ.Q1(templates/system:JMS-resource-provider-

templates.xml#MQQueue_1)

5. Create MQ queue factory:

v Using Jacl:

$AdminConfig create MQQueue $newjmsp $mqqAttrs $template

v Using Jython:

print AdminConfig.create(’MQQueue’, newjmsp, mqqAttrs, template)

Example output:

MQQ(cells/mycell/nodes/mynode|resources.xml#MQQueue_1)

6. Save the configuration changes. See the “Saving configuration changes with the wsadmin tool” on

page 232 article for more information.

7. In a network deployment environment only, synchronize the node. See the “Synchronizing nodes with

the wsadmin tool” on page 217 article for more information.

Configuring new MQ topics using scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the wsadmin scripting client”

on page 250 article for more information.

Perform the following steps to configure a new MQ topic:

1. Identify the parent ID:

v Using Jacl:

set newjmsp [$AdminConfig getid /Cell:mycell/Node:mynode/JMSProvider:JMSP1/]

v Using Jython:

newjmsp = AdminConfig.getid(’/Cell:mycell/Node:myNode/JMSProvider:JMSP1’)

print newjmsp

Example output:

JMSP1(cells/mycell/nodes/mynode|resources.xml#JMSProvider_1)

2. Get required attributes:

v Using Jacl:

$AdminConfig required MQTopic

v Using Jython:

print AdminConfig.required(’MQTopic’)

340 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Example output:

Attribute Type

name String

jndiName String

baseTopicName String

3. Set up required attributes:

v Using Jacl:

set name [list name MQT]

set jndi [list jndiName jms/MQT]

set baseTN [list baseTopicName "Put the base topic name here"]

set mqtAttrs [list $name $jndi $baseTN]

Example output:

{name MQT} {jndiName jms/MQT} {baseTopicName {Put the base topic name here}}

v Using Jython:

name = [’name’, ’MQT’]

jndi = [’jndiName’, ’jms/MQT’]

baseTN = [’baseTopicName’, "Put the base topic name here"]

mqtAttrs = [name, jndi, baseTN]

print mqtAttrs

Example output:

[[name, MQT], [jndiName, jms/MQT], [baseTopicName, "Put the base topic name here"]]

4. Create MQ topic factory:

v Using Jacl:

$AdminConfig create MQTopic $newjmsp $mqtAttrs

v Using Jython:

print AdminConfig.create(’MQTopic’, newjmsp, mqtAttrs)

Example output:

MQT(cells/mycell/nodes/mynode|resources.xml#MQTopic_1)

5. Save the configuration changes. See the “Saving configuration changes with the wsadmin tool” on

page 232 article for more information.

6. In a network deployment environment only, synchronize the node. See the “Synchronizing nodes with

the wsadmin tool” on page 217 article for more information.

Configuring mail, URLs, and resource environment entries with

scripting

This topic contains the following tasks:

v “Configuring new mail providers using scripting” on page 342

v “Configuring new mail sessions using scripting” on page 342

v “Configuring new protocols using scripting” on page 343

v “Configuring new custom properties using scripting” on page 344

v “Configuring new resource environment providers using scripting” on page 345

v “Configuring custom properties for resource environment providers using scripting” on page 346

v “Configuring new referenceables using scripting” on page 347

v “Configuring new resource environment entries using scripting” on page 348

v “Configuring custom properties for resource environment entries using scripting” on page 349

v “Configuring new URL providers using scripting” on page 350

v “Configuring custom properties for URL providers using scripting” on page 351

v “Configuring new URLs using scripting” on page 352

v “Configuring custom properties for URLs using scripting” on page 353

Chapter 4. Using the administrative clients 341

Configuring new mail providers using scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the wsadmin scripting client”

on page 250 article for more information.

Perform the following steps to configure a new mail provider:

1. Identify the parent ID:

v Using Jacl:

set node [$AdminConfig getid /Cell:mycell/Node:mynode/]

v Using Jython:

node = AdminConfig.getid(’/Cell:mycell/Node:mynode/’)

print node

Example output:

mynode(cells/mycell/nodes/mynode|node.xml#Node_1)

2. Get required attributes:

v Using Jacl:

$AdminConfig required MailProvider

v Using Jython:

print AdminConfig.required(’MailProvider’)

Example output:

Attribute Type

name String

3. Set up required attributes:

v Using Jacl:

set name [list name MP1]

set mpAttrs [list $name]

v Using Jython:

name = [’name’, ’MP1’]

mpAttrs = [name]

4. Create the mail provider:

v Using Jacl:

set newmp [$AdminConfig create MailProvider $node $mpAttrs]

v Using Jython:

newmp = AdminConfig.create(’MailProvider’, node, mpAttrs)

print newmp

Example output:

MP1(cells/mycell/nodes/mynode|resources.xml#MailProvider_1)

5. Save the configuration changes. See the “Saving configuration changes with the wsadmin tool” on

page 232 article for more information.

6. In a network deployment environment only, synchronize the node. See the “Synchronizing nodes with

the wsadmin tool” on page 217 article for more information.

Configuring new mail sessions using scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the wsadmin scripting client”

on page 250 article for more information.

Perform the following steps to configure a new mail session:

1. Identify the parent ID:

v Using Jacl:

342 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

set newmp [$AdminConfig getid /Cell:mycell/Node:mynode/MailProvider:MP1/]

v Using Jython:

newmp = AdminConfig.create(’MailProvider’, node, mpAttrs)

print newmp

Example output:

MP1(cells/mycell/nodes/mynode|resources.xml#MailProvider_1)

2. Get required attributes:

v Using Jacl:

$AdminConfig required MailSession

v Using Jython:

print AdminConfig.required(’MailSession’)

Example output:

Attribute Type

name String

jndiName String

3. Set up required attributes:

v Using Jacl:

set name [list name MS1]

set jndi [list jndiName mail/MS1]

set msAttrs [list $name $jndi]

Example output:

{name MS1} {jndiName mail/MS1}

v Using Jython:

name = [’name’, ’MS1’]

jndi = [’jndiName’, ’mail/MS1’]

msAttrs = [name, jndi]

print msAttrs

Example output:

[[name, MS1], [jndiName, mail/MS1]]

4. Create the mail session:

v Using Jacl:

$AdminConfig create MailSession $newmp $msAttrs

v Using Jython:

print AdminConfig.create(’MailSession’, newmp, msAttrs)

Example output:

MS1(cells/mycell/nodes/mynode|resources.xml#MailSession_1)

5. Save the configuration changes. See the “Saving configuration changes with the wsadmin tool” on

page 232 article for more information.

6. In a network deployment environment only, synchronize the node. See the “Synchronizing nodes with

the wsadmin tool” on page 217 article for more information.

Configuring new protocols using scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the wsadmin scripting client”

on page 250 article for more information.

Perform the following steps to configure a new protocol:

1. Identify the parent ID:

v Using Jacl:

set newmp [$AdminConfig getid /Cell:mycell/Node:mynode/MailProvider:MP1/]

Chapter 4. Using the administrative clients 343

v Using Jython:

newmp = AdminConfig.create(’MailProvider’, node, mpAttrs)

print newmp

Example output:

MP1(cells/mycell/nodes/mynode|resources.xml#MailProvider_1)

2. Get required attributes:

v Using Jacl:

$AdminConfig required ProtocolProvider

v Using Jython:

print AdminConfig.required(’ProtocolProvider’)

Example output:

Attribute Type

protocol String

classname String

3. Set up required attributes:

v Using Jacl:

set protocol [list protocol "Put the protocol here"]

set classname [list classname "Put the class name here"]

set ppAttrs [list $protocol $classname]

Example output:

{protocol protocol1} {classname classname1}

v Using Jython:

protocol = [’protocol’, "Put the protocol here"]

classname = [’classname’, "Put the class name here"]

ppAttrs = [protocol, classname]

print ppAttrs

Example output:

[[protocol, protocol1], [classname, classname1]]

4. Create the protocol provider:

v Using Jacl:

$AdminConfig create ProtocolProvider $newmp $ppAttrs

v Using Jython:

print AdminConfig.create(’ProtocolProvider’, newmp, ppAttrs)

Example output:

(cells/mycell/nodes/mynode|resources.xml#ProtocolProvider_4)

5. Save the configuration changes. See the “Saving configuration changes with the wsadmin tool” on

page 232 article for more information.

6. In a network deployment environment only, synchronize the node. See the “Synchronizing nodes with

the wsadmin tool” on page 217 article for more information.

Configuring new custom properties using scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the wsadmin scripting client”

on page 250 article for more information.

Perform the following steps to configure a new custom property:

1. Identify the parent ID:

v Using Jacl:

set newmp [$AdminConfig getid /Cell:mycell/Node:mynode/MailProvider:MP1/]

v Using Jython:

344 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

newmp = AdminConfig.create(’MailProvider’, node, mpAttrs)

print newmp

Example output:

MP1(cells/mycell/nodes/mynode|resources.xml#MailProvider_1)

2. Get the J2EE resource property set:

v Using Jacl:

set propSet [$AdminConfig showAttribute $newmp propertySet]

v Using Jython:

propSet = AdminConfig.showAttribute(newmp, ’propertySet’)

print propSet

Example output:

(cells/mycell/nodes/mynode|resources.xml#PropertySet_2)

3. Get required attributes:

v Using Jacl:

$AdminConfig required J2EEResourceProperty

v Using Jython:

print AdminConfig.required(’J2EEResourceProperty’)

Example output:

Attribute Type

name String

4. Set up the required attributes:

v Using Jacl:

set name [list name CP1]

set cpAttrs [list $name]

Example output:

{name CP1}

v Using Jython:

name = [’name’, ’CP1’]

cpAttrs = [name]

print cpAttrs

Example output:

[[name, CP1]]

5. Create a J2EE resource property:

v Using Jacl:

$AdminConfig create J2EEResourceProperty $propSet $cpAttrs

v Using Jython:

print AdminConfig.create(’J2EEResourceProperty’, propSet, cpAttrs)

Example output:

CP1(cells/mycell/nodes/mynode|resources.xml#J2EEResourceProperty_2)

6. Save the configuration changes. See the “Saving configuration changes with the wsadmin tool” on

page 232 article for more information.

7. In a network deployment environment only, synchronize the node. See the “Synchronizing nodes with

the wsadmin tool” on page 217 article for more information.

Configuring new resource environment providers using scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the wsadmin scripting client”

on page 250 article for more information.

Perform the following steps to configure a new resource environment provider:

Chapter 4. Using the administrative clients 345

1. Identify the parent ID and assign it to the node variable.

v Using Jacl:

set node [$AdminConfig getid /Cell:mycell/Node:mynode/]

v Using Jython:

node = AdminConfig.getid(’/Cell:mycell/Node:mynode/’)

print node

Example output:

mynode(cells/mycell/nodes/mynode|node.xml#Node_1)

2. Identify the required attributes:

v Using Jacl:

$AdminConfig required ResourceEnvironmentProvider

v Using Jython:

print AdminConfig.required(’ResourceEnvironmentProvider’)

Example output:

Attribute Type

name String

3. Set up the required attributes and assign it to the repAttrs variable:

v Using Jacl:

set n1 [list name REP1]

set repAttrs [list $name]

v Using Jython:

n1 = [’name’, ’REP1’]

repAttrs = [n1]

4. Create a new resource environment provider:

v Using Jacl:

set newrep [$AdminConfig create ResourceEnvironmentProvider $node $repAttrs]

v Using Jython:

newrep = AdminConfig.create(’ResourceEnvironmentProvider’, node, repAttrs)

print newrep

Example output:

REP1(cells/mycell/nodes/mynode|resources.xml#ResourceEnvironmentProvider_1)

5. Save the configuration changes. See the “Saving configuration changes with the wsadmin tool” on

page 232 article for more information.

6. In a network deployment environment only, synchronize the node. See the “Synchronizing nodes with

the wsadmin tool” on page 217 article for more information.

Configuring custom properties for resource environment providers using scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the wsadmin scripting client”

on page 250 article for more information.

Perform the following steps to configure a new custom property for a resource environment provider:

1. Identify the parent ID and assign it to the newrep variable.

v Using Jacl:

set newrep [$AdminConfig getid /Cell:mycell/Node:mynode/ResourceEnvironmentProvider:REP1/]

v Using Jython:

newrep = AdminConfig.getid(’/Cell:mycell/Node:mynode/ResourceEnvironmentProvider:REP1/’)

print newrep

Example output:

REP1(cells/mycell/nodes/mynode|resources.xml#ResourceEnvironmentProvider_1)

346 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

2. Identify the required attributes:

v Using Jacl:

$AdminConfig required J2EEResourceProperty

v Using Jython:

print AdminConfig.required(’J2EEResourceProperty’)

Example output:

Attribute Type

name String

3. Set up the required attributes and assign it to the repAttrs variable:

v Using Jacl:

set name [list name RP]

set rpAttrs [list $name]

v Using Jython:

name = [’name’, ’RP’]

rpAttrs = [name]

4. Get the J2EE resource property set:

v Using Jacl:

set propSet [$AdminConfig showAttribute $newrep propertySet]

v Using Jython:

propSet = AdminConfig.showAttribute(newrep, ’propertySet’)

print propSet

Example output:

(cells/mycell/nodes/mynode|resources.xml#PropertySet_1)

5. Create a J2EE resource property:

v Using Jacl:

$AdminConfig create J2EEResourceProperty $propSet $rpAttrs

v Using Jython:

print AdminConfig.create(’J2EEResourceProperty’, propSet, rpAttrs)

Example output:

RP(cells/mycell/nodes/mynode|resources.xml#J2EEResourceProperty_1)

6. Save the configuration changes. See the “Saving configuration changes with the wsadmin tool” on

page 232 article for more information.

7. In a network deployment environment only, synchronize the node. See the “Synchronizing nodes with

the wsadmin tool” on page 217 article for more information.

Configuring new referenceables using scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the wsadmin scripting client”

on page 250 article for more information.

Perform the following steps to configure a new referenceable:

1. Identify the parent ID and assign it to the newrep variable.

v Using Jacl:

set newrep [$AdminConfig getid /Cell:mycell/Node:mynode/ResourceEnvironmentProvider:REP1/]

v Using Jython:

newrep = AdminConfig.getid(’/Cell:mycell/Node:mynode/ResourceEnvironmentProvider:REP1/’)

print newrep

Example output:

REP1(cells/mycell/nodes/mynode|resources.xml#ResourceEnvironmentProvider_1)

Chapter 4. Using the administrative clients 347

2. Identify the required attributes:

v Using Jacl:

$AdminConfig required Referenceable

v Using Jython:

print AdminConfig.required(’Referenceable’)

Example output:

Attribute Type

factoryClassname String

classname String

3. Set up the required attributes:

v Using Jacl:

set fcn [list factoryClassname REP1]

set cn [list classname NM1]

set refAttrs [list $fcn $cn]

v Using Jython:

fcn = [’factoryClassname’, ’REP1’]

cn = [’classname’, ’NM1’]

refAttrs = [fcn, cn]

print refAttrs

Example output:

{factoryClassname {REP1}} {classname {NM1}}

4. Create a new referenceable:

v Using Jacl:

set newref [$AdminConfig create Referenceable $newrep $refAttrs]

v Using Jython:

newref = AdminConfig.create(’Referenceable’, newrep, refAttrs)

print newref

Example output:

(cells/mycell/nodes/mynode|resources.xml#Referenceable_1)

5. Save the configuration changes. See the “Saving configuration changes with the wsadmin tool” on

page 232 article for more information.

6. In a network deployment environment only, synchronize the node. See the “Synchronizing nodes with

the wsadmin tool” on page 217 article for more information.

Configuring new resource environment entries using scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the wsadmin scripting client”

on page 250 article for more information.

Perform the following steps to configure a new resource environment entry:

1. Identify the parent ID and assign it to the newrep variable.

v Using Jacl:

set newrep [$AdminConfig getid /Cell:mycell/Node:mynode/ResourceEnvironmentProvider:REP1/]

v Using Jython:

newrep = AdminConfig.getid(’/Cell:mycell/Node:mynode/ResourceEnvironmentProvider:REP1/’)

print newrep

Example output:

REP1(cells/mycell/nodes/mynode|resources.xml#ResourceEnvironmentProvider_1)

2. Identify the required attributes:

v Using Jacl:

$AdminConfig required ResourceEnvEntry

348 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

v Using Jython:

print AdminConfig.required(’ResourceEnvEntry’)

Example output:

Attribute Type

name String

jndiName String

referenceable Referenceable@

3. Set up the required attributes:

v Using Jacl:

set name [list name REE1]

set jndiName [list jndiName myjndi]

set newref [$AdminConfig getid /Cell:mycell/Node:mynode/Referenceable:/]

set ref [list referenceable $newref]

set reeAttrs [list $name $jndiName $ref]

v Using Jython:

name = [’name’, ’REE1’]

jndiName = [’jndiName’, ’myjndi’]

newref = AdminConfig.getid(’/Cell:mycell/Node:mynode/Referenceable:/’)

ref = [’referenceable’, newref]

reeAttrs = [name, jndiName, ref]

4. Create the resource environment entry:

v Using Jacl:

$AdminConfig create ResourceEnvEntry $newrep $reeAttrs

v Using Jython:

print AdminConfig.create(’ResourceEnvEntry’, newrep, reeAttrs)

Example output:

REE1(cells/mycell/nodes/mynode|resources.xml#ResourceEnvEntry_1)

5. Save the configuration changes. See the “Saving configuration changes with the wsadmin tool” on

page 232 article for more information.

6. In a network deployment environment only, synchronize the node. See the “Synchronizing nodes with

the wsadmin tool” on page 217 article for more information.

Configuring custom properties for resource environment entries using scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the wsadmin scripting client”

on page 250 article for more information.

Perform the following steps to configure a new custom property for a resource environment entry:

1. Identify the parent ID and assign it to the newree variable.

v Using Jacl:

set newree [$AdminConfig getid /Cell:mycell/Node:mynode/ResourceEnvEntry:REE1/]

v Using Jython:

newree = AdminConfig.getid(’/Cell:mycell/Node:mynode/ResourceEnvEntry:REE1/’)

print newree

Example output:

REE1(cells/mycell/nodes/mynode|resources.xml#ResourceEnvEntry_1)

2. Create the J2EE custom property set:

v Using Jacl:

set propSet [$AdminConfig showAttribute $newree propertySet]

v Using Jython:

propSet = AdminConfig.showAttribute(newree, ’propertySet’)

print propSet

Chapter 4. Using the administrative clients 349

Example output:

(cells/mycell/nodes/mynode|resources.xml#J2EEResourcePropertySet_5)

3. Identify the required attributes:

v Using Jacl:

$AdminConfig required J2EEResourceProperty

v Using Jython:

print AdminConfig.required(’J2EEResourceProperty’)

Example output:

Attribute Type

name String

4. Set up the required attributes:

v Using Jacl:

set name [list name RP1]

set rpAttrs [list $name]

v Using Jython:

name = [’name’, ’RP1’]

rpAttrs = [name]

5. Create the J2EE custom property:

v Using Jacl:

$AdminConfig create J2EEResourceProperty $propSet $rpAttrs

v Using Jython:

print AdminConfig.create(’J2EEResourceProperty’, propSet, rpAttrs)

Example output:

RPI(cells/mycell/nodes/mynode|resources.xml#J2EEResourceProperty_1)

6. Save the configuration changes. See the “Saving configuration changes with the wsadmin tool” on

page 232 article for more information.

7. In a network deployment environment only, synchronize the node. See the “Synchronizing nodes with

the wsadmin tool” on page 217 article for more information.

Configuring new URL providers using scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the wsadmin scripting client”

on page 250 article for more information.

Perform the following steps to configure a new URL provider:

1. Identify the parent ID and assign it to the node variable.

v Using Jacl:

set node [$AdminConfig getid /Cell:mycell/Node:mynode/]

v Using Jython:

node = AdminConfig.getid(’/Cell:mycell/Node:mynode/’)

print node

Example output:

mynode(cells/mycell/nodes/mynode|node.xml#Node_1)

2. Identify the required attributes:

v Using Jacl:

$AdminConfig required URLProvider

v Using Jython:

print AdminConfig.required(’URLProvider’)

Example output:

350 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Attribute Type

streamHandlerClassName String

protocol String

name String

3. Set up the required attributes:

v Using Jacl:

set name [list name URLP1]

set shcn [list streamHandlerClassName "Put the stream handler classname here"]

set protocol [list protocol "Put the protocol here"]

set urlpAttrs [list $name $shcn $protocol]

Example output:

{name URLP1} {streamHandlerClassName {Put the stream handler classname here}} {protocol {Put the protocol here}}

v Using Jython:

name = [’name’, ’URLP1’]

shcn = [’streamHandlerClassName’, "Put the stream handler classname here"]

protocol = [’protocol’, "Put the protocol here"]

urlpAttrs = [name, shcn, protocol]

print urlpAttrs

Example output:

[[name, URLP1], [streamHandlerClassName, "Put the stream handler classname here"],

[protocol, "Put the protocol here"]]

4. Create a URL provider:

v Using Jacl:

$AdminConfig create URLProvider $node $urlpAttrs

v Using Jython:

print AdminConfig.create(’URLProvider’, node, urlpAttrs)

Example output:

URLP1(cells/mycell/nodes/mynode|resources.xml#URLProvider_1)

5. Save the configuration changes. See the “Saving configuration changes with the wsadmin tool” on

page 232 article for more information.

6. In a network deployment environment only, synchronize the node. See the “Synchronizing nodes with

the wsadmin tool” on page 217 article for more information.

Configuring custom properties for URL providers using scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the wsadmin scripting client”

on page 250 article for more information.

Perform the following steps to configure custom properties for URL providers:

1. Identify the parent ID and assign it to the newurlp variable.

v Using Jacl:

set newurlp [$AdminConfig getid /Cell:mycell/Node:mynode/URLProvider:URLP1/]

v Using Jython:

newurlp = AdminConfig.getid(’/Cell:mycell/Node:mynode/URLProvider:URLP1/’)

print newurlp

Example output:

URLP1(cells/mycell/nodes/mynode|resources.xml#URLProvider_1)

2. Get the J2EE resource property set:

v Using Jacl:

set propSet [$AdminConfig showAttribute $newurlp propertySet]

v Using Jython:

Chapter 4. Using the administrative clients 351

propSet = AdminConfig.showAttribute(newurlp, ’propertySet’)

print propSet

Example output:

(cells/mycell/nodes/mynode|resources.xml#PropertySet_7)

3. Identify the required attributes:

v Using Jacl:

$AdminConfig required J2EEResourceProperty

v Using Jython:

print AdminConfig.required(’J2EEResourceProperty’)

Example output:

Attribute Type

name String

4. Set up the required attributes:

v Using Jacl:

set name [list name RP2]

set rpAttrs [list $name]

v Using Jython:

name = [’name’, ’RP2’]

rpAttrs = [name]

5. Create a J2EE resource property:

v Using Jacl:

$AdminConfig create J2EEResourceProperty $propSet $rpAttrs

v Using Jython:

print AdminConfig.create(’J2EEResourceProperty’, propSet, rpAttrs)

Example output:

RP2(cells/mycell/nodes/mynode|resources.xml#J2EEResourceProperty_1)

6. Save the configuration changes. See the “Saving configuration changes with the wsadmin tool” on

page 232 article for more information.

7. In a network deployment environment only, synchronize the node. See the “Synchronizing nodes with

the wsadmin tool” on page 217 article for more information.

Configuring new URLs using scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the wsadmin scripting client”

on page 250 article for more information.

Perform the following example to configure a new URL:

1. Identify the parent ID and assign it to the newurlp variable.

v Using Jacl:

set newurlp [$AdminConfig getid /Cell:mycell/Node:mynode/URLProvider:URLP1/]

v Using Jython:

newurlp = AdminConfig.getid(’/Cell:mycell/Node:mynode/URLProvider:URLP1/’)

print newurlp

Example output:

URLP1(cells/mycell/nodes/mynode|resources.xml#URLProvider_1)

2. Identify the required attributes:

v Using Jacl:

$AdminConfig required URL

v Using Jython:

print AdminConfig.required(’URL’)

352 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Example output:

Attribute Type

name String

spec String

3. Set up the required attributes:

v Using Jacl:

set name [list name URL1]

set spec [list spec "Put the spec here"]

set urlAttrs [list $name $spec]

Example output:

{name URL1} {spec {Put the spec here}}

v Using Jython:

name = [’name’, ’URL1’]

spec = [’spec’, "Put the spec here"]

urlAttrs = [name, spec]

Example output:

[[name, URL1], [spec, "Put the spec here"]]

4. Create a URL:

v Using Jacl:

$AdminConfig create URL $newurlp $urlAttrs

v Using Jython:

print AdminConfig.create(’URL’, newurlp, urlAttrs)

Example output:

URL1(cells/mycell/nodes/mynode|resources.xml#URL_1)

5. Save the configuration changes. See the “Saving configuration changes with the wsadmin tool” on

page 232 article for more information.

6. In a network deployment environment only, synchronize the node. See the “Synchronizing nodes with

the wsadmin tool” on page 217 article for more information.

Configuring custom properties for URLs using scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the wsadmin scripting client”

on page 250 article for more information.

Perform the following steps to configure a new custom property for a URL:

1. Identify the parent ID and assign it to the newurl variable.

v Using Jacl:

set newurl [$AdminConfig getid /Cell:mycell/Node:mynode/URLProvider:URLP1/URL:URL1/]

v Using Jython:

newurl = AdminConfig.getid(’/Cell:mycell/Node:mynode/URLProvider:URLP1/URL:URL1/’)

print newurl

Example output:

URL1(cells/mycell/nodes/mynode|resources.xml#URL_1)

2. Create a J2EE resource property set:

v Using Jacl:

set propSet [$AdminConfig showAttribute $newurl propertySet]

v Using Jython:

propSet = AdminConfig.showAttribute(newurl, ’propertySet’)

print propSet

Example output:

Chapter 4. Using the administrative clients 353

(cells/mycell/nodes/mynode|resources.xml#J2EEResourcePropertySet_7)

3. Identify the required attributes:

v Using Jacl:

$AdminConfig required J2EEResourceProperty

v Using Jython:

print AdminConfig.required(’J2EEResourceProperty’)

Example output:

Attribute Type

name String

4. Set up the required attributes:

v Using Jacl:

set name [list name RP3]

set rpAttrs [list $name]

v Using Jython:

name = [’name’, ’RP3’]

rpAttrs = [name]

5. Create a J2EE resource property:

v Using Jacl:

$AdminConfig create J2EEResourceProperty $propSet $rpAttrs

v Using Jython:

print AdminConfig.create(’J2EEResourceProperty’, propSet, rpAttrs)

Example output:

RP3(cells/mycell/nodes/mynode|resources.xml#J2EEResourceProperty_7)

6. Save the configuration changes. See the “Saving configuration changes with the wsadmin tool” on

page 232 article for more information.

7. In a network deployment environment only, synchronize the node. See the “Synchronizing nodes with

the wsadmin tool” on page 217 article for more information.

Troubleshooting with scripting

This topic contains the following tasks:

v “Tracing operations with the wsadmin tool”

v “Configuring traces using scripting” on page 355

v “Turning traces on and off in servers processes using scripting” on page 356

v “Dumping threads in server processes using scripting” on page 357

v “Setting up profile scripts to make tracing easier using scripting” on page 357

Tracing operations with the wsadmin tool

Before starting this task, the wsadmin tool must be running. See the “Starting the wsadmin scripting client”

on page 250 article for more information.

Perform the following steps to trace operations:

Enable wsadmin client tracing with the following command:

v Using Jacl:

$AdminControl trace com.ibm.*=all=enabled

v Using Jython:

AdminControl.trace(’com.ibm.*=all=enabled’)

354 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

where:

 $ is a Jacl operator for substituting a variable name with its

value

AdminControl is an object that enables the manipulation of MBeans

running in a WebSphere server process

trace is an AdminControl command

com.ibm.*=all=enabled indicates to turn on tracing

The following command disables tracing:

v Using Jacl:

$AdminControl trace com.ibm.*=all=disabled

v Using Jython:

AdminControl.trace(’com.ibm.*=all=disabled’)

where:

 $ is a Jacl operator for substituting a variable name with its

value

AdminControl is an object that enables the manipulation of MBeans

running in a WebSphere server process

trace is an AdminControl command

com.ibm.*=all=disabled indicates to turn off tracing

The trace command changes the trace settings for the current session. You can change this setting

persistently by editting the wsadmin.properties file. The property com.ibm.ws.scripting.traceString is

read by the launcher during initialization. If it has a value, the value is used to set the trace.

A related property, com.ibm.ws.scripting.traceFile, designates a file to receive all trace and logging

information. The wsadmin.properties file contains a value for this property. Run the wsadmin tool with a

value set for this property. It is possible to run without this property set, where all logging and tracing goes

to the administrative console.

Configuring traces using scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the wsadmin scripting client”

on page 250 article for more information.

Perform the following steps to set the trace for a configured server:

1. Identify the server and assign it to the server variable:

v Using Jacl:

set server [$AdminConfig getid /Cell:mycell/Node:mynode/Server:server1/]

v Using Jython:

server = AdminConfig.getid(’/Cell:mycell/Node:mynode/Server:server1/’)

print server

Example output:

server1(cells/mycell/nodes/mynode/servers/server1|server.xml#Server_1)

2. Identify the trace service belonging to the server and assign it to the tc variable:

v Using Jacl:

set tc [$AdminConfig list TraceService $server]

v Using Jython:

tc = AdminConfig.list(’TraceService’, server)

print tc

Chapter 4. Using the administrative clients 355

Example output:

(cells/mycell/nodes/mynode/servers/server1|server.xml#TraceService_1)

3. Set the trace string. The following example sets the trace string for a single component:

v Using Jacl:

$AdminConfig modify $tc {{startupTraceSpecification com.ibm.websphere.management.*=all=enabled}}

v Using Jython:

AdminConfig.modify(tc, [[’startupTraceSpecification’, ’com.ibm.websphere.management.*=all=enabled’]])

4. The following command sets the trace string for multiple components:

v Using Jacl:

$AdminConfig modify $tc {{startupTraceSpecification com.ibm.websphere.management.*=all=

 enabled:com.ibm.ws.management.*=all=enabled:com.ibm.ws.runtime.*=all=enabled}}

v Using Jython:

AdminConfig.modify(tc, [[’startupTraceSpecification’, ’com.ibm.websphere.management.

 =all=enabled:com.ibm.ws.management.=all=

 enabled:com.ibm.ws.runtime.*=all=enabled’]])

5. Save the configuration changes. See the “Saving configuration changes with the wsadmin tool” on

page 232 article for more information.

6. In a network deployment environment only, synchronize the node. See the “Synchronizing nodes with

the wsadmin tool” on page 217 article for more information.

Turning traces on and off in servers processes using scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the wsadmin scripting client”

on page 250 article for more information.

Perform the following steps to turning traces on and off in server processes:

1. Identify the object name for the TraceService MBean running in the process:

v Using Jacl:

$AdminControl completeObjectName type=TraceService,node=mynode,process=server1,*

v Using Jython:

AdminControl.completeObjectName(’type=TraceService,node=mynode,process=server1,*’)

2. Obtain the name of the object and set it to a variable:

v Using Jacl:

set ts [$AdminControl completeObjectName type=TraceService,process=server1,*]

v Using Jython:

ts = AdminControl.completeObjectName(’type=TraceService,process=server1,*’)

3. Turn tracing on or off for the server. For example:

v To turn tracing on, perform the following step:

– Using Jacl:

$AdminControl setAttribute $ts traceSpecification com.ibm.*=all=enabled

– Using Jython:

AdminControl.setAttribute(ts, ’traceSpecification’, ’com.ibm.*=all=enabled’)

v To turn tracing off, perform the following step:

– Using Jacl:

$AdminControl setAttribute $ts traceSpecification com.ibm.*=all=disabled

– Using Jython:

AdminControl.setAttribute(ts, ’traceSpecification’, ’com.ibm.*=all=disabled’)

356 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Dumping threads in server processes using scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the wsadmin scripting client”

on page 250 article for more information.

Use the AdminControl object to dump the Java threads of a running server. The following example

produces a Java core file. You can use this file for problem determination.

v Using Jacl:

set jvm [$AdminControl completeObjectName type=JVM,process=server1,*]

$AdminControl invoke $jvm dumpThreads

v Using Jython:

jvm = AdminControl.completeObjectName(’type=JVM,process=server1,*’)

AdminControl.invoke(jvm, ’dumpThreads’)

Setting up profile scripts to make tracing easier using scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the wsadmin scripting client”

on page 250 article for more information.

Set up a profile script to make tracing easier. The following profile script example turns tracing on and off

for server1:

v Using Jacl:

proc ton {} {

 global AdminControl

 set ts [$AdminControl queryNames type=TraceService,node=mynode,process=server1,*]

 $AdminControl setAttribute $ts traceSpecification com.ibm.=all=enabled

}

proc toff {} {

 global AdminControl

 set ts [$AdminControl queryNames type=TraceService,node=mynode,process=server1,*]

 $AdminControl setAttribute $ts traceSpecification com.ibm.*=all=disabled

}

proc dt {} {

 global AdminControl

 set jvm [$AdminControl queryNames type=JVM,node=mynode,process=server1,*]

 $AdminControl invoke $jvm dumpThreads

}

v Using Jython:

def ton():

 global lineSeparator

 ts = AdminControl.queryNames(’type=TraceService,node=mynode,process=server1,*’)

 AdminControl.setAttribute(ts, ’traceSpecification’, ’com.ibm.=all=enabled’)

def toff():

 global lineSeparator

 ts = AdminControl.queryNames(’type=TraceService,node=mynode,process=server1,*’)

 AdminControl.setAttribute(ts, ’traceSpecification’, ’com.ibm.*=all=disabled’)

def dt():

 global lineSeparator

 jvm = AdminControl.queryNames(’type=JVM,node=mynode,process=server1,*’)

 AdminControl.invoke(jvm, ’dumpThreads’)

Chapter 4. Using the administrative clients 357

If you start the wsadmin tool with this profile script, you can use the ton command to turn on tracing in the

server, the toff command to turn off tracing, and the dt command to dump the Java threads. For more

information about running scripting commands in a profile script, see the “Starting the wsadmin scripting

client” on page 250 article.

Scripting reference material

This topic contains the following tasks:

v “Wsadmin tool”

v “Commands for the AdminConfig object” on page 375

v “Commands for the AdminControl object” on page 396

v “Commands for the AdminApp object” on page 415

v “Commands for the AdminTask object” on page 489

v “Administrative command invocation syntax” on page 623

v “Commands for the Help object” on page 362

v “Properties used by scripted administration” on page 624

Wsadmin tool

The WebSphere Application Server wsadmin tool runs scripts. You can use the wsadmin tool to manage

WebSphere Application Server as well as the configuration, application deployment, and server run-time

operations.

The command-line invocation syntax for the wsadmin scripting client is as follows:

wsadmin [-h(help)]

[-?]

[-c <commands>]

[-p <properties_file_name>]

[-profile <profile_script_name>]

[-profileName <profile_name>]

[-f <script_file_name>]

[-javaoption java_option]

[-lang language]

[-wsadmin_classpath classpath]

[-conntype SOAP [-host host_name] [-port port_number] [-user userid] [-password password] |

 RMI [-host host_name] [-port port_number] [-user userid] [-password password] |

 NONE

]

[script parameters]

Where script parameters represent any arguments other than the ones listed previously. The argc variable

contains the argument number, and the argv variable contains the contents.

Options

-c Designates to run a single command.

358 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Multiple -c options can exist on the command line. They run in the order that you designate. You must

save after using this command.

-f Designates a script to run.

 Only one -f option can exist on the command line.

-javaoption

Specifies a valid Java standard or a non-standard option.

 Multiple -javaoption options can exist on the command line.

-lang

Specifies the language of the script file, the command, or an interactive shell. The possible languages

include: Jacl and Jython. The options for the -lang argument include: jacl and jython.

 This option overrides language determinations that are based on a script file name, or the

com.ibm.ws.scripting.defaultLang property. The -lang argument has no default value. If the command

line or the property does not supply the script language, and the wsadmin tool cannot determine it, an

error message generates. This argument is required if not determined from the script file name.

-p

Specifies a properties file.

 The file listed after -p, represents a Java properties file that the scripting process reads. Three levels

of default properties files load before the properties file that you specify on the command line. The first

level is the installation default, wsadmin.properties, which is located in the WebSphere Application

Server properties directory. The second level is the user default, wsadmin.properties, which is

located in your home directory. The third level is the properties file that the environment variable

WSADMIN_PROPERTIES points to.

 Multiple -p options can exist on the command line. They invoke in the order that you supply them.

-profile

Specifies a profile script.

 The profile script runs before other commands, or scripts. If you specify -c, the profile script runs

before it invokes this command. If you specify -f, the profile script runs before it runs the script. In

interactive mode, you can use the profile script to perform any standard initialization that you want.

You can specify multiple -profile options on the command line, and they invoke in the order that you

supply them.

-profileName

Specifies the profile from which the wsadmin tool will run. Specify this option if one the following

reasons apply:

 v You run the wsadmin tool from the WAS_HOME/bin directory and you do not have a default profile or

you want to run in a profile other than the default profile.

v You are currently in a profile bin directory but want to run the wsadmin tool from a different profile.

-?

Provides syntax help.

-help

Provides syntax help.

-conntype

Specifies the type of connection to use.

 This argument consists of a string that determines the type, for example, SOAP, and the options that

are specific to that connection type. Possible types include: SOAP, RMI, and NONE.

 Use the -conntype NONE option to run in local mode. The result is that the scripting client is not

connected to a running server. You can manage server configuration, the installation and the

uninstallation of applications without the application server running.

Chapter 4. Using the administrative clients 359

-wsadmin_classpath

Use this option to make additional classes available to your scripting process.

 Follow this option with a class path string. For example:

c:/MyDir/Myjar.jar;d:/yourdir/yourdir.jar

The class path is then added to the class loader for the scripting process.

 You can also specify this option in a properties file that is used by the wsadmin tool. The property is

com.ibm.ws.scripting.classpath. If you specify -wsadmin_classpath on the command line, the value of

this property overrides any value that is specified in a properties file. The class path property and the

command-line options are not concatenated.

-host

Specify a hostname to which wsadmin should attempt to connect. The default wsadmin.properties file

located in the properties directory of each WebSphere profile provides localhost as the value of the

host property if this option is not specified.

-password

Specify a password to be used by the connector to connect to the server if security is enabled in the

server.

 Warning: On UNIX system, the use of -password option may result in security exposure as the

password information becomes visible to the system status program such as ps command which can

be invoked by other user to display all the running processes. Do not use this option if security

exposure is a concern. Instead, specify user and password information in the soap.client.props file for

SOAP connector or sas.client.props file for RMI connector. The soap.client.props and sas.client.props

files are located in the properties directory of your WebSphere profile.

-username

Specify a user name to be used by the connector to connect to the server if security is enabled in the

server.

-port

Specify a port to be used by the connector. The default wsadmin.properties file located in the

properties directory of each WebSphere Application Server profile provides a value in the port property

to connect to the local server.

In the following syntax examples, mymachine is the name of the host in the wsadmin.properties file that is

specified by the com.ibm.ws.scripting.port property:

SOAP connection to the local host

Use the options that are defined in the wsadmin.properties file.

SOAP connection to the mymachine host

Using Jacl:

wsadmin -f test1.jacl -profile setup.jacl -conntype SOAP -port mymachinesoapportnumber -host mymachine

Using Jython:

wsadmin -lang jython -f test1.py -profile setup.py -conntype SOAP -port mymachinesoapportnumber -host mymachine

Initial and maximum Java heap size

Using Jacl:

wsadmin -javaoption -Xms128m -javaoption -Xmx256m -f test.jacl

Using Jython:

wsadmin -lang jython -javaoption -Xms128m -javaoption -Xmx256m -f test.py

RMI connection with security

Using Jacl:

wsadmin -conntype RMI -port rmiportnumber -userid userid -password password

360 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Using Jython:

wsadmin -lang jython -conntype RMI -port rmiportnumber -userid userid -password password

Warning: On UNIX system, the use of -password option may result in security exposure as the

password information becomes visible to the system status program such as ps command which

can be invoked by other user to display all the running processes. Do not use this option if

security exposure is a concern. Instead, specify user and password information in the

soap.client.props file for SOAP connector or sas.client.props file for RMI connector. The

soap.client.props and sas.client.props files are located in the properties directory of your

WebSphere profile.

Local mode of operation to perform a single command

Using Jacl:

wsadmin -conntype NONE -c "$AdminApp uninstall app"

or

 Using Jython:

wsadmin -lang jython -conntype NONE -c "AdminApp.uninstall(’app’)"

or

wsadmin tool performance tips: The following performance tips are for the wsadmin tool:

v If the deployment manager is running at a higher service maintenance level than that of the node agent,

you must run the wsadmin.sh or the wsadmin.bat from the bin directory of the deployment manager.

v When you launch a script using the wsadmin.bat or the wsadmin.sh files, a new process is created with

a new Java virtual machine (JVM) API. If you use scripting with multiple wsadmin -c commands from a

batch file or a shell script, these commands run slower than if you use a single wsadmin -f command.

The -f option runs faster because only one process and JVM API are created for installation and the

Java classes for the installation load only once.

The following example, illustrates running multiple application installation commands from a batch file:

Using Jacl:

wsadmin -c "$AdminApp install c:\\myApps\\App1.ear {-appname appl1}"

wsadmin -c "$AdminApp install c:\\myApps\\App2.ear {-appname appl2}"

wsadmin -c "$AdminApp install c:\\myApps\\App3.ear {-appname appl3}"

or

Using Jython:

wsadmin -lang jython -c "AdminApp.install(’c:\myApps\App1.ear’, ’[-appname appl1]’)"

wsadmin -lang jython -c "AdminApp.install(’c:\myApps\App2.ear’, ’[-appname appl2]’)"

wsadmin -lang jython -c "AdminApp.install(’c:\myApps\App3.ear’, ’[-appname appl3]’)"

or

Or, for example, using Jacl, you can create the appinst.jacl file that contains the commands:

$AdminApp install c:\\myApps\\App1.ear {-appname appl1}

$AdminApp install c:\\myApps\\App2.ear {-appname appl2}

$AdminApp install c:\\myApps\\App3.ear {-appname appl3}

Invoke this file using the following command: wsadmin -f appinst.jacl

Or using Jython, you can create the appinst.py file, that contains the commands:

AdminApp.install(’c:\myApps\App1.ear’, ’[-appname appl1]’)

AdminApp.install(’c:\myApps\App2.ear’, ’[-appname appl2]’)

AdminApp.install(’c:\myApps\App3.ear’, ’[-appname appl3]’)

Then invoke this file using the following command: wsadmin -lang jython -f appinst.py.

v Use the AdminControl queryNames and completeObjectName commands carefully with a large

installation. For example, if only a few beans exist on a single machine, the $AdminControl queryNames

* command performs well. If a scripting client connects to the deployment manager in a multiple

machine environment, use a command only if it is necessary for the script to obtain a list of all the

Chapter 4. Using the administrative clients 361

MBeans in the system. If you need the MBeans on a node, it is easier to invoke ″$AdminControl

queryNames node=mynode,*″. The JMX system management infrastructure forwards requests to the

system to fulfill the first query, *. The second query, node=mynode,* is targeted to a specific machine.

v The WebSphere Application Server is a distributed system, and scripts perform better if you minimize

remote requests. If some action or interrogation is required on several items, for example, servers, it is

more efficient to obtain the list of items once and iterate locally. This procedure applies to the actions

that the AdminControl object performs on running MBeans, and actions that the AdminConfig object

performs on configuration objects.

Commands for the Help object

The Help object provides general help and dynamic online information about the currently running

MBeans. You can use the Help object as an aid in writing and running scripts with the AdminControl

object.

The following commands are available for the Help object:

 Command

name:

Description: Parameters and return

values:

Examples:

362 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

AdminApp Provides a

summary of all

of the available

methods for the

AdminApp

object.

v Parameters: none

v Returns: string

Example usage:

Using Jacl:

$Help AdminApp

Using Jython:

print Help.AdminApp()

Example output:

WASX7095I: The AdminApp object

allows application objects to

be manipulated -- this includes

installing, uninstalling, editing,

and listing. Most of the commands

supported by AdminApp operate in two

modes: the default mode is one

in which AdminApp communicates with the

WebSphere Application Server to accomplish

its tasks. A local mode is also

possible, in which no server

communication takes place. The local

mode of operation is invoked

by bringing up the scripting client with

no server connected using the command line

"-conntype NONE" option or setting the

"com.ibm.ws.scripting.connectionType=NONE"

property in the wsadmin.properties.

The following commands are supported

by AdminApp; more detailed information

about each of these commands

is available by using the

"help" command of AdminApp and

supplying the name of the command

as an argument.

deleteUserAndGroupEntries

Deletes all the user/group

information for all the roles and all

the username/password information for RunAs

roles for a given application.

edit Edit the properties of an application

editInteractive Edit the properties

of an application interactively

export Export application to a file

exportDDL Export DDL from

application to a directory

help Show help information

install Installs an application,

given a file name and an option string.

installInteractive Installs an application

in interactive mode, given a file name

and an option string.

list List all installed applications

Chapter 4. Using the administrative clients 363

AdminApp

continued

listModules List the modules

in a specified application

options Shows the options available, either

for a given file, or in general.

publishWSDL Publish WSDL

files for a given application

taskInfo Shows detailed information pertaining

to a given installation task for a given file

uninstall Uninstalls an application,

given an application name and an option string

updateAccessIDs Updates the user/group

binding information with accessID from user

registry for a given application

view View an application or module,

given an application or module name

364 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

AdminConfig Provides a

summary of all

the available

methods for the

AdminConfig

object.

v Parameters: None

v Returns: string

Example usage:

Using Jacl:

$Help AdminConfig

Using Jython:

print Help.AdminConfig()

Example output:

WASX7053I: The following functions are supported

 by AdminConfig:

create Creates a configuration object, given a

type, a parent, and a list of attributes

create Creates a configuration object, given a

type, a parent, a list of attributes, and an

attribute name for the new object

remove Removes the specified configuration object

list Lists all configuration objects of a given

type

list Lists all configuration objects of a given

type, contained within the scope supplied

show Show all the attributes of a given

configuration object

show Show specified attributes of a given

configuration object

modify Change specified attributes of a given

configuration object

getId Show the configId of an object, given a

string version of its containment

contents Show the objects which a given type

contains

parents Show the objects which contain a given

type

attributes Show the attributes for a given type

types Show the possible types for configuration

help Show help information

Chapter 4. Using the administrative clients 365

AdminControl Provides a

summary of the

help commands

and ways to

invoke an

administrative

command.

v Parameters: None

v Returns: string

Example usage:

Using Jacl:

$Help AdminControl

Using Jython:

print Help.AdminControl()

Example output:

WASX7027I: The following functions are supported

by AdminControl:

getHost returns String representation of

connected host

getPort returns String representation of

port in use

getType returns String representation of

connection type in use

reconnect reconnects with server

queryNames Given ObjectName and QueryExp,

retrieves set of ObjectNames that match.

queryNames Given String version of ObjectName,

retrieves String of ObjectNames that match.

getMBeanCount returns number of

registered beans

getDomainName returns "WebSphere"

getDefaultDomain returns "WebSphere"

getMBeanInfo Given ObjectName, returns

MBeanInfo structure for MBean

isInstanceOf Given ObjectName and class

name, true if MBean is of that class

isRegistered true if supplied ObjectName

is registered

isRegistered true if supplied String

version of ObjectName is registered

getAttribute Given ObjectName and name

of attribute, returns value of attribute

getAttribute Given String version of

ObjectName and name of attribute, returns

value of attribute

getAttributes Given ObjectName and array

of attribute names, returns AttributeList

getAttributes Given String version of

ObjectName and attribute names, returns

String of name value pairs

366 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

setAttribute Given ObjectName and Attribute

object, set attribute for MBean specified

setAttribute Given String version of

ObjectName, attribute name and attribute

value, set attribute for MBean specified

setAttributes Given ObjectName and

AttributeList object, set attributes

for the MBean specified

invoke Given ObjectName, name of method,

array of parameters and signature, invoke

 method on MBean specified

invoke Given String version of ObjectName,

 name of method, String version of

parameter list, invoke method on MBean

specified.

invoke Given String version of ObjectName,

name of method, String version of parameter

list, and String version of array of

signatures, invoke method on MBean specified.

makeObjectName Return an ObjectName

built with the given string

completeObjectName Return a String

version of an object name given a template

name

trace Set the wsadmin trace specification

help Show help information

Chapter 4. Using the administrative clients 367

AdminTask Provides a

summary of

help commands

and ways to

invoke an

administrative

command.

v Parameters: None

v Returns: string

Example usage:

Using Jacl:

$AdminTask help

Using Jython:

print AdminTask.help()

Example output:

WASX8001I: The AdminTask object enables the

 available administrative commands.

AdminTask commands operate in two modes:

the default mode is one which AdminTask

communicates with the WebSphere Application

 Server to accomplish its task. A local mode

is also available in which no server

communication takes place. The local mode of

operation is invoked by bringing up the

scripting client busing the command line

"-conntype NONE" option or setting the

"com.ibm.ws.scripting.connectiontype=NONE"

 property in wsadmin.properties file.

The number of administrative commands varies

and depends on your WebSphere Application

Server installation. Use the following help

commands to obtain a list of supported

commands and their parameters:

help -commands list all the

 administrative commands

help -commandGroups list all the

 administrative command groups

help commandName display detailed

 information for the specified command

help commandName stepName display detailed

 information for the specified step

 belonging to the specified command

help commandGroupName display detailed

 information for the specified command group

There are various flavors to invoke an

administrative command. They are

commandName invokes an administrative

 command that does not require any argument.

commandName targetObject invokes an admin

 command with the target object string,

 for example the configuration object name

 of a resource adapter. The expected target

 object varies with the administrative

 command invoked. Use help command to get

 information on the target object of an

 administrative command.

commandName options invokes an administrative

 command with the specified option strings.

 This invocation syntax is used to invoke

 an administrative command that does not

 require a target object. It is also used

 to enter interactive mode if "-interactive"

 mode is included in the options string.

368 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

AdminTask

continued

commandName targetObject options invokes an

 administrative command with the specified

 target object and options strings. If

 "-interactive" is included in the options

 string, then interactive mode is entered.

 The target object and options strings vary

 depending on the admin command invoked. Use

 help command to get information on the

 target object and options.

Chapter 4. Using the administrative clients 369

all Provides a

summary of the

information that

the MBean

defines by

name.

v Parameters: name -

string

v Returns: string

Example usage:

Using Jacl:

$Help all [$AdminControl queryNames type

=TraceService,process=server1,node=pongo,*]

Using Jython:

print Help.all(AdminControl.queryNames

(’type=TraceService,process=server1,

node=pongo,*’))

Example output:

Name: WebSphere:cell=pongo,name=

TraceService,mbeanIdentifier=cells/

pongo/nodes/pongo/servers/server1/

server.xml#TraceService_1,

type=TraceService,node=pongo,process=server1

Description: null

Class name:

javax.management.modelmbean.RequiredModelMBean

Attribute Type Access

ringBufferSize int RW

traceSpecification java.lang.String RW

Operation

int getRingBufferSize()

void setRingBufferSize(int)

java.lang.String getTraceSpecification()

void setTraceState(java.lang.String)

void appendTraceString(java.lang.String)

void dumpRingBuffer(java.lang.String)

void clearRingBuffer()

[Ljava.lang.String;

listAllRegisteredComponents()

[Ljava.lang.String;

listAllRegisteredGroups()

[Ljava.lang.String;

listComponentsInGroup(java.lang.String)

[Lcom.ibm.websphere.ras.TraceElementState;

getTracedComponents()

[Lcom.ibm.websphere.ras.TraceElementState;

getTracedGroups()

java.lang.String getTraceSpecification

 (java.lang.String)

void processDumpString(java.lang.String)

void checkTraceString(java.lang.String)

void setTraceOutputToFile(java.lang.String,

int, int, java.lang.String)

void setTraceOutputToRingBuffer(int,

java.lang.String)

java.lang.String rolloverLogFileImmediate

(java.lang.String, java.lang.String)

Notifications

jmx.attribute.changed

Constructors

370 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

attributes Provides a

summary of all

the attributes

that the MBean

defines by

name.

v Parameters: name -

string

v Returns: string

Example usage:

Using Jacl:

$Help attributes [$AdminControl queryNames

 type=TraceService,process=server1,node=

pongo,*]

Using Jython:

print Help.attributes

(AdminControl.queryNames(’type=TraceService,

process=server1,node=pongo,*’))

Example output:

Attribute Type Access

ringBufferSize java.lang.Integer RW

traceSpecification string RW

classname Provides a

class name that

the MBean

defines by

name.

v Parameters: name -

string

v Returns: string

Example usage:

Using Jacl:

$Help classname [$AdminControl queryNames

type=TraceService,process=server1,node=pongo,*]

Using Jython:

print Help.classname(AdminControl.queryNames

(’type=TraceService,process=server1,node=pongo,*’))

Example output:

javax.management.modelmbean.RequiredModelMBean

constructors Provides a

summary of all

of the

constructors

that the MBean

defines by

name.

v Parameters: name -

string

v Returns: string

Example usage:

Using Jacl:

$Help constructors [$AdminControl queryNames

type=TraceService,process=server1,node=pongo,*]

Using Jython:

print Help.constructors

(AdminControl.queryNames(’type=TraceService,

process=server1,node=pongo,*’))

Example output:

Constructors

description Provides a

description that

the MBean

defines by

name.

v Parameters: name -

string

v Returns: string

Example usage:

Using Jacl:

$Help description [$AdminControl queryNames

type=TraceService,process=server1,node=pongo,*]

Using Jython:

print Help.description(AdminControl.queryNames

(’type=TraceService,process=server1,node=pongo,*’))

Example output:

Managed object for overall server process.

Chapter 4. Using the administrative clients 371

help Provides a

summary of all

the available

methods for the

Help object.

v Parameters: None

v Returns: string

Example output:

WASX7028I: The Help object has two purposes:

First, provide general help information for

the bjects supplied by the wsadmin tool for

scripting: Help, AdminApp, AdminConfig,

and AdminControl.

Second, provide a means to obtain interface

information about the MBeans that run in the

system. For this purpose, a variety of

commands are available to get information

about the operations,attributes, and other

 interface information about particular

MBeans.

The following commands are supported by

Help; more detailed

information about each of these commands

is available by using the

"help" command of Help and by supplying

the name of the command

as an argument.

attributes given an MBean,

 returns help for attributes

operations given an MBean,

 returns help for operations

constructors given an MBean,

returns help for constructors

description given an MBean,

returns help for description

notifications given an MBean,

returns help for notifications

classname given an MBean, returns

 help for class name

all given an MBean, returns

help for all the previous

help returns this help text

AdminControl returns general help

text for the AdminControl object

AdminConfig returns general help

text for the AdminConfig object

AdminApp returns general help

text for the AdminApp object

AdminTask returns general help

text for the AdminTask object

wsadmin returns general help

text for the wsadmin script launcher

message given a message ID,

returns an explanation and a user action

372 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

message Displays

information for

a message ID.

v Parameters: message

ID

v Returns: string

Example usage:

Using Jacl:

$Help message CNTR0005W

Using Jython:

print Help.message(’CNTR0005W’)

Example output:

Explanation: The container was unable to

passivate an enterprise bean due to

exception {2}User action: Take action based

upon message in exception {2}

notifications Provides a

summary of all

the notifications

that the MBean

defines by

name.

v Parameters: name -

string

v Returns: string

Example usage:

Using Jacl:

$Help notifications [$AdminControl

queryNames type=TraceService,process=server1,

node=pongo,*]

Using Jython:

print Help.notifications

(AdminControl.queryNames(’type=TraceService,

process=server1,node=pongo,*’))

Example output:

Notification

websphere.messageEvent.audit

websphere.messageEvent.fatal

websphere.messageEvent.error

websphere.seriousEvent.info

websphere.messageEvent.warning

jmx.attribute.changed

Chapter 4. Using the administrative clients 373

operations Provides a

summary of all

the operations

that the MBean

defines by

name.

v Parameters: name -

string

v Returns: string

Example usage:

Using Jacl:

$Help operations [$AdminControl queryNames

type=TraceService,process=server1,node=pongo,*]

Using Jython:

print Help.operations(AdminControl.queryNames

(’type=TraceService,process=server1,node=pongo,*’))

Example output:

Operation

int getRingBufferSize()

void setRingBufferSize(int)

java.lang.String getTraceSpecification()

void setTraceState(java.lang.String)

void appendTraceString(java.lang.String)

void dumpRingBuffer(java.lang.String)

void clearRingBuffer()

[Ljava.lang.String;

listAllRegisteredComponents()

[Ljava.lang.String;

listAllRegisteredGroups()

[Ljava.lang.String;

listComponentsInGroup(java.lang.String)

[Lcom.ibm.websphere.ras.TraceElementState;

getTracedComponents()

[Lcom.ibm.websphere.ras.TraceElementState;

getTracedGroups()

java.lang.String

 getTraceSpecification(java.lang.String)

void processDumpString(java.lang.String)

void checkTraceString(java.lang.String)

void setTraceOutputToFile(java.lang.String,

int, int, java.lang.String)

void setTraceOutputToRingBuffer

(int, java.lang.String)

java.lang.String rolloverLogFileImmediate

(java.lang.String, java.lang.String)

operations Provides the

signature of the

opname

operation for

the MBean that

is defined by

name.

v Parameters: name -

string, opname -

string

v Returns: string

Example usage:

Using Jacl:

$Help operations [$AdminControl queryNames

type=TraceService,process=server1,node=pongo,*]

 processDumpString

Using Jython:

print Help.operations(AdminControl.queryNames

(’type=TraceService,process=server1,node=pongo,*’),

’processDumpString’)

Example output:

void processDumpString(string)

Description: Write the contents of the Ras

services ring buffer to the specified file.

Parameters:

Type string

Name dumpString

Description A String in the specified format

to process or null.

374 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Commands for the AdminConfig object

Use the AdminConfig object to invoke configuration commands and to create or change elements of the

WebSphere Application Server configuration, for example, creating a data source.

You can start the scripting client without a running server, if you only want to use local operations. To run

in local mode, use the -conntype NONE option to start the scripting client. You receive a message that you

are running in the local mode. If a server is currently running, running the AdminConfig tool in local mode

is not recommended. This is because any configuration changes made in local mode will not be reflected

in the running server configuration and vice versa. If you save a conflicting configuration, you could corrupt

the configuration. In a deployment manager environment, configuration updates are available only if a

scripting client is connected to a deployment manager. When connected to a node agent or a managed

application server, you will not be able to update the configuration because the configuration for these

server processes are copies of the master configuration which resides in the deployment manager. The

copies are created on a node machine when a configuration synchronization occurs between the

deployment manager and the node agent. Make configuration changes to the server processes by

connecting a scripting client to a deployment manager. For this reason, to change a configuration, do not

run a scripting client in local mode on a node machine. It is not a supported configuration.

The following commands are available for the AdminConfig object:

 Command

name:

Description: Parameters and

return values:

Examples:

attributes Returns a list

of the top

level

attributes for

a given type.

v Parameters:

object type

The name of the

object type that

you input here is

the one based

on the XML

configuration

files and does

not have to be

the same name

that the

administrative

console

displays.

v Returns: A list of

attributes.

Example usage:

Using Jacl:

$AdminConfig attributes ApplicationServer

Using Jython:

print AdminConfig.attributes

 (’ApplicationServer’)

Example output:

"properties Property*" "serverSecurity

 ServerSecurity"

"server Server@" "id Long" "stateManagement

 StateManageable"

"name String" "moduleVisibility EEnumLiteral

 (MODULE,

COMPATIBILITY, SERVER, APPLICATION)"

 "services Service*"

"statisticsProvider StatisticsProvider"

Chapter 4. Using the administrative clients 375

checkin Checks a file

that the

document

URI

describes

into the

configuration

repository.

This method

only applies

to

deployment

manager

configurations.

v Parameters:

document URI,

filename,

opaque object

v Returns: None

Example usage:

Using Jacl:

$AdminConfig checkin

cells/MyCell/Node/MyNode/serverindex.xml

c:\\mydir\myfile $obj

Using Jython:

AdminConfig.checkin

(’cells/MyCell/Node/

 MyNode/serverindex.xml’,

’c:\mydir\myfile’, obj)

The document URI is relative to the root of the configuration

repository, for example, c:\WebSphere\AppServer\config.

The file that is specified by filename is used as the source of

the file to check. The opaque object is an object that the

extract command of the AdminConfig object returns by a

prior call.

convertToCluster Converts a

server so that

it is the first

member of a

new server

cluster.

v Parameters:

server ID,

cluster name

v Returns: The

configuration ID

of the new

cluster.

Example usage:

Using Jacl:

set serverid [$AdminConfig getid

 /Server:myServer/]

$AdminConfig convertToCluster

 $serverid myCluster

Using Jython:

serverid = AdminConfig.getid

 (’/Server:myServer/’)

AdminConfig.convertToCluster

 (serverid, ’myCluster’)

Example output:

myCluster

(cells/mycell/clusters/myCluster|

 cluster.xml#ClusterMember_2

376 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

create Creates

configuration

objects.

v Parameters

using Jacl: type-

string; parent

ID- string;

attributes- string

v Parameters

using Jython:

type- string;

parent ID-

string; attributes-

string or type-

string; parent

ID- string;

attributes-

Jython list

v Returns: A string

with

configuration

object names.

The name of the object type that you input here is the one

that is based on the XML configuration files. This name does

not have to be the same name that the administrative console

displays.

Example usage:

Using Jacl:

set jdbc1 [$AdminConfig getid

 /JDBCProvider:jdbc1/]

$AdminConfig create DataSource $jdbc1

 {{name ds1}}

Using Jython with string attributes:

jdbc1 = AdminConfig.getid

 (’/JDBCProvider:jdbc1/’)

AdminConfig.create(’DataSource’, jdbc1,

 ’[[name ds1]]’)

Using Jython with object attributes:

jdbc1 = AdminConfig.getid

 (’/JDBCProvider:jdbc1/’)

AdminConfig.create(’DataSource’, jdbc1,

 [[’name’, ’ds1’]])

Example output:

ds1(cells/mycell/nodes/DefaultNode/servers/server1|

resources.xml#DataSource_6)

Chapter 4. Using the administrative clients 377

createCluster

Member

Creates a

new server

as a member

of an existing

cluster.

This method

creates a

new server

object on the

node that the

node id

parameter

specifies.

This server is

created as a

new member

of the

existing

cluster that is

specified by

the cluster id

parameter,

and contains

attributes that

are specified

in the

member

attributes

parameter.

The server is

created using

the server

template that

is specified

by the

template id

attribute, and

that contains

the name

specified by

the

memberName

attribute. The

memberName

attribute is

required.

v Parameters

using Jacl:

cluster ID-

string; node ID-

string; member

attributes- string

v Parameters

using Jython:

cluster ID-

string; node ID-

string; member

attributes- string

or cluster ID-

string; node ID-

string; member

attributes-

Jython list

v Returns: The

configuration ID

of the new

cluster member.

The name of the object type that you input here is the one

that is based on the XML configuration files. This name does

not have to be the same name that the administrative console

displays.

Example usage:

Using Jacl:

set clid [$AdminConfig getid

 /ServerCluster:myCluster/]

set nodeid [$AdminConfig getid /Node:mynode/]

$AdminConfig createClusterMember $clid

 $nodeid

{{memberName newMem1} {weight 5}}

Using Jython with string attributes:

clid = AdminConfig.getid

 (’/ServerCluster:myCluster/’)

nodeid = AdminConfig.getid(’/Node:mynode/’)

AdminConfig.createClusterMember

 (clid, nodeid,

’[[memberName newMem1] [weight 5]]’)

Using Jython with object attributes:

clid = AdminConfig.getid(’/ServerCluster:myCluster/’)

nodeid = AdminConfig.getid(’/Node:mynode/’)

AdminConfig.createClusterMember(clid, nodeid,

[[’memberName’, ’newMem1’], [’weight’, 5]])

Example output:

myCluster

(cells/mycell/clusters/myCluster|cluster.xml#

ClusterMember_2)

378 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

createDocument Creates a

new

document in

the

configuration

repository.

The

documentURI

parameter

names the

document to

create in the

repository.

The filename

parameter

must be a

valid local file

name where

the contents

of the

document

exist.

v Parameters:

documentURI,

filename

v Returns: None

Example usage:

Using Jacl:

$AdminConfig createDocument cells/mycell/myfile.xml

c:\\mydir\\myfile

Using Jython:

AdminConfig.createDocument(’cells/mycell/myfile.xml’,

’c:\mydir\myfile’)

createUsing

Template

Creates a

type of object

with the

given parent,

using a

template.

v Parameters

using Jacl: type-

string; parent

id-string;

attributes-string;

template

ID-string

v Parameters

using Jython:

type-string;

parent id- string;

attributes-string;

template

ID-string or

type-string;

parent id-string;

attributes-

Jython list;

template

ID-string

v Returns: The

configuration ID

of a new object.

Example usage:

Using Jacl:

set node [$AdminConfig getid /Node:mynode/]

set templ [$AdminConfig listTemplates JDBCProvider

"DB2 JDBC Provider (XA)"]

$AdminConfig createUsingTemplate JDBCProvider $node

{{name newdriver}} $templ

Using Jython using string attributes:

node = AdminConfig.getid(’/Node:mynode/’)

templ = AdminConfig.listTemplates(’JDBCProvider’,

"DB2 JDBC Provider (XA)")

AdminConfig.createUsingTemplate(’JDBCProvider’,

 node, ’[[name newdriver]]’, templ)

Using Jython using object attributes:

node = AdminConfig.getid(’/Node:mynode/’)

templ = AdminConfig.listTemplates(’JDBCProvider’,

"DB2 JDBC Provider (XA)")

AdminConfig.createUsingTemplate(’JDBCProvider’,

node, [[’name’, ’newdriver’]], templ)

Chapter 4. Using the administrative clients 379

defaults Displays the

default

values for

attributes of a

given type.

This method

displays all of

the possible

attributes

contained by

an object of a

specific type.

If the

attribute has

a default

value, this

method also

displays the

type and

default value

for each

attribute.

v Parameters:

type

The name of the

object type that

you input here is

the one based

on the XML

configuration

files. This name

does not have

to be the same

name that the

administrative

console

displays.

v Returns: A string

that contains a

list of attributes

with its type and

value.

Example usage:

Using Jacl:

$AdminConfig defaults TuningParams

Using Jython:

print AdminConfig.defaults(’TuningParams’)

Example output:

Attribute Type Default

usingMultiRowSchema Boolean false

maxInMemorySessionCount Integer 1000

allowOverflow Boolean true

scheduleInvalidation Boolean false

writeFrequency ENUM

writeInterval Integer 120

writeContents ENUM

invalidationTimeout Integer 30

invalidationSchedule InvalidationSchedule

deleteDocument Deletes a

document

from the

configuration

repository.

The

documentURI

parameter

names the

document to

delete from

the

repository.

v Parameters:

documentURI

v Returns: None

Example usage:

Using Jacl:

$AdminConfig deleteDocument cells/mycell/myfile.xml

Using Jython:

AdminConfig.deleteDocument(’cells/mycell/myfile.xml’)

existsDocument Tests for the

existence of

a document

in the

configuration

repository.

The

documentURI

parameter

names the

document to

test in the

repository.

v Parameters:

documentURI

v Returns: A true

value, if the

document

exists.

Example usage:

Using Jacl:

$AdminConfig existsDocument cells/mycell/myfile.xml

Using Jython:

AdminConfig.existsDocument(’cells/mycell/myfile.xml’)

Example output:

1

380 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

extract Extracts a

configuration

repository file

that is

described by

the document

URI and

places it in

the file

named by

filename.

This method

only applies

to

deployment

manager

configurations.

v Parameters:

document URI,

filename

v Returns: An

opaue

java.lang.Object

to use when

checking in the

file.

Example usage:

Using Jacl:

set obj [$AdminConfig extract cells/MyCell/nodes/

MyNode/serverindex.xml

c:\\mydir\myfile]

Using Jython:

obj = AdminConfig.extract(’cells/MyCell/nodes/

MyNode/serverindex.xml’,

’c:\mydir\myfile’)

The document URI is relative to the root of the configuration

repository, for example, c:\WebSphere\AppServer\config.

If the file that is specified by the filename parameter exists,

the extracted file replaces it.

getCrossDocument

ValidationEnabled

Returns a

message with

the current

cross-
document

enablement

setting.

This method

returns true if

cross-
document

validation is

enabled.

v Parameters:

None

v Returns: A string

that contains the

message with

the

cross-document

validation

setting.

Example usage:

Using Jacl:

$AdminConfig getCrossDocumentValidationEnabled

Using Jython:

print AdminConfig.getCrossDocumentValidationEnabled()

Example output:

WASX7188I: Cross-document validation enablement set to

true

getid Returns the

configuration

ID of an

object.

v Parameters:

containment

path

v Returns: The

configuration ID

for an object

that is described

by the

containment

path.

Example usage:

Using Jacl:

$AdminConfig getid /Cell:testcell/Node:testNode/

JDBCProvider:Db2JdbcDriver/

Using Jython:

AdminConfig.getid(’/Cell:testcell/Node:testNode/

JDBCProvider:Db2JdbcDriver/’)

Example output:

Db2JdbcDriver(cells/testcell/nodes/testnode|

resources.xml#JDBCProvider_1)

Chapter 4. Using the administrative clients 381

getObjectName Returns a

string version

of the object

name for the

corresponding

running

MBean.

This method

returns an

empty string

if no

corresponding

running

MBean

exists.

v Parameters:

configuration ID

v Returns: A string

that contains the

object name.

Example usage:

Using Jacl:

set server [$AdminConfig getid /Node:mynode/Server:server1/]

$AdminConfig getObjectName $server

Using Jython:

server = AdminConfig.getid(’/Node:mynode/Server:server1/’)

AdminConfig.getObjectName(server)

Example output:

WebSphere:cell=mycell,name=server1,mbeanIdentifier=cells/

mycell/nodes/mynode/servers/server1/server.xml#Server_1,

type=Server,node=mynode,process=server1,processType=

UnManagedProcess

getSaveMode Returns the

mode that is

used when

you invoke a

save

command.

Possible

values

include the

following:

v

 overwriteOnConflict

- Saves

changes

even if they

conflict with

other

configuration

changes

v

 rollbackOnConflict

- Causes a

save

operation to

fail if

changes

conflict with

other

configuration

changes.

This value

is the

default.

v Parameters:

None

v Returns: A string

that contains the

current save

mode setting.

Example usage:

Using Jacl:

$AdminConfig getSaveMode

Using Jython:

print AdminConfig.getSaveMode()

Example output:

rollbackOnConflict

382 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

getValidationLevel Returns the

validation

used when

files are

extracted

from the

repository.

v Parameters:

None

v Returns: A string

that contains the

validation level.

Example usage:

Using Jacl:

$AdminConfig getValidationLevel

Using Jython:

AdminConfig.getValidationLevel()

Example output:

WASX7189I: Validation level set to HIGH

getValidation

SeverityResult

Returns the

number of

validation

messages

with the

given severity

from the

most recent

validation.

v Parameters:

severity

v Returns: A string

that indicates

the number of

validation

messages of the

given severity.

Example usage:

Using Jacl:

$AdminConfig getValidationSeverityResult 1

Using Jython:

AdminConfig.getValidationSeverityResult(1)

Example output:

16

hasChanges Returns true

if unsaved

configuration

changes

exist.

v Parameters:

None

v Returns: A string

that indicates

whether

unsaved

configuration

changes exist.

Example usage:

Using Jacl:

$AdminConfig hasChanges

Using Jython:

AdminConfig.hasChanges()

Example output:

1

Chapter 4. Using the administrative clients 383

help Displays

static help

information

for the

AdminConfig

object.

v Parameters:

None

v Returns: A list of

options.

Example usage:

Using Jacl:

$AdminConfig help

Using Jython:

print AdminConfig.help()

Example output:

WASX7053I: The AdminConfig object communicates with the

configuration service in a WebSphere Application Server

to manipulate configuration data

for an Application Server installation. The AdminConfig

object has commands to list, create,

remove, display, and modify configuration data, as well

as commands to display information about configuration

data types.

Most of the commands supported by the AdminConfig object

operate in two modes:

the default mode is one in which the AdminConfig object

communicates with the Application Server to accomplish

 its tasks. A local mode is also possible, in which no

server communication takes place. The local mode of

operation is invoked by bringing up the scripting client

without a server connected using the command line

"-conntype NONE" option or setting the

"com.ibm.ws.scripting.connectionType=NONE" property in

the wsadmin.properties file.

The following commands are supported by the AdminConfig

object; more detailed information about each of these

commands is available by using the help command of the

AdminConfig object and by supplying the name of the

command as an argument.

attributes Shows the attributes for a given type

checkin Checks a file into the configuration

 repository.

convertToCluster

 Converts a server to be the first member

 of a new server cluster

create Creates a configuration object, given

 a type, a parent, and a list of attributes,

 and optionally an attribute name for the

 new object

createClusterMember

 Creates a new server that is a member of an

 existing cluster.

createDocument Creates a new document in the configuration

 repository.

installResourceAdapter

 Installs a J2C resource adapter with the

 given RAR file name and an option string

 in the node.

createUsingTemplate

 Creates an object using a particular

 template type.

defaults Displays the default values for the

 attributes of a given type.

deleteDocument Deletes a document from the configuration

 repository.

existsDocument Tests for the existence of a document in

 the configuration repository.

384 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

help continued extract Extracts a file from the configuration

 repository.

getCrossDocumentValidationEnabled

 Returns true if cross-document validation

 is enabled.

getid Show the configuration ID of an object,

 given a string version of its containment

getObjectName Given a configuration ID, returns a string

 version of the ObjectName

 for the corresponding running MBean, if any.

getSaveMode Returns the mode used when "save" is invoked

getValidationLevel

 Returns the validation that is used when

 files are extracted from the repository.

getValidationSeverityResult

 Returns the number of messages of a given

 severity from the most recent validation.

hasChanges Returns true if unsaved configuration

 changes exist

help Shows help information

list Lists all the configuration objects of

 a given type

listTemplates Lists all the available configuration

 templates of a given type.

modify Changes the specified attributes of a

 given configuration object

parents Shows the objects which contain a given type

queryChanges Returns a list of unsaved files

remove Removes the specified configuration object

required Displays the required attributes of a

 given type.

reset Discards the unsaved configuration changes

save Commits the unsaved changes to the

 configuration repository

setCrossDocumentValidationEnabled

 Sets the cross-document validation enabled mode.

setSaveMode Changes the mode used when "save" is invoked

setValidationLevel

 Sets the validation used when files are

 extracted from the repository.

show Shows the attributes of a given

 configuration object

showall Recursively shows the attributes of a

 given configuration object, and all

 the objects that are contained within

 each attribute.

showAttribute Displays only the value for the single

 attribute that is specified.

types Shows the possible types for configuration

validate Invokes validation

Chapter 4. Using the administrative clients 385

installResource

Adapter

Installs a

Java 2

Connector

(J2C)

resource

adapter with

the given

Resource

Adapter

Archive

(RAR) file

name and an

option string

in the node.

The RAR file

name is the

fully qualified

file name that

resides in the

node that you

specify. The

valid options

include the

following

options:

v rar.name

v rar.desc

v

 rar.archivePath

v

 rar.classpath

v

 rar.nativePath

v

 rar.threadPoolAlias

v

 rar.propertiesSet

v Parameters:

RAR file name,

node, options

v Returns: The

configuration ID

of the new

J2CResourceAdapter

object.

Example usage:

Using Jacl:

$AdminConfig installResourceAdapter c:/rar/mine.rar mynode

{-rar.name myResourceAdapter -rar.desc "My rar file"}

Using Jython:

print AdminConfig.installResourceAdapter(’c:/rar/mine.rar’,

’mynode’, ’[-rar.name myResourceAdapter -rar.desc

 "My rar file"]’)

Example output:

myResourceAdapter(cells/mycell/nodes/mynode|

 resources.xml#J2CResourceAdapter_1)

386 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

installResource

Adapter

continued

The rar.name

option is the

name for the

J2C resource

adapter. If

you do not

specify this

option, the

display name

in the RAR

deployment

descriptor is

used. If that

name is not

specified, the

RAR file

name is

used. The

rar.desc

option is a

description of

the

J2CResourceAdapter.

The

rar.archivePath

is the name

of the path

where you

extract the

file. If you do

not specify

this option,

the archive is

extracted to

the

$\{CONNECTOR_INSTALL_ROOT\}

directory. The

rar.classpath

option is the

additional

class path.

rar.propertiesSet

is

constructed

with the

following:

name String

value String

type String

*desc String

*required true/false

* means the item is optional

Each

attribute of

the property

are specified

in a set of {}.

A property is

specified in a

set of {}. You

can specify

multiple

properties in

{}.

Chapter 4. Using the administrative clients 387

installResource

Adapter

continued

When you

edit the

installed

application

with the

embedded

RAR, only

existing J2C

connection

factory, J2C

activation

specs, and

J2C

administrative

objects will

be edited. No

new J2C

objects will

be created.

list Returns a list

of objects of

a given type,

possibly

scoped by a

parent.

v Parameters:

Object type

The name of the

object type that

you input here is

the one that is

based on the

XML

configuration

files and does

not have to be

the same name

that the

administrative

console

displays.

v Returns: A list of

objects.

Example usage:

Using Jacl:

$AdminConfig list JDBCProvider

Using Jython:

print AdminConfig.list(’JDBCProvider’)

Example output:

Db2JdbcDriver(cells/mycell/nodes/DefaultNode|

 resources.xml#JDBCProvider_1)

Db2JdbcDriver(cells/mycell/nodes/DefaultNode/servers/

 deploymentmgr|

resources.xml#JDBCProvider_1)

Db2JdbcDriver(cells/mycell/nodes/DefaultNode/servers/

nodeAgent|resources.xml#JDBCProvider_1)

listTemplates Displays a

list of

template

object IDs.

v Parameters:

object type

The name of the

object type that

you input here is

the one that is

based on the

XML

configuration

files and does

not have to be

the same name

that the

administrative

console

displays.

v Returns: A list of

template IDs.

Example usage:

Using Jacl:

$AdminConfig listTemplates JDBCProvider

Using Jython:

print AdminConfig.listTemplates(’JDBCProvider’)

This example displays a list of all the JDBCProvider

templates that are available on the system.

388 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

modify Supports the

modification

of object

attributes.

v Parameters

using Jacl:

object-string;

attributes-string

v Parameters

using Jython:

object-string;

attributes-string

or object-string;

attributes-

Jython list

v Returns: None

Example usage:

Using Jacl:

$AdminConfig modify ConnFactory1(cells/mycell/nodes/

 DefaultNode/servers/

deploymentmgr|resources.xml#GenericJMSConnectionFactory_1)

{{userID newID} {password newPW}}

Using Jython with string attributes:

AdminConfig.modify(’ConnFactory1(cells/mycell/nodes/

 DefaultNode/servers/

deploymentmgr|resources.xml#GenericJMSConnectionFactory_1)’,

’[[userID newID] [password newPW]]’)

Using Jython with object attributes:

AdminConfig.modify(’ConnFactory1(cells/mycell/nodes/

 DefaultNode/servers/

deploymentmgr|resources.xml#GenericJMSConnectionFactory_1)’,

[[’userID’, ’newID’], [’password’, ’newPW’]])

parents Obtains

information

about object

types.

v Parameters:

object type

The name of the

object type that

you input here is

the one that is

based on the

XML

configuration

files and does

not have to be

the same name

that the

administrative

console

displays.

v Returns: A list of

object types.

Example usage:

Using Jacl:

$AdminConfig parents JDBCProvider

Using Jython:

AdminConfig.parents(’JDBCProvider’)

Example output:

Cell

Node

Server

queryChanges Returns a list

of unsaved

configuration

files.

v Parameters:

None

v Returns: A string

that contains a

list of files with

unsaved

changes.

Example usage:

Using Jacl:

$AdminConfig queryChanges

Using Jython:

AdminConfig.queryChanges()

Example output:

WASX7146I: The following configuration files contain

unsaved changes:

cells/mycell/nodes/mynode/servers/server1|resources.xml

remove Removes a

configuration

object.

v Parameters:

Object

v Returns: None

Example usage:

Using Jacl:

$AdminConfig remove ds1(cells/mycell/nodes/DefaultNode/

servers/server1:resources.xml#DataSource_6)

Using Jython:

AdminConfig.remove(’ds1(cells/mycell/nodes/DefaultNode/

servers/server1:resources.xml#DataSource_6)’)

Chapter 4. Using the administrative clients 389

required Displays the

required

attributes that

are contained

by an object

of a certain

type.

v Parameters:

Type

The name of the

object type that

you input here is

the one that is

based on the

XML

configuration

files. It does not

have to be the

same name that

the

administrative

console

displays.

v Returns: A string

that contains a

list of the

required

attributes with

its type.

Example usage:

Using Jacl:

$AdminConfig required URLProvider

Using Jython:

print AdminConfig.required(’URLProvider’)

Example output:

Attribute Type

streamHandlerClassName String

protocol String

reset Resets the

temporary

workspace

that holds

updates to

the

configuration.

v Parameters:

None

v Returns: None

Example usage:

Using Jacl:

$AdminConfig reset

Using Jython:

AdminConfig.reset()

save Saves

changes in

the

configuration

repository.

v Parameters:

None

v Returns: None

Example usage:

Using Jacl:

$AdminConfig save

Using Jython:

AdminConfig.save()

setCrossDocument

ValidationEnabled

Sets the

cross-
document

validation

enabled

mode. Values

include true

or false.

v Parameters:

Flag

v Returns: None

Example usage:

Using Jacl:

$AdminConfig setCrossDocumentValidationEnabled true

Using Jython:

AdminConfig.setCrossDocumentValidationEnabled(’true’)

390 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

setSaveMode Toggles the

behavior of

the save

command.

The default

value is

rollbackOnConflict.

When a

conflict is

discovered

while saving,

the unsaved

changes are

not

committed.

The

alternative

value is

overwriteOnConflict,

which saves

the changes

to the

configuration

repository

even if

conflicts

exist.

v Parameters:

Mode

v Returns: None

Example usage:

Using Jacl:

$AdminConfig setSaveMode overwriteOnConflict

Using Jython:

AdminConfig.setSaveMode(’overwriteOnConflict’)

setValidationLevel Sets the

validation

that is used

when files

are extracted

from the

repository.

Five

validation

levels are

available:

none, low,

medium, high,

or highest.

v Parameters:

Level

v Returns: A string

that contains the

validation level

setting.

Example usage:

Using Jacl:

$AdminConfig setValidationLevel high

Using Jython:

AdminConfig.setValidationLevel(’high’)

Example output:

WASX7189I: Validation level set to HIGH

show Returns the

top-level

attributes of

the given

object.

v Parameters:

Object,

attributes

v Returns: A string

that contains the

attribute value.

Example usage:

Using Jacl:

$AdminConfig show Db2JdbcDriver(cells/mycell/

nodes/DefaultNode|resources.xm#JDBCProvider_1)

Example output with Jacl:

{name "Sample Datasource"} {description "Data source for

 the Sample entity beans"}

Using Jython:

print AdminConfig.show(’Db2JdbcDriver(cells/mycell/nodes/

DefaultNode|resources.xm#JDBCProvider_1)’)

Example output with Jython:

 [name "Sample Datasource"] [description "Data source

for the Sample entity beans"]

Chapter 4. Using the administrative clients 391

showall Recursively

shows the

attributes of a

given

configuration

object.

v Parameters:

Object,

attributes

v Returns: A string

that contains the

attribute value.

Example usage:

Using Jacl:

$AdminConfig showall "Default Datasource(cells/mycell/

nodes/DefaultNode/servers/server1:resources.xml#

DataSource_1)

Example output with Jacl:

{authMechanismPreference BASIC_PASSWORD}

{category default}

{connectionPool {{agedTimeout 0}

{connectionTimeout 1000}

{maxConnections 30}

{minConnections 1}

{purgePolicy FailingConnectionOnly}

{reapTime 180}

{unusedTimeout 1800}}}

{datasourceHelperClassname

 com.ibm.websphere.rsadapter.CloudscapeDataStoreHelper}

{description "Datasource for the WebSphere Default

 Application"}

{jndiName DefaultDatasource}

{name "Default Datasource"}

{propertySet {{resourceProperties {{{description

"Location of Cloudscape default database."}

{name databaseName}

{type string}

{value ${WAS_INSTALL_ROOT}/bin/DefaultDB}}

 {{name remoteDataSourceProtocol}

{type string}

{value {}}} {{name shutdownDatabase}

{type string}

{value {}}} {{name dataSourceName}

{type string}

{value {}}} {{name description}

{type string}

{value {}}} {{name connectionAttributes}

{type string}

{value {}}} {{name createDatabase}

{type string}

{value {}}}}}}}

{provider "Cloudscape JDBC Driver(cells/pongo/nodes/pongo/

servers/server1|resources.xml#JDBCProvider_1)"}

{relationalResourceAdapter "WebSphere Relational

 Resource Adapter(cells/pongo/

nodes/pongo/servers/server1|resources.xml#builtin_rra)"}

{statementCacheSize 0}

Using Jython:

AdminConfig.showall("Default Datasource(cells/mycell/nodes/

DefaultNode/servers/server1:resources.xml#DataSource_1)")

Example output with Jython:

 [authMechanismPreference BASIC_PASSWORD]

[category default]

[connectionPool [[agedTimeout []]

[connectionTimeout 1000]

[maxConnections 30]

[minConnections 1]

[purgePolicy FailingConnectionOnly]

[reapTime 180]

[unusedTimeout 1800]]]

[datasourceHelperClassname

 com.ibm.websphere.rsadapter.CloudscapeDataStoreHelper]

[description "Datasource for the WebSphere Default

 Application"]

[jndiName DefaultDatasource]

[name "Default Datasource"]

392 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

showall

continued

[propertySet [[resourceProperties [[[description "Location

of Cloudscape default database."]

[name databaseName]

[type string]

[value ${WAS_INSTALL_ROOT}/bin/DefaultDB]]

 [[name remoteDataSourceProtocol]

[type string]

[value []]] [[name shutdownDatabase]

[type string]

[value []]] [[name dataSourceName]

[type string]

[value []]] [[name description]

[type string]

[value []]] [[name connectionAttributes]

[type string]

[value []]] [[name createDatabase]

[type string]

[value []]]]]]]

[provider "Cloudscape JDBC Driver(cells/pongo/nodes/pongo/

servers/server1|resources.xml#JDBCProvider_1)"]

[relationalResourceAdapter "WebSphere Relational Resource

Adapter(cells/pongo/nodes/pongo/servers/server1|

resources.xml#builtin_rra)"]

[statementCacheSize 0]

showAttribute Displays only

the value for

the single

attribute that

you specify.

The output of

this

command is

different from

the output of

the show

command

when a

single

attribute is

specified.

The

showAttribute

command

does not

display a list

that contains

the attribute

name and

value. It only

displays the

attribute

value.

v Parameters:

Configuration

ID, attribute

v Returns: A string

that contains the

attribute value.

Example usage:

Using Jacl:

set ns [$AdminConfig getid /Node:mynode/]

$AdminConfig showAttribute $ns hostName

Using Jython:

ns = AdminConfig.getid(’/Node:mynode/’)

print AdminConfig.showAttribute(ns, ’hostName’)

Example output:

mynode

Chapter 4. Using the administrative clients 393

types Returns a list

of the

configuration

object types

that you can

manipulate.

v Parameters:

None

v Returns: A list of

object types.

Example usage:

Using Jacl:

$AdminConfig types

Using Jython:

print AdminConfig.types()

Example output:

AdminService

Agent

ApplicationConfig

ApplicationDeployment

ApplicationServer

AuthMechanism

AuthenticationTarget

AuthorizationConfig

AuthorizationProvider

AuthorizationTableImpl

BackupCluster

CMPConnectionFactory

CORBAObjectNameSpaceBinding

Cell

CellManager

Classloader

ClusterMember

ClusteredTarget

CommonSecureInteropComponent

394 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

uninstallResource

Adapter

Uninstalls a

Java 2

Connector

(J2C)

resource

adapter with

the given

J2C resource

adapter

configuration

ID and an

option list.

One option is

valid for this

command: *

force

This option

forces the

uninstallation

of the

resource

adapter

without

checking

whether the

resource

adapter is

being used

by an

application.

The

application

that is using

it will not be

uninstalled. If

you do not

specify the

force option

and the

specified

resource

adapter is

still in use,

the resource

adapter is not

uninstalled.

v Parameters:

J2C resource

adapter

configuration ID,

list of options

v Returns: The

configuration ID

of

J2CResourceAdapter

object that is

removed.

Example usage:

Using Jacl:

set j2cra [$AdminConfig getid /J2CResourceAdapter:MyJ2CRA/]

$AdminConfig uninstallResourceAdapter $j2cra {-force}

$AdminConfig save

Using Jython:

j2cra = AdminConfig.getid(’/J2CResourceAdapter:MyJ2CRA/’)

print AdminConfig.uninstallResourceAdapter(j2cra, ’[-force]’)

AdminConfig.save()

Example output:

WASX7397I: The following J2CResourceAdapter objects are

 removed:

MyJ2CRA(cells/juniarti/nodes/juniarti|

 resources.xml#J2CResourceAdapter_1069433028609)

Chapter 4. Using the administrative clients 395

uninstallResource

Adapter

continued

When you

remove a

J2CResourceAdapter

object from

the

configuration

repository,

the installed

directory will

be removed

at the time of

synchronization.

A stop

request will

be sent to

the

J2CResourceAdapter

MBean that

was

removed.

validate Invokes

validation.

This

command

requests

configuration

validation

results based

on the files in

your

workspace,

the value of

the

cross-
document

validation

enabled flag,

and the

validation

level setting.

Optionally,

you can

specify a

configuration

ID to set the

scope. If you

specify a

configuration

ID, the scope

of this

request is the

object named

by the config

id parameter.

v Parameters:

config id

(optional)

v Returns: A string

that contains

results of the

validation.

Example usage:

Using Jacl:

$AdminConfig validate

Using Jython:

print AdminConfig.validate()

Example output:

WASX7193I: Validation results are logged in c:\WebSphere5\

AppServer\logs\wsadmin.valout: Total number of messages: 16

WASX7194I: Number of messages of severity 1: 16

Commands for the AdminControl object

Use the AdminControl object to invoke operational commands that deal with running objects in the

WebSphere Application Server. Many of the AdminControl commands have multiple signatures so that they

396 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

can either invoke in a raw mode using parameters that are specified by Java Management Extensions

(JMX), or by using strings for parameters. In addition to operational commands, the AdminControl object

supports some utility commands for tracing, reconnecting with a server, and converting data types.

The following commands are available for the AdminControl object:

 Command

name:

Description: Parameters and return

values:

Examples:

completeObject

Name

Creates a

string

representation

of a complete

ObjectName

value that is

based on a

fragment. This

command

does not

communicate

with the

server to find

a matching

ObjectName

value. If it

finds several

MBeans that

match the

fragment, the

command

returns the

first one.

v Parameters:

name-java.lang.String

v Returns: java.lang.String

Example usage:

Using Jacl:

set serverON [$AdminControl

 completeObjectName node=mynode,type=Server,*]

Using Jython:

serverON = AdminControl.completeObjectName

 (’node=mynode,type=Server,*’)

getAttribute Returns the

value of the

attribute for

the name that

you provide.

v Parameters:

name-java.lang.String;

attribute-java.lang.String

v Returns: java.lang.String

Example usage:

Using Jacl:

set objNameString [$AdminControl

 completeObjectName WebSphere:type=Server,*]

$AdminControl getAttribute

 $objNameString processType

Using Jython:

objNameString =

 AdminControl.completeObjectName

 (’WebSphere:type=Server,*’)

AdminControl.getAttribute(objNameString,

 ’processType’)

Chapter 4. Using the administrative clients 397

getAttribute_jmx Returns the

value of the

attribute for

the name that

you provide.

v Parameters:

name-ObjectName;

attribute-java.lang.String

v Returns: java.lang.String

Example usage:

Using Jacl:

set objNameString [$AdminControl

 completeObjectName WebSphere:type=Server,*]

set objName [java::new

 javax.management.ObjectName

 $objNameString]

$AdminControl getAttribute_jmx

 $objName processType

Using Jython:

objNameString =

 AdminControl.completeObjectName

(’WebSphere:type=Server,*’)

import javax.management as mgmt

objName = mgmt.ObjectName(objNameString)

AdminControl.getAttribute_jmx(objName,

’processType’)

getAttributes Returns the

attribute

values for the

names that

you provide.

v Parameters using Jacl:

name-String;

attributes-java.lang.String

v Parameters using Jython:

name-String;

attributes-java.lang.String

or name-String;

attributes-
java.lang.Object[]

v Returns: java.lang.String

Example usage:

Using Jacl:

set objNameString [$AdminControl

 completeObjectName WebSphere:type=Server,*]

$AdminControl getAttributes $objNameString

 "cellName nodeName"

Using Jython with string attributes:

objNameString =

 AdminControl.completeObjectname

 (’WebSphere:type=Server,*)

AdminControl.getAttributes(objNameString,

 ’[cellName nodeName]’)

Using Jython with object attributes:

objNameString =

 AdminControl.completeObjectname

 (’WebSphere:type=Server,*)

AdminControl.getAttributes(objNameString,

 [’cellName’, ’nodeName’])

getAttributes_jmx Returns the

attribute

values for the

names that

you provide.

v Parameters:

name-ObjectName;

attributes-
java.lang.String[]

v Returns:

javax.management.AttributeList

Example usage:

Using Jacl:

set objectNameString [$AdminControl

 completeObjectName WebSphere:type=Server,*]

set objName [$AdminControl makeObjectName

 $objectNameString]

set attrs [java::new {String[]} 2

 {cellName nodeName}]

$AdminControl getAttributes_jmx $objName

 $attrs

Using Jython:

objectNameString = AdminControl.completeObjectName

 (’type=Server,*’)

objName = AdminControl.makeObjectName

 (objectNameString)

attrs = [’cellName’, ’nodeName’]

AdminControl.getAttributes_jmx(objName,

 attrs)

398 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

getCell Returns the

name of the

connected

cell.

v Parameters: None

v Returns: java.lang.String

Example usage:

Using Jacl:

$AdminControl getCell

Using Jython:

AdminControl.getCell()

Example output:

Mycell

getConfigId Creates a

configuration

ID from an

ObjectName

or an

ObjectName

fragment. Use

this ID with

the

$AdminConfig

command.

Not all

MBeans that

run have

configuration

objects that

correspond. If

several

MBeans

correspond to

an

ObjectName

fragment, a

warning is

created and a

configuration

ID builds for

the first

MBean it

finds.

v Parameters:

name-java.lang.String

v Returns: java.lang.String

Example usage:

Using Jacl:

set threadpoolCID [$AdminControl

 getConfigId node=mynode,type=ThreadPool,*]

Using Jython:

threadpoolCID = AdminControl.getConfigId

 (’node=mynode,type=ThreadPool,*’)

getDefaultDomain Returns the

default

domain name

from the

server.

v Parameters: None

v Returns: java.lang.String

Example usage:

Using Jacl:

$AdminControl getDefaultDomain

Using Jython:

AdminControl.getDefaultDomain()

Example output:

WebSphere

Chapter 4. Using the administrative clients 399

getDomainName Returns the

domain name

from the

server.

v Parameters: None

v Returns: java.lang.String

Example usage:

Using Jacl:

$AdminControl getDomainName

Using Jython:

AdminControl.getDomainName()

Example output:

WebSphere

getHost Returns the

name of your

host.

v Parameters: None

v Returns: java.lang.String

Example usage:

Using Jacl:

$AdminControl getHost

Using Jython:

AdminControl.getHost()

Example output:

myhost

getMBeanCount Returns the

number of

MBeans that

are registered

in the server.

v Parameters: None

v Returns: java.lang.Integer

Example usage:

Using Jacl:

$AdminControl getMBeanCount

Using Jython:

AdminControl.getMBeanCount()

Example output:

114

getMBeanInfo_jmx Returns the

Java

Management

Extension

MBeanInfo

structure that

corresponds

to an

ObjectName

value. No

string

signature

exists for this

command,

because the

Help object

displays most

of the

information

available from

the

getMBeanInfo

command.

v Parameters:

name-ObjectName

v Returns:

javax.management.MBeanInfo

Example usage:

Using Jacl:

set objectNameString [$AdminControl

 completeObjectName type=Server,*]

set objName [$AdminControl makeObjectName

 $objectNameString]

$AdminControl getMBeanInfo_jmx $objName

Using Jython:

objectNameString =

 AdminControl.completeObjectName(’type=Server,*’)

objName = AdminControl.makeObjectName

 (objectNameString)

AdminControl.getMBeanInfo_jmx(objName)

Example output:

javax.management.modelmbean.

 ModelMBeanInfoSupport@10dd5f35

400 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

getNode Returns the

name of the

connected

node.

v Parameters: None

v Returns: java.lang.String

Example usage:

Using Jacl:

$AdminControl getNode

Using Jython:

AdminControl.getNode()

Example output:

Myhost

getPort Returns the

name of your

port.

v Parameters: None

v Returns: java.lang.String

Example usage:

Using Jacl:

$AdminControl getPort

Using Jython:

AdminControl.getPort()

Example output:

8877

getPropertiesFor

DataSource

Deprecated,

no

replacement.

This

command

incorrectly

assumes the

availability of

a

configuration

service when

running in

connected

mode.

v Parameters:

configId-java.lang.String

v Returns: java.lang.String

Example usage:

Using Jacl:

set ds [lindex [$AdminConfig list DataSource] 0]

$AdminControl getPropertiesForDataSource $ds

Using Jython:

ds = AdminConfig.list(’DataSource’)

get line separator

import java.lang.System as sys

lineSeparator = sys.getProperty(’line.separator’)

dsArray = ds.split(lineSeparator)

AdminControl.getPropertiesForDataSource(dsArray[0])

Example output:

WASX7389E: Operation not supported -

 getPropertiesForDataSource command

is not supported.

getType Returns the

connection

type.

v Parameters: None

v Returns: java.lang.String

Example usage:

Using Jacl:

$AdminControl getType

Using Jython:

AdminControl.getType()

Example output:

SOAP

Chapter 4. Using the administrative clients 401

help Returns

general help

text for the

AdminControl

object.

v Parameters: None

v Returns: java.lang.String

Example usage:

Using Jacl:

$AdminControl help

Using Jython:

AdminControl.help()

Example output:

WASX7027I: The AdminControl object enables

the manipulation of MBeans that run in a

WebSphere Application Server process.

The number and type of MBeans that are

available to the scripting client depend

on the server to which the client is

connected. If the client is connected to a

deployment manager, then all the MBeans

running in the Deployment

Manager are visible, as are all the MBeans

running in the node agents that are

connected to this deployment manager, and

all the MBeans that run in the application

servers on those nodes.

The following commands are supported by

the AdminControl object; more detailed

information about each of these commands

is available by using the "help" command

of the AdminControl object and supplying

the name of the command as an argument.

Many of these commands support two

different sets of signatures: one that

accepts and returns strings, and one

low-level set that works with JMX objects

like ObjectName and AttributeList. In most

situations, the string signatures are

likely to be more useful,but JMX-object

signature versions are supplied as well.

Each of these JMX-object signature

commands has "_jmx" appended to the

command name,so an "invoke" command, as

well as a "invoke_jmx" command are

supported.

completeObjectName

 Return a String version

 of an object name given a

 template name

getAttribute_jmx

 Given ObjectName and name of

 attribute, returns value of

 attribute

getAttribute

 Given String version of ObjectName

 and name of attribute,returns value

 of attribute

getAttributes_jmx

 Given ObjectName and array of

 attribute names, returns

 AttributeList

getAttributes

 Given String version of ObjectName

 and attribute names,returns String

 of name value pairs

402 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

help continued getCell

 returns the cell name of the

 connected server

getConfigId

 Given String version of ObjectName,

 return a config id for the

 corresponding configuration

 object, if any.

getDefaultDomain

 returns "WebSphere"

getDomainName

 returns "WebSphere"

getHost

 returns String representation

 of connected host

getMBeanCount

 returns number of registered beans

getMBeanInfo_jmx

 Given ObjectName, returns

 MBeanInfo structure for MBean

getNode

 returns the node name of the connected server

getPort

 returns String representation of port in use

getType

 returns String representation of connection

 type in use

help

 Show help information

invoke_jmx

 Given ObjectName, name of command,

 array of parameters and signature,

 invoke command on MBean specified

invoke

 Invoke a command on the specified MBean

isRegistered_jmx

 true if supplied ObjectName is registered

isRegistered

 true if supplied String version of

 ObjectName is registered

makeObjectName

 Return an ObjectName built with the

 given string

queryNames_jmx

 Given ObjectName and QueryExp, retrieves

 set of ObjectNames that match.

queryNames

 Given String version of ObjectName,

 retrieves String of ObjectNames that match.

reconnect

 reconnects with server

setAttribute_jmx

 Given ObjectName and Attribute object,

 set attribute for MBean specified

setAttribute

 Given String version of ObjectName,

 attribute name and attribute value,

 set attribute for MBean specified

setAttributes_jmx

 Given ObjectName and AttributeList object,

 set attributes for the MBean specified

startServer

 Given the name of a server, start that server.

stopServer

 Given the name of a server, stop that server.

testConnection

 Test the connection to a DataSource object

trace

 Set the wsadmin trace specification

Chapter 4. Using the administrative clients 403

help Returns help

text for the

specific

command of

the

AdminControl

object. The

command

name is not

case

sensitive.

v Parameters:

command-java.lang.String

v Returns: java.lang.String

Example usage:

Using Jacl:

$AdminControl help getAttribute

Using Jython:

AdminControl.help(’getAttribute’)

Example output:

WASX7043I: command: getAttribute

Arguments: object name, attribute

Description: Returns value of "attribute"

for the MBean described by "object name."

invoke Invokes the

object

operation

without any

parameter.

Returns the

result of the

invocation.

v Parameters: name-

java.lang.String;

operationName-

java.lang.String

v Returns: java.lang.String

Example usage:

Using Jacl:

set objNameString [$AdminControl

 completeObjectName WebSphere:type=Server,*]

$AdminControl invoke $objNameString stop

Using Jython:

objNameString =

 AdminControl.completeObjectName

 (’WebSphere:type=Server,*’)

AdminControl.invoke(objNameString, ’stop’)

404 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

invoke Invokes the

object

operation

using the

parameter list

that you

supply. The

signature

generates

automatically.

The types of

parameters

are supplied

by examining

the

MBeanInfo

that the

MBean

supplies.

Returns the

string result of

the

invocation.

The string

that is

returned is

controlled by

the Mbean

method that

you invoked.

If the Mbean

method is

synchronous,

then control is

returned back

to the

wsadmin tool

only when the

operation is

complete. If

the Mbean

method is

asynchronous,

control is

returned back

to the

wsadmin tool

immediately

even though

the invoked

task might not

be complete.

v Parameters:

name-java.lang.String;

operationName-
java.lang.String;

params-java.lang.String

v Returns: java.lang.String

Example usage:

Using Jacl:

set objNameString [$AdminControl

 completeObjectName WebSphere:type=Server,*]

$AdminControl invoke $objNameString

 appendTraceString com.ibm.*=all=enabled

Using Jython:

objNameString =

 AdminControl.completeObjectName

 (’WebSphere:type=Server,*’)

AdminControl.invoke(objNameString,

 ’appendTraceString’, ’com.ibm.*=all=enabled’)

Chapter 4. Using the administrative clients 405

invoke Invokes the

object

operation by

conforming

the parameter

list to the

signature.

Returns the

result of the

invocation.

v Parameters:

name-java.lang.String;

operationName-
java.lang.String;

params-java.lang.String;

sigs-java.lang.String

v Returns: java.lang.String

Example usage:

Using Jacl:

set objNameString [$AdminControl

 completeObjectName WebSphere:type=Server,*]

$AdminControl invoke $objNameString

 appendTraceString com.ibm.*=all=enabled

 java.lang.String

Using Jython:

objNameString = AdminControl.completeObjectName

 (’WebSphere:type=Server,*’)

AdminControl.invoke(objNameString,

 ’appendTraceString’, ’com.ibm.*=all=enabled’,

 ’java.lang.String’)

invoke_jmx Invokes the

object

operation by

conforming

the parameter

list to the

signature.

Returns the

result of the

invocation.

v Parameters:

name-ObjectName;

operationName-
java.lang.String; params-

java.lang.Object[];

signature-
java.lang.String[]

v Returns: java.lang.Object

Example usage:

set objNameString [$AdminControl

 completeObjectName WebSphere:type=TraceService,*]

set objName [java::new javax.management.ObjectName

 $objNameString]

set parms [java::new {java.lang.Object[]}

 1 com.ibm.ejs.sm.*=all=disabled]

set signature [java::new

 {java.lang.String[]} 1 java.lang.String]

$AdminControl invoke_jmx $objName

 appendTraceString $parms $signature

Using Jython:

objNameString = AdminControl.completeObjectName

 (’WebSphere:type=TraceService,*’)

import javax.management as mgmt

objName = mgmt.ObjectName(objNameString)

parms = [’com.ibm.ejs.sm.*=all=disabled’]

signature = [’java.lang.String’]

AdminControl.invoke_jmx(objName,

 ’appendTraceString’, parms, signature)

isRegistered If the

ObjectName

value is

registered in

the server,

then the value

is true.

v Parameters:

name-java.lang.String

v Returns: Boolean

Example usage:

Using Jacl:

set objNameString [$AdminControl

completeObjectName WebSphere:type=Server,*]

$AdminControl isRegistered $objNameString

Using Jython:

objNameString =

AdminControl.completeObjectName

 (’WebSphere:type=Server,*’)

AdminControl.isRegistered(objNameString)

406 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

isRegistered_jmx If the

ObjectName

value is

registered in

the server,

then the value

is true.

v Parameters:

name-ObjectName

v Returns: Boolean

Example usage:

Using Jacl:

set objectNameString [$AdminControl

 completeObjectName type=Server,*]

set objName [$AdminControl makeObjectName

 $objNameString]

$AdminControl isRegistered_jmx $objName

Using Jython:

objectNameString =

 AdminControl.completeObjectName

 (’type=Server,*’)

objName =

 AdminControl.makeObjectName

 (objectNameString)

AdminControl.isRegistered_jmx(objName)

makeObjectName A

convenience

command that

creates an

ObjectName

value that is

based on the

strings input.

This

command

does not

communicate

with the

server, so the

ObjectName

value that

results might

not exist. If

the string you

supply

contains an

extra set of

double

quotes, they

are removed.

If the string

does not

begin with a

Java

Management

Extensions

(JMX)

domain, or a

string followed

by a colon,

then the

WebSphere

Application

Server string

appends to

the name.

v Parameters:

name-java.lang.String

v Returns:

javax.management.ObjectName

Example usage:

Using Jacl:

set objectNameString [$AdminControl

 completeObjectName type=Server,node=mynode,*]

set objName [$AdminControl makeObjectName $

 objNameString]

Using Jython:

objectNameString =

 AdminControl.completeObjectName

 (’type=Server,node=mynode,*’)

objName = AdminControl.makeObjectName

 (objectNameString)

Chapter 4. Using the administrative clients 407

queryNames Returns a

string that

lists all the

ObjectName

objects based

on the name

template.

v Parameters:

name-java.lang.String

v Returns: java.lang.String

Example usage:

Using Jacl:

$AdminControl queryNames WebSphere:type=Server,*

Using Jython:

AdminControl.queryNames(’WebSphere:type=Server,*’)

Example output:

WebSphere:cell=BaseApplicationServerCell,

 name=server1,mbeanIdentifier=server1,type=Server,

 node=mynode,process=server1

queryNames_jmx Returns a set

of

ObjectName

objects that

are based on

the

ObjectName

object and the

QueryExp

query that you

provide.

v Parameters:

name-
javax.management.Object

Name;query-
javax.management.QueryExp

v Returns: java.util.Set

Example usage:

Using Jacl:

set objectNameString [$AdminControl

 completeObjectName type=Server,*]

set objName [$AdminControl

 makeObjectName $objNameString]

set null [java::null]

$AdminControl queryNames_jmx $objName $null

Using Jython:

objectNameString =

 AdminControl.completeObjectName

 (’type=Server,*’)

objName = AdminControl.makeObjectName

 (objectNameString)

AdminControl.queryNames_jmx(objName,

 None)

Example output:

[WebSphere:cell=BaseApplicationServerCell,

name=server1,mbeanIdentifier=server1,type=

Server,node=mynode,process=server1]

reconnect Reconnects to

the server,

and clears

information

out of the

local cache.

v Parameters: None

v Returns: None

Example usage:

Using Jacl:

$AdminControl reconnect

Using Jython:

AdminControl.reconnect()

Example output:

WASX7074I: Reconnect of SOAP connector to

host myhost completed.

408 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

setAttribute Sets the

attribute value

for the name

that you

provide.

v Parameters:

name-java.lang.String;

attributeName-
java.lang.String;

attributeValue-
java.lang.String

v Returns: None

Example usage:

Using Jacl:

set objNameString [$AdminControl

 completeObjectName WebSphere:type=

 TraceService,*]

$AdminControl setAttribute $objNameString

 traceSpecification com.ibm.*=all=disabled

Using Jython:

objNameString =

 AdminControl.completeObjectName

 (’WebSphere:type=TraceService,*’)

AdminControl.setAttribute(objNameString,

 ’traceSpecification’, ’com.ibm.*=all=disabled’)

setAttribute_jmx Sets the

attribute value

for the name

that you

provide.

v Parameters:

name-ObjectName;

attribute-
javax.management.Attribute

v Returns: None

Example usage:

Using Jacl:

set objectNameString [$AdminControl

 completeObjectName WebSphere:type=

 TraceService,*]

set objName [$AdminControl makeObjectName

 $objectNameString]

set attr [java::new javax.management.Attribute

 traceSpecification com.ibm.*=all=disabled]

$AdminControl setAttribute_jmx

 $objName $attr

Using Jython:

objectNameString =

 AdminControl.completeObjectName

 (’WebSphere:type=TraceService,*’)

import javax.management as mgmt

objName = AdminControl.makeObjectName

 (objectNameString)

attr = mgmt.Attribute(’traceSpecification’,

 ’com.ibm.*=all=disabled’)

AdminControl.setAttribute_jmx(objName, attr)

setAttributes Sets the

attribute

values for the

names that

you provide

and returns a

list of

successfully

set names.

v Parameters using Jacl:

name-String;

attributes-java.lang.String

v Parameters using Jython:

name-String;

attributes-java.lang.String

or name-String;

attributes-
java.lang.Object[]

v Returns: java.lang.String

Example usage:

Using Jacl:

set objNameString [$AdminControl

 completeObjectName WebSphere:type=

 TracesService,*]

$AdminControl setAttributes $objNameString

 {{traceSpecification com.ibm.ws.*=all=enabled}}

Using Jython with string attributes:

objNameString = AdminControl.completeObjectName

 (’WebSphere:type=TracesService,*’)

AdminControl.setAttributes(objNameString,

 ’[[traceSpecification "com.ibm.ws.*=all=enabled"]]’)

Using Jython with object attributes:

objNameString = AdminControl.completeObjectName

 (’WebSphere:type=TracesService,*’)

473 AdminControl.setAttributes(objNameString,

 [[’traceSpecification’, ’com.ibm.ws.*=all=enabled’]])

Chapter 4. Using the administrative clients 409

setAttributes_jmx Sets the

attribute

values for the

names that

you provide

and returns a

list of

successfully

set names.

v Parameters:

name-ObjectName;

attributes-
javax.management.AttributeList

v Returns:

javax.management.AttributeList

Example usage:

Using Jacl:

set objectNameString [$AdminControl

 completeObjectName WebSphere:type=TraceService,*]

set objName [$AdminControl makeObjectName

 $objectNameString]

set attr [java::new javax.management.Attribute

 traceSpecification com.ibm.ws.*=all=enabled]

set alist

 [java::new javax.management.AttributeList]

$alist add $attr

$AdminControl setAttributes_jmx $objName $alist

Using Jython:

objectNameString =

 AdminControl.completeObjectName

 (’WebSphere:type=TraceService,*’)

import javax.management as mgmt

objName = AdminControl.makeObjectName

 (objectNameString)

attr = mgmt.Attribute(’traceSpecification’,

 ’com.ibm.ws.*=all=enabled’)

alist = mgmt.AttributeList()

alist.add(attr)

AdminControl.setAttributes_jmx(objName,

 alist)

startServer Starts the

specified

application

server by

locating it in

the

configuration.

This

command

uses the

default wait

time. You can

only use this

command if

the scripting

client is

connected to

a node agent.

This

command

returns a

message to

indicate if the

server starts

successfully.

v Parameters: server

name-java.lang.String

v Returns: java.lang.String

Example usage:

Using Jacl:

$AdminControl startServer server1

Using Jython:

AdminControl.startServer(’server1’)

410 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

startServer Starts the

specified

application

server by

locating it in

the

configuration.

The start

process waits

the number of

seconds

specified by

the wait time

for the server

to start. You

can only use

this command

if the scripting

client is

connected to

a node agent.

This

command

returns a

message to

indicate if the

server starts

successfully.

v Parameters: server

name-java.lang.String,

wait time-java.lang.String

v Returns: java.lang.String

Example usage:

Using Jacl:

$AdminControl startServer server1 100

Using Jython:

AdminControl.startServer(’server1’, 100)

startServer Starts the

specified

application

server by

locating it in

the

configuration.

This

command

uses the

default wait

time. You can

use this

command

when the

scripting client

is either

connected to

a node agent

or to a

deployment

manager

process. It

returns a

message to

indicate if the

server starts

successfully.

v Parameters: server

name-java.lang.String,

node

name-java.lang.String

v Returns: java.lang.String

Example usage:

Using Jacl:

$AdminControl startServer server1 myNode

Using Jython:

AdminControl.startServer(’server1’, ’myNode’)

Chapter 4. Using the administrative clients 411

startServer Starts the

specified

application

server by

locating it in

the

configuration.

The start

process waits

the number of

seconds

specified by

the wait time

for the server

to start. You

can use this

command

when the

scripting client

is either

connected to

a node agent

or to a

deployment

manager

process. This

command

returns a

message to

indicate if the

server starts

successfully.

v Parameters: server

name-java.lang.String,

node

name-java.lang.String,

wait time-java.lang.String

v Returns: java.lang.String

Example usage:

Using Jacl:

$AdminControl startServer server1 myNode 100

Using Jython:

AdminControl.startServer(’server1’, ’myNode’, 100)

stopServer Stops the

specified

application

server. The

command

returns a

message to

indicate if the

server stops

successfully.

v Parameters: server

name-java.lang.String

v Returns: java.lang.String

Example usage:

Using Jacl:

$AdminControl stopServer server1

Using Jython:

AdminControl.stopServer(’server1’)

412 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

stopServer Stops the

specified

application

server. If you

set the flag to

immediate,

the server

stops

immediately.

Otherwise, a

normal stop

occurs. This

command

returns a

message to

indicate if the

server stops

successfully.

v Parameters: server

name-java.lang.String,

immediate

flag-java.lang.String

v Returns: java.lang.String

Example usage:

Using Jacl:

$AdminControl stopServer server1 immediate

Using Jython:

AdminControl.stopServer(’server1’,

’immediate’)

stopServer Stops the

specified

application

server. This

command

returns a

message to

indicate if the

server stops

successfully.

v Parameters: server

name-java.lang.String,

node

name-java.lang.String

v Returns: java.lang.String

Example usage:

Using Jacl:

$AdminControl stopServer server1 myNode

Using Jython:

AdminControl.stopServer(’server1’, ’my Node’)

stopServer Stops the

specified

application

server. If you

set the flag to

immediate,

the server

stops

immediately.

Otherwise, a

normal stop

occurs. This

command

returns a

message to

indicate if the

server stops

successfully.

v Parameters: server

name-java.lang.String,

node

name-java.lang.String,

immediate

flag-java.lang.String

v Returns: java.lang.String

Example usage:

Using Jacl:

$AdminControl stopServer server1 myNode immediate

Using Jython:

AdminControl.stopServer(’server1’, ’my Node’,

’immediate’)

Chapter 4. Using the administrative clients 413

testConnection A

convenience

command

communicates

with the

DataSourceCfgHelper

MBean to test

a DataSource

connection.

This

command

works with the

DataSource

that resides in

the

configuration

repository. If

the

DataSource to

be tested is in

the temporary

workspace

that holds the

update to the

repository,

you have to

save the

update to the

configuration

repository

before

running this

command.

Use this

command

with the

configuration

ID that

corresponds

to the

DataSource

and the

WAS40DataSource

object types.

The return

value is a

message that

contains the

message

indicating a

successful

connection or

a connection

with warning.

If the

connection

fails, an

exception is

created from

the server

indicating the

error.

v Parameters:

configId-java.lang.String

v Returns: java.lang.String

Example usage:

Using Jacl:

set ds [lindex [$AdminConfig list DataSource] 0]

$AdminControl testConnection $ds

Using Jython:

get line separator

import java.lang.System as sys

lineSeparator = sys.getProperty(’line.separator’)

ds = AdminConfig.list(’DataSource’).split

 (lineSeparator)[0]

AdminControl.testConnection(ds)

Example output:

WASX7217I: Connection to provided

datasource was successful.

414 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

testConnection Deprecated.

This

command can

give false

results and

does not work

when

connected to

a node agent.

As of V5.0.2,

the preferred

way to test a

data source

connection is

with the

testConnection

command that

passes in the

DataSource

configId

parameter as

the only

parameter.

v Parameters:

configId-java.lang.String;

props-java.lang.String

v Returns: java.lang.String

Example usage:

Using Jacl:

set ds [lindex [$AdminConfig list DataSource] 0]

$AdminControl testConnection $ds {{prop1 val1}}

Using Jython:

get line separator

import java.lang.System as sys

lineSeparator = sys.getProperty(’line.separator’)

ds = AdminConfig.list(’DataSource’).split

 (lineSeparator)[0]

AdminControl.testConnection(ds, ’[[prop1 val1]]’)

Example output:

WASX7390E: Operation not supported -

testConnection command with config id

and properties arguments is not supported.

Use testConnection command with

config id argument only.

trace Sets the trace

specification

for the

scripting

process to the

value that you

specify.

v Parameters:

traceSpec-java.lang.String

v Returns: None

Example usage:

Using Jacl:

$AdminControl trace com.ibm.ws.scripting.*=

 all=enabled

Using Jython:

AdminControl.trace(’com.ibm.ws.scripting.*=

 all=enabled’)

Commands for the AdminApp object

Use the AdminApp object to install, modify, and administer applications. The AdminApp object interacts

with the WebSphere Application Server management and configuration services to make application

inquiries and changes. This interaction includes installing and uninstalling applications, listing modules,

exporting, and so on.

You can start the scripting client when no server is running, if you want to use only local operations. To run

in local mode, use the -conntype NONE option to start the scripting client. You receive a message that you

are running in the local mode. Running the AdminApp object in local mode when a server is currently

running is not recommended. This is because any configuration changes made in local mode will not be

reflected in the running server configuration and vice versa. If you save a conflicting configuration, you

could corrupt the configuration. In a deployment manager environment, configuration updates are available

only if a scripting client is connected to a deployment manager. When connected to a node agent or a

managed application server, you will not be able to update the configuration because the configuration for

these server processes are copies of the master configuration which resides in the deployment manager.

The copies are created on a node machine when a configuration synchronization occurs between the

deployment manager and the node agent. Make configuration changes to the server processes by

connecting a scripting client to a deployment manager. For this reason, to change a configuration, do not

run a scripting client in local mode on a node machine. It is not a supported configuration.

The following commands are available for the AdminApp object:

Chapter 4. Using the administrative clients 415

Command

name:

Description: Parameters and return

values:

Examples:

deleteUserAnd

GroupEntries

Deletes users

or groups for all

roles, and

deletes user

IDs and

passwords for

all of the RunAs

roles that are

defined in the

application.

v Parameters: appname

v Returns: None

Example usage:

Using Jacl:

$AdminApp deleteUserAndGroupEntries myapp

Using Jython:

AdminApp.deleteUserAndGroupEntries(’myapp’)

edit Edits an

application or

module in

non-interactive

mode.

The edit

command

changes the

application

deployment.

Specify these

changes in the

options

parameter. No

options are

required for the

edit command.

v Parameters using Jacl:

appname - string; options -

string

v Parameters using Jython:

appname - string; options -

string or appname - string;

options - Jython list

v Returns: string

Example usage:

Using Jacl:

$AdminApp edit "JavaMail Sample"

 {-MapWebModToVH {{"JavaMail

Sample WebApp" mtcomps.war,WEB-INF/web.xml

 newVH}}}

Using Jython with string options:

AdminApp.edit("JavaMail Sample",

 ’[-MapWebModToVH [["JavaMail

32 Sample WebApp" mtcomps.war,WEB-INF/web.xml

 newVH]]]’)

Using Jython with list options:

option = [["JavaMail 32 Sample WebApp",

 "mtcomps.war,WEB-INF/web.xml",

"newVH"]]

mapVHOption = ["-MapWebModToVH", option]

AdminApp.edit("JavaMail Sample", mapVHOption)

editInteractive Edits an

application or

module in

interactive

mode.

The

editInteractive

command

changes the

application

deployment.

Specify these

changes in the

options

parameter. No

options are

required for the

editInteractive

command.

v Parameters using Jacl:

appname - string; options -

string

v Parameters using Jython:

appname - string; options -

string or appname - string;

options - Jython list

v Returns: string

Example usage:

Using Jacl:

$AdminApp editInteractive ivtApp

Using Jython:

AdminApp.editInteractive(’ivtApp’)

export Exports the

application

appname

parameter to a

file that you

specify by file

name.

v Parameters: appname,

filename

v Returns: None

Example usage:

Using Jacl:

$AdminApp export "My App" /usr/me/myapp.ear

Using Jython:

AdminApp.export("My App", ’/usr/me/myapp.ear’)

416 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

exportDDL Extracts the

data definition

language (DDL)

from the

application

appname

parameter to

the

directoryname

parameter that

a directory

specifies. The

options

parameter is

optional.

v Parameters: appname,

directoryname, options

v Returns: None

Example usage:

Using Jacl:

$AdminApp exportDDL "My App" /usr/me/DDL

 {-ddlprefix myApp}

Using Jython:

AdminApp.exportDDL("My App", ’/usr/me/DDL’,

 ’[-ddlprefix myApp]’)

Chapter 4. Using the administrative clients 417

help Displays

general help for

the AdminApp

object.

v Parameters: None

v Returns: None

Example usage:

Using Jacl:

$AdminApp help

Using Jython:

print AdminApp.help()

Example output:

WASX7095I: The AdminApp object allows

application objects to be manipulated

including installing, uninstalling,

editing,and listing. Most of the commands

supported by AdminApp operate in two modes:

the default mode is one in which AdminApp

communicates with the WebSphere Application

Server to accomplish its tasks. A local

mode is also possible, in which no server

communication takes place. The local mode

of operation is invoked by including the

"-conntype NONE" flag in the option string

supplied to the command.

The following commands are supported by

AdminApp; more detailed information about

each of these commands is available by

using the "help" command of AdminApp

and supplying the name of the command

as an argument.

edit Edit the properties of an

 application

editInteractive Edit the properties of an

 application interactively

export Export application to a file

exportDDL Extract DDL from application

 to a directory

help Show help information

install Installs an application,

 given a file name and an

 option string.

installInteractive

 Installs an application

 in interactive mode, given

 a file name and an option

 string.

list List all installed

 applications

listModules List the modules in a

 specified application

options Shows the options available,

 either for a given file,

 or in general.

taskInfo Shows detailed information

 pertaining to a given

 installation task for a

 given file

uninstall Uninstalls an application,

 given an application name

 and an option string

418 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

help Displays help

for an

AdminApp

command or

installation

option.

v Parameters: operation name

v Returns: none

Example usage:

Using Jacl:

$AdminApp help uninstall

Using Jython:

print AdminApp.help(’uninstall’)

Example output:

WASX7102I: Method: uninstall

Arguments: application name, options

Description: Uninstalls application named

by "application name" using the options

supplied by String 2.

Method: uninstall

Arguments: application name

Description: Uninstalls the application

specified by

"application name" using default options.

install Installs an

application in

non-interactive

mode, given a

fully qualified

file name and a

string of

installation

options. The

options

parameter is

optional.

v Parameters using Jacl:

earfile- string; options- string

v Parameters using Jython:

earfile- string; options- string

or earfile- string; options-

Jython list

v Returns: None

Example usage:

Using Jacl:

$AdminApp install c:/apps/myapp.ear

Using Jython:

AdminApp.install(’c:/apps/myapp.ear’)

Many options are available for this command.

You can obtain a list of valid options for an

Enterprise Archive (EAR) file with the following

command:

Using Jacl:

$AdminApp options myApp.ear

Using Jython:

AdminApp.options(’myApp.ear’)

You can also obtain help for each object with

the following command:

Using Jacl:

$AdminApp help MapModulesToServers

Using Jython:

AdminApp.help(’MapModulesToServers’)

installInteractive Installs an

application in

interactive

mode, given a

fully qualified

file name and a

string of

installation

options. The

options

parameter is

optional.

v Parameters using Jacl:

earfile- string; options- string

v Parameters using Jython:

earfile- string; options- string

or earfile- string; options-

Jython list

v Returns: None

Example usage:

Using Jacl:

$AdminApp installInteractive c:/websphere/

appserver/installableApps/jmsample.ear

Using Jython:

AdminApp.installInteractive(’c:/websphere/

appserver/installableApps/jmsample.ear’)

Chapter 4. Using the administrative clients 419

list Lists the

applications that

are installed in

the

configuration.

v Parameters: None

v Returns: application names

Example usage:

Using Jacl:

$AdminApp list

Using Jython:

print AdminApp.list()

Example output:

adminconsole

DefaultApplication

ivtApp

listModules Lists the

modules in an

application.

The options

parameter is

optional. The

valid option is

-server. This

option lists the

application

servers on

which the

modules are

installed.

v Parameters: appname,

options

v Returns: modules in the

application

Example usage:

Using Jacl:

$AdminApp listModules ivtApp

Using Jython:

print AdminApp.listModules(’ivtApp’)

Example output:

ivtApp#ivtEJB.jar+META-INF/ejb-jar.xml

ivtApp#ivt_app.war+WEB-INF/web.xml

This example is formed by the concatenation of

appname, #, module URI, +, and DD URI. You

can pass this string to the edit and

editInteractive AdminApp commands.

420 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

options Displays a list

of options for

installing an

Enterprise

Archive (EAR)

file.

v Parameters: earfile

v Returns: Information about

the valid installation options

for an Enterprise Archive

(EAR) file.

Example usage:

Using Jacl:

$AdminApp options

c:/websphere/appserver/installableApps/

ivtApp.ear

Using Jython:

AdminApp.options

 (’c:/websphere/appserver/installableApps/

ivtApp.ear’)

Example usage:

WASX7112I: The following options are valid

for "c:/websphere/appserver/installableapps/

ivtApp.ear"

MapRolesToUsers

BindJndiForEJBNonMessageBinding

MapEJBRefToEJB

MapWebModToVH

MapModulesToServers

EnsureMethodProtectionFor10EJB

GetServerName

preCompileJSPs

nopreCompileJSPs

distributeApp

nodistributeApp

useMetaDataFromBinary

nouseMetaDataFromBinary

deployejb

nodeployejb

createMBeansForResources

nocreateMBeansForResources

reloadEnabled

noreloadEnabled

deployws

nodeployws

usedefaultbindings

defaultbinding.force

allowPermInFilterPolicy

noallowPermInFilterPolicy

verbose

update

update.ignore.old

update.ignore.new

installed.ear.destination

appname

reloadInterval

validateinstall

deployejb.rmic

deployejb.dbtype

deployejb.dbschema

deployejb.classpath

deployws.classpath

deployws.jardirs

defaultbinding.datasource.jndi

defaultbinding.datasource.username

defaultbinding.datasource.password

defaultbinding.cf.jndi

defaultbinding.cf.resauth

defaultbinding.ejbjndi.prefix

defaultbinding.virtual.host

defaultbinding.strategy.file

server

node

cell

cluster

contextroot

custom

Chapter 4. Using the administrative clients 421

options Displays a list

of options for

editing an

existing

application.

v Parameters: Application

name

v Returns: Information about

the valid edit options for an

application.

Example usage:

Using Jacl:

$AdminApp options ivtApp

Using Jython:

AdminApp.options(’ivtApp’)

Example output:

WASX7112I: The following options are valid

for "ivtApp"

MapRolesToUsers

BindJndiForEJBNonMessageBinding

MapEJBRefToEJB

MapWebModToVH

MapModulesToServers

distributeApp

nodistributeApp

useMetaDataFromBinary

nouseMetaDataFromBinary

createMBeansForResources

nocreateMBeansForResources

reloadEnabled

noreloadEnabled

verbose

installed.ear.destination

reloadInterval

options Displays a list

of options for

editing a

module in an

existing

application.

v Parameters: application

module name. This

parameter requires the same

module name format as the

output that is returned by the

listModules command.

v Returns: Information about

the valid edit options for a

module.

Example usage:

Using Jacl:

$AdminApp options ivtApp#ivtEJB.jar+

META-INF/ejb-jar.xml

Using Jython:

AdminApp.options(’ivtApp#ivtEJB.jar+

META-INF/ejb-jar.xml’)

Example output:

WASX7112I: The following options are valid

for "ivtApp#ivtEJB.jar+META-INF/ejb-jar.xml"

MapRolesToUsers

BindJndiForEJBNonMessageBinding

MapModulesToServers

verbose

422 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

options Displays a list

of options for

installing or

updating an

application or

application

module file.

v Parameters:

file, operation - The following

list includes the valid values:

– installapp - Installing the

file that is specified

– updateapp - Updating an

existing application with

the file that is specified

– addmodule - Adding the

module file that is

specified to an existing

application

– updatemodule - Updating

an existing module in an

application with the

module file that is

specified

v Returns: Information about

the valid options that are

available for the operation

that is requested with the

input file.

Example using the updateapp operation:

Using Jacl:

$AdminApp options

 c:/websphere/appserver/installableApps/

ivtApp.ear updateapp

Using Jython:

AdminApp.options

 (’c:/websphere/appserver/installableApps/

ivtApp.ear’, ’updateapp’)

Example using the addmodule operation:

Using Jacl:

$AdminApp options myModule.jar addmodule

Using Jython:

AdminApp.options

 (’DefaultWebApplication.war’, ’addmodule’)

Example output using the updateapp operation:

WASX7112I: The following options are valid

for "c:/websphere/appserver/installableApps/

ivtApp.ear"

MapRolesToUsers

BindJndiForEJBNonMessageBinding

MapEJBRefToEJB

MapWebModToVH

MapModulesToServers

EnsureMethodProtectionFor10EJB

GetServerName

preCompileJSPs

nopreCompileJSPs

distributeApp

nodistributeApp

useMetaDataFromBinary

nouseMetaDataFromBinary

deployejb

nodeployejb

createMBeansForResources

nocreateMBeansForResources

reloadEnabled

noreloadEnabled

deployws

nodeployws

usedefaultbindings

defaultbinding.force

allowPermInFilterPolicy

noallowPermInFilterPolicy

verbose

update

update.ignore.old

update.ignore.new

installed.ear.destination

reloadInterval

deployejb.rmic

deployejb.dbtype

deployejb.dbschema

deployejb.classpath

deployws.classpath

deployws.jardirs

Chapter 4. Using the administrative clients 423

options

continued

defaultbinding.datasource.jndi

defaultbinding.datasource.username

defaultbinding.datasource.password

defaultbinding.cf.jndi

defaultbinding.cf.resauth

defaultbinding.ejbjndi.prefix

defaultbinding.virtual.host

defaultbinding.strategy.file

appname

contextroot

custom

contenturi

contents

operation

Example output using the addmodule operation:

WASX7112I: The following options are valid

for "DefaultWebApplication.war"

MapRolesToUsers

MapEJBRefToEJB

MapWebModToVH

MapModulesToServers

GetServerName

preCompileJSPs

nopreCompileJSPs

deployejb

nodeployejb

deployws

nodeployws

usedefaultbindings

defaultbinding.force

verbose

defaultbinding.datasource.jndi

defaultbinding.datasource.username

defaultbinding.datasource.password

defaultbinding.cf.jndi

defaultbinding.cf.resauth

defaultbinding.ejbjndi.prefix

defaultbinding.virtual.host

defaultbinding.strategy.file

server

node

cell

cluster

contextroot

custom

contenturi

contents

operation

publishWSDL Publishes Web

Services

Description

Language

(WSDL) files for

the application

that is specified

in the appname

parameter to

the file that is

specified in the

filename

parameter.

v Parameters: appname,

filename

v Returns: None

Example usage:

Using Jacl:

$AdminApp publishWSDL JAXRPCHandlerServer

 c:/temp/a.zip

Using Jython:

AdminApp.publishWSDL

 (’JAXRPCHandlerServer’, ’c:/temp/a.zip’)

424 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

publishWSDL Publishes Web

Services

Description

Language

(WSDL) files for

the application

that is specified

in the appname

parameter to

the file that is

specified in the

filename

parameter using

the SOAP

address

prefixes that are

specified in the

soapAddressPrefixes

parameter.

v Parameters: appname,

filename,

soapAddressPrefixes

v Returns: None

Example usage:

Using Jacl:

$AdminApp publishWSDL JAXRPCHandlersServer

 c:/temp/a.zip

{{JAXRPCHandlersServerApp.war

 {{http http://localhost:9080}}}}

Using Jython:

AdminApp.publishWSDL(’JAXRPCHandlersServer’,

 ’c:/temp/a.zip’,

’[[JAXRPCHandlersServerApp.war

 [[http http://localhost:9080]]]]’)

searchJNDI

References

Lists

applications that

refer to the

Java Naming

and Directory

Interface (JNDI)

name on a

specific node.

v Parameters: Node

configuration ID, options

v Returns: string

Example usage:

The following example assumes that an

installed application named MyApp has a JNDI

name of eis/J2CCF1.

Using Jacl:

$AdminApp searchJNDIReferences $node

 {-JNDIName eis/J2CCF1 -verbose}

Using Jython:

print AdminApp.searchJNDIReferences(node,

 ’[-JNDIName eis/J2CCF1 -verbose]’)

Example output:

WASX7410W: This operation may take a while

depending on the number of applications

installed in your system.

MyApp

MapResRefToEJB :ejb-jar-ic.jar : [eis/J2CCF1]

Chapter 4. Using the administrative clients 425

taskInfo Provides

information

about a

particular task

option for an

application file.

v Parameters: earfile, task

name

v Returns: None

Example usage:

Using Jacl:

$AdminApp taskInfo

 c:/websphere/appserver/installableApps/

jmsample.ear MapWebModToVH

Using Jython:

print AdminApp.taskInfo

 (’c:/websphere/appserver/installableApps/

jmsample.ear’, ’MapWebModToVH’)

Example output:

MapWebModToVH: Selecting virtual hosts for

Web modules Specify the virtual host where

you want to install the Web modules that are

contained in your application. Web modules

 can be installed on the same virtual host

or dispersed among several hosts. Each

element of the MapWebModToVH task consists

of the following three fields: "webModule,"

 "uri," "virtualHost." Of these fields,

the following fields might be assigned

new values: "virtualHost"and the following

are required: "virtualHost"

The current contents of the task after

running default bindings are:

webModule: JavaMail Sample WebApp

uri: mtcomps.war,WEB-INF/web.xml

virtualHost: default_host

uninstall Uninstalls an

existing

application.

v Parameters: appname- string

v Returns: None

Example usage:

Using Jacl:

$AdminApp uninstall myApp

Using Jython:

AdminApp.uninstall(’myApp’)

Example output:

ADMA5017I: Uninstallation of myapp started.

ADMA5104I: Server index entry for

myCellManager was updated successfully.

ADMA5102I: Deletion of config data for myapp

from config repository completed successfully.

ADMA5011I: Cleanup of temp dir for app myapp

done.

ADMA5106I: Application myapp uninstalled

successfully.

426 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

updateAccessIDs Updates the

access ID

information for

users and

groups that are

assigned to

various roles

that are defined

in the

application. The

access IDs are

read from the

user registry

and saved in

the application

bindings. This

operation

improves

run-time

performance of

the application.

Call this

command after

installing an

application or

after editing

security

role-specific

information for

an installed

application. This

method cannot

be invoked

when the

-conntype

option is set to

NONE. You must

be connected to

a server to

invoke this

command.

The bALL

Boolean

parameter

retrieves and

saves all

access IDs for

users and

groups in the

application

bindings.

Specify false if

you want to

retrieve access

IDs for users or

groups that do

not have an

access ID in the

application

bindings.

v Parameters: appname, bALL

v Returns: None

Example usage:

Using Jacl:

$AdminApp updateAccessIDs myapp true

Using Jython:

AdminApp.updateAccessIDs(’myapp’, ’true’)

Chapter 4. Using the administrative clients 427

view View the task

that is specified

by the

taskname

option

parameter for

the application

or by the

module that is

specified by the

name

parameter. Use

-tasknames as

the option to

get a list of

valid task

names for the

application.

Otherwise,

specify one or

more task

names as the

option.

v Parameters: name, taskname

option

v Returns: string

Example usage:

Using Jacl:

$AdminApp view adminconsole {-tasknames}

Using Jython:

AdminApp.view(’adminconsole’, [’-tasknames’])

Example output:

MapModulesToServers

MapWebModToVH

MapRolesToUsers

Using Jacl:

$AdminApp view adminconsole

 {-MapModulesToServers}

Using Jython:

AdminApp.view(’adminconsole’,

 [’-MapModulesToServers’])

Example output:

MapModulesToServers: Selecting Application

 Servers

Specify the application server where you

want to install the modules that are

contained in your application. Modules can

be installed on the same server or dispersed

among several servers:

Module: adminconsole

URI: adminconsole.war,WEB-INF/web.xml

Server: WebSphere:cell=juniartiNetwork,

node=juniartiManager,server=dmgr

Example usage:

Using Jacl:

$AdminApp view adminconsole#adminconsole.war+

WEB-INF/web.xml {-MapRolesToUsers}

Using Jython:

AdminApp.view

 (’adminconsole#adminconsole.war+WEB-INF/

web.xml’, [’-MapRolesToUsers’])

Example output:

MapRolesToUsers: Mapping Users to Roles

Each role that is defined in the application

or the module must be mapped to a user or a

group from the user registry of the domain:

Role: administrator

Everyone?: No

All Authenticated?: No

Mapped Users:

Mapped Groups:

428 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

view continued Role: operator

Everyone?: No

All Authenticated?: No

Mapped Users:

Mapped Groups:

Role: configurator

Everyone?: No

All Authenticated?: No

Mapped Users:

Mapped Groups:

Role: monitor

Everyone?: No

All Authenticated?: No

Mapped Users:

Mapped Groups:

Chapter 4. Using the administrative clients 429

update Updates an

application in

non-interactive

mode. Provide

the application

name, content

type, and

update options.

v Parameters using Jacl:

appname, content type,

options – string format

v Parameters using Jython:

appname, content type,

option- string or list format

v Returns: String

This command supports the

addition, removal, and update

of application subcomponents

or the entire application.

Use the content type

parameter to indicate if you

want to update part of the

application or the entire

application. The following list

includes the valid content

type values for the update

command:

– app - Indicates that you

want to update the entire

application. This option is

the same as indicating the

update option with the

install command. With the

app value as the content

type, you must specify the

operation option with

update as the value.

Provide the new

enterprise archive file

(EAR) file using the

contents option. You can

also specify binding

information and

application options. By

default, binding

information for installed

modules is merged with

the binding information for

updated modules. To

change this default

behavior, specify the

update.ignore.old or the

update.ignore.new

options.

Example usage:

Using Jacl:

$AdminApp update myApp file {-operation

add -contents

c:/apps/myApp/web.xml

 -contenturi META-INF/web.xml}

Using Jython with string options:

AdminApp.update(’myApp‘, ’file‘,

’[-operation add -contents

c:/apps/myApp/web.xml

-contenturi META-INF/web.xml]‘)

Using Jython with list options:

AdminApp.update(’myApp‘, ’file‘,

[’-operation‘, ’add‘,

’-contents‘, ’c:/apps/myApp/web.xml‘,

’-contenturi‘,

’META-INF/web.xml‘])

Example output:

Update of singleFile has started.

ADMA5009I: Application archive extracted at

C:\DOCUME~1\lavena\LOCALS~1\Temp\

 app_fb5a1960f0\ext

Added files from partial ear: []

performFileOperation:

source=C:\DOCUME~1\lavena\LOCALS~1\Temp\

app_fb5a1960f0\ext, dest=C:\DOCUME~1\lavena\

LOCALS~1\Temp\

app_fb5a1960f0\mrg, uri= META-INF/web.xml,

op= add

Copying file from C:\DOCUME~1\lavena\

LOCALS~1\Temp\app_fb5a1960f0\ext/

META-INF/web.xml to

C:\DOCUME~1\lavena\LOCALS~1\Temp

\app_fb5a1960f0\mrg\META-INF\web.xml

Collapse list is: []

FileMergeTask completed successfully

ADMA5005I: Application singleFile

configured in WebSphere repository

delFiles: []

delM: null

addM: null

430 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

update

continued

v file - Indicates that you

want to update a single file.

You can add, remove, or

update individual files at any

scope within the deployed

application. With the file

value as the content type,

you must perform operations

on the file using the

operation option. Depending

on the type of operation,

additional options are

required. For file additions

and updates, you must

provide file content and the

file URI relative to the root of

the EAR file using the

contents and contenturi

options. For file deletion, you

must provide the file URI

relative to the root of the

EAR file using the contenturi

option which is the only

required input. Any other

options that you provide are

ignored.

Pattern for remove loose and mod:

Loose add pattern: META-INF/[^/]*|

WEB-INF/[^/]*|.*wsdl

root file to be copied: META-INF/web.xml to

C:\asv\b0403.04\WebSphere\AppServer\

wstemp\Scriptfb5a191b4e\workspace\cells\

BAMBIE\applications\

singleFile.ear\deployments\singleFile/

META-INF/web.xml

ADMA5005I: Application singleFile

configured in WebSphere repository

xmlDoc: [#document: null]

root element: [app-delta: null]

****** delta file name: C:\asv\b0403.04\

WebSphere\AppServer\wstemp\Scriptfb5a191

b4e\workspace\cells\BAMBIE\applications\

singleFile.ear/deltas/delta-1079548405564

ADMA5005I: Application singleFile

configured in WebSphere repository

ADMA6011I: Deleting directory tree

C:\DOCUME~1\lavena\LOCALS~1\Temp\app_fb5a1960f0

ADMA5011I: Cleanup of temp dir for app

singleFile done.

Update of singleFile has ended.

Chapter 4. Using the administrative clients 431

update

continued

v modulefile - Indicates that

you want to update a

module. You can add,

remove, or update an

individual application module.

If you specify the modulefile

value as the content type,

you must indicate the

operation that you want to

perform on the module using

the operation option.

Depending on the type of

operation, further options are

required. For installing new

modules or updating existing

modules in an application,

you must indicate the file

content and the file URI

relative to the root of the

EAR file using the contents

and contenturi options. You

can also specify binding

information and application

options that pertain to the

new or updated modules. For

module updates, the binding

information for the installed

module is merged with the

binding information for the

input module by default. To

change the default behavior,

specify the update.ignore.old

or the update.ignore.new

options. To delete a module,

indicate the file URI relative

to the root of the EAR file.

432 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

update

continued

v partialapp - Indicates that

you want to update a partial

application. Using a subset of

application components

provided in a zip file format

you can update, add, and

delete files and modules. The

zip file is not a valid Java 2

platform, Enterprise Edition

(J2EE) archive. Instead, it

contains application artifacts

in the same hierarchical

structure as they display in

an EAR file. For more

information on how to

construct the partial

application zip file, see the

Java API section. If you

indicate the partialapp value

as the content type, use the

contents option to specify the

location of the zip file. When

a partial application is

provided as an update input,

binding information and

application options cannot be

specified and are ignored, if

provided.

For a list of the valid options for

the update command, see

“Options for the AdminApp

object install, installInteractive,

edit, editInteractive, update, and

updateInteractive commands”

on page 437.

Chapter 4. Using the administrative clients 433

updateInteractive Updates an

application in

interactive

mode. Provide

the application

name, content

type, and

update options.

v Parameters using Jacl:

appname, content type,

options - string format

v Parameters using Jython:

appname, content type,

option - string or list format

v Returns: String

Use the updateInteractive

command to add, remove,

and update application

subcomponents or an entire

application. When you update

an application module or an

entire application using

interactive mode, the steps

that you use to configure

binding information are

similar to those that apply to

the installInteractive

command. If you update a

file or a partial application,

the steps that you use to

configure the binding

information are not available.

In this case, the steps are

the same as the ones you

use with the update

command.

Use the content type

parameter to indicate if you

want to update part of the

application or the entire

application. The following list

contains the valid content

type values for the

updateInteractive command:

– app - Indicates that you

want to update the entire

application. This option is

the same as indicating the

update option with install

command. With the app

value as the content type,

you must specify the

operation option with

update as the value.

Provide the new

enterprise archive file

(EAR) file using the

contents option. You can

also specify binding

information and

application options. By

default, binding

information for installed

modules is merged with

the binding information for

updated modules. To

change this default

behavior, specify the

update.ignore.old or the

update.ignore.new

options.

Example usage:

Using Jacl:

$AdminApp updateInteractive myApp modulefile

{-operation

add -contents c:/apps/myApp/Increment.jar

-contenturi

Increment.jar -nodeployejb

 -BindJndiForEJBNonMessageBinding

{{"Increment Enterprise JavaBeans"

 Increment Increment.

jar,META-INF/ejb-jar.xml Inc}}}

Using Jython string:

AdminApp.updateInteractive(’myApp‘,

’modulefile‘, ’[-operation add -contents

c:/apps/myApp/Increment.jar -contenturi

Increment.jar -nodeployejb

-BindJndiForEJBNonMessageBinding

[["Increment Enterprise JavaBeans"

Increment Increment.jar,META-INF/

ejb-jar.xml Inc]]]‘)

Using Jython list:

bindJndiForEJBValue = [["Increment Enterprise

JavaBeans", "Increment", "Increment.jar,

META-INF/ejb-jar.xml", "Inc"]]

AdminApp.updateInteractive(’myApp‘,

’modulefile‘, [’-operation‘, ’add‘,

’-contents‘, ’c:/apps/myApp/Increment.jar‘,

 ’-contenturi‘, ’Increment.jar‘,

’-nodeployejb‘,

’-BindJndiForEJBNonMessageBinding‘,

bindJndiForEJBValue])

Example output:

Getting tasks for: myApp

WASX7266I: A was.policy file exists for this

application; would you like to display it? [No]

Task[4]: Binding enterprise beans to JNDI

names Each non message driven enterprise

bean in your application or module must be

bound to a JNDI name.

EJB Module: Increment Enterprise Java Bean

EJB: Increment

URI: Increment.jar,META-INF/ejb-jar.xml

JNDI Name: [Inc]:

Task[10]: Specifying the default data source

for EJB 2.x modules

Specify the default data source for

the EJB 2.x Module containing 2.x CMP beans.

434 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

updateInteractive

continued

v file - Indicates that you

want to update a single file.

You can add, remove, or

update individual files at any

scope within the deployed

application. With the file

value as the content type,

you must perform operations

on the file using the

operation option. Depending

on the type of operation,

additional options are

required. For file additions

and updates, you must

provide file content and the

file URI relative to the root of

the EAR file using the

contents and contenturi

options. For file deletion, you

must provide the file URI

relative to the root of the

EAR file using the

contenturi option which is

the only required input. Any

other options that you

provide are ignored.

v modulefile - Indicates that

you want to update a

module. You can add,

remove, or update an

individual application module.

If you specify the modulefile

value as the content type,

you must indicate the

operation that you want to

perform on the module using

the operation option.

Depending on the type of

operation, additional options

are required. For installing

new modules or updating

existing modules in an

application, you must indicate

the file content and the file

URI relative to the root of the

EAR file using the contents

and the contenturi options.

You can also specify binding

information and application

options that pertain to the

new or updated modules. For

module updates, the binding

information for the installed

module is merged with the

binding information for the

input module by default. To

change the default behavior,

specify the update.ignore.old

or the update.ignore.new

options. To delete a module,

indicate the file URI relative

to the root of the EAR file.

WASX7349I: Possible value for resource

authorization is container or per connection

factory

EJB Module: Increment Enterprise Java Bean

URI: Increment.jar,META-INF/ejb-jar.xml

JNDI Name: [DefaultDatasource]:

Resource Authorization: [Per connection

factory]:

Task[12]: Specifying data sources for

individual 2.x CMP beans

Specify an optional data source for each

2.x CMP bean. Mapping a specific data source

to a CMP bean

overrides the default data source for

the module containing the enterprise bean.

WASX7349I: Possible value for resource

authorization is container or per connection

factory

EJB Module: Increment Enterprise Java Bean

EJB: Increment

URI: Increment.jar,META-INF/ejb-jar.xml

JNDI Name: [DefaultDatasource]:

Resource Authorization: [Per connection

factory]: container

Setting "Resource Authorization" to

"cmpBinding.container"

Task[14]: Selecting Application Servers

Specify the application server where you want

to install modules that are contained in your

application.

Modules can be installed on the same server or

dispersed among several servers.

Module: Increment Enterprise Java Bean

URI: Increment.jar,META-INF/ejb-jar.xml

Server: [WebSphere:cell=myCell,node=myNode,

server=server1]:

Task[16]: Selecting method protections for

unprotected methods for 2.x EJB

Specify whether you want to assign security

role to the unprotected method, add the

method to the exclude list, or mark the

method as unchecked.

EJB Module: Increment Enterprise Java Bean

URI: Increment.jar,META-INF/ejb-jar.xml

Protection Type: [methodProtection.uncheck]:

Task[18]: Selecting backend ID

Specify the selection for the BackendID

EJB Module: Increment Enterprise Java Bean

URI: Increment.jar,META-INF/ejb-jar.xml

BackendId list: CLOUDSCAPE_V50_1

CurrentBackendId: [CLOUDSCAPE_V50_1]:

Task[21]: Specifying application options

Specify the various options available

to prepare and install your application.

Pre-compile JSP: [No]:

Deploy EJBs: [No]:

Deploy WebServices: [No]:

Chapter 4. Using the administrative clients 435

updateInteractive

continued

v partialapp - Indicates that

you want to update a partial

application. Using subset of

application components

provided in a zip file format

you can update, add, and

delete files and modules. The

zip file is not a valid Java 2

platform, Enterprise Edition

(J2EE) archive. Instead, this

file contains application

artifacts in the same

hierarchical structure as they

are displayed in an EAR file.

For more information on how

to construct the partial

application zip file, see the

Java API section. If you

indicate the partialapp value

as the content type, use the

contents option to specify the

location of the zip file. When

a partial application is

provided as an update input,

the binding information and

application options cannot be

specified and are ignored, if

provided.

For a list of the valid options for

the updateInteractive

command, see “Options for the

AdminApp object install,

installInteractive, edit,

editInteractive, update, and

updateInteractive commands”

on page 437.

Task[22]: Specifying EJB deploy options

Specify the options to deploy EJB.

....EJB Deploy option is not enabled.

Task[24]: Copy WSDL files

Copy WSDL files

....This task does not require any user

input

Task[25]: Specify options to deploy Web

services Specify options to deploy Web

services

....Web Services deploy option is not

enabled.

Update of myApp has started.

ADMA5009I: Application archive extracted at

C:\DOCUME~1\lavena\LOCALS~1\Temp\

app_fb5a48e969\ext/Increment.jar

FileMergeTask completed successfully

ADMA5005I: Application myApp configured

in WebSphere repository

delFiles: []

delM: null

addM: [Increment.jar,]

Pattern for remove loose and mod:

Loose add pattern: META-INF/[^/]*|WEB-INF/[^/]*|.*wsdl

root file to be copied:

META-INF/application.xml to

C:\asv\b0403.04\WebSphere\AppServer\

wstemp\Scriptfb5a487089\

workspace\cells\BAMBIE\applications\testSM.ear\deployments\

testSM/META-INF/application.xml

del files for full module add/update: []

ADMA6017I: Saved document

C:\asv\b0403.04\WebSphere\AppServer\

wstemp\Scriptfb5a487089\workspace\cells\

BAMBIE\applications\

testSM.ear\deployments\testSM/Increment.jar\

META-INF/ejb-jar.xml

ADMA6016I: Add to workspace

Increment.jar/META-INF/ejb-jar.xml

ADMA6017I: Saved document

C:\asv\b0403.04\WebSphere\AppServer\

wstemp\Scriptfb5a487089\workspace\cells\

BAMBIE\applications\

testSM.ear\deployments\testSM/Increment.jar\

META-INF/MANIFEST.MF

ADMA6016I: Add to workspace Increment.jar/

META-INF/MANIFEST.MF

ADMA6017I: Saved document C:\asv\b0403.04\

WebSphere\AppServer\

wstemp\Scriptfb5a487089\workspace\cells\

BAMBIE\applications\

testSM.ear\deployments\testSM/Increment.jar\

META-INF/ibm-ejb-jar-bnd.xmi

ADMA6016I: Add to workspace Increment.jar/

META-INF/ibm-ejb-jar-bnd.xmi

ADMA6017I: Saved document C:\asv\b0403.04\

WebSphere\AppServer\

wstemp\Scriptfb5a487089\workspace\cells\

BAMBIE\applications\

testSM.ear\deployments\testSM/Increment.jar\

META-INF/Table.ddl

ADMA6016I: Add to workspace Increment.jar/

META-INF/Table.ddl

436 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

updateInteractive

continued

ADMA6017I: Saved document C:\asv\b0403.04\

WebSphere\

AppServer\wstemp\Scriptfb5a487089\workspace\

cells\BAMBIE\

applications\testSM.ear\deployments\testSM/

Increment.jar\META-INF/ibm-ejb-jar-ext.xmi

ADMA6016I: Add to workspace Increment.jar/

META-INF/ibm-ejb-jar-ext.xmi

add files for full module add/update:

[Increment.jar/

META-INF/ejb-jar.xml, Increment.jar/

META-INF/MANIFEST.MF,

Increment.jar/META-INF/ibm-ejb-jar-bnd.xmi,

Increment.jar/META-INF/

Table.ddl, Increment.jar/META-INF/ibm-ejb-jar-ext.xmi]

ADMA5005I: Application myApp configured in

WebSphere repository

xmlDoc: [#document: null]

root element: [app-delta: null]

****** delta file name: C:\asv\b0403.04\

WebSphere\

AppServer\wstemp\Scriptfb5a487089\workspace

\cells\BAMBIE\applications\testSM.ear/

deltas/delta-1079551520393

ADMA5005I: Application myApp configured

 in WebSphere repository

ADMA6011I: Deleting directory tree

C:\DOCUME~1\lavena\LOCALS~1\Temp\

app_fb5a48e969

ADMA5011I: Cleanup of temp dir for app

myApp done.

Update of myApp has ended.

Options for the AdminApp object install, installInteractive, edit, editInteractive, update, and

updateInteractive commands: This article lists the available options for the install, installInteractive,

edit, editInteractive, update, and updateInteractive commands of the AdminApp object. The options

listed in this article apply to all of these commands except where noted.

See Commands for the AdminApp object for more detailed information on how to use the commands. See

Usage table for the options of the AdminApp object install, installInteractive, update, updateInteractive,

edit, and editInteractive commands for a list of applicable commands for each option.

The following options are available for the install, installInteractive, edit, editInteractive, update, and

updateInteractive commands:

 Option name: Description: Examples:

Chapter 4. Using the administrative clients 437

ActSpecJNDI Binds J2C

activation specs

to destination

JNDI names. You

can bind J2C

activation specs

in your

application or

module to a

destination JNDI

name. This

option is optional.

Each element of

the ActSpecJNDI

option consists of

the following

fields:

RARModule, uri,

j2cid,

j2c.jndiName.

j2c.jndiName

field, can be

assigned a value.

The current

contents of the

option after

running default

bindings include:

v RARModule:

<rar module

name>

v uri: <rar

name>,META-
INF/ra.xml

v j2cid:

<messageListenerType>

v j2c.jndiName:

null

v Object

identifier:

javax.jms.MessageListener

You can only use

this option if the

activation spec

has the

Destination

property defined

in the ra.xml file

and the

introspected type

of the

Destination

property is the

following:

javax.jms.Destination

Using Jacl:

$AdminApp install $embeddedEar {-ActSpecJNDI {{"FVT Resource Adapter"

jca15cmd.rar,META-INF/ra.xml javax.jms.MessageListener jndi5}

{"FVT Resource Adapter" jca15cmd.rar,META-INF/ra.xml

javax.jms.MessageListener2 jndi6}}}

Using Jython:

AdminApp.install(embeddedEar, [’-ActSpecJNDI’, [["FVT Resource Adapter",

’jca15cmd.rar,META-INF/ra.xml’, ’javax.jms.MessageListener’, ’jndi5’],

["FVT Resource Adapter", ’jca15cmd.rar,META-INF/ra.xml’,

’javax.jms.MessageListener2’, ’jndi6’]]])

438 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

ActSpecJNDI

continued

Use the taskInfo

command of the

AdminApp object

to obtain

information about

the data that is

needed for your

application. You

need to provide

data for rows or

entries that are

either missing

information, or

require an

update.

allowPermInFilter

Policy

Specifies to

continue with the

application

deployment

process even

when the

application

contains policy

permissions that

are in the filter

policy. This

option does not

require a value.

appname Specifies the

name of the

application. The

default is the

display name of

the application.

BackendIdSelection Specifies the

backend ID for

the enterprise

bean Java

archive (JAR)

modules that

have

container-
managed

persistence

(CMP) beans. An

enterprise bean

JAR module can

support multiple

backend

configurations as

specified using

an application

assembly tool.

Use this option to

change the

backend ID

during

installation.

Using Jacl:

$AdminApp install c:/myapp.ear {-BackendIdSelection

{{Annuity20EJB Annuity20EJB.jar,META-INF/ejb-jar.xml DB2UDBNT_V72_1}}}

Using Jython:

AdminApp.install(’c:/myapp.ear’, ’[-BackendIdSelection

[[Annuity20EJB Annuity20EJB.jar,META-INF/ejb-jar.xml DB2UDBNT_V72_1]]]’)

Chapter 4. Using the administrative clients 439

BindJndiForEJB

MessageBinding

Binds enterprise

beans to listener

port names or

Java Naming and

Directory

Interface (JNDI)

names. Use this

option to provide

missing data or

update a task.

Ensure each

message-driven

enterprise bean

in your

application or

module is bound

to a listener port

name.

Each element of

the

BindJndiForEJBMessageBinding

option consists of

the following

fields:

EJBModule, EJB,

uri, listenerPort,

JNDI, jndi.dest,

and

actspec.auth.

Some of these

fields, can be

assigned values:

listenerPort,

JNDI, jndi.dest,

and

actspec.auth.

The current

contents of the

option after

running default

bindings include:

v EJBModule:

Ejb1

v EJB:

MessageBean

v uri:

ejb-jar-
ic.jar,META-
INF/ejb-jar.xml

v listenerPort:

MessageBeanPort

v JNDI: null

v jndi.dest: null

v actspec.auth:

null

Using Jacl:

$AdminApp install $ear {-BindJndiForEJBMessageBinding

{{Ejb1 MessageBean

ejb-jar-ic.jar,META-INF/ejb-jar.xml myListenerPort

jndi1 jndiDest1 actSpecAuth1}}}

Using Jython:

AdminApp.install(ear, [’-BindJndiForEJBMessageBinding’,

[[’Ejb1’, ’MessageBean’,

’ejb-jar-ic.jar,META-INF/ejb-jar.xml’, ’myListenerPort’,

’jndi1’, ’jndiDest1’, ’actSpecAuth1’]]])

440 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

BindJndiForEJB

MessageBinding

continued

Use the taskInfo

command of the

AdminApp object

to obtain

information about

the data that is

needed for your

application. You

need to provide

data for rows or

entries that are

either missing

information, or

require an

update.

BindJndiForEJB

NonMessageBinding

Binds enterprise

beans to Java

Naming and

Directory

Interface (JNDI)

names.

Ensure each non

message-driven

enterprise bean

in your

application or

module is bound

to a JNDI name.

Use this option to

provide missing

data or update a

task.

Use the taskInfo

command of the

AdminApp object

to obtain

information about

the data that is

needed for your

application. You

need to provide

data for rows or

entries that are

either missing

information, or

require an

update.

Using Jacl:

$AdminApp install c:/myapp.ear {-BindJndiForEJBNonMessageBinding

{{"Increment Bean Jar" Inc Increment.jar,META-INF/ejb-jar.xml IncBean}}}

Using Jython:

AdminApp.install(’c:/myapp.ear’, ’[-BindJndiForEJBNonMessageBinding

[["Increment Bean Jar" Inc Increment.jar,META-INF/ejb-jar.xml IncBean]]]’)

Chapter 4. Using the administrative clients 441

cell Specifies the cell

name to install or

update an entire

application or to

update an

application in

order to add a

new module. If

you want to

update an entire

application, this

option only

applies if the

application

contains a new

module that does

not exist in the

installed

application.

cluster Specifies the

cluster name to

install or update

an entire

application or to

update an

application in

order to add a

new module.

This option only

applies in a

Network

Deployment

environment. If

you want to

update an entire

application, this

option only

applies if the

application

contains a new

module that does

not exist in the

installed

application.

442 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

contents Specifies the file

that contains the

content that you

want to update.

For example,

depending on the

content type, the

file could be an

EAR file, a

module, a partial

zip, or a single

file. The path to

the file must be

local to the

scripting client.

The contents

option is required

unless you have

specified the

delete option.

contenturi Specifies the URI

of the file that

you are adding,

updating, or

removing from an

application. This

option only

applies to the

update

command. The

contenturi

option is required

if the content

type is file or

modulefile. This

option is ignored

for other content

types.

contextroot Specifies the

context root that

you use when

installing a

stand-alone Web

archive (WAR)

file.

Chapter 4. Using the administrative clients 443

CorrectOracleIsolation

Level

Specifies the

isolation level for

the Oracle type

provider. Use this

option to provide

missing data or

to update a task.

The last field of

each entry

specifies the

isolation level.

Valid isolation

level values are 2

or 4.

Use the taskInfo

command of the

AdminApp object

to obtain

information about

the data that is

needed for your

application. You

only need to

provide data for

rows or entries

that are either

missing

information, or

require an

update.

Using Jacl:

$AdminApp install c:/myapp.ear {-CorrectOracleIsolationLevel

{{AsyncSender jms/MyQueueConnectionFactory jms/Resource1 2}}

Using Jython:

AdminApp.install(’c:/myapp.ear’, ’[-CorrectOracleIsolationLevel

[[AsyncSender jms/MyQueueConnectionFactory jms/Resource1 2]]]’)

444 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

CorrectUseSystem

Identity

Replaces RunAs

System to RunAs

Roles.

The enterprise

beans that you

install contain a

RunAs system

identity. You can

optionally change

this identity to a

RunAs role. Use

this option to

provide missing

data or update a

task.

Use the taskInfo

command of the

AdminApp object

to obtain

information about

the data that is

needed for your

application. You

need to provide

data for rows or

entries that are

either missing

information, or

require an

update.

Using Jacl:

$AdminApp install c:/myapp.ear {-CorrectUseSystemIdentity

 {{Inc "Increment Bean Jar"

Increment.jar,META-INF/ejb-jar.xml getValue() RunAsUser2

 user2 password2} {Inc "Increment

Bean Jar" Increment.jar,META-INF/ejb-jar.xml Increment()

 RunAsUser2 user2 password2}}}

Using Jython:

AdminApp.install(’c:/myapp.ear’, ’[-CorrectUseSystemIdentity

 [[Inc "Increment Bean Jar"

Increment.jar,META-INF/ejb-jar.xml getValue() RunAsUser2

 user2 password2] [Inc "Increment

Bean Jar" Increment.jar,META-INF/ejb-jar.xml Increment()

RunAsUser2 user2 password2]]]’)

createMBeansFor

Resources

Specifies that

MBeans are

created for all

resources such

as, servlets,

JavaServer

Pages (JSP)

files, and

enterprise beans,

that are defined

in an application

when the

application starts

on a deployment

target. This

option does not

require a value.

The default

setting is the

nocreateMBeansForResources

option.

Chapter 4. Using the administrative clients 445

custom Specifies a

name-value pair

using the format

name=value. Use

the custom option

to pass options

to application

deployment

extensions. See

the application

deployment

extension

documentation

for available

custom options.

DataSourceFor10

CMPBeans

Specifies optional

data sources for

individual 1.x

container-
managed

persistence

(CMP) beans.

Use this option to

provide missing

data or to update

a task.

Mapping a

specific data

source to a CMP

bean overrides

the default data

source for the

module that

contains the

enterprise bean.

Each element of

the

DataSourceFor10CMPBeans

option consists of

the following

fields:

EJBModule, EJB,

uri, JNDI,

userName,

password,

login.config.name,

and auth.props.

Of these fields,

the following can

be assigned

values: JNDI,

userName,

password,

login.config.name,

and auth.props.

Using Jacl:

$AdminApp install c:/app1.ear {-DataSourceFor10CMPBeans

 {{"Increment CMP 1.1 EJB"

IncCMP11 IncCMP11.jar,META-INF/ejb-jar.xml myJNDI user1 password1

loginName1 authProps1}}}

Using Jython:

AdminApp.install(’c:/app1.ear’, [’-DataSourceFor10CMPBeans’,

 [["Increment CMP 1.1 EJB", ’IncCMP11’,

 ’IncCMP11.jar,META-INF/ejb-jar.xml’, ’myJNDI’, ’user1’,

 ’password1’, ’loginName1’, ’authProps1’]]])

446 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

DataSourceFor10

CMPBeans continued

The current

contents of the

option after

running default

bindings include:

v EJBModule:

Increment

CMP 1.1 EJB

v EJB:

IncCMP11

v uri:

IncCMP11.jar,META-INF/ejb-jar.xml

v JNDI:

DefaultDatasource

v userName:

null

v password: null

v

 login.config.name:

DefaultPrincipalMapping

v auth.props:

v

 LoginConfiguration:

Name

v Properties

If the

login.config.name

is set to

DefaultPrincipalMapping,

a property is

created with the

name

com.ibm.mapping.authDataAlias

. The value of

the property is

set by the

auth.props. If the

login.config name

is not set to

DefaultPrincipalMapping,

the auth.props

can specify

multiple

properties. The

string format is

websphere:name=

<name1>,value=<value1>,description=<desc1>.

Specify multiple

properties using

the plus sign (+)

.

Chapter 4. Using the administrative clients 447

DataSourceFor10

CMPBeans continued

Use the taskInfo

command of the

AdminApp object

to obtain

information about

the data that is

needed for your

application. You

need to provide

data for rows or

entries that are

missing

information, or

require an

update.

DataSourceFor20

CMPBeans

Specifies optional

data sources for

individual 2.x

container-
managed

persistence

(CMP) beans.

Use this option to

provide missing

data or to update

a task.

Mapping a

specific data

source to a CMP

bean overrides

the default data

source for the

module that

contains the

enterprise bean.

Each element of

the

DataSourceFor20CMPBeans

option consists of

the following

fields:

EJBModule, EJB,

uri, JNDI,

resAuth,

login.config.name,

and auth.props.

Of these fields,

the following can

be assigned

values: JNDI,

resAuth,

login.config.name,

and auth.props.

Using Jacl:

$AdminApp install c:/app1.ear {-DataSourceFor20CMPBeans

{{"Increment Enterprise Java Bean" Increment Increment.jar,

META-INF/ejb-jar.xml jndi1 container}}}

Using Jython:

AdminApp.install(’c:/app1.ear’, [’-DataSourceFor20CMPBeans’,

[["Increment Enterprise Java Bean", ’Increment’, ’Increment.jar,

META-INF/ejb-jar.xml’, ’jndi1’, ’container’]]])

448 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

DataSourceFor20

CMPBeans continued

The current

contents of the

option after

running default

bindings includes

the following:

v EJBModule:

Increment

enterprise

bean

v EJB:

Increment

v uri:

Increment.jar,META-INF/ejb-jar.xml

v JNDI:

DefaultDatasource

v resAuth:

cmpBinding.perConnectionFactory

v

 login.config.name:

DefaultPrincipalMapping

v auth.props:

v

 LoginConfiguration:

Name

v Properties

Chapter 4. Using the administrative clients 449

DataSourceFor20

CMPBeans continued

The last field in

each entry of this

task specifies the

value for

resource

authorization.

Valid values for

resource

authorization are

per connection

factory or

container.

If the

login.config.name

is set to

DefaultPrincipalMapping,

a property is

created with the

name

com.ibm.mapping.authDataAlias

. The value of

the property is

set by the

auth.props. If the

login.config name

is not set to

DefaultPrincipalMapping,

the auth.props

can specify

multiple

properties. The

string format is

websphere:name=

<name1>,value=<value1>,description=<desc1>.

Specify multiple

properties using

the plus sign (+)

.

Use the taskInfo

command of the

AdminApp object

to obtain

information about

the data needed

for your

application. You

only need to

provide data for

rows or entries

that are missing

information, or

require an

update.

450 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

DataSourceFor10

EJBModules

Specifies the

default data

source for the

enterprise bean

module that

contains 1.x

container-
managed

persistence

(CMP) beans.

Use this option to

provide missing

data or update a

task.

Each element of

the

DataSourceFor10EJBModules

option consists of

the following

fields:

EJBModule, uri,

JNDI, userName,

password,

login.config.name,

and auth.props.

Of these fields,

the following can

be assigned

values: JNDI,

userName,

password,

login.config.name,

and auth.props.

Using Jacl:

$AdminApp install c:/app1.ear {-DataSourceFor10EJBModules

{{"Increment CMP 1.1 EJB" IncCMP11.jar,META-INF/ejb-jar.xml

yourJNDI user2 password2 loginName authProps}}}

Using Jython:

AdminApp.install(’c:/app1.ear’, [’-DataSourceFor10EJBModules’,

[["Increment CMP 1.1 EJB", ’IncCMP11.jar,META-INF/ejb-jar.xml’,

’yourJNDI’, ’user2’, ’password2’, ’loginName’, ’authProps’]]])

Chapter 4. Using the administrative clients 451

DataSourceFor10

EJBModules continued

The current

contents of the

option after

running default

bindings include:

v EJBModule:

Increment

CMP 1.1

enterprise

bean

v uri:

IncCMP11.jar,META-INF/ejb-jar.xml

v JNDI:

DefaultDatasource

v userName:

null

v password: null

v

 login.config.name:

DefaultPrincipalMapping

v auth.props:

v

 LoginConfiguration:

Name

v Properties

If the

login.config.name

is set to

DefaultPrincipalMapping,

a property is

created with the

name

com.ibm.mapping.authDataAlias

. The value of

the property is

set by the

auth.props. If the

login.config name

is not set to

DefaultPrincipalMapping,

the auth.props

can specify

multiple

properties. The

string format is

websphere:name=

<name1>,value=<value1>,description=<desc1>.

Specify multiple

properties using

the plus sign (+)

.

452 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

DataSourceFor10

EJBModules continued

Use the taskInfo

command of the

AdminApp object

to obtain

information about

the data that is

needed for your

application. You

need to provide

data for rows or

entries that are

either missing

information, or

require an

update.

Chapter 4. Using the administrative clients 453

DataSourceFor20

EJBModules

Specifies the

default data

source for the

enterprise bean

2.x module that

contains 2.x

container

managed

persistence

(CMP) beans.

Use this option to

provide missing

data or update a

task.

Each element of

the

DataSourceFor20EJBModules

option consists of

the following

fields:

EJBModule, uri,

JNDI, resAuth,

login.config.name,

and auth.props.

Of these fields,

the following can

be assigned

values: JNDI,

resAuth,

login.config.name,

and auth.props.

The current

contents of the

option after

running default

bindings include:

v EJBModule:

Increment

enterprise

bean

v uri:

Increment.jar,META-INF/ejb-jar.xml

v JNDI:

DefaultDatasource

v resAuth:

cmpBinding.perConnectionFactory

v

 login.config.name:

DefaultPrincipalMapping

v auth.props:

v

 LoginConfiguration:

Name

v Properties

Using Jacl:

$AdminApp install c:/app1.ear {-DataSourceFor20EJBModules

{{"Increment Enterprise Java Bean" Increment.jar,META-INF/ejb-jar.xml

 jndi2 container}}}

Using Jython:

AdminApp.install(’c:/app1.ear’, [’-DataSourceFor20EJBModules’,

[["Increment Enterprise Java Bean", ’Increment.jar,META-INF/ejb-jar.xml’,

 ’jndi2’, ’container’]]])

454 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

DataSourceFor20

EJBModules

The last field in

each entry of this

task specifies the

value for

resource

authorization.

Valid values for

resource

authorization are

per connection

factory or

container.

If the

login.config.name

is set to

DefaultPrincipalMapping,

a property is

created with the

name

com.ibm.mapping.authDataAlias

. The value of

the property is

set by the

auth.props. If the

login.config name

is not set to

DefaultPrincipalMapping,

the auth.props

can specify

multiple

properties. The

string format is

websphere:name=

<name1>,value=<value1>,description=<desc1>.

Specify multiple

properties using

the plus sign (+)

.

Use the taskInfo

command of the

AdminApp object

to obtain

information about

the data that is

needed for your

application. You

need to provide

data for rows or

entries that are

either missing

information, or

require update.

Chapter 4. Using the administrative clients 455

defaultbinding.cf.jndi Specifies the

Java Naming and

Directory

Interface (JNDI)

name for the

default

connection

factory.

defaultbinding.cf.

resauth

Specifies the

RESAUTH for

the connection

factory.

defaultbinding.

datasource.jndi

Specifies the

Java Naming and

Directory

Interface (JNDI)

name for the

default data

source.

defaultbinding.

datasource.password

Specifies the

password for the

default data

source.

defaultbinding.

datasource.username

Specifies the

user name for

the default data

source.

defaultbinding.

ejbjndi.prefix

Specifies the

prefix for the

enterprise bean

Java Naming and

Directory

Interface (JNDI)

name.

defaultbinding.force Specifies that the

default bindings

override the

current bindings.

defaultbinding.strategy.file Specifies a

custom default

bindings strategy

file.

defaultbinding.virtual.

host

Specifies the

default name for

a virtual host.

depl.extension.reg Deprecated. No

replication option

is available.

456 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

deployejb Specifies to run

the EJBDeploy

tool during

installation. This

option does not

require a value.

If you pre-deploy

the application

Enterprise

Archive (EAR)

file using the

EJBDeploy tool

then the default

value is

nodeployejb. If

not, the default

value is

deployejb.

deployejb.classpath Specifies an

extra class path

for the

EJBDeploy tool.

deployejb.dbschema Specifies the

database

schema for the

EJBDeploy tool.

deployejb.dbtype Specifies the

database type for

the EJBDeploy

tool.

Possible values

include:

CLOUDSCAPE_V5

DB2UDB_V72

DB2UDBOS390_V6

DB2UDBISERIES

INFORMIX_V73

INFORMIX_V93

MSSQLSERVER_V7

MSSQLSERVER_2000

ORACLE_V8

ORACLE_V9I

SYBASE_V1200

For a list of

current supported

database vendor

types, run

ejbdeploy -?.

deployejb.rmic Specifies extra

RMIC options to

use for the

EJBDeploy tool.

Chapter 4. Using the administrative clients 457

deployws Specifies to

deploy Web

services during

installation. This

option does not

require a value.

The default value

is: nodeployws.

deployws.classpath Specifies the

extra class path

to use when you

deploy Web

services.

deployws.jardirs Specifies the

extra extension

directories to use

when you deploy

Web services.

distributeApp Specifies that the

application

management

component

distributes

application

binaries. This

option does not

require a value.

This setting is

the default.

458 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

EmbeddedRar Binds Java 2

Connector

objects to JNDI

names. You must

bind each Java 2

Connector object

in your

application or

module, such as,

J2C connection

factories, J2C

activation specs

and J2C

administrative

objects, to a

JNDI name.

Each element of

the

EmbeddedRar

option contains

the following

fields: RARModule,

uri, j2cid,

j2c.name,

j2c.jndiName.

You can assign

the following

values to the

fields: j2c.name,

j2c.jndiName.

The current

contents of the

option after

running default

bindings include:

RARModule: <rar module name>

uri: <rar name>,META-INF/ra.xml

j2cid: <identifier of the J2C object>

j2c.name: j2cid

j2c.jndiName: eis/j2cid

Where j2cid is:

J2C connection factory :connectionFactoryInterface

J2C admin object :adminObjectInterface

 J2C activation spec : message listener type

If the ID is not

unique in the

ra.xml file,

-<number> will

be added. For

example,

javax.sql.DataSource-2.

Using Jacl:

$AdminApp install $embeddedEar {-EmbeddedRar {{"FVT Resource Adapter"

jca15cmd.rar,META-INF/ra.xml javax.sql.DataSource javax.sql.DataSource1

eis/javax.sql.javax.sql.DataSSource1} {"FVT Resource Adapter"

jca15cmd.rar,META-INF/ra.xml javax.sql.DataSource2 javax.sql.DataSource2

eis/javax.sql.DataSource2} {"FVT Resource Adapter"

jca15cmd.rar,META-INF/ra.xml javax.jms.MessageListener

javax.jms.MessageListener1 eis/javax.jms.MessageListener1}

{"FVT Resource Adapter"

 jca15cmd.rar,META-INF/ra.xml javax.jms.MessageLListener2

javax.jms.MessageListener2 eis/javax.jms.MessageListener2}

{"FVT Resource Adapter" jca15cmd.rar,META-INF/ra.xml

fvt.adapter.message.FVTMessageProvider fvt.adapter.message.

 FVTMessageProvider1

eis/fvt.adapter.message.FVTMessageProvider1} {"FVT Resource Adapter"

jca15cmd.rar,META-INF/ra.xml fvt.adapter.message.FVTMessageProvider2

 fvt.

adapter.message.FVTMessageProvider2 eis/fvt.adapter.

message.FVTMessageProvider2}}}

Using Jython:

AdminApp.install(embeddedEar, [’-EmbeddedRar’, [["FVT Resource Adapter",

’jca15cmd.rar,META-INF/ra.xml’, ’javax.sql.DataSource’,

 ’javax.sql.DataSource1’,

’eis/javax.sql.javax.sql.DataSSource1’], ["FVT Resource Adapter",

’jca15cmd.rar,META-INF/ra.xml javax.sql.DataSource2’, ’javax.sql.DataSource2’,

’eis/javax.sql.DataSource2’], ["FVT Resource Adapter",

’jca15cmd.rar,META-INF/ra.xml’, ’javax.jms.MessageListener’,

’javax.jms.MessageListener1’, ’eis/javax.jms.MessageListener1’],

["FVT Resource Adapter", ’jca15cmd.rar,META-INF/ra.xml’,

’javax.jms.MessageLListener2’, ’javax.jms.MessageListener2’,

’eis/javax.jms.MessageListener2’], ["FVT Resource Adapter",

’jca15cmd.rar,META-INF/ra.xml fvt.adapter.message.FVTMessageProvider’,

’fvt.adapter.message.FVTMessageProvider1’, ’eis/fvt.adapter.message.

FVTMessageProvider1’], ["FVT Resource Adapter", ’jca15cmd.rar,META-INF/

ra.xml’, ’fvt.adapter.message.FVTMessageProvider2’, ’fvt.adapter.message.

FVTMessageProvider2’, ’eis/fvt.adapter.message.FVTMessageProvider2’]]])

Chapter 4. Using the administrative clients 459

EmbeddedRar

continued

Use the taskInfo

command of the

AdminApp object

to obtain

information about

the data that is

needed for your

application. You

need to provide

data for rows or

entries that are

either missing

information, or

require an

update.

EnsureMethod

ProtectionFor10EJB

Selects method

protections for

unprotected

methods of 1.x

enterprise beans.

Specify to leave

the method as

unprotected, or

assign protection

which denies all

access. Use this

option to provide

missing data or

to update a task.

Use the taskInfo

command of the

AdminApp object

to obtain

information about

the data that is

needed for your

application. You

need to provide

data for rows or

entries that are

either missing

information, or

require an

update.

Using Jacl:

$AdminApp install c:/myapp.ear {-EnsureMethodProtectionFor10EJB

 {{"Increment EJB Module"

 IncrementEJBBean.jar,META-INF/ejb-jar.xml ""} {"Timeout EJB Module"

 TimeoutEJBBean.jar,META-INF/ejb-jar.xml

 methodProtection.denyAllPermission}}}

Using Jython:

AdminApp.install(’c:/myapp.ear’, ’[-EnsureMethodProtectionFor10EJB

 [["Increment EJB Module"

IncrementEJBBean.jar,META-INF/ejb-jar.xml ""] ["Timeout EJB Module"

 TimeoutEJBBean.jar,META-INF/ejb-jar.xml

 methodProtection.denyAllPermission]]]’)

The last field in each entry of this task specifies the value of the

protection. Valid protection values include:

methodProtection.denyAllPermission. You can also leave the value

blank if you want the method to remain unprotected.

460 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

EnsureMethodProtection

For20EJB

Selects method

protections for

unprotected

methods of 2.x

enterprise beans.

Specify to assign

a security role to

the unprotected

method, add the

method to the

exclude list, or

mark the method

as cleared. You

can assign

multiple roles for

a method by

separating roles

names with

commas. Use

this option to

provide missing

data or to update

a task.

Use the taskInfo

command of the

AdminApp object

to obtain

information about

the data that is

needed for your

application. You

need to provide

data for rows or

entries that are

either missing

information, or

require an

update the

existing data.

Using Jacl:

$AdminApp install c:/myapp.ear {-EnsureMethodProtectionFor20EJB

 {{CustomerEjbJar

customerEjb.jar,META-INF/ejb-jar.xml methodProtection.uncheck}

 {SupplierEjbJar

supplierEjb.jar,META-INF/ejb-jar.xml methodProtection.exclude}}}

Using Jython:

AdminApp.install(’c:/myapp.ear’, ’[-EnsureMethodProtectionFor20EJB

 [[CustmerEjbJar

customerEjb.jar,META-INF/ejb-jar.xml methodProtection.uncheck]

 [SupplierEjbJar

supplierEjb.jar,META-INF/ejb-jar.xml methodProtection.exclude]]]’)

The last field in each entry of this task specifies the value of the

protection. Valid protection values include: methodProtection.uncheck,

methodProtection.exclude, or a list of security roles that are separated

by commas.

installdir Deprecated. This

option is

replaced by the

installed.ear.destination

option.

installed.ear.destination Specifies the

directory to place

application

binaries.

Chapter 4. Using the administrative clients 461

MapModulesToServers Specifies the

application server

where you want

to install modules

that are

contained in your

application. You

can install

modules on the

same server, or

disperse them

among several

servers. Use this

option to provide

missing data or

to update to a

task.

Use the taskInfo

command of the

AdminApp object

to obtain

information about

the data that is

needed for your

application. You

need to provide

data for rows or

entries that are

either missing

information, or

require an

update.

Using Jacl:

$AdminApp install c:/myapp.ear {-MapModulesToServers

 {{"Increment Bean Jar"

Increment.jar,META-INF/ejb-jar.xml WebSphere:cell=mycell,

 node=mynode,server=server1}

{"Default Application" default_app.war,WEB-INF/web.xml WebSphere:

cell=mycell,node=mynode,server=server1}

{"Examples Application" examples.war,WEB-INF/web.xml WebSphere:

cell=mycell,node=mynode,server=server1}}}

Using Jython:

AdminApp.install(’c:/myapp.ear’, ’[-MapModulesToServers

 [["Increment Bean Jar"

Increment.jar,META-INF/ejb-jar.xml WebSphere:cell=mycell,

node=mynode,server=server1]

["Default Application" default_app.war,WEB-INF/web.xml

WebSphere:cell=mycell,node=mynode,server=server1]

["Examples Application" examples.war,WEB-INF/web.xml WebSphere:

cell=mycell,node=mynode,server=server1]]]’)

462 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

MapEJBRefToEJB Maps enterprise

Java references

to enterprise

beans. You must

map each

enterprise bean

reference defined

in your

application to an

enterprise bean.

Use this option to

provide missing

data or update to

a task.

Use the taskInfo

command of the

AdminApp object

to obtain

information about

the data needed

for your

application. You

only need to

provide data for

rows or entries

that are missing

information, or

those where you

want to update

the existing data.

Using Jacl:

$AdminApp install c:/myapp.ear {-MapEJBRefToEJB

 {{"Examples Application" ""

examples.war,WEB-INF/web.xml BeenThereBean com.ibm.websphere.

beenthere.BeenThere IncBean}}}

Using Jython:

AdminApp.install(’c:/myapp.ear’, ’[-MapEJBRefToEJB

 [["Examples Application" ""

examples.war,WEB-INF/web.xml BeenThereBean com.ibm.websphere.

beenthere.BeenThere IncBean]]]’)

Chapter 4. Using the administrative clients 463

MapMessage

DestinationRefToEJB

Maps message

destination

references to

Java Naming and

Directory

Interface (JNDI)

names of

administrative

objects from the

installed resource

adapters. You

must map each

message

destination

reference that is

defined in your

application to an

administrative

object. Use this

option to provide

missing data or

to update a task.

The current

contents of the

option after

running default

bindings include:

v EJB Module:

ejb-jar-ic.jar

v EJB:

MessageBean

v URI:

ejb-jar-
ic.jar,META-
INF/ejb-jar.xml

v JNDI Name:

[eis/J2CACT1]:

v Destination

JNDI Name:

[jms/TopicName]:

v The default

JNDI name

will be picked

up from the

corresponding

message

destination

reference.

Using Jacl:

$AdminApp install $earfile {-MapMessageDestinationRefToEJB

{{ejb-jar-ic.jar Publisher ejb-jar-ic.jar,META-INF/ejb-jar.xml

 MyConnection jndi2}

{ejb-jar-ic.jar Publisher ejb-jar-ic.jar,META-INF/ejb-jar.xml

 PhysicalTopic jndi3}

{ejb-jar-ic.jar Publisher ejb-jar-ic.jar,META-INF/ejb-jar.xml

 jms/ABC jndi4}}}

Using Jython:

AdminApp.install(ear1, [’-MapMessageDestinationRefToEJB’,

[[’ejb-jar-ic.jar’, ’Publisher’, ’ejb-jar-ic.jar,META-INF/

ejb-jar.xml’, ’MyConnection’, ’jndi2’],

[’ejb-jar-ic.jar’, ’Publisher’, ’ejb-jar-ic.jar,META-INF/

ejb-jar.xml’, ’PhysicalTopic’, ’jndi3’],

[’ejb-jar-ic.jar’, ’Publisher’, ’ejb-jar-ic.jar,META-INF/

ejb-jar.xml’, ’jms/ABC’, ’jndi4’]]])

464 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

MapMessage

DestinationRefToEJB

continued

Use the taskInfo

command of the

AdminApp object

to obtain

information about

the data that is

needed for your

application. You

need to provide

data for rows or

entries that are

either missing

information, or

require an

update.

MapResEnvRefToRes Maps resource

environment

references to

resources. You

must map each

resource

environment

reference that is

defined in your

application to a

resource. Use

this option to

provide missing

data or to update

a task.

Use the taskInfo

command of the

AdminApp object

to obtain

information about

the data that is

needed for your

application. You

need to provide

data for rows or

entries that are

either missing

information, or

require an

update.

Using Jacl:

$AdminApp install c:/myapp.ear {-MapResEnvRefToRes

 {{AsyncSender AsyncSender

asyncSenderEjb.jar,META-INF/ejb-jar.xml jms/ASYNC_SENDER_QUEUE

javax.jms.Queue jms/Resource2}}}

Using Jython:

AdminApp.install(’c:/myapp.ear’, ’[-MapResEnvRefToRes

 [[AsyncSender AsyncSender

asyncSenderEjb.jar,META-INF/ejb-jar.xml jms/ASYNC_SENDER_QUEUE

javax.jms.Queue jms/Resource2]]]’)

Chapter 4. Using the administrative clients 465

MapResRefToEJB Maps resource

references to

resources. You

must map each

resource

reference that is

defined in your

application to a

resource. Use

this option to

provide missing

data or to update

a task.

Each element of

the

MapResRefToEJB

option consists of

the following

fields: module,

EJB, uri,

referenceBinding,

resRef.type,

JNDI,

login.config.name,

and auth.props.

Of these fields,

the following can

be assigned

values: JNDI,

login.config.name,

auth.props. The

JNDI field is

required.

The current

contents of the

option after

running default

bindings include:

v Module:

deplmtest.jar

v EJB:

MailEJBObject

v uri:

deplmtest.jar,META-INF/ejb-jar.xml

v

 referenceBinding:

mail/MailSession9

v resRef.type:

javax.mail.Session

v JNDI:

mail/DefaultMailSession

v

 login.config.name:

DefaultPrincipalMapping

v auth.props:

Using Jacl:

$AdminApp install c:/app1.ear {-MapResRefToEJB {{deplmtest.jar

MailEJBObject deplmtest.jar,META-INF/ejb-jar.xml mail/MailSession9

javax.mail.Session jndi1 login1 authProps1} {"JavaMail Sample WebApp" ""

mtcomps.war,WEB-INF/web.xml mail/MailSession9 javax.mail.

Session jndi2 login2 authProps2}}}

Using Jython:

AdminApp.install(’c:/app1.ear’, [’-MapResRefToEJB’, [[’deplmtest.jar’,

’MailEJBObject’, ’deplmtest.jar,META-INF/ejb-jar.xml mail/MailSession9’,

’javax.mail.Session’, ’jndi1’, ’login1’, ’authProps1’],

["JavaMail Sample WebApp", "",

’mtcomps.war,WEB-INF/web.xml’, ’mail/MailSession9’, ’javax.mail.

Session’, ’jndi2’, ’login2’, ’authProps2’]]])

466 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

MapResRefToEJB

continued

If the

login.config.name

is set to

DefaultPrincipalMapping,

a property is

created with the

name

com.ibm.mapping.authDataAlias

. The value of

the property is

set by the

auth.props. If the

login.config name

is not set to

DefaultPrincipalMapping,

the auth.props

can specify

multiple

properties. The

string format is

websphere:name=

<name1>,value=<value1>,description=<desc1>.

Specify multiple

properties using

the plus sign (+)

.

Use the taskInfo

command of the

AdminApp object

to obtain

information about

the data that is

needed for your

application. You

need to provide

data for rows or

entries that are

either missing

information, or

require an

update.

Chapter 4. Using the administrative clients 467

MapRolesToUsers Maps users to

roles. You must

map each role

that is defined in

the application or

module to a user

or group from the

domain user

registry. You can

specify multiple

users or groups

for a single role

by separating

them with a pipe

(|). Use this

option to provide

missing data or

to update a task.

Use the taskInfo

command of the

AdminApp object

to obtain

information about

the data that is

needed for your

application. You

need to provide

data for rows or

entries that are

either missing

information, or

require an

update.

Using Jacl:

$AdminApp install c:/myapp.ear {-MapRolesToUsers {{"All Role" No Yes "" ""}

{"Every Role" Yes No "" ""} {DenyAllRole No No user1 group1}}}

Using Jython:

AdminApp.install(’c:/myapp.ear’, ’[-MapRolesToUsers [["All Role" No Yes "" ""]

["Every Role" Yes No "" ""] [DenyAllRole No No user1 group1]]]’)

where {{″All Role″ No Yes ″″ ″″} corresponds to the following:

″All Role″

Represents the role name

No Indicates to allow access to everyone (yes/no)

Yes Indicates to allow access to all authenticated users (yes/no)

″″ Indicates the mapped users

″″ Indicates the mapped groups

468 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

MapRunAsRolesToUsers Maps RunAs

Roles to users.

The enterprise

beans you that

install contain

predefined

RunAs roles.

Enterprise beans

that need to run

as a particular

role for

recognition while

interacting with

another

enterprise bean

use RunAs roles.

Use this option to

provide missing

data or to update

a task.

Use the taskInfo

command of the

AdminApp object

to obtain

information about

the data that is

needed for your

application. You

need to provide

data for rows or

entries that are

either missing

information, or

require an

update.

Using Jacl:

$AdminApp install c:/myapp.ear {-MapRunAsRolesToUsers

{{UserRole user1 password1}

{AdminRole administrator administrator}}}

Using Jython:

AdminApp.install(’c:/myapp.ear’, ’[-MapRunAsRolesToUsers

[[UserRole user1 password1]

[AdminRole administrator administrator]]]’)

Chapter 4. Using the administrative clients 469

MapWebModToVH Selects virtual

hosts for Web

modules. Specify

the virtual host

where you want

to install the Web

modules that are

contained in your

application. You

can install Web

modules on the

same virtual

host, or disperse

them among

several hosts.

Use this option to

provide missing

data or to update

a task.

Use the taskInfo

command of the

AdminApp object

to obtain

information about

the data that is

needed for your

application. You

need to provide

data for rows or

entries that are

either missing

information, or

require an

update.

Using Jacl:

$AdminApp install c:/myapp.ear {-MapWebModToVH {{"Default Application"

default_app.war,WEB-INF/web.xml default_host} {"Examples Application"

examples.war,WEB-INF/web.xml default_host}}}

Using Jython:

AdminApp.install(’c:/myapp.ear’, ’[-MapWebModToVH [["Default Application"

default_app.war,WEB-INF/web.xml default_host] ["Examples Application"

examples.war,WEB-INF/web.xml default_host]]]’)

noallowPermInFilterPolicy Specifies not to

continue with the

application

deployment

process when

the application

contains policy

permissions that

are in the filter

policy. This

option is the

default setting

and it does not

require a value.

470 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

node Specifies the

node name to

install or update

an entire

application or to

update an

application in

order to add a

new module. If

you want to

update an entire

application, this

option only

applies if the

application

contains a new

module that does

not exist in the

installed

application.

nocreateMBeansFor

Resources

Specifies that

MBeans are not

created for all

resources such

as, servlets,

JSPs, and

enterprise beans,

that are defined

in an application

when the

application starts

on a deployment

target. This

option is the

default setting

and it does not

require a value.

nodeployejb Specifies not to

run the

EJBDeploy tool

during

installation. This

option is the

default setting

and it does not

require a value.

nodeployws Specifies not to

deploy Web

services during

installation. This

option is the

default setting

and it does not

require a value.

Chapter 4. Using the administrative clients 471

nodistributeApp Specifies that the

application

management

component does

not distribute

application

binaries. This

option does not

require a value.

The default

setting is the

distributeApp

option.

noreloadEnabled Disables class

reloading. This

option does not

require a value.

The default

setting is the

reloadEnabled

option.

nopreCompileJSPs Specifies not to

precompile

JavaServer

Pages files. This

option is the

default setting

and it does not

require a value.

noprocessEmbeddedConfig Use this option to

ignore the

embedded

configuration

data that is

include in the

application. This

option does not

required a value.

If the application

Enterprise

Archive (EAR)

file does not

contain

embedded

configuration

data, the

noprocessEmbeddedConfig

option is the

default setting.

Otherwise, the

default setting is

the

processEmbeddedConfig

option.

472 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

nouseMetaDataFrom

Binary

Specifies that the

metadata that is

used at run time,

for example,

deployment

descriptors,

bindings,

extensions, and

so on, come from

the configuration

repository. This

option is the

default setting

and it does not

require a value.

Use this option to

indicate that the

metadata that is

used at run time

comes from the

enterprise

archive file (EAR)

file.

nousedefaultbindings Specifies not to

use default

bindings for

installation. This

option is the

default setting

and it does not

require a value.

Chapter 4. Using the administrative clients 473

operation Specifies the

operation that

you want to

perform. This

option only

applies to the

update

command. The

valid values

include:

v add - Adds

new content.

v addupdate -

Adds or

updates

content based

on the

existence of

content in the

application.

v delete -

Deletes

content.

v update -

Updates

existing

content.

The operation

option is required

if the content

type is file or

modulefile. If the

value of the

content type is

app, the value of

the operation

option must be

update.

The following examples show how to use the options for the update

command to update a single file in a deployed application:

Using Jacl:

$AdminApp update app1 file {-operation update -contents

c:/apps/app1/my.xml -contenturi app1.jar/my.xml}

Using Jython string:

AdminApp.update(’app1’, ’file’, ’[-operation update -contents

c:/apps/app1/my.xml -contenturi app1.jar/my.xml]’)

Using Jython list:

AdminApp.update(’app1’, ’file’, [’-operation’, ’update’,

’-contents’, ’c:/apps/app1/my.xml’, ’-contenturi’, app1.jar/my.xml’])

where AdminApp is the scripting object, update is the command, app1 is

the name of the application you want to update, file is the content type,

operation is an option of the update command, update is the value of

the operationoption, contents is an option of the update command,

/apps/app1/my.xml is the value of the contents option, contenturi is an

option of the update command, app1.jar/my.xml is the value of the

contenturi option.

474 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

processEmbedded

Config

Use this option to

process the

embedded

configuration

data that is

included in the

application. This

option does not

required a value.

If the application

Enterprise

Archive (EAR)

file contains

embedded

configuration

data, this option

is the default

setting. If not, the

default setting is

the

nonprocessEmbeddedConfig

option.

preCompileJSPs Specifies to

precompile the

JavaServer

Pages files. This

option does not

require a value.

The default is

nopreCompileJSPs.

reloadEnabled Specifies that the

file system of the

application will

be scanned for

updated files so

that changes

reload

dynamically. This

option is the

default setting

and it does not

require a value.

reloadInterval Specifies the

time period in

seconds that the

file system of the

application will

be scanned for

updated files.

Valid range is

greater than

zero. The default

is three seconds.

Chapter 4. Using the administrative clients 475

server Specifies the

server name to

install or update

an entire

application or to

update an

application in

order to add a

new module. If

you want to

update an

application, this

option only

applies if the

application

contains a new

module that does

not exist in the

installed

application.

476 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

update Updates the

installed

application with a

new version of

the enterprise

archive file (EAR)

file. This option

does not require

a value.

The application

that is being

updated, which is

specified by the

appname option,

must already be

installed in the

WebSphere

Application

Server

configuration.

The update

action merges

bindings from the

new version with

the bindings from

the old version,

uninstalls the old

version, and

installs the new

version. The

binding

information from

new version of

the EAR file is

preferred over

the

corresponding

one from the old

version. If any

element of

binding is

missing in the

new version, the

corresponding

element from the

old version is

used.

Chapter 4. Using the administrative clients 477

update.ignore.new Specifies that

during the update

action, bindings

from the new

version of the

application are

ignored. This

option does not

require a value.

This option

applies only if

you specify one

of the following

items:

v The update

option for the

install

command.

v The modulefile

or app as the

content type

for the update

command.

update.ignore.old Specifies that

during the update

action, the

bindings from the

installed version

of the application

are ignored. This

option does not

require a value.

This option

applies only if

you specify one

of the following

items:

v The update

option for the

install

command.

v The modulefile

or app as the

content type

for the update

command.

478 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

useMetaDataFromBinary Specifies that the

metadata that is

used at run time,

for example,

deployment

descriptors,

bindings,

extensions, and

so on, come from

the EAR file. This

option does not

require a value.

The default value

is

nouseMetaDataFromBinary,

which means that

the metadata that

is used at run

time comes from

the configuration

repository.

usedefaultbindings Specifies to use

default bindings

for installation.

This option does

not require a

value.

The default

setting is

nousedefaultbindings.

Chapter 4. Using the administrative clients 479

validateinstall Specifies the

level of

application

installation

validation.

Valid option

values include:

v off - Specifies

no application

deployment

validation. This

value is the

default.

v warn -

Performs

application

deployment

validation and

continues with

the application

deployment

process even

when reported

warnings or

error

messages

exist.

v fail - Performs

application

deployment

validation and

does not to

continue with

the application

deployment

process when

reported

warnings or

error

messages

exist.

verbose Causes

additional

messages to

display during

installation. This

option does not

require a value.

480 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

WebServicesClientBind

DeployedWSDL

The immutable

values for this

option identify

the client Web

service that you

are modifying.

The scoping

fields include:

Module, EJB,

and Web service.

The single

mutable value for

this task is the

deployed WSDL

file name. It

indicates the

Web Services

Description

Language

(WSDL) the

client uses.

The Module field

identifies the

enterprise or

Web application

within the

application. If the

module is an

enterprise bean ,

the EJB field

identifies a

particular

enterprise bean

within the

module. The

Web service field

identifies the

Web service

within the

enterprise bean

or the Web

application

module. This

identifier

corresponds to

the wsdl:service

attribute in the

WSDL file,

prepended with

service/, for

example,

service/WSLoggerService2.

Using Jacl:

$AdminApp install WebServicesSamples.ear

 {-WebServicesClientBindDeployedWSDL

{{AddressBookW2JE.jar AddressBookW2JE service/WSLoggerService2

META-INF/wsdl/DeployedWsdl1.wsdl}}}

Using Jython:

AdminApp.install(’WebServicesSamples.ear’,

 ’[-WebServicesClientBindDeployedWSDL

[[AddressBookW2JE.jar AddressBookW2JE service/WSLoggerService2

META-INF/wsdl/DeployedWsdl1.wsdl]]]’)

Chapter 4. Using the administrative clients 481

WebServicesClientBind

DeployedWSDL

continued

The deployed

WSDL attribute

names a WSDL

file relative to the

client module. An

example of a

deployed WSDL

for a Web

application is the

following:

WEB-
INF/wsdl/WSLoggerService.

WebServicesClientBind

PortInfo

The immutable

values identify

the port of a

client Web

service that you

are modifying.

The scoping

fields include:

Module, EJB,

Web service and

Port. The

mutable values

for this task

include: Sync

Timeout,

BasicAuth ID,

BasicAuth

Password, SSL

Config, and

Overridden

Endpoint URI.

The basic

authentication

and Secure

Sockets Layer

(SSL) fields

affect transport

level security, not

Web services

security.

Using Jacl:

$AdminApp install WebServicesSamples.ear

 {-WebServicesClientBindPortInfo

{{AddressBookW2JE.jar AddressBookW2JE

service/WSLoggerService2 WSLoggerJMS 3000 newHTTP_ID newHTTP_pwd

sslAliasConfig http://yunus:9090/WSLoggerEJB/services/WSLoggerJMS}}}

Using Jython:

AdminApp.install(’WebServicesSamples.ear’,

 ’[-WebServicesClientBindPortInfo

[[AddressBookW2JE.jar AddressBookW2JE

service/WSLoggerService2 WSLoggerJMS 3000 newHTTP_ID newHTTP_pwd

sslAliasConfig http://yunus:9090/WSLoggerEJB/services/WSLoggerJMS]]]’)

482 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

WebServicesClientBind

PreferredPort

Associates a

preferred port

(implementation)

with a port type

(interface) for a

client Web

service. The

immutable values

identify a port

type of the client

Web service that

you are

modifying. The

scoping fields

include: Module,

EJB, Web

service and Port

Type. The

mutable value for

this task is Port.

v Port Type -

QName

(″{namespace}

localname″) of

a port type

that is defined

by a

wsdl:portType

attribute in the

WSDL file that

identifies an

interface.

v Port - QName

of a port

defined by a

wsdl:port

attribute within

a wsdl:service

attribute in a

WSDL file that

identifies an

implementation

that has

preference.

Using Jacl:

$AdminApp install WebServicesSamples.ear

 {-WebServicesClientBindPreferredPort

{{AddressBookW2JE.jar AddressBookW2JE service/WSLoggerService2

WSLoggerJMS WSLoggerJMSPort}}}

Using Jython:

AdminApp.install(’WebServicesSamples.ear’,

 ’[-WebServicesClientBindPreferredPort

[[AddressBookW2JE.jar AddressBookW2JE service/WSLoggerService2

WSLoggerJMS WSLoggerJMSPort]]]’)

Chapter 4. Using the administrative clients 483

WebServicesServerBind

Port

Sets two

attributes of a

Web service port.

The immutable

values identify

the port of a Web

service that you

are modifying.

The scope fields

include: Module,

Web service and

Port. The

mutable values

include: WSDL

Service Name,

and Scope.

The scope

determines the

life cycle of

implementing the

Java bean. The

valid values

include: Request

(new instance for

each request),

Application (one

instance for each

web-app), and

Session (new

instance for each

HTTP session).

The scope

attribute does not

apply to Web

services that a

Java Message

Service (JMS)

transport. The

scope attribute

does not apply to

enterprise beans.

The WSDL

service name

identifies a

service when

more than one

service has the

same port name.

The WSDL

service name is

represented as a

QName string,

for example,

{namespace}localname

.

Using Jacl:

$AdminApp install WebServicesSamples.ear {-WebServicesServerBindPort

{{AddressBookW2JE.jar service/WSLoggerService2 WSLoggerJMS {} Session}}}

Using Jython:

AdminApp.install(’WebServicesSamples.ear’, ’[-WebServicesServerBindPort

[[AddressBookW2JE.jar service/WSLoggerService2 WSLoggerJMS "" Session]]]’)

484 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

WebServicesClient

CustomProperty

Supports the

configuration of

the name value

parameter for the

description of the

client bind file of

a Web service.

The immutable

values identify

the port of the

Web service that

you are

modifying. The

scope fields

include: Module,

Web service, and

Port. The

mutable values

include: name and

value.

The format of the

name and value

values include a

string that

represents

multiple name

and value pairs

by using the +

character as a

separator. For

example, name

string =

″n1+n2+n3″

value string =

″v1+v2+v3″

yields

name/value

pairs: {{″n1″

″v1″}, {″n2″

″v2″}, {″n3″ ″

v3″}}

Using Jacl:

$AdminApp edit WebServicesSamples {-WebServicesServerCustomProperty

{{AddressBookW2JE.jar AddressBookService AddressBook http.proxyHost

+http.proxyPort myhost+80}}}

Using Jython:

AdminApp.edit (’WebServicesSamples’, ’[-WebServicesServerCustomProperty

[[AddressBookW2JE.jar AddressBookService AddressBook

http.proxyHost+http.proxyPort myhost+80]]]’)

Chapter 4. Using the administrative clients 485

WebServicesServer

CustomProperty

Supports the

configuration of

the name value

parameter for the

description of the

server bind file of

a Web service.

The scoping

fields include the

following:

Module, EJB,

and Web service.

The mutable

values for this

task include:

name and value.

The format of the

these values

include a string

that represents

multiple name

and value pairs

by using the plus

(+) character as

a separator. For

example, name

string =

″n1+n2+n3″

value string =

″v1+v2+v3″

yields

name/value

pairs: {{″n1″

″v1″}, {″n2″

″v2″}, {″n3″ ″

v3″}}

Using Jacl:

$AdminApp edit WebServicesSamples {-WebServicesServerCustomProperty

{{AddressBookW2JE.jar AddressBookService AddressBook

com.ibm.websphere.webservices.http.responseContentEncoding deflate}}}

Using Jython:

AdminApp.edit (’WebServicesSamples’, ’[-WebServicesServerCustomProperty

[[AddressBookW2JE.jar AddressBookService AddressBook

com.ibm.websphere.webservices.http.responseContentEncoding deflate]]]’)

Usage table for the options of the AdminApp object install, installInteractive, update, updateInteractive,

edit, and editInteractive commands:

The following table lists all of the options available for the install, installInteractive, update,

updateInteractive, edit, and editInteractive commands of the AdminApp object. The table indicates the

applicable commands for each option.

 Option name install and

install

Interactive

commands

- install an

application

update and

update

Interactive

commands

- Update an

application

update and

update

Interactive

commands -

Add a

module

update

and

update

Interactive

commands

- Update a

module

edit and

edit

Interactive

commands

- Edit an

application

edit and

edit

Interactive

commands

- Edit a

module

ActSpecJNDI Yes Yes Yes Yes Yes Yes

allowPermInFilterPolicy Yes Yes

appname Yes Yes

BackendIdSelection Yes Yes Yes Yes

486 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

BindJndiForEJBMessagingBinding Yes Yes Yes Yes Yes Yes

BindJndiForEJBNonMessageBinding Yes Yes Yes Yes Yes Yes

cell Yes Yes Yes

cluster Yes Yes Yes

contents Yes Yes Yes

contenturi Yes Yes Yes

contextroot Yes Yes Yes

CorrectOracleIsolationLevel Yes Yes Yes Yes Yes Yes

CorrectUseSystemIdentity Yes Yes Yes Yes Yes Yes

createMBeansForResources Yes Yes Yes

custom Yes Yes Yes Yes Yes Yes

DataSourceFor10CMPBeans Yes Yes Yes Yes Yes Yes

DataSourceFor20CMPBeans Yes Yes Yes Yes Yes Yes

DataSourceFor10EJBModules Yes Yes Yes Yes Yes Yes

DataSourceFor20EJBModules Yes Yes Yes Yes Yes Yes

defaultbinding.datasource.jndi Yes Yes Yes Yes

defaultbinding.cf.jndi Yes Yes Yes Yes

defaultbinding.cf.resauth Yes Yes Yes Yes

defaultbinding.datasource.password Yes Yes Yes Yes

defaultbinding.datasource.username Yes Yes Yes Yes

defaultbinding.ejbjndi.prefix Yes Yes Yes Yes

defaultbinding.force Yes Yes Yes Yes

defaultbinding.strategy.file Yes Yes Yes Yes

defaultbinding.virtual.host Yes Yes Yes Yes

depl.extension.reg (deprecated)

deployejb Yes Yes Yes Yes

deployejb.classpath Yes Yes Yes Yes

deployejb.dbschema Yes Yes Yes Yes

deployejb.dbtype Yes Yes Yes Yes

deployejb.rmic Yes Yes Yes Yes

deployws Yes Yes Yes Yes

deployws.classpath Yes Yes Yes Yes

deployws.jardirs Yes Yes Yes Yes

distributeApp Yes Yes Yes

EmbeddedRar Yes Yes Yes Yes Yes Yes

EnsureMethodProtectionFor10EJB Yes Yes Yes Yes

EnsureMethodProtentionFor20EJB Yes Yes Yes Yes

installdir (deprecated)

installed.ear.destination Yes Yes Yes

MapMessageDestinationRefToEJB Yes Yes Yes Yes Yes Yes

MapModulesToServers Yes Yes Yes Yes Yes Yes

MapEJBRefToEJB Yes Yes Yes Yes Yes Yes

Chapter 4. Using the administrative clients 487

MapResEnvRefToRes Yes Yes Yes Yes Yes Yes

MapResRefToEJB Yes Yes Yes Yes Yes Yes

MapRolesToUsers Yes Yes Yes Yes

MapRunAsRolesToUsers Yes Yes Yes Yes Yes Yes

MapWebModToVH Yes Yes Yes Yes Yes Yes

noallowPermInFilterPolicy Yes Yes

nocreateMBeansForResources Yes Yes Yes

node Yes Yes Yes

nodeployejb Yes Yes Yes Yes

nodeployws Yes Yes Yes Yes

nodistributeApp Yes Yes Yes

nopreCompileJSPs Yes Yes Yes Yes

noprocessEmbeddedConfig Yes Yes

noreloadEnabled Yes Yes Yes

nousedefaultbindings Yes Yes Yes Yes

nouseMetaDataFromBinary Yes Yes Yes

operation Yes Yes Yes

preCompileJSPs Yes Yes Yes Yes

processEmbeddedConfig Yes Yes

reloadEnabled Yes Yes Yes

reloadInterval Yes Yes Yes

server Yes Yes Yes

update Yes Yes

update.ignore.old Yes Yes Yes

update.ignore.new Yes Yes Yes

useMetaDataFromBinary Yes Yes Yes

usedefaultbindings Yes Yes Yes Yes

validateinstall Yes Yes

verbose Yes Yes Yes Yes Yes Yes

WebServicesClientBindingDeployedWSDL Yes Yes Yes Yes Yes Yes

WebServicesClientBindPortInfo Yes Yes Yes Yes Yes Yes

WebServicesClientBindPreferredPort Yes Yes Yes Yes Yes Yes

WebServicesClientCustomProperty Yes Yes Yes Yes Yes Yes

WebServicesServerBindPort Yes Yes Yes Yes Yes Yes

WebServicesServerCustomProperty Yes Yes Yes Yes Yes Yes

Example: Obtaining option information for AdminApp object commands: Use the taskInfo

command of the AdminApp object to obtain information about the data that is needed for your application.

You need to provide data for rows or entries that are either missing information, or require an update.

v You can use the options command to see the requirements for an enterprise archive file (EAR) file if

you construct installation command lines. The taskInfo command provides detailed information for each

task option with a default binding applied to the result.

v The options for the AdminApp install command can be complex if you specify various types of binding

information, for example, Java Naming and Directory Interface (JNDI) name, data sources for enterprise

488 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

bean modules, or virtual hosts for Web modules. An easy way to specify command-line installation

options is to use a feature of the installInteractive command that generates the options for you. After

you install the application interactively once and specify all the updates that you need, look for message

WASX7278I in the wsadmin output log. The default output log for wsadmin is wsadmin.traceout. You

can cut and paste the data in this message into a script, and modify it. For example:

WASX7278I: Generated command line: install c:/websphere/appserver/installableapps/jmsample.ear

{-BindJndiForEJBNonMessageBinding {{deplmtest.jar MailEJBObject deplmtest.jar,META-INF/ejb-jar.xml ejb/JMSampEJB1 }}

-MapResRefToEJB {{deplmtest.jar MailEJBObject deplmtest.jar,META-INF/ejb-jar.xml mail/MailSession9

javax.mail.Session mail/DefaultMailSessionX } {"JavaMail Sample WebApp" mtcomps.war,WEB-INF/web.xml

mail/MailSession9 javax.mail.Session mail/DefaultMailSessionY }} -MapWebModToVH {{"JavaMail Sample WebApp"

mtcomps.war,WEB-INF/web.xml newhost }} -nopreCompileJSPs -novalidateApp -installed.ear.destination

c:/mylocation -distributeApp -nouseMetaDataFromBinary}

Commands for the AdminTask object

Use AdminTask object to run an administrative command. Administrative commands are discovered

dynamically when you start the wsadmin tool. The administrative commands that are available for your

use, and what you can do with them, depends on the edition of the WebSphere Application Server that

you have.

You can start the scripting client without a server running by using the -conntype NONE option with the

wsadmin tool. The AdminTask administrative commands are available in both connected and local modes.

If a server is currently running, it is not recommended to run the AdminTask commands in local mode. This

is because any configuration changes made in local mode will not be reflected in the running server

configuration and vice versa. If you save a conflicting configuration, you could corrupt the configuration. In

a deployment manager environment, configuration updates are available only if a scripting client is

connected to a deployment manager. When connected to a node agent or a managed application server,

you will not be able to update the configuration because the configuration for these server processes are

copies of the master configuration which resides in the deployment manager. The copies are created on a

node machine when a configuration synchronization occurs between the deployment manager and the

node agent. Make configuration changes to the server processes by connecting a scripting client to a

deployment manager. For this reason, to change a configuration, do not run a scripting client in local mode

on a node machine. It is not a supported configuration.

The following commands are available for the AdminTask object:

 Command

name:

Group

name:

Description: Target

object:

Parameters and return

values:

Examples:

Chapter 4. Using the administrative clients 489

addNode

Group

Member

Node

Group

Commands

group

The

addNode

Group

Member

command

adds a

member to

a node

group.

Nodes may

be members

of more

than one

node group.

The

command

will do

validity

checking to

ensure the

following:

v

 Distributed

and z/OS

nodes are

not

combined

in the

same node

group.

The target

object is the

node group

where the

member will

be created.

This target

object is

required.

v Parameters:

- nodeName

The name of the

node to be

added to a node

group. This

parameter is

required.

v Returns: Node group

member object ID

Batch mode example usage:

v Using Jacl:

$AdminTask addNodeGroupMember

 WBINodeGroup {

-nodeName WBINode}

v Using Jython:

AdminTask.addNodeGroupMember(

’WBINodeGroup’,

 ’[-nodeName WBINode]’)

Interactive mode example usage:

v Using Jacl:

$AdminTask addNodeGroupMember {

-interactive}

v Using Jython:

AdminTask.addNodeGroupMember (

’[-interactive]’)

490 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

add SIBWS

Inbound

Port

SIB

WebServices

group

The add

SIBWS

Inbound

Port

command

adds the

configuration

for an

inbound port

to an

inbound

service. This

command

will fail if:

v the port

name is

already in

use by

another

inbound

port for

the

inbound

service or

the end

point

listener

that you

specified.

v the

template

port that

you

specified

does not

exist in

the

template

WSDL of

the

inbound

service.

The object

name of the

inbound

service to

which the

port will be

added.

v Parameters:

name

The name of the

port. (required)

endpointListener

The name of the

associated end

point listener.

(required)

node

The node where

the endpoint

listener is

located. You

must specify the

node parameter,

the server

parameter, or the

cluster

parameter.

(conditional)

server

The server

where the

endpoint listener

is located. You

must specify the

node parameter,

the server

parameter, or the

cluster

parameter.

(conditional)

cluster

The cluster

where the

endpoint listener

is located. You

must specify the

node parameter,

the server

parameter, or the

cluster

parameter.

(conditional)

templatePort

The name of the

port in the

template WSDL

to use as a basis

for the binding of

the port.

(optional)

v Returns: The object

name of the inbound

port object that was

created.

Batch mode example usage:

v Using Jacl:

set inPort [

 $AdminTask addSIBWSInboundPort

 $inService {

 -name "MyServiceSoap"

 -endpointListener "SOAPHTTP1"

 -node "MyNode"

 -server "server1"}]

v Using Jython:

inPort =

 AdminTask.addSIBWSInboundPort(

 inService, ’[

 -name MyServiceSoap

 -endpointListener SOAPHTTP1

 -node MyNode

 -server server1]’)

Interactive mode example usage:

v Using Jacl:

$AdminTask addSIBWSInboundPort {

 -interactive}

v Using Jython:

AdminTask.addSIBWSInboundPort (

 ’[-interactive]’)

Chapter 4. Using the administrative clients 491

add SIBWS

Outbound

Port

SIB

WebServices

group

The add

SIBWS

Outbound

Port

command

adds the

configuration

for an

outbound

port to an

outbound

service.

The object

name of the

outbound

service for

which the

port will be

associated.

v Parameters:

name

The name of the

port in the WSDL

of the service

provider.

(required)

node

Node where the

port destination

will be localized.

You must specify

the node

parameter, the

server

parameter, or the

cluster

parameter.

(conditional)

server

The server

where the port

destination will

be localized. You

must specify the

node parameter,

the server

parameter, or the

cluster

parameter.

(conditional)

cluster

The cluster

where the port

destination will

be localized. You

must specify the

node parameter,

the server

parameter, or the

cluster

parameter.

(conditional)

destination

The name of the

port destination.

(optional)

userId

The user ID to

use to retrieve

the WSDL.

(optional)

password

The password to

use to retrieve

the WSDL.

(optional)

v Returns: The object

name of the

outbound port object

that you created.

Batch mode example usage:

v Using Jacl:

set outPort [

 $AdminTask

 addSIBWSOutboundPort

 $outService {

 -name "MyServiceSoap"

 -node "MyNode"

 -server "server"}]

v Using Jython:

outPort =

 AdminTask

.addSIBWSOutboundPort(

 outService, ’[

 -name MyServiceSoap

 -node MyNode

 -server server]’)

Interactive mode example usage:

v Using Jacl:

$AdminTask

 addSIBWSOutboundPort {

 -interactive}

v Using Jython:

AdminTask

.addSIBWSOutboundPort (

 ’[-interactive]’)

492 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

add SIBus

Member

SIB Admin

Commands

group

Use this

command to

add a server

or a cluster

to a SIB

bus.

None v Parameters:

bus

name of bus to

add member to

(String, required)

node

to specify a

server bus

member, supply

node and server

name, but not

cluster name

(String, optional)

server

to specify a

server bus

member, supply

node and server

name, but not

cluster name

(String, optional)

cluster

to specify a

cluster bus

member, supply

cluster name but

not node and

server name

(String, optional)

createDefault

Datasource

set this to true if

a default data

source should be

created when the

messaging

engine is

created.

(Boolean,

optional)

datasource

JndiName

the JNDI name

of the data

source to be

referenced from

the datastore

created when the

member is added

to the bus

(String, optional)

v Returns:

Batch mode example usage:

v Using Jacl:

$AdminTask addSIBusMember {

 -bus busname

 -node nodename

 -server servername

 -description text}

v Using Jython:

AdminTask.addSIBusMember(’[

 -bus busname

 -node nodename

 -server servername

 -description "text"]’)

Interactive mode example usage:

v Using Jacl:

$AdminTask addSIBusMember {

 -interactive}

v Using Jython:

AdminTask.addSIBusMember (’[

 -interactive]’)

Chapter 4. Using the administrative clients 493

addWSGWTargetService WSGateway

group

The add

WSGW

Target

Service

command

adds a

target to a

gateway

service. You

must specify

the target

Service

parameter

or the target

Destination

parameter.

Object

name of the

Gateway

Service

object

v Parameters:

name

The

administrative

name of the

target service.

(Required)

target Destination

The name of the

target

destination. This

can be within the

same bus as the

gateway

destination or in

a different bus. If

the target

destination is not

within the same

bus as the

gateway

destination, you

must also specify

the targetBus

parameter. You

must either

specify the target

Destination

parameter or the

target Service

parameter.

(Conditional)

target Service

The name of the

target outbound

service. You

must either

specify the target

Destination

parameter or the

target Service

parameter.

(Conditional)

targetBus

The name of the

WPM bus that

contains the

target. (Optional)

v Returns: The object

name of the target

service object that

you created.

Batch mode example usage:

v Using Jacl:

set gwTarget [

 $AdminTask

 addWSGWTargetService

 $gwService {

 -name "AnotherTarget"

 -targetService

 "AnotherService"}]

v Using Jython:

gwTarget=

 AdminTask.

addWSGWTargetService(

 gwService, ’[

 -name AnotherTarget

 -targetService

 AnotherService]’)

Interactive mode example usage:

v Using Jacl:

$AdminTask

addWSGWTargetService {

 -interactive}

v Using Jython:

AdminTask

.addWSGWTargetService

 (’[-interactive]’)

494 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

compareNode

Version

ManagedObject

Metadata

group

The

compare

Node

Version

command

compares

the

WebSphere

Application

Server

version

given a

node that

you specify

and an input

version.

None v Parameters:

- nodeName

The name of the

node associated

with the

metadata you

want this

command to

return.

- version

A version

number that you

want to compare

to the

WebSphere

Application

Server version

number.

v Returns:

– 0 if node version

matches the input

version

– -1 if node version

is smaller than the

input version

– 1 is node version

is higher than the

input version

Batch mode example usage:

v Using Jacl:

$AdminTask

 compareNodeVersion {

 -nodeName node1

 -version 5}

v Using Jython:

AdminTask

.compareNodeVersion(’[

 -nodeName node1

 -version 5]’)

Interactive mode example usage:

v Using Jacl:

$AdminTask

 compareNodeVersion {

 -interactive}

v Using Jython:

AdminTask

.compareNodeVersion (’[

 -interactive]’)

configure

TAM

Interactive mode example usage:

v Using Jacl:

$AdminTask configureTAM {

 -interactive}

v Using Jython:

AdminTask.configureTAM (’[

 -interactive]’)

Chapter 4. Using the administrative clients 495

connect

SIBWS

Endpoint

Listener

SIB Web

Services

group

The

connect

SIBWS

Endpoint

Listener

command

connects an

end point

listener to a

bus.

Object

name of the

end point

listener that

you want to

create.

v Parameters:

bus

The name of the

bus to which the

end point listener

will be

connected.

(required)

replyDestination

The name of the

reply destination

for the

connection.

(optional)

v Returns: The SIBWS

bus connection

property object.

Batch mode example usage:

v Using Jacl:

set busConn [

 $AdminTask

 connectSIBWSEndpointListener

 $epl {-bus "MyBus"}]

v Using Jython:

busConn =

 AdminTask

.connectSIBWSEndpointListener

(epl, ’[-bus MyBus]’)

Interactive mode example usage:

v Using Jacl:

$AdminTask

 connectSIBWSEndpointListener

 { -interactive}

v Using Jython:

AdminTask

.connectSIBWSEndpointListener

 (’[-interactive]’)

496 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

copy

Resource

Adapter

JCA

management

group

Use the

copy

Resource

Adapter

command to

create a

Java 2

Connector

(J2C)

resource

adapter

under the

scope that

you specify.

J2CResource

Adapter

_object _ID

v Parameters:

- name

Indicates the

name of the new

J2C resource

adapter. This

parameter is

required.

- scope

Indicates the

scope object ID.

This parameter is

required.

- use Deep Copy

If you set this

parameter to

true, all of the

J2C connection

factory, J2C

activation

specification, and

J2C

administrative

objects will be

copied to the

new J2C

resource adapter

(deep copy). If

you set this

parameter to

false, the

objects are not

created (shallow

copy). The

default is false.

v Returns: J2C

resource adapter

object ID

Batch mode example usage:

v Using Jacl:

$AdminTask

 copyResourceAdapter

 $ra [subst {

-name newRA -scope

 $scope}]

v Using Jython:

AdminTask

.copyResourceAdapter(

 ra, ’[-name newRA

 -scope scope]’)

Interactive mode example usage:

v Using Jacl:

$AdminTask

 copyResourceAdapter {

 -interactive}

v Using Jython:

AdminTask

.copyResourceAdapter

(’[-interactive]’)

create

Application

Server

Interactive mode example usage:

v Using Jacl:

$AdminTask

 createApplicationServer

 {-interactive}

v Using Jython:

AdminTask

.createApplicationServer

(’[-interactive]’)

Chapter 4. Using the administrative clients 497

create

Application

Server

Template

Interactive mode example usage:

v Using Jacl:

$AdminTask

 createApplicationServerTemplate

 {-interactive}

v Using Jython:

AdminTask

.createApplicationServerTemplate

 (’[-interactive]’)

498 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

createChain Channel

Framework

Management

group

The

createChain

command

creates a

new chain

of transport

channels

based on a

chain

template.

The

instance of

the transport

channel

service

under which

the new

chain is

created.

(ObjectName,

required)

v Parameters:

- template

The chain

template on

which to base

the new chain.

(ObjectName,

required)

- name

The name of the

new chain.

(String, required)

- endPoint

The name of the

end point to be

used by the

instance of the

TCP inbound

channel in the

new chain if the

chain is an

inbound chain.

(ObjectName,

optional)

v Returns: The object

name of the channel

chain that was

created.

Batch mode example usage:

v Using Jacl:

$AdminTask

 createChain (

 cells/rohitbuildCell01

/nodes

/rohitbuildCellManager01

/servers

 /dmgr|server.xml#

TransportChannelService_1) {

 -template WebContainer

(templates

/chains|webcontainer

-chains.xml#Chain_1)

-name trialChain1 }

$AdminTask createChain (

 cells/rohitbuildCell01

/nodes/

 rohitbuildCellManager01

/servers

 /dmgr|server.xml#

TransportChannelService_1)

 {-template

 WebContainer

(templates/chains

|webcontainer

 -chains.xml#Chain_1)

-name trialChain1

 -endPoint (

 cells/rohitbuildCell01/

nodes

/rohitbuildCellManager01

 |serverindex.xml

#EndPoint_3) }

v Using Jython:

AdminTask.createChain

(’cells/rohitbuildCell01

/nodes/

rohitbuildCellManager01

/servers

 /dmgr|server.xml#

TransportChannelService_1’,

 ’[-template "WebContainer

(templates

/chains|webcontainer

 -chains.xml#Chain_1)"

-name trialChain]’)

AdminTask.createChain

(’cells

 /rohitbuildCell01/nodes

 /rohitbuildCellManager01/

servers/dmgr|server.xml

 #TransportChannelService_1’,

 ’[-template

"WebContainer(templates

 /chains|webcontainer-chains.

xml#Chain_1)" -name

 trialChain

 -endPoint "(cells/

rohitbuildCell01/nodes

 /rohitbuildCellManager01

|serverindex

.xml#EndPoint_3)"]’)

Chapter 4. Using the administrative clients 499

createChain

continued

Interactive mode example usage:

v Using Jacl:

$AdminTask createChain

 {-interactive}

v Using Jython:

AdminTask.createChain (

’[-interactive]’)

create

Cluster

Cluster

Config

Commands

The create

Cluster

command

creates a

new server

cluster. A

server

cluster

consists of a

group of

application

servers

which are

referred to

as cluster

members.

Optionally, a

replication

domain can

be created

for the new

cluster, and

an existing

server can

be included

as the first

cluster

member.

None v Parameters for step

one:

-clusterConfig

Specifies the

configuration of

the new server

cluster. This

command step is

required. The

following

parameters can

be specified for

this step.

clusterName

The name of the

new server

cluster. This

parameter is

required.

preferLocal

Enables or

disables node

scoped routing

optimization

within this

cluster. This

parameter is

optional. The

value is true or

false. It not

specified, the

default value is

true.

Batch mode example usage:

v Using Jacl:

$AdminTask createCluster {

 -clusterConfig {{cluster1

 true}}}

$AdminTask createCluster {

 -clusterConfig {{cluster1

 true}}

 -replicationDomain {{true}}}

$AdminTask createCluster {

 -clusterConfig {{

cluster1 true}}

 -convertServer {{

server1 node1 "" "" ""}}}

v Using Jython:

AdminTask.createCluster(’[

-clusterConfig

 [[cluster1 true]]]’)

AdminTask.createCluster(’[

-clusterConfig

 [[cluster1 true]]

 -replicationDomain

 [[true]]]’)

AdminTask.createCluster(’[

-clusterConfig

 [[cluster1 true]]

 -convertServer [[

server1 node1 "" "" ""]]]’)

Interactive mode example usage:

v Using Jacl:

$AdminTask createCluster

 {-interactive}

v Using Jython:

AdminTask.createCluster (’[

-interactive]’)

500 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

create

Cluster

continued

Parameters for step

two:

-replication Domain

Specifies the

configuration of a

replication domain

for this cluster. A

replication domain

is used to support

HTTP session data

replication. This

command step is

optional. The

following

parameters can be

specified for this

step:

createDomain

Creates a

replication domain

with a name set to

the name of the

new cluster. This

parameter is

optional. The value

is true or false. It

not specified, the

default value is

false.

Chapter 4. Using the administrative clients 501

create

Cluster

continued

Parameters for step

three:

-convertServer

Specifies

information about

an existing

application server

to convert to be the

first member of the

cluster. This

command step is

optional. The

following

parameters can be

specified for this

step:

serverNode

The name of the

node with the

server to be

converted to the

first cluster

member. This

parameter is

required for the

command step. You

must also specify

the serverName

parameter.

serverName

The name of the

application server

to be converted to

the first cluster

member. This

parameter is

required for the

command step. You

must also specify

the serverNode

parameter.

memberWeight

The weight of the

cluster member.

The weight controls

the amount of work

directed to the

application server. If

the weight is

greater than the

weight assigned to

other cluster

members, the

server will receive a

larger share of the

workload. The

value is a number

between 0 and 100.

If none is specified,

the default is 2.

502 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

create

Cluster

continued

nodeGroup

The name of the

node group which

this cluster

member‘s node,

and all future

cluster members‘

nodes, must belong

to. All cluster

members must

reside on nodes in

the same node

group. This

parameter is

optional. If

specified, it must be

one of the node

groups which this

member‘s node

belongs to. If not

specified, the

default value will be

the first node group

listed for this

member‘s node.

replicatorEntry

Specifies a

replicator entry for

the converted

member will be

created in the

cluster‘s replication

domain. A replicator

entry is used to

provide HTTP

session data

replication. This

command

parameter is

optional. The value

is true or false

which indicates

whether the

replicator entry will

be created. The

default value is

false. You can

specify this

parameter only if

the createDomain

parameter was set

to true in the

replication Domain

command step.

Returns: ObjectName

of cluster created.

Chapter 4. Using the administrative clients 503

create

Cluster

Member

Cluster

Config

Commands

The create

Cluster

Member

command

creates a

member of

a server

cluster. A

cluster

member is

an

application

server that

belongs to a

cluster. If

this is the

first member

of the

cluster, you

must specify

a template

to use as

the model

for the

cluster

member.

The

template

can be

either a

default

server

template, or

an existing

application

server

cluster

Object ID -

The

configuration

object ID of

the cluster

which the

new

member will

belong to. If

this is not

specified,

then the

cluster

Name

parameter

must be

specified.

The object

name can

be obtained

program-

matically via

Java using

the

WebSphere

Config

Service API,

or via

wsadmin

scripting

using the

Admin

Config

command.

v Parameters:

-clusterName

The name of the

cluster which the

new member will

belong to. If this

parameter is not

specified, then

the cluster object

ID must be

specified in the

command target.

v Parameters for step

one:

-memberConfig

Specifies the

attributes of the

new cluster

member to be

created in the

cluster. This

command step is

required. The

following

parameters can

be specified for

this step:

memberName

The name of the

server to be

created for the

new cluster

member. This

parameter is

required.

memberNode

The name of the

node where the

new cluster

member will be

created. This

parameter is

required.

Batch mode example usage:

v Using Jacl:

First member creation using

template name:

$AdminTask createClusterMember

 {

-clusterName cluster1

 -memberConfig

 {{node1 member1 "" ""

 true false}}

 -firstmember {{

 serverTemplateName

 "" "" "" ""}}}

First member creation using

server and node for template:

$AdminTask createClusterMember

 {

-clusterName cluster1

 -memberConfig

 {{node1 member1 "" ""

 true false}}

 -firstmember {{

 "" node1 server1 "" ""}}}

Second member creation:

$AdminTask

 createClusterMember {

-clusterName cluster1

 -memberConfig

 {{node1 member2 "" ""

 true false}}}

v Using Jython:

First member creation using

template name:

AdminTask.createClusterMember

(’[

-clusterName cluster1

 -memberConfig

 [[node1 member1 "" ""

true false]]

 -firstMember [[

serverTemplateName

 "" "" "" ""]]]’)

First member creation using

server and node for template:

AdminTask.createClusterMember

(’[

-clusterName cluster1

 -memberConfig

 [[node1 member1 "" ""

 true false]]

 -firstMember [[

"" node1 server1

"" ""]]]’)

Second member creation:

AdminTask.createClusterMember

(’[

-clusterName cluster1

 -memberConfig

 [[node1 member2 "" ""

 true false]]]’)

504 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

create

Cluster

Member

continued

v Parameters for step

one continued:

memberWeight

The weight of the

new cluster

member. This

controls the

amount of work

directed to the

application

server. If the

weight is greater

than the weight

assigned to other

cluster members,

the server will

receive a larger

share of the

workload.

genUniquePorts

Generates

unique port

numbers for

each HTTP

transport defined

in the server.

The new server

will not have

HTTP transports

which conflict

with any other

servers defined

on the same

node. The value

is true or false.

The default value

is true .

replicatorEntry

Specifies a

replicator entry

for the new

cluster member

will be created in

the cluster‘s

replication

domain. A

replicator entry is

used to provide

HTTP session

data replication.

This command

parameter is

optional. The

value is true or

false which

indicates whether

the entry is

created. Default

value is false.

Specify this

parameter only if

a replication

domain has been

created for the

Interactive mode example usage:

v Using Jacl:

$AdminTask

 createClusterMember {

-interactive}

v Using Jython:

AdminTask.createClusterMember

 (’[

-interactive]’)

Chapter 4. Using the administrative clients 505

create

Cluster

Member

continued

v Parameters for step

two:

-firstMember

Specifies

additional

information

necessary to

create the first

cluster member.

This command

step is required

when creating

the first member

of the cluster,

and is

executable only

when creating

the first member

of the cluster.

The target of this

command step is

a Boolean value

indicating

whether or not to

perform this step.

The default value

is true if any of

the step

parameters are

specified;

otherwise the

default value is

false. The

following

parameters can

be specified for

this step:

templateName

The name of an

application

server template

to use when

creating the new

cluster member.

If you specify a

template, you

cannot specify

the template

ServerNode and

template

ServerName

parameters to

use an existing

application

server as a

template. You

are required to

specify either the

templateName,or

the template

ServerNode and

template

ServerName

parameters in

this step.

506 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

create

Cluster

Member

continued

v Parameters for step

two continued:

template erverNode

The name of the

node with an

existing

application

server to use as

the template

when creating

the new cluster

member. If you

specify the

template

ServerNode

parameter, you

must also specify

the template

ServerName

parameter, and

you cannot

specify the

templateName

parameter. You

are required to

specify either the

templateName

parameter, or the

template

ServerNode and

template

ServerName

parameters, in

this step.

template

ServerName

The name of the

existing

application

server used as

the model when

creating a new

cluster member.

If you specify the

template

ServerName

parameter, you

must also specify

the template

ServerNode

parameter, and

cannot specify

the

templateName

parameter. You

must specify

either the

templateName

parameter, or the

template

ServerNode and

template

ServerName

parameters, in

this command

Chapter 4. Using the administrative clients 507

create

Cluster

Member

continued

v Parameters for step

two continued:

nodeGroup

The name of the

node group

which this cluster

member‘s node,

and all future

cluster members‘

nodes, must

belong to. All

cluster members

must reside on

nodes in the

same node

group. This

parameter is

optional. If

specified, it must

be one of the

node groups

which this

member‘s node

belongs to. If not

specified, the

default value will

be the first node

group listed for

this member‘s

node.

coreGroup

The name of the

core group this

cluster member,

and all future

cluster members,

must belong to.

All cluster

members must

belong to the

same core

group. This

parameter is

optional. If not

specified, the

default value is

the default core

group defined in

the cell.

v Returns:

ObjectName of

cluster member

created.

508 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

create Core

Group

Core

Group

Management

group

The create

Core Group

command

creates a

new core

group. The

core group

that you

create will

contain no

members.

None v Parameters:

- coreGroupName

The name of the

core group that

you are creating.

(String required)

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask createCoreGroup {

-coreGroupName MyCoreGroup}

v Using Jython:

AdminTask.createCoreGroup(’[

-coreGroupName MyCoreGroup]’)

Interactive mode example usage:

v Using Jacl:

$AdminTask createCoreGroup {

-interactive}

v Using Jython:

AdminTask.createCoreGroup (’[

-interactive]’)

create Core

Group

Access

Point

Core

Group

Bridge

Management

group

The create

Core Group

Access

Point

command

creates a

default core

group

access point

for the core

group that

you specify

and adds it

to the

default

access point

group. If the

default

access point

group does

not exist,

the

command

creates a

default

access point

group.

Core group

bridge

settings

object for

the cell.

(ObjectName,

required).

v Parameters:

- coreGroupName

The name of the

core group for

which the core

group access

point will be

created. (String

required)

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask

 createCoreGroupAccessPoint

 (cells/

rohitbuildCell01

|coregroupbridge.xml#

CoreGroupBridgeSettings_1)

 "-coreGroupName

 DefaultCoreGroup"

v Using Jython:

AdminTask

.createCoreGroupAccessPoint(

’cells/

rohitbuildCell01|coregroupbridge

.xml#CoreGroupBridgeSettings_1’,

’[-coreGroupName

 DefaultCoreGroup]’)

Interactive mode example usage:

v Using Jacl:

$AdminTask

 createCoreGroupAccessPoint

 {interactive}

v Using Jython:

AdminTask

.createCoreGroupAccessPoint

 (’[-interactive]’)

create

Default

CGAP

Interactive mode example usage:

v Using Jacl:

$AdminTask createDefaultCGAP

 {-interactive}

v Using Jython:

AdminTask.createDefaultCGAP

 (’[-interactive]’)

Chapter 4. Using the administrative clients 509

create

Generic

Server

Serve r

Management

group

Step:

Config

ProcDef

Use the

create

Generic

Server

command to

create a

new generic

server in the

configuration.

A generic

server is a

server that

the

WebSphere

Application

Server

manages

but did not

supply. The

create

Generic

Server

command

provides an

additional

step, Config

ProcDef,

that you can

use to

configure

the

parameters

that are

specific to

generic

servers.

None v Parameters:

- name

The name of the

server that you

want to create.

- templateName

Picks up a server

template. This

step provides a

list of application

server templates

for the node and

server type. The

default value is

the default

templates for the

server type.

(String, optional)

- genUniquePorts

The port for the

server.

- templateLocation

The location of

the server

template.

- startCommand

Indicates the

path to the

command that

will run when this

generic server is

started. (String,

optional)

- startCommand

Args

Indicates the

arguments to

pass to the

startCommand

when the generic

server is started.

(String, optional)

- executable

TargetKind

Specifies

whether a Java

class name (use

JAVA_CLASS) or

the name of an

executable JAR

file (use

EXECUTABLE_JAR)

will be used as

the executable

target for this

process. This

field should be

left blank for

binary

executables. This

parameter is only

applicable for

Batch mode example usage:

v Using Jacl:

$AdminTask createGenericServer

 jim667BaseNode

 {-name jgeneric

 -ConfigProcDef {{

"/usr/bin/myStartCommand"

 "arg1 arg2" "" ""

 "/tmp/workingDirectory"

 "/tmp/stopCommand"

 "argy argz"}}}

v Using Jython:

AdminTask

.createGenericServer(

jim667BaseNode,

 ’[-name jgeneric

 -ConfigProcDef [[

/usr/bin/myStartCommand

 "arg1 arg2"

 "" "" /tmp/workingDirectory

 /tmp/StopCommand

 "argy argz"]]]’)

Interactive mode example usage:

v Using Jacl:

$AdminTask

 createGenericServer {

-interactive}

v Using Jython:

AdminTask.createGenericServer

 (’[-interactive]’)

510 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

create

Generic

Server

continued

v Parameters:

- executable Target

Specifies the

name of the

executable target

(a Java class

containing a

main() method or

the name of an

executable JAR),

depending on the

executable target

type. This field

should be left

blank for binary

executables. This

parameter is only

applicable for

Java processes.

(String, optional)

- working Directory

Specifies the

working directory

for the generic

server.

- stopCommand

Indicates the

path to the

command that

will run when this

generic server is

stopped. (String,

optional)

- stopCommand

Args

Indicates the

arguments to

pass to the

stopCommand

parameter when

the generic

server is

stopped. (String,

optional)

v Returns: null

create

Generic

Server

Template

Interactive mode example usage:

v Using Jacl:

$AdminTask

 createGenericServerTemplate

 {-interactive}

v Using Jython:

AdminTask

.createGenericServerTemplate

 (’[-interactive]’)

Chapter 4. Using the administrative clients 511

create J2C

Activation

Spec

JCA

management

group

Use the

create J2C

Activation

Spec

command to

create a

Java 2

Connector

(J2C)

activation

specification

under a J2C

resource

adapter and

attributes

that you

specify. Use

the

message

ListenerType

parameter

to indicate

the

activation

specification

that is

defined for

the J2C

resource

adapter.

J2C

Resource

Adapter

_object _ID

v Parameters:

- message

ListenerType

Identifies the

activation

specification for

the J2C

activation

specification to

be created. Use

this parameter to

identify the

activation

specification

template for the

J2C resource

adapter that you

specify.

- name

Indicates the

name of the J2C

activation

specification that

you are creating.

- jndiName

Indicates the

name of the Java

Naming and

Directory

Interface (JNDI).

- destination

JndiName

Indicates the

name of the Java

Naming and

Directory

Interface (JNDI)

of corresponding

destination.

- authentication

Alias

Indicates the

authentication

alias of the J2C

activation

specification that

you are creating.

- description

Description of

the created J2C

activation spec.

v Returns:

J2CActivationSpec

object ID

Batch mode example usage:

v Using Jacl:

$AdminTask

 createJ2CActivationSpec

 $ra {-name J2CActSpec

 -jndiName

 eis/ActSpec1

 -messageListenerType

 javax.jms.MessageListener }

v Using Jython:

AdminTask

.createJ2CActivationSpec(

ra, ’[-name J2CActSpec

 -jndiName

 eis/ActSpec1

 -messageListenerType

 javax.jms.MessageListener]’)

Interactive mode example usage:

v Using Jacl:

$AdminTask

 createJ2CActivationSpec

 {-interactive}

v Using Jython:

AdminTask

.createJ2CActivationSpec

 (’[-interactive]’)

512 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

create J2C

Admin

Object

JCA

management

group

Use the

create J2C

Admin

Object

command to

create a

administrative

object under

a resource

adapter with

attributes

that you

specify. Use

the

administrative

object

interface to

indicate the

administrative

object

defined in

the resource

adapter.

J2CResource

Adapter_object

_ID

v Parameters:

-admin

ObjectInterface

Specifies the

administrative

object interface

to identify the

administrative

object for the

resource adapter

that you specify.

This parameter is

required.

-name

Indicates the

name of the

administrative

object.

-jndiName

Specifies the

name of the Java

Naming and

Directory

Interface (JNDI).

-description

Description of

the created J2C

admin object.

v Returns:

J2CAdminObject

object ID

Batch mode example usage:

v Using Jacl:

$AdminTask

 createJ2CAdminObject

 $ra {-adminObjectInterface

 fvt.adapter

.message.FVTMessage

Provider -name J2CA01

 -jndiName eis/J2CA01}

v Using Jython:

AdminTask

.createJ2CAdminObject(

ra, ’[-adminObjectInterface

 fvt.adapter.message

.FVTMessageProvider

 -name J2CA01 -jndiName

 eis/J2CA01]’)

Interactive mode example usage:

v Using Jacl:

$AdminTask

 createJ2CAdminObject

 {-interactive}

v Using Jython:

AdminTask

.createJ2CAdminObject

 (’[-interactive]’)

Chapter 4. Using the administrative clients 513

create J2C

Connection

Factory

JCA

management

group

Use the

create J2C

Connection

Factory

command to

create a

Java 2

connection

factory

under a

Java 2

resource

adapter and

attributes

that you

specify. Use

the

connection

factory

interfaces to

indicate the

connection

definitions

defined for

the Java 2

resource

adapter.

J2C

Connection

Factory

_object _ID

v Parameters:

-connection Factory

Interface

Identifies the

connection

definition for the

Java 2 resource

adapter that you

specify. This

parameter is

required.

-name

Indicates the

name of the

connection

factory.

-jndiName

Indicates the

name of the Java

Naming and

Directory

Interface (JNDI).

-description

Description of

the created J2C

connection

factory.

v Returns: J2C

connectionfactory

object ID.

Batch mode example usage:

v Using Jacl:

$AdminTask

 createJ2CConnectionFactory

 $ra

 {-connectionFactoryInterfaces

 javax.sql.DataSource

 -name

 J2CCF1 -jndiName

 eis/J2CCF1}

v Using Jython:

AdminTask.

createJ2CConnectionFactory

(ra,

 ’[-connectionFactoryInterfaces

 javax.sql.DataSource

 -name

 J2CCF1 -jndiName

 eis/J2CCF1]’)

Interactive mode example usage:

v Using Jacl:

$AdminTask

 createJ2CConnectionFactory

 {-interactive}

v Using Jython:

AdminTask

.createJ2CConnectionFactory

 (’[-interactive]’)

create

Node

Group

Node

Group

Commands

group

The create

Node

Group

command

creates a

new node

group. A

node group

consists of a

group of

nodes which

are referred

to as node

group

members.

Optionally,

you can

create a

short name

and

description

for the new

node group.

The node

group name

to be

created.

This target

object is

required.

v Parameters:

- shortName

The short name

of the node

group. This

parameter is

optional.

- description

The description

of the node

group. This

parameter is

optional.

v Returns: Node group

object ID

Batch mode example usage:

v Using Jacl:

$AdminTask createNodeGroup

 WBINodeGroup

v Using Jython:

AdminTask

.createNodeGroup(

’WBINodeGroup’)

Interactive mode example usage:

v Using Jacl:

$AdminTask createNodeGroup

 {-interactive}

v Using Jython:

AdminTask.createNodeGroup

 (’[-interactive]’)

514 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

create

Node

Group

Property

Node

Group

Commands

group

The create

Node

Group

Property

command

creates

custom

properties

for a node

group.

The name

of the node

group. This

target object

is required.

v Parameters:

- name

The name of the

custom property

to create. This

parameter is

required.

- value

The value of the

custom property.

This parameter is

optional.

- description

The description

of the custom

property. This

parameter is

optional.

v Returns: Properties

object ID

Batch mode example usage:

v Using Jacl:

$AdminTask

 createNodeGroupProperty

 WBINodeGroup {

-name Channel -value

 "channel1"}

v Using Jython:

AdminTask

.createNodeGroupProperty(

’WBINodeGroup’,

 ’[-name Channel

 -value channel1]’)

Interactive mode example usage:

v Using Jacl:

$AdminTask

 createNodeGroupProperty

 {-interactive}

v Using Jython:

AdminTask

.createNodeGroupProperty

 (’[-interactive]’)

Chapter 4. Using the administrative clients 515

create SIB

Destination

SIB Admin

Commands

Use this

command to

create a SIB

destination.

None v Parameters:

bus

name of the bus

where this

destination is to

be configured

(String, required)

name

destination name

(String, required)

type

The destination

type. Valid value

include: Queue,

TopicSpace,

WebService or

Port. If the type

is not

TopicSpace, you

must use the

node/server or

cluster option to

specify a bus

member. (String,

required)

cluster

to assign the

destination to a

cluster, supply

cluster name, but

not node and

server name.

(optional)

node

to assign the

destination to a

server, supply

node name

server name, but

not cluster name.

(optional)

server

to assign the

destination to a

server, supply

node name

server name, but

not cluster name.

(optional)

aliasBus

if this is an alias

destination, the

source bus name

of alias mapping.

(optional)

Batch mode example usage:

v Using Jacl:

$AdminTask

 createSIBDestination

 {-bus busname -name

 destname

 -type TopicSpace}

v Using Jython:

AdminTask

.createSIBDestination

(’[-bus busname

 -name destname

 -type TopicSpace]’)

Interactive mode example usage:

v Using Jacl:

$AdminTask

 createSIBDestination

 {-interactive}

v Using Jython:

AdminTask

.createSIBDestination

 (’[-interactive]’)

516 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

create SIB

Destination

continued

v Parameters

continued:

targetBus

if this is an alias

destination, the

name of the bus

that the

destination it

maps to is

configured on.

(optional)

targetName

if this is an alias

destination, the

name of the

destination it

maps to.

(optional)

foreignBus

if this is a foreign

destination, the

name of the

foreign bus.

(optional)

description

description.

(optional)

reliability

the reliability

quality of service

for message

flows through

this destination,

from

BEST_EFFORT

_NON-
PERSISTENT to

ASSURED

_PERSISTENT,

in order of

increasing

reliability. Higher

levels of

reliability have

higher impacts

on the

performance.

(optional)

maxReliability

the maximum

reliability quality

of service that is

accepted for

values specified

by producers.

(optional)

Chapter 4. Using the administrative clients 517

create SIB

Destination

continued

Parameters continued:

override OfQOS

ByProducer Allowed

controls the quality

of service for

message flows

between producers

and the destination.

Select this option to

use the quality of

service specified by

producers instead

of the quality

defined for the

destination.

(optional)

defaultPriority

the default priority

for message flows

through this

destination, in the

range 0 (lowest)

through 9 (highest).

This default priority

is used for

messages that do

not contain a

priority value

(Integer, optional).

(optional)

maxFailed Deliveries

the maximum

number of times

that service tries to

deliver a message

to the destination

before forwarding it

to the exception

destination (Integer,

optional). (optional)

exception Destination

the name of

another destination

to which the system

sends a message

that cannot be

delivered to this

destination within

the specified

maximum number

of failed deliveries.

(optional)

sendAllowed

clear this option

(setting it to false)

to stop producers

from being able to

send messages to

this destination.

(optional)

518 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

create SIB

Destination

continued

Parameters for step

one continued:

receiveAllowed

clear this option

(setting it to false)

to prevent

consumers from

being able to

receive messages

from this

destination.

(optional)

quiesceMode

select this option

(setting it to true) to

indicate that the

destination is

quiescing. In

quiesce mode, new

messages for the

destination cannot

be added to the

bus, but any

messages already

in the bus can still

be sent to, and

processed by, the

destination

(Boolean, optional,

default=False).

(optional)

receiveExclusive

select this option

(setting it to true) to

allow only one

consumer to attach

to a destination

(Boolean, optional,

default=False).

(optional)

topicAccess Check

Required

topic access check

required (Boolean,

optional)

replyDestination

clear this option

(setting it to false)

to stop producers

from being able to

send messages to

this destination.

(optional)

replyDestination Bus

clear this option

(setting to false) to

prevent consumers

from being able to

receive messages

from destination.

(optional).

Chapter 4. Using the administrative clients 519

create SIB

Destination

continued

Parameters for step

one:

delegate Authorization

CheckToTarget

indicates whether

the authorization

check should be

delegated to the

alias or target

destination

(Boolean, optional)

defaultForward

RoutingPath

the default forward

routing path.

bus

bus name

destination

destination name

Returns: A new SIB

destination.

520 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

create SIB

Engine

SIB Admin

Commands

Use the

create SIB

Engine

command to

create a

new

messaging

engine for a

bus

member.

None v Parameters:

bus

name of the bus

to which the

messaging

engine is to

belong (String,

optional)

node

to create a

messaging

engine on a

server, supply

node and server

name, but not

cluster name

(String, optional)

server

to create a

messaging

engine on a

server, supply

node and server

name, but not

cluster name

(String, optional)

cluster

to create a

messaging

engine on a

cluster, supply

cluster name, but

not node and

server name

(String, optional)

description

description of the

messaging

engine (String,

optional)

initialState

Indicates if the

messaging

engine is started

or stopped when

the associated

application

server starts.

Until started, the

messaging

engine is

unavailable. Valid

values are

Stopped and

Started. (String,

optional)

Batch mode example usage:

v Using Jacl:

$AdminTask

 createSIBEngine

 {-bus busname

 -node

 nodeName

-server severname}

v Using Jython:

AdminTask.createSIBEngine

(’[-bus busname

 -node nodeName

 -server severname]’)

Interactive mode example usage:

v Using Jacl:

$AdminTask createSIBEngine

 {-interactive}

v Using Jython:

AdminTask.createSIBEngine

 (’[-interactive]’)

Chapter 4. Using the administrative clients 521

create SIB

Engine

continued

v Parameters

continued:

destinationHigh

Msgs

the maximum

total number of

messages that

the messaging

engine can place

on its message

points (Long,

optional)

createDefault

Datasource

Set to true if a

default data

source should be

created when the

messaging

engine is created

(Boolean,

optional)

datasourceJndi

Name

JNDI name of

the data source

to be referenced

from the

datastore created

when the

messaging

engine is created

(String, optional)

v Returns: A new SIB

messaging engine.

522 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

create SIB

JMS

Activation

Spec

SIB JMS

Admin

Commands

Use the

create SIB

JMS

Activation

Spec

command to

create a SIB

JMS

activation

specification.

Scope of

the SIB JMS

resource

adapter to

which the

activation

specification

will be

added.

v Parameters:

name

name of new

activation

specification

(String, required)

jndiName

JNDI name of

the activation

specification

(String, required)

destinationJndi

Name

JNDI name of a

destination

(String, required)

description

a JMS activation

specification is

used by the

default

messaging

provider to

validate the

activation-
configuration

properties for a

JMS

message-driven

bean (MDB)

(String, optional)

acknowledge Mode

how the session

acknowledges

any messages it

receives (String,

optional)

authentication Alias

authentication

alias (String,

optional)

busName

name of the SIB

bus to connect to

(String, required)

clientId

client identifier.

Required for

durable topic

subscriptions

(String, optional)

Batch mode example usage:

v Using Jacl:

$AdminTask

 createSIBJMSActivationSpec

 $ra {-name specname

-jndiName specname}

v Using Jython:

AdminTask

.createSIBJMSActivationSpec

(ra,

 ’[-name specname

 -jndiName specname]’)

Interactive mode example usage:

v Using Jacl:

$AdminTask

 createSIBJMSActivationSpec

 {-interactive}

v Using Jython:

AdminTask

.createSIBJMSActivationSpec

 (’[-interactive]’)

Chapter 4. Using the administrative clients 523

create SIB

JMS

Activation

Spec

continued

v Parameters:

destinationType

Indicates if the

message-driven

bean uses a

queue or topic

destination.

(String, optional)

durable

Subscription Home

The name of the

durable

subscription

home. This

identifies the

messaging

engine where all

durable

subscriptions

accessed

through this

activation

specification are

managed (String,

optional)

maxBatchSize

the maximum

number of

messages

received from the

messaging

engine in a

single batch

(Integer, optional)

maxConcurrency

the maximum

number of

endpoints to

which messages

are delivered

concurrently

(Integer, optional)

messageSelector

the JMS

message

selector used to

determine which

messages the

message-driven

bean (MDB)

receives (String,

optional)

password

password (String,

optional)

524 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

create SIB

JMS

Activation

Spec

continued

v Parameters:

subscription

Durability

whether a JMS

topic subscription

is durable or

nondurable

(String, optional)

subscriptionName

the subscription

name needed for

durable topic

subscriptions

(String, optional)

shareDurable

Subscriptions

used to control

how durable

subscriptions are

shared (String,

optional, default

= AsCluster)

userName

user name

(String, optional)

v Returns: A new SIB

JMS activation

specification.

Chapter 4. Using the administrative clients 525

create SIB

JMS

Connection

Factory

SIB JMS

Admin

Commands

Use the

create SIB

JMS

Connection

Factory

command to

create a

generic,

queue or

topic SIB

JMS

connection

factory.

Scope of

the SIB JMS

resource

adapter to

which the

SIB JMS

connection

factory will

be added.

v Parameters:

name

The name of the

SIB JMS

connection

factory (String,

required)

jndiName

the JNDI name

of the SIB JMS

connection

factory (String,

required)

type

The type of

connection

factory to create.

To create a

queue

connection

factory, set the

value to Queue.

To create a topic

connection

factory, set to

Topic. To create

a generic

connection

factory, do not

set a value.

(String, optional)

authDataAlias

Specifies a user

ID and password

to be used to

authenticate

connections to

the JMS provider

for

application-
managed

authentication

(String, optional)

category

classifies or

groups the

connection

factory (String,

optional)

description

description of the

connection

factory (String,

optional)

Batch mode example usage:

v Using Jacl:

$AdminTask

createSIBJMSConnectionFactory

 $ra {

-name

connectionfactory_name

 -jndiName jndi_name}

v Using Jython:

AdminTask

.createSIBJMSConnectionFactory

(ra, ’[

-name

 connectionfactory_name

 -jndiName

 jndi_name]’)

Interactive mode example usage:

v Using Jacl:

$AdminTask

createSIBJMSConnectionFactory

 {-interactive}

v Using Jython:

AdminTask

.createSIBJMSConnectionFactory

 (’[-interactive]’)

526 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

create SIB

JMS

Connection

Factory

continued

v Parameters:

logMissing

Transaction

Context

whether or not

the container

logs that there is

a missing

transaction

context when a

connection is

obtained

(Boolean,

optional, default

= False)

manageCached

Handles

Indicates if

cached handles

(handles held in

instance

variables in a

bean) should be

tracked by the

container

(Boolean,

optional, default

= False)

xaRecoveryAuth

Alias

the

authentication

alias used during

XA recovery

processing

(String, optional)

busName

the SIB bus

name (String,

optional)

clientID

user-defined

string, only

required for

durable

subscriptions

(String, optional)

userName

The user name

that is used to

create

connections from

the connection

factory (String,

optional)

Chapter 4. Using the administrative clients 527

create SIB

JMS

Connection

Factory

continued

v Parameters:

password

the password

that is used to

create

connections from

the connection

factory (String,

optional)

nonPersistent

Mapping

non-persistent

mapping value.

Valid values

include: Best

EffortNon

Persistent,

ExpressNon

Persistent,

ReliableNon

Persistent,

Reliable

Persistent,

Assured

Persistent,

AsSIB

Destination and

None (String,

optional)

persistent Mapping

persistent

mapping value.

Valid values

include:

BestEffortNon

Persistent,

ExpressNon

Persistent,

ReliableNon

Persistent,

Reliable

Persistent,

Assured

Persistent,

AsSIBDestination

and None (String,

optional)

durable

Subscription Home

durable

subscription

home value

(String, optional)

readAhead

read-ahead

value. Valid

values include:

Default,

AlwaysOn and

AlwaysOff

(String, optional)

528 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

create SIB

JMS

Connection

Factory

continud

v Parameters:

target

the name of a

target that

resolves to a

group of

messaging

engines (String,

optional)

targetType

specifies the type

of the name in

the target

parameter. Valid

values are

BusMember,

Custom and ME

(String, optional)

targetSignificance

this property

specifies the

significance of

the target group

(String, optional)

remoteProtocol

the name of the

protocol that

should be used

to connect to a

remote

messaging

engine (String,

optional)

providerEnd Points

A list of endpoint

triplets seperated

by commas, for

example:

host:port:chain

(String, optional)

connection

Proximity

the proximity of

acceptable

messaging

engines. Valid

values include:

Bus, Host,

Cluster and

Server (String,

optional)

Chapter 4. Using the administrative clients 529

create SIB

JMS

Connection

Factory

continud

v Parameters:

tempQueueName

Prefix

temporary queue

name prefix

(String, optional)

tempTopicName

Prefix

temporary topic

name prefix

(String, optional)

share DataSource

WithCMP

used to control

how data

sources are

shared (Boolean,

optional)

shareDurable

Subscriptions

used to control

how durable

subscriptions are

shared. Legal

values are

″AsCluster″,

″AlwaysShared″

and

″NeverShared″

(String, optional,

default =

AsCluster)

v Returns: A new SIB

JMS connection

factory.

530 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

create SIB

JMS Queue

SIB JMS

Admin

Commands

Use the

create SIB

JMS Queue

command to

create a SIB

JMS queue.

Scope of

the SIB JMS

resource

adapter to

which the

SIB JMS

queue will

be added.

v Parameters:

name

The name of the

SIB JMS queue.

(String, required)

jndiName

The JNDI name

of the SIB JMS

queue. (String,

required)

description

A description of

the SIB JMS

queue (String,

optional)

queueName

The name of the

underlying SIB

queue to which

the queue points

(String, required)

deliveryMode

The delivery

mode for

messages. Legal

values are

″Application″,

″NonPersistent″

and ″Persistent″

(String, optional)

timeToLive

the time in

milliseconds to

be used for

message

expiration (Long,

optional)

priority

the priority for

messages.

Whole number in

the range 0 to 9

(Integer, optional)

readAhead

read-ahead

value. Legal

values are

″AsConnection″,

″AlwaysOn″ and

″AlwaysOff″

(String, optional)

busName

the name of the

bus on which the

queue resides

(String, optional)

v Returns: A new SIB

JMS queue.

Batch mode example usage:

v Using Jacl:

$AdminTask

 createSIBJMSQueue $ra

 {-name queue_name

 -jndiName jndi_name

 -queueName queue_name}

v Using Jython:

AdminTask

.createSIBJMSQueue(ra,

 ’[-name queue_name

 -jndiName jndi_name

 -queueName

 queue_name]’)

Interactive mode example usage:

v Using Jacl:

$AdminTask

 createSIBJMSQueue

 {-interactive}

v Using Jython:

AdminTask

.createSIBJMSQueue

 (’[-interactive]’)

Chapter 4. Using the administrative clients 531

create SIB

JMS Topic

SIB JMS

Admin

Commands

Use this

command to

create a SIB

JMS topic.

Scope of

the SIB JMS

resource

adapter to

which the

SIB JMS

topic will be

added.

v Parameters:

name

The name of the

SIB JMS topic

(String, required)

jndiName

the SIB JMS

topic’s JNDI

name (String,

required)

description

a description of

the SIB JMS

queue (String,

optional)

topicSpace

the name of the

underlying SIB

topic space to

which the topic

points (String,

required)

*topicName

the topic to be

used inside the

topic space (for

example,

stock/IBM)

(String, required)

deliveryMode

the delivery

mode for

messages. Legal

values are

″Application″,

″NonPersistent″

and ″Persistent″

(String, optional)

timeToLive

the time in

milliseconds to

be used for

message

expiration (Long,

optional)

priority

the priority for

messages.

Whole number in

the range 0 to 9

(Integer, optional)

Batch mode example usage:

v Using Jacl:

$AdminTask

 createSIBJMSTopic $ra

 {-name topic_name

 -jndiName jndi_name

 -topicName topic_name

 -topicSpace

 topicspace_name}

v Using Jython:

AdminTask

.createSIBJMSTopic(ra,

 ’[-name topic_name

 -jndiName jndi_name

 -topicName topic_name

 -topicSpace

 topicspace_name]’)

Interactive mode example usage:

v Using Jacl:

$AdminTask

 createSIBJMSTopic

 {-interactive}

v Using Jython:

AdminTask

.createSIBJMSTopic

 (’[-interactive]’)

532 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

create SIB

JMS Topic

continued

v Parameters

continued:

readAhead

read-ahead

value. Legal

values are

″AsConnection″,

″AlwaysOn″ and

″AlwaysOff″

(String, optional)

busName

the name of the

bus on which the

topic resides

(String, optional)

v Returns: A new SIB

JMS topic.

Chapter 4. Using the administrative clients 533

create SIB

Mediation

SIB Admin

Commands

Use this

command to

create a SIB

mediation.

None v Parameters:

bus

name of the bus

where the

mediation is to

be created

(String, required)

mediationName

name to be given

to the mediation

(String, required)

description

description of the

mediation

(String, optional)

handler ListName

name of the

handler list that

was defined

when the

mediation was

deployed (String,

required)

globalTransaction

whether or not a

global

transaction is

started for each

message

processed

(Boolean,

optional, default

= False)

allow Concurrent

Mediation

whether or not to

apply the

mediation to

multiple

messages

concurrently, and

preserve

message

ordering

(Boolean,

optional, default

= False)

Batch mode example usage:

v Using Jacl:

$AdminTask

 createSIBMediation

 {-bus bus_name

 -mediationName

 mediation_name

 -handlerListName

 handlerList_name}

v Using Jython:

AdminTask

.createSIBMediation(

’[-bus bus_name

 -mediationName

 mediation_name

 -handlerListName

 handlerList_name]’)

Interactive mode example usage:

v Using Jacl:

$AdminTask

 createSIBMediation

 {-interactive}

v Using Jython:

AdminTask

.createSIBMediation

 (’[-interactive]’)

534 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

create SIB

Mediation

continued

v Parameters:

discriminator

the text string

that must not be

present in a

message for the

mediation to

process the

message (String,

optional)

v Returns: A new SIB

mediation.

create

SIBWS

Endpoint

Listener

SIB Web

Services

group

The create

SIBWS

Endpoint

Listener

command

creates an

end point

listener

object with

no SIBWS

bus

connection

property

objects.

Object

name of the

server

where the

end point

listener will

be created.

v Parameters:

name

The name of the

end point listener

within the server.

(required)

urlRoot

The root of the

end point

address URL for

Web services

that you access

through the end

point listener.

(required)

wsdlUrlRoot

The root of the

HTTP URL

where you can

retrieve the

WSDL

associated with

this end point

listener.

(required)

v Returns: The SIBWS

end point object.

Batch mode example usage:

v Using Jacl:

set epl [$AdminTask

 createSIBWSEndpointListener

 $server

 {-name "soaphttp1"

 -urlRoot

 "http://myserver.com

/wsgwsoaphttp1"

 -wsdlUrlRoot

 "http://myserver.com

/wsgwsoaphttp1"}]

v Using Jython:

epl =

 AdminTask

.createSIBWSEndpointListener

(server, ’[-name

soaphttp1

 -urlRoot

 http://myserver.com

/wsgwsoaphttp1

 -wsdlUrlRoot

 http://myserver.com

/wsgwsoaphttp1]’)

Interactive mode example usage:

v Using Jacl:

$AdminTask

 createSIBWSEndpointListener

 {-interactive}

v Using Jython:

AdminTask

.createSIBWSEndpointListener

 (’[-interactive]’)

Chapter 4. Using the administrative clients 535

create

SIBWS

Inbound

Service

SIB Web

Services

group

The create

SIBWS

Inbound

Service

command

creates a

new

inbound

service

object that

represents a

protocol

attachment

that service

requesters

will use. If

you specify

the UDDI

Reference

option, the

wsdlLocation

option is

assumed to

be a UDDI

service key

in the

following

format

where each

n is a hex

digit:

nnnnnnnn

nnnn-nnnn

-nnnn-nnnn

-nnnnnnnn.

The object

name of the

messaging

bus within

which the

service will

be created.

v Parameters:

name

The

administrative

name of the

inbound service.

(required)

destination

The name of the

underlying WPM

destination.

(required)

wsdlLocation

The location of

the template

WSDL. The

value of this

parameter can

be a URL or a

UDDI service key

(UUID).

(required)

wsdl ServiceName

The name of the

service in the

WSDL. You must

specify this

parameter or the

wsdlServiceNamespace

parameter.

(conditional)

wsdlService

Namespace

The namespace

of the service in

the WSDL. You

must specify this

parameter or the

wsdlServiceName

parameter.

(conditional)

uddiReference

The reference of

the UDDI registry

for the WSDL.

(optional)

userId

The user ID to

use to retrieve

the WSDL.

(optional)

password

The password to

use to retrieve

the WSDL.

(optional)

v Returns: The object

name of the created

inbound service

object.

Batch mode example usage:

v Using Jacl:

set inService

[$AdminTask

 createSIBWSInboundService

 $bus {-name

"MyService"

 -destination $destName

 -wsdlLocation

 "http://myserver.com

/MyService.wsdl"}]

v Using Jython:

inService =

 AdminTask

.createSIBWSInboundService

(bus, ’[-name MyService

 -destination destName

 -wsdlLocation

http://myserver.com

/MyService.wsdl]’)

Interactive mode example usage:

v Using Jacl:

$AdminTask

createSIBWSInboundService

 {-interactive}

v Using Jython:

AdminTask

.createSIBWSInboundService

 (’[-interactive]’)

536 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

create

SIBWS

Outbound

Service

SIB Web

Services

group

The create

SIBWS

Outbound

Service

command

creates a

new

outbound

service

object that

represents a

protocol

attachment

to a service

provider.

This

command

requires the

identification

of a single

service

element

within a

WSDL

document.

The object

name of the

messaging

bus within

which the

service is

created.

v Parameters:

name

The

administrative

name of the

outbound

service.

(required)

wsdlLocation

The location of

the WSDL of the

service provider.

It can be a URL

or a UDDI

service key

(UUID).

(required)

wsdlServiceName

The name of the

service in the

WSDL. You must

specify the wsdl

ServiceName

parameter or the

wsdlService

Namespsace

parameter.

(conditional)

wsdlServiceNamespace

Namespace of

the service in the

WSDL. You must

specify the

wsdlServiceName

parameter or the

wsdlService

Namespsace

parameter.

(conditional)

uddiReference

The reference of

the UDDI registry

for the WSDL.

(optional)

destination

The name of the

service

destination.

(optional)

userId

The user ID to

use to retrieve

the WSDL.

(optional)

password

The password to

use to retrieve

the WSDL.

(optional)

v Returns: The object

name of the

Batch mode example usage:

v Using Jacl:

set outService [$AdminTask

 createSIBWSOutboundService

 $bus {-name

 "MyService"

 -wsdlLocation

 "http://myserver.com

/MyService.wsdl"}]

v Using Jython:

outService =

 AdminTask

.createSIBWSOutboundService

(bus, ’[-name MyService

 -wsdlLocation

 http://myserver.com

/MyService.wsdl]’)

Interactive mode example usage:

v Using Jacl:

$AdminTask

createSIBWSOutboundService

 {-interactive}

v Using Jython:

AdminTask

.createSIBWSOutboundService

 (’[-interactive]’)

Chapter 4. Using the administrative clients 537

create SI

Bus

SIB Admin

Commands

Use this

command to

create a

new bus on

the current

node.

None v Parameters:

bus

name of bus to

create, which

must be unique

in the cell

(String, required)

description

descriptive

information about

the bus (String,

required)

secure

enable or disable

bus security

(Boolean,

optional, default

= False)

interEngine

AuthAlias

name of the

authentication

alias used to

authorize

communication

between

messaging

engines on the

bus (String,

optional)

mediationsAuth

Alias

name of the

authentication

alias used to

authorize

mediations to

access the bus

(String, optional)

protocol

the protocol used

to send and

receive

messages

between

messaging

engines, and

between API

clients and

messaging

engines (String,

optional)

Batch mode example usage:

v Using Jacl:

$AdminTask createSIBus

 {-bus

 busname -description

 text

 -secure True

 -mediationsAuthAlias

 name -protocol

 protocol

 -discardOnDelete False}

v Using Jython:

AdminTask.createSIBus

(’[-bus

 busname

 -description

 "text"

 -secure True

 -mediationsAuthAlias

 name

 -protocol protocol

 -discardOnDelete

 False]’)

Interactive mode example usage:

v Using Jacl:

$AdminTask createSIBus

 {-interactive}

v Using Jython:

AdminTask.createSIBus

(’[-interactive]’)

538 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

create SI

Bus

continued

v Parameters:

discardOnDelete

indicate whether

or not any

messages left in

the data store of

a queue should

be discarded

when the queue

is deleted

(Boolean,

optional, default

= False)

destinationHigh

Msgs

the maximum

number of

messages that

any queue on

the bus can hold

(Long, optional)

configuration

Reload Enabled

indicate whether

configuration files

should be

dynamically

reloaded for this

bus (Boolean,

optional, default

= True)

v Returns: A new SIB

bus.

Chapter 4. Using the administrative clients 539

create

Server

Type

None Use the

create

Server Type

command to

define a

server type.

None v Parameters:

-version

(String, required)

-serverType

(String, required)

-createTemplate

Command

(String, required)

-createCommand

(String, required)

-defaultTemplate

Name

The default value

is: default.

(String, optional)

-configValidator

(String, optional)

v Returns: The

identification of the

server type that you

created, javax

.management

.ObjectName.

Batch mode example usage:

v Using Jacl:

$AdminTask createServerType

 {-version version

 -serverType

 serverType

 -createTemplateCommand

 name

 -createCommand name}

v Using Jython:

AdminTask.createServerType

(’[-version version

 -serverType serverType

 -createTemplateCommand

 name

 -createCommand

 name]’)

Interactive mode example usage:

v Using Jacl:

$AdminTask

createServerType

 {-interactive}

v Using Jython:

AdminTask.createServerType

 (’[-interactive]’)

540 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

create TCP

End Point

None The create

TCP End

Point

command

creates a

new named

end point

you can

associate

with a TCP

inbound

channel.

Parent

instance of

the

Transport

Channel

Service that

contains the

TCP

Inbound

Channel.

(Object

Name,

required)

v Parameters:

-name

Name for the

new Named

EndPoint.

(String, required)

- host

Host for the new

Named

EndPoint.

(String, required)

- port

Port for the new

NamedEndPoint.

(String, required)

v Returns: Object name

of the created

NamedEndPoint.

Batch mode example usage:

v Using Jacl:

$AdminTask

 createTCPEndPoint

 (cells/rohitbuildCell01

/nodes/

rohitbuildCellManager01

/servers/dmgr

|server.xml

#TransportChannelService_1)

{-name

 Sample_End_Pt_Name

 -host

 rohitbuild.raleigh.ibm.com

 -port 8978}

v Using Jython:

AdminTask.createTCPEndPoint

(’cells/rohitbuildCell01

/nodes

/rohitbuildCellManager01

/servers

/dmgr|server.xml

#TransportChannelService_1’,

 ’[-name

 Sample_End_Pt_Name

 -host

 rohitbuild.raleigh.ibm.com

 -port 8978]’)

Interactive mode example usage:

v Using Jacl:

$AdminTask createTCPEndPoint

 {-interactive}

v Using Jython:

AdminTask.createTCPEndPoint

 (’[-interactive]’)

Chapter 4. Using the administrative clients 541

create

Unmanaged

Node

Unmanaged

Node

Commands

group

Use the

create

Unmanaged

Node

command to

create a

new

unmanaged

node in the

configuration.

An

unmanaged

node is a

node that

does not

have a node

agent nor a

deployment

manager.

Unmanaged

nodes may

contain Web

servers,

such as IBM

IHS server.

None v Parameters:

- nodeName

The name that

will represent the

node in the

configuration

repository.

(String, required)

- hostName

The host name

of the system

associated with

this node.

(String, required)

- nodeOperating

System

The operating

system in use on

the system

associated with

this node. Valid

entries include

the following:

os400, aix, hpux,

linux, solaris,

windows, and

os390.(String

required)

v Returns: null

Batch mode example usage:

v Using Jacl:

$AdminTask

 createUnmanagedNode

 {-nodeName myNode

-hostName myHost

-nodeOperatingSystem

 linux}

v Using Jython:

AdminTask

.createUnmanagedNode

(’[-nodeName jjNode

 -hostName

 jjHost

 -nodeOperatingSystem

 linux]’)

Interactive mode example usage:

v Using Jacl:

$AdminTask

 createUnmanagedNode

 {-interactive}

v Using Jython:

AdminTask

.createUnmanagedNode

 (’[-interactive]’)

542 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

create

WSGW

Gateway

Service

WS

Gateway

group

The create

WSGW

Gateway

Service

command

creates a

new

Gateway

Service with

associated

Inbound

Service and

Target

Service

object.

Configuration

of the

Inbound

Port and

Outbound

Service/Port

associated

with these is

done using

separate

commands.

Object

Name of the

gateway

instance

which the

gateway

service is

created

v Parameters:

-name

Administrative

name of the

Gateway

Service.

(required)

-wsdlLocation

Location of the

template WSDL.

May be a URL or

a UDDI business

key (UUID).

(conditional)

-wsdl ServiceName

The name of the

service in the

WSDL.

(conditional)

-wsdlService

Namespace

The namespace

of the service in

the WSDL.

(conditional)

-targetDestination

The name of the

target

destination.

(conditional)

-targetService

The name of the

target outbound

service.

(conditional)

-request

Destination

The name of the

gateway

destination.

(optional)

-replyDestination

The name of the

gateway reply

destination.

(optional)

-targetBus

The name of the

WPM bus

containing the

target. (optional)

Batch mode example usage:

v Using Jacl:

set gwService

[$AdminTask

 createWSGWGatewayService

 $wsgw

 {-name

 MyGatewayService

 -targetService

 MyService}]

v Using Jython:

gwService =

 AdminTask

.createWSGWGatewayService

(wsgw, ’[-name

 MyGatewayService

 -targetService

MyService]’)

Interactive mode example usage:

v Using Jacl:

$AdminTask

 createWSGWGatewayService

 {-interactive}

v Using Jython:

$AdminTask

 createWSGWGatewayService

 (’[-interactive]’)

Chapter 4. Using the administrative clients 543

create

WSGW

Gateway

Service

continued

v Parameters:

-uddiReference

The reference of

the UDDI registry

for the WSDL.

(optional)

-userId

The user id to

use to retrieve

the WSDL.

(optional)

-password

The password to

use to retrieve

the WSDL.

(optional)

v Returns: ObjectName

of the created

GatewayService

object

544 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

create

WSGW

Proxy

Service

WS

Gateway

group

The create

WSGW

Proxy

Service

command

creates a

new proxy

service with

an

associated

inbound

service, and

a target

service

object with

an

associated

outbound

service.

Configuration

of the

inbound port

objects

associated

with the

inbound

service is

done using

separate

commands.

The object

name of the

gateway

instance

within which

the proxy

service is

created.

v Parameters:

name

The

administrative

name of the

proxy service.

(required)

node

The node where

the destinations

will be localized.

(conditional)

server

The server

where the

destinations will

be localized.

(conditional)

cluster

Cluster where

the destinations

will be localized.

(conditional)

-request

Destination

The name of the

proxy request

destination.

(optional)

-replyDestination

The name of the

proxy reply

destination.

(optional)

-wsdlLocation

The location of

the proxy WSDL

(URL). (optional)

v Returns: The object

name of the proxy

service object that

you created.

Batch mode example usage:

v Using Jacl:

set proxyService

[$AdminTask

 createWSGWProxyService

 $wsgw

 {-name

 MyProxyService

 -node MyNode

 -server server1}]

v Using Jython:

proxyService =

 AdminTask

.createWSGWProxyService

(wsgw, ’[-name

MyProxyService

 -node MyNode

 -server server1]’)

Interactive mode example usage:

v Using Jacl:

$AdminTask

createWSGWProxyService

 {-interactive}

v Using Jython:

AdminTask

.createWSGWProxyService

 (’[-interactive]’)

Chapter 4. Using the administrative clients 545

create Web

Server

Server

Management

group

Use the

create Web

Server

command to

create a

Web server

definition.

This

command is

a two step

process.

The first

step creates

a Web

server

definition

using a

template.

The

parameters

of the

second step

configure

the Web

server

definition

properties.

Web server

definitions

generate

and

propagate

the plugin

-config.xml

file for each

Web server.

For IHS

only, the

Web server

definitions

allow you to

administer

and

configure

IHS Web

servers

using the

administrative

console.

These

functions

include the

following:

Start, Stop,

View logs,

View and

Edit

configuration

file.

None v Parameters for step

one:

nodeName

The name of the

node. (String,

required)

name

The name of the

server. (String,

required)

templateName

The name of the

template that you

want to use.

Templates

include the

following: IHS,

iPlanet, IIS,

DOMINO, APACHE.

The default

template is IHS.

(String, required)

genUniquePorts

Indicates that

you want to

generate unique

ports. (optional)

v Parameters for step

two:

serverConfig

Create the Web

server. (String,

required)

webPort

The port for the

Web server.

(String, required)

configurationFile

The configuration

file. The default

is the path

relative to the

installation root,

for example,

conf/httpd.conf.

(String, optional)

webInstallRoot

The installation

path for the Web

server. (String,

required)

Batch mode example usage:

v Using Jacl:

$AdminTask

 createWebServer

 {-name web1

-serverConfig

 {{webPort

 WebserverInstallRoot

 PluginInstallRoot

Configuration

_file_name

 Windows_Server_Name

 errorLogPath

accessLogPath

 WebProtocol}}

-remoteServerConfig

 {{AdminPort

UserID

 Password

 AdminProtocol}}

v Using Jython:

AdminTask.createWebServer

(’[-name web1

 -serverConfig

 [[webPort

 WebserverInstallRoot

 PluginInstallRoot

 Configuration

_file_name

 Windows_Server

_Name errorLogPath

 accessLogPath

 WebProtocol]]

 -remoteServerConfig

 [[AdminPort

 UserID Password

 AdminProtocol]]]’)

where -serverConfig is second

step of the command.

– WebPort - is the port for the

Webserver (required for all

webservers)

– Webserver InstallRoot - is the

install path (directory) for

webserver. necessary for IHS

Admin Function.

– Plugin Install Root - is install

root where the plugin for the

webserver is installed.

Necessary for all webservers.

– Configuration file name - is the

file path for the IBM HTTP

Server. This is necessary for

View and edit of the IHS

Configuration file only.

546 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

create Web

Server

continued

v Parameters for step

two continued:

pluginInstallRoot

The plug-in

installation path.

(String, required)

serviceName

The service

name. (String,

optional)

errorLogfile

The error log for

viewing. The

default is the

path relative to

the installation

root, for

example,

logs/error_log.

(String, optional)

accessLogfile

The access log

for viewing. The

default is the

path relative to

the installation

root, for

example, logs

/access_log.

(String, optional)

webProtocol

Parameters for

the IHS

administration

server running

with an

unmanaged or

remote Web

server. Options

include HTTP or

HTTPS. The

default is HTTP.

(String, required)

adminPort

The port of the

IHS

administrative

server. (String,

required)

adminUserID

The user ID. This

value should

match the one

for authentication

in the

admin.conf.

(String, required)

v Windows Service Name - The

windows service name on which

IHS is to be started. This is

necessary for Start and stop of

the IHS webserver only.

v ErrorLogPath - This is the path for

the IHS error log (error.log)

v AccessLogPath - This is the path

for the IHS access log

(access.log)

v WebServerProtocol - HTTP or

HTTPS

where -remoteServerConfig is 3rd

step of the command

These parameters are only

necessary if the IHS webserver is

installed on a machine remote from

WebSphere.

v Admin Server Port - This is the

port for the ADministration server.

The administration server is

installed on the same machine as

the IBM HTTP Server. The admin

server handles admin request to

the IHS webserver.

v UserID - This is the userID for

authentication, if authentication is

activated on the Administration

server in the admin configuration

file (admin.conf).

v Passwd - This is the password for

the specified authentication

UserID. The password is

generated by htpasswd utility in

the admin.passwd file.

v Admin ServerProtocol - HTTP or

HTTPS

Interactive mode example usage:

v Using Jacl:

$AdminTask

createWebServer

 -interactive

v Using Jython:

AdminTask.createWebServer

 (’[-interactive]’)

Chapter 4. Using the administrative clients 547

create Web

Server

continued

v Parameters for step

two continued:

adminPasswrd

The

administrative

password.

(String, required)

adminProtocol

The

administrative

protocol title.

Options include

HTTP or HTTPS.

The default is

HTTP. (String,

required)

v Parameters for step

three:

Parameters for IHS

administration server

running with an

unmanaged or

remote Web server

(installed on machine

different from

WebSphere

Application Server)

adminPortTitle

(adminPort)

Port of IHS

administration

admin UserIDTitle

(adminUserID)

The user ID. This

value should

match the

authentication in

the admin.conf

file.

adminPasswd Title

(adminPasswd)

password

Admin Protocol

Title

(adminProtocol)

This parameter is

required. The

value is either

HTTP or HTTPS.

The default value

is HTTP.

v Returns: None

548 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

delete

Chain

Channel

Framework

Management

group

The delete

Chain

command

deletes an

existing

chain and,

optionally,

the transport

channels in

the chain.

The chain to

be deleted.

(Object

Name

,required)

v Parameters:

- delete Channels

If the value of

this attribute is

true, non-shared

transport

channels used

by the specified

chain will be

deleted.

(Boolean,

optional)

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask deleteChain

 trialChain1

(cells/rohitbuildCell01

/nodes

/rohitbuildCellManager01

/servers

/dmgr|server.xml#Chain

_1093554462922)

$AdminTask deleteChain

trialChain

(cells/rohitbuildCell01

/nodes

/rohitbuildCellManager01

/servers

/dmgr|server.xml

#Chain_1093554378078)

 {-deleteChannels true}

v Using Jython:

 AdminTask.deleteChain

(’trialChain1

(cells/rohitbuildCell01

/nodes

/rohitbuildCellManager01

/servers/dmgr

|server.xml

#TransportChannelService_1)’)

AdminTask.deleteChain

(’trialChain1

(cells/rohitbuildCell01

/nodes

/rohitbuildCellManager01

/servers

/dmgr

|server.xml

#TransportChannelService_1)

’, ’[-deleteChannels true]’)

Interactive mode example usage:

v Using Jacl:

$AdminTask deleteChain

 {-interactive}

v Using Jython:

AdminTask.deleteChain

 (’[-interactive]’)

Chapter 4. Using the administrative clients 549

delete

Cluster

Cluster

Config

Commands

The delete

Cluster

command

deletes the

configuration

of a server

cluster. A

server

cluster

consists of a

group of

application

servers

which are

referred to

as cluster

members.

When a

server

cluster is

deleted, all

of its

members

are deleted.

Use the

delete

Cluster

Member

command to

delete the

configuration

of an

individual

cluster

member.

cluster

Object ID -

The

configuration

object ID of

the cluster

to be

deleted. If

the cluster‘s

object ID is

not

specified,

then the

cluster

Name

parameter

must be

specified.

The object

name can

be obtained

programmatically

via Java

using the

WebSphere

Config

Service API,

or via

wsadmin

scripting

using the

AdminConfig

command.

v Parameters:

-clusterName

The name of the

cluster to be

deleted. If this

parameter is not

specified, then

the cluster object

ID must be

specified in the

command target.

v Parameters for step

one:

-replication Domain

Specifies the

removal of the

replication

domain for this

cluster. This

command step is

optional. The

following

parameters can

be specified for

this step:

deleteDomain

Deletes the

replication

domain for this

cluster. This

parameter is

optional. The

value is true or

false which

indicates whether

the domain will

be deleted. The

default value is

false. . Deleting

the replication

domain deletes

all replicator

entries defined in

the domain.

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask deleteCluster

 { -clusterName cluster1 }

$AdminTask deleteCluster

 { -clusterName cluster1

 -replicationDomain

 {{true}}}

v Using Jython:

AdminTask.deleteCluster

(’[-clusterName

 cluster1]’)

AdminTask.deleteCluster

(’[-clusterName

 cluster1

 -replicationDomain

 [[true]]]’)

Interactive mode example usage:

v Using Jacl:

$AdminTask

 deleteCluster -interactive

v Using Jython:

AdminTask.deleteCluster

 (’[-interactive]’)

550 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

delete

Cluster

Member

Cluster

Config

Commands

The delete

Cluster

Member

command

deletes the

configuration

of a cluster

member. A

cluster

member is

an

application

server that

belongs to a

server

cluster.

Use the

delete

Cluster

command to

delete the

configuration

of a cluster.

member

Object ID -

The

configuration

object ID of

the cluster

member to

be deleted.

If this is not

specified,

then the

cluster

Name,

member

Node and

member

Name

parameters

must be

specified.

The object

name can

be obtained

programmatically

via Java

using the

WebSphere

Config

Service API,

or via

wsadmin

scripting

using the

Admin

Config

command.

v Parameters:

-clusterName

The name of the

cluster which the

member to be

deleted belongs

to. If this

parameter is

specified, then

the member

Name and

member Node

parameters must

also be specified.

If this is not

specified, then

the member

object ID must

be specified in

the command

target.

-memberName

The server name

of the member to

be deleted from

the cluster. If this

parameter is

specified, then

the clusterName

and

memberNode

parameters must

also be specified.

If this is not

specified, then

the member

object ID must

be specified in

the command

target.

-memberNode

The name of the

node having the

cluster member

to be deleted. If

this parameter is

specified, then

the

memberName

and clusterName

parameters must

also be specified.

If this is not

specified, then

the cluster

member object

ID must be

specified in the

command target.

Batch mode example usage:

v Using Jacl:

$AdminTask

 deleteClusterMember

 {-clusterName

 cluster1 -memberNode

 node1 -memberName

 member1}

$AdminTask

 deleteClusterMember

 {-clusterName cluster1

 -memberNode node1

 -memberName member2

 -replicationEntry

 {{true}}}

v Using Jython:

AdminTask

.deleteClusterMember

(’[-clusterName cluster1

 -memberNode node1

 -memberName member1]’)

AdminTask

.deleteClusterMember

(’[-clusterName cluster1

 -memberNode node1

 -memberName member2

 -replicationEntry

 [[true]]]’)

Interactive mode example usage:

v Using Jacl:

$AdminTask

 deleteClusterMember

 -interactive

v Using Jython:

AdminTask

.deleteClusterMember

 (’[-interactive]’)

Chapter 4. Using the administrative clients 551

delete

Cluster

Member

continued

v Parameters for step

one:

-replicatorEntry

Specifies the

removal of a

replicator entry

for this cluster

member. This

command step is

optional. The

following

parameters can

be specified for

this step:

deleteEntry

Delete the

replicator entry

having this

cluster member‘s

name from the

cluster‘s

replication

domain. This

parameter is

optional. The

value is true or

false which

indicates whether

to delete the

replicator entry.

The default value

is false.

v Returns: None

delete Core

Group

Core

Group

Management

group

The delete

Core Group

command

deletes an

existing core

group. The

core group

that you

specify must

not contain

any

members.

You cannot

delete the

default core

group.

None v Parameters:

- core GroupName

The name of the

existing core

group that will be

deleted. (String

required)

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask

 deleteCoreGroup

{-coreGroupName

MyCoreGroup}

v Using Jython:

AdminTask

.deleteCoreGroup

(’[-coreGroupName

MyCoreGroup]’)

Interactive mode example usage:

v Using Jacl:

$AdminTask

 deleteCoreGroup

 {-interactive}

v Using Jython:

AdminTask

.deleteCoreGroup

 (’[-interactive]’)

552 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

delete Core

Group

Access

Points

Core

Group

Bridge

Management

group

The delete

Core Group

Access

Points

command

deletes all

the core

group

access

points

associated

with a group

that you

specify.

Core group

bridge

settings

object for

the cell.

(Object

Name,

required)

v Parameters:

- core GroupName

The name of the

core group

whose core

group access

points will be

deleted. (String

required)

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask

 deleteCoreGroupAccessPoints

 (cells/

rohitbuildCell01

|coregroupbridge.xml#

CoreGroupBridgeSettings_1)

 "-coreGroupName

 DefaultCoreGroup"

v Using Jython:

AdminTask

.deleteCoreGroupAccessPoints

(’(cells/rohitbuildCell01

|coregroupbridge.xml

#CoreGroupBridgeSettings_1)’,

 ’[-coreGroupName

 DefaultCoreGroup]’)

Interactive mode example usage:

v Using Jacl:

$AdminTask

 deleteCoreGroupAccessPoints

 {-interactive}

v Using Jython:

AdminTask

.deleteCoreGroupAccessPoints

 (’[-interactive]’)

delete SIB

Destination

SIB Admin

Commands

Use the

delete SIB

Destination

command to

delete a bus

destination.

This

command

deletes the

named

destination

of the

named bus

and deletes

all related

message

points.

None v Parameters:

bus

name of the bus

on which the

destination to be

deleted exists

(String, required)

name

name of the

destination to be

deleted (String,

required)

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask

 deleteSIBDestination

 {-bus busname

-name destname}

v Using Jython:

AdminTask

.deleteSIBDestination

(’[-bus busname

 -name destname]’)

Interactive mode example usage:

v Using Jacl:

$AdminTask

 deleteSIBDestination

 {-interactive}

v Using Jython:

AdminTask

.deleteSIBDestination

 (’[-interactive]’)

Chapter 4. Using the administrative clients 553

delete SIB

Engine

SIB Admin

Commands

Use the

delete SIB

Engine

command to

delete the

default or

named bus

messaging

engine from

the named

SIB bus. A

server can

only have

one

messaging

engine, so

when using

this

command to

delete a

messaging

engine from

a server

there is no

need to

supply the

engine

name. A

cluster can

have more

than one

messaging

engine so

the name of

the engine

must be

supplied.

None v Parameters:

*bus

name of the bus

to which the

messaging

engine to be

deleted belongs

(String, required)

node

to delete a

messaging

engine on a

server, supply

node and server

name, but not

cluster name

(String, optional)

server

to delete a

messaging

engine on a

server, supply

node and server

name, but not

cluster name

(String, optional)

cluster

to delete a

messaging

engine on a

cluster, supply

cluster name, but

not node and

server name

(String, optional)

engine

name of the

messaging

engine to delete.

This is optional,

and is only

required when

deleting a

messaging

engine from a

cluster (String,

optional)

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask

deleteSIBEngine

 {-bus busname

-node nodeName

-server severname}

v Using Jython:

AdminTask.deleteSIBEngine

(’[-bus busname -node

 nodeName -server

 severname]’)

Interactive mode example usage:

v Using Jacl:

$AdminTask

deleteSIBEngine

{-interactive}

v Using Jython:

AdminTask

.deleteSIBEngine

 (’[-interactive]’)

554 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

delete SIB

JMS

Activation

Spec

SIB JMS

Admin

Commands

Use the

delete SIB

JMS

Activation

Spec

command to

delete an

activation

specification.

None v Parameters:

name

The name of the

activation

specification that

you want to

delete. (String,

(required)

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask

 deleteSIBJMSActivationSpec

 {-name specname}

v Using Jython:

AdminTask

.deleteSIBJMSActivationSpec

(’[-name specname]’)

Interactive mode example usage:

v Using Jacl:

$AdminTask

 deleteSIBJMSActivationSpec

 {-interactive}

v Using Jython:

AdminTask

.deleteSIBJMSActivationSpec

 (’[-interactive]’)

delete SIB

JMS

Connection

Factory

SIB JMS

Admin

Commands

Use the

delete SIB

JMS

Connection

Factory

command to

None v Parameters:

name

The name of the

SIB JMS

connection

factory (String,

required)

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask

 deleteSIBJMSConnectionFactory

 {-name factory_name}

v Using Jython:

AdminTask

.deleteSIBJMSConnectionFactory

(’[-name factory_name]’)

Interactive mode example usage:

v Using Jacl:

$AdminTask

 deleteSIBJMSConnectionFactory

 {-interactive}

v Using Jython:

AdminTask

.deleteSIBJMSConnectionFactory

 (’[-interactive]’)

Chapter 4. Using the administrative clients 555

delete SIB

JMS Queue

SIB JMS

Admin

Commands

Use the

delete SIB

JMS Queue

command to

delete a

JMS queue.

None v Parameters:

name

The name of the

SIB JMS queue.

(String, required)

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask

 deleteSIBJMSQueue

 {-name queue_name}

v Using Jython:

AdminTask

.deleteSIBJMSQueue

(’[-name queue_name]’)

Interactive mode example usage:

v Using Jacl:

$AdminTask

 deleteSIBJMSQueue

{-interactive}

v Using Jython:

AdminTask

.deleteSIBJMSQueue

(’[-interactive]’)

delete SIB

JMS Topic

SIB JMS

Admin

Commands

Use the

delete SIB

JMS Topic

command to

delete a

JMS topic.

None v Parameters:

name

The name of the

SIB JMS topic

(String, required)

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask

 deleteSIBJMSTopic

 {-name topic_name}

v Using Jython:

AdminTask

.deleteSIBJMSTopic

(’[-name topic_name]’)

Interactive mode example usage:

v Using Jacl:

$AdminTask

deleteSIBJMSTopic

 {-interactive}

v Using Jython:

AdminTask

.deleteSIBJMSTopic

(’[-interactive]’)

556 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

delete SIB

Mediation

SIB Admin

Commands

Use this

command to

delete the

named

mediation

from the

named bus.

None v Parameters:

bus

name of the bus

that owns the

mediation

(String, required)

mediation Name

name of the

mediation to be

deleted (String,

required)

v Returns: None

Batch mode example usage:

v Using Jacl:

v Using Jython:

Interactive mode example usage:

v Using Jacl:

$AdminTask

 deleteSIBMediation

 {-interactive}

v Using Jython:

AdminTask

.deleteSIBMediation

(’[-interactive]’)

delete

SIBWS

EndpointListener

SIB Web

Services

group

The delete

SIBWS

Endpoint

Listener

command

deletes the

configuration

oa an end

point

listener. This

command

fails if there

are inbound

port objects

associated

with the end

point

listener.

Object

name of the

end point

listener that

you want to

delete.

v Parameters: None

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask

 deleteSIBWSEndpointListener

$epl

v Using Jython:

AdminTask

.deleteSIBWSEndpointListener

(epl)

Interactive mode example usage:

v Using Jacl:

$AdminTask

 deleteSIBWSEndpointListener

{-interactive}

v Using Jython:

AdminTask

.deleteSIBWSEndpointListener

 (’[-interactive]’)

Chapter 4. Using the administrative clients 557

delete

SIBWS

Inbound

Service

SIB Web

Services

group

The delete

SIBWS

Inbound

Service

command

deletes an

inbound

service

object and

any inbound

port objects

that are

associated.

The object

name of the

inbound

service

object that

you want to

delete.

v Parameters:

userId

The user ID to

use to interact

with UDDI

registries.

(optional)

password

The password to

use to interact

with UDDI

registries.

(optional)

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask

deleteSIBWSInboundService

 $inService

v Using Jython:

AdminTask

.deleteSIBWSInboundService

(inService)

Interactive mode example usage:

v Using Jacl:

$AdminTask

deleteSIBWSInboundService

 {-interactive}

v Using Jython:

AdminTask

.deleteSIBWSInboundService

 (’[-interactive]’)

delete

SIBWS

Outbound

Service

SIB Web

Services

group

The delete

SIBWS

Outbound

Service

command

deletes an

outbound

service

object and

any

outbound

port objects

that are

associated.

Resources

that are

associated

with the

outbound

service or

outbound

ports, for

example,

WS-Security

configuration,

are

disassociated

from the

outbound

service and

the

outbound

ports but

are not

deleted.

Object

name of the

outbound

service

object that

you want to

delete.

v Parameters: None

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask

 deleteSIBWSOutboundService

$outService

v Using Jython:

AdminTask

.deleteSIBWSOutboundService

(outService)

Interactive mode example usage:

v Using Jacl:

$AdminTask

 deleteSIBWSOutboundService

 {-interactive}

v Using Jython:

AdminTask

.deleteSIBWSOutboundService

 (’[-interactive]’)

558 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

delete

SIBus

SIB Admin

Commands

Use this

command to

delete the

named SIB

bus. Also

deletes all

SIB

mediations

and SIB

destinations

owned by

the bus.

None v Parameters:

bus

name of bus to

be deleted from

the current cell

(String, required)

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask deleteSIBus

{-bus bus_name}

v Using Jython:

AdminTask.deleteSIBus

(’[-bus bus_name]’)

Interactive mode example usage:

v Using Jacl:

$AdminTask deleteSIBus

 {-interactive}

v Using Jython:

AdminTask.deleteSIBus

(’[-interactive]’)

delete

Server

None Use the

delete

Server

command to

delete the

server

scope

configuration

and the

server entry

that

corresponds

to it in the

server

index.xml

file. You can

also use this

command to

delete a

Web server.

None v Parameters:

-nodeName

(String, required)

-serverName

(String, required)

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask deleteServer

 {-nodeName node_name

-serverName

 server_name}

v Using Jython:

AdminTask.deleteServer

(’[-nodeName node_name

 -serverName

 server_name]’)

Interactive mode example usage:

v Using Jacl:

$AdminTask deleteServer

 {-interactive}

v Using Jython:

AdminTask.deleteServer

 (’[-interactive]’)

Chapter 4. Using the administrative clients 559

delete

Server

Template

None Use the

delete

Server

Template

command to

delete

server

templates.

You cannot

delete

templates

defined by

the system.

You can

only delete

server

templates

that you

created.

This

command

deletes the

directory

that hosts

the server

template.

A server

template

identification,

javax

.management

.ObjectName.

This target

object is

required.

v Returns: Void

Interactive mode example usage:

v Using Jacl:

$AdminTask

 deleteServerTemplate

 {-interactive}

v Using Jython:

AdminTask

.deleteServerTemplate

 (’[-interactive]’)

560 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

delete

WSGW

Gateway

Service

WS

Gateway

group

The delete

WSGW

Gateway

Service

command

deletes a

gateway

service. It

deletes the

gateway

destination

the

corresponding

reply

destination,

inbound

service, and

inbound port

enablement

objects, and

all of the

target

service

objects that

are

associated.

This

command

does not

delete the

destinations

that are

associated

with the

target

services.

Object

name of the

gateway

service

object

v Parameters: None

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask

deleteWSGWGatewayService

 $gwService

v Using Jython:

AdminTask

.deleteWSGWGatewayService

(gwService)

Interactive mode example usage:

v Using Jacl:

$AdminTask

deleteWSGWGatewayService

{-interactive}

v Using Jython:

AdminTask

.deleteWSGWGatewayService

(’[-interactive]’)

delete

WSGW

Proxy

Service

WS

Gateway

group

The delete

WSGW

Proxy

Service

command

deletes a

proxy

service

including the

proxy

destinations,

outbound

service,

outbound

ports,

inbound

service, and

inbound port

enablement

objects.

Object

name of the

Proxy

Service

object

v Parameters: None

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask

deleteWSGWProxyService

 $proxyService

v Using Jython:

AdminTask

.deleteWSGWProxyService

(proxyService)

Interactive mode example usage:

v Using Jacl:

$AdminTask

deleteWSGWProxyService

 {-interactive}

v Using Jython:

AdminTask

.deleteWSGWProxyService

(’[-interactive]’)

Chapter 4. Using the administrative clients 561

disconnect

SIBWS

Endpoint

Listener

SIB Web

Services

group

The

disconnect

SIBWS

Endpoint

Listener

command

disconnects

an end point

listener from

a bus.

Object

name of the

end point

listener to

be

disconnected.

v Parameters:

bus

The name of the

bus from which

to be

disconnected.

(required)

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask

 disconnectSIBWS

EndpointListener

 $epl {-bus "MyBus"}

v Using Jython:

AdminTask

.disconnectSIBWS

EndpointListener

(epl,’[-bus MyBus]’)

Interactive mode example usage:

v Using Jacl:

$AdminTask

 disconnectSIBWS

EndpointListener

 {-interactive}

v Using Jython:

AdminTask

.disconnectSIBWS

EndpointListener

 (’[-interactive]’)

does Core

Group Exist

Core

Group

Management

group

The does

Core Group

Exist

command

returns a

boolean

value that

indicates if

the core

group that

you specify

exists.

None v Parameters:

coreGroupName

The name of the

core group.

(String, required)

v Returns: A boolean

value.

Batch mode example usage:

v Using Jacl:

$AdminTask

doesCoreGroupExist

 {-coreGroupName

MyCoreGroup}

v Using Jython:

AdminTask

.doesCoreGroupExist

(’[-coreGroupName

MyCoreGroup]’)

Interactive mode example usage:

v Using Jacl:

$AdminTask

doesCoreGroupExist

{-interactive}

v Using Jython:

AdminTask

.doesCoreGroupExist

 (’[-interactive]’)

562 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

export

Server

Configuration

archive

Operations

group

Use the

export

Server

command to

export the

server

configuration

to a node

defined in

the

configuration

archive.

The export

Server

command

virtualizes

the server

configuration

and exports

a server to

a

configuration

archive. This

process

breaks any

existing

associations

between the

server

configurations

in the

configuration

archive and

the

configurations

in the

system. This

process also

removes

applications

from the

server that

you specify,

breaks the

relationship

between the

server that

you specify

and the core

group of the

server,

cluster, or

SIBus

membership.

The

exportServer

command

exports the

metadata

file of the

node where

the server

resides. You

can use this

information

l t h

None v Parameters:

-archive

The fully

qualified path of

the exported

configuration

archive. (String,

required)

-nodeName

The node name

of the server.

This parameter is

only required

when the server

name is not

unique across

the cell. (String,

optional)

-serverName

The server

name. (String,

required)

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask exportServer

 {-archive

c:\myServer.ear

 -nodeName

 node1 -serverName

 server1}

v Using Jython:

AdminTask.exportServer

(’[-archive

 c:\myServer.ear

 -nodeName

 node1 -serverName

 server1]’)

Interactive mode example usage:

v Using Jacl:

$AdminTask exportServer

 {-interactive}

v Using Jython:

AdminTask.exportServer

(’[-interactive]’)

Chapter 4. Using the administrative clients 563

export Was

profile

configuration

archive

Operations

group

Use the

export Was

profile

command to

export the

entire cell

configuration

to a

configuration

archive.

None v Parameters:

archive

The fully

qualified file path

of the exported

configuration

archive. (String,

required)

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask

exportWasprofile

{-archive

 c:\myCell.ear}

v Using Jython:

AdminTask

.exportWasprofile

(’[-archive

 c:\myCell.ear]’)

Interactive mode example usage:

v Using Jacl:

$AdminTask

 exportWasprofile

{-interactive}

v Using Jython:

AdminTask

.exportWasprofile

(’[-interactive]’)

get All Core

Group

ames

Core

Group

Management

group

The get All

Core Group

Names

command

returns a

string that

contains the

names of all

of the

existing core

groups

None v Parameters: None

v Returns: String array

(String[])

Batch mode example usage:

v Using Jacl:

$AdminTask

getAllCoreGroupNames

v Using Jython:

AdminTask

.getAllCoreGroupNames()

Interactive mode example usage:

v Using Jacl:

$AdminTask

getAllCoreGroupNames

{-interactive}

v Using Jython:

AdminTask

.getAllCoreGroupNames

 (’[-interactive]’)

564 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

get Core

Group

Name For

Server

Core

Group

Management

group

The get

Core Group

Name For

Server

command

returns the

name of the

core group

for which

the server

you specify

is currently

a member.

None v Parameters:

- nodeName

The name of the

node that

contains the

server. (String,

required)

- serverName

The name of the

server. (String,

required)

v Returns: The name of

the core group that

currently contains the

server that you

specified. (String)

Batch mode example usage:

v Using Jacl:

$AdminTask

getCoreGroupNameForServer

 {-nodeName myNode

 -serverName

 myServer}

v Using Jython:

AdminTask

.getCoreGroupNameForServer

(’[-nodeName myNode

 -serverName

 myServer]’)

Interactive mode example usage:

v Using Jacl:

$AdminTask

getCoreGroupNameForServer

{-interactive}

v Using Jython:

AdminTask

.getCoreGroupNameForServer

 (’[-interactive]’)

get Default

Core Group

Name

Core

Group

Management

group

The get

Default

Core Group

Name

command

returns the

name of the

default core

group.

None v Parameters: None

v Returns: String

Batch mode example usage:

v Using Jacl:

$AdminTask

getDefaultCoreGroupName

v Using Jython:

AdminTask

.getDefaultCoreGroupName()

Interactive mode example usage:

v Using Jacl:

$AdminTask

getDefaultCoreGroupName

 {-interactive}

v Using Jython:

AdminTask

.getDefaultCoreGroupName

 (’[-interactive]’)

Chapter 4. Using the administrative clients 565

get

Metadata

Properties

Managed

Object

Metadata

group

The get

Metadata

Properties

command

obtains all

metadata for

the node

that you

specify.

None v Parameters:

- nodeName

The name of the

node associated

with the

metadata you

want this

command to

return.

v Returns: The list of

metadata properties.

Batch mode example usage:

v Using Jacl:

$AdminTask

getMetadataProperties

 {-nodeName node1}

v Using Jython:

AdminTask

.getMetadataProperties

(’[-nodeName node1]’)

Interactive mode example usage:

v Using Jacl:

$AdminTask

getMetadataProperties

 {-interactive}

v Using Jython:

AdminTask

.getMetadataProperties

(’[-interactive]’)

get

Metadata

Property

Managed

Object

Metadata

group

The get

Metadata

Property

command

obtains

metadata

with the

specified

key for the

node that

you specify.

None v Parameters:

- nodeName

The name of the

node associated

with the

metadata you

want this

command to

return.

- propertyName

Metadata

property key.

v Returns: The

requested property

for the node that you

specified.

Batch mode example usage:

v Using Jacl:

$AdminTask

getMetadataProperty

 {-nodeName node1

 -propertyName

 com.ibm.websphere

.baseProductVersion}

v Using Jython:

AdminTask

.getMetadataProperty

 (’[-nodeName node1

-propertyName

 com.ibm.websphere

.baseProductVersion]’)

Interactive mode example usage:

v Using Jacl:

$AdminTask

getMetadataProperty

 {-interactive}

v Using Jython:

AdminTask

.getMetadataProperty

(’[-interactive]’)

566 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

get Named

TCP End

Point

Core

Group

Bridge

Management

group

The get

Named TCP

End Point

command

returns the

port

associated

with the

bridge

interface

that you

specify. The

port that is

returned is

the one that

is specified

on the TCP

inbound

channel of

the transport

channel

chain for

bridge

interface

that you

specify.

The bridge

interface

object for

which the

port will be

listed.

(Object

Name,

required)

v Parameters: None

v Returns: The port

(named end point)

object name of the

TCP inbound channel

instance which

resides on the DCS

transport channel

chain of the bridge

interface.

Batch mode example usage:

v Using Jacl:

$AdminTask

getNamedTCPEndPoint

 (cells/rohitbuildCell01|

coregroupbridge.xml

#BridgeInterface_2)

v Using Jython:

AdminTask

.getNamedTCPEndPoint

(’(cells/rohitbuildCell01

|coregroupbridge.xml

#BridgeInterface_2)’)

Interactive mode example usage:

v Using Jacl:

$AdminTask

getNamedTCPEndPoint

{-interactive}

v Using Jython:

AdminTask

.getNamedTCPEndPoint

(’[-interactive]’)

get Node

Base

Product

Version

Managed

Object

Metadata

group

The get

Node Base

Product

Version

command

returns the

version of

the

WebSphere

Application

Server for a

node that

you specify.

This

command

only returns

the version

for a

distributed

installation

of the

product.

None v Parameters:

- nodeName

The name of the

node associated

with the

metadata you

want this

command to

return.

v Returns: WebSphere

Application Server

version for the node

that you specify.

Batch mode example usage:

v Using Jacl:

$AdminTask

getNodeBaseProductVersion

 {-nodeName node1}

v Using Jython:

AdminTask

.getNodeBaseProductVersion

(’[-nodeName node1]’)

Interactive mode example usage:

v Using Jacl:

$AdminTask

getNodeBaseProductVersion

 {-interactive}

v Using Jython:

AdminTask

.getNodeBaseProductVersion

 (’[-interactive]’)

Chapter 4. Using the administrative clients 567

get Node

Major

Version

Managed

Object

Metadata

group

The get

Node Major

Version

command

returns the

major

version of

the

WebSphere

Application

Server for a

node that

you specify.

It only

returns the

version for a

distributed

installation

of the

product.

None v Parameters:

nodeName

The name of the

node associated

with the

metadata you

want this

command to

return.

v Returns: WebSphere

Application Server

major version for the

node that you

specified.

Batch mode example usage:

v Using Jacl:

$AdminTask

getNodeMajorVersion

{-nodeName node1}

v Using Jython:

AdminTask

.getNodeMajorVersion

(’[-nodeName node1]’)

Interactive mode example usage:

v Using Jacl:

$AdminTask

getNodeMajorVersion

 {-interactive}

v Using Jython:

AdminTask

.getNodeMajorVersion

(’[-interactive]’)

get Node

Minor

Version

Managed

Object

Metadata

group

None v Parameters:

- nodeName

The name of the

node associated

with the

metadata you

want this

command to

return.

v Returns: WebSphere

Application Server

minor version for the

node that you

specified.

Batch mode example usage:

v Using Jacl:

$AdminTask

getNodeMinorVersion

 {-nodeName node1}

v Using Jython:

AdminTask

.getNodeMinorVersion

(’[-nodeName node1]’)

Interactive mode example usage:

v Using Jacl:

$AdminTask

getNodeMinorVersion

 {-interactive}

v Using Jython:

AdminTask

.getNodeMinorVersion

 (’[-interactive]’)

568 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

get Node

Platform

OS

Managed

Object

Metadata

group

The get

Node

Platform

OS

command

returns the

operating

system

name for a

node that

you specify.

None v Parameters:

- nodeName

The name of the

node associated

with the

metadata you

want this

command to

return.

v Returns: The

operating system

name of the node

that you specified.

Batch mode example usage:

v Using Jacl:

$AdminTask

getNodePlatformOS

 {-nodeName node1}

v Using Jython:

AdminTask

.getNodePlatformOS

(’[-nodeName node1]’)

Interactive mode example usage:

v Using Jacl:

$AdminTask

 getNodePlatformOS

 {-interactive}

v Using Jython:

AdminTask

.getNodePlatformOS

(’[-interactive]’)

get Node

Sysplex

Name

Managed

Object

Metadata

group

The get

Node

Sysplex

Name

command

returns the

sysplex

name for a

node that

you specify.

None v Parameters:

- nodeName

The name of the

node associated

with the

metadata you

want this

command to

return.

v Returns: The sysplex

name of the given

node.

Batch mode example usage:

v Using Jacl:

$AdminTask

getNodeSysplexName

 {-nodeName node1}

v Using Jython:

AdminTask

.getNodeSysplexName

(’[-nodeName node1]’)

Interactive mode example usage:

v Using Jacl:

$AdminTask

getNodeSysplexName

 {-interactive}

v Using Jython:

AdminTask

.getNodeSysplexName

 (’[-interactive]’)

get Server

Type

Interactive mode example usage:

v Using Jacl:

$AdminTask getServerType

 {-interactive}

v Using Jython:

AdminTask.getServerType

 (’[-interactive]’)

Chapter 4. Using the administrative clients 569

get TCP

End Point

None The get

TCP End

Point

command

obtains the

named end

point

associated

with either a

TCP

inbound

channel or a

chain that

contains a

TCP

inbound

channel.

TCP

Inbound

Channel, or

containing

chain,

instance

that is

associated

with a

Named

EndPoint.

(Object

Name,

required)

v Parameters: None

v Returns: Object name

of an existing named

end point that is

associated with the

TCP inbound channel

instance or a channel

chain.

Batch mode example usage:

v Using Jacl:

$AdminTask getTCPEndPoint

 TCP_1(cells

/rohitbuildCell01/

nodes/rohitbuildCellManager01

/servers/dmgr|server.xml

#TCPInboundChannel_1)

$AdminTask getTCPEndPoint

 DCS

(cells/rohitbuildCell01

/nodes/

rohitbuildCellManager01

/servers

/dmgr|server.xml#Chain_3)

v Using Jython:

AdminTask.getTCPEndPoint

(’TCP_1(cells/rohitbuildCell01/

nodes/rohitbuildCellManager01

/servers/dmgr

|server.xml

#TCPInboundChannel_1)’)

AdminTask.getTCPEndPoint

(’DCS(cells/rohitbuildCell01

/nodes/

rohitbuildCellManager01

/servers

/dmgr|server.xml#Chain_3)’)

Interactive mode example usage:

v Using Jacl:

$AdminTask getTCPEndPoint

 {-interactive}

v Using Jython:

AdminTask.getTCPEndPoint

 (’[-interactive]’)

570 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

import

Server

Configuration

archive

Operations

group

Use the

import

Server

command to

import a

server that

resides in a

configuration

archive to

the system.

This

command

imports all

the server

scope

configurations

defined in

the

configuration

archive to

system

configuration.

None v Parameters:

-archive

The fully

qualified path of

the configuration

archive. (String,

required)

-node InArchive

The node name

of the server

defined in the

configuration

archive. (String,

optional if there

is only one node

defined in the

configuration

archive, required

if there are

multiple nodes

defined in the

configuration

archive)

-server InArchive

The name of the

server defined in

the configuration

archive. (String,

optional if there

is only one

server defined on

the specified

nodeIn

Configuration

archive, required

if there are

multiple servers

defined under

the specified

nodeIn

Configuration

archive)

-nodeName

The node name

where the server

is imported.

(String, optional

if there is only

one node)

-serverName

The server name

where the server

is imported. If the

server name that

you specify

matches an

existing server

name under the

node, an

exception is

thrown. (String,

optional,

default:serve

Batch mode example usage:

v Using Jacl:

$AdminTask importServer

 {-archive

 c:\myServer.ear

-nodeInArchive node1

 -serverInArchive

server1}

v Using Jython:

AdminTask.importServer

(’[-archive

 c:\myServer.ear

-nodeInArchive node1

 -serverInArchive

server1]’)

Interactive mode example usage:

v Using Jacl:

$AdminTask importServer

 {-interactive}

v Using Jython:

AdminTask.importServer

 (’[-interactive]’)

Chapter 4. Using the administrative clients 571

import

Server

continued

v Parameters

continued:

-serverName

The server name

where the server

is imported. If the

server name that

you specify

matches an

existing server

name under the

node, an

exception is

thrown. (String,

optional,

default:serve

rInArchive)

-coreGroup

The core group

name to which

the server should

belong. (String,

optional)

v Returns: None

help None The help

command

provides a

summary of

the help

commands

and ways to

invoke an

administrative

command.

None v Parameters: None

v Returns: A general

help description

v Using Jacl:

$AdminTask help

v Using Jython:

print AdminTask.help()

help None The help

command

provides a

list of

available

administrative

commands

if the option

string is

-commands

or

administrative

command

groups if the

option string

is -command

Groups.

Valid options

include

-commands

and

-command

Groups.

None v Parameters:

- options

v Returns: A summary

of all available

administrative

commands.

v Using Jacl:

$AdminTask help -commands

v Using Jython:

AdminTask.help(’-commands’)

572 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

help None If you

provide the

step name,

this

command

provides

help

information

for a given

step of an

administrative

command.

Otherwise, it

provides

help

information

for a given

admin

command or

administrative

command

group. The

stepName

parameter is

optional.

None v Parameters:

– - commandName

– - stepName

v Returns: A summary

of the specified

command group,

administrative

command, or step.

v Using Jacl:

$AdminTask help

 createJ2CConnectionFactory

v Using Jython:

AdminTask.help

(’createJ2CConnectionFactory’)

import Was

profile

configuration

archive

Operations

group

Use the

import Was

profile

command to

import a cell

configuration

in the

configuration

archive to

the system.

Only a base

single

server

configuration

is supported

for this

command.

None v Parameters:

archive

The fully

qualified file path

of the

configuration

archive. (String,

required)

v Returns: Void

Batch mode example usage:

v Using Jacl:

$AdminTask importWasprofile

 {-archive c:\myCell.ear}

v Using Jython:

AdminTask.importWasprofile

(’[-archive

 c:\myCell.ear]’)

Interactive mode example usage:

v Using Jacl:

$AdminTask importWasprofile

 {-interactive}

v Using Jython:

AdminTask.importWasprofile

(’[-interactive]’)

Chapter 4. Using the administrative clients 573

is Node

ZOS

Managed

Object

Metadata

group

The is

Node ZOS

command

tests if a

node that

you specify

is running

on the z/OS

platform.

This

command

does not

apply to

distributed

platforms or

WebSphere

Application

Server-
Express.

None v Parameters:

- nodeName

The name of the

node associated

with the

metadata you

want this

command to

return.

v Returns: A true value

if the node operating

system is z/OS. A

false value if the

node operating

system is not z/OS.

Batch mode example usage:

v Using Jacl:

$AdminTask isNodeZOS

 {-nodeName node1}

v Using Jython:

AdminTask.isNodeZOS

(’[-nodeName node1]’)

Interactive mode example usage:

v Using Jacl:

$AdminTask isNodeZOS

{-interactive}

v Using Jython:

AdminTask.isNodeZOS

 (’[-interactive]’)

list Admin

Object

Interfaces

JCA

management

group

Use the list

Admin

Object

Interfaces

command to

list the

administrative

object

interfaces

defined

under the

resource

adapter that

you specify.

J2C

Resouce

adapter

object ID

v Parameters: None

v Returns: A list of

administrative object

interfaces.

Batch mode example usage:

v Using Jacl:

$AdminTask

listAdminObjectInterfaces

 $ra

v Using Jython:

AdminTask

.listAdminObjectInterfaces

(ra)

574 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

list Chain

Templates

Channel

Framework

Management

group

The list

Chain

Templates

command

displays a

list of

templates

that you can

use to

create

chains in

this

configuration.

All

templates

have a

certain type

of transport

channel as

the last

transport

channel in

the chain.

None v Parameters:

- acceptorFilter

The templates

returned by this

method all have

a transport

channel instance

of the specified

type as the last

transport channel

in the chain.

(String, optional)

v Returns: A list of all

the chain template

object names. If you

specify the

acceptorFilter

parameter, the list

that returns is filtered

to match the filter that

you specified.

Batch mode example usage:

v Using Jacl:

$AdminTask

listChainTemplates {}

$AdminTask

listChainTemplates

"-acceptorFilter

WebContainerInboundChannel"

v Using Jython:

AdminTask

.listChainTemplates()

AdminTask

.listChainTemplates

(’[-acceptorFilter

 WebContainerInboundChannel]’)

Interactive mode example usage:

v Using Jacl:

$AdminTask

 listChainTemplates

{-interactive}

v Using Jython:

AdminTask

.listChainTemplates

(’[-interactive]’)

Chapter 4. Using the administrative clients 575

list Chains Channel

Framework

Management

group

The list

Chains

command

lists all the

chains

configured

under a

particular

instance of

the transport

channel

service.

The

instance of

the transport

channel

service

under which

the chains

are

configured.

(Object

Name,

required)

v Parameters:

- acceptorFilter

The chains that

are returned by

this parameter

will have a

transport channel

instance of the

type that you

specify as the

last transport

channel in the

chain. (String,

optional)

- endPoint Filter:

The chains

returned by this

parameter will

have a TCP

inbound channel

using an end

point with the

name that you

specify.(String,

optional)

v Returns: A list of all

the channel chain

object names that

match the specified

filters. If no you do

not specify any

parameters, all of the

channel chains that

are configured under

the particular

instance of transport

channel service are

returned.

Batch mode example usage:

v Using Jacl:

$AdminTask listChains

(cells/rohitbuildCell01

/nodes/

rohitbuildNode01/servers

/server2

|server.xml#

TransportChannelService

_1093445762328)

$AdminTask listChains

 (cells/rohitbuildCell01

/nodes/

rohitbuildNode01/servers

/server2

|server.xml#

TransportChannelService

_1093445762328)

{-acceptorFilter

WebContainerInboundChannel}

$AdminTask listChains

(cells/rohitbuildCell01

/nodes/

rohitbuildNode01/servers

/server2

|server.xml#

TransportChannelService

_1093445762328)

{-endPointFilter

 WC_adminhost}

v Using Jython:

AdminTask.listChains(’

(cells/rohitbuildCell01

/nodes

/rohitbuildNode01/servers

/server2|server.xml

#TransportChannelService

_1093445762328)’)

AdminTask.listChains(’(

cells/rohitbuildCell01

/nodes

/rohitbuildNode01/servers

/server2|server.xml

#TransportChannelService

_1093445762328)’,

’[-acceptorFilter

 WebContainerInboundChannel]’)

AdminTask.listChains

(’(cells

/rohitbuildCell01/nodes

/rohitbuildNode01/servers

/server2

|server.xml

#TransportChannelService

_1093445762328)’,

 ’[-endPointFilter

 WC_adminhost]’)

Interactive mode example usage:

v Using Jacl:

$AdminTask listChains

 {-interactive}

v Using Jython:

AdminTask.listChains

 (’[-interactive]’)

576 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

list

Connection

Factory

Interfaces

JCA

management

group

Use the list

Connection

Factory

Interfaces

command to

list all of the

connection

factory

interfaces

defined

under the

Java 2

resource

adapter that

you specify.

J2C

Resource

Adapter

object ID

v Parameters: None

v Returns: A list of

connection factory

interfaces.

Batch mode example usage:

v Using Jacl:

$AdminTask

 listConnectionFactory

 Interfaces

$ra

v Using Jython:

AdminTask

.listConnectionFactory

 Interfaces

(ra)

list Core

Groups

Core

Group

Bridge

Management

group

The list

Core

Groups

command

returns a

collection of

core groups

that are

related to

the core

group that

you specify.

The name

of the core

group for

which the

related core

groups will

be listed.

(String,

required)

v Parameters:

- cgBridge Settings

The group bridge

settings object

for the cell.

(Object Name,

required)

v Returns: A set of core

group names.

Batch mode example usage:

v Using Jacl:

$AdminTask listCoreGroups

 DefaultCoreGroup

 "-cgBridgeSettings

 (cells/rohitbuildCell01

|coregroupbridge.xml#

CoreGroupBridgeSettings_1)"

v Using Jython:

AdminTask.listCoreGroups

(’DefaultCoreGroup’,

 ’[-cgBridgeSetting

 (cells/rohitbuildCell01

|coregroupbridge.xml

#CoreGroupBridgeSettings_1)]’)

Interactive mode example usage:

v Using Jacl:

$AdminTask listCoreGroups

{-interactive}

v Using Jython:

AdminTask.listCoreGroups

(’[-interactive]’)

Chapter 4. Using the administrative clients 577

list Eligible

Bridge

Interfaces

Core

Group

Bridge

Management

group

The list

Eligible

Bridge

Interfaces

command

returns a

collection of

node, server

and

transport

channel

chain

combinations

that are

eligible to

become

bridge

interfaces

for the

specified

core group

access

point.

The core

group

access point

object for

which bridge

interfaces

will be

listed.

(Object

Name,

required)

v Parameters: None

v Returns: A set of

bridge interfaces.

(Set of String) Each

bridge interface is

represented by a

combination of a

node, a server and a

DCS channel chain:

<node name>,

<server name>,

<DCS Channel Chain

objectName. For

example, an element

of the set returned by

this command may

look like the

following: rohitbuild

dmgr DCS-Secure

(cells

/rohitbuildCell

/nodes/rohitbuild

/servers

/dmgr|server.xml

#Chain_4)

Batch mode example usage:

v Using Jacl:

$AdminTask

 listEligibleBridgeInterfaces

 CGAP_DCG_2

(cells/rohitbuildCell01

|coregroupbridge.xml#

CoreGroupAccessPoint

_1089636614062)

v Using Jython:

AdminTask

.listEligibleBridgeInterfaces

(’CGAP_DCG_2

(cells/rohitbuildCell01

|coregroupbridge.xml#

CoreGroupAccessPoint

_1089636614062)’)

Interactive mode example usage:

v Using Jacl:

$AdminTask

 listEligibleBridgeInterfaces

{-interactive}

v Using Jython:

AdminTask

.listEligibleBridgeInterfaces

 (’[-interactive]’)

list J2C

Activation

Specs

JCA

management

group

Use the list

J2c

Activation

Specs

command to

list the

activation

specs

contained

under the

resource

adapter and

message

listener type

that you

specify.

J2C

Resource

Adapter

object ID

v Parameters:

-message

ListenerType

Specifies the

message listener

type for the

resource adapter

for which you are

making a list.

This parameter is

required.

v Returns: A list of

activation specs that

has specified

message Listener

type.

Batch mode example usage:

v Using Jacl:

$AdminTask

 listJ2CActivationSpecs

 $ra {-messageListenerType

 javax.jms

.MessageListener}

v Using Jython:

AdminTask

.listJ2CActivationSpecs

(ra, ’[-messageListenerType

 javax.jms

.MessageListener]’)

578 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

list J2C

Admin

Objects

JCA

Management

group

Use the list

J2C Admin

Objects

command to

list

administrative

objects that

contains the

administrative

object

interface

that you

specify.

J2C

Resource

Adapter

object ID

v Parameters:

-adminObject

Interface

Specifies the

administrative

object interface

for which you

want to list. This

parameter is

required.

v Returns: A list of

administrative objects

that has specified

adminObject

Interface.

Batch mode example usage:

v Using Jacl:

$AdminTask

listJ2CAdminObjects

 $ra {-adminObjectInterface

fvt.adaptor.message

.FVTMessageProvider}

v Using Jython:

AdminTask

.listJ2CAdminObjects

(ra,

’[-adminObjectInterface

 fvt.adaptor.message

.FVTMessageProvider]’)

list J2C

Connection

Factories

JCA

management

group

Use the list

J2C

Connection

Factories

command to

list the Java

2

connection

factories

under the

resource

adapter and

connection

factory

interface

that you

specify

J2C

Resource

Adapter

object ID

v Parameters:

-connection Factory

Interface

Indicates the

name of the

connection

factory that you

want to list. This

parameter is

required.

v Returns: A list of J2C

connection Factory

that has the specified

connection Factory

Interface.

Batch mode example usage:

v Using Jacl:

$AdminTask

 listJ2CConnectionFactories

$ra

 {-connectionFactoryInterface

 javax.sql.DataSource}

v Using Jython:

AdminTask

.listJ2CConnectionFactories

(ra,

’[-connectionFactoryInterface

 javax.sql.DataSource]’)

list

Managed

Nodes

Unmanaged

Node

Commands

group

Use the list

Managed

Nodes

command to

list the

managed

nodes

(nodes that

have a node

agent

defined) in a

configuration.

None v Parameters: None

v Returns: List

Batch mode example usage:

v Using Jacl:

$AdminTask listManagedNodes

v Using Jython:

AdminTask.listManagedNodes()

list

Message

Listener

Types

JCA

Management

group

Use the list

Message

Listener

Types

command to

list the

message

listener

types

defined

under the

resource

adapter that

you specify.

J2C

Resource

Adapter

object ID

v Parameters: None

v Returns: A list of

message listener

types.

Batch mode example usage:

v Using Jacl:

$AdminTask

listMessageListenerTypes

$ra

v Using Jython:

AdminTask

.listMessageListenerTypes

(ra)

Chapter 4. Using the administrative clients 579

list Node

Group

Properties

Node

Group

Commands

group

The list

Node

Group

Properties

command

displays all

of the

custom

properties of

a node

group.

The target

object is

name of the

node group.

This target

object is

required.

v Parameters: None

v Returns: A list of all

of the custom

properties of a node

group.

Batch mode example usage:

v Using Jacl:

$AdminTask

listNodeGroupProperties

 WBINodeGroup

v Using Jython:

AdminTask

.listNodeGroupProperties

(’WBINodeGroup’)

Interactive mode example usage:

v Using Jacl:

$AdminTask

listNodeGroupProperties

 {-interactive}

v Using Jython:

AdminTask

.listNodeGroupProperties

(’[-interactive]’)

list Node

Groups

Node

Group

Commands

group

The list

Node

Groups

command

returns the

list of node

groups from

the

configuration

repository.

You can

pass an

optional

node name

to the

command

that returns

the list of

node groups

where the

node

resides.

The target

object is

name of the

node. This

target object

is optional.

v Parameters: None

v Returns: A list of the

node groups in the

cell.

Batch mode example usage:

v Using Jacl:

$AdminTask listNodeGroups

$AdminTask listNodeGroups

 nodeName

v Using Jython:

AdminTask.listNodeGroups

AdminTask.listNodeGroups

(’nodeName’)

Interactive mode example usage:

v Using Jacl:

$AdminTask listNodeGroups

 {-interactive}

v Using Jython:

AdminTask.listNodeGroups

(’[-interactive]’)

580 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

list Nodes Node

Group

Commands

group

The list

Nodes

command

displays all

of the nodes

in the cell.

The target

object is

name of the

node group.

This target

object is

optional.

v Parameters: None

v Returns: A list of all

the nodes in the cell

Batch mode example usage:

v Using Jacl:

$AdminTask listNodes

v Using Jython:

AdminTask.listNodes()

Interactive mode example usage:

v Using Jacl:

$AdminTask listNodes

 {-interactive}

v Using Jython:

AdminTask.listNodes

 (’[-interactive]’)

list SIB

Destinations

SIB Admin

Commands

Use this

command to

get a list of

SIB

destinations

of the

named type

owned by a

named SIB

bus. If no

type is

named, all

destinations

owned by

the named

bus are

listed.

None v Parameters:

bus

Bus name

(String, required)

name

Destination name

(String, required)

type

type of

destination to list

- Queue,

TopicSpace,

WebService or

Port (String,

optional)

v Returns: List of SIB

destinations.

Batch mode example usage:

v Using Jacl:

$AdminTask

listSIBDestinations

 {-bus busname -name

destname -type Queue}

v Using Jython:

AdminTask

.listSIBDestinations

(’[-bus busname -name

 destname -type Queue]’)

Interactive mode example usage:

v Using Jacl:

$AdminTask

listSIBDestinations

 {-interactive}

v Using Jython:

AdminTask

.listSIBDestinations

 (’[-interactive]’)

Chapter 4. Using the administrative clients 581

list SIB

Engines

SIB Admin

Commands

Use the list

SIB

Engines

command to

get a list of

bus

messaging

engines.

Supplying

only the bus

parameter

will result in

a list of all

engines

associated

with the

named bus.

Supplying

only the

node and

server

parameters

will result in

a list of all

engines

owned by

the named

node/server.

Supplying

only the

cluster

parameter

will result in

a list of all

engines

owned by

the named

cluster. All

other

parameter

combinations

are illegal.

None v Parameters:

bus

name of the bus

whose engines

are to be listed

(String, optional)

node

node name. To

list messaging

engines on a

server, supply

node and server

name, but not

cluster name

(String, optional)

server

server name. To

list messaging

engines on a

server, supply

node and server

name, but not

cluster name

(String, optional)

cluster

cluster name. To

list messaging

engines on a

cluster, supply

cluster name, but

not node and

server name

(String, optional)

v Returns: A list of SIB

messaging engines.

Batch mode example usage:

v Using Jacl:

$AdminTask

listSIBEngines {-bus

 busname -node

nodeName

 -server severname}

v Using Jython:

AdminTask.listSIBEngines

(’[-bus

 busname -node

nodeName

 -server severname]’)

Interactive mode example usage:

v Using Jacl:

$AdminTask listSIBEngines

{-interactive}

v Using Jython:

AdminTask.listSIBEngines

(’[-interactive]’)

list SIB

JMS

Activation

Specs

SIB JMS

Admin

Commands

Interactive mode example usage:

v Using Jacl:

$AdminTask

 listSIBJMSActivationSpecs

 {-interactive}

v Using Jython:

AdminTask

.listSIBJMSActivationSpecs

 (’[-interactive]’)

582 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

list SIB

JMS

Connection

Factories

SIB JMS

Admin

Commands

Use the list

SIB JMS

Connection

Factories

command to

list all of the

JMS

connection

factories for

the default

messaging

provider at

the scope

that you

specify.

None v Parameters:

type

Filters the list of

connection

factories. Valid

values include:

– all - Lists all

the JMS

connection

factories

(unified,

queue, and

topic) at the

scope that

you specify.

– queue - Lists

all of the JMS

queue

connection

factories at

the scope that

you specify.

– topic - Lists

all of the JMS

topic

connection

factories at

the scope that

you specify.

If you do no

specify the type

option, this

command will

return only the

unified JMS

connection

factories at the

scope that you

specified.

v Returns: A list of

connection factories

at the scope that you

specified.

Batch mode example usage:

v Using Jacl:

$AdminTask

listSIBJMSConnectionFactories

 {-type queue}

v Using Jython:

AdminTask

.listSIBJMSConnectionFactories

(’[-type queue]’)

Interactive mode example usage:

v Using Jacl:

$AdminTask

 listSIBJMSConnectionFactories

 {-interactive}

v Using Jython:

AdminTask

.listSIBJMSConnectionFactories

 (’[-interactive]’)

list SIB

JMS

Queues

SIB JMS

Admin

Commands

Use the list

SIB JMS

Queues

command to

list all the

JMS queues

for the

default

messaging

provider at

the specified

scope.

None v Parameters: None

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask listSIBJMSQueues

v Using Jython:

AdminTask.listSIBJMSQueues()

Chapter 4. Using the administrative clients 583

list SIB

JMS Topics

SIB JMS

Admin

Commands

Lists all

JMS topics

for the

default

messaging

provider at

the specified

scope.

None v Parameters: None

v Returns: A list of JMS

topics.

Batch mode example usage:

v Using Jacl:

$AdminTask listSIBJMSTopics

v Using Jython:

AdminTask.listSIBJMSTopics()

list SIB

Mediations

SIB Admin

Commands

Use this

command to

list the

mediations

on a named

SIB bus.

None v Parameters:

bus

name of the SIB

bus where the

mediations to be

listed are to be

found (String,

required)

v Returns: A list of SIB

mediations.

Batch mode example usage:

v Using Jacl:

$AdminTask listSIBMediations

 {-bus bus_name}

v Using Jython:

AdminTask.listSIBMediations

(’[-bus bus_name]’)

Interactive mode example usage:

v Using Jacl:

$AdminTask

listSIBMediations

{-interactive}

v Using Jython:

AdminTask

.listSIBMediations

(’[-interactive]’)

list SI Bus

Members

SIB Admin

Commands

Use this

command to

list all

servers and

clusters

which are

members of

the named

SIB bus.

None v Parameters:

bus

name of the SIB

bus whose

members are to

be listed (String,

required)

v Returns: List

containing the IDs of

bus members –

servers and clusters.

Batch mode example usage:

v Using Jacl:

$AdminTask

listSIBusMembers

 {-bus bus_name}

v Using Jython:

AdminTask

.listSIBusMembers

(’[-bus bus_name]’)

Interactive mode example usage:

v Using Jacl:

$AdminTask

 listSIBusMembers

 {-interactive}

v Using Jython:

AdminTask

.listSIBusMembers

 (’[-interactive]’)

list SI

Buses

SIB Admin

Commands

Use this

command to

list all SIB

buses in the

cell.

None v Parameters: None

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask listSIBuses

v Using Jython:

AdminTask.listSIBuses()

584 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

list SSL

Repertoires

None The list

SSL

Repertoires

command

lists all of

the Secure

Sockets

Layer (SSL)

configuration

instances

you can

associate

with an SSL

inbound

channel.

SSL

Inbound

Channel

instance for

which the

SSL Config

candidates

are listed.

v Parameters: None

v Returns: A list of

eligible SSL

configuration object

names.

Batch mode example usage:

v Using Jacl:

$AdminTask

 listSSLRepertoires

SSL_3

(cells/rohitbuildCell01/

nodes/rohitbuildNode01

/servers

/server2|server.xml

#SSLInbound

Channel_1093445762330)

v Using Jython:

AdminTask

.listSSLRepertoires

(’SSL_3(cells

/rohitbuildCell01

/nodes/rohitbuildNode01

/servers

/server2|server.xml

#SSLInboundChannel

_1093445762330)’)

Interactive mode example usage:

v Using Jacl:

$AdminTask

listSSLRepertoires

 {-interactive}

v Using Jython:

AdminTask

.listSSLRepertoires

(’[-interactive]’)

list Server

Templates

None Use the list

Server

Templates

command to

query

available

server

templates

based on

server type,

platform, or

release

level.

None v Parameters:

-serverType

(String, optional)

-platform

(String, optional)

-release Version

(String, optional)

v Returns: A list of

server template

identifications that

match with the

criteria that you

specify with the

command

parameters. If you do

no specify any

parameters, all server

templates are

returned.

Batch mode example usage:

v Using Jacl:

$AdminTask

 listServerTemplates

 {-serverType server_Type}

v Using Jython:

AdminTask

.listServerTemplates

(’[-serverType server_Type]’)

Interactive mode example usage:

v Using Jacl:

$AdminTask

 listServerTemplates

 {-interactive}

v Using Jython:

AdminTask

.listServerTemplates

 (’[-interactive]’)

Chapter 4. Using the administrative clients 585

list Server

Types

None Use the list

Server

Types

command to

query

defined

server types

on a node.

The

identification

of a node in

the cell,

javax

.management.ObjectName.

This target

object is

optional.

v Returns: A list of

server types that you

can define on a node.

If you do not specify

the target object, this

command returns all

of the server types

defined in the entire

cell.

Interactive mode example usage:

v Using Jacl:

$AdminTask listServerTypes

{-interactive}

v Using Jython:

AdminTask.listServerTypes

 (’[-interactive]’)

list Servers Interactive mode example usage:

v Using Jacl:

$AdminTask listServers

 {-interactive}

v Using Jython:

AdminTask.listServers

(’[-interactive]’)

list TAM

Settings

Interactive mode example usage:

v Using Jacl:

$AdminTask listTAMSettings

{-interactive}

v Using Jython:

AdminTask.listTAMSettings

(’[-interactive]’)

586 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

list TCP

End Points

None The list

TCP End

Points

command

lists all

named end

points that

can be

associated

with a TCP

inbound

channel.

TCP

Inbound

Channel

instance for

which

named end

points

candidates

are listed.

(ObjectName,

required)

v Parameters:

- exclude

Distinguished

Shows only

non-distinguished

named end

points. This

parameter does

not require a

value. (Boolean,

optional)

- unusedOnly

Shows the

named end

points not in use

by other TCP

inbound channel

instances. This

parameter does

not require a

value. (Boolean,

optional)

v Returns: A list of

object names for the

eligible named end

points.

Batch mode example usage:

v Using Jacl:

$AdminTask

listTCPEndPoints

TCP_1(cells

/rohitbuildCell01/

nodes

/rohitbuildCellManager01

/servers

/dmgr|server.xml#

TCPInboundChannel_1)

$AdminTask

 listTCPEndPoints

TCP_1(cells

/rohitbuildCell01/

nodes

/rohitbuildCellManager01

/servers

/dmgr|server.xml#

TCPInboundChannel_1)

{-excludeDistinguished}

$AdminTask

 listTCPEndPoints

TCP_1(cells

/rohitbuildCell01/

nodes

/rohitbuildCellManager01

/servers

/dmgr|server.xml

#TCPInboundChannel_1)

{-excludeDistinguished

-unusedOnly}

v Using Jython:

AdminTask

.listTCPEndPoints

(’TCP_1

(cells/rohitbuildCell01

/nodes

/rohitbuildCellManager01

/servers

/dmgr|server.xml

#TCPInboundChannel_1)’,

 ’[-excludeDistinguished]’)

AdminTask

.listTCPEndPoints

(’TCP_1(cells

/rohitbuildCell01/

nodes

/rohitbuildCellManager01

/servers

/dmgr|server.xml#

TCPInboundChannel_1)’,

 ’[-excludeDistinguished]’)

AdminTask.listTCPEndPoints

(’TCP_1

(cells/rohitbuildCell01

/nodes

/rohitbuildCellManager01

/servers/dmgr|server.xml

#TCPInboundChannel_1)’,

’[-excludeDistinguished

 -unusedOnly]’)

Chapter 4. Using the administrative clients 587

list TCP

End Points

continued

Interactive mode example usage:

v Using Jacl:

$AdminTask

listTCPEndPoints

{-interactive}

v Using Jython:

AdminTask

.listTCPEndPoints

 (’[-interactive]’)

list TCP

Thread

Pools

None The list

TCP Thread

Pools

command

lists all of

the thread

pools that

can be

associated

with a TCP

inbound

channel or

TCP

outbound

channel.

TCP

Inbound

Channel or

TCP

Outbound

Channel

instance for

which

Thread Pool

candidates

are listed.

(Object

Name,

required)

v Parameters: None

v Returns: A list of

eligible thread pool

object names.

Batch mode example usage:

v Using Jacl:

$AdminTask

listTCPThreadPools

TCP_1(cells

/rohitbuildCell01/

nodes

/rohitbuildCellManager01

/servers/dmgr|server.xml#

TCPInboundChannel_1)

v Using Jython:

AdminTask

.listTCPThreadPools

(’TCP_1(cells

/rohitbuildCell01/

nodes

/rohitbuildCellManager01

/servers

/dmgr|server.xml#

TCPInboundChannel_1)’)

Interactive mode example usage:

v Using Jacl:

$AdminTask

listTCPThreadPools

{-interactive}

v Using Jython:

AdminTask

.listTCPThreadPools

 (’[-interactive]’)

588 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

list

Unmanaged

Nodes

Unmanaged

Node

Commands

group

Use the list

Unmanaged

Nodes

command to

list the

unmanaged

nodes in a

configuration.

None v Parameters: None

v Returns: List

Batch mode example usage:

v Using Jacl:

$AdminTask

 listUnmanagedNodes

v Using Jython:

AdminTask

.listUnmanagedNodes()

Interactive mode example usage:

v Using Jacl:

$AdminTask

 listUnmanagedNodes

{-interactive}

v Using Jython:

AdminTask

.listUnmanagedNodes

 (’[-interactive]’)

Chapter 4. Using the administrative clients 589

mediate

SIB

Destination

SIB Admin

Commands

Use the

mediate

SIB

Destination

command to

mediate a

bus

destination.

The bus,

destination,

and

mediation

definitions

must exist

prior to

using this

command.

The

destination

must not be

mediated

already.

None v Parameters:

bus

the name of the

bus where the

destination is to

be mediated

(String, required)

destinationName

the name of the

destination to be

mediated (String,

required)

mediationName

the name to be

given to the

mediation

(String, required)

node

if mediating a

destination to a

server, specify

the node and

server name, but

not the cluster

name (String,

optional)

server

if mediating a

destination to a

server, specify

the node and

server name, but

not the cluster

name (String,

optional)

cluster

if mediating a

destination to a

cluster, specify

the cluster name,

but not the node

or server name

(String, optional)

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask mediateSIBDestination

 {-bus busname -name

 destname -mediationName

mediationName}

v Using Jython:

AdminTask.mediateSIBDestination

(’[-bus busname -name

 destname -mediationName

mediationName]’)

Interactive mode example usage:

v Using Jacl:

$AdminTask mediateSIBDestination

{-interactive}

v Using Jython:

AdminTask.mediateSIBDestination

(’[-interactive]’)

590 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

modify

Node

Group

Node

Group

Commands

group

The modify

Node

Group

command

modifies the

configuration

of a node

group. The

node group

name can

not be

changed.

However, its

short name

and

description

are allowed.

Also, its

node

membership

can be

modified.

The target

object is the

node group

name. This

target object

is required.

v Parameters:

- shortName

The short name

of the node

group. This

parameter is

optional.

- description

The description

of the node

group. This

parameter is

optional.

v Returns: Node group

object ID.

Batch mode example usage:

v Using Jacl:

$AdminTask modifyNodeGroup

WBINodeGroup {-shortName WBIGroup

 -description "Default node group"}

v Using Jython:

AdminTask.modifyNodeGroup

WBINodeGroup(’[-shortName WBIGroup

 -description "WBI" node

 group]’)

Interactive mode example usage:

v Using Jacl:

$AdminTask modifyNodeGroup

 {-interactive}

v Using Jython:

AdminTask.modifyNodeGroup

 (’[-interactive]’)

modify

Node

Group

Property

Node

Group

Commands

group

The modify

Node

Group

Property

command

modifies

custom

properties

for a node

group

The name

of the node

group. This

target object

is required.

v Parameters:

- name

The name of the

custom property

to modify. This

parameter is

required.

- value

The value of the

custom property.

This parameter is

optional.

- description

The description

of the custom

property. This

parameter is

optional.

v Returns: Properties

object ID

Batch mode example usage:

v Using Jacl:

$AdminTask modifyNodeGroupProperty

 WBINodeGroup {-name Channel -value

 "channel1"}

v Using Jython:

AdminTask.modifyNodeGroupProperty

(’WBINodeGroup’, ’[-name Channel

 -value channel1]’)

Interactive mode example usage:

v Using Jacl:

$AdminTask modifyNodeGroupProperty

 {-interactive}

v Using Jython:

AdminTask.modifyNodeGroupProperty

 (’[-interactive]’)

Chapter 4. Using the administrative clients 591

modify SIB

Destination

SIB Admin

Commands

Use the

modify SIB

Destination

command to

modify the

attributes of

a SIB

destination.

The bus and

name

parameters

are used to

identify the

SIB

destination

and cannot

be modified.

None v Parameters:

bus

bus name

(String, required)

name

destination name

(String, required)

description

description

(String, optional)

reliability

the reliability

quality of service

for message

flows through

this destination,

from

BEST_EFFORT

_NON-
PERSISTENT to

ASSURED

_PERSISTENT,

in order of

increasing

reliability. Higher

levels of

reliability have

higher impacts

on the

performance

(String, optional)

maxReliability

the maximum

reliability quality

of service that is

accepted for

values specified

by producers

(String, optional)

overrideOf QOSBy

ProducerAllowed

controls the

quality of service

for message

flows between

producers and

the destination.

Select this option

to use the quality

of service

specified by

producers

instead of the

quality defined

for the

destination

(String, optional)

Batch mode example usage:

v Using Jacl:

$AdminTask modifySIBDestination

 {-bus busname -name

destname}

v Using Jython:

AdminTask.modifySIBDestination

(’[-bus busname -name

destname]’)

Interactive mode example usage:

v Using Jacl:

$AdminTask modifySIBDestination

 {-interactive}

v Using Jython:

AdminTask.modifySIBDestination

 (’[-interactive]’)

592 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

modify SIB

Destination

continued

v Parameters:

defaultPriority

the default

priority for

message flows

through this

destination, in

the range 0

(lowest) through

9 (highest). This

default priority is

used for

messages that

do not contain a

priority value

(Integer, optional)

maxFailed

Deliveries

the maximum

number of times

that service tries

to deliver a

message to the

destination

before forwarding

it to the

exception

destination

(Integer, optional)

exception

Destination

the name of

another

destination to

which the system

sends a

message that

cannot be

delivered to this

destination within

the specified

maximum

number of failed

deliveries (String,

optional)

sendAllowed

clear this option

(setting it to

false) to stop

producers from

being able to

send messages

to this

destination

(String, optional)

receiveAllowed

clear this option

(setting it to

false) to prevent

consumers from

being able to

receive

messages from

Chapter 4. Using the administrative clients 593

modify SIB

Engine

SIB Admin

Commands

Use the

modify SIB

Engine

command to

modify the

attributes of

a bus

messaging

engine. The

bus, node,

server,

cluster and

engine

parameters

are used to

identify the

engine and

cannot be

modified. A

server can

only have

one

messaging

engine, so

when using

this

command to

modify a

messaging

engine from

a server

there‘s no

need to

supply the

engine

name.

However,

since a

cluster can

have more

than one

messaging

engine, the

engine‘s

name must

be supplied.

None v Parameters:

bus

the name of the

bus to which the

messaging

engine is to

belong (String,

required)

node

to modify a

messaging

engine on a

server, supply

node and server

name, but not

cluster name

(String, optional)

server

to modify a

messaging

engine on a

server, supply

node and server

name, but not

cluster name

(String, optional)

cluster

to modify a

messaging

engine on a

cluster, supply

cluster name, but

not node and

server name

(String, optional)

engine

the name of the

engine to be

modified. This is

only required if

the engine

belongs to a

cluster (String,

optional)

description

description of the

messaging

engine (String,

optional)

Batch mode example usage:

v Using Jacl:

$AdminTask modifySIBEngine

{-bus busname -node

 nodeName -server

 severname}

v Using Jython:

AdminTask.modifySIBEngine

(’[-bus busname -node

 nodeName -server

severname]’)

Interactive mode example usage:

v Using Jacl:

$AdminTask modifySIBEngine

{-interactive}

v Using Jython:

AdminTask.modifySIBEngine

(’[-interactive]’)

594 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

modify SIB

Engine

continued

v Parameters:

initialState

whether the

messaging

engine is started

or stopped when

the associated

application

server is first

started. Until

started, the

messaging

engine is

unavailable.

(Stopped |

Started) (String,

optional)

destination

HighMsgs

the maximum

total number of

messages that

the messaging

engine can place

on its message

points (Long,

optional)

v Returns: None

modify SIB

JMS

Activation

Spec

SIB JMS

Admin

Commands

Use the

modify SIB

JMS

Activation

Spec

command to

modify the

properties of

an activation

specification.

None v Parameters:

name

The name of the

activation

specification that

you want to

modify. (String,

(required)

propertyList

A list of

name-value

pairs. (required)

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask

 modifySIBJMSActivationSpec

 {-name specname

 -propertyList propertyList}

v Using Jython:

AdminTask.modifySIBJMSActivationSpec

(’[-name specname

 -propertyList propertyList]’)

Interactive mode example usage:

v Using Jacl:

$AdminTask

 modifySIBJMSActivationSpec

 {-interactive}

v Using Jython:

AdminTask.modifySIBJMSActivationSpec

 (’[-interactive]’)

Chapter 4. Using the administrative clients 595

modify SIB

JMS

Connection

Factory

SIB JMS

Admin

Commands

Use the

modify SIB

JMS

Connection

Factory

command to

modify a

unified JMS

connection

factory at

the current

scope.

None v Parameters:

name

The name of the

SIB JMS

connection

factory. (String,

required)

jndiName

The JNDI name

of the SIB JMS

connection

factory. (String,

required)

type

The type of

connection

factory to modify.

To modify a

queue

connection

factory, set the

value to Queue.

To modify a topic

connection

factory, set the

value to Topic. If

you want to

create a generic

connection

factory, do not

specify this

option. (String,

optional)

busName

the SIB bus

name (String,

optional)

category

Classifies or

groups the

connection

factory. (String,

optional)

clientID

A user-defined

string. Only

required for

durable

subscriptions.

(String, optional)

connection

Proximity

The proximity of

acceptable

messaging

engines. Valid

values include:

Bus, Host,

Cluster and

Server. (String,

optional)

description

Batch mode example usage:

v Using Jacl:

$AdminTask

 modifySIBJMSConnectionFactory

 {-name factory_name

 -jndiName jndi_name}

v Using Jython:

AdminTask

.modifySIBJMSConnectionFactory

(’[-name factory_name

 -jndiName jndi_name]’)

Interactive mode example usage:

v Using Jacl:

$AdminTask

 modifySIBJMSConnectionFactory

{-interactive}

v Using Jython:

AdminTask

.modifySIBJMSConnectionFactory

(’[-interactive]’)

596 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

modify SIB

JMS

Connection

Factory

continued

v Parameters:

durable

Subscription Home

The durable

subscription

home value.

(String, optional)

nonPersistent

Mapping

The

non-persistent

mapping value.

Valid values are

BestEffort

NonPersistent,

Express

NonPersistent,

Reliable

NonPersistent,

ReliablePersistent,

AssuredPersistent,

AsSIBDestination

and None.

(String, optional)

password

The password

that is used to

modify

connections from

the connection

factory. (String,

optional)

provider EndPoints

A list of endpoint

triplets separated

by commas. For

example:

host:port:

chain (String,

optional)

readAhead

The read ahead

value. Valid

values include:

Default,

AlwaysOn, and

AlwaysOff.

(String, optional)

remoteProtocol

The name of the

protocol used to

connect to a

remote

messaging

engine. (String,

optional)

remoteTarget

Group

(String, optional)

remoteTargetType

(String, optional)

Chapter 4. Using the administrative clients 597

modify SIB

JMS Queue

SIB JMS

Admin

Commands

Use the

modify SIB

JMS Queue

command to

modify a

unified JMS

queue at the

current

scope.

None v Parameters:

name

The name of the

SIB JMS queue.

(String, required)

jndiName

The JNDI name

of the SIB JMS

queue. (String,

required)

description

A description of

the SIB JMS

queue (String,

optional)

queueName

The name of the

underlying SIB

queue to which

the queue points

(String, required)

deliveryMode

The delivery

mode for

messages. Legal

values are

″Application″,

″NonPersistent″

and ″Persistent″

(String, optional)

timeToLive

the time in

milliseconds to

be used for

message

expiration (Long,

optional)

priority

the priority for

messages.

Whole number in

the range 0 to 9

(Integer, optional)

readAhead

read-ahead

value. Legal

values are

″AsConnection″,

″AlwaysOn″ and

″AlwaysOff″

(String, optional)

timeToLive

(optional)

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask modifySIBJMSQueue

 {-name queue_name

 -jndiName jndi_name

-queueName queue_name}

v Using Jython:

AdminTask.modifySIBJMSQueue

(’[-name queue_name

 -jndiName jndi_name

 -queueName queue_name]’)

Interactive mode example usage:

v Using Jacl:

$AdminTask modifySIBJMSQueue

{-interactive}

v Using Jython:

AdminTask.modifySIBJMSQueue

 (’[-interactive]’)

598 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

modify SIB

JMS Topic

SIB JMS

Admin

Commands

Use the

modify SIB

JMS Topic

command to

modify the

JMS topic at

the current

scope.

None v Parameters:

name

The name of the

SIB JMS topic

(String, required)

jndiName

the SIB JMS

topic’s JNDI

name (String,

required)

description

a description of

the SIB JMS

queue (String,

optional)

topicSpace

the name of the

underlying SIB

topic space to

which the topic

points (String,

required)

*topicName

the topic to be

used inside the

topic space (for

example,

stock/IBM)

(String, required)

deliveryMode

the delivery

mode for

messages. Legal

values are

″Application″,

″NonPersistent″

and ″Persistent″

(String, optional)

timeToLive

the time in

milliseconds to

be used for

message

expiration (Long,

optional)

priority

the priority for

messages.

Whole number in

the range 0 to 9

(Integer, optional)

Batch mode example usage:

v Using Jacl:

$AdminTask modifySIBJMSTopic

{-name topic_name -jndiName

 jndi_name -topicName

topic_name -topicSpace

 topicspace_name}

v Using Jython:

AdminTask.modifySIBJMSTopic

(’[-name topic_name

-jndiName jndi_name

-topicName topic_name

 -topicSpace topicspace_name]’)

Interactive mode example usage:

v Using Jacl:

$AdminTask modifySIBJMSTopic

 {-interactive}

v Using Jython:

AdminTask.modifySIBJMSTopic

(’[-interactive]’)

Chapter 4. Using the administrative clients 599

modify SIB

JMS Topic

continued

v Parameters:

readAhead

read-ahead

value. Legal

values are

″AsConnection″,

″AlwaysOn″ and

″AlwaysOff″

(String, optional)

busName

the name of the

bus on which the

topic resides

(String, optional)

v Returns: None

600 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

modify SIB

Mediation

SIB Admin

Commands

Use this

command to

modify the

attributes of

a SIB

mediation.

The bus and

mediation

Name

parameters

identify the

mediation

and cannot

be modified.

None v Parameters:

bus

the name of the

bus that owns

the mediation

(String, required)

mediationName

name of the

mediation to be

modified (String,

required)

description

description of the

mediation

(String, optional)

handlerList Name

the name of the

handler list that

was defined

when the

mediation was

deployed (String,

optional)

globalTransaction

whether or not a

global

transaction is

started for each

message

processed

(Boolean,

optional)

allowConcurrent

Mediation

whether or not to

apply the

mediation to

multiple

messages

concurrently, and

preserve

message

ordering

(Boolean,

optional)

selector

the text string

that must be

present in a

message for the

mediation to

process the

message (String,

optional)

discriminator

the text string

that must not be

present in a

message for the

mediation to

process the

message (String

Batch mode example usage:

v Using Jacl:

$AdminTask modifySIBMediation

 {-bus bus_name -jndiName

 jndi_name}

v Using Jython:

AdminTask.modifySIBMediation

(’[-bus bus_name

 -mediationName

 mediation_name]’)

Interactive mode example usage:

v Using Jacl:

$AdminTask modifySIBMediation

{-interactive}

v Using Jython:

AdminTask.modifySIBMediation

 (’[-interactive]’)

Chapter 4. Using the administrative clients 601

modify

SIBus

SIB Admin

Commands

Use this

command to

modify the

attributes of

the named

bus. He

“bus”

parameter

identifies the

bus to be

modified,

and is not

used to

change the

name of the

bus.

None v Parameters:

bus

name of bus to

modify (String,

required)

description

description of

bus modify

(String, optional)

secure

enable or disable

bus security

(Boolean,

optional)

interEngineAuthAlias

 name of the

authentication

alias used to

authorize

communication

between

messaging

engines on the

bus.

mediations

AuthAlias

name of the

authentication

alias used to

authorize

mediations to

access the bus

(String, optional)

protocol

the protocol used

to send and

receive

messages

between

messaging

engines, and

between API

clients and

messaging

engines (String,

optional)

Batch mode example usage:

v Using Jacl:

$AdminTask modifySIBus {-bus

 busname -description text -secure True

 -mediationsAuthAlias name

 -protocol protocol

 -discardOnDelete False}

v Using Jython:

AdminTask.modifySIBus

(’[-busbusname -description

 "text" -secure True

 -mediationsAuthAlias name

 -protocol protocol

 -discardOnDelete False]’)

Interactive mode example usage:

v Using Jacl:

$AdminTask modifySIBus

{-interactive}

v Using Jython:

AdminTask.modifySIBus

(’[-interactive]’)

602 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

modify

SIBus

continued

v Parameters:

discardOnDelete

indicate whether

or not any

messages left in

a queue’s data

store should be

discarded when

the queue is

deleted

(Boolean,

optional)

destination

HighMsgs

the maximum

number of

messages that

any queue on

the bus can hold

(Long, optional)

configuration

ReloadEnabled

indicate whether

configuration files

should be

dynamically

reloaded for this

bus (Boolean,

optional)

v Returns: None

Chapter 4. Using the administrative clients 603

modify

SIBus

Member

SIB Admin

Commands

Use this

command to

modify the

attributes of

the bus

member

identified by

the bus,

node, server

and cluster

parameters.

None v Parameters:

bus

name of bus to

which the

member

belongs(String,

required)

node

to specify a

server bus

member, supply

node and server

name, but not

cluster name

(String, optional)

server

to specify a

server bus

member, supply

node and server

name, but not

cluster name

(String, optional)

cluster

to specify a

cluster bus

member, supply

cluster name but

not node and

server name

(String, optional)

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask modifySIBusMember

{-bus busname -node

 nodename -server

 servername -description

 text}

v Using Jython:

AdminTask.modifySIBusMember

(’[-bus busname -node

nodename -server

 servername -description

 "text"]’)

Interactive mode example usage:

v Using Jacl:

$AdminTask modifySIBusMember

 {-interactive}

v Using Jython:

AdminTask.modifySIBusMember

 (’[-interactive]’)

604 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

move

Cluster To

Core Group

Core

Group

Management

group

The move

Cluster To

Core Group

command

moves all of

servers in a

cluster that

you specify

from a core

group to

another core

group. All of

the servers

in cluster

must be

members of

the same

core group.

None v Parameters:

- source

The name of the

core group that

contains the

cluster that you

want to move.

The core group

must exist prior

to running this

command. The

cluster that you

specify must be

a member of this

core group.

(String, required)

- target

The name of the

core group

where you want

to move the

cluster. (String,

required)

- clusterName

The name of the

cluster that you

want to move.

(String, required)

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask moveClusterToCoreGroup

{-source OldCoreGroup

 -target NewCoreGroup

-clusterName ClusterOne}

v Using Jython:

AdminTask.moveClusterToCoreGroup

(’[-source OldCoreGroup

 -target NewCoreGroup

 -clusterName ClusterOne]’)

Interactive mode example usage:

v Using Jacl:

$AdminTask moveClusterToCoreGroup

 {-interactive}

v Using Jython:

AdminTask.moveClusterToCoreGroup

(’[-interactive]’)

Chapter 4. Using the administrative clients 605

move

Server To

Core Group

Core

Group

Management

group

The move

Server To

Core Group

command

moves a

server to a

core group

that you

specify.

When the

server is

added to the

core group

that you

specify, it

will be

removed

from the

core group

where it

originally

resided.

None v Parameters:

- source

The name of the

core group that

contains the

server that you

want to move.

The core group

must already

exist with the

server that you

specify being a

member of the

core group.

(String, required)

- target

The name of the

core group

where you want

to move the

server. The core

group that you

specify must

exist prior to

running the

command.

(String, required)

- nodeName

The name of the

node that

contains the

server that you

want to move.

(String, required)

- serverName

The name of the

server that you

want to move.

(String, required)

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask moveServerToCoreGroup

 {-source OldCoreGroup

 -target NewCoreGroup

 -nodeName myNode -serverName

 myServer}

v Using Jython:

AdminTask.moveServerToCoreGroup

(’[-source OldCoreGroup

-target NewCoreGroup

-nodeName myNode -serverName

 myServer]’)

Interactive mode example usage:

v Using Jacl:

$AdminTask moveServerToCoreGroup

{-interactive}

v Using Jython:

AdminTask.moveServerToCoreGroup

 (’[-interactive]’)

606 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

publish SIB

WS

Inbound

Service

SIB Web

Services

group

The publish

SIB WS

Inbound

Service

command

publishes

the WSDL

document

for the

inbound

service and

the

associated

ports to the

registry and

business

defined by

the UDDI

Publication

object.

The object

name of the

inbound

service

object.

v Parameters:

uddiPublication

The name of the

UDDI publication

for the service.

(required)

userId

The user ID to

use to retrieve

the WSDL.

(optional)

password

The password to

use to retrieve

the WSDL.

(optional)

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask

 publishSIBWSInboundService

 $inService {-uddiPublication

 "MyUddi"}

v Using Jython:

AdminTask.publishSIBWSInboundService

(inService, ’[-uddiPublication

 MyUddi]’)

Interactive mode example usage:

v Using Jacl:

$AdminTask

 publishSIBWSInboundService

 {-interactive}

v Using Jython:

AdminTask.publishSIBWSInboundService

(’[-interactive]’)

reconfigure

TAM

Interactive mode example usage:

v Using Jacl:

$AdminTask reconfigureTAM

{-interactive}

v Using Jython:

AdminTask.reconfigureTAM

 (’[-interactive]’)

Chapter 4. Using the administrative clients 607

refresh SIB

WS

Inbound

Service

WSDL

SIB Web

Services

group

The refresh

SIB WS

Inbound

Service

WSDL

command

loads the

WSDL

document

from the

WSDL

Location

parameters

of the

inbound

service and

locates the

WSDL

Location

-specified

service

element. If

the service

element is

not present,

this

command

fails. If the

outbound

ports are

not a subset

of the ports

in the

loaded

WSDL

document,

this

command

fails.

If the WSDL

will be

retrieved

through a

proxy, the

server on

which the

command is

running

must have

the system

properties

that identify

the proxy

server set

correctly.

The object

name of the

inbound

service

object.

v Parameters:

userId

The user ID to

use to retrieve

the WSDL.

(optional)

password

The password to

use to retrieve

the WSDL.

(optional)

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask

 refreshSIBWSInboundServiceWSDL

 $inService

v Using Jython:

AdminTask

.refreshSIBWSInboundServiceWSDL

(inService)

Interactive mode example usage:

v Using Jacl:

$AdminTask

refreshSIBWSInboundServiceWSDL

{-interactive}

v Using Jython:

AdminTask

.refreshSIBWSInboundServiceWSDL

 (’[-interactive]’)

608 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

refresh SIB

WS

Outbound

Service

WSDL

SIB Web

Services

group

The refresh

SIB WS

Outbound

Service

WSDL

command

loads the

WSDL

document

from the

WSDL

Location

parameters

of the

outbound

service and

locates the

WSDL

Location

specified

service

element. If

the service

element is

not present,

this

command

fails. If the

outbound

ports are

not a subset

of the ports

in the

loaded

WSDL

document,

this

command

fails.

If the WSDL

will be

retrieved

through a

proxy, the

server on

which the

command is

running

must have

the system

properties

that identify

the proxy

server set

correctly.

The object

name of the

outbound

service

object.

v Parameters:

userId

The user ID to

use to retrieve

the WSDL.

(optional)

password

The password to

use to retrieve

the WSDL.

(optional)

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask

 refreshSIBWSOutboundServiceWSDL

 $outService

v Using Jython:

AdminTask

.refreshSIBWSOutboundServiceWSDL

(outService)

Interactive mode example usage:

v Using Jacl:

$AdminTask

refreshSIBWSOutboundServiceWSDL

 {-interactive}

v Using Jython:

AdminTask

.refreshSIBWSOutboundServiceWSDL

 (’[-interactive]’)

Chapter 4. Using the administrative clients 609

remove

Node

Group

Node

Group

Commands

group

The remove

Node

Group

command

removes the

configuration

of a node

group. You

can remove

a node

group if it

does not

contain any

members.

Also, the

default node

group can

not be

removed.

The name

of the node

group to be

removed.

This target

object is

required.

v Parameters: None

v Returns: Node group

object ID.

Batch mode example usage:

v Using Jacl:

$AdminTask removeNodeGroup

 WBINodeGroup

v Using Jython:

AdminTask.removeNodeGroup

(’WBINodeGroup’)

Interactive mode example usage:

v Using Jacl:

$AdminTask removeNodeGroup

 {-interactive}

v Using Jython:

AdminTask.removeNodeGroup

 (’[-interactive]’)

remove

Node

Group

Member

Node

Group

Commands

group

The remove

Node

Group

Member

command

removes the

configuration

of a node

group

member.

v A node

must

always be

a

member

of at least

one node

group.

v You

cannot

remove a

node

from a

node

group

that is

part of a

cluster in

that node

group.

The target

object is the

node group

containing

the member

to be

removed.

This target

object is

required.

v Parameters:

- nodeName

The name of the

node to be

removed from a

node group. This

parameter is

required.

v Returns: Node group

member object ID.

Batch mode example usage:

v Using Jacl:

$AdminTask removeNodeGroupMember

 WBINodeGroup {-nodeName WBINode}

v Using Jython:

AdminTask.removeNodeGroupMember

(’WBINodeGroup’,

 ’[-nodeName WBINode]’)

Interactive mode example usage:

v Using Jacl:

$AdminTask removeNodeGroupMember

 {-interactive}

v Using Jython:

AdminTask.removeNodeGroupMember

(’[-interactive]’)

610 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

remove

Node

Group

Property

Node

Group

Commands

group

The remove

Node

Group

Property

command

removes

custom

properties of

a node

group.

The name

of the node

group. This

target object

is required.

v Parameters:

- name

The name of the

custom property

to remove. This

parameter is

required.

v Returns: Properties

object ID

Batch mode example usage:

v Using Jacl:

$AdminTask removeNodeGroupProperty

 WBINodeGroup {-name Channel}

v Using Jython:

AdminTask.removeNodeGroupProperty

(’WBINodeGroup’,

 ’[-name Channel]’)

Interactive mode example usage:

v Using Jacl:

$AdminTask removeNodeGroupProperty

 {-interactive}

v Using Jython:

AdminTask.removeNodeGroupProperty

 (’[-interactive]’)

remove SIB

WS

Inbound

Port

SIB Web

Services

group

The remove

SIB WS

Inbound

Port

command

removes the

configuration

of an

inbound

port.

The object

name of the

inbound port

object that

you want to

remove.

v Parameters: None

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask removeSIBWSInboundPort

 $inPort

v Using Jython:

AdminTask

.removeSIBWSInboundPort(inPort)

Interactive mode example usage:

v Using Jacl:

$AdminTask removeSIBWSInboundPort

{-interactive}

v Using Jython:

AdminTask.removeSIBWSInboundPort

(’[-interactive]’)

Chapter 4. Using the administrative clients 611

remove SIB

WS

Outbound

Port

SIB Web

Services

group

The remove

SIB WS

Outbound

Port

command

removes the

configuration

of an

outbound

port. If the

port that you

delete is the

default port

for the

outbound

service, one

of the

remaining

ports, if any,

will be

chosen as

the new

default.

Resources

that are

associated

with the

outbound

port, for

example,

WS-Security

configuration,

are

disassociated

from the

outbound

port but not

deleted.

Object

name of the

outbound

port object

that you

want to

remove.

v Parameters: None

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask removeSIBWSOutboundPort

 $outPort

v Using Jython:

AdminTask.removeSIBWSOutboundPort

(outPort)

Interactive mode example usage:

v Using Jacl:

$AdminTask removeSIBWSOutboundPort

 {-interactive}

v Using Jython:

AdminTask.removeSIBWSOutboundPort

 (’[-interactive]’)

612 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

remove SI

Bus

Member

SIB Admin

Commands

Use this

command to

remove a

server or a

cluster from

a SIB bus.

As well as

removing

the server

or cluster

from the SIB

bus, this

command

also deletes

all SIB

messaging

engines

associated

with the

bus, all

queue

points and

publication

points

owned by

those

engines,

and all

queue point

references

and

publication

point

references

which refer

to the

deleted

queue

points and

publication

points.

None v Parameters:

bus

name of SIB bus

to remove

member from

(String, required)

node

to specify a

server bus

member, supply

node and server

name, but not

cluster name

(String, optional)

server

to specify a

server bus

member, supply

node and server

name, but not

cluster name

(String, optional)

cluster

to specify a

cluster bus

member, supply

cluster name but

not node and

server name

(String, optional)

v Returns:

Batch mode example usage:

v Using Jacl:

$AdminTask removeSIBusMember

{-bus busname -node

 nodename -server

servername}

v Using Jython:

AdminTask.removeSIBusMember

(’[-bus busname -node

nodename -server

 servername]’)

Interactive mode example usage:

v Using Jacl:

$AdminTask removeSIBusMember

 {-interactive}

v Using Jython:

AdminTask.removeSIBusMember

 (’[-interactive]’)

remove

Unmanaged

Node

Unmanaged

Node

Commands

group

Use the

remove

Unmanaged

Node

command to

remove an

unmanaged

node from

the

configuation.

None v Parameters:

- nodeName

The name of the

unmanaged

node. (String,

required)

v Returns: null

Batch mode example usage:

v Using Jacl:

$AdminTask removeUnmanagedNode

 {-nodeName myNode }

v Using Jython:

AdminTask.removeUnmanagedNode

(’[-nodeName myNode]’)

Interactive mode example usage:

v Using Jacl:

$AdminTask removeUnmanagedNode

 {-interactive}

v Using Jython:

AdminTask.createUnmanagedNode

 (’[-interactive]’)

Chapter 4. Using the administrative clients 613

remove WS

GW Target

Service

WS

Gateway

group

The remove

WS GW

Target

Service

command

removes a

target

service from

the gateway

service. The

destinations

that are

associated

with the

target

service are

not deleted.

If the target

service that

you remove

is the

default

target

service, the

default is

set to the

first target

service in

the set or

cleared if

there are

none left.

object name

of the Target

Service

object

v Parameters: None

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask removeWSGWTargetService

 $gwTarget

v Using Jython:

AdminTask.removeWSGWTargetService

(gwTarget)

Interactive mode example usage:

v Using Jacl:

$AdminTask removeWSGWTargetService

{-interactive}

v Using Jython:

AdminTask.removeWSGWTargetService

(’[-interactive]’)

set Default

SIB WS

Outbound

Port

SIB Web

Services

group

The set

Default SIB

WS

Outbound

Port

command

updates the

default

outbound

port for an

outbound

service.

The object

name of the

outbound

service

whose

default port

you want to

update.

v Parameters:

name

The name of the

port that you

want to set as

the default.

(required)

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask

 setDefaultSIBWSOutboundPort

 $outService {-name "MyServiceSoap"}

v Using Jython:

AdminTask

.setDefaultSIBWSOutboundPort

(outService, ’[-name MyServiceSoap]’)

Interactive mode example usage:

v Using Jacl:

$AdminTask

 setDefaultSIBWSOutboundPort

{-interactive}

v Using Jython:

AdminTask

.setDefaultSIBWSOutboundPort

 (’[-interactive]’)

614 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

show SIB

Destination

SIB Admin

Commands

Use the

show SIB

Destination

command to

get the

attribute

names/values

of a SIB

destination.

The bus and

name

parameter

identify the

SIB

destination

whose

attributes

are

required.

None v Parameters:

bus

bus name

(String, required)

name

destination name

(String, required)

v Returns: The attribute

names and values of

the named SIB

destination on the

named bus.

Batch mode example usage:

v Using Jacl:

$AdminTask showSIBDestination

{-bus busname -name

 destname}

v Using Jython:

AdminTask.showSIBDestination

(’[-bus busname -name

 destname]’)

Interactive mode example usage:

v Using Jacl:

$AdminTask showSIBDestination

 {-interactive}

v Using Jython:

AdminTask.showSIBDestination

(’[-interactive]’)

Chapter 4. Using the administrative clients 615

show SIB

Engine

SIB Admin

Commands

Use the

show SIB

Engine

command to

get the

attribute

names/values

of a SIB

messaging

engine

belonging to

a given bus

member. If

the bus

member is a

server, only

the bus,

node and

server

parameters

need be

supplied. A

server only

has 1

engine, so

the engine

parameter is

not

necessary. If

the bus

member is a

cluster, the

bus, cluster

and engine

parameters

must be

supplied,

since a

cluster can

have more

than one

engine.

None v Parameters:

bus

the name of the

bus to which the

messaging

engine to be

shown belongs

(String, required)

node

to show a

messaging

engine that

belongs to a

server, supply

node and server

name, but not

cluster name

(String, optional)

server

to show a

messaging

engine that

belongs to a

server, supply

node and server

name, but not

cluster name

(String, optional)

cluster

to show a

messaging

engine that

belongs to a

cluster, supply

cluster name, but

not node and

server name

(String, optional)

engine

The name of the

engine to show.

If the bus

member has only

one messaging

engine, you do

not need to

specify the

engine option. If

the bus member

has several

messaging

engines, you

must specify the

name of the

engine for which

you want to

display details.

(String, optional)

v Returns: The attribute

names and values of

the identified SIB

messaging engine.

Batch mode example usage:

v Using Jacl:

$AdminTask showSIBEngine {-bus

 busname -node nodeName

 -server severname}

v Using Jython:

AdminTask.showSIBEngine(’[-bus

 busname -node nodeName

 -server severname]’)

Interactive mode example usage:

v Using Jacl:

$AdminTask showSIBEngine

 {-interactive}

v Using Jython:

AdminTask.showSIBEngine

 (’[-interactive]’)

616 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

show SIB

JMS

Activation

Spec

SIB Admin

Commands

The show

SIB JMS

Activation

Spec

command

shows

details

about a

JMS

activation

specification.

None v Parameters:

bus

The name of the

bus that owns

the mediation

(String, required)

mediationName

The name of the

mediation to be

shown (String,

required)

v Returns: A list

Batch mode example usage:

v Using Jacl:

$AdminTask showSIBJMSActivationSpec

 {-bus bus_name

 -mediationName mediation_name}

v Using Jython:

AdminTask.showSIBJMSActivationSpec

(’[-bus bus_name

-mediationName

mediation_name]’)

Interactive mode example usage:

v Using Jacl:

$AdminTask showSIBJMSActivationSpec

 {-interactive}

v Using Jython:

AdminTask.showSIBJMSActivationSpec

(’[-interactive]’)

show SIB

JMS

Connection

Factory

SIB JMS

Admin

Commands

The show

SIB JMS

Connection

Factory

command

shows

details

about a

JMS

connection

factory.

None v Parameters:

name

The name of the

SIB JMS

connection

factory (String,

required)

v Returns: A set of

property value pairs

for the JMS

connection factory

that you specified.

Batch mode example usage:

v Using Jacl:

$AdminTask

 showSIBJMSConnectionFactory

{-name factory_name}

v Using Jython:

AdminTask

.showSIBJMSConnectionFactory

(’[-name factory_name]’)

Interactive mode example usage:

v Using Jacl:

$AdminTask

showSIBJMSConnectionFactory

 {-interactive}

v Using Jython:

AdminTask

.showSIBJMSConnectionFactory

 (’[-interactive]’)

Chapter 4. Using the administrative clients 617

show SIB

JMS Queue

SIB JMS

Admin

Commands

Use the

show SIB

JMS Queue

command to

show the

details

about a

JMS queue.

None v Parameters:

name

The name of the

SIB JMS queue.

(String, required)

v Returns: A set of

property value pairs

for the JMS queue

that you specified.

Batch mode example usage:

v Using Jacl:

$AdminTask showSIBJMSQueue

 {-name queue_name}

v Using Jython:

AdminTask.showSIBJMSQueue

(’[-name queue_name]’)

Interactive mode example usage:

v Using Jacl:

$AdminTask showSIBJMSQueue

 {-interactive}

v Using Jython:

AdminTask.showSIBJMSQueue

(’[-interactive]’)

show SIB

JMS Topic

SIB JMS

Admin

Commands

Use this

command to

show the

details for a

JMS topic.

None v Parameters:

- name

The name of the

SIB JMS topic

(String, required)

v Returns: A set of

property value pairs

for the JMS topic that

you specified.

Batch mode example usage:

v Using Jacl:

$AdminTask showSIBJMSTopic

{-name topic_name}

v Using Jython:

AdminTask.showSIBJMSTopic

(’[-name topic_name]’)

Interactive mode example usage:

v Using Jacl:

$AdminTask showSIBJMSTopic

{-interactive}

v Using Jython:

AdminTask.showSIBJMSTopic

(’[-interactive]’)

show SIB

Mediation

SIB Admin

Commands

Use this

command to

get the

attribute

names/values

of a SIB

mediation.

None v Parameters:

bus

the name of the

bus that owns

the mediation

(String, required)

mediationName

the name of the

mediation to be

shown (String,

required)

v Returns: The attribute

names and values of

the identified SIB

mediation.

Batch mode example usage:

v Using Jacl:

$AdminTask showSIBMediation

 {-bus bus_name

 -mediationName mediation_name}

v Using Jython:

AdminTask.showSIBMediation

(’[-bus bus_name

-mediationName

 mediation_name]’)

Interactive mode example usage:

v Using Jacl:

$AdminTask showSIBMediation

 {-interactive}

v Using Jython:

AdminTask.showSIBMediation

 (’[-interactive]’)

618 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

show SIBus SIB Admin

Commands

Use this

command to

get the

attribute

names/values

of a SIB

bus.

None v Parameters:

bus

bus name

(String, required)

v Returns: The attribute

names and values of

the identified SIB

bus.

Batch mode example usage:

v Using Jacl:

$AdminTask showSIBus {-bus

bus_name}

v Using Jython:

AdminTask.showSIBus(’[-bus

bus_name]’)

Interactive mode example usage:

v Using Jacl:

$AdminTask showSIBus {-interactive}

v Using Jython:

AdminTask.showSIBus

 (’[-interactive]’)

show SIBus

Member

SIB Admin

Commands

Use this

command to

get the

attribute

names/values

of a SIB bus

member.

None v Parameters:

bus

name of bus to

show member

from (String,

required)

node

to specify a

server bus

member, supply

node and server

name, but not

cluster name

(String, optional)

server

to specify a

server bus

member, supply

node and server

name, but not

cluster name

(String, optional)

cluster

to specify a

cluster bus

member, supply

cluster name but

not node and

server name

(String, optional)

v Returns: The attribute

names and values of

the identified SIB bus

member.

Batch mode example usage:

v Using Jacl:

$AdminTask showSIBusMember

 {-bus busname -node

 nodename -server

 servername}

v Using Jython:

AdminTask.showSIBusMember

(’[-bus busname -node

nodename -server

servername]’)

Interactive mode example usage:

v Using Jacl:

$AdminTask showSIBusMember

 {-interactive}

v Using Jython:

AdminTask.showSIBusMember

(’[-interactive]’)

Chapter 4. Using the administrative clients 619

show

Server Info

Interactive mode example usage:

v Using Jacl:

$AdminTask showServerInfo

{-interactive}

v Using Jython:

AdminTask.showServerInfo

 (’[-interactive]’)

show

Server

Type Info

Interactive mode example usage:

v Using Jacl:

$AdminTask showServerTypeInfo

{-interactive}

v Using Jython:

AdminTask.showServerTypeInfo

 (’[-interactive]’)

show

Template

Info

None Use the

show

Template

Info

command to

query

metadata

information

for a

specific

template.

This

command

will only

work for

server

templates.

The

identification

of a server

template,

javax

.management

.ObjectName.

This target

object is

required.

v Returns: A property

object that holds the

metadata information

regarding a specific

template.

Interactive mode example usage:

v Using Jacl:

$AdminTask showTemplateInfo

{-interactive}

v Using Jython:

AdminTask.showTemplateInfo

 (’[-interactive]’)

unconfig-

ure TAM

Interactive mode example usage:

v Using Jacl:

$AdminTask unconfigureTAM

 {-interactive}

v Using Jython:

AdminTask.unconfigureTAM

(’[-interactive]’)

620 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

unmediate

SIB

Destination

SIB Admin

Commands

Use this

command to

unmediated

the named

destination

on the

named bus.

Unmediating

a

destination

simply

removes the

association

between a

SIB

destination

and a SIB

mediation.

None v Parameters:

bus

the name of the

bus where the

destination is

currently

mediated (String,

required)

destinationName

the name of the

destination to be

unmediated

(String, required)

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask unmediateSIBDestination

{-bus bus_name

 -destinationName

destination_name}

v Using Jython:

AdminTask.unmediateSIBDestination

(’[-bus bus_name

 -destinationName

 destination_name]’)

Interactive mode example usage:

v Using Jacl:

$AdminTask unmediateSIBDestination

 {-interactive}

v Using Jython:

AdminTask.unmediateSIBDestination

 (’[-interactive]’)

unpublish

SIB WS

Inbound

Service

SIB Web

Services

group

The

unpublish

SIB WS

Inbound

Service

command

removes the

WSDL

document

for the

inbound

service,

including the

ports, from

the registry

and

business

defined by

the UDDI

publication

object.

The object

name of the

inbound

service

object.

v Parameters:

uddi Publication

The name of the

UDDI publication

for the service.

(required)

userId

The user ID to

use to retrieve

the WSDL.

(optional)

password

The password to

use to retrieve

the WSDL.

(optional)

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask

 unpublishSIBWSInboundService

 $inService {-uddiPublication

 "MyUddi"}

v Using Jython:

AdminTask

.unpublishSIBWSInboundService

(inService, ’[-uddiPublication

MyUddi]’)

Interactive mode example usage:

v Using Jacl:

$AdminTask

 unpublishSIBWSInboundService

 {-interactive}

v Using Jython:

AdminTask

.unpublishSIBWSInboundService

(’[-interactive]’)

Chapter 4. Using the administrative clients 621

update App

On Cluster

None The update

App On

Cluster

command

can be used

to

synchronize

nodes and

restart

cluster

members for

an

application

update

deployed to

a cluster.

After

application

update, this

command

can be used

to

synchronize

the nodes

without

stopping all

the cluster

members on

all the

nodes at

one time.

This

command

synchronizes

one node at

a time. Each

node is

synchronized

by first

stopping the

cluster

members on

which the

application

is targetted

and then

performing

nodesync

operation

and then

restarting

the cluster

members.

None v Parameters:

-Application Names

The names of

the applications

that are updated.

-timeout

The timeout

value in seconds

for each node

synchronization.

The default is

300 seconds.

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask updateAppOnCluster

 {-ApplicationNames app1}

$AdminTask updateAppOnCluster

 { -ApplicationNames app1

 -timeout 600}

v Using Jython:

AdminTask.updateAppOnCluster

(’[-ApplicationNames app1]’)

AdminTask.updateAppOnCluster

(’[-ApplicationNames app1 -timeout 600]’)

Interactive mode example usage:

v Using Jacl:

$AdminTask updateAppOnCluster

 -interactive

v Using Jython:

AdminTask.updateAppOnCluster

 (’[-interactive]’)

622 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

update App

On Cluster

This

command

may take

more than

the default

connector

timeout

period

depending

on the

number of

nodes that

the target

cluster

spans. Be

sure to set

proper

timeout

values in

the

soap.client

.props file,

when a

SOAP

connector is

used, and in

the

sas.client

.props file,

when a RMI

connector is

used.

This

command is

not

supported in

local mode.

Administrative command invocation syntax

You can use an administrative command in batch mode or interactive mode. The following is the syntax for

using an administrative command:

Using Jacl:

$AdminTask cmdName [targetObject] [options]

where options include:

{

 [-paramName paramValue] [-paramName] ...

 [-stepName {{stepParamValue ...} ...} ...]

 [-delete {-stepName {{stepKeyParamValue ...} ...} ...} ...]

 [-interactive]

}

Using Jython:

AdminTask.cmdName([’targetObject‘], [options])

where options include:

Chapter 4. Using the administrative clients 623

’[

[-paramName paramValue] [-paramName ...]

[-stepName [[stepParamValue ...] ...] ...]

[-delete [-collectionStepName [[stepKeyParamValue ...] ...] ...] ...]

[-interactive]

]‘

where:

 cmdName represents the name of an administrative command to be run.

targetObject represents the target object on which the command operates. Depending on the

administrative command, this input can be required, optional, or nonexistent.

This input corresponds to the Target object that is displayed in the

command-specific help.

paramName represents the parameter name of the executed command. Depending on the

administrative command, this input can be required, optional, or nonexistent.

Each parameter name corresponds to an argument name that is displayed in the

Arguments area of the command specific help.

paramValue represents the parameter value to set for the preceding parameter name.

Parameters are specified as name-value pairs. The parameter value is not

required if a parameter has Boolean as its value type. If you specify the

parameter name only, without specifying a value for a Boolean type parameter,

the value is set to true.

stepName represents the step name of the command. This input corresponds to a step

name that is displayed in the Steps area of the command-specific help.

stepParamValue ... represents the values of the parameters for a step. Provide all the parameter

values of a step in the correct order as displayed in the step-specific help. For

any optional parameters that you do not want to specify a value, put ″″ instead

of the value. If a command step is a collection type, for example, it contains

multiple objects where each object has the same set of parameters, then you

can specify multiple objects with each object enclosed by a pair of braces. For

collection type steps, each step parameter is a key or non-key. Key parameters

in a step are used to uniquely identify an object in the collection. If data exists in

the step, key parameter values that are provided in the input are compared with

key parameter values in the existing data. If a match is found, the existing data

is updated. Otherwise, if the specified step allows the addition of new objects,

the input values are added.

delete represents the option to delete existing data from specified step that supports

collection.

collectionStepName represents the collection step name .

stepKeyParamValue ... represents the values of key parameters to uniquely identify an object to be

deleted from a collection step. You must provide the key parameter values of an

object in the order that they are displayed in the step specific help.

interactive represents the option to enter interactive mode.

[] represents a Jython list bracket.

[] indicates that the parameters or options inside the brackets are optional. Do not

type these brackets as part of the syntax.

Properties used by scripted administration

This article explains the Java properties that are used by scripted administration. Three levels of default

property files load before any property file that is specified on the command line. The first level represents

an installation default, located in the properties directory for each WebSphere Application Server profile

called wsadmin.properties. The second level represents a user default, and is located in the Java

user.home property. This properties file is also called wsadmin.properties. The third level is a properties

file that is pointed to by the WSADMIN_PROPERTIES environment variable. This environment variable is

624 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

defined in the environment where the wsadmin tool starts. If one or more of these property files is present,

they are interpreted before any properties file that is present on the command line. These three levels of

property files load in the order that they are specified. The properties file that is loaded last overrides the

ones loaded earlier.

The following Java properties are used by scripting:

com.ibm.ws.scripting.classpath:

Searches for classes and resources, and is appended to the list of paths.

com.ibm.ws.scripting.connectionType:

Determines the connector to use. This value can either be SOAP, RMI, or NONE. The wsadmin.properties file

specifies SOAP as the connector.

com.ibm.ws.scripting.host:

Determines the host to use when attempting a connection. If not specified, the default is the local machine.

com.ibm.ws.scripting.port:

Specifies the port to use when attempting a connection. The wsadmin.properties file specifies 8879 as the

SOAP port for a single server installation.

com.ibm.ws.scripting.defaultLang:

Indicates the language to use when running scripts. The wsadmin.properties file specifies Jacl as the

scripting language.

 The supported scripting languages are Jacl and Jython.

com.ibm.ws.scripting.traceString:

Turns on tracing for the scripting process. The default has tracing turned off.

com.ibm.ws.scripting.traceFile:

Determines where trace and log output is directed. The wsadmin.properties file specifies the

wsadmin.traceout file that is located in the logs directory of each WebSphere Application Server profile as

the value of this property.

 If multiple users work with the wsadmin tool simultaneously, set different traceFile properties in the user

properties files. If the file name contains double-byte character set (DBCS) characters, use a unicode

format, such as \uxxxx, where xxxx is a number.

com.ibm.ws.scripting.validationOutput:

Determines where the validation reports are directed. The default file is wsadmin.valout which is located in

the logs directory of each WebSphere Application Server profile.

 If multiple users work with the wsadmin tool simultaneously, set different validationOutput properties in the

user properties files. If the file name contains double-byte character set (DBCS) characters, use unicode

format, such as \uxxxx, where xxxx is a number.

com.ibm.ws.scripting.emitWarningForCustomSecurityPolicy:

Chapter 4. Using the administrative clients 625

Controls whether the WASX7207W message is emitted when custom permissions are found.

 The possible values are true and false. The default value is true.

com.ibm.ws.scripting.tempdir:

Determines the directory to use for temporary files when installing applications.

 The Java virtual machine API uses java.io.temp as the default value.

com.ibm.ws.scripting.validationLevel:

Determines the level of validation to use when configuration changes are made from the scripting

interface.

 Possible values are: NONE, LOW, MEDIUM, HIGH, HIGHEST. The default is HIGHEST.

com.ibm.ws.scripting.crossDocumentValidationEnabled:

Determines whether the validation mechanism examines other documents when changes are made to one

document.

 Possible values are true and false. The default value is true.

com.ibm.ws.scripting.profiles:

Specifies a list of profile scripts to run automatically before running user commands, scripts, or an

interactive shell.

 The wsadmin.properties file specifies securityProcs.jacl and LTPA_LDAPSecurityProcs.jacl as the

values of this property. If Jython is specified with the wsadmin -lang option, the wsadmin tool performs a

conversion to change the profile script names that are specified in this property to use the file extension

that matches the language specified. Use the provided script procedures with the default settings to make

security configuration easier.

Using Ant to automate tasks

To support using Apache Ant with Java 2 Platform, Enterprise Edition (J2EE) applications running on the

application server, the product provides a copy of the Ant tool and a set of Ant tasks that extend the

capabilities of Ant to include product-specific functions. Ant has become a very popular tool among Java

programmers.

Apache Ant is a Java-based build tool. In theory, it is similar to Make, but Ant is different. Instead of a

model in which it is extended with shell-based commands, Ant is extended using Java classes. Instead of

writing shell commands, XML-based configuration files are used. These files reference a target tree in

which various tasks are run. Each task is run by an object that implements a particular Task interface.

By combining the following tasks with those provided by Ant, you can create build scripts that compile,

package, install, and test your application on the application server:

v Install and uninstall applications

v Start and stop servers in a base configuration

v Run administrative scripts or commands

v Run the Enterprise JavaBeans (EJB) deployment tool

v Run the JavaServer Pages (JSP) file precompilation tool

626 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

For more detailed information about Ant, refer to the Apache organization Web site.

v To run Ant and have it automatically see the WebSphere classes, use the “ws_ant command.”

v Use “Ant tasks for deployment and server operation.”

This topic describes where to find the API documentation for the Apache Ant tasks for deploying

applications and operating application servers.

v Use “Ant tasks for building application code.”

This topic describes where to find the API documentation for the Apache Ant tasks for building

applications.

ws_ant command

This topic describes where to find information about the ws_ant command, which is provided for using with

Apache Ant, a Java-based build tool that is popular among Java programmers.

In theory, Ant is similar to Make, but Ant is different. Instead of a model in which it is extended with

shell-based commands, Ant is extended using Java classes. Instead of writing shell commands,

XML-based configuration files are used. These files reference a target tree in which various tasks are run.

Each task is run by an object that implements a particular Task interface.

For the Apache Ant tool that is provided by this product, see the following file:

install_root/bin/ws_ant.bat|sh

Ant tasks for deployment and server operation

This topic describes where to find the API documentation for the Apache Ant tasks for deploying

applications and operating application servers.

The Apache Ant tasks for the product reside in the Java package: com.ibm.websphere.ant.tasks. The API

documentation for this package contains detailed information about all of the Ant tasks that are provided

and how to use them. The API documentation is available in the Reference section of the information

center.

Ant tasks for building application code

This topic describes where to find the documentation for the Ant tasks provided for building application

code using the Application Server Toolkit (which is a CD included with WebSphere Application Server as a

separately installable toolkit).

Within the Application Server Toolkit product documentation, open the section Working with Ant. You can

locate the topic by searching for Working with Ant, or from the navigation view, select Help > Help

Contents > Developing Java Applications > Developing enterprise applications > J2EE applications

> Working with Ant.

Using administrative programs (JMX)

This topic describes how to use Java application programming interfaces (APIs) to administer WebSphere

Application Server and to manage your applications.

You can administer WebSphere Application Server and your applications through tools that come with the

product or through programming with the Java APIs.

The wsadmin scripting tool, the administrative console, and the administrative command-line tools come

with the product. These administrative tools provide most of the functions that you need to manage the

product and the applications that run in WebSphere Application Server. You can use the command-line

Chapter 4. Using the administrative clients 627

http://ant.apache.org/index.html

tools from automation scripts to control the servers. Scripts that are written for the wsadmin scripting tool

offer a wide range of possible custom solutions that you can develop quickly.

Investigate these tools with the Java APIs to determine the best ways to administer WebSphere

Application Server and your applications. For information on the Java APIs, view Java Management

Extensions (JMX) API documentation

WebSphere Application Server supports access to the administrative functions through a set of Java

classes and methods. You can write a Java program that performs any of the administrative features of the

WebSphere Application Server administrative tools. You can also extend the basic WebSphere Application

Server administrative system to include your own managed resources.

You can prepare, install, uninstall, edit, and update applications through programming. Preparing an

application for installation involves collecting various types of WebSphere Application Server-specific

binding information to resolve references that are defined in the application deployment descriptors. This

information can also be modified after installation by editing a deployed application. Updating consists of

adding, removing or replacing a single file or a single module in an installed application, or supplying a

partial application that manipulates an arbitrary set of files and modules in the deployed application.

Updating the entire application uninstalls the old application and installs the new one. Uninstalling an

application removes it entirely from the WebSphere Application Server configuration.

Perform any or all of the following tasks to manage WebSphere Application Server and your Java 2

Platform, Enterprise Edition (J2EE) applications through programming.

v Create a custom Java administrative client program using the Java administrative APIs.

This topic describes how to develop a Java program that uses the WebSphere Application Server

administrative APIs to access the administrative system of WebSphere Application Server.

v Extend the WebSphere Application Server administrative system with custom MBeans.

This topic describes how to extend the WebSphere Application Server administration system by

supplying and registering new JMX MBeans in one of the Application Server processes. In this case,

you can use the administrative classes and methods to add newly managed objects to the

administrative system.

v Deploy and manage a custom Java administrative client program for use with multiple Java 2 Platform,

Enterprise Edition application servers.

This topic describes how to connect to a J2EE server, and how to manage multiple vendor servers.

v Manage applications through programming

This topic describes how, through Java MBean programming, to install, update, and delete a J2EE

application on WebSphere Application Server.

Depending on which tasks you complete, you have created your own administrative program, extended the

WebSphere Application Server administrative console, connected and managed vendor servers, or

managed your applications through programming.

You can continue to administer WebSphere Application Server and your applications through programming

or in combination with the tools that come with the WebSphere Application Server.

Creating a custom Java administrative client program using

WebSphere Application Server administrative Java APIs

This section describes how to develop a Java program for accessing the WebSphere Application Server

administrative system by using the WebSphere Application Server administrative application programming

interfaces (APIs).

This task assumes a basic familiarity with Java Management Extensions (JMX) API programming. See the

JMX API documentation for information.

628 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

welc_ref_dev_javadoc.html
welc_ref_dev_javadoc.html
welc_ref_dev_javadoc.html

When you develop and run administrative clients that use various JMX connectors and that have security

enabled, use the following guidelines. When you follow these guidelines, you guarantee the behavior

among different implementations of JMX connectors. Any programming model that strays from these

guidelines is unsupported.

1. Create and use a single administrative client before you create and use another administrative client.

2. Create and use an administrative client on the same thread.

3. Use one of the following ways to specify a user ID and password to create a new administrative client:

v Specify a default user ID and password in the property file.

v Specify a user ID and password other than the default. Once you create an administrative client with

a non-default user ID and password, specify the non-default user ID and password when you create

subsequent administrative clients.

Develop an administrative client program.

Developing an administrative client program

This page contains examples of key features of an administrative client program that utilizes WebSphere

Application Server administrative APIs and Java Management Extensions (JMX). WebSphere Application

Server administrative APIs provide control of the operational aspects of your distributed system as well as

the ability to update your configuration. This page also demonstrates examples of operational control. For

information, view the Administrative API documentation, the JMX API documentation, or the MBean API

documentation.

1. Create an AdminClient instance. An administrative client program needs to invoke methods on the

AdminService object that is running in the deployment manager (or the application server in the base

installation). The AdminClient class provides a proxy to the remote AdminService object through one of

the supported Java Management Extensions (JMX) connectors. The following example shows how to

create an AdminClient instance:

Properties connectProps = new Properties();

connectProps.setProperty(

AdminClient.CONNECTOR_TYPE, AdminClient.CONNECTOR_TYPE_SOAP);

connectProps.setProperty(AdminClient.CONNECTOR_HOST, "localhost");

connectProps.setProperty(AdminClient.CONNECTOR_PORT, "8879");

AdminClient adminClient = null;

try

{

 adminClient = AdminClientFactory.createAdminClient(connectProps);

}

catch (ConnectorException e)

{

 System.out.println("Exception creating admin client: " + e);

}

2. Find an MBean Once you obtain an AdminClient instance, you can use it to access managed

resources in the administration servers and application servers. Each managed resource registers an

MBean with the AdminService through which you can access the resource. The MBean is represented

by an ObjectName instance that identifies the MBean. An ObjectName consists of a domain name

followed by an unordered set of one or more key properties. For the WebSphere Application Server,

the domain name is WebSphere and the key properties defined for administration are as follows:

 type The type of MBean. For example: Server, TraceService,

Java Virtual Machine (JVM).

name The name identifier for the individual instance of the

MBean.

cell The name of the cell that the MBean is running.

node The name of the node that the MBean is running.

Chapter 4. Using the administrative clients 629

welc_ref_dev_javadoc.html
welc_ref_dev_javadoc.html

process The name of the process that the MBean is running.

You can locate an MBean by querying for them with ObjectNames that match desired key properties.

The following example shows how to find the MBean for the NodeAgent of node MyNode:

String nodeName = "MyNode";

String query = "WebSphere:type=NodeAgent,node=" + nodeName + ",*";

ObjectName queryName = new ObjectName(query);

ObjectName nodeAgent = null;

Set s = adminClient.queryNames(queryName, null);

if (!s.isEmpty())

 nodeAgent = (ObjectName)s.iterator().next();

else

 System.out.println("Node agent MBean was not found");

3. Use the MBean. What a particular MBean allows you to do depends on that MBean’s management

interface. It may declare attributes that you can obtain or set. It may declare operations that you can

invoke. It may declare notifications for which you can register listeners. For the MBeans provided by

the WebSphere Application Server, you can find information about the interfaces they support in the

MBean API documentation. The following example invokes one of the operations available on the

NodeAgent MBean that we located above. The following example will start the MyServer application

server:

String opName = "launchProcess";

String signature[] = { "java.lang.String" };

String params[] = { "MyServer" };

try

{

 adminClient.invoke(nodeAgent, opName, params, signature);

}

catch (Exception e)

{

 System.out.println("Exception invoking launchProcess: " + e);

}

4. Register for events. In addition to managing resources, the Java Management Extensions (JMX) API

also supports application monitoring for specific administrative events. Certain events produce

notifications, for example, when a server starts. Administrative applications can register as listeners for

these notifications. The WebSphere Application Server provides a full implementation of the JMX

notification model, and provides additional function so you can receive notifications in a distributed

environment. For a complete list of the notifications emitted from WebSphere Application Server

MBeans, refer to the com.ibm.websphere.management.NotificationConstants class in the API

documentation. The following is an example of how an object can register itself for event notifications

emitted from an MBean using the node agent ObjectName:

adminClient.addNotificationListener(nodeAgent, this, null, null);

In this example, the null value will result in receiving all of the node agent MBean event notifications.

You can also use the null value with the handback object.

5. Handle the events. Objects receive JMX event notifications via the handleNotification method which is

defined by the NotificationListener interface and which any event receiver must implement. The

following example is an implementation of handleNotification that reports the notifications that it

receives:

public void handleNotification(Notification n, Object handback)

{

 System.out.println("***");

 System.out.println("* Notification received at " + new Date().toString());

 System.out.println("* type = " + ntfyObj.getType());

 System.out.println("* message = " + ntfyObj.getMessage());

 System.out.println("* source = " + ntfyObj.getSource());

 System.out.println(

 "* seqNum = " + Long.toString(ntfyObj.getSequenceNumber()));

630 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

System.out.println("* timeStamp = " + new Date(ntfyObj.getTimeStamp()));

 System.out.println("* userData = " + ntfyObj.getUserData());

 System.out.println("***");

}

Administrative client program example: The following example is a complete administrative client

program. Copy the contents to a file named MyAdminClient.java. After changing the node name and

server name to the appropriate values for your configuration, you can compile and run it using the

instructions from ″Creating a custom Java administrative client program using WebSphere Application

Server administrative Java APIs″ in the information center.

import java.util.Date;

import java.util.Properties;

import java.util.Set;

import javax.management.InstanceNotFoundException;

import javax.management.MalformedObjectNameException;

import javax.management.Notification;

import javax.management.NotificationListener;

import javax.management.ObjectName;

import com.ibm.websphere.management.AdminClient;

import com.ibm.websphere.management.AdminClientFactory;

import com.ibm.websphere.management.exception.ConnectorException;

public class AdminClientExample implements NotificationListener

{

 private AdminClient adminClient;

 private ObjectName nodeAgent;

 private long ntfyCount = 0;

 public static void main(String[] args)

 {

 AdminClientExample ace = new AdminClientExample();

 // Create an AdminClient

 ace.createAdminClient();

 // Find a NodeAgent MBean

 ace.getNodeAgentMBean("ellington");

 // Invoke launchProcess

 ace.invokeLaunchProcess("server1");

 // Register for NodeAgent events

 ace.registerNotificationListener();

 // Run until interrupted

 ace.countNotifications();

 }

 private void createAdminClient()

 {

 // Set up a Properties object for the JMX connector attributes

 Properties connectProps = new Properties();

 connectProps.setProperty(

 AdminClient.CONNECTOR_TYPE, AdminClient.CONNECTOR_TYPE_SOAP);

 connectProps.setProperty(AdminClient.CONNECTOR_HOST, "localhost");

 connectProps.setProperty(AdminClient.CONNECTOR_PORT, "8879");

 // Get an AdminClient based on the connector properties

 try

 {

 adminClient = AdminClientFactory.createAdminClient(connectProps);

 }

 catch (ConnectorException e)

Chapter 4. Using the administrative clients 631

{

 System.out.println("Exception creating admin client: " + e);

 System.exit(-1);

 }

 System.out.println("Connected to DeploymentManager");

 }

 private void getNodeAgentMBean(String nodeName)

 {

 // Query for the ObjectName of the NodeAgent MBean on the given node

 try

 {

 String query = "WebSphere:type=NodeAgent,node=" + nodeName + ",*";

 ObjectName queryName = new ObjectName(query);

 Set s = adminClient.queryNames(queryName, null);

 if (!s.isEmpty())

 nodeAgent = (ObjectName)s.iterator().next();

 else

 {

 System.out.println("Node agent MBean was not found");

 System.exit(-1);

 }

 }

 catch (MalformedObjectNameException e)

 {

 System.out.println(e);

 System.exit(-1);

 }

 catch (ConnectorException e)

 {

 System.out.println(e);

 System.exit(-1);

 }

 System.out.println("Found NodeAgent MBean for node " + nodeName);

 }

 private void invokeLaunchProcess(String serverName)

 {

 // Use the launchProcess operation on the NodeAgent MBean to start

 // the given server

 String opName = "launchProcess";

 String signature[] = { "java.lang.String" };

 String params[] = { serverName };

 boolean launched = false;

 try

 {

 Boolean b = (Boolean)adminClient.invoke(

nodeAgent, opName, params, signature);

 launched = b.booleanValue();

 if (launched)

 System.out.println(serverName + " was launched");

 else

 System.out.println(serverName + " was not launched");

 }

 catch (Exception e)

 {

 System.out.println("Exception invoking launchProcess: " + e);

 }

 }

 private void registerNotificationListener()

 {

632 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

// Register this object as a listener for notifications from the

 // NodeAgent MBean. Don’t use a filter and don’t use a handback

 // object.

 try

 {

 adminClient.addNotificationListener(nodeAgent, this, null, null);

 System.out.println("Registered for event notifications");

 }

 catch (InstanceNotFoundException e)

 {

 System.out.println(e);

 }

 catch (ConnectorException e)

 {

 System.out.println(e);

 }

 }

 public void handleNotification(Notification ntfyObj, Object handback)

 {

 // Each notification that the NodeAgent MBean generates will result in

 // this method being called

 ntfyCount++;

 System.out.println("***");

 System.out.println("* Notification received at " + new Date().toString());

 System.out.println("* type = " + ntfyObj.getType());

 System.out.println("* message = " + ntfyObj.getMessage());

 System.out.println("* source = " + ntfyObj.getSource());

 System.out.println(

 "* seqNum = " + Long.toString(ntfyObj.getSequenceNumber()));

 System.out.println("* timeStamp = " + new Date(ntfyObj.getTimeStamp()));

 System.out.println("* userData = " + ntfyObj.getUserData());

 System.out.println("***");

 }

 private void countNotifications()

 {

 // Run until killed

 try

 {

 while (true)

 {

 Thread.currentThread().sleep(60000);

 System.out.println(ntfyCount + " notification have been received");

 }

 }

 catch (InterruptedException e)

 {

 }

 }

}

Extending the WebSphere Application Server administrative system

with custom MBeans

You can extend the WebSphere Application Server administration system by supplying and registering new

Java Management Extensions (JMX) MBeans (see JMX 1.0 Specification for details) in one of the

WebSphere processes. JMX MBeans represent the management interface for a particular piece of logic.

All of the managed resources within the standard WebSphere infrastructure are represented as JMX

MBeans. There are a variety of ways in which you can create your own MBeans and register them with

the JMX MBeanServer running in any WebSphere process. For more information, view the MBean API

documentation.

Chapter 4. Using the administrative clients 633

welc_ref_dev_javadoc.html
welc_ref_dev_javadoc.html

1. Create custom JMX MBeans.

You have some alternatives to select from, when creating MBeans to extend the WebSphere

administrative system. You can use any existing JMX MBean from another application. You can

register any MBean that you tested in a JMX MBean server outside of the WebSphere Application

Server environment in a WebSphere Application Server process, including standard MBeans, dynamic

MBeans, open MBeans, and model MBeans.

In addition to any existing JMX MBeans, and ones that were written and tested outside of the

WebSphere Application Server environment, you can use the special distributed extensions provided

by WebSphere and create a WebSphere ExtensionMBean provider. This alternative provides better

integration with all of the distributed functions of the WebSphere administrative system. An

ExtensionMBean provider implies that you supply an XML file that contains an MBean Descriptor

based on the DTD shipped with the WebSphere Application Server. This descriptor tells the

WebSphere system all of the attributes, operations, and notifications that your MBean supports. With

this information, the WebSphere system can route remote requests to your MBean and register remote

Listeners to receive your MBean event notifications.

All of the internal WebSphere MBeans follow the Model MBean pattern (see WebSphere Application

Server administrative MBean documentation for details). Pure Java classes supply the real logic for

management functions, and the WebSphere MBeanFactory class reads the description of these

functions from the XML MBean Descriptor and creates an instance of a ModelMBean that matches the

descriptor. This ModelMBean instance is bound to your Java classes and registered with the

MBeanServer running in the same process as your classes. Your Java code now becomes callable

from any WebSphere Application Server administrative client through the ModelMBean created and

registered to represent it.

2. Register the new MBeans. There are various ways to register your MBean.

You can register your MBean with the WebSphere Application Server administrative service.

You can register your MBean with the MBeanServer in a WebSphere Application Server process. The

following list describes the available options in order of preference:

v Go through the MBeanFactory class. If you want the greatest possible integration with the

WebSphere Application Server system, then use the MBeanFactory class to manage the life cycle of

your MBean through the activateMBean and deactivateMBean methods of the MBeanFactory class.

Use these methods, by supplying a subclass of the RuntimeCollaborator abstract superclass and an

XML MBean descriptor file. Using this approach, you supply a pure Java class that implements the

management interface defined in the MBean descriptor. The MBeanFactory class creates the actual

ModelMBean and registers it with the WebSphere Application Server administrative system on your

behalf.

This option is recommended for registering model MBeans.

v Use the JMXManageable and CustomService interface. You can make the process of integrating

with WebSphere administration even easier, by implementing a CustomService interface, that also

implements the JMXManageable interface. Using this approach, you can avoid supplying the

RuntimeCollaborator. When your CustomService interface is initialized, the WebSphere

MBeanFactory class reads your XML MBean descriptor file and creates, binds, and registers an

MBean to your CustomService interface automatically. After the shutdown method of your

CustomService is called, the WebSphere Application Server system automatically deactivates your

MBean.

v Go through the AdminService interface. You can call the registerMBean() method on the

AdminService interface and the invocation is delegated to the underlying MBeanServer for the

process, after appropriate security checks. You can obtain a reference to the AdminService using

the getAdminService() method of the AdminServiceFactory class.

This option is recommended for registering standard, dynamic, and open MBeans. Implement the

UserCollaborator class to use the MBeans and to provide a consistent level of support for them

across distributed and z/OS platforms.

v Get MBeanServer instances directly. You can get a direct reference to the JMX MBeanServer

instance running in any WebSphere Application Server process, by calling the getMBeanServer()

method of the MBeanFactory class. You get a reference to the MBeanFactory class by calling the

634 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

getMBeanFactory() method of the AdminService interface. Registering the MBean directly with the

MBeanServer instance can result in that MBean not participating fully in the distributed features of

the WebSphere Application Server administrative system.

Regardless of the approach used to create and register your MBean, you must set up proper Java 2

security permissions for your new MBean code. The WebSphere AdminService and MBeanServer are

tightly protected using Java 2 security permissions and if you do not explicitly grant your code base

permissions, security exceptions are thrown when you attempt to invoke methods of these classes. If you

are supplying your MBean as part of your application, you can set the permissions in the was.policy file

that you supply as part of your application metadata. If you are using a CustomService interface or other

code that is not delivered as an application, you can edit the library.policy file in the node configuration,

or even the server.policy file in the properties directory for a specific installation.

Best practices for standard, dynamic, and open MBeans

This article discusses recommended guidelines for standard, dynamic, and open MBeans.

The underlying interface for the WebSphere Application Server administrative service is AdminService.

Remote access occurs through the AdminControl scripting object.

For WebSphere Application Server Version 5, the MBean registration and capabilities are as follows:

 MBean type Registered with: Capabilities

Model WebSphere Application Server

administrative service

Local access is through the

WebSphere Application Server

administrative service or the MBean

server. Remote access is through the

WebSphere Application Server

administrative service, and

WebSphere Application Server

security.

Standard, dynamic, or open MBean server Local access is through the

WebSphere Application Server

administrative service or the MBean

server on the distributed platform.

For V6, you can optionally register standard, dynamic, and open custom MBeans with the WebSphere

Application Server administrative service to take advantage of the capabilities that in V5 are available only

to model MBeans.

V6 introduces a special run-time collaborator that you use with standard, dynamic or open custom MBeans

to register the custom MBeans with the WebSphere Application Server administrative service. The

standard, dynamic, and open MBeans display in the administrative service as model MBeans. The

administrative service uses the capabilities available to MBeans that are registered with the administrative

service.

For WebSphere Application Server Version 6, the MBean registration and capabilities are as follows:

 MBean type Registered with: Capabilities

Model, and optionally standard,

dynamic, or open

WebSphere Application Server

administrative service

Local access is through the

WebSphere Application Server

administrative service or the MBean

server. Remote access is through the

WebSphere Application Server

administrative service, and

WebSphere Application Server

security.

Chapter 4. Using the administrative clients 635

Standard, dynamic, or open MBean server Local access is through the

WebSphere Application Server

administrative service or the MBean

server on the distributed platform.

Creating and registering standard, dynamic, and open custom MBeans

You can create standard, dynamic, and open custom MBeans and register them with the WebSphere

Application Server administrative service.

This task assumes a basic familiarity with MBean programming. For information on MBean programming

see MBean Java application programming interface (API) documentation.

Perform the following tasks to create and register a standard, dynamic, or open custom MBean.

1. Create your particular MBean class or classes.

2. Write an MBean descriptor in the XML language for your MBean.

3. Register your MBean by inserting code that uses the WebSphere Application Server run-time

com.ibm.websphere.management.UserMBeanCollaborator collaborator class into your application code.

4. Package the class files for your MBean interface and implementation, the descriptor XML file, and your

application Java archive (JAR) file.

After you successfully complete the steps, you have a standard, dynamic, or open custom MBean that is

registered and activated with the WebSphere Application Server administrative service.

The following example shows how to create and register a standard MBean with the WebSphere

Application Server administrative service:

SnoopMBean.java:

/**

 * Use the SnoopMBean MBean, which has a standard mbean interface.

 */

public interface SnoopMBean {

 public String getIdentification();

 public void snoopy(String parm1);

}

SnoopMBeanImpl.java:

/**

 * SnoopMBeanImpl - SnoopMBean implementation

 */

public class SnoopMBeanImpl implements SnoopMBean {

 public String getIdentification() {

 System.out.println(">>> getIdentification() called...");

 return "snoopy!";

 }

 public void snoopy(String parm1) {

 System.out.println(">>> snoopy(" + parm1 + ") called...");

 }

}

Define the following MBean descriptor for your MBean in an .xml file. The getIdentification method is set to

run with the unicall option and the snoopy method is set to use the multicall option. These options are

used only for z/OS platform applications. The WebSphere Application Server for z/OS options are not

applicable to the distributed platforms, but they do not need to be removed. The options are ignored on

the distributed platforms.

636 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

welc_ref_dev_javadoc.html

SnoopMBean.xml:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE MBean SYSTEM "MbeanDescriptor.dtd">

<MBean type="SnoopMBean"

 version="5.0"

 platform="dynamicproxy"

 description="Sample SnoopMBean to be initialized inside an EJB.">

 <attribute name="identification" getMethod="getIdentification"

 type="java.lang.String" proxyInvokeType="unicall"/>

 <operation name="snoopy" role="operation" type="void" targetObjectType="objectReference"

impact="ACTION" proxyInvokeType="multicall">

 <signature>

 <parameter name="parm1" description="test parameter" type="java.lang.String"/>

 </signature>

 </operation>

</MBean>

Assume that your MBean is used in an enterprise bean. Register your MBean in the enterprise bean

ejbCreate method and unregister it in the ejbRemove method.

//The method MBeanFactory.activateMBean() requires four parameters:

//String type: The type value that you put in this MBean’s descriptor. For this example

//the string type is SnoopMBean.

//RuntimeCollaborator co: The UserMBeanCollaborator user MBean collaborator instance

//that you create

//String id: Unique name that you pick

//String desciptor: The MBean descriptor file name

import com.ibm.websphere.management.UserMBeanCollaborator;

//Import other classes here.

.

.

.

static private ObjectName snoopyON = null;

static private Object lockObj = "this is a lock";

.

.

.

/**

 * ejbCreate method: Register your Mbean.

 */

public void ejbCreate() throws javax.ejb.CreateException {

 synchronized (lockObj) {

 System.out.println(">>> SnoopMBean activating for --|" + this + "|--");

 if (snoopyON != null) {

 return;

 }

 try {

 System.out.println(">>> SnoopMBean activating...");

 MBeanFactory mbfactory = AdminServiceFactory.getMBeanFactory();

 RuntimeCollaborator snoop = new UserMBeanCollaborator(new SnoopMBeanImpl());

 snoopyON = mbfactory.activateMBean("SnoopMBean", snoop, "snoopMBeanId", "SnoopMBean.xml");

 System.out.println(">>> SnoopMBean activation COMPLETED! --|" + snoopyON + "|--");

 } catch (Exception e) {

 System.out.println(">>> SnoopMBean activation FAILED:");

 e.printStackTrace();

 }

 }

}

.

Chapter 4. Using the administrative clients 637

.

.

/**

 * ejbRemove method: Unregister your MBean.

 */

public void ejbRemove() {

 synchronized (lockObj) {

 System.out.println(">>> SnoopMBean Deactivating for --|" + this + "|--");

 if (snoopyON == null) {

 return;

 }

 try {

 System.out.println(">>> SnoopMBean Deactivating ==|" + snoopyON +

 "|== for --|" + this + "|--");

 MBeanFactory mbfactory = AdminServiceFactory.getMBeanFactory();

 mbfactory.deactivateMBean(snoopyON);

 System.out.println(">>> SnoopMBean Deactivation COMPLETED!");

 } catch (Exception e) {

 System.out.println(">>> SnoopMBean Deactivation FAILED:");

 e.printStackTrace();

 }

 }

}

Compile the MBean Java files and package the resulting class files with the descriptor .xml file, into the

enterprise bean JAR file.

Java 2 security permissions

When you enable Java 2 security, you must grant Java 2 security permissions to application-specific code

for Java Management Extensions (JMX) and WebSphere Application Server administrative privileges. With

these permissions, your application code can call WebSphere Application Server administrative methods

and JMX methods.

Use the following permission to invoke all the JMX class methods and interface methods:

permission javax.management.MBeanPermission "*", "*";

Consult the Java Management Extensions (JMX) API documentation for specific actions under the

MBeanPermission class.

Use the following permission for WebSphere Application Server administrative application programming

interfaces (APIs):

permission com.ibm.websphere.security.WebSphereRuntimePermission "AdminPermission";

Developing administrative programs for multiple Java 2 Platform,

Enterprise Edition application servers

You can develop an administrative client to manage multiple vendor application servers through existing

MBean support in the WebSphere Application Server.

Existence of MBeans for stopped components

The WebSphere Application Server completely implements the Java 2 Platform, Enterprise Edition (J2EE)

Management specification. However, some differences in details between the J2EE specification and the

WebSphere Application Server implementation are important for you to understand when you access

WebSphere Application Server components. These differences are important to you when you access

application MBeans because you can use either the WebSphere Application Server programming model or

the J2EE programming model.

638 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

In the WebSphere Application Server programming model, if an MBean exists, you can assume that it is

running. If an MBean does not exist, you can assume that it is stopped. Transient states between the

started state and the stopped state are the same as the stopped state, which means that no MBean

exists.

In the J2EE programming model, the MBean always exists regardless of the state of the component.

You can determine the state of a component by querying the state attribute. However, the state attribute

only exists for MBeans that are state manageable, meaning that they implement the StateManageable

interface. State manageable MBeans have start(), startRecursive(), and stop() operations whether these

MBeans are J2EE MBeans or WebSphere Application Server MBeans. Additionally, the WebSphere

Application Server defines the stateful interface. The stateful interface means that the component has a

state and emits the j2ee.state.notifications method, but that the component cannot directly manage the

state. For example, a Web module cannot stop itself. However, the application that contains the Web

module can stop it.

Not all MBeans that have a state are state-manageable. Servlets, J2EE modules and enterprise beans, for

example, are all stateful, but are not state manageable. The J2EE server is not state-manageable because

no start() operation is available on a server.

The J2EEApplication MBean is an example of a state manageable MBean. When the WebSphere

Application Server starts, each application activates a J2EEApplication MBean for itself. A J2EEApplication

MBean has a J2EE type of J2EEApplication (for example, ObjectName *:*,j2eeType=J2EEApplication). If

the application starts, it also activates an Application MBean with a type of Application (for example,

:,type=Application). When the application changes state, the Application MBean is activated or

deactivated. However, the J2EEApplication MBean is always activated. You can retrieve the application

state changes by getting the state attribute.

The modules attribute on the J2EEApplication component returns an array of object names, one for every

module in the application. The Application Server activates an MBean for each of these modules only after

the Application Server starts the application. The managed enterprise bean isRegistered(ObjectName)

method returns false if the application, and therefore the module, is not running.

All of the attributes that are defined in the J2EE management specification return valid values when the

managed object stops. Other attributes and operations, for example those that are specifically defined for

the Application Server, use the com.ibm.websphere.management.exception.ObjectNotRunningException

exception if they are accessed when the object is stopped.

If you install the application while the server runs, the application installs the J2EEApplication MBean when

the installation completes. Conversely, when the application uninstalls the J2EEApplication MBean, the

application deactivates the MBean.

Mapping key properties

The following table lists the mapping from the J2EE management-defined j2eeType key property to the

WebSphere Application Server type key property. You can use either key property to access MBeans.

However, only use the j2eeType key property if you want to connect to application servers other than

WebSphere Application Server.

 j2eeType key property type key property

J2EEDomain J2EEDomain [new]

J2EEServer Server

JVM JVM

J2EEApplication Application [separate MBean from j2eeType

Chapter 4. Using the administrative clients 639

WebModule WebModule

ResourceAdapterModule ResourceAdapterModule

EJBModule EJBModule

EJB and subtypes / Servlet / ResourceAdapter EJB and subtypes / Servlet / ResourceAdapter

JavaMailResource MailProvider

JNDIResource NameServer

JMSResource JMSProvider

JTAResource TransactionService

RMI_IIOPResource ORB

URLResource URLProvider

JDBCResource JDBCProvider

JDBCDataSource DataSource

JDBCDriver JDBCDriver [new]

JCAResource J2CResourceAdapter

JCAConnectionFactory J2CConnectionFactory

JCAManagedConnectionFactory J2CManagedConnectionFactory [new]

Optional WebSphere Application Server interfaces

The following table shows the optional J2EE management interfaces that WebSphere Application Server

provides.

 j2eeType key property EventProvider interface StateManageable interface StatisticsProvider

interface

J2EEDomain No No No

J2EEServer Yes Stateful No

JVM No No Yes

J2EEApplication Yes Yes No

WebModule Yes Stateful No

ResourceAdapterModule Yes Stateful No

EJBModule Yes Stateful No

AppClientModule Yes Stateful No

EJB and subtypes / Servlet

/ ResourceAdapter

No No Yes

JavaMailResource No No No

JNDIResource No No No

JMSResource No No No

JTAResource Yes No Yes

RMI_IIOPResource No No Yes

URLResource No No No

JDBCResource No No Yes

JDBCDataSource No No No

JDBCDriver No No No

640 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

JCAResource Yes No Yes

JCAConnectionFactory No No No

JCAManagedConnectionFactory No No No

Deploying and managing a custom Java administrative client program

with multiple Java 2 Platform, Enterprise Edition application servers

This section describes how to connect to a Java 2 Platform, Enterprise Edition (J2EE) server, and how to

manage multiple vendor servers.

The WebSphere Application Server completely implements the J2EE Management specification, also

known as JSR-77 (Java Specification Requests 77). However, some differences in details between the

J2EE specification and the WebSphere Application Server implementation are important for you to

understand when you develop a Java administrative client program to manage multiple vendor servers.

For information, see the Java Platform, Enterprise Edition (J2EE) Management Specification and the

MBean application programming interface (API) documentation.

When your administrative client program accesses WebSphere Application Servers exclusively, you can

use the Java APIs and WebSphere Application Server-defined MBeans to manage them. If your program

needs to access both WebSphere Application Servers and other J2EE servers, use the API defined in the

J2EE Management specification.

1. Connect to a J2EE server.

Connect to a server by looking up the Management enterprise bean from the Java Naming and

Directory Interface (JNDI). The Management enterprise bean supplies a remote interface to the MBean

server that runs in the application server. The Management enterprise bean works almost exactly like

the WebSphere Application Server administrative client, except that it does not provide WebSphere

Application Server specific functionality. The following example shows how to look up the Management

enterprise bean.

import javax.management.j2ee.ManagementHome;

import javax.management.j2ee.Management;

Properties props = new Properties();

props.setProperty(Context.PROVIDER_URL, "iiop://myhost:2809");

Context ic = new InitialContext(props);

Object obj = ic.lookup("ejb/mgmt/MEJB");

ManagementHome mejbHome = (ManagementHome)

 PortableRemoteObject.narrow(obj, ManagementHome.class);

Management mejb = mejbHome.create();

The example gets an initial context to an application server by passing the host and port of the

Remote Method Invocation (RMI) connector. You must explicitly code the RMI port, in this case 2809.

The lookup method looks up the ejb/mgmt/MEJB path, which is the location of the Management

enterprise bean home. The example then creates the mejb stateless session bean, which you use in

the next step.

2. Manage multiple vendor application servers.

After you create the mejb stateless session bean, you can use it to manage your application servers.

Components from the application servers appear as MBeans, which the specification defines. These

MBeans all have the j2eeType key property. This key property is one of a set of types that the

specification defines. All of these types have a set of exposed attributes.

Use the following example to guide you in managing multiple vendor application servers. The example

uses the Java virtual machine (JVM) MBean to determine what the current heap size is for the

application server.

Chapter 4. Using the administrative clients 641

http://java.sun.com
welc_ref_dev_javadoc.html

ObjectName jvmQuery = new ObjectName("*:j2eeType=JVM,*");

Set s = mejb.queryNames(jvmQuery, null);

ObjectName jvmMBean = (ObjectName) s.iterator().next();

boolean hasStats = ((Boolean) mejb.getAttribute(jvmMBean,

 "statisticsProvider")).booleanValue();

if (hasStats) {

 JVMStats stats = (JVMStats) mejb.getAttribute(jvmMBean,

 "stats");

 String[] statisticNames = stats.getStatisticNames();

 if (Arrays.asList(statisticNames).contains("heapSize")) {

 System.out.println("Heap size: " + stats.getHeapSize());

 }

}

The queryNames() method first queries the JVM MBean. The getAttribute method gets the

statisticsProvider attribute and determine if this MBean provides statistics. If the MBean does, the

example accesses the stats attribute, and then invokes the getHeapSize() method to get the heap size.

The strength of this example is that the example can run on any vendor application server. It demonstrates

that an MBean can optionally implement defined interfaces, in this case the StatisticsProvider interface. If

an MBean implements the StatisticsProvider interface, you can see if an application server supports a

particular statistic, in this case the heap size. The specification defines the heap size, although this value

is optional. If the application server supports the heap size, you can display the heap size for the JVM.

Migrating Java Management Extensions V1.0 to Java Management

Extensions V1.2

Each Java Virtual Machine (JVM) in WebSphere Application Server includes an embedded implementation

of Java Management Extensions (JMX). In Application Server, Version 5, the JVMs contain an

implementation of the JMX 1.0 specification. In Application Server, Version 6, the JVMs contain an

implementation of the JMX 1.2 specification. The JMX 1.0 implementation used in Version 5 is the TMX4J

package that IBM Tivoli products supply. The JMX 1.2 specification used in Version 6 is the open source

mx4j package. The JMX implementation change across the releases does not affect the behavior of the

JMX MBeans in the Application Server. No Application Server administrative application programming

interfaces (APIs) are altered due to the change from the JMX V1.0 specification to the JMX V1.2

specification.

The JMX V1.2 specification is backward compatible with the JMX 1.0 specification. However, you might

need to migrate custom MBeans that are supplied by products other than the Application Server from

Version 5 to Version 6. The primary concern for these custom MBeans is related to the values that are

used in key properties of the JMX ObjectName class for the MBean. The open source mx4j

implementation more stringently enforces property validation according to the JMX 1.2 specification. Test

the custom MBeans that you deployed in Version 5 in Version 6, to ensure compatibility. Full details of the

JMX V1.2 specification changes from the JMX V1.0 specification are available in the JMX 1.2 specification.

Java Management Extensions interoperability

WebSphere Application Server Version 6 implements Java Management Extensions (JMX) Version 1.2,

while WebSphere Application Server Version 5 implements JMX Version 1.0.

Due to the evolution of the JMX specification, the serialization format for JMX objects, such as the

javax.management.ObjectName object, differs between the V5 implementation and the V6 implementation.

The V6 JMX run time is enhanced to be aware of the version of the client with which it is communicating.

The V6 run time makes appropriate transformations on these incompatible serialized formats to support

communication between the different version run times. A V5 wsadmin script or a V5 administrative client

can call a V6 deployment manager, node, or server. A V6 wsadmin script or a V6 administrative client can

call a V5 node or server.

642 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

When a V5 wsadmin script or a V5 administrative client calls a V6 MBean, the instances of classes that

are new in V6 cannot be passed back to V5 because these classes are not present in the V5 environment.

The problem occurs infrequently. However, it usually occurs when an exception embeds a nested

exception that is new in V6. The symptom is usually a serialization exception or a

NoClassDefFoundException exception.

Due to changes in the JMX implementation from V5 to V6, different exceptions are created when a

method on an MBean is invoked for V5 than when a method on an MBean is invoked for V6. For example,

when a method gets or sets an unknown attribute for V5, the MBeanRuntimeException exception is

created. When a method gets or sets an unknown attribute for V6, the MBeanException exception that

wraps a ServiceNotFoundException exception is created.

An instance of a user-defined class that implements the Serializable interface that is passed as a

parameter or return value during MBean invocation, or sent as part of a notification, cannot contain a

non-transient instance variable that is in the javax.management.package package. If the instance does, it

cannot be properly deserialized when passed between V5 and V6 run times.

Due to changes in the supported format for the ObjectName class from V5 to V6, the configuration ID in

V6 contains a vertical bar (|), whereas in V5, the ID contains a colon (:). This change is reflected in the

output for wsadmin clients. For example, for a V5 client, the output is:

wsadmin> $AdminConfig list Cell

 DefaultCellNetwork(cells/DefaultCellNetwork:cell.xml#Cell_1)

whereas for a V6 client, the output is:

wsadmin> $AdminConfig list Cell

 DefaultCellNetwork(cells/DefaultCellNetwork|cell.xml#Cell_1)

The change to the configuration ID generally is not a problem because configuration IDs are generated

dynamically. When a V5 client passes a configuration ID that contains a colon, the JMX run time, for

upward compatibility, automatically transforms the configuration ID that contains a colon into a

configuration ID that contains a vertical bar. Similarly, a reverse transformation is performed for backward

compatibility.

Do not save the configuration ID and then try to use it later. Only query the ID and use it.

Managing applications through programming

This topic describes how, through Java MBean programming, to install, update, and delete a Java 2

Platform, Enterprise Edition (J2EE) application on WebSphere Application Server.

This task assumes a basic familiarity with MBean programming. For information on MBean programming

see MBean Java application programming interface (API) documentation.

Before you can install or change an application on WebSphere Application Server, you must first create or

update your application and assemble it using an assembly tool.

Besides installing, uninstalling, and updating applications through programming, you can additionally

install, uninstall, and update J2EE applications through the administrative console or the wsadmin tool. All

three ways provide identical updating capabilities.

1. Perform any or all of the following tasks to manage your J2EE applications through programming.

a. Install an application.

This article provides an example for initially installing an application on WebSphere Application

Server.

b. Uninstall an application.

Chapter 4. Using the administrative clients 643

welc_ref_dev_javadoc.html

This article provides an example for uninstalling an application that resides on WebSphere

Application Server.

c. Update an application.

This article provides an example for updating the installed application on WebSphere Application

Server with a new application. When you completely update an application, the deployed

application is uninstalled and the new enterprise archive (EAR) file is installed.

d. Add to, update, or delete part of an application.

This article provides an example that you can use to add to, update, or delete part of an

application on WebSphere Application Server.

e. Add a module.

This article provides an example for adding a module to an application that resides on WebSphere

Application Server.

f. Update a module.

This article provides an example for updating a module that resides on WebSphere Application

Server. When you update a module, the deployed module is uninstalled and the updated module is

installed.

g. Delete a module.

This article provides an example for deleting a module that resides on WebSphere Application

Server. When you delete a module, the deployed module is uninstalled.

h. Add a file.

This article provides an example for adding a file to an application that resides on WebSphere

Application Server.

i. Update a file.

This article provides an example for updating a file on WebSphere Application Server. When you

update a file, the deployed file is uninstalled and the updated file is installed.

j. Delete a file.

This article provides an example for deleting a file on WebSphere Application Server. When you

delete a file, the deployed file is uninstalled.

2. Save your changes to the master configuration repository.

If you have further application updates, you can do the updates through programming, the administrative

console, or the wsadmin tool.

Installing an application through programming

You can install an application through the administrative console, the wsadmin tool, or programming. Use

this example to install an application through programming.

This task assumes a basic familiarity with MBean programming. For information on MBean programming

see MBean Java application programming interface (API) documentation.

Before you can install an application on WebSphere Application Server, you must first create or update

your application and assemble it using an assembly tool.

Perform the following tasks to install an application through programming.

 1. Populate the enterprise archive (EAR) file with WebSphere Application Server-specific binding

information.

a. Create the controller and populate the EAR file with appropriate options.

b. Optionally run the default binding generator.

c. Save and close the EAR file.

d. Retrieve the saved options table that will be passed to the installApplication MBean (API).

644 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

welc_ref_dev_javadoc.html

2. Connect to WebSphere Application Server.

 3. Create the application management proxy.

 4. If the preparation phase (population of the EAR file) is not performed, the do the following actions:

a. Create an options table to be passed to the installApplication MBean API.

b. Create a table for module to server relations and add the table to the options table.

Refer to the com.ibm.websphere.management.application.AppManagement class in the

Application Server API documentation to understand various options that can be passed to the

installApplication MBean API.

 5. Create the notification filter for listening to installation events.

 6. Add the listener.

 7. Install the application.

 8. Wait for some timeout so that the program does not end.

 9. Listen to Java Management Extensions (JMX) notifications to understand completion of the operation.

10. When the installation is done, remove the listener and quit.

After you successfully run the code, the application is installed.

The following example shows how to install an application based on the previous steps:

import java.lang.*;

import java.io.*;

import java.util.*;

import java.lang.reflect.*;

import com.ibm.websphere.management.application.*;

import com.ibm.websphere.management.application.client.*;

import com.ibm.websphere.management.*;

import javax.management.*;

public class Install {

 public static void main (String [] args) {

 try {

 String earFile = "C:/test/test.ear";

 String appName = "MyApp";

// Preparation phase: Begin

// Through the preparation phase you populate the enterprise archive (EAR) file with

// WebSphere Application Server-specific binding information. For example, you can specify

// Java Naming and Directory Interface (JNDI) names for enterprise beans, or virtual hosts

// for Web modules, and so on.

// First, create the controller and populate the EAR file with the appropriate options.

 Hashtable prefs = new Hashtable();

 prefs.put(AppConstants.APPDEPL_LOCALE, Locale.getDefault());

// You can optionally run the default binding generator by using the following options.

// Refer to Java documentation for the AppDeploymentController class to see all the

// options that you can set.

 Properties defaultBnd = new Properties();

 prefs.put (AppConstants.APPDEPL_DFLTBNDG, defaultBnd);

 defaultBnd.put (AppConstants.APPDEPL_DFLTBNDG_VHOST, "default_host");

// Create the controller.

 AppDeploymentController controller = AppDeploymentController

 .readArchive(earFile, prefs);

 AppDeploymentTask task = controller.getFirstTask();

 while (task != null)

 {

// Populate the task data.

Chapter 4. Using the administrative clients 645

welc_ref_dev_javadoc.html

String[][] data = task.getTaskData();

// Manipulate task data which is a table of stringtask.

 setTaskData (data);

 task = controller.getNextTask();

 }

 controller.saveAndClose();

 Hashtable options = controller.getAppDeploymentSavedResults();

// The previous options table contains the module-to-server relationship if it was set by

// using tasks.

//Preparation phase: End

// Get a connection to WebSphere Application Server.

 String host = "localhost";

 String port = "8880";

 String target = "WebSphere:cell=cellName,node=nodeName,server=server1";

 Properties config = new Properties();

 config.put (AdminClient.CONNECTOR_HOST, host);

 config.put (AdminClient.CONNECTOR_PORT, port);

 config.put (AdminClient.CONNECTOR_TYPE, AdminClient.CONNECTOR_TYPE_SOAP);

 System.out.println ("Config: " + config);

 AdminClient _soapClient = AdminClientFactory.createAdminClient(config);

// Create the application management proxy, AppManagement.

 AppManagement proxy = AppManagementProxy. getJMXProxyForClient (_soapClient);

// If code for the preparation phase has been run, then you already have the options table.

// If not, create a new table and add the module-to-server relationship to it by uncommenting

// the next statement.

//Hashtable options = new Hashtable();

 options.put (AppConstants.APPDEPL_LOCALE, Locale.getDefault());

// Uncomment the following statements to add the module to the server relationship table if

// the preparation phase does not collect it.

//Hashtable module2server = new Hashtable();

//module2server.put ("*", target);

//options.put (AppConstants.APPDEPL_MODULE_TO_SERVER, module2server);

//Create the notification filter for listening to installation events.

 NotificationFilterSupport myFilter = new NotificationFilterSupport();

 myFilter.enableType (AppConstants.NotificationType);

//Add the listener.

 NotificationListener listener = new AListener(_soapClient, myFilter,

 "Install: " + appName, AppNotification.INSTALL);

// Install the application.

 proxy.installApplication (earFile, appName, options, null);

 System.out.println ("After install App is called..");

// Wait for some timeout. The installation application programming interface (API) is

// asynchronous and so returns immediately.

// If the program does not wait here, the program ends.

 Thread.sleep(300000); // Wait so that the program does not end.

 }

 catch (Exception e) {

 e.printStackTrace();

 }

 }

}

// Specify the Java Management Extensions (JMX) notification listener for JMX events.

646 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

class AListener implements NotificationListener

{

 AdminClient _soapClient;

 NotificationFilterSupport myFilter;

 Object handback;

 ObjectName on;

 String eventTypeToCheck;

 public AListener(AdminClient cl, NotificationFilterSupport fl, Object h,

 String eType) throws Exception

 {

 _soapClient = cl;

 myFilter = fl;

 handback = h;

 eventTypeToCheck = eType;

 Iterator iter = _soapClient.queryNames (new ObjectName("WebSphere:type=

 AppManagement,*"), null).iterator();

 on = (ObjectName)iter.next();

 System.out.println ("ObjectName: " + on);

 _soapClient.addNotificationListener (on, this, myFilter, handback);

 }

 public void handleNotification (Notification notf, Object handback)

 {

 AppNotification ev = (AppNotification) notf.getUserData();

 System.out.println ("!! JMX event Recd: (handback obj= " + handback+ "): " + ev);

 //When the installation is done, remove the listener and quit.

 if (ev.taskName.equals (eventTypeToCheck) &&

 (ev.taskStatus.equals (AppNotification.STATUS_COMPLETED) ||

 ev.taskStatus.equals (AppNotification.STATUS_FAILED)))

 {

 try

 {

 _soapClient.removeNotificationListener (on, this);

 }

 catch (Throwable th)

 {

 System.out.println ("Error removing listener: " + th);

 }

 System.exit (0);

 }

 }

}

Once you install the application, you must explicitly start the application or restart the server.

Starting an application through programming:

You can start an application through the administrative console, the wsadmin tool, or programming. Use

this example to start an application through programming.

 This task assumes a basic familiarity with MBean programming. For information on MBean programming

see MBean Java application programming interface (API) documentation.

Before you can start an application on WebSphere Application Server, you must first install your

application.

Perform the following tasks to start an application through programming.

1. Connect the administrative client to WebSphere Application Server.

Chapter 4. Using the administrative clients 647

welc_ref_dev_javadoc.html

2. Create the application management proxy.

3. Call the startApplication method on the proxy by passing the application name and optionally the list of

targets on which to start the application.

After you successfully run the code, the application is started.

The following example shows how to start an application following the previously listed steps:

//Do a get of the administrative client to connect to

//WebSphere Application Server.

AdminClient client = ...;

String appName = "myApp";

Hashtable prefs = new Hashtable();

// Use the AppManagement MBean to start and stop applications on all or some targets.

// The AppManagement MBean is on the deployment manager in the Network Deployment product

// or on server1 in WebSphere Application Server.

// Query and get the AppManagement MBean.

ObjectName on = new ObjectName ("WebSphere:type=AppManagement,process=dmgr,*");

Iterator iter = client.queryNames (on, null).iterator();

ObjectName appmgmtON = (ObjectName)iter.next();

//Start the application on all targets.

AppManagement proxy = AppManagementProxy.getJMXProxyForClient(client);

String started = proxy.startApplication(appName, prefs, null);

System.out.println("Application started on folloing servers: " + started);

//Start the application on some targets.

//String targets = "WebSphere:cell=cellname,node=nodename,server=

 servername+WebSphere:cell=cellname,cluster=clusterName";

//String started1 = proxy.startApplication(appName, targets, prefs, null);

//System.out.println("Application started on following servers: " + started1)

Uninstalling an application through programming

You can uninstall an application through the administrative console, the wsadmin tool, or programming.

Use this example to uninstall an application through programming.

This task assumes a basic familiarity with MBean programming. For information on MBean programming

see MBean Java application programming interface (API) documentation.

Before you can uninstall an application on WebSphere Application Server, you must first install it.

Perform the following tasks to uninstall an application through programming.

1. Get a connection to WebSphere Application Server.

2. Get the application management proxy.

3. Create the notification filter for listening to uninstallation events.

4. Add the listener.

5. Uninstall the application.

6. Wait for some timeout so that the program does not end.

7. Listen to Java Management Extensions (JMX) notifications to understand completion of the operation.

8. When the uninstallation is done, remove the listener and quit.

After you successfully run the code, the application is uninstalled.

The following example shows how to uninstall an application based on the previous steps:

import java.lang.*;

import java.io.*;

import java.util.*;

import java.lang.reflect.*;

648 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

welc_ref_dev_javadoc.html

import com.ibm.websphere.management.application.*;

import com.ibm.websphere.management.application.client.*;

import com.ibm.websphere.management.*;

import javax.management.*;

public class Uninstall {

 public static void main (String [] args) {

 try {

// Get a connection to the server.

 String host = "localhost";

 String port = "8880";

 String target = "WebSphere:cell=cellName,node=nodeName,server=server1";

 Properties config = new Properties();

 config.put (AdminClient.CONNECTOR_HOST, host);

 config.put (AdminClient.CONNECTOR_PORT, port);

 config.put (AdminClient.CONNECTOR_TYPE, AdminClient.CONNECTOR_TYPE_SOAP);

 System.out.println ("Config: " + config);

 AdminClient _soapClient = AdminClientFactory.createAdminClient(config);

 // Get the application management proxy.

 AppManagement proxy = AppManagementProxy. getJMXProxyForClient (_soapClient);

 String appName = "MyApp";

 Hashtable options = new Hashtable();

 options.put (AppConstants.APPDEPL_LOCALE, Locale.getDefault());

 //Create the notification filter.

 NotificationFilterSupport myFilter = new NotificationFilterSupport();

 myFilter.enableType (AppConstants.NotificationType);

 //Add the listener.

 NotificationListener listener = new AListener(_soapClient, myFilter,

 "Install: " + appName, AppNotification.UNINSTALL);

 // Uninstall the application.

 proxy.uninstallApplication (appName, options, null);

 System.out.println ("After uninstall App is called..");

// Wait for some timeout. The installation application programming interface (API) is

// asynchronous and so returns immediately.

// If the program does not wait here, the program ends.

 Thread.sleep(300000); // Wait so that the program does not end.

 }

 catch (Exception e) {

 e.printStackTrace();

 }

 }

}

// Specify the Java Management Extensions (JMX) notification listener for JMX events.

class AListener implements NotificationListener

{

 AdminClient _soapClient;

 NotificationFilterSupport myFilter;

 Object handback;

 ObjectName on;

 String eventTypeToCheck;

Chapter 4. Using the administrative clients 649

public AListener(AdminClient cl, NotificationFilterSupport fl, Object h,

 String eType) throws Exception

 {

 _soapClient = cl;

 myFilter = fl;

 handback = h;

 eventTypeToCheck = eType;

 Iterator iter = _soapClient.queryNames (new ObjectName("WebSphere:

 type=AppManagement,*"), null).iterator();

 on = (ObjectName)iter.next();

 System.out.println ("ObjectName: " + on);

 _soapClient.addNotificationListener (on, this, myFilter, handback);

 }

 public void handleNotification (Notification notf, Object handback)

 {

 AppNotification ev = (AppNotification) notf.getUserData();

 System.out.println ("!! JMX event Recd: (handback obj= " + handback+

 "): " + ev);

 //When the unistallation is done, remove the listener and quit

 if (ev.taskName.equals (eventTypeToCheck) &&

 (ev.taskStatus.equals (AppNotification.STATUS_COMPLETED) ||

 ev.taskStatus.equals (AppNotification.STATUS_FAILED)))

 {

 try

 {

 _soapClient.removeNotificationListener (on, this);

 }

 catch (Throwable th)

 {

 System.out.println ("Error removing listener: " + th);

 }

 System.exit (0);

 }

 }

}

Updating an application through programming

You can update an existing application through the administrative console, the wsadmin tool, or

programming. Use this example to completely update an application through programming.

This task assumes a basic familiarity with MBean programming. For information on MBean programming

see MBean Java application programming interface (API) documentation.

Before you can update an application on WebSphere Application Server, you must first install your

application.

Perform the following tasks to completely updaste an application through programming.

1. Connect to WebSphere Application Server.

2. Create the application management proxy.

3. Create the notification filter for listening to events.

4. Add the listener.

5. Prepare the enterprise archive (EAR) file by populating it with binding information.

6. Update the application.

7. Wait for some timeout so that the program does not end.

8. Listen to Java Management Extensions (JMX) notifications to understand completion of the operation.

650 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

welc_ref_dev_javadoc.html

9. When the update is done, remove the listener and quit.

After you successfully run the code, the application is updated.

The following example shows how to update an application based on the previous steps:

import java.lang.*;

import java.io.*;

import java.util.*;

import java.lang.reflect.*;

import com.ibm.websphere.management.application.*;

import com.ibm.websphere.management.application.client.*;

import com.ibm.websphere.management.*;

import javax.management.*;

public class aa {

 public static void main (String [] args) {

 try {

 // Connect to WebSphere Application Server.

 String host = "localhost";

 String port = "8880";

 String target = "WebSphere:cell=cellName,node=nodeName,server=server1";

 Properties config = new Properties();

 config.put (AdminClient.CONNECTOR_HOST, host);

 config.put (AdminClient.CONNECTOR_PORT, port);

 config.put (AdminClient.CONNECTOR_TYPE, AdminClient.CONNECTOR_TYPE_SOAP);

 System.out.println ("Config: " + config);

 AdminClient _soapClient = AdminClientFactory.createAdminClient(config);

 // Create the application management proxy, AppManagement.

 AppManagement proxy = AppManagementProxy. getJMXProxyForClient (_soapClient);

 String appName = "MyApp";

 String fileContents = "C:/test/test.ear";

 // Create the notification filter.

 NotificationFilterSupport myFilter = new NotificationFilterSupport();

 myFilter.enableType (NotificationConstants.TYPE_APPMANAGEMENT);

 //Add the listener.

 NotificationListener listener = new AListener(_soapClient, myFilter,

 "Install: " + appName, AppNotification.INSTALL);

// Refer to the installation example to see how you can prepare the enterprise

 archive (EAR)

// file by populating it with binding information.

// If code for the preparation phase has started, then you already have the options table.

// If not, create a new table and add the module-to-server relationship to it by uncommenting

// the next statement.

//Hashtable options = new Hashtable();

 options.put (AppConstants.APPDEPL_LOCALE, Locale.getDefault());

 options.put ((AppConstants.APPUPDATE_CONTENTTYPE, AppConstants.APPUPDATE_CONTENT_APP);

// Uncomment the following statements to add the module to the server relationship table if

// the preparation phase does not collect it

//Hashtable module2server = new Hashtable();

//module2server.put ("*", target);

//options.put (AppConstants.APPDEPL_MODULE_TO_SERVER, module2server);

// Update the application.

 proxy.updateApplication (appName,

 null,

 fileContents,

 AppConstants.APPUPDATE_UPDATE,

Chapter 4. Using the administrative clients 651

options,

 null);

// Wait for some timeout. The installation application programming interface (API) is

// asynchronous and so returns immediately.

// If the program does not wait here, the program ends.

 Thread.sleep(300000); // Wait so that the program does not end.

 }

 catch (Exception e) {

 e.printStackTrace();

 }

 }

}

// Specify the Java Management Extensions (JMX) notification listener for JMX events.

class AListener implements NotificationListener

{

 AdminClient _soapClient;

 NotificationFilterSupport myFilter;

 Object handback;

 ObjectName on;

 String eventTypeToCheck;

 public AListener(AdminClient cl, NotificationFilterSupport fl, Object h,

 String eType) throws Exception

 {

 _soapClient = cl;

 myFilter = fl;

 handback = h;

 eventTypeToCheck = eType;

 Iterator iter = _soapClient.queryNames (new ObjectName

 ("WebSphere:type=AppManagement,*"), null).iterator();

 on = (ObjectName)iter.next();

 System.out.println ("ObjectName: " + on);

 _soapClient.addNotificationListener (on, this, myFilter, handback);

 }

 public void handleNotification (Notification notf, Object handback)

 {

 AppNotification ev = (AppNotification) notf.getUserData();

 System.out.println ("!! JMX event Recd: (handback obj= " +

 handback+ "): " + ev);

 //When the installation is done, remove the listener and quit

 if (ev.taskName.equals (eventTypeToCheck) &&

 (ev.taskStatus.equals (AppNotification.STATUS_COMPLETED) ||

 ev.taskStatus.equals (AppNotification.STATUS_FAILED)))

 {

 try

 {

 _soapClient.removeNotificationListener (on, this);

 }

 catch (Throwable th)

 {

 System.out.println ("Error removing listener: " + th);

 }

 System.exit (0);

 }

 }

}

652 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Adding to, updating, or deleting part of an application through programming

You can add to, update, or delete part of an existing application through the administrative console, the

wsadmin tool, or programming. This example changes part of an application through programming. You

can use this example whether you add to, update, or delete part of an existing application. Multiple

changes to an application can be packaged in a single .zip file.

To learn about the structure of the .zip file, see updating applications through the administrative console.

This task assumes a basic familiarity with MBean programming. For information on MBean programming

see MBean Java application programming interface (API) documentation.

Before you can add to, update, or delete part of an application on WebSphere Application Server, you

must first install your application.

Perform the following tasks to add to, update, or delete part of an application through programming.

1. Connect to WebSphere Application Server.

2. Create the application management proxy.

3. Create the notification filter.

4. Add the listener.

5. Partially change the existing application.

6. Wait for some timeout so that the program does not end.

7. Listen to Java Management Extensions (JMX) notifications to understand completion of the operation.

8. When the update is done, remove the listener and quit.

After you successfully run the code, you have changed the application.

The following example shows how to add to, update, or delete part of an application based on the

previous steps:

//Inputs:

//partialApp specifies the location of the partial application.

//appName specifies the name of the application.

String partialApp = "C:/apps/partial.zip";

String appName = "MyApp";

//Do a get of the administrative client to connect to

//WebSphere Application Server.

AdminClient client = ...;

//Create the application management proxy.

AppManagement proxy = AppManagementProxy. getJMXProxyForClient (client);

// Create the notification filter.

NotificationFilterSupport myFilter = new NotificationFilterSupport();

myFilter.enableType (NotificationConstants.TYPE_APPMANAGEMENT);

//Add the listener.

NotificationListener listener = new AListener(_soapClient, myFilter,

 "Install: " + appName, AppNotification.UPDATE);

//Partially change the existing application, MyApp.

Hashtable options = new Hashtable();

options.put (AppConstants.APPDEPL_LOCALE, Locale.getDefault());

options.put (AppConstants.APPUPDATE_CONTENTTYPE, AppConstants.

 APPUPDATE_CONTENT_PARTIALAPP);

proxy.updateApplication (appName,

 null,

 partialApp,

Chapter 4. Using the administrative clients 653

welc_ref_dev_javadoc.html

null,

 options,

 null);

// Wait for some timeout. The installation application programming interface (API) is

// asynchronous and so returns immediately.

// If the program does not wait here, the program ends.

 Thread.sleep(300000); // Wait so that the program does not end.

 }

 catch (Exception e) {

 e.printStackTrace();

 }

 }

}

// Specify the Java Management Extensions (JMX) notification listener for JMX events.

class AListener implements NotificationListener

{

 AdminClient _soapClient;

 NotificationFilterSupport myFilter;

 Object handback;

 ObjectName on;

 String eventTypeToCheck;

 public AListener(AdminClient cl, NotificationFilterSupport fl, Object h,

 String eType) throws Exception

 {

 _soapClient = cl;

 myFilter = fl;

 handback = h;

 eventTypeToCheck = eType;

 Iterator iter = _soapClient.queryNames (new ObjectName("WebSphere:

 type=AppManagement,*"), null).iterator();

 on = (ObjectName)iter.next();

 System.out.println ("ObjectName: " + on);

 _soapClient.addNotificationListener (on, this, myFilter, handback);

 }

 public void handleNotification (Notification notf, Object handback)

 {

 AppNotification ev = (AppNotification) notf.getUserData();

 System.out.println ("!! JMX event Recd: (handback obj= " +

 handback+ "): " + ev);

 //When the installation is done, remove the listener and quit

 if (ev.taskName.equals (eventTypeToCheck) &&

 (ev.taskStatus.equals (AppNotification.STATUS_COMPLETED) ||

 ev.taskStatus.equals (AppNotification.STATUS_FAILED)))

 {

 try

 {

 _soapClient.removeNotificationListener (on, this);

 }

 catch (Throwable th)

 {

 System.out.println ("Error removing listener: " + th);

 }

 System.exit (0);

 }

 }

}

654 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Preparing a module and adding it to an existing application through programming

You can add a module to an existing application through the administrative console, the wsadmin tool, or

programming. Use this example to add a module through programming.

This task assumes a basic familiarity with MBean programming. For information on MBean programming

see MBean Java application programming interface (API) documentation.

Before you can add a module to an application on WebSphere Application Server, you must install the

application.

Perform the following tasks to add a module to an application through programming.

 1. Create an application deployment controller instance to populate the module file with binding

information.

 2. Save the binding information in the module.

 3. Get the installation options.

 4. If the preparation phase (population of the EAR file) is not performed, the do the following actions:

a. Create an options table to be passed to the updateApplication MBean API.

b. Create a table for module to server relations and add the table to the options table.

 5. Connect to WebSphere Application Server.

 6. Create the application management proxy.

 7. Create the notification filter.

 8. Add the listener.

 9. Add the module to the application.

10. Specify the target for the new module.

11. Wait for some timeout so that the program does not end.

12. Listen to Java Management Extensions (JMX) notifications to understand completion of the operation.

13. When the module addition is done, remove the listener and quit.

After you successfully run the code, the module is added to the application.

The following example shows how to add a module to an application based on the previous steps:

//Inputs:

//moduleName specifies the name of the module that you add to the application.

//moduleURI specifies a URI that gives the target location of the module

// archive contents on a file system. The URI provides the location of the new

// module after installation. The URI is relative to the application URL.

//uniquemoduleURI specfies the URI that gives the target location of the

// deployment descriptor file. The URI is relative to the application URL.

//target specifies the cell, node, and server on which the module is installed.

String moduleName = "C:/apps/foo,jar";

String moduleURI = "Increment.jar";

String uniquemoduleURI = "Increment.jar+META-INF/ejb-jar.xml";

String target = "WebSphere:cell=cellname,node=nodename,server=servername";

//Create an application deployment controller instance, AppDeploymentController,

//to populate the Java aArchive (JAR) file with binding information.

//The binding information is WebSphere Application Server-specific deployment information.

Hashtable preferences = new Hashtable();

preferences.put (AppConstants.APPDEPL_LOCALE, Locale.getDefault());

preferences.put (AppConstants.APPUPDATE_CONTENTTYPE, AppConstants.APPUPDATE_

 CONTENT_MODULEFILE);

AppDeploymentController controller = AppManagementFactory.readArchiveForUpdate(

 moduleName,

Chapter 4. Using the administrative clients 655

welc_ref_dev_javadoc.html

moduleURI,

 AppConstants.APPUPDATE_ADD,

 preferences,

 null);

If the module that you add to the application lacks any bindings, add the bindings so that the module

addition works. Collect and add the bindings by using the public APIs provided with WebSphere

Application Server. Refer to Java documentation for the

com.ibm.websphere.management.application.client.AppDeploymentController instance to learn more about

how to collect and populate tasks with WebSphere Application Server specific-binding information.

//After you collect all the binding information, save it in the module.

controller.saveAndClose();

//Get the installation options.

Hashtable options = controller. getAppDeploymentSavedResults();

//Connect the administrative client, AdminClient, to WebSphere Application Server.

 AdminClient client = ...;

//Create the application management proxy.

AppManagement proxy = AppManagementProxy. getJMXProxyForClient (client);

//Update the existing application, MyApp, by adding the module.

String appName = "MyApp";

options.put (AppConstants.APPUPDATE_CONTENTTYPE,

 AppConstants. APPUPDATE_CONTENT_MODULEFILE);

//Create the notification filter.

 NotificationFilterSupport myFilter = new NotificationFilterSupport();

 myFilter.enableType (NotificationConstants.TYPE_APPMANAGEMENT);

 //Add the listener.

 NotificationListener listener = new AListener(_soapClient, myFilter,

 "Install: " + appName, AppNotification.UPDATE);

//Specify the target for the new module.

Hashtable mod2svr = new Hashtable();

options.put (AppConstants.APPDEPL_MODULE_TO_SERVER, mod2svr);

mod2svr.put (uniquemoduleURI, target);

proxy.updateApplication (appName,

 moduleURI,

 moduleName,

 AppConstants.APPUPDATE_ADD,

 options,

 null);

// Wait for some timeout. The installation application programming interface (API) is

// asynchronous and so returns immediately.

// If the program does not wait here, the program ends.

 Thread.sleep(300000); // Wait so that the program does not end.

 }

 catch (Exception e) {

 e.printStackTrace();

 }

 }

}

// Specify the Java Management Extensions (JMX) notification listener for JMX events.

class AListener implements NotificationListener

{

 AdminClient _soapClient;

 NotificationFilterSupport myFilter;

 Object handback;

656 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

ObjectName on;

 String eventTypeToCheck;

 public AListener(AdminClient cl, NotificationFilterSupport fl, Object h,

 String eType) throws Exception

 {

 _soapClient = cl;

 myFilter = fl;

 handback = h;

 eventTypeToCheck = eType;

 Iterator iter = _soapClient.queryNames (new ObjectName("WebSphere:

 type=AppManagement,*"), null).iterator();

 on = (ObjectName)iter.next();

 System.out.println ("ObjectName: " + on);

 _soapClient.addNotificationListener (on, this, myFilter, handback);

 }

 public void handleNotification (Notification notf, Object handback)

 {

 AppNotification ev = (AppNotification) notf.getUserData();

 System.out.println ("!! JMX event Recd: (handback obj= " +

 handback+ "): " + ev);

 //When the installation is done, remove the listener and quit

 if (ev.taskName.equals (eventTypeToCheck) &&

 (ev.taskStatus.equals (AppNotification.STATUS_COMPLETED) ||

 ev.taskStatus.equals (AppNotification.STATUS_FAILED)))

 {

 try

 {

 _soapClient.removeNotificationListener (on, this);

 }

 catch (Throwable th)

 {

 System.out.println ("Error removing listener: " + th);

 }

 System.exit (0);

 }

 }

}

Preparing and updating a module through programming

You can update a module for an existing application through the administrative console, the wsadmin tool,

or programming. When you update a module, you replace the existing module with a new version. Use

this example to update a module through programming.

This task assumes a basic familiarity with MBean programming. For information on MBean programming

see MBean Java application programming interface (API) documentation.

Before you can update a module on WebSphere Application Server, you must first install the application.

Perform the following tasks to update a module through programming.

 1. Create an application deployment controller instance to populate the Java archive file with binding

information.

 2. Save the binding information in the module.

 3. Get the installation options.

 4. If the preparation phase (population of the EAR file) is not performed, the do the following actions:

a. Create an options table to be passed to the updateApplication MBean API.

b. Create a table for module to server relations and add the table to the options table.

Chapter 4. Using the administrative clients 657

welc_ref_dev_javadoc.html

5. Connect to WebSphere Application Server.

 6. Create the application management proxy.

 7. Create the notification filter.

 8. Add the listener.

 9. Replace the module in the application.

10. Specify the target for the new module.

11. Wait for some timeout so that the program does not end.

12. Listen to Java Management Extensions (JMX) notifications to understand completion of the operation.

13. When the module addition is done, remove the listener and quit.

After you successfully run the code, the existing module is replaced with the new one.

The following example shows how to add a module to an application based on the previous steps:

//Inputs:

//moduleName specifies the name of the module that you add to the application.

//moduleURI specifies a URI that gives the target location of the module

// archive contents on a file system. The URI provides the location of the new

// module after installation. The URI is relative to the application URL.

//uniquemoduleURI specfies the URI that gives the target location of the

// deployment descriptor file. The URI is relative to the application URL.

//target specifies the cell, node, and server on which the module is installed.

//appName specifies the name of the application to update.

String moduleName = "C:/apps/foo,jar";

String moduleURI = "Increment.jar";

String uniquemoduleURI = "Increment.jar+META-INF/ejb-jar.xml";

String target = "WebSphere:cell=cellname,node=nodename,server=servername";

String appName = "MyApp";

//Get the administrative client to connect to

//WebSphere Application Server.

AdminClient client = ...;

AppManagement proxy = AppManagementProxy. getJMXProxyForClient (client);

Vector tasks = proxy.getApplicationInfo (appName, new Hashtable(), null);

//Create an application deployment controller instance, AppDeploymentController,

//to populate the Java archive (JAR) file with binding information.

//The binding information is WebSphere Application Server-specific deployment information.

Hashtable preferences = new Hashtable();

preferences.put (AppConstants.APPDEPL_LOCALE, Locale.getDefault());

preferences.put (AppConstants.APPUPDATE_CONTENTTYPE, AppConstants.APPUPDATE_

 CONTENT_MODULEFILE);

AppDeploymentController controller = AppManagementFactory.readArchiveForUpdate(

 moduleName,

 moduleURI,

 AppConstants.APPUPDATE_UPDATE,

 preferences,

 tasks);

If the module that you update for the application lacks any bindings, add the bindings so that the module

update works. Collect and add the bindings by using the public APIs that are provided with WebSphere

Application Server. Refer to Java documentation for the AppDeploymentController instance to learn more

about how to collect and populate tasks with WebSphere Application Server-specific binding information.

//After you collect all the binding information, save it in the module.

controller.saveAndClose();

//Create the notification filter.

 NotificationFilterSupport myFilter = new NotificationFilterSupport();

 myFilter.enableType (NotificationConstants.TYPE_APPMANAGEMENT);

658 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

//Add the listener.

 NotificationListener listener = new AListener(_soapClient, myFilter, "Install:

 " + appName, AppNotification.UPDATE);

//Get the installation options.

Hashtable options = controller. getAppDeploymentSavedResults();

//Update the existing application by adding the module.

options.put (AppConstants.APPUPDATE_CONTENTTYPE,

 AppConstants. APPUPDATE_CONTENT_MODULEFILE);

//Specify the target for the new module

Hashtable mod2svr = new Hashtable();

options.put (AppConstants.APPDEPL_MODULE_TO_SERVER, mod2svr);

mod2svr.put (uniquemoduleURI, target);

proxy.updateApplication (appName,

 moduleURI,

 moduleName,

 AppConstants.APPUPDATE_UPDATE,

 options,

 null);

// Wait; the installation application programming interface (API) is

// asynchronous and so returns immediately.

// If the program does not wait here, the program ends.

 Thread.sleep(300000); // Wait so that the program does not end.

 }

 catch (Exception e) {

 e.printStackTrace();

 }

 }

}

// Specify the Java Management Extensions (JMX) notification listener for JMX events.

class AListener implements NotificationListener

{

 AdminClient _soapClient;

 NotificationFilterSupport myFilter;

 Object handback;

 ObjectName on;

 String eventTypeToCheck;

 public AListener(AdminClient cl, NotificationFilterSupport fl, Object h,

 String eType) throws Exception

 {

 _soapClient = cl;

 myFilter = fl;

 handback = h;

 eventTypeToCheck = eType;

 Iterator iter = _soapClient.queryNames (new ObjectName("WebSphere:type=

 AppManagement,*"), null).iterator();

 on = (ObjectName)iter.next();

 System.out.println ("ObjectName: " + on);

 _soapClient.addNotificationListener (on, this, myFilter, handback);

 }

 public void handleNotification (Notification notf, Object handback)

 {

 AppNotification ev = (AppNotification) notf.getUserData();

 System.out.println ("!! JMX event Recd: (handback obj= " +

 handback+ "): " + ev);

Chapter 4. Using the administrative clients 659

//When the installation is done, remove the listener and quit

 if (ev.taskName.equals (eventTypeToCheck) &&

 (ev.taskStatus.equals (AppNotification.STATUS_COMPLETED) ||

 ev.taskStatus.equals (AppNotification.STATUS_FAILED)))

 {

 try

 {

 _soapClient.removeNotificationListener (on, this);

 }

 catch (Throwable th)

 {

 System.out.println ("Error removing listener: " + th);

 }

 System.exit (0);

 }

 }

}

Deleting a module through programming

You can delete a module from an existing application through the administrative console, the wsadmin

tool, or programming. Use this example to delete a module through programming.

This task assumes a basic familiarity with MBean programming. For information on MBean programming

see MBean Java application programming interface (API) documentation.

Before you can delete a module from an application on WebSphere Application Server, you must first

install the application.

Perform the following tasks to delete a module through programming.

1. Connect to WebSphere Application Server.

2. Create the application management proxy.

3. Create the notification filter for listening to events.

4. Add the listener.

5. Delete the module.

6. Wait for some timeout so that the program does not end.

7. Listen to Java Management Extensions (JMX) notifications to understand completion of the operation.

8. When the module is deleted, remove the listener and quit.

After you successfully run the code, the existing module is deleted from the application.

The following example shows how to delete a module from an application based on the previous steps:

//moduleURI specifies a URI that gives the target location of the module.

//appName specifies the name of the application to update.

String moduleURI = "Increment.jar";

String appName = "MyApp";

//Get the administrative client to connect to

//WebSphere Application Server.

AdminClient client = ...;

//Create the application management proxy.

AppManagement proxy = AppManagementProxy. getJMXProxyForClient (client);

//Create the notification filter.

 NotificationFilterSupport myFilter = new NotificationFilterSupport();

 myFilter.enableType (NotificationConstants.TYPE_APPMANAGEMENT);

 //Add the listener.

 NotificationListener listener = new AListener(_soapClient, myFilter, "Install: " + appName, AppNotification.UPDATE);

660 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

welc_ref_dev_javadoc.html

//Update the existing application, MyApp, by deleting the module.

Hashtable options = new Hashtable();

options.put (AppConstants.APPDEPL_LOCALE, Locale.getDefault());

options.put (AppConstants.APPUPDATE_CONTENTTYPE, AppConstants.APPUPDATE_CONTENT_MODULEFILE);

proxy.updateApplication (appName,

 moduleURI,

 null,

 AppConstants.APPUPDATE_DELETE,

 options,

 null);

// Wait; the installation application programming interface (API) is

// asynchronous and so returns immediately.

// If the program does not wait here, the program ends.

 Thread.sleep(300000); // Wait so that the program does not end.

 }

 catch (Exception e) {

 e.printStackTrace();

 }

 }

}

// Specify the Java Management Extensions (JMX) notification listener for JMX events.

class AListener implements NotificationListener

{

 AdminClient _soapClient;

 NotificationFilterSupport myFilter;

 Object handback;

 ObjectName on;

 String eventTypeToCheck;

 public AListener(AdminClient cl, NotificationFilterSupport fl, Object h,

 String eType) throws Exception

 {

 _soapClient = cl;

 myFilter = fl;

 handback = h;

 eventTypeToCheck = eType;

 Iterator iter = _soapClient.queryNames (new ObjectName("WebSphere:

 type=AppManagement,*"), null).iterator();

 on = (ObjectName)iter.next();

 System.out.println ("ObjectName: " + on);

 _soapClient.addNotificationListener (on, this, myFilter, handback);

 }

 public void handleNotification (Notification notf, Object handback)

 {

 AppNotification ev = (AppNotification) notf.getUserData();

 System.out.println ("!! JMX event Recd: (handback obj= " +

 handback+ "): " + ev);

 //When the installation is done, remove the listener and quit

 if (ev.taskName.equals (eventTypeToCheck) &&

 (ev.taskStatus.equals (AppNotification.STATUS_COMPLETED) ||

 ev.taskStatus.equals (AppNotification.STATUS_FAILED)))

 {

 try

 {

 _soapClient.removeNotificationListener (on, this);

 }

 catch (Throwable th)

Chapter 4. Using the administrative clients 661

{

 System.out.println ("Error removing listener: " + th);

 }

 System.exit (0);

 }

 }

}

Adding a file through programming

You can add a file to an existing application through the administrative console, the wsadmin tool, or

programming. This example describes how to add a file through programming.

This task assumes a basic familiarity with MBean programming. For information on MBean programming

see MBean Java application programming interface (API) documentation.

Before you can add a file to an application on WebSphere Application Server, you must first install the

application.

Perform the following tasks to add a file to an application through programming.

1. Connect to WebSphere Application Server.

2. Create the application management proxy.

3. Create the notification filter for listening to events.

4. Add the listener.

5. Add the file to the application.

6. Wait for some timeout so that the program does not end.

7. Listen to Java Management Extensions (JMX) notifications to understand completion of the operation.

8. When the file is added to the application, remove the listener and quit.

After you successfully run the code, the file is added to the application.

The following example shows how to add a file to an application based on the previous steps:

import java.lang.*;

import java.io.*;

import java.util.*;

import java.lang.reflect.*;

import com.ibm.websphere.management.application.*;

import com.ibm.websphere.management.application.client.*;

import com.ibm.websphere.management.*;

import javax.management.*;

public class FileAdd {

 public static void main (String [] args) {

 try {

// Get a connection to WebSphere Application Server.

 String host = "localhost";

 String port = "8880";

 String target = "WebSphere:cell=cellName,node=nodeName,server=server1";

 Properties config = new Properties();

 config.put (AdminClient.CONNECTOR_HOST, host);

 config.put (AdminClient.CONNECTOR_PORT, port);

 config.put (AdminClient.CONNECTOR_TYPE, AdminClient.CONNECTOR_TYPE_SOAP);

 System.out.println ("Config: " + config);

 AdminClient _soapClient = AdminClientFactory.createAdminClient(config);

 // Create the application management proxy, AppManagement.

662 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

welc_ref_dev_javadoc.html

AppManagement proxy = AppManagementProxy. getJMXProxyForClient (_soapClient);

 String appName = "MyApp";

 String fileURI = "test.war/com/acme/abc.jsp";

 String fileContents = "C:/temp/abc.jsp";

 //Create the notification filter.

 NotificationFilterSupport myFilter = new NotificationFilterSupport();

 myFilter.enableType (NotificationConstants.TYPE_APPMANAGEMENT);

 //Add the listener.

 NotificationListener listener = new AListener(_soapClient, myFilter,

 "Install: " + appName, AppNotification.UPDATE);

 Hashtable options = new Hashtable();

 options.put (AppConstants.APPDEPL_LOCALE, Locale.getDefault());

 options.put (AppConstants.APPUPDATE_CONTENTTYPE, AppConstants.APPUPDATE_CONTENT_FILE);

 // Update the application

 proxy.updateApplication (appName,

 fileURI,

 fileContents,

 AppConstants.APPUPDATE_ADD,

 options,

 null);

// Wait; the installation Application Programming Interface (API) is

// asynchronous and so returns immediately.

// If the program does not wait here, the program ends.

 Thread.sleep(90000); // Wait so that the program does not end.

 }

 catch (Exception e) {

 e.printStackTrace();

 }

 }

}

// Specify the Java Management Extensions (JMX) notification listener for JMX events.

class AListener implements NotificationListener

{

 AdminClient _soapClient;

 NotificationFilterSupport myFilter;

 Object handback;

 ObjectName on;

 String eventTypeToCheck;

 public AListener(AdminClient cl, NotificationFilterSupport fl, Object h,

 String eType) throws Exception

 {

 _soapClient = cl;

 myFilter = fl;

 handback = h;

 eventTypeToCheck = eType;

 Iterator iter = _soapClient.queryNames (new ObjectName("WebSphere:

 type=AppManagement,*"), null).iterator();

 on = (ObjectName)iter.next();

 System.out.println ("ObjectName: " + on);

 _soapClient.addNotificationListener (on, this, myFilter, handback);

 }

 public void handleNotification (Notification notf, Object handback)

 {

Chapter 4. Using the administrative clients 663

AppNotification ev = (AppNotification) notf.getUserData();

 System.out.println ("!! JMX event Recd: (handback obj= " +

 handback+ "): " + ev);

 //When the installation is done, remove the listener and quit

 if (ev.taskName.equals (eventTypeToCheck) &&

 (ev.taskStatus.equals (AppNotification.STATUS_COMPLETED) ||

 ev.taskStatus.equals (AppNotification.STATUS_FAILED)))

 {

 try

 {

 _soapClient.removeNotificationListener (on, this);

 }

 catch (Throwable th)

 {

 System.out.println ("Error removing listener: " + th);

 }

 System.exit (0);

 }

 }

}

Updating a file through programming

You can update a file for an existing application through the administrative console, the wsadmin tool, or

programming. This example describes how to update a file through programming.

This task assumes a basic familiarity with MBean programming. For information on MBean programming

see MBean Java application programming interface (API) documentation.

Before you can update a file for an application on WebSphere Application Server, you must first install the

application.

Perform the following tasks to update a file through programming.

1. Connect to WebSphere Application Server.

2. Create the application management proxy.

3. Create the notification filter for listening to events.

4. Add the listener.

5. Update the file in the application.

6. Wait for some timeout so that the program does not end.

7. Listen to Java Management Extensions (JMX) notifications to understand completion of the operation.

8. When the installation is done, remove the listener and quit.

After you successfully run the code, the file is updated for the application.

The following example shows how to add a file to an application based on the previous steps:

//Inputs:

//fileContents specifies the name of the file that you add to the application.

//appName specifies the name of the application.

//fileURI specifies a URI that gives the target location of the file. The URI

// provides the location of the new module after installation. The URI is

// relative to the application URL.

String fileContents = "C:/apps/test.jsp";

String appName = "MyApp";

String fileURI = "SomeWebMod.war/com/foo/abc.jsp";

//Get the administrative client to connect to

//WebSphere Application Server.

664 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

welc_ref_dev_javadoc.html

AdminClient client = ...;

//Create the application management proxy.

AppManagement proxy = AppManagementProxy. getJMXProxyForClient (client);

//Create the notification filter.

 NotificationFilterSupport myFilter = new NotificationFilterSupport();

 myFilter.enableType (NotificationConstants.TYPE_APPMANAGEMENT);

 //Add the listener.

 NotificationListener listener = new AListener(_soapClient, myFilter,

 "Install: " + appName, AppNotification.UPDATE);

Hashtable options = new Hashtable();

options.put (AppConstants.APPDEPL_LOCALE, Locale.getDefault());

options.put (AppConstants.APPUPDATE_CONTENTTYPE, AppConstants.APPUPDATE_CONTENT_FILE);

proxy.updateApplication (appName,

 fileURI,

 fileContents,

 AppConstants.APPUPDATE_UPDATE,

 options,

 null);

// Wait; the installation application programming interface (API) is

// asynchronous and so returns immediately.

// If the program does not wait here, the program ends.

 Thread.sleep(300000); // Wait so that the program does not end.

 }

 catch (Exception e) {

 e.printStackTrace();

 }

 }

}

// Specify the Java Management Extensions (JMX) notification listener for JMX events.

class AListener implements NotificationListener

{

 AdminClient _soapClient;

 NotificationFilterSupport myFilter;

 Object handback;

 ObjectName on;

 String eventTypeToCheck;

 public AListener(AdminClient cl, NotificationFilterSupport fl, Object h,

 String eType) throws Exception

 {

 _soapClient = cl;

 myFilter = fl;

 handback = h;

 eventTypeToCheck = eType;

 Iterator iter = _soapClient.queryNames (new ObjectName("WebSphere:

 type=AppManagement,*"), null).iterator();

 on = (ObjectName)iter.next();

 System.out.println ("ObjectName: " + on);

 _soapClient.addNotificationListener (on, this, myFilter, handback);

 }

 public void handleNotification (Notification notf, Object handback)

 {

 AppNotification ev = (AppNotification) notf.getUserData();

 System.out.println ("!! JMX event Recd: (handback obj= " +

 handback+ "): " + ev);

 //When the installation is done, remove the listener and quit.

Chapter 4. Using the administrative clients 665

if (ev.taskName.equals (eventTypeToCheck) &&

 (ev.taskStatus.equals (AppNotification.STATUS_COMPLETED) ||

 ev.taskStatus.equals (AppNotification.STATUS_FAILED)))

 {

 try

 {

 _soapClient.removeNotificationListener (on, this);

 }

 catch (Throwable th)

 {

 System.out.println ("Error removing listener: " + th);

 }

 System.exit (0);

 }

 }

}

Deleting a file through programming

You can delete a file from an existing application through the administrative console, the wsadmin tool, or

programming. Use this example to delete a file through programming.

This task assumes a basic familiarity with MBean programming. For information on MBean programming

see MBean Java application programming interface (API) documentation.

Before you can delete a file from an application on WebSphere Application Server, you must first install the

application.

Perform the following tasks to delete a file through programming.

1. Connect to WebSphere Application Server.

2. Create the application management proxy.

3. Create the notification filter for listening to events.

4. Add the listener.

5. Delete the file from the application.

6. Wait for some timeout so that the program does not end.

7. Listen to Java Management Extensions (JMX) notifications to understand completion of the operation.

8. When the file is deleted from the application, remove the listener and quit.

After you successfully run the code, the file is deleted from the application.

The following example shows how to delete a file based on the previous steps:

//Inputs:

//fileURI specifies a URI that gives the target location of the file. The URI

// provides the location of the new module after installation. The URI is

// relative to the application URL.

//appName specifies the name of the application.

String fileURI = "Increment.jar/com/acme/Foo.class";

String appName = "MyApp";

//Get the administrative client to connect to

//WebSphere Application Server.

AdminClient client = ...;

//Create the application management proxy.

AppManagement proxy = AppManagementProxy. getJMXProxyForClient (client);

//Create the notification filter.

 NotificationFilterSupport myFilter = new NotificationFilterSupport();

 myFilter.enableType (NotificationConstants.TYPE_APPMANAGEMENT);

666 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

welc_ref_dev_javadoc.html

//Add the listener.

 NotificationListener listener = new AListener(_soapClient, myFilter,

 "Install: " + appName, AppNotification.UPDATE);

//Update the existing application, MyApp, by deleting the file.

Hashtable options = new Hashtable();

options.put (AppConstants.APPDEPL_LOCALE, Locale.getDefault());

options.put (AppConstants.APPUPDATE_CONTENTTYPE, AppConstants.APPUPDATE_CONTENT_FILE);

proxy.updateApplication (appName,

 fileURI,

 null,

 AppConstants.APPUPDATE_DELETE,

 options,

 null);

// Wait for some timeout. The installation Application Programming Interface (API) is

// asynchronous and so returns immediately.

// If the program does not wait here, the program ends.

 Thread.sleep(300000); // Wait so that the program does not end.

 }

 catch (Exception e) {

 e.printStackTrace();

 }

 }

}

// Specify the Java Management Extensions (JMX) notification listener for JMX events.

class AListener implements NotificationListener

{

 AdminClient _soapClient;

 NotificationFilterSupport myFilter;

 Object handback;

 ObjectName on;

 String eventTypeToCheck;

 public AListener(AdminClient cl, NotificationFilterSupport fl, Object h,

 String eType) throws Exception

 {

 _soapClient = cl;

 myFilter = fl;

 handback = h;

 eventTypeToCheck = eType;

 Iterator iter = _soapClient.queryNames (new ObjectName("WebSphere:

 type=AppManagement,*"), null).iterator();

 on = (ObjectName)iter.next();

 System.out.println ("ObjectName: " + on);

 _soapClient.addNotificationListener (on, this, myFilter, handback);

 }

 public void handleNotification (Notification notf, Object handback)

 {

 AppNotification ev = (AppNotification) notf.getUserData();

 System.out.println ("!! JMX event Recd: (handback obj= " +

 handback+ "): " + ev);

 //Once the installation is done, remove the listener and quit

 if (ev.taskName.equals (eventTypeToCheck) &&

 (ev.taskStatus.equals (AppNotification.STATUS_COMPLETED) ||

 ev.taskStatus.equals (AppNotification.STATUS_FAILED)))

 {

 try

 {

Chapter 4. Using the administrative clients 667

_soapClient.removeNotificationListener (on, this);

 }

 catch (Throwable th)

 {

 System.out.println ("Error removing listener: " + th);

 }

 System.exit (0);

 }

 }

}

Using command line tools

There are several command line tools that you can use to start, stop, and monitor WebSphere server

processes and nodes. These tools only work on local servers and nodes. They cannot operate on a

remote server or node. To administer a remote server, you can use the wsadmin scripting program

connected to the deployment manager for the cell in which the target server or node is configured. See

Deploying and managing using scripting for more information about using the wsadmin scripting program.

You can also use the V5 administrative console which runs in the deployment manager for the cell. For

more information about using the administrative console, see Deploying and managing with the GUI.

All command line tools function relative to a particular profile. If you run a command from a

install_root/WebSphere/AppServer/bin directory, the command will run within the default profile. If you

want to specify a different profile, perform one of the following:

v Specify the -profileName option. The profile that you specify with this option will be used instead of the

default profile. For example:

1. Change to the install_root/WebSphere/AppServer/bin directory.

2. Type the following command: startServer server1 -profileName AppServerProfile

In this example, the command will function inside the AppServerProfile profile.

v Run the command from the bin directory of a specific profile. For example:

1. Change to the install_root/WebSphere/AppServer/profiles/MyProfile/bin directory.

2. Type the following command: startServer server1

In this example, the command will function inside the MyProfile profile.

For more information about using profiles, including how to obtain a list of profiles, see the wasprofile

command article.

To use the command line tools, perform the following steps:

1. Open a system command prompt.

2. Change to the bin directory.

3. Run the command.

The command runs the requested function and displays the results on the screen. Refer to the command

log file for additional information. When you use the -trace option for the command, the additional trace

data is captured in the command log file. The directory location for the log files is under the default system

log root directory, except for commands related to a specific server instance, in which case the log

directory for that server is used. You can override the default location for the command log file using the

-logfile option for the command.

668 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Example: Security and the command line tools

If you want to enable WebSphere Application Server security, you need to provide the command line tools

with authentication information. Without authentication information, the command line tools receive an

AccessDenied exception when you attempt to use them with security enabled. There are multiple ways to

provide authentication data:

v Most command line tools support a -username and -password option for providing basic authentication

data. Specify the user ID and password for an administrative user. For example, you can use a member

of the administrative console users with operator or administrator privileges, or the administrative user

ID configured in the user registry. The following example demonstrates the stopNode command, which

specifies command line parameters:

stopNode -username adminuser -password adminpw

v You can place the authentication data in a properties file that the command line tools read. The default

file for this data is the sas.client.props file in the properties directory for the WebSphere Application

Server.

startServer command

The startServer command reads the configuration file for the specified application server and starts the

server. Depending on the options you specify, you can launch a new Java virtual machine (JVM) API to

run the server process, or write the launch command data to a file. For more information about where to

run this command, see the Using command tools article.

If you are using the Windows platform and the you have the application server running as a Windows

service, the startServer command will start the associated Windows service and it will be responsible for

starting the application server.

Syntax

The command syntax is as follows:

startServer <server> [options]

where server is the name of the application server you want to start. This argument is required.

Parameters

The following options are available for the startServer command:

-nowait

Tells the startServer command not to wait for successful initialization of the launched server process.

-quiet

Suppresses the progress information that the startServer command prints in normal mode.

-logfile <fileName>

Specifies the location of the log file to which information is written.

-profileName

Defines the profile of the Application Server process in a multi-profile installation. The -profileName

option is not required for running in a single profile environment. The default for this option is the

default profile.

-replacelog

Replaces the log file instead of appending to the current log.

-trace

Generates trace information to the log file for debugging purposes.

-timeout <seconds>

Specifies the waiting time before server initialization times out and returns an error.

Chapter 4. Using the administrative clients 669

-statusport <portNumber>

Specifies that an administrator can set the port number for server status callback.

-script [<script fileName>] -background

Generates a launch script with the startServer command instead of launching the server process

directly. The launch script name is an optional argument. If you do not supply the launch script name,

the default script file name is start_<server> based on the <server> name passed as the first

argument to the startServer command. The -background parameter is an optional parameter that

specifies that the generated script will run in the background when you execute it.

-J <java_option>

Specifies options to pass through to the Java interpreter.

-help

Prints a usage statement.

-? Prints a usage statement.

Usage scenario

The following examples demonstrate correct syntax:

startServer server1

startServer server1 -script (produces the start_server1.sh or .bat files)

startServer server1 -trace (produces the startserver.log file)

stopServer command

The stopServer command reads the configuration file for the specified server process. This command

sends a Java Management Extensions (JMX) command to the server telling it to shut down. By default,

the stopServer command does not return control to the command line until the server completes the shut

down process. There is a -nowait option to return immediately, as well as other options to control the

behavior of the stopServer command. For more information about where to run this command, see the

Using command tools article.

If you are using the Windows platform and the you have the application server running as a Windows

service, the stopServer command will start the associated Windows service and it will be responsible for

starting the application server.

Syntax

The command syntax is as follows:

stopServer <server> [options]

where server is the name of the configuration directory of the server you want to stop. This argument is

required.

Parameters

The following options are available for the stopServer command:

-nowait

Tells the stopServer command not to wait for successful shutdown of the server process.

-quiet

Suppresses the progress information that the stopServer command prints in normal mode.

-logfile <fileName>

Specifies the location of the log file to which information is written.

670 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

-profileName

Defines the profile of the Application Server process in a multi-profile installation. The -profileName

option is not required for running in a single profile environment. The default for this option is the

default profile.

-replacelog

Replaces the log file instead of appending to the current log.

-trace

Generates trace information into a file for debugging purposes.

-timeout <seconds>

Specifies the time to wait for server shutdown before timing out and returning an error.

-statusport <portNumber>

Supports an administrator in setting the port number for server status callback.

-conntype <type>

Specifies the Java Management Extensions (JMX) connector type to use for connecting to the

deployment manager. Valid types are Simple Object Access Protocol (SOAP), or Remote Method

Invocation (RMI).

-port <portNumber>

Specifies the server Java Management Extensions (JMX) port to use explicitly, so that you can avoid

reading the configuration files to obtain the information.

-username <name>

Specifies the user name for authentication if security is enabled in the server. Acts the same as the

-user option.

-user <name>

Specifies the user name for authentication if security is enabled in the server. Acts the same as the

-username option.

-password <password>

Specifies the password for authentication if security is enabled in the server.

Note: If you are running in a secure environment but have not provided a user ID and password, you

will receive the following error message:

ADMN0022E: Access denied for the stop operation on Server MBean due

to insufficient or empty credentials.

To solve this problem, provide the user ID and password information.

-help

Prints a usage statement.

-? Prints a usage statement.

Usage scenario

The following examples demonstrate correct syntax:

stopServer server1

stopServer server1 -nowait

stopServer server1 -trace (produces the stopserver.log file)

startManager command

The startManager command reads the configuration file for the Network Deployment manager process

and constructs a launch command. Depending on the options you specify, the startManager command

Chapter 4. Using the administrative clients 671

launches a new Java virtual machine (JVM) API to run the manager process, or writes the launch

command data to a file. You must run this command from the

install_root/WebSphere/AppServer/profiles/standalone/bin directory of a Network Deployment

installation.

If you are using the Windows platform and the you have the deployment manager running as a Windows

service, the startManager command will start the associated Windows service and it will be responsible

for starting the deployment manager.

Syntax

The command syntax is as follows:

startManager [options]

Parameters

The following options are available for the startManager command:

-nowait

Tells the startManager command not to wait for successful initialization of the deployment manager

process.

-quiet

Suppresses the progress information that the startManager command prints in normal mode.

-logfile <fileName>

Specifies the location of the log file to which information gets written.

-profileName

Defines the profile of the Application Server process in a multi-profile installation. The -profileName

option is not required for running in a single profile environment. The default for this option is the

default profile.

-replacelog

Replaces the log file instead of appending to the current log.

-trace

Generates trace information into a file using the startManager command for debugging purposes.

-timeout <seconds>

Specifies the waiting time before deployment manager initialization times out and returns an error.

-statusport <portNumber>

Specifies that an administrator can set the port number for deployment manager status callback.

-script [<script fileName>] -background

Generates a launch script with the startManager command instead of launching the deployment

manager process directly. The launch script name is an optional argument. If you do not provide the

launch script name, the default script file name is <start_dmgr>. The -background parameter is an

optional parameter that specifies that the generated script will run in the background when you

execute it.

-J-<java_option>

Specifies options to pass through to the Java interpreter.

-help

Prints a usage statement.

-? Prints a usage statement.

672 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Usage scenario

The following examples demonstrate correct syntax:

startManager

startManager -script (produces the start_dmgr.sh or .bat file)

startManager -trace (produces the startmanager.log file)

stopManager command

The stopManager command reads the configuration file for the Network Deployment manager process. It

sends a Java Management Extensions (JMX) command to the manager telling it to shut down. By default,

the stopManager command waits for the manager to complete the shutdown process before it returns

control to the command line. There is a -nowait option to return immediately, as well as other options to

control the behavior of the stopManager command. For more information about where to run this

command, see the Using command tools article.

If you are using the Windows platform and the you have the deployment manager running as a Windows

service, the stopManager command will start the associated Windows service and it will be responsible

for starting the deployment manager.

Syntax

The command syntax is as follows:

stopManager [options]

Parameters

The following options are available for the stopManager command:

-nowait

Tells the stopManager command not to wait for successful shutdown of the deployment manager

process.

-quiet

Suppresses the progress information that the stopManager command prints in normal mode.

-logfile <fileName>

Specifies the location of the log file to which information is written.

-profileName

Defines the profile of the Application Server process in a multi-profile installation. The -profileName

option is not required for running in a single profile environment. The default for this option is the

default profile.

-replacelog

Replaces the log file instead of appending to the current log.

-trace

Generates trace information to a file for debugging purposes.

-timeout <seconds>

Specifies the waiting time for the manager to complete shutdown before timing out and returning an

error.

-statusport <portNumber>

Specifies that an administrator can set the port number for server status callback.

Chapter 4. Using the administrative clients 673

-conntype <type>

Specifies the Java Management Extensions (JMX) connector type to use for connecting to the

deployment manager. Valid types are Simple Object Access Protocol (SOAP) or Remote Method

Invocation (RMI).

-port <portNumber>

Specifies the deployment manager JMX port to use explicitly, so that you can avoid reading the

configuration files to obtain information.

-username <name>

Specifies the user name for authentication if security is enabled in the deployment manager. Acts the

same as the -user option.

-user <name>

Specifies the user name for authentication if security is enabled in the deployment manager. Acts the

same as the -username option.

-password <password>

Specifies the password for authentication if security is enabled in the deployment manager.

Note: If you are running in a secure environment but have not provided a user ID and password, you

receive the following error message:

ADMN0022E: Access denied for the stop operation on Server MBean due

to insufficient or empty credentials.

To solve this problem, provide the user ID and password information.

-help

Prints a usage statement.

-? Prints a usage statement.

Usage scenario

The following examples demonstrate correct syntax:

stopManager

stopManager -nowait

stopManager -trace (produces the stopmanager.log file)

startNode command

The startNode command reads the configuration file for the node agent process and constructs a launch

command. Depending on the options that you specify, the startNode command creates a new Java virtual

machine (JVM) API to run the agent process, or writes the launch command data to a file. For more

information about where to run this command, see the Using command tools article.

If you are using the Windows platform and the you have the node agent running as a Windows service,

the startNode command will start the associated Windows service and it will be responsible for starting

the node agent.

Syntax

The command syntax is as follows:

startNode [options]

Parameters

The following options are available for the startNode command:

674 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

-nowait

Tells the startNode command not to wait for successful initialization of the node agent process.

-quiet

Suppresses the progress information that the startNode command prints in normal mode.

-logfile <fileName>

Specifies the location of the log file to which information gets written.

-profileName

Defines the profile of the Application Server process in a multi-profile installation. The -profileName

option is not required for running in a single profile environment. The default for this option is the

default profile.

-replacelog

Replaces the log file instead of appending to the current log.

-trace

Generates trace information into a file for debugging purposes.

-timeout <seconds>

Specifies the waiting time before node agent initialization times out and returns an error.

-statusport <portNumber>

Specifies that an administrator can set the port number for node agent status callback.

-script [<script fileName>] -background

Generates a launch script with the startNode command instead of launching the node agent process

directly. The launch script name is an optional argument. If you do not provide the launch script name,

the default script file name is start_<nodeName>, based on the name of the node. The -background

parameter is an optional parameter that specifies that the generated script will run in the background

when you execute it.

-J-<java_option>

Specifies options to pass through to the Java interpreter.

-help

Prints a usage statement.

-? Prints a usage statement.

Usage scenario

The following examples demonstrate correct syntax:

startNode

startNode -script (produces the start_node.bat or .sh file)

startNode -trace (produces the startnode.log file)

stopNode command

The stopNode command reads the configuration file for the Network Deployment node agent process and

sends a Java Management Extensions (JMX) command telling the node agent to shut down. By default,

the stopNode command waits for the node agent to complete shutdown before it returns control to the

command line. There is a -nowait option to return immediately, as well as other options to control the

behavior of the stopNode command. For more information about where to run this command, see the

Using command tools article.

If you are using the Windows platform and the you have the node agent running as a Windows service,

the stopNode command will start the associated Windows service and it will be responsible for starting

the node agent.

Chapter 4. Using the administrative clients 675

Syntax

The command syntax is as follows:

stopNode [options]

Parameters

The following options are available for the stopNode command:

-nowait

Tells the stopNode command not to wait for successful shutdown of the node agent process.

-quiet

Suppresses the progress information that the stopNode command prints in normal mode.

-logfile <fileNname>

Specifies the location of the log file to which information gets written.

-profileName

Defines the profile of the Application Server process in a multi-profile installation. The -profileName

option is not required for running in a single profile environment. The default for this option is the

default profile.

-replacelog

Replaces the log file instead of appending to the current log.

-trace

Generates trace information into a file for debugging purposes.

-timeout <seconds>

Specifies the waiting time for the agent to shut down before timing out and returning an error.

-statusport <portNumber>

Specifies that an administrator can set the port number for server status callback.

-stopservers

Stops all application servers on the node before stopping the node agent.

-conntype <type>

Specifies the Java Management Extensions (JMX) connector type to use for connecting to the

deployment manager. Valid types are Simple Object Access Protocol (SOAP) or Remote Method

Invocation (RMI).

-port <portNumber>

Specifies the node agent JMX port to use explicitly, so that you can avoid reading configuration files to

obtain the information.

-username <name>

Specifies the user name for authentication if security is enabled in the node agent. Acts the same as

the -user option.

-user <name>

Specifies the user name for authentication if security is enabled in the node agent. Acts the same as

the -username option.

-password <password>

Specifies the password for authentication if security is enabled in the node agent.

Note: If you are running in a secure environment but have not provided a user ID and password, you

receive the following error message:

ADMN0022E: Access denied for the stop operation on Server MBean due

to insufficient or empty credentials.

676 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

To solve this problem, provide the user ID and password information.

-help

Prints a usage statement.

Note: When requesting help for the usage statement for the stopNode command, a reference to the

stopServer command displays. All of the options displayed for this usage statement apply to

the stopNode command.

-? Prints a usage statement.

Note: When requesting help for the usage statement for the stopNode command, a reference to the

stopServer command displays. All of the options displayed for this usage statement apply to

the stopNode command.

Usage scenario

The following examples demonstrate correct syntax:

stopNode

stopNode -nowait

stopNode -trace (produces the stopnode.log file)

addNode command

The addNode command incorporates a WebSphere Application Server installation into a cell. For more

information about where to run this command, see the Using command tools article. Depending on the

size and location of the new node you incorporate into the cell, this command can take a few minutes to

complete.

The node agent server is automatically started as part of the addNode command unless you specify the

-noagent option. If you recycle the system that hosts an application server node, and did not set up the

node agent to act as an operating system daemon, you must issue a startNode command to start the

node agent before starting any application servers.

The following items are new in V6:

v Ports generated for the node agent are unique for all the profiles in the installation. For development

purposes, you can create multiple profiles on the same installation and add them to one or more cells

without worrying about ports conflicts.

v If you want to specify the ports that the node agent uses, specify it is a file with the file name passed

with the -portprops option. The format of the file is key=value pairs, one on each line, with the key being

the same as the port name in the serverindex.xml file.

v If you want to use a number of sequential ports, the -startingport option works the same as it does in

V5.x. This means that port conflicts with other profiles will not be detected.

Syntax

The command syntax is as follows:

addNode dmgr_host [dmgr_port] [-conntype type] [-includeapps]

[-startingport portnumber] [-portprops qualified_filename]

[-nodeagentshortname name] [-nodegroupname name] [-includebuses name]

[-registerservice] [-servicename name] [-servicepassword password]

[-coregroupname name] [-noagent] [-statusport port] [-quiet] [-nowait]

[-logfile filename] [-replacelog] [-trace] [-username uid]

[-password pwd] [-help]

Chapter 4. Using the administrative clients 677

The dmgr_host argument is required. All of the other arguments are optional. The default port number is

8879 for the default Simple Object Access Protocol (SOAP) port of the deployment manager. SOAP is the

default Java Management Extensions (JMX) connector type for the command. If you have multiple

WebSphere Application Server installations or multiple profiles, the SOAP port may be different than 8879.

Examine the deployment manager SystemOut.log to see the current ports in use.

Parameters

The following options are available for the addNode command:

-conntype <type>

Specifies the JMX connector type to use for connecting to the deployment manager. Valid types are

SOAP or RMI, which stands for Remote Method Invocation.

-includeapps

By default the addNode command does not carry over applications from the stand-alone servers on

the new node to the cell. In general, you should install applications using the deployment manager.

The -includeapps option tells the addNode command to carry over the applications from a node. If the

application already exists in the cell, a warning is printed and the application does not install in the

cell.

 The applications will be mapped to the server that you federated using the addNode command. When

the addNode command operation completes, the applications will run on that server when the server

is started. Since these applications are part of the network deployment cell, you can map them to

other servers and clusters in the cell using the administrative console. See the Mapping modules to

servers article for more information.

 By default, during application installation, application binaries are extracted in the

install_root/installedApps/cellName directory. After the addNode command, the cell name of the

configuration on the node that you added changes from the base cell name to the deployment

manager cell name. The application binaries are located where they were before the addNode

command ran, for example, install_root/installedApps/old_cellName.

 If the application was installed by explicitly specifying the location for binaries as the following

example:

${INSTALL_ROOT}/${CELL}

where the variable ${CELL}, specifies the current cell name, then when the addNode command runs,

the binaries are moved to the following directory:

${INSTALL_ROOT}/currentCellName

Federating the node to a cell using the addNode command does not merge any cell level

configuration, including virtual host information. If the virtual host and aliases for the new cell do not

match WebSphere Application Server, you cannot access the applications running on the servers. You

have to manually add all the virtual host and host aliases to the new cell, using the administrative

console running on the deployment manager.

-profileName

Defines the profile of the Application Server process in a multi-profile installation. The -profileName

option is not required for running in a single profile environment. The default for this option is the

default profile.

-user <name> or -username <name>

Specifies the user name for authentication if security is enabled. Acts the same as the -user option.

The user name that you choose must be a pre-existing user name.

-nowait

Tells the addNode command not to wait for successful initialization of the launched node agent

process.

678 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

-quiet

Suppresses the progress information that the addNode command prints in normal mode.

-logfile <filename>

Specifies the location of the log file to which information gets written. By default, the log file is called

addNode.log and is created in the logs directory of the profile for the node being added.

-trace

Generates additional trace information in the log file for debugging purposes.

-replacelog

Replaces the log file instead of appending to the current log. By default, the addNode command

appends to the existing trace file. This option causes the addNode command to overwrite the trace

file.

-noagent

Tells the addNode command not to launch the node agent process for the new node.

-password <password>

Specifies the password for authentication if security is enabled. The password that you choose must

be one that is associated with a pre-existing user name.

-startingport <portNumber>

Supports the specification of a port number to use as the base port number for all node agent ports

created during the addNode command. With this support you can control which ports are defined for

these servers, rather than using the default port values. The starting port number is incremented to

calculate the port number for every node agent port configured during the addNode command.

-registerservice

(Windows only) Registers the node agent as a Windows service.

-servicename <user>

(Windows only) Use the given user name as the Windows service user.

-servicepassword <password>

(Windows password) Use the given password as the Windows service password.

-portprops <filename>

Passes the name of the file that contains key-value pairs of explicit ports that you want the new node

agent to use. For example, to set your SOAP and RMI ports to 3000 and 3001, create a file with the

following two lines and pass it as the parameter:

SOAP_CONNECTOR_ADDRESS=3000

BOOTSTRAP_ADDRESS=3001

-coregroupname <name>

The name of the core group in which to add this node. If you do not specify this option, the node will

be added to the DefaultCoreGroup.

-nodegroupname <name>

The name of the node group in which to add this node. If you do not specify, the node is added to the

DefaultNodeGroup.

-includebuses

Copies the buses from the node to be federated to the cell.

-nodeagentshortname <name>

The shortname to use for the new node agent.

-help

Prints a usage statement.

-? Prints a usage statement.

Chapter 4. Using the administrative clients 679

Usage scenario

The following examples demonstrate correct syntax:

addNode testhost 8879 (adds an Application Server to the deployment manager)

addNode deploymgr 8879 -trace (produces the addNode.log file)

addNode host25 8879 -nowait (does not wait for a node agent process)

where 8879 is the default port.

Best practices for adding nodes using command line tools

Use the addNode command to add a standalone node into a cell. The addNode command does the

following:

v Copies the base WebSphere Application Server cell configuration to a new cell structure. This new cell

structure matches the structure of deployment manager.

v Creates a new node agent definition for the node that the cell incorporates.

v Sends commands to the deployment manager to add the documents from the new node to the cell

repository.

v Performs the first configuration synchronization for the new node, and verifies that this node is

synchronized with the cell.

v Launches the node agent process for the new node.

v Updates the setupCmdLine.bat or setupCmdline.sh files and the wsadmin.properties file to point to the

new cell.

v After federating the node, the addNode command backs up the plugin-cfg.xml file from the

<install_root>/config/cells directory to the config/backup/base/cells directory. The addNode

command regenerates a new plugin-cfg.xml file at the Deployment Manger and the nodeSync

operation copies the files to the node level.

For information about port numbers, see port number settings in WebSphere Application Server

versions.

Tips for using the addNode command:

v Do not put WebSphere Application Server Jar files on the generic CLASSPATH variable (default class

path) for the overall system.

v Unix/Linux users: Some Unix or Linux systems create an association between the host name of the

machine and the loopback address -- 127.0.0.1 (Red Hat installations do this by default). In addition, the

/etc/nsswitch.conf file is set up to use the /etc/hosts path before trying to look up the server using a

name server. This setup can cause failures when trying to add or administrate nodes when the

deployment manager or application server is running on the Red Hat system or an Unix/Linux system

with the same setup.

If your deployment manager or your application server run on the Red Hat system, or an Unix/Linux

system with the same setup, perform the following operations to ensure that you can successfully add

and administer nodes:

– Remove the 127.0.0.1 mapping to the local host in the /etc/hosts path.

– Edit the /etc/nsswitch.conf file so that the hosts line reads:

hosts: dns files

v By default, applications that are installed on the node will not copy to the cell. If you install an

application after using the addNode command, the application will install on the cell. By specifying the

-includeapps option, you force the addNode command to copy applications from the node to the cell.

Applications with duplicate names will not copy to the cell.

v Cell-level documents are not merged. Any changes that you make to the standalone cell-level

documents before using the addNode command must be repeated on the new cell. For example, virtual

hosts.

680 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

serverStatus command

Use the serverStatus command to obtain the status of one or all of the servers configured on a node. For

more information about where to run this command, see the Using command tools article.

Syntax

The command syntax is as follows:

serverStatus <server>|-all [options]

The first argument is required. The argument is either the name of the server for which status is desired,

or the -all keyword which requests status for all servers defined on the node.

Parameters

The following options are available for the serverStatus command:

-quiet

Suppresses the progress information that the serverStatus command prints in normal mode.

-logfile <fileName>

Specifies the location of the log file to which information gets written.

-profileName

Defines the profile of the Application Server process in a multi-profile installation. The -profileName

option is not required for running in a single profile environment. The default for this option is the

default profile.

-replacelog

Replaces the log file instead of appending to the current log.

-trace

Generates trace information into a file for debugging purposes.

-username <name>

Specifies the user name for authentication if security is enabled. Acts the same as the -user option.

-user <name>

Specifies the user name for authentication if security is enabled. Acts the same as the -username

option.

-password <password>

Specifies the password for authentication if security is enabled.

-help

Prints a usage statement.

-? Prints a usage statement.

Usage scenario

The following examples demonstrate correct syntax:

serverStatus server1

serverStatus -all (returns status for all defined servers)

serverStatus -trace (produces the serverStatus.log file)

Chapter 4. Using the administrative clients 681

removeNode command

The removeNode command returns a node from a Network Deployment distributed administration cell to a

base WebSphere Application Server installation. For more information about where to run this command,

see the Using command tools article.

The removeNode command only removes the node-specific configuration from the cell. This command

does not uninstall any applications that were installed as the result of executing an addNode command.

Such applications can subsequently deploy on additional servers in the Network Deployment cell. As a

consequence, an addNode command with the -includeapps option executed after a removeNode

command does not move the applications into the cell because they already exist from the first addNode

command. The resulting application servers added on the node do not contain any applications. To deal

with this situation, add the node and use the deployment manager to manage the applications. Add the

applications to the servers on the node after it is incorporated into the cell.

The removeNode command does the following:

v Stops all of the running server processes in the node, including the node agent process.

v Removes the configuration documents for the node from the cell repository by sending commands to

the deployment manager.

v Copies the original application server cell configuration into the active configuration.

Depending on the size and location of the new node you remove from the cell, this command can take a

few minutes to complete.

Syntax

The command syntax is as follows:

removeNode [options]

All arguments are optional.

Parameters

The following options are available for the removeNode command:

-quiet

Suppresses the progress information that the removeNode command prints in normal mode.

-logfile <fileName>

Specifies the location of the log file to which information is written.

-profileName

Defines the profile of the Application Server process in a multi-profile installation. The -profileName

option is not required for running in a single profile environment. The default for this option is the

default profile.

-replacelog

Replaces the log file instead of appending to the current log.

-trace

Generates trace information into a file for debugging purposes.

-statusport <portNumber>

Specifies that an administrator can set the port number for the node agent status callback.

-username <name>

Specifies the user name for authentication if security is enabled. Acts the same as the -user option.

682 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

-user <name>

Specifies the user name for authentication if security is enabled. Acts the same as the -username

option.

-password <password>

Specifies the password for authentication if security is enabled.

-force

Cleans up the local node configuration regardless of whether you can reach the deployment manager

for cell repository cleanup. After using the -force parameter, you may need to use the cleanupNode

command on the deployment manager.

 -help

Prints a usage statement.

-? Prints a usage statement.

Usage scenario

The following examples demonstrate correct syntax:

removeNode -quiet

removeNode -trace (produces the removeNode.log file)

cleanupNode command

The cleanupNode command cleans up a node configuration from the cell repository. Only use this

command to clean up a node if you have a node defined in the cell configuration, but the node no longer

exists. For more information about where to run this command, see the Using command tools article.

Syntax

The command syntax is as follows:

cleanupNode <node name> <deploymgr host> <deploymgr port> [options]

where the first argument is required.

Parameters

The following options are available for the cleanupNode command:

-quiet

Suppresses the progress information that the cleanupNode command prints in normal mode.

-trace

Generates trace information into a file for debugging purposes.

-profileName

Defines the profile of the Application Server process in a multi-profile installation. The -profileName

option is not required for running in a single profile environment. The default for this option is the

default profile.

Usage scenario

The following examples demonstrate correct syntax:

cleanupNode myNode

cleanupNode myNode -trace

Chapter 4. Using the administrative clients 683

syncNode command

The syncNode command forces a configuration synchronization to occur between the node and the

deployment manager for the cell in which the node is configured.

The node agent server runs a configuration synchronization service that keeps the node configuration

synchronized with the master cell configuration. If the node agent is unable to run because of a problem in

the node configuration, you can use the syncNode command to perform a synchronization when the

deployment manager is not running in order to force the node configuration back in sync with the cell

configuration.

For more information about where to run this command, see the Using command tools article.

Syntax

The command syntax is as follows:

syncNode <deploymgr host> <deploymgr port> [options]

where the <deploymgr host> argument is required.

Parameters

The following options are available for the syncNode command:

-stopservers

Tells the syncNode command to stop all servers on the node, including the node agent, before

performing configuration synchronization with the cell.

-restart

Tells the syncNode command to launch the node agent process after configuration synchronization

completes.

-nowait

Tells the syncNode command not to wait for successful initialization of the launched node agent

process.

-quiet

Suppresses the progress information that the syncNode command prints in normal mode.

-logfile <fileName>

Specifies the location of the log file to which information gets written.

-profileName

Defines the profile of the Application Server process in a multi-profile installation. The -profileName

option is not required for running in a single profile environment. The default for this option is the

default profile.

-replacelog

Replaces the log file instead of appending to the current log.

-trace

Generates trace information into a file for debugging purposes.

-timeout <seconds>

Specifies the waiting time before node agent initialization times out and returns an error.

-statusport <portnumber>

Specifies that an administrator can set the port number for node agent status callback.

-username <name>

Specifies the user name for authentication if security is enabled. Acts the same as the -user option.

684 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

-user <name>

Specifies the user name for authentication if security is enabled. Acts the same as the -username

option.

-password <password>

Specifies the password for authentication if security is enabled.

-conntype <type>

Specifies the Java Management Extensions (JMX) connector type to use for connecting to the

deployment manager. Valid types are Simple Object Access Protocol (SOAP) or Remote Method

Invocation (RMI).

-help

Prints a usage statement.

-? Prints a usage statement.

Usage scenario

The following examples demonstrate correct syntax:

syncNode testhost 8879

syncNode deploymgr 8879 -trace (produces the syncNode.log file)

syncNode host25 4444 -stopservers -restart (assumes that the deployment manager JMX port is 4444)

backupConfig command

The backupConfig command is a simple utility to back up the configuration of your node to a file. By

default, all servers on the node stop before the backup is made so that partially synchronized information

is not saved. For more information about where to run this command, see the Using command tools

article. If you do not have root authority, you must specify a path for the backup file in a location where

you have write permission. The backup file will be in zip format and a .zip extension is recommended.

Syntax

The command syntax is as follows:

backupConfig <backup_file> [options]

where backup_file specifies the file to which the backup is written. If you do not specify one, a unique

name is generated.

Parameters

The following options are available for the backupConfig command:

-nostop

Tells the backupConfig command not to stop the servers before backing up the configuration.

-quiet

Suppresses the progress information that the backupConfig command prints in normal mode.

-logfile <fileName>

Specifies the location of the log file to which information gets written.

-profileName

Defines the profile of the Application Server process in a multi-profile installation. The -profileName

option is not required for running in a single profile environment. The default for this option is the

default profile.

Chapter 4. Using the administrative clients 685

-replacelog

Replaces the log file instead of appending to the current log.

-trace

Generates trace information into the log file for debugging purposes.

-username <name>

Specifies the user name for authentication if security is enabled in the server. Acts the same as the

-user option.

-user <name>

Specifies the user name for authentication if security is enabled in the server. Acts the same as the

-username option.

-password <password>

Specifies the password for authentication if security is enabled in the server.

-help

Prints a usage statement.

-? Prints a usage statement.

Usage scenario

The following example demonstrates correct syntax:

backupConfig

This example creates a new file that includes the current date. For example: WebSphereConfig_2003-04-
22.zip

backupConfig myBackup.zip -nostop

This example creates a file called myBackup.zip, and does not stop any servers before beginning the

backup process.

restoreConfig command

The restoreConfig command is a simple utility to restore the configuration of your node after backing up

the configuration using the backupConfig command. By default, all servers on the node stop before the

configuration restores so that a node synchronization does not occur during the restoration. If the

configuration directory already exists, it is renamed before the restoration occurs. For more information

about where to run this command, see the Using command tools article.

For AIX only, if you are using a logical directory for was_install/config, the restoreConfig command will

not work.

Syntax

The command syntax is as follows:

restoreConfig <backup_file> [options]

where backup_file specifies the file to be restored. If you do not specify one, the command will not run.

Parameters

The following options are available for the restoreConfig command:

-nowait

Tells the restoreConfig command not to stop the servers before restoring the configuration.

686 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

-quiet

Suppresses the progress information that the restoreConfig command prints in normal mode.

-location <directory_name>

Specifies the directory where the backup file is restored. The location defaults to the

install_root/config directory.

-logfile <fileName>

Specifies the location of the log file to which information gets written.

-profileName

Defines the profile of the Application Server process in a multi-profile installation. The -profileName

option is not required for running in a single profile environment. The default for this option is the

default profile.

-replacelog

Replaces the log file instead of appending to the current log.

-trace

Generates trace information into the log file for debugging purposes.

-username <name>

Specifies the user name for authentication if security is enabled in the server. Acts the same as the

-user option.

-user <name>

Specifies the user name for authentication if security is enabled in the server. Acts the same as the

-username option.

-password <password>

Specifies the password for authentication if security is enabled in the server.

-help

Prints a usage statement.

-? Prints a usage statement.

You can use the restoreConfig command to recover an application server if it fails. Perform the following

steps:

1. Locate the automatic migration backup in the install_root/temp directory. For example:

MigrationBackup.Thu-Aug-28-10.15045-2003.zip

2. Restore the configuration with the restoreConfig command. For example: restoreConfig

install_root/temp/MigrationBackup.Thu-Aug-28-10.15045-2003.zip

Usage scenario

The following example demonstrates correct syntax:

restoreConfig WebSphereConfig_2003-04-22.zip

The following example restores the given file to the /tmp directory and does not stop any servers before

beginning the restoration:

restoreConfig WebSphereConfig_2003-04-22.zip -location /tmp -nostop

Be aware that if you restore the configuration to a directory that is different from the directory that was

backed up when you performed the backupConfig command, you may need to manually update some of

the paths in the configuration directory.

EARExpander command

Use the EARExpander command to expand an enterprise archive file (EAR) into a directory to run the

application in that EAR file. You can collapse a directory containing application files into a single EAR file.

Chapter 4. Using the administrative clients 687

You can type EARExpander with no arguments to learn more about its options. For more information about

where to run this command, see the Using command tools article.

Syntax

The command syntax is as follows:

EarExpander -ear earName -operationDir dirName -operation <expand | collapse> [-expansionFlags <all|war>]

Parameters

The following options are available for the EARExpander command:

-ear

Specifies the name of the input EAR file for the expand operation or the name of the output EAR file

for the collapse operation.

-operationDir

Specifies the directory where the EAR file is expanded or specifies the directory from where files are

collapsed.

-operation <expand | collapse>

The expand value expands an EAR file into a directory structure required by the WebSphere

Application Server run time. The collapse value creates an EAR file from an expanded directory

structure.

-expansionFlags <all | war>

(Optional) The all value expands all files from all of the modules. The war value only expands the files

from Web archive file (WAR) modules.

-profileName

Defines the profile of the Application Server process in a multi-profile installation. The -profileName

option is not required for running in a single profile environment. The default for this option is the

default profile.

Usage scenario

The following examples demonstrate correct syntax:

EARExpander -ear C:\WebSphere\AppServer\installableApps\DefaultApplication.ear

-operationDir C:\MyApps -operation expand -expansionFlags war

EARExpander -ear C:\backup\DefaultApplication.ear

-operationDir C:\MyAppsDefaultApplication.ear -operation collapse

GenPluginCfg command

This topic describes the command-line syntax for the GenPluginCfg command. This command is used to

regenerate the WebSphere Web server plug-in configuration file, plugin-cfg.xml. For more information

about where to run this command, see the Using command tools article.

 CAUTION:

Regenerating the plug-in configuration can overwrite manual configuration changes that you might

want to preserve. Before performing this task, understand its implications as described in

“Communicating with Web servers” on page 57.

To regenerate the plug-in configuration, you can either click on Servers > Web Servers in the

administrative console, select a Web server and then click Generate Plug-in, or you can issue the

following command:

GenPluginCfg.sh|bat

688 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Both methods for regenerating the plug-in configuration create a plugin-cfg.xml file in ASCII format,

which is the proper format for execution in a distributed environment.

You can use the -profileName option to define the profile of the Application Server process in a

multi-profile installation. The -profileName option is not required for running in a single profile environment.

The default for this option is the default profile.

Syntax

The command syntax is as follows:

GenPluginCfg [[-option.name optionValue]...]

When the GenPluginCfg command is issued with the option -webserver.name webservrName, wsadmin

generates a plug-in configuration file for the Web server. This settings in this generated configuration file

are based on the list of applications that are deployed on the Web server. When this command is issued

without the option -webserver.name webservrName, the plug-in configuration file is generated based on

topology.

Parameters

The following options are available for the startServer command:

-config.root configroot_dir

Defaults to environment variable CONFIG_ROOT.

-profileName

Defines the profile of the Application Server process in a multi-profile installation. The -profileName

option is not required for running in a single profile environment. The default for this option is the

default profile.

-cell.name cell

Defaults to environment variable WAS_CELL.

-node.name node

Defaults to environment variable WAS_NODE.

-webserver.name webserver1

Required for creating plug-in configuration file for a given Web server.

-propagate yes/no

Applicable only when the option webserver.name is specified. Defaults to no.

-cluster.name cluster1,cluster2 | ALL

Optional list of clusters. Ignored when the option webserver.name is specified.

-server.name server1,server2

Optional list of servers. Required for single server plug-in generation. Ignored when the option

webserver.name is specified.

-output.file.name file_name

Defaults to the configroot_dir/plugin-cfg.xml file. Ignored when the option webserver.name is specified.

-destination.root root

Installation root of the machine configuration is used on. Ignored when the option webserver.name is

specified.

-destination.operating.system windows/unix

Operating system of the machine configuration is used on. Ignored when the option webserver.name is

specified.

-debug yes/no

Defaults to no.

Chapter 4. Using the administrative clients 689

-help

Prints a usage statement.

-? Prints a usage statement.

Usage scenario

To generate a plug-in configuration for all of the clusters in a cell:

GenPluginCfg -cell.name NetworkDeploymentCell

To generate a plug-in configuration for a single server:

GenPluginCfg -cell.name BaseApplicationServerCell -node.name appServerNode -server.name appServerName

To generate a plug-in configuration file for a Web server:

GenPluginCfg -cell.name BaseApplicationServerCell -node.name webserverNode -webserver.name webserverName

690 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Chapter 5. Starting and stopping quick reference

This topic describes how to start and stop the main operations in your application serving environment. It

also provides a quick guide to accessing the main tools that are provided with this product.

v Use commands to start and stop servers.

 Quick reference: Issuing commands to start and stop servers

These examples are for starting and stopping the default profile on a server. Otherwise, you might need to be in the

install_root/profiles/profile_name/bindirectory to start and stop the server.

Application server

Go to the install_root /bin directory of a WebSphere Application Server or Network Deployment installation and run

the following command. See “startServer command” on page 669 for details and variations

startServer server

where server is the application server that you want to start.

Stopping the servers

Use the same command as to start, except substitute stop for start. For example, to stop an application server, issue

the command:

stopServer server

v Use administrative clients and tools.

 Quick reference: Opening the administrative console

To open the console, enter this Web address in your Web browser:

http://your_fully_qualified_server_name:9060/ibm/console

Depending on your configuration, your Web address might differ. Other factors can affect your ability to access the

console. See “Starting and stopping the administrative console” on page 171 for details, as needed.

– To launch a scripting client, see “Starting the wsadmin scripting client” on page 250.

– To learn about all available administrative clients, see Chapter 4, “Using the administrative clients,”

on page 171.

– For performance monitoring, see ″Monitoring performance with Tivoli Performance Viewer (TPV)″ in

the information center.

See the administrator commands that are listed in the Reference section of the information center.

v Use development and deployment tools. Use the following tools to edit deployment descriptors. A

deployment descriptor is an Extensible Markup Language (XML) file that describes how to deploy a

module or application by specifying configuration and container options. The tools are available for use

on distributed operating systems.

Assembly tools

The assembly tools and Rational Web Developer provide a graphical interface for developing

code artifacts, assembling the code artifacts into various archives (modules), and configuring

related Java 2 Platform, Enterprise Edition (J2EE) Version 1.2, 1.3 or 1.4-compliant deployment

descriptors.

 See ″Starting an assembly tool″ in the information center.

Application Client Resource Configuration Tool (ACRCT)

Use the ACRCT to configure deployment descriptors for client applications. See “Deploying

J2EE application clients on workstation platforms” on page 874.

© Copyright IBM Corp. 2004 691

Text editor

It is not recommended because it has no built-in error checking or validation, but you can edit

deployment descriptors with any text editor with which you can edit XML files.

v Use installation and customization tools. Use the following tools to find planning information, start the

product installation, and perform customization and other activities after installation.

Launchpad

A graphical interface for launching the product installation. It also provides links to information

you might need for installation.

 See ″Using the launchpad to start the installation″ in the information center.

First Steps

A desktop GUI from which you can start or stop the Application Server. It also provides access

to the administrative console.

 See “firststeps command” on page 33.

Profile creation tool

The installation places the product binary files on a machine and creates a default profile.

v Use troubleshooting tools - see ″Working with troubleshooting tools″ in the information center.

692 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Chapter 6. Class loading

Class loaders are part of the Java virtual machine (JVM) code and are responsible for finding and loading

class files. Class loaders enable applications that are deployed on servers to access repositories of

available classes and resources. Application developers and deployers must consider the location of class

and resource files, and the class loaders used to access those files, to make the files available to

deployed applications. Class loaders affect the packaging of applications and the run-time behavior of

packaged applications of deployed applications.

This article describes how to configure class loaders for application files or modules that are installed on

an application server.

To better understand class loaders in WebSphere Application Server, read “Class loaders.” The article

“Class loading: Resources for learning” on page 702 refers to additional sources.

Configure class loaders for application files or modules that are installed on an application server using the

administrative console. You configure class loaders to ensure that deployed application files and modules

can access the classes and resources that they need to run successfully.

1. If an installed application module uses a resource, create a resource provider that specifies the

directory name of the resource drivers. Do not specify the resource Java archive (JAR) file names. All

JAR files in the specified directory are added into the class path of the WebSphere Application Server

extensions class loader. If a resource driver requires a native library (.DLL or .so file), specify the name

of the directory that contains the library in the native path of the resource configuration.

2. Specify class-loader values for an application server.

3. Specify class-loader values for an installed enterprise application.

4. Specify the class-loader mode for an installed Web module.

5. If your deployed application uses shared library files, associate the shared library files with your

application. Use a library reference to associate a shared library file with your application.

a. If you have not done so already, define a shared library instance for each library file that your

applications need.

b. Define a library reference instance for each shared library that your application uses.

6. Optional: Configure class preloading.

Class loaders

Class loaders are part of the Java virtual machine (JVM) code and are responsible for finding and loading

class files. Class loaders enable applications that are deployed on servers to access repositories of

available classes and resources. Application developers and deployers must consider the location of class

and resource files, and the class loaders used to access those files, to make the files available to

deployed applications.

The run-time environment of WebSphere Application Server uses the following class loaders to find and

load new classes for an application in the following order:

1. The bootstrap, extensions, and CLASSPATH class loaders created by the Java virtual machine

The bootstrap class loader uses the boot class path (typically classes in jre/lib) to find and load

classes. The extensions class loader uses the system property java.ext.dirs (typically jre/lib/ext) to

find and load classes. The CLASSPATH class loader uses the CLASSPATH environment variable to

find and load classes.

The CLASSPATH class loader contains the Java 2 Platform, Enterprise Edition (J2EE) application

programming interfaces (APIs) of the WebSphere Application Server product in the j2ee.jar file.

Because the J2EE APIs are in this class loader, you can add libraries that depend on the J2EE APIs to

© Copyright IBM Corp. 2004 693

the class path system property to extend a server class path. However, a preferred method of

extending a server class path is to add a shared library.

2. A WebSphere-specific extensions class loader

The WebSphere Application Server extensions class loader loads the WebSphere Application Server

run-time and J2EE classes that are required at run time. The extensions class loader uses a

ws.ext.dirs system property to determine the path that is used to load classes. Each directory in the

ws.ext.dirs class path and every Java archive (JAR) file or ZIP file in these directories is added to the

class path used by this class loader.

The WebSphere Application Server extensions class loader also loads resource provider classes into a

server if an application module installed on the server refers to a resource that is associated with the

provider and if the provider specifies the directory name of the resource drivers.

3. One or more application module class loaders that load elements of enterprise applications running in

the server

The application elements can be Web modules, enterprise bean (EJB) modules, resource adapters

archives (RAR files), and dependency JAR files. Application class loaders follow J2EE class-loading

rules to load classes and JAR files from an enterprise application. The WebSphere Application Server

run time enables you to associate a shared library class path with an application.

Each class loader is a child of the previous class loader. That is, the application module class loaders are

children of the WebSphere-specific extensions class loader, which is a child of the CLASSPATH Java class

loader. Whenever a class needs to be loaded, the class loader usually delegates the request to its parent

class loader. If none of the parent class loaders can find the class, the original class loader attempts to

load the class. Requests can only go to a parent class loader; they cannot go to a child class loader. If the

WebSphere Application Server class loader is requested to find a class in a J2EE module, it cannot go to

the application module class loader to find that class and a ClassNotFoundException error occurs. After a

class is loaded by a class loader, any new classes that it tries to load reuse the same class loader or go

up the precedence list until the class is found.

Class preloading

The first time that a WebSphere Application Server process starts, the name of each run-time class that is

loaded and the name of the JAR file that contains the class are written to a preload file. The names of

non-runtime classes such as custom services, resource classes such as db2java.zip, classes on the JVM

class path, and application classes are not written to the preload file. Subsequent startups of the process

use the preload file to start the process more quickly.

Preload files have the .preload extension. WebSphere Application Server processes that have preload

files include the following:

 Process Preload file name

Application server cell_name.node_name.server_name.preload

startserver WsServerLauncher.preload

launchClient launchClient.preload

Running the startserver server1 command causes the startserver command to use a

WsServerLauncher.preload file and the server to use a cell_name.node_name.server1.preload file. Later,

running a command such as startserver server1 -script, where the -script option creates a new script,

uses the cell_name.node_name.server1.preload file only.

Preload files, by default, are installed in the install_root directory.

New classes required during the startup of a process are added to the preload file. Any classes that are

removed from a process are ignored during subsequent startups. Although it is not necessary, an

administrator can delete the preload file and force a refresh that removes the ignored classes from the file.

694 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Class-loader isolation policies

The number and function of the application module class loaders depend on the class-loader policies that

are specified in the server configuration. Class loaders provide multiple options for isolating applications

and modules to enable different application packaging schemes to run on an application server.

Two class-loader policies control the isolation of applications and modules:

Application class-loader policy

Application class loaders consist of EJB modules, dependency JAR files, resource adapters, and

shared libraries. Depending on the application class-loader policy, an application class loader can

be shared by multiple applications (Single) or unique for each application (Multiple). The

application class-loader policy controls the isolation of applications that are running in the system.

When set to Single, applications are not isolated. When set to Multiple, applications are isolated

from each other.

WAR class-loader policy

By default, Web module class loaders load the contents of the WEB-INF/classes and WEB-INF/lib

directories. The application class loader is the parent of the Web module class loader. You can

change the default behavior by changing the Web application archive (WAR) class-loader policy of

the application.

 The WAR class-loader policy controls the isolation of Web modules. If this policy is set to

Application, then the Web module contents also are loaded by the application class loader (in

addition to the EJB files, RAR files, dependency JAR files, and shared libraries). If the policy is set

to Module, then each Web module receives its own class loader whose parent is the application

class loader.

Note: WebSphere Application Server class loaders never load application client modules.

For each application server in the system, you can set the application class-loader policy to Single or

Multiple. When the application class-loader policy is set to Single, then a single application class loader

loads all EJB modules, dependency JAR files, and shared libraries in the system. When the application

class-loader policy is set to Multiple, then each application receives its own class loader that is used for

loading the EJB modules, dependency JAR files, and shared libraries for that application.

This application class loader can load the Web modules for each application if the class-loader policy of

that WAR module is also set to Application. If the class-loader policy of the WAR module is set to

Application, then the application loader loads the WAR module classes. If the WAR class-loader policy is

set to Module, then each WAR module receives its own class loader.

The following example shows that when the application class-loader policy is set to Single, a single

application class loader loads all of the EJB modules, dependency JAR files, and shared libraries of all

applications on the server. The single application class loader can also load Web modules if an application

has its WAR class-loader policy set to Application. Applications that have a WAR class-loader policy set

to Module use a separate class loader for Web modules.

Application class-loader policy: Single

Application 1

 Module: EJB1.jar

 Module: WAR1.war

 MANIFEST Class-Path: Dependency1.jar

 WAR Classloader Policy = Module

Application 2

 Module: EJB2.jar

 MANIFEST Class-Path: Dependency2.jar

 Module: WAR2.war

 WAR Classloader Policy = Application

Chapter 6. Class loading 695

WebSphere extensions classloader

Application classloader

WAR classloader

Classpath:
WebSphere/AppServer/classes
WebSphere/AppServer/lib
WebSphere/AppServer/lib/ext

WAR1.war

Classpath:
Ejb1.jar
Dependency1.jar
Ejb1.jar
Dependency2.jar
WAR2.war (WEB-INF/classes, ...)

The following example shows that when the application class-loader policy of an application server is set

to Multiple, each application on the server has its own class loader. An application class loader also loads

its Web modules if the application WAR class-loader policy is set to Application. If the policy is set to

Module, then a Web module uses its own class loader.

Application class-loader policy: Multiple

Application 1

 Module: EJB1.jar

 Module: WAR1.war

 MANIFEST Class-Path: Dependency1.jar

 WAR Classloader Policy = Module

Application 2

 Module: EJB2.jar

 MANIFEST Class-Path: Dependency2.jar

 Module: WAR2.war

 WAR Classloader Policy = Application

WebSphere extensions classloader

Application classloader Application classloader

WAR classloader

Classpath:
WebSphere/AppServer/classes
WebSphere/AppServer/lib
WebSphere/AppServer/lib/ext

WAR1.war

Classpath:
Ejb1.jar
Dependency1.jar

Classpath:
Ejb2.jar
Dependency2.jar
WAR2.war (WEB-INF/classes, ...)

696 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Class-loader modes

Two values for a class-loader mode are supported:

Parent First

The Parent First class-loader mode causes the class loader to delegate the loading of classes to

its parent class loader before attempting to load the class from its local class path. This value is

the default for the class-loader policy and for standard JVM class loaders.

Parent Last

The Parent Last class-loader mode causes the class loader to attempt to load classes from its

local class path before delegating the class loading to its parent. Using this policy, an application

class loader can override and provide its own version of a class that exists in the parent class

loader.

 The following settings determine the mode of a class loader:

v If the application class-loader policy of an application server is Single, the application class-loader

policy of an application server defines the mode for an application class loader.

v If the application class-loader policy of an application server is Multiple, the class-loader mode of an

application defines the mode for an application class loader.

v If the WAR class-loader policy of an application is Module, the WAR class-loader policy of a Web

module defines the mode for a WAR class loader.

Configuring class loaders of a server

You can configure the application class loaders for an application server. Class loaders enable applications

that are deployed on the application server to access repositories of available classes and resources.

This article assumes that an administrator created an application server on a WebSphere Application

Server product.

Configure the class loaders of an application server to set class-loader policy and mode values which

affect all applications that are deployed on the server. Use the administrative console to configure the

class loaders.

1. Click Servers > Application Servers >server_name to access the settings page for an application

server.

2. Specify the application class-loader policy for the application server. The application class-loader policy

controls the isolation of applications that run in the system (on the server). An application class loader

groups enterprise bean (EJB) modules, shared libraries, resource adapter archives (RAR files), and

dependency Java archive (JAR) files associated to an application. Dependency JAR files are JAR files

that contain code which can be used by both enterprise beans and servlets. The application

class-loader policy controls whether an application class loader can be shared by multiple applications

or is unique for each application. Use the settings page for the application server to specify the

application class-loader policy for the server:

 Option Description

Single Applications are not isolated from each other. Uses a single application class

loader to load all of the EJB modules, shared libraries, and dependency JAR

files in the system.

Multiple Applications are isolated from each other. Gives each application its own

class loader to load the EJB modules, shared libraries, and dependency JAR

files of that application.

3. Specify the application class-loader mode for the application server. The application class loading

mode specifies the class-loader mode when the application class-loader policy is Single. On the

settings page for the application server, select either of the following values:

Chapter 6. Class loading 697

Option Description

Parent first Causes the class loader to delegate the loading of classes to its parent class

loader before attempting to load the class from its local class path. Parent

first is the default value for class loading mode.

Parent last Causes the class loader to attempt to load classes from its local class path

before delegating the class loading to its parent. Using this policy, an

application class loader can override and provide its own version of a class

that exists in the parent class loader.

4. Specify the class-loader mode for the class loader.

a. On the settings page for the application server, click Java and Process Management > Class

loader to access the Class loader page.

b. On the Class loader page, click New to access the settings page for a class loader.

c. On the settings page for a class loader, specify the class-loader mode. The Parent First value

causes the class loader to delegate the loading of classes to its parent class loader before

attempting to load the class from its local class path. The Parent Last value causes the class

loader to attempt to load classes from its local class path before delegating the class loading to its

parent.

d. Click OK.

An identifier is assigned to a class-loader instance. The instance is added to the collection of class

loaders shown on the Class loader page.

Save the changes to the administrative configuration.

Class loader collection

Use this page to manage class-loader instances on an application server. A class loader determines

whether an application class loader or a parent class loader finds and loads Java class files for an

application.

To view this administrative console page, click Servers > Application Servers >server_name > Java and

Process Management > Class loader.

Class loader ID

Provides a string that is unique to the server identifying the class-loader instance. The product assigns the

identifier.

Class loader mode

Specifies the class-loader mode when the application class-loader policy for the application server is

Single.

You specify a policy of Single on the settings page for the application server, accessed by clicking

Servers > Application Servers >server_name. When the policy is Single, applications are not isolated

from each other. A single application class loader contains all of the EJB modules, dependency JAR files,

and shared libraries in the system.

The Parent First value causes the class loader to delegate the loading of classes to its parent class

loader before attempting to load the class from its local class path. The Parent Last value causes the

class loader to attempt to load classes from its local class path before delegating the class loading to its

parent. Specifying the Parent Last value enables an application class loader to override and provide its

own version of a class that exists in the parent class loader.

698 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Class loader settings

Use this page to configure a class loader for applications that reside on an application server.

To view this administrative console page, click Servers > Application Servers >server_name > Java and

Process Management > Class loader >class_loader_ID.

Class loader ID

Provides a string that is unique to the server identifying the class-loader instance. The product assigns the

identifier.

 Data type String

Class loader mode

Specifies the class-loader mode when the application class-loader policy for the application server is

Single.

You specify a policy of Single on the settings page for the application server, accessed by clicking

Servers > Application Servers >server_name. When the policy is Single, applications are not isolated

from each other. A single application class loader contains all of the EJB modules, dependency JAR files,

and shared libraries in the system.

The Parent First value causes the class loader to delegate the loading of classes to its parent class

loader before attempting to load the class from its local class path.

The Parent Last value causes the class loader to attempt to load classes from its local class path before

delegating the class loading to its parent. Specifying the Parent Last value enables an application class

loader to override and provide its own version of a class that exists in the parent class loader.

 Data type String

Default Parent First

Configuring application class loaders

You can set values that control the class-loading behavior of an installed enterprise application. Class

loaders enable an application to access repositories of available classes and resources.

This article assumes that you installed an application on an application server.

Configure the class loaders of an enterprise application to set class-loader policy and mode values for this

application.

An application class loader groups enterprise bean (EJB) modules, shared libraries, resource adapter

archives (RAR files), and dependency Java archive (JAR) files associated to an application. Dependency

JAR files are JAR files that contain code which can be used by both enterprise beans and servlets.

An application class loader is the parent of a Web application archive (WAR) class loader. By default, a

Web module has its own WAR class loader to load the contents of the Web module. The WAR

class-loader policy value of an application class loader determines whether the WAR class loader or the

application class loader is used to load the contents of the Web module.

Use the administrative console to configure the class loaders.

1. Click Applications > Enterprise Applications >application_name to access the settings page for an

enterprise application.

Chapter 6. Class loading 699

2. Specify the class-loader mode for the application. The application class-loader mode specifies whether

the class loader searches in the parent class loader or in the application class loader first to load a

class. The default is to search in the parent class loader before searching in the application class

loader to load a class. Select either of the following values for Class loader mode:

 Option Description

Parent First Causes the class loader to search in the parent class loader first to load a

class. This value is the standard for Development Kit class loaders and

WebSphere Application Server class loaders.

Parent Last Causes the class loader to search in the application class loader first to load

a class. By specifying Parent Last, your application can override classes

contained in the parent class loader.

Tip: Specifying the Parent Last value might result in LinkageErrors or

ClassCastException messages if you have mixed use of overridden classes

and non-overridden classes.

3. Specify whether to use a single or multiple class loaders to load Web application archives (WAR files)

of your application. By default, Web modules have their own WAR class loader to load the contents of

the WEB-INF/classes and WEB-INF/lib directories. The default WAR class loader value is Module, which

uses a separate class loader to load each WAR file. Setting the value to Application causes the

application class loader to load the Web module contents as well as the EJB modules, shared libraries,

RAR files, and dependency JAR files associated to the application. The application class loader is the

parent of the WAR class loader. Select either of the following values for WAR class loader policy:

 Option Description

Module Uses a different class loader for each WAR file.

Application Uses a single class loader to load all of the WAR files in your application.

4. Specify whether to enable class reloading when application files are updated. By default, class

reloading is not enabled. See the description for Enable class reloading in “Enterprise application

settings” on page 723 for details on enabling and disabling reloading. You might specify different

values for EJB modules and for Web modules such as servlets and JavaServer page (JSP) files.

5. Specify the number of seconds to scan the application’s file system for updated files. The value

specified for Reloading interval takes effect only if class reloading is enabled. The default is the value

of the reloading interval attribute in the IBM extension (META-INF/ibm-application-ext.xmi) file of the

enterprise application (EAR file). You might specify different values for EJB modules and for Web

modules such as servlets and JSP files.

To enable reloading, specify an integer value that is greater than zero (for example, 1 to 2147483647).

To disable reloading, specify zero (0).

6. Click OK.

Save the changes to the administrative configuration.

Configuring Web module class loaders

You can set values that control the class-loading behavior of an installed Web module.

This article assumes that you installed a Web module on an application server.

Configure the class-loader mode value of an installed Web module. By default, a Web module has its own

Web application archive (WAR) class loader to load the contents of the Web module, which are in the

WEB-INF/classes and WEB-INF/lib directories.

700 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

An application class loader is the parent of a WAR class loader. The WAR class-loader policy value of an

application class loader determines whether the WAR class loader or the application class loader is used

to load the contents of the Web module. The default WAR class loader policy value is Module. If the policy

is set to Module, then each Web module receives its own class loader whose parent is the application

class loader. If the policy is set to Application on the settings page of an enterprise application, then the

application class loader loads the Web module contents as well as the enterprise bean (EJB) modules,

shared libraries, resource adapter archives (RAR files), and dependency Java archive (JAR) files

associated to an application. Thus, the configuration of the parent application class loader affects the WAR

class loader.

Use the administrative console to configure the application and WAR class loaders.

1. If you have not done so already, configure the application class loader. Settings such as WAR class

loader policy, Enable class reloading, and Reloading interval can affect Web module class loading.

If WAR class loader policy is set to Module, then the Web module receives its own class loader and

the WAR class-loader policy of the Web module defines the mode for a WAR class loader. If the policy

is set to Application, then the application class loader loads the Web module contents.

2. Click Applications > Enterprise Application >application_name > Web modules

>Web_module_name to access the settings page for a deployed Web module.

3. Specify the class-loader mode for the installed Web module. The Web module class-loader mode

specifies whether the class loader searches in the parent application class loader or in the WAR class

loader first to load a class. The default is to search in the parent application class loader before

searching in the WAR class loader to load a class. Select either of the following values for Class

loader mode:

 Option Description

Parent first Causes the class loader to search in the parent application class loader first

to load a class. This is the standard for Development Kit class loaders and

WebSphere Application Server class loaders.

Tip: If classes and resources needed by the Web module cannot be

accessed by the application class loader, but can be accessed by the WAR

class loader, specify Parent last. If the application class loader cannot find

a class, the class loader delegates the request to find the class to its parent,

the WebSphere Application Server extensions class loader. If the WebSphere

Application Server extensions class loader cannot find the class, the class

loader delegates the request to its parent, the bootstrap, extensions, and

CLASSPATH class loaders created by the Java virtual machine. Requests

can only go to a parent class loader; they cannot go to a child class loader.

Thus, if Parent first is specified, the WAR class loader never receives a

request to load a class.

Parent last Causes the class loader to search in the WAR class loader first to load a

class. By specifying Parent last, your WAR class loader can override

classes contained in the parent application class loader.

Tip: Specifying the Parent last value might result in LinkageErrors or

ClassCastException messages if you have mixed use of overridden classes

and non-overridden classes.

4. Click OK.

Save the changes to the administrative configuration.

Configuring class preloading

Class preloading affects how quickly a WebSphere Application Server process starts.

Chapter 6. Class loading 701

The first time that a WebSphere Application Server process starts up, the name of each class that is

loaded and the name of the JAR file that contains the class are written to a preload file. Subsequent

startups of the process use the preload file to start the process more quickly.

No configuring of class preloading is necessary.

However, an administrator can disable or enable preloading explicitly. By default, class preloading is

enabled for WebSphere Application Server processes. To change the configuration for class preloading, an

administrator sets new values for system properties.

v Disable class preloading. Set the Java virtual machine (JVM) system property

ibm.websphere.preload.classes to false.

1. In the administrative console, click Servers > Application Servers >server_name > Java and

Process Management > Process Definition > Java Virtual Machine to access the Java Virtual

Machine page.

2. On the Java Virtual Machine page, specify -Dibm.websphere.preload.classes=false for Generic

JVM arguments.

3. Click OK.

4. Save your administrative configuration.

5. Stop the application server and then restart the application server.

v Enable class preloading again. If you disabled class preloading, you can enable it again by doing either

of the following:

– Set the JVM system property to true. On the Java Virtual Machine page, specify

-Dibm.websphere.preload.classes=true for Generic JVM arguments.

– Remove the JVM system property that was created to disable class preloading. On the Java Virtual

Machine page, remove the value -Dibm.websphere.preload.classes=false specified for Generic

JVM arguments.

After you change the JVM system property, click OK, save your administrative configuration, stop the

application server, and then restart the application server.

v Regenerate a class preload file. Delete the .preload file for the WebSphere Application Server process.

When the process next starts up, a new class preload file is generated for the process.

Class loading: Resources for learning

Use the following links to find relevant supplemental information about class loaders. The information

resides on IBM and non-IBM Internet sites, whose sponsors control the technical accuracy of the

information.

These links are provided for convenience. Often, the information is not specific to the IBM WebSphere

Application Server product, but is useful all or in part for understanding the product. When possible, links

are provided to technical papers and Redbooks that supplement the broad coverage of the release

documentation with in-depth examinations of particular product areas.

Refer to the information center for links to information applicable to WebSphere Application Server

generally, such as lists of IBM technical papers, Redbooks and samples.

For current information available from IBM Support on known problems and their resolution, see the IBM

Support page. IBM Support has documents that can save you time gathering information that is needed to

resolve this problem. Before opening a PMR, see the IBM Support page.

View links to additional information about:

v Programming model and decisions

v Programming instructions and examples

v Programming specifications

702 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

http://www-1.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCVRZU
http://www-1.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCVRZU

Programming model and decisions

v J2EE Class Loading Demystified

v Understanding J2EE Application Server Class Loading Architectures

Programming instructions and examples

v Developing and Deploying Modular J2EE Applications with WebSphere Studio Application Developer

and WebSphere Application Server

v IBM WebSphere Application Server Programming

Programming specifications

v Sun’s J2EETM Platform Specification

v Sun’s J2EETM Extension Mechanism Architecture

Chapter 6. Class loading 703

http://www7b.boulder.ibm.com/wsdd/library/techarticles/0112_deboer/deboer.html
http://www.theserverside.com/resources/article.jsp?l=ClassLoading
http://www7b.boulder.ibm.com/wsdd/library/techarticles/0206_robinson/robinson.html
http://www7b.boulder.ibm.com/wsdd/library/techarticles/0206_robinson/robinson.html
http://www.mcgraw-hill.co.uk/html/0072224592.html
http://java.sun.com/j2ee/download.html#platformspec
http://java.sun.com/j2se/1.4/docs/guide/extensions/spec.html

704 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Chapter 7. Deploying and administering applications

Deploying an application file consists of installing the application file on a server configured to hold

installable modules.

Before installing an enterprise application or other installable module on an application server, you must

develop and assemble the module and configure the target server. Before choosing a server as a target

for the module, ensure that the node version for the server is compatible with your module

During installation, you can configure the module enough to enable it to run on the server. After

installation, you can configure the module further, start or stop the application, and otherwise manage its

activity.

v Install application files on an application server.

v Edit the administrative configuration for an application.

v Start and stop the application.

v Export applications.

v Export DDL files.

v Update an application or module.

v Uninstall applications.

v Remove a file from an application or module.

After making changes to administrative configurations of your applications in the administrative console,

ensure that you save the changes.

Enterprise (J2EE) applications

Enterprise applications (or J2EE applications) are applications that conform to the Java 2 Platform,

Enterprise Edition, specification.

Enterprise applications can consist of the following:

v Zero or more EJB modules

v Zero or more Web modules

v Zero or more connector modules (packaged in RAR files)

v Zero or more application client modules

v Additional JAR files containing dependent classes or other components required by the application

v Any combination of the above

A J2EE application is represented by, and packaged in, an enterprise archive (EAR) file.

System applications

A system application is a J2EE enterprise application that is central to a WebSphere Application Server

product.

Examples of system applications include adminconsole and filetransfer.

Because a system application is an important part of a WebSphere Application Server product, a system

application is deployed when the product is installed and is updated only through a product fix or upgrade.

Users cannot change the metadata for a system application such as its J2EE bindings or J2EE

extensions, unless the metadata assigns users and groups for security purposes. Non-security related

metadata requiring a change must be updated through a product fix or upgrade.

© Copyright IBM Corp. 2004 705

System applications are not shown in the list of installed applications on the console Enterprise

Applications page, or through wsadmin and Java application programming interfaces, to prevent users

from accidentally stopping, updating or removing the system applications.

Note that J2EE Samples are not system applications even though they are provided as part of a

WebSphere Application Server product. Similarly, applications that support changes to their metadata are

not system applications.

Installing application files

As part of deploying an application, you install application files on a server configured to hold installable

modules.

Before you can install your application files on an application server, you must configure the target

application server. As part of configuring the server, determine whether your application files can be

installed to your deployment targets.

Also, before you install the files, assemble modules as needed.

Installable modules include enterprise archive (EAR), enterprise bean (EJB), Web archive (WAR), and

resource adapter (connector or RAR) files. Complete the following steps to install your files.

1. Determine which method to use to install your application files. WebSphere Application Server provides

several ways to install modules.

2. Install the application files using

v Administrative console

v wsadmin scripts

v Java administrative programs that use JMX APIs

v Java programs that define a J2EE DeploymentManager object in accordance with J2EE Deployment

API Specification (JSR-88)

3. Start the deployed application files using

v Administrative console

v wsadmin startApplication

v Java programs that use ApplicationManager or AppManagement MBeans

v Java programs that define a J2EE DeploymentManager object in accordance with J2EE Deployment

API Specification (JSR-88)

Save the changes to your administrative configuration.

Next, test the application. For example, point a Web browser at the URL for a deployed application and

examine the performance of the application. If the application does not perform as desired, update the

application, then save and test it again.

Installable module versions

The contents of a module affect whether you can install the module on a WebSphere Application Server

Version 6.0 and later (6.x) deployment target, or must install the module on a Version 5.0 and later (5.x)

deployment target.

Installable application modules

You can install an application, enterprise bean (EJB) module or Web module developed for a Version 5.x

product on a 5.x or 6.x deployment target, provided the module--

v Does not support Java 2 Platform, Enterprise Edition (J2EE) 1.4;

v Does not call any 6.x runtime application programming interfaces (APIs); and

v Does not use any 6.x product features.

706 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

If the module supports J2EE 1.4, calls a 6.x API or uses a 6.x feature, then you must install the module on

a 6.x deployment target.

Selecting options such as Pre-compile JSP, Use Binary Configuration, Deploy Web services or

Deploy enterprise beans during application installation to a 6.x server or a 6.x deployment manager

indicates that the application uses 6.x product features. You cannot deploy such applications on a 5.x

deployment target. You must deploy such applications on a 6.x deployment target.

Similarly, you must deploy an application that uses J2EE 1.4 features such as Java Authorization Contract

for Containers (JACC) provided by an application server on a 6.x deployment target.

Installable RAR files

You can install a standalone resource adapter (connector) module, or RAR file, developed for a Version

5.x product to a 5.x or 6.x deployment target, provided the module does not call any 6.x runtime APIs. If

the module calls a 6.x API, then you must install the module on a 6.x deployment target.

Deployment targets

A 5.x deployment target is a server on a WebSphere Application Server Version 5 product.

A 6.x deployment target is a server on a WebSphere Application Server Version 6 product.

 Table 6. Compatible deployment target versions for 5.x and 6.x modules

Module type Module Java

support

Module calls 6.x

runtime APIs or

uses 6.x features?

Client versions that

can install module

Deployment target

versions

Application, EJB,

Web, or client

J2EE 1.3 No 5.x or 6.x 5.x or 6.x

Application, EJB,

Web, or client

J2EE 1.3 Yes 6.x 6.x

Application, EJB,

Web, or client

J2EE 1.4 Yes or No 6.x 6.x

Resource adapter JCA 1.0 No 5.x or 6.x 5.x or 6.x

Resource adapter JCA 1.0 Yes 6.x 6.x

Resource adapter JCA 1.5 Yes or No 6.x 6.x

Ways to install applications or modules

WebSphere Application Server provides several ways to install application files on a server.

Installable files include enterprise archive (EAR), enterprise bean (EJB), Web archive (WAR), resource

adapter (connector or RAR), and application client modules.

 Table 7. Ways to install application files

Option Method Modules Comments Starting after install

Chapter 7. Deploying and administering applications 707

Table 7. Ways to install application files (continued)

Administrative

console install wizard

See “Installing

application files with

the console” on page

709.

Click Applications >

Install New

Application in the

console navigation

tree and follow

instructions in the

wizard.

All EAR, EJB, WAR,

RAR, and application

client files

Provides one of the

easier ways to install

application files. See

“Preparing for

application installation

settings” on page 714

for guidance. For

applications that do

not require changes

to the default

bindings, select the

Generate Default

Bindings option and

then, on the Summary

panel, click Finish.

Click Start on the

Enterprise

Applications page

accessed by clicking

Applications >

Enterprise

Applications in the

console navigation

tree.

wsadmin scripts Invoke AdminApp

object install

commands in a script

or at a command

prompt.

All EAR, EJB, WAR,

RAR, and application

client files

″Getting started with

scripting″ in the

information center

provides an overview

of wsadmin.

v Invoke the

AdminApp

startApplication

command.

v Invoke the

startApplication

method on an

ApplicationManager

MBean using

AdminControl.

.

Java application

programming

interfaces

Install programs by

completing the steps

in ″Managing

applications through

programming″ in the

information center.

All EAR files Use MBeans to install

the application.

Start the application

by calling the

startApplication

method on a proxy.

WebSphere rapid

deployment

Refer to articles under

Rapid deployment of

J2EE applications in

the information center.

Briefly, do the

following:

1. Update your J2EE

application files.

2. Set up the rapid

deployment

environment.

3. Create a free-form

project.

4. Launch a rapid

deployment

session.

5. Drop your

updated

application files

into the free-form

project.

All J2EE modules,

including EAR files

and standalone EJB,

WAR, RAR, and

application client files

WebSphere rapid

deployment offers the

following advantages:

v You do not need to

assemble your

J2EE application

files prior to

deployment.

v You do not need to

use other

installation tools

mentioned in this

table to deploy the

files.

Use any of the above

options to start the

application. Clicking

Start on the

Enterprise

Applications page is

the easiest option.

708 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Table 7. Ways to install application files (continued)

Java programs Code programs that

use J2EE

DeploymentManager

(JSR-88) methods.

All J2EE modules,

including EAR files

and standalone EJB,

WAR, RAR, and

application client files

v Uses J2EE

Application

Deployment

Specification

(JSR-88).

v Can customize

modules using

DConfigBeans.

Call the J2EE

DeploymentManager

(JSR-88) method start

in a program to start

the deployed modules

when the module’s

running environment

initializes.

Installing application files with the console

Installing application files consists of placing assembled enterprise application, Web, enterprise bean

(EJB), or other installable modules on a server or cluster configured to hold the files. Installed files that

start and run properly are considered deployed.

Before installing enterprise application files, ensure that you are installing your application files onto a

compatible deployment target. If the deployment target is not compatible, select a different target.

To install new enterprise application files to a WebSphere Application Server configuration, you can use

the administrative console, the wsadmin tool, or Java programs that call J2EE DeploymentManager

(JSR-88) methods. This article describes how to use the administrative console to install an application,

EJB component, or Web module.

Important: After you start performing the steps below, click Cancel to exit if you decide not to install the

application. Do not simply move to another administrative console page without first clicking

Cancel on an application installation page.

 1. Click Applications > Install New Application in the console navigation tree. The first of two

Preparing for application installation pages is displayed.

 2. On the first Preparing for application installation page:

a. Specify the full path name of the source enterprise application file (.ear file otherwise known as

an EAR file). The EAR file that you are installing can be either on the client machine (the machine

that runs the Web browser) or on the server machine (the machine to which the client is

connected). If you specify an EAR file on the client machine, then the administrative console

uploads the EAR file to the machine on which the console is running and proceeds with

application installation. You can also specify a standalone Web application archive (WAR) or Java

archive (JAR) file for installation.

b. If you are installing a standalone WAR file, specify the context root.

c. Click Next.

 3. On the second Preparing for application installation page:

a. Select whether to generate default bindings. Using the default bindings causes any incomplete

bindings in the application to be filled in with default values. Existing bindings are not altered. You

can customize default values used in generating default bindings. For example, you can specify a

Java Naming and Directory Interface (JNDI) prefix for EJB files in EJB modules, default data

source and connection factory settings for EJB modules, virtual host for Web modules, and so on.

“Preparing for application installation settings” on page 714 describes available customizations

and provides sample bindings.

b. Click Next. If security warnings are displayed, click Continue. The Install New Application pages

are displayed. If you chose to generate default bindings, you can proceed to the Summary step

(last step below). “Example: Installing an EAR file using the default bindings” on page 719

provides sample steps.

 4. On the Step: Select installation options panel, provide values for the following settings specific to

WebSphere Application Server. Default values are used if you do not specify a value.

Chapter 7. Deploying and administering applications 709

a. For Pre-compile JSP, specify whether to precompile JavaServer page (JSP) files as a part of

installation. The default is not to precompile JSP files. Install onto a 6.x deployment target. If you

select Pre-compile JSP and try installing your application onto a 5.x deployment target, the

installation is rejected. For this option, install only onto a 6.x deployment target.

b. For Directory to install application, specify the directory to which the application EAR file will be

installed. The default value is the value of APP_INSTALL_ROOT/cell_name, where the

APP_INSTALL_ROOT variable is install_root/installedApps; for example,

C:\WebSphere\AppServer\profiles\profile _name\installedApps\cell_name.

c. For Distribute application, specify whether WebSphere Application Server expands or deletes

application binaries in the installation destination. The default is to enable application distribution.

As a result, when you save changes in the console, application binaries for newly installed

applications are expanded to the directory specified. The binaries are also deleted when you

uninstall and save changes to the configuration. If you disable this option, then you must ensure

that the application binaries are expanded appropriately in the destination directories of all nodes

where the application is expected to run.

d. For Use Binary Configuration, specify whether the application server uses the binding,

extensions, and deployment descriptors located with the application deployment document, the

deployment.xml file (default), or those located in the EAR file. The default is not to use the binary

configuration. If you select Use Binary Configuration, your application files must be installed

onto a 6.x deployment target. The files cannot be installed onto a 5.x deployment target.

e. For Deploy enterprise beans, specify whether the EJBDeploy tool runs during application

installation. The tool generates code needed to run EJB files. You must enable this setting in the

following situations:

v The EAR file was assembled using an assembly tool such as Rational Web Developer or

Application Server Toolkit (AST) and the EJBDeploy tool was not run during assembly.

v The EAR file was not assembled using an assembly tool.

v The EAR file was assembled using versions of the Application Assembly Tool (AAT) previous to

Version 5.

Enabling this setting might cause the installation program to run for several minutes. Also, install

onto a 6.x deployment target. If you select Deploy enterprise beans and try installing your

application onto a 5.x deployment target, the installation is rejected. For this option, install only

onto a 6.x deployment target.

f. For Application name, name the application. Application names must be unique within a cell and

cannot contain characters that are not allowed in object names.

g. For Create MBeans for resources, specify whether to create MBeans for various resources

(such as servlets or JSP files) within an application when the application is started. The default is

to create MBean instances.

h. For Enable class reloading, specify whether to enable class reloading when application files are

updated. The default is not to enable class reloading. For EJB modules or any non-Web modules,

enabling class reloading sets reloadEnabled to true in the deployment.xml file for the application.

If an application’s class definition changes, the application server run time stops and starts the

application to reload application classes.

For Web modules such as servlets and JSP files, a Web container reloads a Web module only

when the IBM extension reloadingEnabled in the ibm-web-ext.xmi file is set to true. You can set

reloadingEnabled to true when editing the extended deployment descriptors of your Web module

in an assembly tool.

To disable reloading of a Web module, set the IBM extension reloadingEnabled in the

ibm-web-ext.xmi file to false. Or, if the Web module has the IBM extension reloadingEnabled in

the ibm-web-ext.xmi file set to true, enable class loading, and set the Reload interval property

to zero (0).

i. For Reload interval in seconds, specify the number of seconds to scan the application’s file

system for updated files. The default is the value of the reload interval attribute in the IBM

710 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

extension (META-INF/ibm-application-ext.xmi) file of the EAR file. To enable reloading, specify a

value greater than zero (for example, 1 to 2147483647). To disable reloading, specify zero (0).

The reload interval specified here takes effect only if class reloading is enabled.

j. For Deploy Web services, specify whether the Web services deploy tool wsdeploy runs during

application installation. The tool generates code needed to run applications using Web services.

The default is not to run the wsdeploy tool. You must enable this setting if the EAR file contains

modules using Web services and has not previously had the wsdeploy tool run on it, either from

the Deploy menu choice of an assembly tool or from a command line. Note that if you select

Deploy and try installing your application onto a 5.x deployment target, the installation is rejected.

For this option, install only onto a 6.x deployment target.

k. For Validate Input off/warn/fail, specify whether WebSphere Application Server examines the

application references specified during application installation or updating and, if validation is

enabled, warns you of incorrect references or fails the operation. An application typically refers to

resources using data sources for container managed persistence (CMP) beans or using resource

references or resource environment references defined in deployment descriptors. The validation

checks whether the resource referred to by the application is defined in the scope of the

deployment target of that application. Select off for no resource validation, warn for warning

messages about incorrect resource references, or fail to stop operations that fail as a result of

incorrect resource references.

l. For Process embedded configuration, specify whether the embedded configuration should be

processed. An embedded configuration consists of files such as resource.xml and variables.xml.

When selected or true, the embedded configuration is loaded to the application scope from the

.ear file. If the .ear file does not contain an embedded configuration, the default is false. If the

.ear file contains an embedded configuration, the default is true.

 5. On the Step: Map modules to servers panel, for every module select a target server or cluster from

the Clusters and Servers list. Select the check box beside Module to select all of the application

modules or select individual modules. Ensure that you are installing your application onto an

appropriate deployment target. You can specify Web servers as targets that route requests to the

application. The plug-in configuration file plugin-cfg.xml for each Web server is generated based on

the applications which are routed through it. If you want a Web server to serve the application, use

the Ctrl key to select an application server or cluster and the Web server together in order to have

the plug-in configuration file plugin-cfg.xml for that Web server generated based on the applications

which are routed through it.

 6. If your application uses EJB modules, on the Step: Provide JNDI Names for Beans panel, specify a

JNDI name for each enterprise bean in every EJB module. You must specify a JNDI name for every

enterprise bean defined in the application. For example, for the EJB module MyBean.jar, specify

MyBean.

 7. If your application uses EJB modules that contain Container Managed Persistence (CMP) beans that

are based on the EJB 1.x specification, for Step: Provide default datasource mapping for

modules containing 1.x entity beans, specify a JNDI name for the default data source for the EJB

modules. The default data source for the EJB modules is optional if data sources are specified for

individual CMP beans.

 8. If your application has CMP beans that are based on the EJB 1.x specification, for Step: Map

datasources for all 1.x CMP, specify a JNDI name for data sources to be used for each of the 1.x

CMP beans. The data source attribute is optional for individual CMP beans if a default data source is

specified for the EJB module that contains CMP beans. If neither a default data source for the EJB

module nor a data source for individual CMP beans are specified, then a validation error displays

after you click Finish and the installation is cancelled.

 9. If your application defines EJB references, for Step: Map EJB references to beans, specify JNDI

names for enterprise beans that represent the logical names specified in EJB references. Each EJB

reference defined in the application must be bound to an EJB file before clicking Finish on the

Summary panel.

Chapter 7. Deploying and administering applications 711

10. If your application defines resource references, for Step: Map resource references to resources,

specify JNDI names for the resources that represent the logical names defined in resource

references. You can optionally specify login configuration name and authentication properties for the

resource. After specifying authentication properties, click OK to save the values and return to the

mapping step. Each resource reference defined in the application must be bound to a resource

defined in your WebSphere Application Server configuration before clicking on Finish on the

Summary panel.

11. If your application uses Web modules, for Step: Map virtual hosts for web modules, select a virtual

host from the list that should map to a Web module defined in the application. The port number

specified in the virtual host definition is used in the URL that is used to access artifacts such as

servlets and JSP files in the Web module. Each Web module must have a virtual host to which it

maps. Not specifying all needed virtual hosts will result in a validation error displaying after you click

Finish on the Summary panel.

12. If the application has security roles defined in its deployment descriptor then, for Step: Map security

roles to users/groups, specify users and groups that are mapped to each of the security roles.

Select Role to select all of the roles or select individual roles. For each role, you can specify if

predefined users such as Everyone or All authenticated users are mapped to it. To select specific

users or groups from the user registry:

a. Select a role and click Lookup users or Lookup groups.

b. On the Lookup users/groups panel displayed, enter search criteria to extract a list of users or

groups from the user registry.

c. Select individual users or groups from the results displayed.

d. Click OK to map the selected users or groups to the role selected on the Step: Map security

roles to users/groups panel.

13. If the application has Run As roles defined in its deployment descriptor, for Step: Map RunAs roles

to user, specify the Run As user name and password for every Run As role. Run As roles are used

by enterprise beans that must run as a particular role while interacting with another enterprise bean.

Select Role to select all of the roles or select individual roles. After selecting a role, enter values for

the user name, password, and verify password and click Apply.

14. If your application contains EJB 1.x CMP beans that do not have method permissions defined for

some of the EJB methods, for Step: Ensure all unprotected 1.x methods have the correct level of

protection, specify if you want to leave such methods unprotected or assign protection with deny all

access.

15. If your application contains message driven enterprise beans, for Step: Provide Listener Ports or

activation specification JNDI name for messaging beans, provide a listener port name or an

activation specification JNDI name for every message driven bean. A listener port name must be

provided when using the JMS providers: Version 5 default messaging, WebSphere MQ, or generic.

An activation specification must be provided when the application’s resources are configured using

the default messaging provider or any generic J2C resource adapter that supports inbound

messaging. If neither is specified, then a validation error is displayed after you click Finish on the

Summary panel. Also, if the module containing the message driven bean is deployed on a 5.x

deployment target and a listener port is not specified, then a validation error is displayed after you

click Next.

16. If your application uses EJB modules that contain CMP beans that are based on the EJB 2.x

specification, for Step: Provide default datasource mapping for modules containing 2.x entity

beans, specify a JNDI name for the default data source and the type of resource authorization to be

used for the default data source for the EJB modules. You can optionally specify a login configuration

name and authentication properties for the data source. When creating authentication properties, you

must click OK to save the values and return to the mapping step. The default data source for EJB

modules is optional if data sources are specified for individual CMP beans.

17. If your application has CMP beans that are based on the EJB 2.x specification, on the Step: Map

datasources for all 2.x CMP panel, for each of the 2.x CMP beans specify a JNDI name and the

type of resource authorization for data sources to be used. You can optionally specify a login

712 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

configuration name and authentication properties for the data source. When creating authentication

properties, you must click OK to save the values and return to the mapping step. The data source

attribute is optional for individual CMP beans if a default data source is specified for the EJB module

that contains CMP beans. If neither a default data source for the EJB module nor a data source for

individual CMP beans are specified, then a validation error is displayed after you click Finish and

installation is cancelled.

18. If your application contains EJB 2.x CMP beans that do not have method permissions defined in the

deployment descriptors for some of the EJB methods, on the Step: Ensure all unprotected 2.x

methods have the correct level of protection panel, specify whether you want to assign a specific

role to the unprotected methods, add the methods to the exclude list, or mark them as unchecked.

Methods added to the exclude list are marked as uncallable. For methods marked unchecked no

authorization check is performed prior to their invocation.

19. If the Deploy enterprise beans setting is enabled on the Select installation options panel, then

you can specify options for the EJBDeploy tool on the Step: Provide options to perform the EJB

Deploy panel. On this panel, you can specify extra class paths, RMIC options, database types, and

database schema names to be used while running the EJBDeploy tool. The tool is run on the EAR

file during installation after you click Finish.

20. If your application contains resource environment references, for Step: Map resource environment

references to resources, specify JNDI names of resources that map to the logical names defined in

resource environment references. If each resource environment reference does not have a resource

associated with it, after you click Finish a validation error is displayed.

21. If your application defines Run-As Identity as System Identity, for Step: Replace RunAs System to

RunAs Roles, you can optionally change it to Run-As role and specify a user name and password

for the Run As role specified. Selecting System Identity implies that the invocation is done using the

WebSphere Application Server security server ID and should be used with caution as this ID has

more privileges.

22. If your application has resource references that map to resources that have an Oracle database doing

backend processing, for Step: Specify the isolation level for Oracle type provider, specify or

correct the isolation level to be used for such resources when used by the application. Oracle

databases support ReadCommitted and Serializable isolation levels only.

23. If your application uses message driven beans, for Step: Build message destination to

administered objects, specify the JNDI name of the J2C administered object to bind the message

destination reference to the message driven beans.

24. If your application contains an embedded .rar file, for Step: Map JCA resources to resources,

specify the name and JNDI name of each J2C connection factory, J2C administered object and J2C

activation specification.

25. If your application contains an embedded .rar file, its activationSpec property has the value

Destination, and its introspected type is javax.jms.Destination, for Step: Bind J2CActivationSpec

to Destination Jndi name, specify the jndiName value for each activation bound to it.

26. If your application has EJB modules for which deployment code has been generated for multiple

backend databases using an assembly tool, for Step: Select a backend ID, specify the backend ID

representing the backend database to be used when the EJB module runs.

27. On the Summary panel, verify the cell, node, and server onto which the application modules will

install:

a. Beside Cell/Node/Server, click Click here.

b. Verify the settings.

c. Click Finish.

Several messages are displayed, indicating whether your application file is installing successfully.

If you receive an OutOfMemory exception and the source application file does not install, your system

might not have enough memory or your application might have too many modules in it to install

successfully onto the server. If lack of system memory is not the cause of the exception, package your

Chapter 7. Deploying and administering applications 713

application again so the .ear file has fewer modules. If lack of system memory and the number of

modules are not the cause of the exception, check the options you specified on the Java Virtual Machine

page of the application server running the administrative console. Then, try installing the application file

again.

During installation certain application files are extracted in the directory represented by the

configuration session and, when the configuration is saved, these files are saved in the WebSphere

Application Server configuration repository. On Windows machines, there is a limit of 256 characters for

file paths. Therefore, the application installation might fail if the path for application files in the configuration

session or in the configuration repository exceeds the limit of 256 characters. You might see FileNotFound

exceptions with path name too long in the message. To overcome such problems, make application names

and module URI names shorter in length, which helps reduce the file path length. Then, try installing the

application file again.

After the application file installs successfully, do the following:

1. Associate any shared libraries that the application needs to the application.

2. Save the changes to your configuration. The application is registered with the administrative

configuration and application files are copied to the target directory, which is

install_root/installedApps/cell_name by default or the directory that you designate. For a

single-server installation, application files are copied to the destination directory when the changes are

saved.

3. Start the application.

4. Test the application. For example, point a Web browser at the URL for the deployed application and

examine the performance of the application. If necessary, update the application.

Preparing for application installation settings

Use this page to install an application (EAR file) or module (JAR or WAR file).

To view this administrative console page, click Applications > Install New Application.

Follow the steps on this page to install an application or module. You must complete, at minimum, the first

step; you must complete some or all of the later steps, depending on whether you are installing an

application, EJB module, or Web module.

Path:

Specifies the fully qualified path to the .ear, .jar, or .war file for the enterprise application.

 Use Local file system if the browser and application files are on the same machine (whether or not the

server is on that machine, too).

Use Remote file system if the application file resides on any node in the current cell context. Only .ear,

.jar, or .war files are shown during the browsing.

During application installation, application files typically are uploaded from a client machine running the

browser to the server machine running the administrative console, where they are deployed. In such

cases, use the Web browser running the administrative console to select EAR, WAR, or JAR modules to

upload to the server machine.

In some cases, however, the application files reside on the file system of any of the nodes in a cell. To

have the application server install these files, use the Remote file system option.

714 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Also use the Remote file system option to specify an application file already residing on the machine

running the application server. For example, the field value on a Windows machine might be

C:\WebSphere\AppServer\installableApps\test.ear. If you are installing a stand-alone WAR module, then

specify the context root as well.

After the application file is transferred, the Remote file system value shows the path of the temporary

location on the server machine.

Context root:

Specifies the context root of the Web application (WAR).

 This field is used only to install a stand-alone WAR file. The context root is combined with the defined

servlet mapping (from the WAR file) to compose the full URL that users type to access the servlet. For

example, if the context root is /gettingstarted and the servlet mapping is MySession, then the URL is

http://host:port/gettingstarted/MySession.

Generate Default Bindings:

Specifies whether to generate default bindings. If you place a check mark in the check box, then any

incomplete bindings in the application are filled in with default values. Existing bindings are not altered.

 By choosing this option, you can directly jump to the Summary step and install the application if none of

the steps have a red asterisk (*) next to them. A red asterisk denotes that the step has incomplete data

and requires a valid value. On the Summary panel, verify the cell, node and server on which the

application is installed.

Bindings are generated as follows:

v EJB JNDI names are generated of the form prefix/ejb-name. The default prefix is ejb, but can be

overridden. The ejb-name is as specified in the deployment descriptors <ejb-name> tag.

v EJB references are bound as follows: If an <ejb-link> is found, it is honored. Otherwise, if a unique

enterprise bean is found with a matching home (or local home) interface as the referenced bean, the

reference is resolved automatically.

v Resource reference bindings are derived from the <res-ref-name> tag. Note that this action assumes

that the java:comp/env name is the same as the resource global JNDI name.

v Connection factory bindings (for EJB 2.0 JAR files) are generated based on the JNDI name and

authorization information provided. This action results in default connection factory settings for each EJB

2.0 JAR file in the application being installed. No bean-level connection factory bindings are generated.

v Data source bindings (for EJB 1.1 JAR files) are generated based on the JNDI name, data source user

name password options. This results in default data source settings for each EJB JAR file. No

bean-level data source bindings are generated.

v For EJB2.1 or EJB2.0 message-driven beans deployed as JCA 1.5-compliant resources, the JNDI

names corresponding to activationSpec instances are generated in the form eis/MDB_ejb-name.

Message Destination references are bound as follows: if a <message-destination-link> is found then

the JNDI name is set to ejs/message-destination-linkName. Otherwise the JNDI name is set to

eis/message-destination-refName.

v For EJB 2.0 message-driven beans deployed against a listener ports, the listener ports are derived from

the MDB <ejb-name> tag with the string Port appended.

v For .war files, the virtual host is set as default_host unless otherwise specified.

The default strategy suffices for most applications or at least for most bindings in most applications.

However, it does not work if:

v You want to explicitly control the global JNDI names of one or more EJB files.

v You need tighter control of data source bindings for container-managed persistence (CMP) beans. That

is, you have multiple data sources and need more than one global data source.

Chapter 7. Deploying and administering applications 715

v You must map resource references to global resource JNDI names that are different from the

java:comp/env name.

In such cases, you can change the behavior with an XML document (a custom strategy). Use the Specific

bindings file field to specify a custom strategy and see the field’s help for examples.

Prefixes:

Specifies prefixes to use for generated JNDI names.

Override:

Specifies whether generated bindings are to override existing bindings.

 If Override existing bindings is selected, the existing bindings are overridden by the generated ones.

Connection Factory Bindings:

Specifies the default data source JNDI name.

 If Default connection factory bindings is selected, specify the JNDI name for the default data source to

be used with the bindings. Also specify the resource authorization.

Virtual Host:

Specifies the virtual host for the Web module.

Specific bindings file:

Specifies a bindings file that overrides the default binding.

 Change the behavior of the default binding with an XML document (a custom strategy). Custom strategies

extend the default strategy so you only need to customize those areas where the default strategy is

insufficient. Thus, you only need to describe how you want to change the bindings generated by the

default strategy; you do not have to define bindings for the entire application.

Brief examples of how to override various aspects of the default bindings generator follow:

Controlling an EJB JNDI name

<?xml version="1.0"?>

<!DOCTYPE dfltbndngs SYSTEM "dfltbndngs.dtd">

<dfltbndngs>

 <module-bindings>

 <ejb-jar-binding>

 <jar-name>helloEjb.jar</jar-name>

 <ejb-bindings>

 <ejb-binding>

 <ejb-name>HelloEjb</ejb-name>

 <jndi-name>com/acme/ejb/HelloHome</jndi-name>

 </ejb-binding>

 </ejb-bindings>

 </ejb-jar-binding>

 </module-bindings>

</dfltbndngs>

Note: Ensure that the setting for <ejb-name> matches the ejb-name entry in the EJB JAR deployment

descriptor. Here the setting is <ejb-name>HelloEjb</ejb-name>.

Setting the connection factory binding for an EJB JAR file

716 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

<!DOCTYPE dfltbndngs SYSTEM "dfltbndngs.dtd">

<dfltbndngs>

 <module-bindings>

 <ejb-jar-binding>

 <jar-name>yourEjb20.jar</jar-name>

 <connection-factory>

 <jndi-name>eis/jdbc/YourData_CMP</jndi-name>

 <res-auth>Container</res-auth>

 </connection-factory>

 </ejb-jar-binding>

 </module-bindings>

</dfltbndngs>

Setting the connection factory binding for an EJB file

<?xml version="1.0">

<!DOCTYPE dfltbndngs SYSTEM "dfltbndngs.dtd">

<dfltbndngs>

 <module-bindings>

 <ejb-jar-binding>

 <jar-name>yourEjb20.jar</jar-name>

 <ejb-bindings>

 <ejb-binding>

 <ejb-name>YourCmp20</ejb-name>

 <connection-factory>

 <jndi-name>eis/jdbc/YourData_CMP</jndi-name>

 <res-auth>PerConnFact</res-auth>

 </connection-factory>

 </ejb-binding>

 </ejb-bindings>

 </ejb-jar-binding>

 </module-bindings>

</dfltbndngs>

Note: Ensure that the setting for <ejb-name> matches the ejb-name tag in the deployment descriptor. Here

the setting is <ejb-name>YourCmp20</ejb-name>.

Setting the message destination reference JNDI for a specific enterprise bean

Example XML extract in a custom strategy file for setting message-destination-refs for a specific enterprise

bean.

<?xml version="1.0">

 <!DOCTYPE dfltbndngs SYSTEM "dfltbndngs.dtd">

 <dfltbndngs>

 <module-bindings>

 <ejb-jar-binding>

 <jar-name>yourEjb21.jar</jar-name>

 <ejb-bindings>

 <ejb-binding>

 <ejb-name>YourSession21</ejb-name>

 <message-destination-ref-bindings>

 <message-destination-ref-binding>

 <message-destination-ref-name>jdbc/MyDataSrc</message-destination-ref-name>

 <jndi-name>eis/somAO</jndi-name>

 </message-destination-ref-binding>

 </message-destination-ref-bindings>

 </ejb-binding>

 </ejb-bindings>

 </ejb-jar-binding>

 </module-bindings>

 </dfltbndngs>

Note: Ensure that the setting for <ejb-name> matches the ejb-name tag in the deployment descriptor. Here

the setting is <ejb-name>YourSession21</ejb-name>. Also ensure that the setting for

<message-destination-ref-name> matches the message-destination-ref-name tag in the

Chapter 7. Deploying and administering applications 717

deployment descriptor. Here the setting is <message-destination-ref-
name>jdbc/MyDataSrc</message-destination-ref-name>.

Overriding a resource reference binding from a WAR, EJB JAR file, or J2EE client JAR file

Example code for overriding a resource reference binding from a WAR file follows. Use similar code to

override a resource reference binding from an enterprise bean (EJB) JAR file or a J2EE client JAR file.

<?xml version="1.0"?>

<!DOCTYPE dfltbndngs SYSTEM "dfltbndngs.dtd">

<dfltbndngs>

 <module-bindings>

 <war-binding>

 <jar-name>hello.war</jar-name>

 <resource-ref-bindings>

 <resource-ref-binding>

 <resource-ref-name>jdbc/MyDataSrc</resource-ref-name>

 <jndi-name>war/override/dataSource</jndi-name>

 </resource-ref-binding>

 </resource-ref-bindings>

 </war-binding>

 </module-bindings>

</dfltbndngs>

Note: Ensure that the setting for <resource-ref-name> matches the resource-ref tag in the deployment

descriptor. Here the setting is <resource-ref-name>jdbc/MyDataSrc</resource-ref-name>.

Overriding the JNDI name for a message-driven bean deployed as a JCA 1.5-compliant resource

Example XML extract in a custom strategy file for overriding the JMS activationSpec JNDI name for an

EJB 2.1 or EJB 2.0 message-driven bean deployed as a JCA 1.5-compliant resource.

<?xml version="1.0"?>

 <!DOCTYPE dfltbndngs SYSTEM "dfltbndngs.dtd">

 <dfltbndngs>

 <module-bindings>

 <ejb-jar-binding>

 <jar-name>YourEjbJar.jar</jar-name>

 <ejb-bindings>

 <ejb-binding>

 <ejb-name>YourMDB</ejb-name>

 <activationspec-jndi-name>activationSpecJNDI</activationspec-jndi-name>

 </ejb-binding>

 </ejb-bindings>

 </ejb-jar-binding>

 </module-bindings>

 </dfltbndngs>

Overriding the JMS listener port name for an EJB 2.0 message-driven bean

Example XML extract in a custom strategy file for overriding the JMS listener port name for an EJB 2.0

message-driven bean deployed against a listener port.

<?xml version="1.0"?>

<!DOCTYPE dfltbndngs SYSTEM "dfltbndngs.dtd">

<dfltbndngs>

 <module-bindings>

 <ejb-jar-binding>

 <jar-name>YourEjbJar.jar</jar-name>

 <ejb-bindings>

 <ejb-binding>

 <ejb-name>YourMDB</ejb-name>

 <listener-port>yourMdbListPort</listener-port>

 </ejb-binding>

718 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

</ejb-bindings>

 </ejb-jar-binding>

 </module-bindings>

</dfltbndngs>

Overriding an EJB reference binding from an EJB JAR, WAR file, or EJB file

Example code for overriding an EJB reference binding from an EJB JAR file follows. Use similar code to

override an EJB reference binding from a WAR file or an EJB file.

<?xml version="1.0"?>

<!DOCTYPE dfltbndngs SYSTEM "dfltbndngs.dtd">

<dfltbndngs>

 <module-bindings>

 <ejb-jar-binding>

 <jar-name>YourEjbJar.jar</jar-name>

 <ejb-ref-bindings>

 <ejb-ref-binding>

 <ejb-ref-name>YourEjb</ejb-ref-name>

 <jndi-name>YourEjb/JNDI</jndi-name>

 </ejb-ref-binding>

 </ejb-ref-bindings>

 </ejb-jar-binding>

 </module-bindings>

</dfltbndngs>

Example: Installing an EAR file using the default bindings

If application bindings were not specified for all enterprise beans or resources in an application during

application development or assembly, you can select to generate default bindings. After application

installation, you can modify the bindings as needed using the administrative console.

An example of a simple .ear file installation using the default bindings follows:

1. Go to the Preparing for application install pages.

Click Applications > Install New Application in the console navigation tree.

2. For Path to the new application, specify the full path name of the .ear file.

For this example, the base file name is my_appl.ear and the file resides on a server at

C:\sample_apps.

3. Now that a value is given for Specify path, on the first Preparing for application installation page, click

Next.

4. On the second Preparing for application installation page, select Generate Default Bindings and click

Next.

Using the default bindings causes any incomplete bindings in the application to be filled in with default

values. Existing bindings are not changed. By choosing this option, you can skip many of the steps on

the Install New Application page and go directly to the Summary step.

5. If application security warnings are displayed, read the warnings and click Continue.

6. On the Install New Application page, click on Summary, the last step.

7. On the Summary panel, verify the cell, node, and server onto which the application files will install.

a. Beside the Cell/Node/Server option, click Click here.

b. On the Map modules to servers panel, select the server onto which the application files will install

from the Clusters and Servers list, click Module to select all of the application modules, and click

Next.

Note that on the Map modules to servers panel, you can map modules to other servers such as

Web servers. If you want a Web server to serve the application, use the Ctrl key to select an

application server or cluster and the Web server together in order to have the plug-in configuration

file plugin-cfg.xml for that Web server generated based on the applications which are routed

through it.

Because my_appl.ear does not require any additional settings to complete an installation, the

Summary panel is displayed again.

Chapter 7. Deploying and administering applications 719

8. On the Summary panel, click Finish.

Examine the application installation progress messages. If the application installs successfully, save your

administrative configuration. You can now see the name of your application in the list of deployed

applications on the Enterprise Applications page accessed by clicking Applications > Enterprise

Applications in the console navigation tree.

If the application does not install successfully, read the messages to identify why the installation failed.

Correct problems with the application as needed and try installing the application again.

Installing J2EE modules with JSR-88

You can install Java 2 Platform, Enterprise Edition (J2EE) modules on an application server provided by a

WebSphere Application Server product using the J2EE Deployment API Specification (JSR-88).

JSR-88 defines standard application programming interfaces (APIs) to enable deployment of J2EE

applications and stand-alone modules to J2EE product platforms. The J2EE Deployment Specification

Version 1.1 is available at http://java.sun.com/j2ee/tools/deployment/reference/docs/index.html as part of

the J2EE 1.4 Application Server Developer Release.

Read about JSR-88 and APIs used to manage applications at http://java.sun.com/j2ee/tools/deployment/.

JSR-88 defines a contract between a tool provider and a platform that enables tools from multiple vendors

to configure, deploy and manage applications on any J2EE product platform. The tool provider typically

supplies software tools and an integrated development environment (IDE) for developing and assembly of

J2EE application modules. The J2EE platform provides application management functions that deploy,

undeploy, start, stop, and otherwise manage J2EE applications.

WebSphere Application Server is a J2EE 1.4 specification-compliant platform that implements the JSR-88

APIs. Complete the following steps to deploy (install) J2EE modules on an application server provided by

the WebSphere Application Server platform.

1. Code a Java program that can access the JSR-88 DeploymentManager class for WebSphere

Application Server.

a. Write code that finds the JAR manifest file key J2EE-DeploymentFactory-Implementation-Class.

Under JSR-88, your code finds the DeploymentFactory using the JAR manifest file key

J2EE-DeploymentFactory-Implementation-Class. For WebSphere Application Server, the application

management JAR file containing this key and providing support is install_root/lib/wjmxapp.jar.

After your code finds the DeploymentFactory, the deployment tool can create an instance of the

WebSphere DeploymentFactory and register the instance with its DeploymentFactoryManager. For

example:

import javax.enterprise.deploy.shared.factories.DeploymentFactoryManager;

import javax.enterprise.deploy.spi.DeploymentManager;

import javax.enterprise.deploy.spi.factories.DeploymentFactory;

import java.util.jar.JarFile;

// Get the DeploymentFactory implementation class from the MANIFEST.MF file.

JarFile wjmxappJar = new JarFile(new File(wasHome + "/lib/wjmxapp.jar"));

java.util.jar.Manifest manifestFile = wjmxappJar.getManifest();

Attributes attributes = manifestFile.getMainAttributes();

String key = "J2EE-DeploymentFactory-Implementation-Class";

String className = attributes.getValue(key);

// Get an instance of the DeploymentFactoryManager

DeploymentFactoryManager dfm = DeploymentFactoryManager.getInstance();

// Create an instance of the WebSphere Application Server DeploymentFactory.

Class deploymentFactory = Class.forName(className);

DeploymentFactory deploymentFactoryInstance =

 (DeploymentFactory) deploymentFactory.newInstance();

720 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

http://java.sun.com/j2ee/tools/deployment/reference/docs/index.html
http://java.sun.com/j2ee/tools/deployment/

// Register the DeploymentFactory instance with the DeploymentFactoryManager.

dfm.registerDeploymentFactory(deploymentFactoryInstance);

// Provide WebSphere Application Server URL, user ID, and password.

// For more information, see the step that follows.

wsDM = dfm.getDeploymentManager(

 "deployer:WebSphere:myserver:8880", null, null);

b. Write code that accesses the DeploymentManager instance for WebSphere Application Server. The

WebSphere Application Server URL for deployment has the format

"deployer:WebSphere:host:port"

The example in the previous step, ″deployer:WebSphere:myserver:8880″, tries to connect to host

myserver at port 8880 using the SOAP connector, which is the default.

The URL for deployment can have an optional parameter connectorType. For example, to use the

RMI connector to access myserver, code the URL as follows:

"deployer:WebSphere:myserver:2809?connectorType=RMI"

2. Optional: Code a Java program that can customize or deploy J2EE applications or modules using the

JSR-88 support provided by WebSphere Application Server.

3. Start the deployed J2EE applications or standalone J2EE modules using the JSR-88 API used to start

applications or modules.

Test the deployed applications or modules. For example, point a Web browser at the URL for a deployed

application and examine the performance of the application. If necessary, update the application.

Customizing modules using DConfigBeans

You can configure J2EE applications or stand-alone modules during deployment using the DConfigBean

class in the Java 2 Platform, Enterprise Edition (J2EE) Deployment API Specification (JSR-88).

This article assumes that you are deploying (installing) J2EE modules on an application server provided by

the WebSphere Application Server platform using the WebSphere Application Server support for JSR-88.

Read about the JSR-88 specification and using the DConfigBean class at

http://java.sun.com/j2ee/tools/deployment/.

The DConfigBean class in JSR-88 provides JavaBeans-based support for platform-specific configuration of

J2EE applications and modules during deployment. Your code can inspect DConfigBean instances to get

platform-specific configuration attributes. The DConfigBean instances provided by WebSphere Application

Server contain a single attribute which has an array of java.util.Hashtable objects. The hashtable entries

contain configuration attributes, for which your code can get and set values.

1. Write code that installs J2EE modules on an application server using JSR-88.

2. Write code that accesses DConfigBeans generated by WebSphere Application Server during JSR-88

deployment. You (or a deployer) can then customize the accessed DConfigBeans instances. The

following pseudocode shows how a J2EE tool provider can get DConfigBean instance attributes

generated by WebSphere Application Server during JSR-88 deployment and set values for the

attributes:

import javax.enterprise.deploy.model.*;

import javax.enterprise.deploy.spi.*;

{

DeploymentConfiguration dConfig = ___; // Get from DeploymentManager

DDBeanRoot ddRoot = ___; // Provided by J2EE tool

// Obtain root bean.

DConfigBeanRoot dcRoot = dConfig.getDConfigBeanRoot(dr);

// Configure DConfigBean.

configureDCBean (dcRoot);

Chapter 7. Deploying and administering applications 721

http://java.sun.com/j2ee/tools/deployment/

}

// Get children from DConfigBeanRoot and configure each child.

method configureDCBean (DConfigBean dcBean)

{

 // Get DConfigBean attributes for a given archive.

 BeanInfo bInfo = Introspector.getBeanInfo(dcBean.getClass());

 IndexedPropertyDescriptor ipDesc =

 (IndexedPropertyDescriptor)bInfo.getPropertyDescriptors()[0];

 // Get the 0th table.

 int index = 0;

 Hashtable tbl = (Hashtable)

 ipDesc.getIndexedReadMethod().invoke

 (dcBean, new Object[]{new Integer(index)});

 while (tbl != null)

 {

 // Iterate over the hashtable and set values for attributes.

 // Set the table back into the DCBean.

 ipDesc.getIndexedWriteMethod().invoke

 (dcBean, new Object[]{new Integer(index), tbl});

 // Get the next entry in the indexed property

 tbl = (Hashtable)

 ipDesc.getIndexedReadMethod().invoke

 (dcBean, new Object[]{new Integer(++index)});

 }

}

Enterprise application collection

Use this page to view and manage enterprise applications.

This page lists installed J2EE enterprise applications. System applications, which are central to the

product, are not shown in the list because users cannot edit them. Examples of system applications

include adminconsole and filetransfer.

To view this administrative console page, click Applications > Enterprise Applications.

To view the values specified for an application’s configuration, click the application name in the list. The

displayed application settings page shows the values specified. On the settings page, you can change

existing configuration values and link to additional console pages that assist you in configuring the

application.

To manage an installed J2EE enterprise application, enable the Select check box beside the application

name in the list and click a button:

 Button Resulting action

Start Attempts to run the application. After the application starts up successfully, the state of

the application changes to Started if the application starts up on all deployment

targets, else the state changes to Partial Started.

Stop Attempts to stop the processing of the application. After the application stops

successfully, the state of the application changes to Stopped if the application stops on

all deployment targets, else the state changes to Partial Stopped.

Install Opens a wizard that helps you deploy an application or a module such as a .jar, .war

or .rar file onto a server.

722 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Button Resulting action

Uninstall Deletes the application from the WebSphere Application Server configuration

repository and deletes the application binaries from the file system of all nodes where

the application modules are installed after the configuration is saved.

Update Opens a wizard that helps you update application files deployed on a server. You can

update the full application, a single module, a single file, or part of the application. If a

new file or module has the same name as a file or module already existing on the

server, the new file or module replaces the existing file or module. If the new file or

module does not exist on the server, it is added to the deployed application.

Remove File Deletes a file of the deployed application or module. Remove File deletes a file from

the WebSphere Application Server configuration repository and from the file system of

all nodes where the file is installed.

Export Accesses the Export Application EAR files page, which you use to export an enterprise

application to an EAR file at a location of your choice. Use the Export action to back

up a deployed application and to preserve its binding information.

Export DDL Accesses the Export Application DDL files page, which you use to export DDL files

(Table.ddl) in the EJB modules of an enterprise application to a location of your

choice.

Name

Specifies the name of the installed (or deployed) application. Application names must be unique within a

cell and cannot contain characters that are not allowed in object names.

Status

Indicates whether the application deployed on the application server is started, stopped, or unavailable.

Started Application is running.

Partial Start Application is in the process of changing from a Stopped state to a Started

state. Application is starting to run but is not fully running yet.

Stopped Application is not running.

Partial Stop Application is in the process of changing from a Started state to a Stopped

state. Application has not stopped running yet.

Unavailable Status cannot be determined. An application with an unavailable status might, in

fact, be running but have an unavailable status because the server running the

administrative console cannot communicate with the server running the

application.

Not applicable Application does not provide information as to whether it is running.

Enterprise application settings

Use this page to configure an enterprise application.

To view this administrative console page, click Applications > Enterprise Applications

>application_name.

Name

Specifies a logical name for the application. Application names must be unique within a cell and cannot

contain characters that are not allowed in object names.

 Data type String

Chapter 7. Deploying and administering applications 723

Application binaries

Specifies the directory to which the application EAR file will be installed. The default value is the value of

APP_INSTALL_ROOT/cell_name, where the APP_INSTALL_ROOT variable is install_root/installedApps; for

example, C:\WebSphere\AppServer\profiles\profile _name\installedApps\cell_name.

You can specify an absolute path or use a pathmap variable such as ${MY_APPS}. You can use a pathmap

variable in any installation. A WebSphere Application Server variable ${CELL} that denotes the current cell

name can also be in the pathmap variable; for example, ${MY_APP}/${CELL}.

You can define WebSphere Application Server variables on the WebSphere Variables page of the

administrative console, accessed by clicking Environment > WebSphere Variables.

 Data type String

Units Full path name

Use metadata from binaries

Specifies whether the application server uses the binding, extensions, and deployment descriptors located

with the application deployment document, the deployment.xml file (default), or those located in the

enterprise application resource (EAR) file.

This Use metadata from binaries setting is the same as the Use Binary Configuration field on the

application installation and update wizards. Select this setting for applications installed on 6.x deployment

targets only. This setting is not valid for applications installed on 5.x deployment targets.

 Data type Boolean

Default false

Enable distribution

Specifies whether WebSphere Application Server expands or deletes application binaries in the installation

destination. The default is to enable application distribution. Application binaries for installed applications

are expanded to the directory specified. The binaries are also deleted when you uninstall and save

changes to the configuration. If you disable this option, then you must ensure that the application binaries

are expanded appropriately in the destination directories of all nodes where the application runs.

This Enable distribution setting is the same as the Distribute application field on the application

installation and update wizards.

 Data type Boolean

Default true

Validation

Specifies whether WebSphere Application Server examines the application references specified during

application installation or updating and, if validation is enabled, warns the users of incorrect references or

fails the operation.

An application typically refers to resources using data sources for container managed persistence (CMP)

beans or using resource references or resource environment references defined in deployment descriptors.

The validation checks whether the resource referred to by the application is defined in the scope of the

deployment target of that application.

The resource can be defined on the server, its node, cell or the cluster if the server belongs to a cluster.

Select off for no resource validation, warn for warning messages about incorrect resource references, or

fail to stop operations that fail as a result of incorrect resource references.

724 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

This Validation setting is the same as the Validate Input off/warn/fail field on the application installation

and update wizards.

 Data type String

Default warn

Class loader mode

Specifies whether the class loader searches in the parent class loader or in the application class loader

first to load a class. The standard for development kit class loaders and WebSphere Application Server

class loaders is Parent First. By specifying Parent Last, your application can override classes contained

in the parent class loader, but this action can potentially result in ClassCastException or LinkageErrors if

you have mixed use of overridden classes and non-overridden classes.

The options are Parent First and Parent Last. The default is to search in the parent class loader before

searching in the application class loader to load a class.

 Data type String

Default Parent First

WAR class loader policy

Specifies whether to use a single class loader to load all WAR files of this application or to use a different

class loader for each WAR file.

The options are Application and Module. The default is to use a separate class loader to load each WAR

file.

 Data type String

Default Module

Enable class reloading

Specifies whether to enable class reloading when application files are updated.

For EJB modules or any non-Web modules, selecting Enable class reloading sets reloadEnabled to true

in the deployment.xml file for the application. If an application’s class definition changes, the application

server run time stops and starts the application to reload application classes.

For Web modules such as servlets and JavaServer page (JSP) files, a Web container reloads a Web

module only when the IBM extension reloadingEnabled in the ibm-web-ext.xmi file is set to true. You can

set reloadingEnabled to true when editing your Web module’s extended deployment descriptors in an

assembly tool.

To enable reloading of a Web module, where you also want reloading of EJB and non-Web modules

enabled:

1. Set the IBM extension reloadingEnabled in the ibm-web-ext.xmi file to true.

2. Select this Enable class reloading property.

3. Set the Reloading interval property to a value greater than zero (for example, 1 to 2147483647).

To enable reloading of a Web module only, and not enable reloading of EJB or non-Web modules:

1. Set the IBM extension reloadingEnabled in the ibm-web-ext.xmi file to true.

2. Set the IBM extension reload interval attribute in the ibm-web-ext.xmi file to a value greater than zero

(for example, 1 to 2147483647).

3. Do not select this Enable class reloading property.

Chapter 7. Deploying and administering applications 725

To disable reloading of a Web module, set the IBM extension reloadingEnabled in the ibm-web-ext.xmi file

to false. Or, if the Web module has the IBM extension reloadingEnabled in the ibm-web-ext.xmi file set to

true, to disable reloading using the administrative console:

1. Select this Enable class reloading property.

2. Set the Reloading interval property to zero (0).

 Data type Boolean

Default false

Reloading interval

Specifies the number of seconds to scan the application’s file system for updated files. The default is the

value of the reloading interval attribute in the IBM extension (META-INF/ibm-application-ext.xmi) file of

the EAR file.

This Reloading interval setting is the same as the Reload interval in seconds field on the application

installation and update wizards.

To enable reloading, specify a value greater than zero (for example, 1 to 2147483647). To disable

reloading, specify zero (0).

The reloading interval specified here overrides the value specified in the IBM extensions for each non-Web

module in the EAR file (which in turn overrides the reload interval specified in the IBM extensions for the

application in the EAR file). The reloading interval attribute takes effect only if class reloading is enabled.

The range is from 0 to 2147483647.

 Data type Integer

Units Seconds

Default 3

Starting weight

Specifies the order in which applications are started when the server starts. The application with the lowest

starting weight is started first.

 Data type Integer

Default 1

Range 0 to 2147483647

Background application

Specifies whether the application must initialize fully before the server starts.

The default setting of false indicates that server startup will not complete until the application starts.

A setting of true informs WebSphere Application Server that the application might start on a background

thread and thus server startup might continue without waiting for the application to start. Thus, the

application might not be ready for use when the application server starts.

This setting applies only if the application is run on a Version 6 application server.

 Data type Boolean

Default false

726 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Create MBeans for resources

Specifies whether to create MBean files for various resources (such as servlets or JSP files) within an

application when the application starts. The default is to create MBean files.

 Data type Boolean

Default true

Configuring an application

You can change the configuration of an application or module deployed on a server.

You can change the contents of and deployment descriptors for an application or module before

deployment, such as in an assembly tool. However, this article assumes that the module is already

deployed on a server.

Changing an application or module configuration consists of one or more of the following:

v Changing the settings of the application or module.

v Removing a file from an application or module.

v Updating the application or its modules.

This article describes how to change the settings of an application or module using the administrative

console.

v Change the settings of the application or module on the settings page for the enterprise application.

1. Click Applications > Enterprise Applications >application_name in the console navigation tree.

2. Change the values for settings as needed. The settings page help provides detailed information on

the settings and allowed values. When you installed the application or module, you specified most, if

not all, of the settings values. After installation, the settings on this page that you are likely to

change include the following:

 Enable class reloading and

Reloading interval

These settings control whether classes are reloaded when application files are

updated. For enterprise bean (EJB) modules or any non-Web modules, enabling class

reloading causes the application server run time to stop and start the application to

reload application classes. For Web modules such as servlets and JavaServer page

(JSP) files, a Web container reloads a Web module only when the IBM extension

reloadingEnabled in the ibm-web-ext.xmi file is set to true. Refer to the settings page

help for detailed information on enabling or disabling class reloading.

Starting weight If your application starts automatically when its server starts, this value controls how

quickly the application starts. Starting weight specifies the order in which applications

are started when the server starts. The application with the lowest starting weight is

started first.

Background application If your application starts automatically when its server starts, Background application

specifies whether the application must initialize fully before its server is considered

started. Background applications can be initialized on an independent thread, thus

allowing the server startup to complete without waiting for the application. This setting

applies only if the application is run on a Version 6 (or later) application server.

3. Click OK.

v Map each module of your application to a target server. Specify the application servers or Web servers

onto which to install modules of your application.

v Change application bindings or other settings of the application or module.

1. Click Applications > Enterprise Applications >application_name > property_or_item_name in the

console navigation tree. From the application settings page, you can access console pages for

further configuring of the application or module.

– Session management

Chapter 7. Deploying and administering applications 727

– Libraries or library references

– Target mappings

– Deployment descriptors

– Publish WSDL files

– Provide JMS and EJB endpoint URL information

– Provide HTTP endpoint URL information

– Map security roles to users/groups

– Provide JNDI Names for Beans. For more information, refer to “Task overview: Using enterprise

beans in applications” on page 817.

– Map resource references to resources

– Map EJB references to beans. For more information, refer to “Task overview: Using enterprise

beans in applications” on page 817.

– Map data sources for all 2.x CMP beans

– Provide default data source mapping for modules containing 2.x entity beans. For more

information, refer to “Creating and configuring a data source using the administrative console” on

page 1171.

– Map virtual hosts for web modules. For more information, refer to ″Configuring virtual hosts″ in

the information center.

– Map modules to servers

– Web modules

– EJB modules

– Connector modules

2. Change the values for settings as needed, and click OK.

v Optional: Configure the application so it does not start automatically when the server starts. By default,

an installed application starts when the server on which the application resides starts. You can configure

the target mapping for the application so the application does not start automatically when the server

starts. To start the application, you must then start it manually.

v If the installed application or module uses a resource adapter archive (RAR file), ensure that the

Classpath setting for the RAR file enables the RAR file to find the classes and resources that it needs.

Examine the Classpath setting on the console Resource adapter settings page.

The application or module configuration is changed. The application or standalone Web module is

restarted so the changes take effect.

Save changes to your administrative configuration.

Application bindings

Before an application that is installed on an application server can start, all enterprise bean (EJB)

references and resource references defined in the application must be bound to the actual artifacts

(enterprise beans or resources) defined in the application server.

When defining bindings, you specify Java Naming and Directory Interface (JNDI) names for the

referenceable and referenced artifacts in an application. An example referenceable artifact is an EJB

defined in an application. An example referenced artifact is an EJB or a resource reference used by the

application. Binding definitions are stored in the ibm-xxx-bnd.xmi files of an application. The xxx can be

ejb-jar, web, application or application-client.

Times when bindings can be defined

You can define bindings at the following times:

v During application development

An application developer can create binding definitions in ibm-xxx-bnd.xmi files using a tool such as an

IBM Rational developer tool. The developer then gives an enterprise application (.ear file) complete

with bindings to a deployer. When assembling the application and then installing it onto a server

728 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

supported by WebSphere Application Server, the deployer does not modify or override the bindings or

generate default bindings unless changes to the bindings are necessary for successful deployment of

the application.

v During application assembly

An application assembler can define bindings when modifying deployment descriptors of an application.

Bindings are specified in the WebSphere Bindings section of a deployment descriptor editor. Modifying

the deployment descriptors might change the binding definitions in the ibm-xxx-bnd.xmi files created

when assembling an application. After defining the bindings, the deployer can install the application onto

a server supported by WebSphere Application Server without selecting to override the bindings or

generate default bindings unless changes to the bindings are necessary for successful deployment of

the application.

v During application installation

An application deployer or server administrator can modify the bindings when installing the application

onto a server supported by WebSphere Application Server using the administrative console. New

binding definitions can be specified on the install wizard pages.

If the deployer or administrator selects to override any existing bindings or to generate default bindings

during application installation, default bindings are assigned to the application and new bindings might

need to be specified using the console.

Selecting Generate Default Bindings during application installation causes any incomplete bindings in

the application to be filled in with default values. Existing bindings are not changed.

Note: Bindings can be defined or overridden during application installation for all modules except

application clients. For clients, you must define bindings for application client modules during

assembly and store the bindings in the ibm-application-client-bnd.xmi file.

v During configuration of an installed application

After an application is installed onto a server supported by WebSphere Application Server, an

application deployer or server administrator can modify the bindings by changing values in

administrative console pages such as those accessed from the settings page for the enterprise

application.

Required bindings

Before an application can be successfully deployed, bindings must be defined for references to the

following artifacts:

EJB JNDI names

For each enterprise bean (EJB), you must specify a JNDI name. The name is used to bind an

entry in the global JNDI name space for the EJB home object. An example JNDI name for a

Product EJB in a Store application might be store/ejb/Product. The binding definition is stored in

the META-INF/ibm-ejb-jar-bnd.xmi file.

 If a deployer chooses to generate default bindings when installing the application, the install wizard

assigns EJB JNDI names having the form prefix/EJB_name to incomplete bindings. The default

prefix is ejb, but can be overridden. The EJB_name is as specified in the deployment descriptor

<ejb-name> tag.

 During and after application installation, EJB JNDI names can be specified on the Provide JNDI

Names for Beans panel. After installation, click Applications > Enterprise Applications

>application_name > Provide JNDI Names for Beans in the administrative console.

Data sources for entity beans

Entity beans such as container-managed persistence (CMP) beans store persistent data in data

stores. With CMP beans, an EJB container manages the persistent state of the beans. You specify

which data store a bean uses by binding an EJB module or an individual EJB to a data source.

Binding an EJB module to a data source causes all entity beans in that module to use the same

data source for persistence.

Chapter 7. Deploying and administering applications 729

An example JNDI name for a Store data source in a Store application might be store/jdbc/store.

The binding definition is stored in IBM binding files such as ibm-ejb-jar-bnd.xmi. A deployer can

also specify whether authentication is handled at the container or application level.

 If a deployer chooses to generate default bindings when installing the application, the install wizard

generates the following for incomplete bindings:

v For EJB 2.x .jar files, connection factory bindings based on the JNDI name and authorization

information specified

v For EJB 1.1 .jar files, data source bindings based on the JNDI name, data source user name

and password specified

The generated bindings provide default connection factory settings for each EJB 2.x .jar file and

default data source settings for each EJB 1.1 .jar file in the application being installed. No

bean-level connection factory bindings or data source bindings are generated.

 During and after application installation, data sources can be mapped to 2.x entity beans on the

Map data sources for all 2.x CMP beans panel and on the Provide default data source mapping

for modules containing 2.x entity beans panel. After installation, click Applications > Enterprise

Applications >application_name in the administrative console, then select Map data sources for

all 2.x CMP beans or Provide default data source mapping for modules containing 2.x entity

beans. Data sources can be mapped to 1.x entity beans on the Map data sources for all 1.x CMP

beans panel and on the Provide default data source mapping for modules containing 1.x entity

beans panel. After installation, access console pages similar to those for 2.x CMP beans, except

click links for 1.x CMP beans.

Backend ID for EJB modules

If an EJB .jar file that defines CMP beans contains mappings for multiple backend databases,

specify the appropriate backend ID that determines which persister classes are loaded at run time.

 Specify the backend ID during application installation. You cannot select a backend ID after the

application is installed onto a server.

EJB references

An enterprise bean (EJB) reference is a logical name used to locate the home interface of an

enterprise bean. EJB references are specified during deployment. At run time, EJB references are

bound to the physical location (global JNDI name) of the enterprise beans in the target operational

environment. EJB references are made available in the java:comp/env/ejb Java naming

subcontext.

 For each EJB reference, you must specify a JNDI name. An example JNDI name for a Supplier

EJB reference in a Store application might be store/ejb/Supplier. The binding definition is stored

in IBM binding files such as ibm-ejb-jar-bnd.xmi. When the referenced EJB is also deployed in

the same application server, you can specify a server-scoped JNDI name. But if the referenced

EJB is deployed on a different application server or if ejb-ref is defined in an application client

module, then you should specify the global cell-scoped JNDI name.

 If a deployer chooses to generate default bindings when installing the application, the install wizard

binds EJB references as follows: If an <ejb-link> is found, it is honored. If the ejb-name of an EJB

defined in the application matches the ejb-ref name, then that EJB is chosen. Otherwise, if a

unique EJB is found with a matching home (or local home) interface as the referenced bean, the

reference is resolved automatically.

 During and after application installation, EJB reference JNDI names can be specified on the Map

EJB references to beans panel. After installation, click Applications > Enterprise Applications

>application_name > Map EJB references to beans in the administrative console.

Resource references

A resource reference is a logical name used to locate an external resource for an application.

Resource references are specified during deployment. At run time, the references are bound to the

physical location (global JNDI name) of the resource in the target operational environment.

730 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Resource references are made available as follows:

 Resource reference type Subcontext declared in

Java DataBase Connectivity (JDBC) data source java:comp/env/jdbc

JMS connection factory java:comp/env/jms

JavaMail connection factory java:comp/env/mail

Uniform Resource Locator (URL) connection factory java:comp/env/url

For each resource reference, you must specify a JNDI name. If a deployer chooses to generate

default bindings when installing the application, the install wizard generates resource reference

bindings derived from the <res-ref-name> tag, assuming that the java:comp/env name is the same

as the resource global JNDI name.

 During application installation, resource reference JNDI names can be specified on the Map

resource references to references panel. Specify JNDI names for the resources that represent the

logical names defined in resource references. You can optionally specify login configuration name

and authentication properties for the resource. After specifying authentication properties, click OK

to save the values and return to the mapping step. Each resource reference defined in an

application must be bound to a resource defined in your WebSphere Application Server

configuration. After installation, click Applications > Enterprise Applications >application_name

> Map resource references to resources in the administrative console to access the Map

resource references to references panel.

Virtual host bindings for Web modules

You must bind each Web module to a specific virtual host. The binding informs a Web server

plug-in that all requests that match the virtual host must be handled by the Web application. An

example virtual host to be bound to a Store Web application might be store_host. The binding

definition is stored in IBM binding files such as WEB-INF/ibm-web-bnd.xmi.

 If a deployer chooses to generate default bindings when installing the application, the install wizard

sets the virtual host to default_host for each .war file.

 During and after application installation, you can map a virtual host to a Web module defined in

your application. On the Map virtual hosts for Web modules panel, specify a virtual host. The port

number specified in the virtual host definition is used in the URL that is used to access artifacts

such as servlets and JSP files in the Web module. For example, an external URL for a Web

artifact such as a JSP file is http://host_name:virtual_host_port/context_root/jsp_path. After

installation, click Applications > Enterprise Applications >application_name > Map virtual

hosts for Web modules in the administrative console.

Message-driven beans

For each message-driven bean, you must specify a queue or topic to which the bean will listen. A

message-driven bean is invoked by a Java Messaging Service (JMS) listener when a message

arrives on the input queue that the listener is monitoring. A deployer specifies a listener port or

JNDI name of an activation spec as defined in a connector module (.rar file) under WebSphere

Bindings on the Beans page of an assembly tool EJB deployment descriptor editor. An example

JNDI name for a listener port to be used by a Store application might be StoreMdbListener. The

binding definition is stored in IBM bindings files such as ibm-ejb-jar-bnd.xmi.

 If a deployer chooses to generate default bindings when installing the application, the install wizard

assigns JNDI names to incomplete bindings.

v For EJB 2.x message-driven beans deployed as JCA 1.5-compliant resources, the install wizard

assigns JNDI names corresponding to activationSpec instances in the form eis/MDB_ejb-name.

v For EJB 2.x message-driven beans deployed against listener ports, the listener ports are

derived from the message-driven bean <ejb-name> tag with the string Port appended.

Chapter 7. Deploying and administering applications 731

During application installation using the administrative console, you can specify a listener port

name or an activation specification JNDI name for every message-driven bean on the panel

Provide Listener Ports or activation specification JNDI name for messaging beans. A listener

port name must be provided when using the JMS providers: Version 5 default messaging,

WebSphere MQ, or generic. An activation specification must be provided when the application’s

resources are configured using the default messaging provider or any generic J2C resource

adapter that supports inbound messaging. If neither is specified, then a validation error is

displayed after you click Finish on the Summary panel. Also, if the module containing the

message-driven bean is deployed on a 5.x deployment target and a listener port is not specified,

then a validation error is displayed after you click Next.

 After application installation, you can specify JNDI names and configure message-driven beans on

console pages under Resources > JMS Providers or under Resources > Resource Adapters.

For more information, refer to ″Using asynchronous messaging″ in the information center.

Message destination references

A message destination reference is a logical name used to locate an enterprise bean in an EJB

module that acts as a message destination. Message destination references exist only in J2EE 1.4

artifacts such as--

v J2EE 1.4 application clients

v EJB 2.1 projects

v 2.4 Web applications

If multiple message destination references are associated with a single message destination link,

then a single JNDI name for an enterprise bean that maps to the message destination link, and in

turn to all of the linked message destination references, is collected during deployment. At run

time, the message destination references are bound to the administered message destinations in

the target operational environment.

 If a deployer chooses to generate default bindings when installing the application, the install wizard

assigns JNDI names to incomplete message destination references as follows: If a message

destination reference has a <message-destination-link>, then the JNDI name is set to

ejs/message-destination-linkName. Otherwise, the JNDI name is set to eis/message-
destination-refName.

 Other bindings that might be needed

Depending on the references in and artifacts used by your application, you might need to define bindings

for references and artifacts not listed in this article.

Mapping modules to servers

Each module of a deployed application must be mapped to one or more target servers. The target server

can be an application server or Web server.

You can map modules of an application or standalone Web module to one or more target servers during or

after application installation using the console. This article assumes that the module is already installed on

a server and that you want to change the mappings.

Before you change a mapping, check the deployment targets. You must specify an appropriate deployment

target for a module. Modules that use Version 6.x features cannot be installed onto a Version 5.x target

server.

During application installation, different deployment targets might have been specified.

You use the Map modules to servers panel of the administrative console to view and change mappings.

This panel is displayed during application installation using the console and, after the application is

installed, can be accessed from the settings page for an enterprise application.

732 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

On the Map modules to servers panel, specify target servers where you want to install the modules

contained in your application. Modules can be installed on the same application server or dispersed

among several application servers. Also, specify the Web servers as targets that will serve as routers for

requests to your application. The plug-in configuration file plugin-cfg.xml for each Web server is

generated based on the applications which are routed through it.

1. Click Applications > Enterprise Applications >application_name > Map modules to servers in the

console navigation tree. The Selecting servers - Map modules to servers panel is displayed.

2. Examine the list of mappings. Ensure that each Module entry is mapped to the desired target(s),

identified under Server.

3. Change a mapping as needed.

a. Select each module that you want mapped to the same target(s). In the list of mappings, place a

check mark in the Select check boxes beside the modules.

b. From the Clusters and Servers drop-down list, select one or more targets. Use the Ctrl key to

select multiple targets. For example, to have a Web server serve your application, use the Ctrl key

to select an application server and the Web server together in order to have the plug-in

configuration file plugin-cfg.xml for that Web server generated based on the applications which

are routed through it.

c. Click Apply.

4. Repeat steps 2 and 3 until each module maps to the desired target(s).

5. Click OK.

The application or module configurations are changed. The application or standalone Web module is

restarted so the changes take effect.

Save changes to your administrative configuration.

Starting and stopping applications

You can start an application that is not running (has a status of Stopped) or stop an application that is

running (has a status of Started).

This article assumes that the application is installed on a server. By default, the application starts

automatically when the server starts.

You can start and stop applications manually using the following:

v Administrative console

v wsadmin startApplication and stopApplication commands

v Java programs that use ApplicationManager or AppManagement MBeans

This article describes how to use the administrative console to start or stop an application.

1. Go to the Enterprise Applications page. Click Applications > Enterprise Applications in the console

navigation tree.

2. Select the check box for the application you want started or stopped.

3. Click a button:

 Option Description

Start Runs the application and changes the state of the application to Started. The

status is changed to partially started if not all servers on which the

application is deployed are running.

Stop Stops the processing of the application and changes the state of the

application to Stopped.

Chapter 7. Deploying and administering applications 733

To restart a running application, select the application you want to restart, click Stop and then click

Start.

The status of the application changes and a message stating that the application started or stopped

displays at the top the page.

You can configure an application so it does not start automatically when the server on which it resides

starts. You then start the application manually using options described in this article.

If you want your application to start automatically when its server starts, you can adjust values that control

how quickly the application or its server starts:

1. Go the settings page for your enterprise application. Click Applications > Enterprise Applications

>application_name.

2. Specify a different value for Starting weight.

This setting specifies the order in which applications are started when the server starts. The default

value is 1 in a range from 0 to 2147483647. The application with the lowest starting weight is started

first.

3. Specify a different value for Background application.

This setting specifies whether the application must initialize fully before its server starts. The default

value of false prevents the server from starting completely until the application starts. To reduce the

amount of time it takes to start the server, you can set the value to true and have the application start

on a background thread, thus allowing server startup to continue without waiting for the application

4. Save the changes to the application configuration.

Disabling automatic starting of applications

By default, an installed application starts automatically when the server on which the application resides

starts. You can disable the automatic starting of the application, and later enable the automatic starting

again.

This article assumes that the enterprise application is installed on an application server and that the

application starts automatically when the server starts.

You might want an application to run only after you start it manually and not to run every time after the

server starts. The target mapping for an application controls whether an application starts automatically

when the server starts or requires you to start the application manually.

1. Go to the Target Mapping settings page for your application. Click Applications > Enterprise

Applications >application_name > Target Mappings >target_name. The target_name is the server on

which the application resides. You use the Target Mapping settings page to map an installed

application or module to a server.

2. Clear the Enabled check box.

3. Click OK.

4. Save changes to the administrative configuration.

The application does not start when its server starts. You must start the application manually.

To enable automatic starting of the application, select the Enabled check box on the Target Mappings

settings page for the application, click OK, and then save changes to the configuration.

Target mapping collection

Use this page to view mappings of deployed applications or modules to servers.

To view this administrative console page, click Applications > Enterprise Applications

>application_name > Target Mappings.

734 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Target

States the name of the target server to which the application or module maps. You specify the target on

the Map modules to servers page accessed from the settings for an application.

Node

Specifies the node name if the target is a server.

Version

Specifies the version level of the target. The target can be a 5.x deployment target or a 6.x deployment

target.

A 5.x deployment target is a server on a WebSphere Application Server Version 5 product.

A 6.x deployment target is a server on a WebSphere Application Server Version 6 product.

An application, enterprise bean (EJB) module, Web module or application client module developed for a

WebSphere Application Server Version 5.x product can reside on a 5.x or 6.x deployment target, provided

the module--

v Does not support Java 2 Platform, Enterprise Edition (J2EE) 1.4;

v Does not call any 6.x run-time application programming interfaces (APIs); and

v Does not use any 6.x product features.

Similarly, a resource adapter (connector) module, or RAR file, developed for a Version 5.x product can

reside on a 5.x or 6.x node, provided the module does not support Java Cryptography Architecture (JCA)

1.5 and does not call any 6.x run-time application programming interfaces (APIs). If the module supports

JCA 1.5 or calls a 6.x API, then the module must reside on a 6.x node.

Status

Indicates whether the status of the target server is started, stopped or unavailable.

Target mapping settings

Use this page to map a deployed application or module to a server.

To view this administrative console page, click Applications > Enterprise Applications

>application_name > Target Mappings >target_name.

Target:

States the name of the target server to which the application or module maps. You specify the target on

the Map modules to servers page accessed from the settings for an application.

 Data type String

Enabled:

Indicates whether the application modules installed on the target server are started (or enabled) when the

server starts. This sets the initial state of application modules. A true value indicates that the

corresponding modules are enabled and thus are accessible when the server starts. A false value

indicates that the corresponding modules are not enabled and thus are not accessible when the server

starts.

 Data type Boolean

Default true

Chapter 7. Deploying and administering applications 735

Exporting applications

You can export an enterprise application to a location of your choice.

Exporting applications enables you to back up your applications and preserve binding information for the

applications. You might export your applications before updating installed applications or migrating to a

later version of the WebSphere Application Server product.

1. Click Applications > Enterprise Applications in the console navigation tree to access the Enterprise

Applications page.

2. Select the check box beside the application and click Export.

3. On the Export Application EAR Files page, click on the link to download the exported EAR file.

4. Use the browser dialogue to specify a location at which to save the exported EAR file.

5. Click Back to return to the Enterprise Applications page.

The file containing binding information is exported to the specified node and directory, and has the name

enterprise_application_name.ear.

Exporting DDL files

You can export data definition language (DDL) files in the enterprise bean (EJB) modules of an

application.

Exporting DDL (Table.ddl) files in the EJB modules of an application downloads the DDL files to a

location of your choice.

1. Click Applications > Enterprise Applications in the administrative console navigation tree to access

the Enterprise Applications page.

2. Place a check mark in the check box beside the application and click Export DDL. If the application

has no DDL files in any of its EJB modules, then the message No DDL files were found is displayed at

the top of the page. If the application has DDL files in its EJB modules, then a page listing DDL files in

the format application_name.ear/_module.jar_Table.ddl is displayed.

3. Click on a file in the list and specify the location to which to download the file.

Tip: Mozilla browsers might display the contents of the Table.ddl file instead of saving the file to disk.

To save the file, edit the Helper Application preference settings of the Mozilla browser by adding

a new type for DDL and specifying that you want to save DDL files to disk. That is, set MIME type

= ddl and Extension = ddl.

The DDL file is downloaded to the specified location.

Updating applications

You can update application files deployed on a server.

Refer to “Ways to update application files” on page 739 and decide how to update your application files.

You can update enterprise applications or modules using the administrative console or a wsadmin tool.

Both ways provide identical updating capabilities. Further, in some situations, you can update applications

or modules without restarting the application server.

Note that Version 6 supports Java 2 Platform, Enterprise Edition (J2EE) 1.4 enterprise applications and

modules. If you are deploying J2EE 1.4 modules, ensure that the target server and its node support

Version 6. The administrative console Server collection pages show the versions for servers. You can

deploy J2EE 1.4 modules to Version 6.x servers only. You cannot deploy J2EE 1.4 modules to servers on

Version 5.x nodes. Refer to “Installable module versions” on page 706 for details.

736 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

This article describes how to update deployed applications or modules using the administrative console.

Updating consists of adding a new file or module to an installed application, or replacing or removing an

installed application, file or module. After replacement of a full application, the old application is uninstalled.

After replacement of a module, file or partial application, the old installed module, file or partial application

is removed from the installed application.

1. Update your application or modules and reassemble them using an assembly tool. Typical tasks

include adding or editing assembly properties, adding or importing modules into an application, and

adding enterprise beans, Web components, and files.

2. Back up the installed application.

a. Go to the Enterprise Applications page of the administrative console. Click Applications >

Enterprise Applications in the console navigation tree.

b. Export the application to an EAR file. Select the application you want uninstalled and click Export.

Exporting the application preserves the binding information.

3. With the application selected on the Enterprise Applications page, click Update. The Preparing for

application update page is displayed.

4. Under Specify the EAR, WAR or JAR module to upload and install:

a. Ensure that Application name refers to the application to be updated.

b. Under Update options, select the installed application, module, or file that you want to update.

The online help Preparing for application update settings provides detailed information on the

options. Briefly, the options are as follows:

Full application

Replaces the installed (old) application with the updated (new) application on the server. If

you select Full application, specify the path for the new .ear file. The path provides the

location of the new .ear file before installation.

Single module

Adds a new module to, or replaces a module in, the installed application. Specify the path

for the new Web module (.war), EJB module (.jar), or resource adapter module (.rar).

The path provides the location of the new module before installation.

 To replace a module, the value for Relative path to module (or module URI) must match

the path of the module to be updated in the installed application.

 To add a new module to the installed application, the value for Relative path to module

must not match the path of a module in the installed application. The value specifies the

desired path for the new module.

 If you are installing a standalone Web module, specify a value for Context root.

Single file

Adds a new file to, or replaces a file in, the installed application. Specify the path for the

new file. The path provides the location of the new file before installation.

 To replace a file, the value for Relative path to file must match the path of the file to be

updated in the installed application.

 To add a new file to the installed application, the value for Relative path to file must not

match the path of a file in the installed application. The value specifies the desired path for

the new file.

 The relative path to a file from the root of the application is the concatenation of the

module path and the file path within the module. For example, if the file is

com/mycompany/abc.class within the module foo.jar, then the relative file path is

foo.jar/com/mycompany/abc.class.

Partial application

Updates multiple files of an installed application by uploading a compressed file.

Depending on the contents of the compressed file, a single use of this option can replace

files in, add new files to, and delete files from the installed application. Each entry in the

Chapter 7. Deploying and administering applications 737

compressed file is treated as a single file and the path of the file from the root of the

compressed file is treated as the relative path of the file in the installed application.

 Specify a valid compressed file format such as .zip or .gzip. The path provides the

location of the compressed file before installation. This option unzips the compressed file

into the installed application directory.

 To replace a file, a file in the compressed file must have the same relative path as the file

to be updated in the installed application.

 To add a new file to the installed application, a file in the compressed file must have a

different relative path than the files in the installed application.

 To remove a file from the installed application, specify metadata in the compressed file

using a file named META-INF/ibm-partialapp-delete.props at any archive scope. The

ibm-partialapp-delete.props file must be an ASCII file that lists files to be deleted in that

archive with one entry for each line. The entry can contain a string pattern such as a

regular expression that identifies multiple files. The file paths for the files to be deleted

must be relative to the archive path that has the META-INF/ibm-partialapp-delete.props

file. Refer to Preparing for application update settings for more information.

After you select an option, specify a path. Use Local file system if the browser and application files

are on the same machine (whether or not the server is on that machine, too). Use Remote file

system if the application file resides on any node in the current cell context. Only .ear, .jar, or .war

files are shown during the browsing.

During application updating, application files typically are uploaded from a client machine running the

browser to the server machine running the administrative console, where they are deployed. In such

cases, use the Web browser running the administrative console to select EAR, WAR, or JAR modules

to upload to the server machine.

In some cases, however, the application files reside on the file system of any of the nodes in a cell. To

have the application server install these files, use the Remote file system option.

Also use the Remote file system option to specify an application file already residing on the machine

running the application server. For example, the field value on a Windows machine might be

C:\WebSphere\AppServer\installableApps\test.ear. If you are installing a standalone WAR module,

then specify the context root as well.

After the application file is transferred, the Remote file system value shows the path of the temporary

location on the server machine.

5. If you selected the Full application or Single module option:

a. Click Next to display a wizard for updating application files.

b. Complete the steps in the update wizard. This update wizard, which is similar to the installation

wizard, provides fields for specifying or editing application binding information. Refer to information

on installing applications and on the settings page for application installation for guidance. Note

that the installation steps have the merged binding information from the new version and the old

version. If the new version has bindings for application artifacts such as EJB JNDI names, EJB

references or resource references, then those bindings will be part of the merged binding

information. If new bindings are not present, then bindings are taken from the installed (old)

version. If bindings are not present in the old version and if the default binding generation option is

enabled, then the default bindings will be part of the merged binding information. You can select

whether to ignore bindings in the old version or ones in the new version.

6. Click Finish.

7. If you did not use the Map modules to servers page of the update wizard, after updating the

application, map the installed application or module to servers. Use the Map modules to servers page

accessed from the Enterprise Applications page.

a. Go to the Map modules to servers page. Click Applications > Enterprise Applications

>application_name > Map modules to servers.

738 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

b. Specify the application server where you want to install modules contained in your application and

click OK. You can deploy J2EE 1.4 modules to servers on Version 6.x nodes only.

After the application file or module installs successfully, do the following:

1. Save the changes to your configuration.

When you update a full application in the single server (base) product, after you save the changes, the

old version of the application is uninstalled and the new version is installed into the configuration. The

application binaries for the old version are deleted from the destination directory and the new binaries

are copied to the directory.

2. Examine the values specified for Reload Enabled and Reload Interval on the settings page for your

enterprise application.

If reloading of application files is enabled and the reload interval is greater than zero (0), the

application’s files are reloaded after the application is updated. For Web modules such as servlets and

JavaServer page (JSP) files, a Web container reloads a Web module only when the IBM extension

reloadingEnabled in the ibm-web-ext.xmi file is also set to true. You can set reloadingEnabled to true

when editing your Web module’s extended deployment descriptors in an assembly tool.

3. If needed, restart the application manually so the changes take effect.

If the application is updated while it is running, WebSphere Application Server automatically stops the

application or only its changed components, updates the application logic, and restarts the stopped

application or its components.

4. If the application you are updating is deployed on a server that has its application class loader policy

set to Single, restart the server.

Ways to update application files

You can update application files deployed on a server in several ways.

 Table 8. Ways to update application files

Option Method Comments Starting after update

Administrative

console update

wizard

See “Updating

applications” on

page 736.

Briefly, do the following:

1. Go to the Enterprise

Applications page. Click

Applications > Enterprise

Applications in the console

navigation tree.

2. Select the application to update

and click Update.

3. On the Preparing for application

update page, identify the

application, module or files to

update and click Next.

4. Complete steps in the update

wizard and click Finish.

On the Preparing for application

update page:

v Use Full application to update an

.ear file.

v Use Single module to update a

.war, enterprise bean .jar, or

connector .rar file.

v Use Single file to update a file

other than an .ear, .war, EJB

.jar, or .rar file.

v Use Partial application to update

or remove multiple files.

On the Enterprise

Applications page,

select the updated

application and click

Start.

wsadmin scripts Invoke AdminApp object install

commands with the -update option

in a script or at a command prompt.

″Getting started with scripting″ in the

information center provides an

overview of wsadmin.

Invoke the wsadmin

startApplication

command.

Chapter 7. Deploying and administering applications 739

Table 8. Ways to update application files (continued)

Java application

programming

interfaces.

See ″Using

administrative

programs (JMX)″

in the

information

center.

Update deployed applications by

completing the steps in ″Managing

applications through programming″

in the information center.

Update an application in the

following ways:

v Update the entire application

v Add to, update or delete multiple

files in an application

v Add a module to an application

v Update a module in an application

v Delete a module in an application

v Add a file to an application

v Update a file in an application

v Delete a file in an application

Start the application

by either of the

following methods:

v On the Enterprise

Applications page,

select the updated

application and

click Start.

v Invoke the wsadmin

startApplication

command.

WebSphere

rapid

deployment

Refer to articles

under Rapid

deployment of

J2EE

applications in

this information

center.

Briefly, do the following:

1. Update your J2EE application

files.

2. Set up the rapid deployment

environment.

3. Create a free-form project.

4. Launch a rapid deployment

session.

5. Drop your updated application

files into the free-form project.

WebSphere rapid deployment offers

the following advantages:

v You do not need to assemble your

J2EE application files prior to

deployment.

v You do not need to use other

installation tools mentioned in this

table to deploy the files.

Use any of the above

options to start the

application. Clicking

Start on the

Enterprise

Applications page is

the easiest option.

Hot deployment

and dynamic

reloading

Briefly, do the following:

1. Update your application (.ear),

Web module (.war), enterprise

bean .jar or HTTP plug-in

configuration file.

2. Follow instructions in Hot

deployment and dynamic

reloading to update your file.

If you are new to WebSphere

Application Server, use the

administrative console to update

applications. That option is easier.

Hot deployment and dynamic

reloading is more difficult to

complete. You must directly

manipulate the application or module

file on the server where the

application is deployed.

Use any of the above

options to start the

application. Clicking

Start on the

Enterprise

Applications page is

the easiest option.

You can update .ear, enterprise bean .jar, Web module .war, connector .rar, application client .jar, and

any other files used by an installed application.

If the application is updated while it is running, WebSphere Application Server automatically stops the

application, updates the application logic and restarts the application. If the application does not start

automatically, start it manually using one of the Starting options.

Preparing for application update settings

Use this page to update enterprise applications, modules or files already installed on a server.

To view this administrative console page, do the following:

1. Click Applications > Enterprise Applications.

2. Select the installed application or module that you want to update.

3. Click Update.

Clicking Update displays a page that helps you update application files deployed in the cell. You can

update the full application, a single module, a single file, or part of the application. If a new file or module

has the same relative path as a file or module already existing on the server, the new file or module

replaces the existing file or module. If the new file or module does not exist on the server, it is added to

the deployed application.

740 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Application name

Specifies the name of the installed (or deployed) application that you selected on the Enterprise

Applications page.

Full application

Under Update options, specifies to replace the application already installed on the server with a new

(updated) enterprise application .ear file.

After selecting this option, specify whether the .ear file is on a local or remote file system and the full path

name of the application. The path provides the location of the updated .ear file before installation.

Use Local file system if the browser and the updated files or modules are on the same machine, whether

or not the server is on that machine too. Local file system is available for all update options.

Use Remote file system if the application file resides on any node in the current cell context. Only .ear,

.jar, or .war files are shown during the browsing. Also use the Remote file system option to specify an

application file already residing on the machine running the application server. For example, the field value

on a Windows machine might be C:\WebSphere\AppServer\installableApps\test.ear.

Note: During application installation, application files typically are uploaded from a client machine running

the browser to the server machine running the administrative console, where they are deployed. In

such cases, use the Web browser running the administrative console to select .ear, .war, or .jar

modules to upload to the server machine. In some cases, however, the application files reside on

the file system of any of the nodes in a cell. To have the application server install these files, use

the Remote file system option.

After specifying the required information on the .ear file, click Next to display a wizard for updating

application files. The update wizard, which is similar to the installation wizard, provides fields for specifying

or editing application binding information. Complete the steps in the update wizard as needed.

When the full application is updated, the old application is uninstalled and the new application is installed.

When the configuration changes are saved, the application files are expanded on the node where

application will run. If the application is running on the node while it is updated, then the application is

stopped, application files are updated, and application is started.

Single module

Under Update options, specifies to replace a module in or add a module to an installed application. The

module can be a Web module (.war file), enterprise bean module (EJB .jar file), or resource adapter

module (connector .rar file).

After selecting this option, specify whether the module is on a local or remote file system and the full path

name of the module. The path provides the location of the updated module before installation. For

information on Local file system and Remote file system, refer to the description of Full application

above.

To replace a module, the value for Relative path to module (module URI) must match the path of the

module to be updated in the installed application.

To add a new module to the installed application, the value for Relative path to module must not match

the path of a module in the installed application. The value specifies the desired path for the new module.

If you are installing a standalone Web module, specify a value for Context root. The context root is

combined with the defined servlet mapping (from the .war file) to compose the full URL that users type to

access the servlet. For example, if the context root is /gettingstarted and the servlet mapping is

MySession, then the URL is http://host:port/gettingstarted/MySession.

Chapter 7. Deploying and administering applications 741

After specifying the required information on the module, click Next to display a wizard for updating

application files. The update wizard, which is similar to the installation wizard, provides fields for specifying

or editing module binding information. Complete the steps in the update wizard as needed.

After a single module is added or updated, when configuration changes are saved, the new or updated

module is stored in the deployed application in the WebSphere Application Server configuration repository.

When these changes are synchronized with the node, the module is added or updated to the node’s file

system. If the application is running on the node when the module is added or updated, then one of the

following occurs:

v For updates to a Web module, the running Web module is stopped, Web module files are updated, and

then the Web module is started.

v For module additions, the added module is started on the application servers where the application is

running after it is expanded on the node. An application restart is not necessary.

v If the class loader policy for the application is set to Single so that all modules share a class loader,

then the entire application is stopped and restarted for module level changes.

v If the security provider configured with WebSphere Application Server does not support dynamic

updates, then the entire application is stopped and restarted for module level changes.

v For all other updates to a module, the entire application is stopped, the module files are updated, then

the entire application is started.

Single file

Under Update options, specifies to replace a file in or add a file to an installed application.

Use this option to update a file used by the application that is not an .ear, .war, .rar or, in some

instances, a .jar file. You can use this option to add or update .jar files that are not defined as modules in

the application. To update an .ear, file use the Full application option. To update a .war file, .rar file , or

.jar file that is defined as a module in the application, use the Single module option.

After selecting this option, specify whether the file is on a local or remote file system and the full path

name of the file. The path provides the location of the updated file before installation. For information on

Local file system and Remote file system, refer to the description of Full application above.

Next, specify a value for Relative path to file. The relative path of the file must start from the root of the

.ear file. For example, if the file is located at com/company/greeting.class in module hello.jar, specify a

relative path of hello.jar/com/company/greeting.class.

To replace a file, the value for Relative path to file must match the path of the file to be updated in the

installed application.

To add a new file to the installed application, the value for Relative path to file must not match the path

of a file in the installed application. The value specifies the desired path for the new file.

After a single file is added or updated, when configuration changes are saved, the new or updated file is

stored in the deployed application in the WebSphere Application Server configuration repository. When

these changes are synchronized with the node, the file is added or updated to the node’s file system. If

the application is running on the node when the file is added or updated, then one of the following occurs:

v For files added or updated at application scope or in non-Web modules, the entire application is

stopped, the file is added or updated, and then the entire application is restarted.

v For files added or updated to Web module metadata (META-INF or WEB-INF directory), the running Web

module is stopped, the Web module file is added or updated, and then the Web module is started.

v For all other files in Web modules, the file is added or updated on the node’s file system without

stopping the application or any of its components.

Partial application

Under Update options, specifies to update multiple files of an installed application by uploading a

compressed file. Depending on the contents of the compressed file, a single use of this option can replace

742 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

files in, add new files to, and delete files from the installed application. Each entry in the compressed file is

treated as a single file and the path of the file from the root of the compressed file is treated as the relative

path of the file in the installed application.

After selecting this option, specify whether the compressed file is on a local or remote file system and the

full path name of the compressed file. You will likely use Local file system because you are uploading a

compressed file and remote browsing only works for .ear, .war or .jar files. Specify a valid compressed

file format such as .zip or .gzip. The path provides the location of the compressed file before installation.

This option unzips the compressed file into the installed application directory.

Use Local file system if the browser and the updated files or modules are on the same machine, whether

or not the server is on that machine too. Local file system is available for all update options.

To replace a file, a file in the compressed file must have the same relative path as the file to be updated in

the installed application.

To add a new file to the installed application, a file in the compressed file must have a different relative

path than the files in the installed application.

The relative path of a file in the installed application is formed by concatenation of the relative path of the

module (if the file is inside a module) and the relative path of the file from the root of the module

separated by /.

To remove a file from the installed application, specify metadata in the compressed file using a file named

META-INF/ibm-partialapp-delete.props at any archive scope. The ibm-partialapp-delete.props file must

be an ASCII file that lists files to be deleted in that archive with one entry for each line. The entry can

contain a string pattern such as a regular expression that identifies multiple files. The file paths for the files

to be deleted must be relative to the archive path that has the META-INF/ibm-partialapp-delete.props file.

 Level of files to delete Metadata .props file to include in compressed file

Application Include META-INF/ibm-partialapp-delete.props in the compressed file. In

the metadata .props file, list files to be deleted. File paths are relative to the

location of the META-INF/ibm-partialapp-delete.props file.

For example, to delete a file named utils/config.xmi from the root of the

my.ear file, include the line utils/config.xmi in the META-INF/ibm-
partialapp-delete.props file.

Module Include module_uri/META-INF/ibm-partialapp-delete.props in the

compressed file.

To delete one file from a module, include the file path relative to the module

in the metadata .props file. For example, to delete a/b/c.jsp from the

my.jar module, include a/b/c.class in my.jar/META-INF/ibm-partialapp-
delete.props file in the compressed file.

To delete multiple files within a module, list the files to be deleted in the

metadata .props file with one entry on each line. For example, to delete all

JavaServer Pages (.jsp files) from the my.war file, include the line .*jsp in

the my.war/META-INF/ibm-partialapp-delete.props file. The line uses a

regular expression, .*jsp, to identify all .jsp files in my.war.

You can use a single partial application file to add, delete and update multiple files.

After a partial application update, when configuration changes are saved, the new or updated application

file is stored in the deployed application in the WebSphere Application Server configuration repository.

When these changes are synchronized with the node, the files are added or updated to the node’s file

Chapter 7. Deploying and administering applications 743

system. Because the partial application option updates multiple files, the application components that are

restarted are determined using individual files in the partial application.

An example of entries in a partial application compressed file follows:

util.jar

META-INF/ibm-partialapp-delete.props

foo.jar/com/mycomp/xyz.class

xyz.war/welcome.jsp

xyz.war/WEB-INF/web.xml

webmod.war/META-INF/ibm-partialapp-delete.props

For this example, the META-INF/ibm-partialapp-delete.props file contains the .*.dat and tools/test.jar

files. The webmod.war/META-INF/ibm-partialapp-delete.props file contains the com/test/.*.jsp and

WEB-INF/test.xmi files.

The partial application update option does the following:

v Adds or replaces util.jar in the deployed application.

v Adds or replaces com/mycomp/xyz.class inside the foo.jar file of the deployed application.

v Deletes *.dat files from the application, but not from any modules.

v Deletes tools/test.jar from the application.

v Adds or replaces welcome.jsp inside the xyz.war module of the deployed application.

v Replaces WEB-INF/web.xml inside the xyz.war module of the deployed application.

v Deletes com/test/*.jsp from the webmod.war module.

v Deletes WEB-INF/test.xmi from the webmod.war module.

Hot deployment and dynamic reloading

You can make various changes to applications and their modules without having to stop the server and

start it again. Making these types of changes is known as hot deployment and dynamic reloading.

This article assumes that your application files are deployed on a server and you want to upgrade the files.

Hot deployment is the process of adding new components (such as WAR files, EJB Jar files, enterprise

Java beans, servlets, and JSP files) to a running server without having to stop the application server

process and start it again.

Dynamic reloading is the ability to change an existing component without needing to restart the server in

order for the change to take effect. Dynamic reloading involves:

v Changes to the implementation of a component of an application, such as changing the implementation

of a servlet

v Changes to the settings of the application, such as changing the deployment descriptor for a Web

module

As opposed to the changes made to a deployed application described in “Updating applications” on page

736, changes made using hot deployment or dynamic reloading do not use the administrative console or a

wsadmin scripting command. You must directly manipulate the application files on the server where the

application is deployed.

If the application you are updating is deployed on a server that has its application class loader policy set to

Single, you might not be able to dynamically reload your application. At minimum, you must restart the

server after updating your application.

1. Locate your expanded application files. The application files are in the directory you specified when

installing the application or, if you did not specify a custom target directory, are in the default target

directory, install_root/installedApps/cell_name. Your EAR file,

${APP_INSTALL_ROOT}/cell_name/application_name.ear, points to the target directory. The

variables.xml file for the node defines ${APP_INSTALL_ROOT}. It is important to locate the expanded

application files because, as part of installing applications, a WebSphere application server unjars

744 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

portions of the EAR file onto the file system of the computer that will run the application. These

expanded files are what the server looks at when running your application. If you cannot locate the

expanded application files, look at the binariesURL attribute in the deployment.xml file for your

application. The attribute designates the location the run time uses to find the application files. For the

remainder of this information on hot deployment and dynamic reloading, application_root represents

the root directory of the expanded application files.

2. Locate application metadata files. The metadata files include the deployment descriptors (web.xml,

application.xml, ejb-jar.xml, and the like), the bindings files (ibm-web-bnd.xmi, ibm-app-bnd.xmi, and

the like), and the extensions files (ibm-web-ext.xmi, ibm-app-ext.xmi, and the like). Metadata XML

files for an application can be loaded from one of two locations. The metadata files can be loaded from

the same location as the application binary files (such as application_root/META-INF) or they can be

loaded from the WebSphere configuration tree, ${CONFIG_ROOT}/cells/cell_name/applications

/application_EAR_name/deployments/application_name/. The value of the useMetadataFromBinary flag

specified during application installation controls which location is used. If specified, the metadata files

are loaded from the same location as the application binary files. If not specified, the metadata files are

loaded from the application deployment folder in the configuration tree. For the remainder of this

information, metadata_root represents the location of the metadata files for the specified application or

module.

3. Optional: Examine the values specified for Enable class reloading and Reloading interval on the

settings page for your enterprise application. If reloading of application files is enabled and the reload

interval is greater than zero (0), the application files are reloaded after the application is updated. For

Web modules such as servlets and JavaServer page (JSP) files, a Web container reloads a Web

module only when the IBM extension reloadingEnabled in the ibm-web-ext.xmi file is also set to true.

You can set reloadingEnabled to true when editing your Web module’s extended deployment

descriptors in an assembly tool.

4. Change or add the following components or modules as needed:

v Application files

v WAR files

v EJB Jar files

v HTTP plug-in configuration files

5. For changes to take effect, you might need to start, stop, or restart an application. “Starting and

stopping applications” on page 733 provides information on using the administrative console to start,

stop, or restart an application. ″Starting applications with scripting″ and ″Stopping applications with

scripting″ provide information on using the wsadmin scripting tool.

Changing or adding application files

You can change or add application files on application servers without having to stop the server and start it

again.

There are several changes that you can make to deployed application files without stopping the server and

starting it again. You can use the update wizard of the administrative console to make the changes without

having to stop and restart the server. This article describes how to make the following changes by

manipulating an application file on the server where the application is deployed:

v Updating an existing application on a running server, providing a new enterprise application (EAR file)

v Adding a new application to a running server

v Removing an existing application from a running server

v Changing or adding files to existing enterprise bean (EJB) or Web modules

v Changing the application.xml file for an application

v Changing the ibm-app-ext.xmi file for an application

v Changing the ibm-app-bnd.xmi file for an application

v Changing a non-module Jar file contained in the EAR file

Updating an existing application on a running server (providing a new EAR file)

Chapter 7. Deploying and administering applications 745

Reinstall an updated application using the administrative console or the wsadmin $AdminApp install

command with the -update option.

Both reinstallation methods enable you to update an existing application using any of the other steps listed

in this file, including changing classes, adding modules, removing modules, changing modules, or

changing metadata files. The application reinstallation methods detect the changes in your application and

prompt you for additional binding data that might be needed to install the application. The reinstallation

process automatically stops and restarts your application on the appropriate servers.

 Hot deployment Yes

Dynamic reloading Yes

Adding a new application to a running server

Install an application using the administrative console or the wsadmin install command.

 Hot deployment Yes

Dynamic reloading No

Removing an existing application from a running server

Stop the application and then uninstall it from the server. Use the administrative console to stop the

application and then uninstall it. Or run the wasadmin stopApplication command and then the uninstall

command.

 Hot deployment Yes

Dynamic reloading No

Changing or adding files to existing EJB or Web modules

1. Update the application files in the application_root location.

2. Restart the application. Use the administrative console to restart the application. Or run the wasadmin

stopApplication and startApplication commands.

 Hot deployment Yes

Dynamic reloading No

Changing the application.xml file for an application

Restart the application. Automatic reloading will not detect the change. Use the administrative console to

restart the application. Or run the wasadmin stopApplication and startApplication commands.

 Hot deployment Not applicable

Dynamic reloading Yes

Changing the ibm-app-ext.xmi file for an application

Restart the application. Automatic reloading will not detect the change. Use the administrative console to

restart the application. Or run the wasadmin stopApplication and startApplication commands.

 Hot deployment Not applicable

Dynamic reloading Yes

746 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Changing the ibm-app-bnd.xmi file for an application

Restart the application. Automatic reloading will not detect the change. Use the administrative console to

restart the application. Or run the wasadmin stopApplication and startApplication commands.

 Hot deployment Not applicable

Dynamic reloading Yes

Changing a non-module Jar file contained in the EAR file

1. Update the non-module Jar file in the application_root location.

2. If automatic reloading is not enabled, restart the application. Use the administrative console to restart

the application. Or run the wasadmin stopApplication and startApplication commands.

If automatic reloading is enabled, you do not need to take further action. Automatic reloading will

detect the change.

 Hot deployment Yes

Dynamic reloading Yes

Changing or adding WAR files

You can change Web application archives (WAR files) on application servers without having to stop the

server and start it again.

There are several changes that you can make to WAR files without stopping the server and starting it

again. You can use the update wizard of the administrative console to make the changes without having to

stop and restart the server. This article describes how to make the following changes by manipulating a

WAR file on the server where the application is deployed:

v Changing an existing JavaServer Pages (JSP) file

v Adding a new JSP file to an existing application

v Changing an existing servlet class (editing and recompiling)

v Changing a dependent class of an existing servlet class

v Adding a new servlet using the Invoker (Serve Servlets by class name) facility or adding a dependent

class to an existing application

v Adding a new servlet, including a new definition of the servlet in the web.xml deployment descriptor for

the application

v Changing the web.xml file of a WAR file

v Changing the ibm-web-ext.xmi file of a WAR file

v Changing the ibm-web-bnd.xmi file of a WAR file

Changing an existing JSP file

Place the changed JSP file directly in the application_root/module_name directory or the appropriate

subdirectory. The change will be automatically detected and the JSP will be recompiled and reloaded.

 Hot deployment Not applicable

Dynamic reloading Yes

Adding a new JSP file to an existing application

Place the new JSP file directly in the application_root/module_name directory or the appropriate

subdirectory. The new file will be automatically detected and compiled on the first request to the page.

 Hot deployment Yes

Dynamic reloading Yes

Chapter 7. Deploying and administering applications 747

Changing an existing servlet class (editing and recompiling)

1. Place the new version of the servlet .class file directly in the application_root/module_name/WEB-
INF/classes directory. If the .class file is part of a Jar file, you can place the new version of the Jar

file directly in application_root/module_name/WEB-INF/lib. In either case, the change will be detected,

the Web application will be shut down and reinitialized, picking up the new class.

2. If automatic reloading is not enabled, restart the application. Use the administrative console to restart

the application. Or run the wasadmin stopApplication and startApplication commands.

If automatic reloading is enabled, you do not need to take further action. Automatic reloading will

detect the change.

 Hot deployment Not applicable

Dynamic reloading Yes

Changing a dependent class of an existing servlet class

1. Place the new version of the dependent .class file directly in the application_root/module_name/WEB-
INF/classes directory. If the .class file is part of a Jar file, you can place the new version of the Jar

file directly in application_root/module_name/WEB-INF/lib. In either case, the change will be detected,

the Web application will be shut down and reinitialized, picking up the new class.

2. If automatic reloading is not enabled, restart the application. Use the administrative console to restart

the application. Or run the wasadmin stopApplication and startApplication commands.

If automatic reloading is enabled, you do not need to take further action. Automatic reloading will

detect the change.

 Hot deployment Not applicable

Dynamic reloading Yes

Adding a new servlet using the Invoker (Serve Servlets by class name) facility or adding a

dependent class to an existing application

1. Place the new .class file directly in the application_root/module_name/WEB-INF/classes directory. If

the .class file is part of a Jar file, you can place the new version of the Jar file directly in

application_root/module_name/WEB-INF/lib. In either case, the change will be detected, the Web

application will be shut down and reinitialized, picking up the new class.

This case is treated the same as changing an existing class. The difference is that adding the servlet

or class does not immediately cause the Web application to reload because the class has never been

loaded before. The class simply becomes available for execution.

2. If automatic reloading is not enabled, restart the application. Use the administrative console to restart

the application. Or run the wasadmin stopApplication and startApplication commands.

If automatic reloading is enabled, you do not need to take further action. Automatic reloading will

detect the change.

 Hot deployment Yes

Dynamic reloading Not applicable

Adding a new servlet, including a new definition of the servlet in the web.xml deployment

descriptor for the application

1. Place the new .class file directly in the application_root/module_name/WEB-INF/classes directory. If

the “.class” file is part of a Jar file, you can place the new version of the Jar file directly in

application_root/module_name/WEB-INF/lib.

You can edit the web.xml file in place or copy it into the application_root/module_name/WEB-
INF/classes directory. The new .class file will not trigger a reloading of the application.

2. Restart the application. Use the administrative console to restart the application. Or run the wasadmin

stopApplication and startApplication commands. After the application restarts, the new servlet is

available for service.

748 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Hot deployment Yes

Dynamic reloading Not applicable

Changing the web.xml file of a WAR file

1. Edit the web.xml file in place or copy it into the metadata_root/module_name/WEB-INF directory.

2. Restart the application. Use the administrative console to restart the application. Or run the wasadmin

stopApplication and startApplication commands.

 Hot deployment Yes

Dynamic reloading Yes

Changing the ibm-web-ext.xmi file of a WAR file

Edit the extension settings as needed. You can change all of the extension settings. The only warning is if

you set the reloadInterval property to zero (0) or the reloadEnabled property to false, the application no

longer automatically detects changes to class files. Both of these changes disable the automatic reloading

function. The only way to re-enable automatic reloading is to change the appropriate property and restart

the application. See other task descriptions in this file for information on restarting an application.

 Hot deployment Not applicable

Dynamic reloading Yes

Changing the ibm-web-bnd.xmi file of a WAR file

1. Edit the bindings as needed. You can change all of the values but ensure that the entities you are

binding to are present in the configuration of the server.

2. Restart the application. Use the administrative console to restart the application. Or run the wasadmin

stopApplication and startApplication commands.

 Hot deployment Not applicable

Dynamic reloading Yes

Changing or adding EJB Jar files

You can change enterprise bean (EJB) Jar files on application servers without having to stop the server

and start it again.

There are several changes that you can make to EJB Jar files without stopping the server and starting it

again. You can use the update wizard of the administrative console to make the changes without having to

stop and restart the server. This article describes how to make the following changes by manipulating an

EJB file on the server where the application is deployed:

v Changing the ejb-jar.xml file of an EJB Jar file

v Changing the ibm-ejb-jar-ext.xmi or ibm-ejb-jar-bnd.xmi file of an EJB Jar file

v Changing the Table.ddl file for an EJB Jar file

v Changing the Map.mapxmi or Schema.dbxmi file for an EJB Jar file

v Updating the implementation class for an EJB file or a dependent class of the implementation class for

an EJB file

v Updating the Home/Remote interface class for an EJB file

v Adding a new EJB file to an existing EJB Jar file

Changing the ejb-jar.xml file of an EJB Jar file

Restart the application. Automatic reloading will not detect the change. Use the administrative console to

restart the application. Or run the wasadmin stopApplication and startApplication commands.

Chapter 7. Deploying and administering applications 749

Hot deployment Not applicable

Dynamic reloading Yes

Change the ibm-ejb-jar-ext.xmi or ibm-ejb-jar-bnd.xmi file of an EJB Jar file

Restart the application. Automatic reloading will not detect the change. Use the administrative console to

restart the application. Or run the wasadmin stopApplication and startApplication commands.

 Hot deployment Not applicable

Dynamic reloading Yes

Changing the Table.ddl file for an EJB Jar file

Rerun the DDL file on the user database server. Changing the Table.ddl file has no effect on the

application server and is a change to the database table schema for the EJB files.

 Hot deployment Not applicable

Dynamic reloading Not applicable

Changing the Map.mapxmi or Schema.dbxmi file for an EJB Jar file

1. Change the Map.mapxmi or Schema.dbxmi file for an EJB Jar file.

2. Regenerate the deployed code artifacts for the EJB file.

3. Apply the new EJB Jar file to the server.

4. Restart the application. Use the administrative console to restart the application. Or run the wasadmin

stopApplication and startApplication commands.

 Hot deployment Not applicable

Dynamic reloading Yes

Updating the implementation class for an EJB file or a dependent class of the implementation

class for an EJB file

1. Update the class file in the application_root/module_name.jar file.

2. If automatic reloading is enabled, you do not need to take further action. Automatic reloading will

detect the change.

If automatic reloading is not enabled, restart the application of which the EJB file is a member. If the

updated module is used by other modules in other applications, restart those applications as well. Use

the administrative console to restart the application. Or run the wasadmin stopApplication and

startApplication commands.

 Hot deployment Not applicable

Dynamic reloading Yes

Updating the Home/Remote interface class for an EJB file

1. Update the interface class of the EJB file.

2. Regenerate the deployed code artifacts for the EJB file.

3. Apply the new EJB Jar file to the server.

4. If automatic reloading is enabled, you do not need to take further action. Automatic reloading will

detect the change.

If automatic reloading is not enabled, restart the application of which the EJB file is a member. Use the

administrative console to restart the application. Or run the wasadmin stopApplication and

startApplication commands.

750 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Hot deployment Not applicable

Dynamic reloading Yes

Adding a new EJB file to an existing EJB Jar file

1. Apply the new or updated Jar file to the application_root location.

2. If automatic reloading is enabled, you do not need to take further action. Automatic reloading will

detect the change.

If automatic reloading is not enabled, restart the application. Use the administrative console to restart

the application. Or run the wasadmin stopApplication and startApplication commands.

 Hot deployment Yes

Dynamic reloading Yes

Changing the HTTP plug-in configuration

You can change the HTTP plug-in configuration without having to stop the server and start it again.

There are several change that you can make to the HTTP plug-in configuration without stopping the server

and starting it again. This file describes--

v Changing the application.xml file to change the context root of a Web application archive (WAR file)

v Changing the web.xml file to add, remove, or modify a servlet mapping

v Changing the server.xml file to add, remove, or modify an HTTP transport or changing the

virtualhost.xml file to add or remove a virtual host or to add, remove, or modify a virtual host alias

Changing the application.xml file to change the context root of a WAR file

1. Change the application.xml file.

2. If the plug-in configuration property Automatically propagate plug-in configuration file is selected for this

plug-in, it is automatically regenerated whenever the application.xml file changes. (See for

information on how to set this property.) You can also run the GenPluginCfg.bat/sh script, or issue a

wsadmin command to regenerate the plug-in configuration file.

 Hot deployment Yes

Dynamic reloading No

Changing the web.xml file to add, remove, or modify a servlet mapping

1. Change the web.xml file.

2. If the plug-in configuration property Automatically propagate plug-in configuration file is selected for this

plug-in, it is automatically regenerated whenever the web.xml file changes. (See for information on how

to set this property.) You can also run the GenPluginCfg.bat/sh script, or issue a wsadmin command to

regenerate the plug-in configuration file.

If the Web application has file serving enabled or has a servlet mapping of /, the plug-in configuration

does not have to be regenerated. In all other cases a regeneration is required.

 Hot deployment Yes

Dynamic reloading Yes

Changing the server.xml file to add, remove, or modify an HTTP transport or changing the

virtualhost.xml file to add or remove a virtual host or to add, remove, or modify a virtual host alias

1. Change the server.xml file to add, remove, or modify an HTTP transport or change the

virtualhost.xml file to add or remove a virtual host or to add, remove, or modify a virtual host alias.

2. If the plug-in configuration property Automatically propagate plug-in configuration file is selected

for this plug-in, it is automatically regenerated whenever the server.xml file changes. (See for

information on how to set this property.) You can also run the GenPluginCfg.bat/sh script, or issue a

wsadmin command to regenerate the plug-in configuration file.

Chapter 7. Deploying and administering applications 751

Hot deployment Yes

Dynamic reloading Yes

Uninstalling applications

After an application no longer is needed, you can uninstall it.

Uninstalling an application deletes the application from the WebSphere Application Server configuration

repository and it deletes the application binaries from the file system of all nodes where the application

modules are installed.

1. Click Applications > Enterprise Applications in the administrative console navigation tree to access

the Enterprise Applications page.

2. If you need to retain a copy of the application, back up the application.

a. Select the application you want uninstalled.

b. Click Export.

The application is exported to an enterprise application (.ear file), preserving the binding information.

3. Uninstall the application.

a. Select the application you want uninstalled.

b. Click Uninstall.

4. Save changes made to the administrative configuration.

In the single-server product, application binaries are deleted after you save the changes.

Removing a file

After a file is no longer needed, you can remove the file from an application or module deployed on a

server.

Removing a file deletes the file from the WebSphere Application Server configuration repository and it

deletes the file from the file system of all nodes where the file is installed.

v Remove a file from an application.

1. Go to the Enterprise Applications page. Click Applications > Enterprise Applications in the

console navigation tree.

2. Select the application that contains a file you want removed.

3. Click Remove File. The Remove a file from an application page is displayed

4. Select the URI of the file that you want removed from the application.

5. Select Export before removing file to back up the application.

6. Specify the location to which you want the file exported.

7. Click Back to return to the Enterprise Applications page.

v Remove a file from a module.

1. Go to the settings page for the application. Click Applications > Enterprise Applications

>application_name in the console navigation tree.

2. Under Related Items, click Web modules, EJB Modules, or Connector Modules.

3. Select the module from which you want to delete a file.

4. Click Remove File. The Remove a file from a module page is displayed.

5. Select the URI of the file that you want removed from the module.

6. Optional: Back up the application. Select the application name and then specify the location to which

you want the file exported.

752 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

7. Click OK to remove the file.

The file is exported to the designated location and removed from the application or module. The

application or standalone Web module that had a file removed is restarted so the changes take effect.

Save the changes to your administrative configuration. In the single-server product, application binaries are

deleted after you save the changes.

Deploying and administering applications: Resources for learning

Use the following links to find relevant supplemental information about deploying and administering

applications using the administrative console. The information resides on IBM and non-IBM Internet sites,

whose sponsors control the technical accuracy of the information.

These links are provided for convenience. Often, the information is not specific to the IBM WebSphere

Application Server product, but is useful all or in part for understanding the product. When possible, links

are provided to technical papers and Redbooks that supplement the broad coverage of the release

documentation with in-depth examinations of particular product areas.

Refer to the information center for links to information applicable to WebSphere Application Server

generally, such as lists of IBM technical papers, Redbooks and samples.

View links to additional information about:

v Programming model and decisions

v Programming instructions and examples

v Programming instructions and examples

Programming model and decisions

v The J2EETM Tutorial: The Duke’s Bookstore Application

v Best Practices in WebSphere Application: Separating the developers from the administrators

v Designing Enterprise Applications with the JavaTM 2 Platform, Enterprise Edition, Second Edition

v Designing Enterprise Applications, Second Edition

v Building JavaTM Enterprise Applications Volume I: Architecture

Programming instructions and examples

v WebSphere Application Server education

v Developing and Testing a Complete ’Hello World’ J2EE Application with IBM WebSphere Studio

Application Developer for Linux

v Writing Enterprise Applications with JavaTM 2 Platform, Enterprise Edition

Administration

v Listing of all IBM WebSphere Application Server Redbooks

Chapter 7. Deploying and administering applications 753

http://java.sun.com/j2ee/1.4/docs/tutorial/doc/index.html
http://www.sys-con.com/websphere/articleprint.cfm?id=26
http://java.sun.com/blueprints/guidelines/designing_enterprise_applications_2e/
http://developer.java.sun.com/developer/Books/j2ee/designingenterprise/
http://developer.java.sun.com/developer/Books/j2ee/bjeapps/
http://www.software.ibm.com/wsdd/education/enablement/curriculum/cur_webappsrvadm.html
http://www7b.software.ibm.com/wsdd/library/tutorials/0206_wosnick/wosnick_reg.html?open&l=937,t=gr
http://www7b.software.ibm.com/wsdd/library/tutorials/0206_wosnick/wosnick_reg.html?open&l=937,t=gr
http://developer.java.sun.com/developer/onlineTraining/J2EE/Intro/
http://publib-b.boulder.ibm.com/Redbooks.nsf/Portals/WebSphere

754 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Chapter 8. Developing WebSphere applications

Use this section as a starting point to investigate the technologies used in and by applications that you

deploy on the application server. Also use this section to learn about developing WebSphere applications.

See Learn about WebSphere applications: Overview and new features for an introduction to each

technology.

Web applications How do I?... Overview Samples

EJB applications How do I?... Overview Tutorials Samples

Client applications How do I?... Overview Samples

Web services How do I?... Overview Tutorials Samples

Data access resources How do I?... Overview Tutorials Samples

Messaging resources How do I?... Overview Tutorials Samples

Mail, URLs, and other

J2EE resources

How do I?... Overview

Security See the Securing WebSphere

applications PDF

See the

Administering

applications PDF

See the Securing

WebSphere

applications PDF

See the Securing

WebSphere

applications PDF

Naming and directory How do I?... Overview

Object Request Broker How do I?... Overview

Transactions How do I?... Overview Samples

ActivitySessions How do I?... Overview Samples

Application profiling How do I?... Overview Samples

Asynchronous beans How do I?... Overview Samples

Dynamic caching How do I?... Overview

Dynamic query How do I?... Overview Samples

Internationalization How do I?... Overview Samples

Object pools How do I?... Overview

Scheduler How do I?... Overview Samples

Startup beans How do I?... Overview

Work areas How do I?... Overview

Web applications

Task overview: Developing and deploying Web applications

A developer creates the files comprising a Web application, and then assembles the Web application

components into a Web module. Next, the deployer (typically the developer in a unit-testing environment

or the administrator in a production environment) installs the Web application on the server.

1. (Optional) Migrate existing Web applications to run in the new version of WebSphere.

2. Design the Web application and develop its code artifacts: Servlets, JavaServer Pages (JSP) files, and

static files, as for example, images and Hyper Text Markup Language (HTML) files. See the

″Resources for learning″ article for links to design documentation.

© Copyright IBM Corp. 2004 755

3. Develop the Web application, using WebSphere Application Server extensions to enhance its

functionality.

4. Assemble the Web application into a Web module using an assembly tool. Web module assembly

properties might include the ability to:

v Configure servlet page lists.

v Configure servlet filters.

v Serve servlets by class name.

v Enable file serving.

5. Deploy the Web module or application module that contains the Web application.

Following deployment, you might find it handy to use the tool that enables batch compiling of the JSP

files for quicker initial response times.

6. (Optional) Troubleshoot your Web application.

7. (Optional) Modify the default Web container configuration in the application server in which you

deployed the Web module or application module containing the Web application.

8. (Optional) Manage the deployed Web application.

Web applications

A Web application is comprised of one or more related servlets, JavaServer Pages technology (JSP files),

and Hyper Text Markup Language (HTML) files that you can manage as a unit.

The files in a Web application are related in that they work together to perform a business logic function.

For example, one of the WebSphere Application Server samples is a Simple Greeting Web application.

This application, comprised of a servlet and Web pages, greets new users when the application is

accessed.

The Web application is a concept supported by the Java Servlet Specification. Web applications are

typically packaged as .war files.

web.xml file

The web.xml file provides configuration and deployment information for the Web components that comprise

a Web application. Examples of Web components are servlet parameters, servlet and JavaServer Pages

(JSP) definitions, and Uniform Resource Locators (URL) mappings.

The Java Servlet 2.4 specification defines the web.xml deployment descriptor file in terms of an XML

schema document. For backwards compatibility of applications written to the Java Servlet 2.2

Specification, Web containers are also required to support the Java Servlet 2.2 specification. For

backwards compatibility of applications written to the Java Servlet 2.3 specification, Web containers are

also required to support the Java Servlet 2.3 specification.

Location

The web.xml file must reside in the WEB-INF directory under the context of the hierarchy of directories that

exist for a Web application. For example, if the application is client.war, then the web.xml file is placed in

the install_root/client war/WEB-INF directory.

Usage notes

v Is this file read-only?

No

v Is this file updated by a product component?

This file is updated by the Application Server Toolkit.

v If so, what triggers its update?

The Application Server Toolkit updates the web.xml file when you assemble Web components into a

Web module, or when you modify the properties of the Web components or the Web module.

v How and when are the contents of this file used?

756 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

WebSphere Application Server functions use information in this file during the configuration and

deployment phases of Web application development.

Sample file entry

<?xml version="1.0" encoding="UTF-8"?>

<web-app id="WebApp_9" version="2.4" xmlns="http://java.sun.com/xml/ns/j2ee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee

 http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd">

 <display-name>Servlet 2.4 application</display-name>

 <filter>

 <filter-name>ServletMappedDoFilter_Filter</filter-name>

 <filter-class>tests.Filter.DoFilter_Filter</filter-class>

 <init-param>

 <param-name>attribute</param-name>

 <param-value>tests.Filter.DoFilter_Filter.SERVLET_MAPPED</param-value>

 </init-param>

 </filter>

 <filter-mapping>

 <filter-name>ServletMappedDoFilter_Filter</filter-name>

 <url-patter>/DoFilterTest</url-pattern>

 <dispatcher>REQUEST</dispatcher>

 </filter-mapping>

 <filter-mapping>

 <filter-name>ServletMappedDoFilter_Filter</filter-name>

 <url-patter>/IncludedServlet</url-pattern>

 <dispatcher>INCLUDE</dispatcher>

 </filter-mapping>

 <filter-mapping>

 <filter-name>ServletMappedDoFilter_Filter</filter-name>

 <url-patter>ForwardedServlet</url-pattern>

 <dispatcher>FORWARD</dispatcher>

 </filter-mapping>

 <listener>

 <listener-class>tests.ContextListener</listener-class>

 </listener>

 <listener>

 <listener-class>tests.ServletRequestListener.RequestListener</listener-class>

 </listener>

 <servlet>

 <servlet-name>welcome</servlet-name>

 <servlet-class>WelcomeServlet</servlet-class>

 </servlet>

 <servlet>

 <servlet-name>ServletErrorPage</servlet-name>

 <servlet-class>tests.Error.ServletErrorPage</servlet-class>

 </servlet>

 <servlet>

 <servlet-name>IncludedServlet</servlet-name>

 <servlet-class>tests.Filter.IncludedServlet</servlet-class>

 </servlet>

 <servlet>

 <servlet-name>ForwardedServlet</servlet-name>

 <servlet-class>tests.Filter.ForwardedServlet</servlet-class>

 </servlet>

 <servlet-mapping>

 <servlet-name>welcome</servlet-name>

 <url-pattern>/hello.welcome</url-pattern>

 </servlet-mapping>

 <servlet-mapping>

 <servlet-name>ServletErrorPage</servlet-name>

 <url-pattern>/ServletErrorPage</url-pattern>

 </servlet-mapping>

 <servlet-mapping>

 <servlet-name>IncludedServlet</servlet-name>

 <url-pattern>/IncludedServlet</url-pattern>

Chapter 8. Developing WebSphere applications 757

</servlet-mapping>

 <servlet-mapping>

 <servlet-name>ForwardedServlet</servlet-name>

 <url-pattern>/ForwardedServlet</url-pattern>

 </servlet-mapping>

 <welcome-file-list>

 <welcome-file>hello.welcome</welcome-file>

 </welcome-file-list>

 <error-page>

 <exception-type>java.lang.ArrayIndexOutOfBoundsException</exception-type>

 <location>/ServletErrorPage</location>

 </error-page>

</web-app>

Default Application

The IBM WebSphere Application Server provides a default configuration that allows administrators to

easily verify that the Application Server is running. When the product is installed, it includes an application

server called server1 and an enterprise application called Default Application.

Default Application contains a Web Module called DefaultWebApplication and an enterprise bean JAR file

called Increment. The Default Application provides a number of servlets, described below. These servlets

are available in the product.

For additional code examples, visit the Samples Gallery. Learn how to locate and install the Samples

Gallery by viewing the Samples Gallery reference page.

The URL for accessing Samples is: http://localhost:9080/WSsamples/

Snoop

Use the Snoop servlet to retrieve information about a servlet request. This servlet returns the following

information:

v Servlet initialization parameters

v Servlet context initialization parameters

v URL invocation request parameters

v Perferred client locale

v Context path

v User principal

v Request headers and their values

v Request parameter names and their values

v HTTPS protocol information

v Servlet request attributes and their values

v HTTP session information

v Session attributes and their values

The Snoop servlet includes security configuration so that when WebSphere Security is enabled, clients

must supply a user ID and password to execute the servlet.

The URL for the Snoop servlet is: http://localhost:9080/snoop/.

HelloHTML

Use the HelloHTML pervasive servlet to exercise the PageList support provided by the WebSphere Web

container. This servlet extends the PageListServlet, which provides APIs that allow servlets to call other

Web resources by name or, when using the Client Type detection support, by type.

You can invoke the Hello servlet from an HTML browser, speech client, or most Wireless Application

Protocol (WAP) enabled browsers using the URL: http://localhost:9080/HelloHTML.jsp.

758 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

HitCount

Use the HitCount Demonstration application to demonstrate how to increment a counter using a variety of

methods, including:

v A servlet instance variable

v An HTTP session

v An enterprise bean

You can instruct the servlet to execute any of these methods within a transaction that you can commit or

roll back. If the transaction is committed, the counter is incremented. If the transaction is rolled back, the

counter is not incremented.

The enterprise bean method uses a Container- Managed Persistence enterprise bean that persists the

counter value to a Cloudscape database. This enterprise bean is configured to use the Default

Datasource, which is set to the DefaultDB database.

When using the enterprise bean method, you can instruct the servlet to look up the enterprise bean, either

in the WebSphere global namespace, or in the namespace local to the application.

The URL for the HitCount application is: http://localhost:9080/HitCount.jsp.

Servlets

Servlets are Java programs that use the Java Servlet Application Programming Interface (API). You must

package servlets in a Web archive (WAR) file or Web module for deployment to the application server.

Servlets run on a Java-enabled Web server and extend the capabilities of a Web server, similar to the way

applets run on a browser and extend the capabilities of a browser.

Servlets can support dynamic Web page content, provide database access, serve multiple clients at one

time, and filter data.

For the purposes of WebSphere Application Server, discussions of servlets focus on Hyper Text Transfer

Protocol (HTTP) servlets, which serve Web-based clients.

With the introduction of Java Servlet 2.4 specification, you can define servlets as welcome files. Non

servlet resources are served only when the FileServingEnabled attribute is set to true. Serving welcome

files is connected to serving static content, therefore fileServing enabled is set in the Web module.

JavaServer Pages

JavaServer Pages (JSP) are application components coded to the JavaServer Pages Specification.

JavaServer Pages enable the separation of the Hypertext Markup Language (HTML) code from the

business logic in Web pages so that HTML programmers and Java programmers can more easily

collaborate in creating and maintaining pages.

JSP files support a division of roles:

HTML authors

Develop JSP files that access databases and reusable Java components, such as servlets and

beans.

Java programmers

Create the reusable Java components and provide the HTML authors with the component names

and attributes.

Database administrators

Provide the HTML authors with the name of the database access and table information.

 WebSphere Application Server 6.0 supports the JSP 2.0 specification. The sub-topics below discuss

WebSphere Application Server’s JSP 2.0 implementation, focusing on configuration, tools and extensions.

Chapter 8. Developing WebSphere applications 759

http://jcp.org/aboutJava/communityprocess/final/jsr152/index.html

JSP engine:

The WebSphere Application Server JavaServer Pages (JSP) engine is the implementation of the

JavaServer Pages Specification.

 WebSphere Application Server 6.0 supports the JSP 2.0 specification.

The JSP engine

v Validates JSP source, both classic and XML styles

v Translates JSP source to Java classes

v Compiles Java classes, reporting any errors

v Generates Java classes for any tag files that are used by the JSP

v Interfaces with the Web container to load JSP class files

v Supports JSP batch compilation, JSP compilation during application installation, and JSP compilation

during the build process of customer applications, through an Ant task.

v Loads class files, and manage life-cycle (reloading, unloading as necessary)

v Supports debugging of JavaServer Pages files through support for JSR 45 (Debugging Support for

Other Languages)

JSP engine configuration parameters: In WebSphere Application Server, you can configure the

JavaServer Pages (JSP) engine for optimal performance in a production server environment and for the

needs of developers in a development environment. The configuration parameters are described below.

The JSP engine parameters are case sensitive. If the value specified for a parameter is comprised of two

or more words separated by spaces, you must add quotation marks around the value. Some parameters

affect the Java source that is generated for a JSP or tag file. These parameters are identified by the

statement ″This parameter requires regeneration of Java source.″ This statement indicates that if the

configuration parameter is modified, the new value for the parameter does not have any effect until the

JSP files are retranslated and the Java sources are recompiled.

v compileWithAssert

Specifies whether the generated Java classes should contain support for the Developer Kit, Java

Technology Edition 1.4 Assertion facility. The effect of setting this parameter to true is that the –source

1.4 option is passed to the Java compiler. The default for this parameter is false. This parameter

requires regeneration of Java source.

v classdebuginfo

Indicates whether the compiler includes debugging information in the generated class file. When you set

this parameter to true, the –g option is passed to the Java compiler. The default for this parameter is

false. This parameter requires regeneration of Java source.

v deprecation

Specifies whether the compiler generates deprecation warnings when compiling the generated Java

source. When you set this parameter to true, the -deprecation option is passed to the Java compiler.

The default for this parameter is false. This parameter requires regeneration of Java source.

v disableJspRuntimeCompilation

If this option is set to true, the JSP engine at runtime does not translate and compile JSP files; the JSP

engine loads only precompiled class files. JSP source files do not need to be present in order to load

class files. When this option is set to true, you can install an application without JSP source, but the

application must have precompiled class files. There is a Web container custom property with the same

name that is used to determine the behavior of all Web modules installed in a server. If both the Web

container custom property and the JSP engine option are set, the JSP engine option takes precedence.

The default for this parameter is false.

v extendedDocumentRoot

To allow a JSP file resource to be shared across Web application archives, specify a comma delimited

list of directories and/or Java Archive (JAR) files as search paths to be used if the requested resource

760 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

http://jcp.org/aboutJava/communityprocess/final/jsr152/index.html

cannot be located in the Web application archive’s public document tree. If the JSP file is located inside

a JAR file and reloadEnabled is true, the timestamp of the JAR file is used for isOutDated checks for

recompile purposes. The default for this parameter is null.

v ieClassID

Indicates the Java plug-in COM class ID for Internet Explorer. The <jsp:plugin> tags use this value.

The default classid is clsid:8AD9C840-044E-11D1-B3E9-00805F499D93. This parameter requires

regeneration of Java source.

v javaEncoding

Specifies the encoding that is used when the .java file is generated, and when it is compiled by the

Java compiler. Set this parameter when the page encoding of your JSP pages is not UTF-8 compatible.

When javaEncoding is set, the encoding is passed to the Java compiler through the -encoding

argument. Note that encoding is not supported by Jikes. The default is UTF-8. This parameter requires

regeneration of Java source.

v jspCompileClasspath

This parameter tells the JSP engine to use a small class path for the Java compilation phase. The small

class path speeds up the compilation process. This small class path is not used by default because it

includes only a subset of WebSphere JAR files and excludes many WebSphere JAR files that contain

WebSphere public APIs.

If your JSP files do not use WebSphere public APIs within scriptlets, you can enable the small class

path by using the jspCompileClasspath parameter with no value. If your JSP files do use WebSphere

public APIs within scriptlets, then add those additional JAR files to the jspCompileClasspath option. The

entries are separated by spaces, and are assumed to be relative to the WebSphere Application Server

installation root.

1. A space-separated list of JAR files, relative to the WebSphere installation directory. This instructs the

JSP engine to use the small class path, with the additional named JAR files.

2. No value at all. This instructs the JSP engine to use the small class path, without any additional

user-defined JAR files. See the example in ″Configuring JSP engine parameters″ in the information

center.

The entire WebSphere class path is used by default. This parameter requires regeneration of Java

source.

v jsp.file.extensions

For JSP files with extensions other than the four standard extensions, *.jsp, *.jspx, *.jsw, and *.jsv, you

can configure this the extensions using this parameter. These extensions are added to the standard

extensions. The preferred method for doing this is to create a <jsp-property-group>in web.xml, and

add a <url-pattern> tag for each extension.

The JSP engine can handle a list of file extensions that is separated by a colon or semi-colon. For

example, *.ext1;*.ext2:*.extn

v keepgenerated

Indicates that the Java files generated by the JSP compiler during the translation phase of the

processing are retained. The default for this parameter is false. This parameter requires regeneration of

Java source.

v keepGeneratedclassfiles

Indicates that the class files generated by the JSP compiler during the translation phase of the

processing are retained. The default for this parameter is true. This parameter requires regeneration of

Java source.

v reloadEnabled

Determines whether or not a JSP file is translated and compiled at runtime if the JSP file or its

dependencies (see trackDependencies) are modified. If reloadEnabled is false, a JSP file is still

compiled, if necessary, on the first request to it unless the parameter disableJspRuntimeCompilation is

true. The default for this parameter is false.

Chapter 8. Developing WebSphere applications 761

If this JSP engine parameter is not specified, the equivalent Web container parameter for Web module

class reloading is used. However, for an application whose deployment descriptor is at the Servlet 2.2

level, the default is true. This is done for the support of applications being migrated from WebSphere

Application Server Version 4.x.

v reloadInterval

If reloading is enabled, reloadInterval determines the delay between checks to see if a JSP file is

outdated. For example, if reloadInterval is 5, the JSP engine checks to see if a JSP file is outdated only

when the last such check was done more than 5 seconds prior to the current request for the JSP file.

The larger the reloadInterval, the less frequently the JSP engine checks for the need to reload a JSP

file. If this JSP engine parameter is not specified, the equivalent Web container parameter for Web

module class reloading is used. However, for an application whose deployment descriptor is at the

Servlet 2.2 level, the default is 5 seconds. This is done for the support of applications being migrated

from WebSphere Application Server Version 4.x.

v scratchdir

Specifies the directory where the generated class files are created. The system property

com.ibm.websphere.servlet.temp.dir is used to set the scratchdir option on a server-wide basis. The

JSP engine scratchdir parameter takes precedence over the system property

com.ibm.websphere.servlet.temp.dir. The default for this parameter is

{WAS_ROOT}/profiles/profilename/temp. This parameter requires regeneration of Java source.

v trackDependencies

If reloading is enabled, trackDependencies determines whether the JSP engine tracks modifications to

the requested JavaServer Pages files dependencies as well as to the JSP file itself. The dependencies

tracked by the JSP engine are :

1. files statically included in the JSP file

2. tag files referenced in the JSP file (excluding tag files that are in JARs)

3. TLD files referenced in the JSP file (excluding TLDs that are in JARs)

The default is false.

v useFullPackageNames

If useFullPackageNames is true, the JSP engine generates and loads JSP classes using full package

names. The default is to generate all JSP classes in the same package. (For more information, see

Packages and directories for generated files). The JSP engine’s class loader knows how to load JSP

classes when they are all in the same package.

The default method of generating all JSP classes in the same package has the benefit of generating

smaller file-system paths. Full package names has the benefit of enabling the configuration of

precompiled JSP class files as servlets in the web.xml file without the use of the jsp-file attribute,

resulting in a single class loader, the Web application’s class loader, that is used to load all such JSP

classes. Similarly, when the JSP engine’s configuration attributes useFullPackageNames and

disableJspRuntimeCompilation are both true, a single class loader is used to load all JSP classes, even

if the JSP files are not configured as servlets in the web.xml file.

When useFullPackageNames is set to true, the batch compiler generates a file called

generated_web.xml in the Web module’s WEB-INF directory. This file contains servlet configuration

information for each JSP file that was successfully translated and compiled. The information can

optionally be copied into the Web module’s web.xml file so that the JSP files are loaded as servlets by

the Web container. Note that if a JSP file is configured as a servlet in this way, no reloading of the JSP

file is done at runtime if the JSP file is modified. This is because the JSP file is treated as a regular

servlet and requests for it do not pass through the JSP engine. This parameter requires regeneration of

Java source.

v useImplicitTagLibs

The JSP engine implicitly recognizes tsx and jsx as tag library prefixes for tag libraries supplied by the

JSP engine. If tsx or jsx are used as prefixes for a customer‘s tag library, the customer‘s tag library

overrides the implicit tag library. However, the implicit tag library is still cached by the JSP engine.

Explicitly setting this parameter to false tells the engine not to cache the implicit tag library, and save

resources. The default for this parameter is true.

v useJikes

762 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Specifies whether Jikes is used for compiling Java sources. NOTE: Jikes is not shipped with

WebSphere Application Server. The default for this parameter is false. This parameter requires

regeneration of Java source.

v usePageTagPool

*Enables or disables the reuse of custom tag handlers on an individual JavaServer Pages basis. The

default for this parameter is false. This parameter requires regeneration of Java source.

v useThreadTagPool

*When thread-level tag handler pooling is used, tag handlers may be reused among separate

occurrences of a custom action across all JSP pages in a single Web module across separate requests.

The default for this parameter is false. This parameter requires regeneration of Java source.

v verbose

Indicates that the compiler generates verbose output when compiling the generated Java source code.

The effect of setting this parameter to true is that the -verbose option is passed to the Java compiler.

The default for this parameter is false. This parameter requires regeneration of Java source.

*Enabling custom tag handler reuse might reveal problems in the tag handler code with regard to the tag’s

ability to be reused. A custom tag handler should always do two things:

v The release method of the tag handler should reset its state and release any private resources that it

might have used. The JSP engine ensures the release method is called before the tag handler is

garbage collected.

v In the doEndTag method, all instance states associated with this instance must be reset.

JSP class file generation: At runtime, the WebSphere Application Server JavaServer Pages (JSP)

engine loads JSP class files from either the WebSphere Application Server temp directory or a Web

module’s WEB-INF/classes directory. The WebSphere Application Server temp directory is typically

{WAS_ROOT}/profiles/profilename/temp. The JSP engine first searches for a class file in the temp

directory and then it searches in the Web module’s WEB-INF/classes directory. Figure 1 shows the

processing logic of the JSP engine at runtime.

No No

No

Yes
Yes

Yes

Yes

Request for a JSP.

Is the class file found in

WebSphere Application Server

temp directory?

Is the class file found in

WEB-INF/classes

Is the class file outdated?

Generate the class file

into WebSphere

Application Server

temp directory.

Load the class file.

Chapter 8. Developing WebSphere applications 763

The batch compiler supports the generation of class files in both the WebSphere Application Server temp

directory and a Web module’s WEB-INF/classes directory, depending on the type of batch compiler target.

In addition, the batch compiler enables the generation of class files into any directory on the filesystem,

outside of the target application. Generating class files into a Web module’s WEB-INF/classes directory

enables you to deploy the Web module as a self-contained Web archive (WAR) file, or a WAR file inside

an enterprise archive (EAR) file. The following table shows the batch compiler’s behavior when compiling

class files.

 ear.path or war.path supplied enterpriseApp.name supplied

compileToDir not supplied;

compileToWebInf not

supplied, or is true

The class files are compiled into the

Web module’s WEB-INF/classes

directory.

The class files are compiled into the Web

module’s WEB-INF/classes directory.

compileToDir not supplied;

compileToWebInf is false

The class files are compiled into the

Web module’s WEB-INF/classes

directory.

The class files are compiled into the

WebSphere temp directory, usually

{WAS_ROOT}/profiles/profilename/temp.

compileToDir is supplied;

compileToWebInf not

supplied, or is either true or

false

The class files are compiled into the

directory indicated by compileToDir.

The class files are compiled into the directory

indicated by compileToDir.

Packages and directories for generated .java and .class files:

By default, the .java files for all JavaServer Pages (JSP) files are generated with the package statement,

package com.ibm._jsp;. The JSP engine’s class loader knows how to load JSP classes when they are all

in the same package. The .java files are located in the filesystem within a directory structure mirroring the

JSP source directory structure.

 If the JSP engine configuration parameter useFullPackageNames is set to true, the .java files are

generated with the package statement

Package _ibmjsp.<directory structure in which the jsp is located>;

The usage of full package names enables the configuration of a JSP as a servlet in the web.xml file. See

“JSP class loading” on page 766 for more information. The table below gives examples of packages and

directory structures for generated .java and .class files.

 Java package Location of .java or .class files in file

system

JSP file default useFullPackage

Names=true

default useFullPackage

Names=true

/myJsp.jsp com.ibm._jsp _ibmjsp / /_ibmjsp

/jspFiles/jspOne.jsp com.ibm._jsp _ibmjsp.jspFiles /jspFiles /_ibmjsp/jspFiles

/dir with

spaces/jspTwo.jsp

com.ibm._jsp _ibmjsp.dir_20_with

_20_spaces

/dir with spaces /_ibmjsp/dir_20_with

_20_spaces

Generated .java files: When the JSP engine‘s keepgenerated configuration parameter is set to true, the

.java file that is generated for JavaServer Pages (JSP) is retained. This file contains information that is

useful in debugging.

Dependency information

In the .java file, immediately following the class declaration, an array of dependent files is defined, if the

source JSP has any dependencies. There are three types of files that are tracked as dependencies:

1. Files that are statically included in the JSP

764 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

2. Tag files that are used by the JSP, but only tag files that are not in Java Archive (JAR) files

3. TLD files that are used by the JSP, but only TLDs that are not in JAR files

This array is always generated, but the JSP engine uses it, in determining whether a JSP needs to be

recompiled, only when the trackDependencies parameter is set to true.

In the example below, three JSP fragments, one TLD and one tag file are dependencies of the JSP

jsp1.jsp. There are three parts to each array entry:

1. The path to the dependency, relative to the Web module‘s context root. For example:

/dir1/frag1.jspf

2. The long value representing the time the file was last modified. For example: 1082407108000

3. The String representation of the long value. For example: Mon Apr 19 16:38:28 EDT 2004
public final class _jsp1 extends com.ibm.ws.jsp.runtime.HttpJspBase

 implements com.ibm.ws.jsp.runtime.JspClassInformation {

 private static String[] _jspx_dependants;

 static {

 _jspx_dependants = new String[5];

 _jspx_dependants[0] = "/Banner.jspf^1082407108000^Mon Apr 19 16:38:28 EDT 2004";

 _jspx_dependants[1] = "/Footer.jspf^1077657462000^Tue Feb 24 16:17:42 EST 2004";

 _jspx_dependants[2] = "/dir1/frag1.jspf^1035396680000^Wed Oct 23 14:11:20 EDT 2002";

 _jspx_dependants[3] = "/utility.tld^1080069938000^Tue Mar 23 14:25:38 EST 2004";

 _jspx_dependants[4] = "/WEB-INF/tags/top.tag^1065440490000^Mon Oct 06 07:41:30 EDT 2003";

 }

Version, JSP engine options, and WEB.XML information

The generated .java source contains a comment that lists information about the file which is located at the

bottom of the generated file. This information includes:

v The date and time the .java file was generated

v The version, build number and build date of the WebSphere Application Server on which the .java file

was generated

v The values of the JSP engine configuration parameters that were in effect when the file was generated

v The values of any <jsp-config> elements in the web.xml file that pertained to the source JSP file.
/*

C:/WebSphere_6.0/AppServer/profiles/AppSrv01/installedApps/MyCell/sampleApp.ear/examples.war

 /WEB-INF/classes/_ibmjsp/_jsp1.java was generated @ Thu Oct 14 10:05:56 EDT 2004

IBM WebSphere Application Server - ND, 6.0.0.0

 Build Number: o0441.04

 Build Date: 10/12/04

**

The JSP engine configuration parameters were set as follows:

classDebugInfo = [false]

debugEnabled = [false]

deprecation = [false]

compileWithAssert = [false]

disableJspRuntimeCompilation =[false]

extendedDocumentRoot = [null]

ieClassId = [clsid:8AD9C840-044E-11D1-B3E9-00805F499D93]

keepGenerated = [true]

outputDir = [C:/WebSphere_6.0/AppServer/profiles/AppSrv01/

 installedApps/MyCell/sampleApp.ear/examples.war/WEB-INF/classes]

reloadEnabled = [true]

reloadEnabledSet = [true]

reloadInterval = [5000]

trackDependencies = [false]

usePageTagPool = [false]

useThreadTagPool = [true]

Chapter 8. Developing WebSphere applications 765

useImplicitTagLibs = [true]

verbose = [false]

looseLibMap = [null]

useJikes = [false]

useFullPackageNames = [true]

translationContextClass = [null]

extensionProcessorClass = [null]

jspCompileClasspath = []

javaEncoding = [UTF-8]

autoResponseEncoding = [false]

**

The following JSP Configuration Parameters were obtained from web.xml:

prelude list = [[]]

coda list = [[]]

elIgnored = [false]

pageEncoding = [null]

isXML = [false]

scriptingInvalid = [false]

*/

JSP class loading:

You can configure a JavaServer Pages (JSP) class to be loaded by either the JSP engine‘s class loader or

by the Web module‘s class loader.

 By default, a JSP class is loaded by a unique instance of the JSP engine‘s class loader. The JSP engine‘s

class loader enables runtime reloading of a JSP class when the JSP source or one of its dependents is

modified. This allows you to reload a single JSP class when necessary, without affecting any other loaded

JSP classes.

JSP classes are loaded by the Web module‘s class loader under either of the following scenarios.

1. 1. The JSP engine configuration parameter useFullPackageNames is set to true, and the JSP file is

configured as a servlet in the web.xml file using the <servlet-class> scenario in the table below.

2. 2. The JSP engine configuration parameters useFullPackageNames and

disableJspRuntimeCompilation are both set to true. In this case, you do not need to configure a JSP

file does as a servlet in the web.xml file.

Configuring JSP files as Servlets

You can configure a JSP file as a servlet in the web.xml file. There are two ways to do this. They are

described in the table below.

Before you configure a JSP file as a servlet, consider the following.

1. Reloading capability - If runtime reloading of JavaServer Pages files is desired, requests for

JavaServer Pages files must be handled by the JSP engine. The <servlet-class> scenario in the table

below disables runtime JSP file reloading, while the <jsp-file> scenario is compatible with reloading.

2. Reducing the number of class loaders - If you do not require runtime reloading of modified JSP pages

and you want to reduce the number of class loader instances, then you can use the <servlet-class>

scenario in the table below. Similarly, scenario 2 in section 1 above can be used without having to

configure a JSP file as a servlet.

 Scenario Example compatible with

runtime

reloading

multiple class

loaders used?

useFullPackage

Names

766 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

<jsp-file> <servlet>

<servlet-name>jspOne</servlet-name>

<jsp-file>jspOne.jsp</jsp-file>

</servlet>

Yes Yes Can be true or

false

<servlet-class> <servlet>

<servlet-name>jspTwo</servlet-name>

<servlet-class>_ibmjsp.jspTwo</servlet-
class>

</servlet>

No No Must be true

The JSP batch compiler tool helps you configure JavaServer Pages files as servlets. When

useFullPackageNames is true, the JSP batch compiler generates <servlet> and <servlet-mapping>

elements for each JSP file that it successfully translates and compiles. The elements are written to a

web.xml fragment file named generated_web.xml which is located in the binaries WEB-INF directory of a

Web module processed by the JSP file batch compiler (this directory is located within the deployed

application‘s ear file). You can copy and paste all or some of these elements into the web.xml file to

configure JavaServer Pages files as servlets.

Take note of the location of the web.xml that is used by the application server. In WebSphere Application

Server 6.0, application specific configuration is obtained from either the application binaries (the

application‘s ear file) or from the configuration repository. If an application is deployed into WebSphere

Application Server with the flag Use Binary Configuration set to true, then the WEB-INF/web.xml file is

looked for in a Web module’s binaries directory, not in the configuration repository. Below are examples of

these two locations.

1. An example of a configuration repository directory is

{WAS_ROOT}/profiles/profilename/config/cells/cellname/applications/enterpriseappname

/deployments/deployedname/webmodulename

2. An example of an application binaries directory is:

{WAS_ROOT}/profiles/profilename/installedApps/nodename/EnterpriseAppName/WebModuleName/

If the JSP batch compiler is executed on a pre-deployed application then the web.xml file is in the Web

module‘s WEB-INF directory.

Configuring JSP runtime reloading: JSP files can be translated and compiled at runtime when the JSP

file or its dependencies are modified. This is known as JSP reloading. JSP reloading is enabled through

the reloadEnabled JSP engine parameter in the WEB-INF/ibm-web-ext.xmi file:

<jspAttributes xmi:id="JSPAttribute_1" name="reloadEnabled" value="true"/>

The following table contains the recommended reload settings for production and development

environments.

 Recommended settings

Configuration Attribute Production Environment Development Environment

reloadEnabled false true

reloadInterval n/a (ignored if reloadEnabled is

false)

approximately 5 seconds

trackDependencies n/a (ignored if reloadEnabled is

false)

true Alternatively, set this to false to

improve response time if

dependencies are not changing

Chapter 8. Developing WebSphere applications 767

disableJspRuntimeCompilation true - Alternatively, set this to false if

JSPs are not pre-compiled and

therefore need to be compiled on

the first request.

false

If the reloadEnabled parameter is set to true, a JSP file is reloaded at runtime if the JSP file and its class

file do not have the same timestamp. In addition, if trackDependencies is set to true then the JSP file is

reloaded if the timestamp of any of its dependencies has changed since the JSP class file was last

generated. If the reloadEnabled parameter is set to false, a JSP file is still compiled if necessary on the

first request to it unless the parameter disableJspRuntimeCompilation is true. For example, when

disableJspRuntimeCompilation is false and reloadEnabled is false, a JSP file is compiled on the first

request if the class file is outdated. It would not compiled on subsequent requests even if the JSP source

file is modified or the class file is deleted unless reloadEnabled is true

Reload interval

The reload interval is set through the reloadInterval JSP engine parameter:

<jspAttributes xmi:id="JSPAttribute_1" name="reloadInterval" value="5"/>

If reloading is enabled, the reloadInterval parameter value determines the delay between checks to see if

a JSP file is outdated. For example, if reloadInterval is 5, the JSP engine checks to see if a JSP file is

outdated only when the last such check was done more than five seconds prior to the current request for

the JSP file. Once the reloadInterval is exceeded, reload checking is performed and the reload interval

timer is reset to 0 for that JSP file. The larger the reloadInterval, the less frequently the JSP engine

checks for the need to reload a JSP file.

Dependency tracking

Dependency tracking is set through the trackDependencies JSP engine parameter:

<jspAttributes xmi:id="JSPAttribute_1" name="trackDependencies" value="true"/>

If reloading is enabled, the trackDependencies parameter value determines whether the JSP engine

tracks modifications to the requested JSP file dependencies as well as to the JSP file itself. The three

types of dependencies tracked by the JSP engine are:

v files statically included in the JSP file

v tag files that are referenced in the JSP file (excluding tag files that are in JAR files)

v TLDs that are referenced in the JSP file (excluding TLDs that are in JAR files)

Dependency tracking information is always included in the generated class file even if trackDependencies

is false. The information is not used by the JSP engine or batch compiler unless the trackDependencies

parameter is true. This means that you can enable dependency tracking without having to recompile JSP

files.

For example, the toplevel.jsp file statically includes the footer.jspf file. When the toplevel.jsp file is

compiled, the path to the footer.jspf file and its timestamp are stored in the toplevel.jsp’s class file. As

a result, the footer.jspf file is modified and the toplevel.jsp file is requested. Now that the reload

interval for the toplevel.jsp file has been exceeded, the JSP engine compares the timestamp stored in

the class file with the footer.jspf file timestamp on disk. Because the timestamps are different, the

toplevel.jsp file is compiled, picking up the modification to the footer.jspf file. In order for dependency

tracking to work, the trackDependencies value must be set to true at the time a JSP file is requested at

runtime or is processed by the batch compiler.

768 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Disabling compilation

Disablement of runtime compilation of JavaServer Pages is set via the disableJspRuntimeCompilation JSP

engine parameter:

<jspAttributes xmi:id="JSPAttribute_1" name="disableJspRuntimeCompilation" value="true"/>

If the disableJspRuntimeCompilation parameter is set to true, the JSP engine at runtime does not

translate and compile JSP files; the JSP engine loads only precompiled class files. JSP source files do not

need to be present in order for the class files to be loaded. With this option set to true, an application can

be installed without JSP source, but must have precompiled class files. There is a Web container custom

property of the same name that can be used to determine the behavior of all web modules installed in a

server. If both the Web container custom property and the JSP engine option are set, the JSP engine

option takes precedence. Setting the disableJspRuntimeCompilation parameter to true automatically

sets reloadEnabled to false.

Reload processing sequence

The processing sequence pertaining to JSP file reloading when trackDependencies is false is shown in

Figure 1.

When trackDependencies is true, the JSP engine does additional file system processing to determine if

any of a JSP file’s dependencies have changed since the JSP file was last translated and compiled.

No

Request for a JSP.

disable

JspRuntime

Compilation?

First request to

this JSP?

No

Is reloadEnabled?

Classfile exists?

Yes
Attempt to

load classfile

Yes

Return error

to browser

No

Is reloadedInterval

exceeded?

Yes Is JSP

classfile

outdated?

Yes Yes
Translate and

compile JSP

Successful

translation

and

compilation?

Return error

to browser

No

Attempt to load

classfile

Yes

NoNo No

Figure 1. Reload processing sequence when trackDependencies is false.

Chapter 8. Developing WebSphere applications 769

Figure 2 shows the additional processes that are performed on the ’No’ path of flow chart labeled ″is JSP

class file outdated?″. You can see that the path taken when disableJspRuntimeCompilation is true is the

most efficient path.

Disabling JavaServer Pages run-time compilation: By default, the JavaServer Pages (JSP) engine

translates a requested JSP file, compiles the .java file, and loads the compiled servlet into the run-time

environment. You can change the JSP engine default behaviour by indicating a JSP file should never be

translated or compiled at run-time, even when a .class file does not exist.

If run-time compilation is disabled, you must precompile the JSP files, which provides the following

advantages:

v Reduces compilation related disk operations.

v Minimizes disk storage requirements necessary for handling temporary .java files generated during a

run-time compilation.

v Allows you to not include the JSP source files in the application.

v Allows verification that a JSP file compiled successfully before deploying and installing the application in

WebSphere Application Server.

You can disable run-time JSP file compilation on a global or an individual Web application basis:

v To disable the translation and compilation of JSP files for all Web applications, set the Web container

custom property disableJspRuntimeCompilation to true.

Set this property through the Web container Custom properties panel in the administrative console. To

view this administrative console page, click:

Servers > Application servers > server_name > Web container settings >

 Web container > Custom properties > property_name

Valid values for this setting are true or false. If this property is set to true, then translation and

compilation of the JSP files is disabled at run time for all Web applications.

v To disable the translation and compilation of JSP files for a specific Web application, set the JSP engine

initialization parameter disableJspRuntimeCompilation to true. This setting, if enabled, determines the

run-time behavior of the JSP engine and overrides the Web container custom property setting.

Set this parameter through the JavaServer Pages attribute assembly settings panel as described in

the ″Assembling applications″ topic in the information center.

Valid values for this setting are true or false. If this parameter is set to true, then, for that specific Web

application, translation and compilation of the JSP files is disabled at run time, and the JSP engine only

loads precompiled files.

No

Is JSP

classfile

outdated?

Has any

dependent

file been

modified?

No

Translate and

compile JSP

Attempt to load

classfile

Yes

Yes

Figure 2. Additional reload processing performed when trackDependencies is true.

770 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

v If neither the Web container custom property nor the JSP parameter is set, the first request for a JSP

file results in the translation and compilation of the JSP file when the .class file does not exist or is

outdated. Subsequent requests for the file also result in translations and compilations, but only if the

following conditions are met:

– Translations are required because the .class file is outdated.

– Reloading is enabled for the Web module.

– Reload interval is exceeded.

If you disable run-time compilation and a request arrives for a JSP file that does not have a matching

.class file, the JSP engine returns HTTP error 500 (Internal server error) to the browser. In this case, an

exception is written to the System Out (SYSOUT) and First Failure Data Capture (FFDC) logs.

If a JSP file has a matching .class file but that file is out of date, the JSP engine still loads the .class file

into memory.

JSP batch compilation:

As an IBM enhancement to JavaServer Pages (JSP) support, IBM WebSphere Application Server provides

a batch JSP compiler that allows JSP page compilation before application deployment. The batch compiler

validates the syntax of JSP pages, translates the JSP pages into Java source files, and compiles the Java

source files into Java Servlet class files. The batch compiler also validates tag files and generates their

Java implementation classes.

 Batch compilation of JSP pages in a predeployed application simplifies the deployment process and

improves the runtime performance of JSP page by eliminating first-request compilations. The batch

compiler also operates on enterprise applications that have been deployed into WebSphere Application

Server.

The JSP batch compiler works on Web modules that support Servlet 2.2 and up through Servlet 2.4 The

batch compiler works on JSP pages written to the JSP 2.0 specification or previous specifications back to

JSP 1.0. It recognizes a Servlet 2.4 deployment descriptor, web.xml, and can use any jsp-config elements

that it may contain. In a Servlet 2.3 (JSP 1.2) or Servlet 2.2 (JSP 1.1) deployment descriptor the batch

compiler recognizes and uses any taglib elements that the descriptor may contain.

Batch compiling makes the first request for a JSP page much faster because the JSP page is already

translated and compiled into a servlet. Batch compiling is also useful as a fast way to resynchronize all of

the JSP pages for an application.

The batch compiler supports the generation of class files in both the WebSphere Application Server temp

directory and a Web module’s WEB-INF/classes directory, depending on the type of batch compiler target.

In addition, the batch compiler enables generation of class files into any directory on the filesystem,

outside the target application. Generating class files into a Web module’s WEB-INF/classes directory

enables the Web module to be deployed as a self-contained WAR file, or a WAR inside an EAR.

JSP batch compiler tool: The batch compiler validates the syntax of JSP pages, translates the JSP pages

into Java source files, and compiles the Java source files into Java Servlet class files. The batch compiler

also validates tag files and generates their Java implementation classes. Use this function to batch

compile your JSP files and thereby enable faster responses to the initial client requests for the JSP files

on your production Web server.

The batch compiler can be executed against compressed or expanded enterprise archive (EAR) files and

Web application archive (WAR) files, as well as enterprise applications and Web modules that have been

deployed into WebSphere Application Server. When the target is a deployed enterprise application, the

server does not need to be running to execute the batch compiler. If the batch compiler is executed while

Chapter 8. Developing WebSphere applications 771

the target sever is running, the server is not aware of an updated class file and does not load that class

file unless the enterprise application is restarted. When the target is a compressed EAR file or WAR file,

the batch compiler must expand it before executing.

Processing of Web modules

The batch compiler operates on one Web module at a time. If the target is either an EAR file or an

installed enterprise application that contains more than one Web module, the batch compiler operates on

each Web module individually. This is done because JSP pages are configured on a Web module basis,

through the Web module’s web.xml deployment descriptor file. Within a Web module, the batch compiler

processes one directory at a time. It validates and translates each JSP page individually, and then invokes

the Java compiler for the entire group of generated Java sources files in that directory. If one JSP page

fails during the Java compilation phase, the Java compiler might not create class files for most or all of the

JSP pages that successfully compiled in that directory.

JSP file extensions

The batch compiler uses four things to determine what file extensions it should process:

1. Standard JSP file extensions

v *.jsp

v *.jspx

v *.jsw

v *.jsv

2. The url-pattern property of the jsp-property-group elements in the deployment descriptor file in Servlet

2.4 Web modules

3. The jsp.file.extensions JSP engine configuration parameter (for pre-Servlet 2.4 Web modules)

4. The batch compiler configuration parameter jsp.file.extensions

The standard extensions are always used by the batch compiler. If the Web module contains a Servlet 2.4

deployment descriptor, the batch compiler also processes any url-patterns found within the jsp-config

element. If the batch compiler target contains the JSP engine configuration parameter jsp.file.extensions,

then those extensions are also processed. If the batch compiler configuration parameter

jsp.file.extensions is present, the extensions given are also processed and will override the JSP engine

configuration parameter jsp.file.extensions.

It is a good idea to give JSP ’fragments’ an extension that is not processed by the batch compiler.

Statically-included fragments that do not stand alone generate translation or compilation errors if

processed. The JSP 2.0 Specification suggests that you use the extension .jspf for such files.

Batch compiler command

Both a Windows batch file, JspBatchCompiler.bat and Unix shell script JspBatchCompiler.sh for running

the batch compiler from the command line are found in the {WAS_ROOT}/bin directory. An Ant task

(described in the topic Batch Compiler Ant Task) is also available for executing the batch compiler using

Ant.

The batch compiler target is the only required parameter. The target is one of -ear.path, -war.path or

-enterpriseapp.name.

JspBatchCompiler -ear.path | -war.path | -enterpriseapp.name <name>

 [-response.file <filename>]

 [-webmodule.name <name>]

 [-filename <jsp name | directory name>

 [-recurse <true | false>]

 [-config.root <path>]

 [-cell.name <name>]

772 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

[-node.name <name>]

 [-server.name <name>]

 [-profileName <name>]

 [-extractToDir <path>]

 [-compileToDir <path>]

 [-compileToWebInf <true | false>]

 [-translate <true | false>]

 [-compile <true | false>]

 [-removeTempDir <true | false>]

 [-forceCompilation <true | false>]

 [-useFullPackageNames <true | false>]

 [-trackDependencies <true | false>]

 [-createDebugClassfiles <true | false>]

 [-keepgenerated <true | false>]

 [-keepGeneratedclassfiles <true | false>]

 [-usePageTagPool <true | false>]

 [-useThreadTagPool <true | false>]

 [-classloader.parentFirst <true | false>]

 [-classloader.singleWarClassloader <true | false>]

 [-additional.classpath <classpath to additional JAR files and classes>]

 [-jspCompileClasspath <classpath to Websphere Application Server public API JAR files;

 or no value at all>]

 [-verbose <true | false>]

 [-deprecation <true | false>]

 [-javaEncoding <encoding>

 [-compileWithAssert <true | false>]

 [-compilerOptions <space-separated list of java compiler options>]

 [-useJikes <true | false>]

 [-jsp.file.extensions <file extensions to process>]

 [-log.level <SEVERE | WARNING | INFO | CONFIG | FINE | FINER | FINEST | OFF>]

See batchcompiler.properties.default in {WAS_ROOT}/bin for more information.

See JspCBuild.xml in {WAS_ROOT}/bin for information about the public WebSphere Ant task JspC.

The batch compiler is aware of three groups of configuration parameters:

1. JSP engine configuration parameters for a Web module.

See the topic, “JSP engine configuration parameters” on page 760.

2. Batch compiler response file configuration parameters.

These are the parameters that are found in a batch compiler response file. See -response.file, below.

3. Batch compiler command line configuration parameters.

These are the parameters entered on the command line when running the batch compiler.

The batch compiler looks at all three groups of configuration parameters in order to determine which value

for a parameter is used when compiling JSP pages. When resolving the value for a given parameter, the

precedence is:

1. If the parameter is found on the command line, its value is used.

2. If the parameter is not found on the command line, the batch compiler looks for the parameter in a

response file named on the command line.

3. If no response file is named, or if the parameter is not found therein, the batch compiler looks for the

parameter in the Web module’s JSP engine configuration parameters.

If a configuration parameter is not found among these three groups, then a default value is used. The

default values for the configuration parameters are given below along with the description of the

parameters.

With one exception, these parameters are not case sensitive; -profileName is case sensitive. If the values

specified for these arguments are comprised of two or more words separated by spaces, you must add

quotation marks around the values.

Chapter 8. Developing WebSphere applications 773

The batch compiler does not create, or set the values of, equivalent JSP engine parameters. This means

that if a JSP page in a deployed Web module is modified and is recompiled by the JSP engine at runtime,

the JSP engine’s configuration parameters will determine the engine’s behavior. For example, if you use

the batch compiler to compile a Web module and you use the -useFullPackageNames true option, the JSP

files will be compiled to support that option. But the JSP engine parameter useFullPackageNames must

also be set to true in order for the JSP Runtime to be able to load the compiled JSP pages. If JSP pages

are modified in a deployed Web module, then the engine’s parameters should be set to the same values

used in batch compilation.

To use the JSP batch compiler, enter the following command on a single line at an operating system

command prompt:

where:

v ear.path | war.path | enterpriseapp.name

Represents the full path to a single compressed or expanded enterprise application archive (EAR) file or

Web application archive (WAR) file, or the name of the deployed enterprise application that you want to

compile. For example:

– JspBatchCompiler -ear.path c:\myproject\sampleApp.ear

– JspBatchCompiler -war.path c:\myWars\examples.war

– JspBatchCompiler -enterpriseapp.name myEnterpriseApp -webmodule.name my.war -filename

/aDir/main.jsp
v response.file

Specifies the path to a file that contains configuration parameters used by the batch compiler. The

response.file is used only if it is given on the command-line; it is ignored if it is present in a response

file. A template response file, batchcompiler.properties.default, is found in {WAS_ROOT}/bin. Copy this

template to create your own response files containing defaults for the parameters in which you are

interested. All the required and optional parameters (except response.file) can be configured in a

response file.

Example: JspBatchCompiler -response.file c:\myproject\batchc.props

Default : null

v webmodule.name

Represents the name of the specific Web module that you want to batch compile. If this argument is not

set, all Web modules in the enterprise application are compiled. This parameter is used only when

ear.path or enterpriseapp.name is given. This parameter is useful when JSP pages in a specific Web

module within a deployed enterprise application need to be regenerated, because all Shared Library

dependencies will be picked up.

Example: JspBatchCompiler -enterpriseApp.name sampleApp -webmodule.name myWebModule.war

Default: All Web modules in an EAR file or enterprise application are compiled if this parameter is not

given.

v filename

Represents the name of a single JSP file that you want to compile. If this argument is not set, all files in

the Web module are compiled. Alternatively, if filename is set to the name of a directory, only the JSP

files in that directory and that directory’s child directories are complied. The name is relative to the

context root of the Web module.

Example 1: If you want to compile the file, myTest.jsp, and it is found in /subdir/myJSPs, you would

enter -filename /subdir/myJSPs/myTest.jsp.

Example 2: If you want to compile all JSP files in /subdir/myJSPs and its child directories, you would

enter -filename subdir/myJSPs.

Default: All JSP files in the Web module are compiled. Entering -filename / is equivalent to the

default.

v recurse

774 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Determines whether subdirectories beneath the target directory are processed. This parameter is used

only when the filename parameter is given. Set value to false to process only the directory named

filename parameter; and not its subdirectories.

Example: JspBatchCompiler -enterpriseApp.name sampleApp -filename /subdir1 -recurse false.

Default: true; All directories beneath the target directory are processed.

v config.root

Specifies the location of the WebSpehere Application Server configuration directory. This parameter is

used only when enterpriseapp.name is given.

Default: {WAS_ROOT}/profiles/profilename/config

v cell.name

Specifies the name of the cell in which the application is deployed. This parameter is used only when

enterpriseapp.name is given.

Default: The default is obtained from the profile script that is used. The symbolic name of this variable

is WAS_CELL.

v node.name

Specifies the name of the node in which the application is deployed. This parameter is used only when

enterpriseapp.name is given.

Default: The default is obtained from the profile script that is used. The symbolic name of this variable

is WAS_NODE.

v server.name

Represents the name of the server in which the application is deployed. This parameter is used only

when enterpriseapp.name is given.

Default: server1

v profileName

Specifies the name of the profile you want to use. This parameter is used only when

enterpriseapp.name is given.

Example: JspBatchCompiler -enterpriseApp.name sampleApp -profileName AppServer-3

Default: The default profile is used. This is obtained from the file setupCmdLine.[bat/sh] in

{WAS_ROOT}/bin. The symbolic name is DEFAULT_PROFILE_SCRIPT.

v extractToDir

Specifies the directory into which predeployed enterprise archive (EAR) files and Web application

archive (WAR) files will be extracted before the batch compiler operates on them. This parameter is

ignored when enterpriseapp.name is given. The extractToDir parameter is used as described in the

table below.

Example: JspBatchCompiler -ear.path c:\myproject\sampleApp.ear -extractToDir c:\myTempDir.

Use-case: You must extract a compressed archive before it is batch compiled. You can also extract an

expanded archive to a new directory as well. In both cases, extraction leaves the original archive

untouched, which may be useful while development is underway.

Default values:

 Expanded archive Compressed archive

extractToDir supplied The batch compiler extracts the archive to extractToDir before operating on it. If a

file or directory of the same name as the archive already exists in the extractToDir,

the batch compiler removes the archive completely before extracting that archive. If

the batch compiler exits with no errors, it compresses the archive in place in the

extractToDir, even if the original EAR file or WAR file was expanded. If errors are

encountered during compilation, the EAR file or WAR file is left in the expanded

state even if the original EAR file or WAR file was compressed.

Chapter 8. Developing WebSphere applications 775

extractToDir not supplied The batch compiler operates on the EAR

file or WAR file in place (does not extract

it to another directory) and the archive

remains expanded after the batch

compiler finishes.

The batch compiler extracts the archive

to the directory returned by the JVM

property ″java.io.tmpdir″. The rest of the

behavior described above, when

extractToDir is supplied, is the same in

this case.

The default is server1.

v compileToDir

Specifies the directory into which JSP pages are translated into Java source files and compiled into

class files. This directory can be anywhere on the filesystem, but the batch compiler’s default behavior

is usually adequate. The batch compiler’s behavior when compiling class files is described in the table

below

Example:: JspBatchCompiler -enterpriseApp.name sampleApp -compileToDir c:\myTargetDir

Use-case: This parameter enables you to generate the Java and class files into a directory outside of

the target, which may be useful if you want to compare the newly generated files with their previous

versions which remain untouched within the target.

Default values:

 ear.path or war.path supplied enterpriseApp.name supplied

compileToDir not supplied;

compileToWebInf not supplied, or is

true

The class files are compiled into the

Web module’s WEB-INF/classes

directory

The class files are compiled into the

Web module’s WEB-INF/classes

directory.

compileToDir not supplied;

compileToWebInf is false

The class files are compiled into the

Web module’s WEB-INF/classes

directory.

The class files are compiled into the

WebSphere temp directory (usually

{WAS_ROOT}/temp).

compileToDir is supplied;

compileToWebInf not supplied, or is

either true or false

The class files are compiled into the

directory indicated by compileToDir.

The class files are compiled into the

directory indicated by compileToDir.

v compileToWebInf

Specifies whether the target directory for the compiled JSP class files should be the Web module’s

WEB-INF/classes directory. This parameter is used only when enterpriseApp.name is given, and it is

overridden by compileToDir if compileToDir is given.

The batch compiler’s default behavior is to compile to the Web module’s WEB-INF/classes directory. The

batch compiler’s behavior when compiling class files is described in the table above.

Example: JspBatchCompiler -enterpriseApp.name sampleApp -compileToWebInf false.

Use-case: Set this parameter to false when enterpriseApp.name is supplied and you want the class

files to be compiled to the WebSphere Application Server temp directory instead of the Web module’s

WEB-INF/classes directory. Recommendation: if this parameter is set to false, set forceCompilation to

true if there are any JSP class files in the WEB-INF/classes directory.

Default: true; see the table above.

v forceCompilation

Specifies whether the batch compiler is forced to recompile all JSP resources regardless or whether the

JSP page is outdated.

Example: JspBatchCompiler -ear.path c:\myproject\sampleApp.ear -forceCompilation true.

Use-case: Especially useful when creating an archive for deployment, to make sure all JSP classes are

up to date.

Default: false

v useFullPackageNames

Specifies whether the batch compiler generates full package names for JSP classes. The default is to

generate all JSP classes in the same package. The JSP engine’s class loader knows how to load JSP

776 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

classes when they are all in the same package. The default has the benefit of generating smaller

file-system paths. Full package names have the benefit of enabling the configuration of precompiled

JSP class files as servlets in the web.xml file without use of the jsp-file attribute, resulting in a single

class loader (the Web application’s class loader) being used to load all such JSP classes. Similarly,

when the JSP engine’s configuration attributes useFullPackageNames and

disableJspRuntimeCompilation are both true, a single class loader is used to load all JSP classes,

even if the JSP pages are not configured as servlets in theweb.xml file.

When useFullPackageNames is set to true, the batch compiler generates a file called

generated_web.xml in the Web module’s WEB-INF directory. This file contains servlet configuration

information for each JSP page that is successfully translated and compiled. The information can

optionally be copied into the Web module’s web.xml file so that the JSP pages are loaded as servlets by

the Web container. Note that if a JSP page is configured as a servlet in this way, no reloading of the

JSP page is done at runtime if the JSP page is modified. This is because the JSP page is treated as a

regular servlet and requests for it do not pass through the JSP engine.

Example: JspBatchCompiler –enterpriseApp.name sampleApp –useFullPackageNames true

Use-case: Enables JSP classes to be loaded by a single class loader.

Default: false

v removeTempDir

Specifies whether the Web module’s temp directory is removed. The batch compiler by default

generates JSP class files into a Web module’s WEB-INF/classes directory. JSP class files are generated

into the temp directory at runtime if a JSP page is modified and JSP reloading is enabled. By batch

compiling all the JSP pages in a Web module and also removing the temp directory, disk resources are

preserved. You can only use the removeTempDir parameter when -enterpriseApp.name is given.

Example: JspBatchCompiler -enterpriseApp.name sampleApp -removeTempDir true.

Use-case: Free up disk space by clearing out a Web application’s temp directory.

Default: false

v translate

Specifies whether JSP pages are translated and compiled. Set translate to false if you do not want JSP

pages to be translated and compiled. You must use this option in conjunction with -removeTempDir to tell

the batch compiler to remove only the temp directory and to do no further processing.

Example: JspBatchCompiler -enterpriseApp.name sampleApp -translate false -removeTempDir true.

Use-case: Free up disk space by clearing out a Web application’s temp directory, without invoking JSP

processing.

Default: true

v compile

Specifies whether JSP pages go through the Java compilation phase. Set compile to false if you do not

want JSP pages to go through the Java compilation phase.

Example: JspBatchCompiler -enterpriseApp.name sampleApp -compile false

Use-case: If you only want JSP pages to be syntax-checked, set -compile to false. You can set

-keepgenerated to true if you want to see the .java files that are generated during the translation

phase.

Default: true

v trackDependencies

Specifies whether the batch compiler recompiles a JSP page when any of its dependencies have

changed, even if the JSP page itself has not changed. Tracking dependencies incurs a significant

runtime performance penalty because the JSP Engine checks the filesystem on every request to a JSP

page to see if any of its dependencies have changed. The dependencies tracked by WebSphere

Application Server are :

1. Files statically included in the JSP page

2. Tag files used by the JSP page (excluding tag files that are in JAR files)

3. TLD files used by the JSP page (excluding TLD files that are in JAR files)

Chapter 8. Developing WebSphere applications 777

Example: JspBatchCompiler -ear.path c:\myproject\sampleApp.ear -trackDependencies true.

Use-case: Useful in a development environment.

Default: false

v createDebugClassfiles

Specifies whether the batch compiler generates class files that contain SMAP information, as per JSR

45, Debugging support for Other Languages.

Example: JspBatchCompiler -enterpriseApp.name sampleApp -createDebugClassfiles true

Use-case: Use this parameter when you want to be able to debug JSP pages in your JSR 45-compliant

IDE.

Default: false

v keepgenerated

Specifies whether the batch compiler saves or erases the generated Java source files created during

the translation phase.

If set to true, WebSphere Application Server saves the generated .java files used for compilation on

your server. By default, this argument is set to false and the .java files are erased after the class files

have compiled.

Example: JspBatchCompiler -ear.path c:\myproject\sampleApp.ear -keepgenerated true

Use-case: Use this parameter when you want to review the Java code generated by the batch compiler.

Default: false

v keepGeneratedclassfiles

Specifies whether the batch compiler saves or erases the class files generated during the compilation of

Java source files.

Example: JspBatchCompiler -ear.path c:\myproject\sampleApp.ear -keepGeneratedclassfiles false

-keepgenerated false

Use-case: Set this parameter to false if you only want to see if there are any translation or compilation

errors in your JSP pages. If paired with -keepgenerated false, this parameter results in all generated

files being removed before the batch compiler completes.

Default: true

v usePageTagPool

Enables or disables the reuse of custom tag handlers on an individual JSP page basis.

Example: JspBatchCompiler -ear.path c:\myproject\sampleApp.ear -usePageTagPool true

Use-case: Use this parameter to enable JSP-page-based reuse of tag handlers.

Default: false

v useThreadTagPool

Enables or disables the reuse of custom tag handlers on a per request thread basis per Web module.

Example: JspBatchCompiler -ear.path c:\myproject\sampleApp.ear -useThreadTagPool true

Use-case: Use this parameter to enable Web module-based reuse of tag handlers.

Default: false

v classloader.parentFirst

Specifies the search order for loading classes by instructing the batch compiler to search the parent

class loader prior to application class loader. This parameter is only used when ear.path or

enterpriseApp.name is given.

Example: JspBatchCompiler -ear.path c:\myproject\sampleApp.ear -classloader.parentFirst false

Use-case: Set this parameter to false when your Web module contains a JAR file that is also found in

the server lib directory, and you want your Web module’s JAR file to be picked up first.

Default: true

v classloader.singleWarClassloader

778 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Specifies whether to use one class loader per enterprise archive (EAR) file or one class loader per Web

application archive (WAR) file. Used only when ear.path or enterpriseApp.name is given.

Example: JspBatchCompiler -ear.path c:\myproject\sampleApp.ear -classloader.singleWarClassloader

true

Use-case: Set this parameter to true when a Web module depends on JAR files and classes in another

Web module in the same enterprise application.

Default: false; One class loader is created per WAR file with no visibility of classes in other Web

modules.

v additional.classpath

Specifies additional class path entries to be used when parsing and compiling JSP pages. This

parameter is used only when war.path is given. When war.path is the target, WebSphere Shared

Libraries are not picked up by the batch compiler. Therefore, if your WAR file relies on, for example, a

JAR file that is configured in WebSphere Application Server as a shared library, then use this option to

point to that JAR file. In addition, if you give war.path and also use the -extractToDir parameter, then

any JAR files that are in the WAR file’s manifest class-path is not added to the class path (since the

WAR file has now been extracted by itself outside the EAR file in which it resides). Use

-additional.classpath in this case to point to the necessary JAR files. Add the full path to needed

resources, separated by your system-dependent path separator.

Example: JspBatchCompiler -war.path c:\myproject\examples.war -additional.classpath

c:\myJars\someJar.jar;c:\myClasses

Use-case: Use this parameter to add to the class path JAR files and classes outside of your WAR file.

At runtime, these same JAR files and classes have to be made available through the standard

WebSphere Application Server configuration mechanisms.

Default: null

v jspCompileClasspath

This option instructs the batch compiler to use a small class path for the Java compilation phase. The

small class path greatly speeds up the compilation process. This small class path is not used by default

because it includes only a subset of WebSphere Application Server JAR files. The small class path

excludes many WebSphere Application Server JAR files, among which are those that contain

WebSphere public APIs.

If your JSP pages do not use any WebSphere public APIs within scriptlets you can enable the small

class path by using the jspCompileClasspath parameter with no value, as in Example 1 below.

If your JSP pages do use WebSphere public APIs within scriptlets, then add those additional JAR files

to the jspCompileClasspath option, as in Example 2 below.

The entries are separated by spaces, and are assumed to be relative to the WebSphere Application

Server installation root.

Example 1:If no public APIs are needed in JSP pages: JspBatchCompiler -enterpriseApp.name

sampleApp -jspCompileClasspath

Example 2: public APIs from the admin.jar file needed in JSP pages: JspBatchCompiler

-enterpriseApp.name sampleApp –jspCompileClasspath ″lib/admin.jar″

Use-case: Use this parameter to speed up the Java compilation step of JSP page processing.

Default: The entire WebSphere Application Server class path is used by default.

v verbose

Specifies whether the batch compiler should generate verbose output while compiling the generated

sources.

Example: JspBatchCompiler -war.path c:\myproject\examples.war -verbose true

Use-case: Set this parameter to true when you want to see Java compiler class loading and other

messages.

Default: false

v deprecation

Chapter 8. Developing WebSphere applications 779

Indicates the compiler should generate deprecation warnings while compiling the generated sources.

Example: JspBatchCompiler -war.path c:\myproject\examples.war -deprecation true

Use-case: Set this parameter to true when you want to see Java compiler deprecation messages.

Default: false

v javaEncoding

Specifies the encoding that will be used when the .java file is generated, and when it is compiled by the

Java compiler. When -javaEncoding is set, that encoding is passed to the java compiler via the

-encoding argument. Note that encoding is not supported by Jikes.

Example: JspBatchCompiler -war.path c:\myproject\examples.war -javaEncoding Shift-JIS

Use-case: Set this parameter when the page encoding of your JSP pages is not UTF-8 compatible.

Default value: UTF-8.

v compileWithAssert

Tells the batch compiler to enable assertions. If compileWithAssert is true, the batch compiler will pass

the –source 1.4 option to the javac compiler. If compileWithAssert is false, no option is sent to the javac

compiler. The default behavior of javac is to compile code normally even if the word assert is used as

regular identifier.

Example: JspBatchCompiler -war.path c:\myproject\examples.war -compileWithAssert true

Use-case: Set this parameter to true when you want you use the assertion facility in your JSP pages

and you want to be able to turn on assertions at runtime.

Default value: false

v compilerOptions

Specifies a list of strings to be passed on the Java compiler command. This is a space-separated list of

the form ″arg1 arg2 argn″.

Example: JspBatchCompiler -war.path c:\myproject\examples.war -compilerOptions ″ -bootclasspath

<path>″

Use-case: Use this parameter if you need Java compiler arguments other than verbose, deprecation

and Assert facility support.

Default: null

v useJikes

Specifies whether Jikes should be used for compiling Java sources. NOTE: Jikes is not shipped with

WebSphere Application Server.

Example: JspBatchCompiler -ear.path c:\myproject\sampleApp.ear -useJikes true

Use-case: Set this parameter to true in order for the batch compiler to use Jikes as the Java compiler.

Default value: false

v jsp.file.extensions

Specifies the file extensions to be processed by the batch compiler. This is a semicolon- or

colon-separated list of the form ″*.ext1;*.ext2:*.extn″. Note that this parameter is not necessary for

Servlet 2.4 Web applications because the url-pattern property of the jsp-property-group elements in the

deployment descriptor can be used to identify extensions that should be treated as JSP pages.

Example: JspBatchCompiler -enterpriseApp.name sampleApp -jsp.file.extensions *jspz;*.jspt

Use-case: Use this parameter to add additional extensions to the be processed by the batch compiler.

Default: null; See the section, “JSP batch compiler tool” on page 771, for additional information.

v log.level

Specifies the level of logging that is directed to the console during batch compilation. Values are

SEVERE | WARNING | INFO | CONFIG | FINE | FINER | FINEST | OFF

Example: JspBatchCompiler -enterpriseApp.name sampleApp -log.level FINEST

Use-case: Set this parameter higher or lower to control logging output. FINEST generates the most

output useful for debugging.

780 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Default: CONFIG

Batch compiler ant task:

The ant task JspC exposes all the batch compiler configuration options. It executes the batch compiler

under the covers. It is backward compatible with the WebSphere Application Server 5.x version of the

JspC ant task. The following table lists all the ant task attribute and their batch compiler equivalents.

 JspC attribute Equivalent batch complier parameter

earPath -ear.path

warPath -war.path

src

Same as warPath, for backward compatiblity

-war.path

enterpriseAppName -enterpriseapp.name

responseFile -response.file

webmoduleName -webmodule.name

fileName -filename -config.root

configRoot -config.root

cellName -cell.name

nodeName -node.name

serverName -server.name

profileName -profileName

extractToDir -extractToDir

compileToDir

same as compileToDir, for backward compatibility

-compileToDir -compileToDir

compileToWebInf -compileToWebInf

jspCompileClasspath -jspCompileClasspath

compilerOptions -compilerOptions

recurse -recurse

removeTempDir -removeTempDir

translate -translate

compile -compile

forceCompilation -forceCompilation

useFullPackageNames -useFullPackageNames

trackDependencies -trackDependencies

createDebugClassfiles -createDebugClassfiles

keepgenerated -keepgenerated

keepGeneratedclassfiles -keepGeneratedclassfiles

usePageTagPool -usePageTagPool

useThreadTagPool -useThreadTagPool

classloaderParentFirst -classloader.parentFirst

classloaderSingleWarClassloader -classloader.singleWarClassloader

additionalClasspath -additional.classpath

Chapter 8. Developing WebSphere applications 781

classpath

same as additionalClasspath, for backward compatibility

-additional.classpath

verbose -verbose

deprecation -deprecation

javaEncoding -javaEncoding

compileWithAssert -compileWithAssert

useJikes -useJikes

jspFileExtensions -jsp.file.extensions

logLevel -log.level

wasHome none

Classpathref none

Below is an example of a build script with multiple targets, each with different attributes. The following

commands are used to execute the script:

On Windows:

ws_ant -Dwas.home=%WAS_HOME% -Dear.path=%EAR_PATH% -Dextract.dir=%EXTRACT_DIR%

ws_ant jspc2 -Dwas.home=%WAS_HOME% -Dapp.name=%APP_NAME% -Dwebmodule.name=%MOD_NAME%

ws_ant jspc3 -Dwas.home=%WAS_HOME% -Dapp.name=%APP_NAME% -Dwebmodule.name=%MOD_NAME% -Ddir.name=%DIR_NAME%

On Unix:

ws_ant -Dwas.home=$WAS_HOME -Dear.path=$EAR_PATH -Dextract.dir=$EXTRACT_DIR

ws_ant jspc2 -Dwas.home=$WAS_HOME -Dapp.name=$APP_NAME -Dwebmodule.name=$MOD_NAME

ws_ant jspc3 -Dwas.home=$WAS_HOME -Dapp.name=$APP_NAME -Dwebmodule.name=$MOD_NAME -Ddir.name=$DIR_NAME

Example build.xml Using the JspC Task

<project name="JSP Precompile" default="jspc1" basedir=".">

 <taskdef name="wsjspc" classname="com.ibm.websphere.ant.tasks.JspC"/>

 <target name="jspc1" description="example using a path to an EAR, and extracting the EAR to a directory">

 <wsjspc wasHome="${was.home}"

 earpath="${ear.path}"

 forcecompilation="true"

 extractToDir="${extract.dir}"

 useThreadTagPool="true"

 keepgenerated="true"

 jspCompileClasspath=""

 />

 </target>

 <target name="jspc2" description="example using an enterprise app and webmodule">

 <wsjspc wasHome="${was.home}"

 enterpriseAppName="${app.name}"

 webmoduleName="${webmodule.name}"

 removeTempDir="true"

 forcecompilation="true"

 keepgenerated="true"

 jspCompileClasspath=""

 />

 </target>

 <target name="jspc3" description="example using an enterprise app, webmodule and specific directory">

 <wsjspc wasHome="${was.home}"

 enterpriseAppName="${app.name}"

 webmoduleName="${webmodule.name}"

 fileName="${dir.name}"

 recurse="false"

782 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

forcecompilation="true"

 keepgenerated="true"

 jspCompileClasspath=""

 />

 </target>

</project>

Batch compiler class path:

The batch compiler builds its class path as shown in the table below. When the batch compiler target is a

Web archive (WAR) file and war.path is supplied, the configuration additional.classpath parameter is used

to give extra class path information.

 Batch compiler target

Location added to class path enterpriseapp.name ear.path war.path

WebSphere Application Server

JAR files and classes

yes yes yes

JAR files listed in manifest class

path for a Web module

yes yes yes, when the target WAR is inside

an EAR and –extractToDir is not

used; otherwise, no.

Shared libraries yes no no

Web module JAR files and classes yes yes yes

additional.classpath parameter to

batch compiler

no no yes

jspCompileClassPath parameter When this parameter is used, the only change to the information above is that a

subset of WebSphere Application Server JAR files and classes is used for Java

compilation. All JAR files and classes, that are given in the value for the

jspCompileClassPath parameter are also added to the class path for Java

compilation.

Global tag libraries:

JavaServer Pages (JSP) tag libraries contain classes for common tasks such as processing forms and

accessing databases from JSP files.

 Tag libraries encapsulate, as simple tags, core functionality common to many Web applications. The Java

Standard Tag Library (JSTL) supports common programming tasks such as iteration and conditional

processing, and provides tags for:

v manipulating XML documents

v supporting internationalization

v using Structured Query Language (SQL)

Tag libraries also introduce the concept of an expression language to simplify page development, and

include a version of the JSP expression language.

A tag library has two parts - a Tag Library Descriptor (TLD) file and a Java archive (JAR) file.

tsx:dbconnect tag JavaServer Pages syntax: Use the <tsx:dbconnect> tag to specify information needed

to make a connection to a database through Java DataBase Connectivity (JDBC) or Open Database

Connectivity (ODBC) technology.

The <tsx:dbconnect> syntax does not establish the connection. Use the <tsx:dbquery> and <tsx:dbmodify>

syntax instead to reference a <tsx:dbconnect> tag in the same JavaServer Pages (JSP) file to establish

the connection.

Chapter 8. Developing WebSphere applications 783

When the JSP file compiles into a servlet, the Java processor adds the Java coding for the

<tsx:dbconnect> syntax to the servlet service() method, which means a new database connection is

created for each request for the JSP file.

This section describes the syntax of the <tsx:dbconnect> tag.

<tsx:dbconnect id="connection_id"

 userid="db_user" passwd="user_password"

 url="jdbc:subprotocol:database"

 driver="database_driver_name"

 jndiname="JNDI_context/logical_name">

</tsx:dbconnect>

where:

v id

Represents a required identifier. The scope is the JSP file. This identifier is referenced by the

connection attribute of a <tsx:dbquery> tag.

v userid

Represents an optional attribute that specifies a valid user ID for the database that you want to access.

Specify this attribute to add the attribute and its value to the request object.

Although the userid attribute is optional, you must provide the user ID. See <tsx:userid> and

<tsx:passwd> for an alternative to hard coding this information in the JSP file.

v passwd

Represents an optional attribute that specifies the user password for the userid attribute. (This attribute

is not optional if the userid attribute is specified.) If you specify this attribute, the attribute and its value

are added to the request object.

Although the passwd attribute is optional, you must provide the password. See <tsx:userid> and

<tsx:passwd> for an alternative to hard coding this attribute in the JSP file.

v url and driver

Respresents a required attribute if you want to establish a database connection. You must provide the

URL and driver.

The application server supports connection to JDBC databases and ODBC databases.

– For a JDBC database, the URL consists of the following colon-separated elements: jdbc, the

subprotocol name, and the name of the database to access. An example for a connection to the

Sample database included with IBM DB2 is:

url="jdbc:db2:sample"

driver="COM.ibm.db2.jdbc.app.DB2Driver"

– For an ODBC database, use the Sun JDBC-to-ODBC bridge driver included in their Java2 Software

Developers Kit (SDK) or another vendor’s ODBC driver.

The url attribute specifies the location of the database. The driver attribute specifies the name of the

driver to use in establishing the database connection.

If the database is an ODBC database, you can use an ODBC driver or the Sun JDBC-to-ODBC

bridge. If you want to use an ODBC driver, refer to the driver documentation for instructions on

specifying the database location with the url attribute and the driver name.

If you use the bridge, the url syntax is jdbc:odbc:database. An example follows:

url="jdbc:odbc:autos"

driver="sun.jdbc.odbc.JdbcOdbcDriver"

Note: To enable the application server to access the ODBC database, use the ODBC Data Source

Administrator to add the ODBC data source to the System DSN configuration. To access the ODBC

Administrator, click the ODBC icon on the Windows NT Control Panel.
v jndiname

Represents an optional attribute that identifies a valid context in the application server Java Naming and

Directory Interface (JNDI) naming context and the logical name of the data source in that context. The

Web administrator configures the context using an administrative client such as the WebSphere

Administrative Console.

784 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

If you specify the jndiname attribute, the JSP processor ignores the driver and url attributes on the

<tsx:dbconnect> tag.

An empty element (such as <url></url>) is valid.

dbquery tag JavaServer Pages syntax: Use the <tsx:dbquery> tag to establish a connection to a

database, submit database queries, and return the results set.

The <tsx:dbquery> tag does the following:

1. References a <tsx:dbconnect> tag in the same JavaServer Pages (JSP) file and uses the information

the tag provides to determine the database URL and driver. You can also obtain the user ID and

password from the <tsx:dbconnect> tag if those values are provided in the <tsx:dbconnect> tag.

2. Establishes a new connection

3. Retrieves and caches data in the results object.

4. Closes the connection and releases the connection resource.

This section describes the syntax of the <tsx:dbquery> tag.

<%-- SELECT commands and (optional) JSP syntax can be placed within the tsx:dbquery. --%>

<%-- Any other syntax, including HTML comments, are not valid. --%>

<tsx:dbquery id="query_id" connection="connection_id" limit="value" >

</tsx:dbquery>

where:

v id

Represents the identifier of this query. The scope is the JSP file. Use id to reference the query. For

example, from the <tsx:getProperty> tag, use id to display the query results.

The id is a tsx reference to the bean and can be used to retrieve the bean from the page contect. For

example, if id is named mySingleDBBean, instead of using:

– if (mySingleDBBean.getValue(″UISEAM″,0).startsWith(″N″))

use:

– com.ibm.ws.webcontainer.jsp.tsx.db.QueryResults bean =

(com.ibm.ws.webcontainer.jsp.tsx.db.QueryResults)pageContext. findAttribute(″mySingleDBBean″); if

(bean.getValue(″UISEAM″,0).startsWith(″N″)). . .

The bean properties are dynamic and the property names are the names of the columns in the results

set. If you want different column names, use the SQL keyword for specifying an alias on the SELECT

command. In the following example, the database table contains columns named FNAME and LNAME,

but the SELECT statement uses the AS keyword to map those column names to FirstName and

LastName in the results set:

Select FNAME, LNAME AS FirstName, LastName from Employee where FNAME=’Jim’

v connection

Represents the identifier of a <tsx:dbconnect> tag in this JSP file. The <tsx:dbconnect> tag provides the

database URL, driver name, and optionally, the user ID and password for the connection.

v limit

Represents an optional attribute that constrains the maximum number of records returned by a query. If

this attribute is not specified, no limit is used. In such a case, the effective limit is determined by the

number of records and the system caching capability.

v SELECT command and JSP syntax

Represents the only valid SQL command, SELECT. The <tsx:dbquery> tag must return a results set.

Refer to your database documentation for information about the SELECT command. See other articles

in this section for a description of JSP syntax for variable data and inline Java code.

dbmodify tag JavaServer Pages syntax: The <tsx:dbmodify> tag establishes a connection to a database

and then adds records to a database table.

The <tsx:dbmodify> tag does the following:

Chapter 8. Developing WebSphere applications 785

1. References a <tsx:dbconnect> tag in the same JavaServer Pages (JSP) file and uses the information

provided by that tag to determine the database URL and driver.

Note: You can also obtain the user ID and password from the <tsx:dbconnect> tag if those values are

provided in the <tsx:dbconnect> tag.

2. Establishes a new connection.

3. Updates a table in the database.

4. Closes the connection and releases the connection resource.

This section describes the syntax of the <tsx:dbmodify> tag.

<%-- Any valid database update commands can be placed within the DBMODIFY tag. -->

<%-- Any other syntax, including HTML comments, are not valid. -->

<tsx:dbmodify connection="connection_id">

</tsx:dbmodify>

where:

v connection

Represents the identifier of a <tsx:dbconnect> tag in this JSP file. The <tsx:dbconnect> tag provides the

database URL, driver name, and (optionally) the user ID and password for the connection.

v Database commands

Represents valid database commands. Refer to your database documentation for details

tsx:getProperty tag JavaServer Pages syntax and examples: The <tsx:getProperty> tag gets the value

of a bean to display in a JavaServer Pages (JSP) file.

This IBM extension of the Sun JSP <jsp:getProperty> tag implements all of the <jsp:getProperty> function

and adds the ability to introspect a database bean created using the IBM extension <tsx:dbquery> or

<tsx:dbmodify>.

Note: You cannot assign the value from this tag to a variable. The value, generated as output from this

tag, displays in the browser window.

This section describes the syntax of the <tsx:getProperty> tag:

<tsx:getProperty name="bean_name"

 property="property_name" />

where:

v name

Represents the name of the bean declared by the id attribute of a <tsx:dbquery> syntax within the JSP

file. See <tsx:dbquery> for an explanation. The value of this attribute is case-sensitive.

v property

Represents the property of the bean to access for substitution. The value of the attribute is

case-sensitive and is the locale-independent name of the property.

Tag example:

<tsx:getProperty name="userProfile" property="username" />

tsx:userid and tsx:passwd tag JavaServer Pages syntax: With the <tsx:userid> and <tsx:passwd> tags,

you do not have to hard code a user ID and password in the <tsx:dbconnect> tag.

Use the <tsx:userid> and <tsx:passwd> tags to accept user input for the values and then add that data to

the request object. You can access the request object with a JavaServer Pages (JSP) file, such as the

JSPEmployee.jsp example that requests the database connection.

You must use <tsx:userid> and <tsx:passwd> tags within a <tsx:dbconnect> tag.

786 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

This section describes the syntax of the <tsx:userid> and <tsx:passwd> tags.

<tsx:dbconnect id="connection_id"

 <userid>

 <tsx:getProperty name="request" property=request.getParameter("userid") />

 </userid>

 <passwd>

 <tsx:getProperty name="request" property=request.getParameter("passwd") />

 </passwd>

 url="protocol:database_name:database_table"

 driver="JDBC_driver_name">

</tsx:dbconnect>

where:

v <tsx:getProperty>

Represents the syntax as a mechanism for embedding variable data.

v userid

Represents a reference to the request parameter that contains the user ID. You must add the parameter

to the request object that passes to this JSP file. You can set the attribute and its value in the request

object, using an HTML form or a URL query string to pass the user-specified request parameters.

v passwd

Represents a reference to the request parameter that contains the password. Add the parameter to the

request object that passes to this JSP file. You can set the attribute and its value in the request object,

using an HTML form or a URL query string, to pass user-specified values.

tsx:repeat tag JavaServer Pages syntax: The <tsx:getProperty> tag repeats a block of HTML tagging.

Use the <tsx:repeat> syntax to iterate over a database query results set. The <tsx:repeat> syntax iterates

from the start value to the end value until one of the following conditions is met:

v The end value is reached.

v An exception is thrown.

If an exception of the types ArrayIndexOutOfBoundsException or NoSuchElementException is created

before a block completes, output is written only for the iterations up to and not including the iteration

during which the exception was created. All other exceptions results in no output being written for that tag

instance.

This section describes the syntax of the <tsx:repeat> tag:

<tsx:repeat index="name" start="starting_index" end="ending_index">

</tsx:repeat>

where:

v index

Represents an optional name used to identify the index of this repeat block. The scope of the index is

NESTED. Its type must be integer.

v start

Represents an optional starting index value for this repeat block. The default is 0.

v end

Represents an optional ending index value for this repeat block. The maximum value is 2,147,483,647.

If the value of the end attribute is less than the value of the start attribute, the end attribute is ignored.

Example: Combining tsx:repeat and tsx:getProperty JavaServer Pages tags: The following code snippet

shows you how to code these tags:

<tsx:repeat>

<tr>

 <td><tsx:getProperty name="empqs" property="EMPNO" />

 <tsx:getProperty name="empqs" property="FIRSTNME" />

Chapter 8. Developing WebSphere applications 787

<tsx:getProperty name="empqs" property="WORKDEPT" />

 <tsx:getProperty name="empqs" property="EDLEVEL" />

 </td>

</tr>

</tsx:repeat>

Example: tsx:dbmodify tag syntax: In the following example, a new employee record is added to a

database. The values of the fields are based on user input from this JavaServer Pages (JSP) file and

referenced in the database commands using the <tsx:getProperty> tag.

<tsx:dbmodify connection="conn" >

insert into EMPLOYEE

 (EMPNO,FIRSTNME,MIDINIT,LASTNAME,WORKDEPT,EDLEVEL)

values

(’<tsx:getProperty name="request" property=request.getParameter("EMPNO") />’,

’<tsx:getProperty name="request" property=request.getParameter("FIRSTNME") />’,

’<tsx:getProperty name="request" property=request.getParameter("MIDINIT") />’,

’<tsx:getProperty name="request" property=request.getParameter("LASTNAME") />’,

’<tsx:getProperty name="request" property=request.getParameter("WORKDEPT") />’,

<tsx:getProperty name="request" property=request.getParameter("EDLEVEL") />)

</tsx:dbmodify>

Example: Using tsx:repeat JavaServer Pages tag to iterate over a results set: The <tsx:repeat> tag

iterates over a results set. The results set is contained within a bean. The bean can be a static bean, for

example, a bean created by using the IBM WebSphere Studio database wizard, or a dynamically

generated bean, for example, a bean generated by the <tsx:dbquery> syntax. The following table is a

graphic representation of the contents of a bean called, myBean:

 col1 col2 col3

row0 friends Romans countrymen

row1 bacon lettuce tomato

row2 May June July

Some observations about the bean:

v The column names in the database table become the property names of the bean. The <tsx:dbquery>

section describes a technique for mapping the column names to different property names.

v The bean properties are indexed. For example, myBean.get(Col1(row2)) returns May.

v The query results are in the rows. The <tsx:repeat> tag iterates over the rows, beginning at the start

row.

The following table compares using the <tsx:repeat> tag to iterate over a static bean, versus a dynamically

generated bean:

788 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Static Bean Example <tsx:repeat> Bean Example

myBean.class

// Code to get a connection

// Code to get the data

 Select * from myTable;

// Code to close the connection

JSP file

<tsx:repeat index=abc>

 <tsx:getProperty name="myBean"

 property="col1(abc)" />

</tsx:repeat>

Notes:

v The bean (myBean.class) is a static bean.

v The method to access the bean properties is

myBean.get(property(index)).

v You can omit the property index, in which case the

index of the enclosing <tsx:repeat> tag is used. You

can also omit the index on the <tsx:repeat> tag.

v The <tsx:repeat> tag iterates over the bean properties

row by row, beginning with the start row.

JSP file

<tsx:dbconnect id="conn"

userid="alice"passwd="test"

url="jdbc:db2:sample"

driver="COM.ibm.db2.jdbc.app.DB2Driver">

</tsx:dbconnect >

<tsx:dbquery id="dynamic"

 connection="conn" >

 Select * from myTable;

</tsx:dbquery>

<tsx:repeat index=abc>

 <tsx:getProperty name="dynamic"

 property="col1(abc)" />

</tsx:repeat>

Notes:

v The bean (dynamic) is generated by the <tsx:dbquery>

tag and does not exist until the syntax executes.

v The method to access the bean properties is

dynamic.getValue(″property″, index).

v You can omit the property index, in which case the

index of the enclosing <tsx:repeat> tag is used. You

can also omit the index on the <tsx:repeat> tag.

v The <tsx:repeat> tag syntax iterates over the bean

properties row by row, beginning with the start row.

Implicit and explicit indexing

Examples 1, 2, and 3 show how to use the <tsx:repeat> tag. The examples produce the same output if all

indexed properties have 300 or fewer elements. If there are more than 300 elements, Examples 1 and 2

display all elements, while Example 3 shows only the first 300 elements.

Example 1 shows implicit indexing with the default start and default end index. The bean with the smallest

number of indexed properties restricts the number of times the loop repeats.

<table>

<tsx:repeat>

 <tr><td><tsx:getProperty name="serviceLocationsQuery" property="city" />

 </tr></td>

 <tr><td><tsx:getProperty name="serviceLocationsQuery" property="address" />

 </tr></td>

 <tr><td><tsx:getProperty name="serviceLocationsQuery" property="telephone" />

 </tr></td>

</tsx:repeat>

</table>

Example 2 shows indexing, starting index, and ending index:

<table>

<tsx:repeat index=myIndex start=0 end=2147483647>

 <tr><td><tsx:getProperty name="serviceLocationsQuery" property=city(myIndex) />

 </tr></td>

 <tr><td><tsx:getProperty name="serviceLocationsQuery" property=address(myIndex) />

 </tr></td>

 <tr><td><tsx:getProperty name="serviceLocationsQuery" property=telephone(myIndex) />

</tr></td>

</tsx:repeat>

</table>

Chapter 8. Developing WebSphere applications 789

Example 3 shows explicit indexing and ending index with implicit starting index. Although the index

attribute is specified, you can still implicitly index the indexed property city because the (myIndex) tag is

not required.

<table>

<tsx:repeat index=myIndex end=299>

 <tr><td><tsx:getProperty name="serviceLocationsQuery" property="city" /t>

 </tr></td>

 <tr><td><tsx:getProperty name="serviceLocationsQuery" property="address(myIndex)" />

 </tr></td>

 <tr><td><tsx:getProperty name="serviceLocationsQuery" property="telephone(myIndex)" />

 </tr></td>

</tsx:repeat>

</table>

Nesting <tsx:repeat> blocks

You can nest <tsx:repeat> blocks. Each block is separately indexed. This capability is useful for

interleaving properties on two beans, or properties that have subproperties. In the example, two

<tsx:repeat> blocks are nested to display the list of songs on each compact disc in the user’s shopping

cart.

<tsx:repeat index=cdindex>

 <h1><tsx:getProperty name="shoppingCart" property=cds.title /></h1>

 <table>

 <tsx:repeat>

 <tr><td><tsx:getProperty name="shoppingCart" property=cds(cdindex).playlist />

 </td></tr>

 </tsx:repeat>

 </table>

 </tsx:repeat>

Web modules

A Web module represents a Web application. A Web module is created by assembling servlets,

JavaServer Pages (JSP) files, and static content such as Hype rText Markup Language (HTML) pages into

a single deployable unit. Web modules are stored in Web archive (WAR) files, which are standard Java

archive files.

A Web module contains:

v One or more servlets, JSP files, and HTML files.

v A deployment descriptor, stored in an Extensible Markup Language (XML) file.

The file, named web.xml, declares the contents of the module. It contains information about the structure

and external dependencies of Web components in the module and describes how the components are

used at run time.

You can create Web modules as stand-alone applications, or you can combine Web modules with other

modules to create Java 2 Platform, Enterprise Edition (J2EE) applications. You install and run a Web

module in the Web container of an application server.

Troubleshooting tips for Web application deployment

Deployment of a Web application is successful if you can access the application by typing a Uniform

Resource Locator (URL) in a browser, or if you can access the application by following a link.

If you cannot access your application, follow these steps to eliminate some common errors that can occur

during migration or deployment.

Web module does not run in WebSphere Application Server Version 5 or 6.

 Symptom Your Web module does not run when you migrate it to Version 5 or 6

790 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Problem In Version 4.x, the classpath setting that affected visibility was Module Visibility Mode.

In Versions 5 and 6, you must use class loader policies to set visibility.

Recommended response Reassemble an existing module, or change the visibility settings in the class loader

policies.

Welcome page is not visible.

 Symptom You cannot access an application with a Web path of:

 /webapp/myapp

Problem The default welcome page for a Web application is assumed to be index.html. You

cannot access the default page of the myapp application unless it is named index.html.

Recommended response To identify a different welcome page, modify the properties of the Web module during

assembly. See the article ″Assembling Web applications″ for more information.

HTML files are not found.

 Symptom Your Web application ran successfully on prior versions, but now you encounter errors

that the welcome page (typically index.html), or referenced HTML files are not found:

Error 404: File not found: Banner.html

Error 404: File not found: HomeContent.html

Problem For security and consistency reasons, Web application URLs are now case-sensitive on

all operating systems.

Suppose the content of the index page is as follows:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 5.0 Frameset//EN">

<HTML>

<TITLE>

Insurance Home Page

</TITLE>

 <frameset rows="18,80">

 <frame src="Banner.html" name="BannerFrame" SCROLLING=NO>

 <frame src="HomeContent.html" name="HomeContentFrame">

 </frameset>

</HTML>

However the actual file names in the \WebSphere\AppServer\installedApps\...

directory where the application is deployed are:

banner.html

homecontent.html

Recommended response To correct this problem, modify the index.html file to change the names Banner.html

and HomeContent.html to banner.html and homecontent.html to match the names of

the files in the deployed application.

For current information available from IBM Support on known problems and their resolution, see the IBM

Support page.

IBM Support has documents that can save you time gathering information needed to resolve this problem.

Before opening a PMR, see the IBM Support page.

Web applications: Resources for learning

Use the following links to find relevant supplemental information about Web applications. The information

resides on IBM and non-IBM Internet sites, whose sponsors control the technical accuracy of the

information.

These links are provided for convenience. Often, the information is not specific to the IBM WebSphere

Application Server product, but is useful all or in part for understanding the product. When possible, links

Chapter 8. Developing WebSphere applications 791

http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCR4XA
http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCR4XA
http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCR4XA&q=mustgather

are provided to technical papers and Redbooks that supplement the broad coverage of the release

documentation with in-depth examinations of particular product areas.

View links to additional information about:

v “Web applications: Resources for learning” on page 791

v “Web applications: Resources for learning” on page 791

v “Web applications: Resources for learning” on page 791

Programming model and decisions

v J2EE BluePrints for Web applications

v Redbook on the design and implementation of Servlets, JSP files, and enterprise beans

Programming instructions and examples

v Redbook on Servlet and JSP file Programming

v Sun’s JavaTM Tutorial on Servlets and JavaServer Pages

v Web delivered samples in the Samples Gallery

Programming specifications

v Java 2 Software Development Kit (SDK)

v Servlet 2.4 Specification

v JavaServer Pages 2.0 Specification

v Differences between JavaScript and ECMAScript

v ISO 8859 Specifications

Task overview: Managing HTTP sessions

IBM WebSphere Application Server provides a service for managing HTTP sessions: Session Manager.

The key activities for session management are summarized below.

Before you begin these steps, make sure you are familiar with the programming model for accessing

HTTP session support in the applications following the Servlet 2.4 API.

1. Plan your approach to session management, which could include session tracking and session

recovery.

2. Create or modify your own applications to use session support to maintain sessions on behalf of Web

applications.

3. Assemble your application. See ″Assembling applications″ in the information center.

4. Deploy your application.

5. Ensure the administrator appropriately configures session management in the administrative domain.

6. Adjust configuration settings and perform other tuning activities for optimal use of sessions in your

environment.

Sessions

A session is a series of requests to a servlet, originating from the same user at the same browser.

Sessions allow applications running in a Web container to keep track of individual users.

For example, a servlet might use sessions to provide ″shopping carts″ to online shoppers. Suppose the

servlet is designed to record the items each shopper indicates he or she wants to purchase from the Web

site. It is important that the servlet be able to associate incoming requests with particular shoppers.

Otherwise, the servlet might mistakenly add Shopper_1’s choices to the cart of Shopper_2.

A servlet distinguishes users by their unique session IDs. The session ID arrives with each request. If the

user’s browser is cookie-enabled, the session ID is stored as a cookie. As an alternative, the session ID

can be conveyed to the servlet by URL rewriting, in which the session ID is appended to the URL of the

792 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

http://java.sun.com/blueprints/guidelines/designing_enterprise_applications/web_tier/index.html
http://publib-b.boulder.ibm.com/Redbooks.nsf/RedbookAbstracts/sg245754.html?OpenDocument
http://publib-b.boulder.ibm.com/Redbooks.nsf/RedbookAbstracts/sg245755.html?OpenDocument
http://java.sun.com/j2ee/1.4/docs/tutorial/doc/index.html
http://www7b.software.ibm.com/wsdd/library/samples/AppServer.html
http://java.sun.com/j2se/1.3/
http://www.jcp.org/en/jsr/detail?id=154
http://jcp.org/aboutJava/communityprocess/final/jsr152/index.html
http://www.webstandards.org/learn/resources/javascript/index.html
http://www.iso.org/iso/en/CatalogueListPage.CatalogueList

servlet or JavaServer Pages (JSP) file from which the user is making requests. For requests over HTTPS

or Secure Sockets Layer (SSL), Another alternative is to use SSL information to identify the session.

Session security support

You can integrate HTTP sessions and security in WebSphere Application Server. When security integration

is enabled in the session management facility and a session is accessed in a protected resource, you can

access that session only in protected resources from then on. You cannot mix secured and unsecured

resources accessing sessions when security integration is turned on. Security integration in the session

management facility is not supported in form-based login with SWAM.

Security integration rules for HTTP sessions

Only authenticated users can access sessions created in secured pages and are created under the

identity of the authenticated user. Only this authenticated user can access these sessions in other secured

pages. To protect these sessions from unauthorized users, you cannot access them from an unsecured

page.

Programmatic details and scenarios

WebSphere Application Server maintains the security of individual sessions.

An identity or user name, readable by the com.ibm.websphere.servlet.session.IBMSession interface, is

associated with a session. An unauthenticated identity is denoted by the user name anonymous.

WebSphere Application Server includes the

com.ibm.websphere.servlet.session.UnauthorizedSessionRequestException class, which is used when a

session is requested without the necessary credentials.

The session management facility uses the WebSphere Application Server security infrastructure to

determine the authenticated identity associated with a client HTTP request that either retrieves or creates

a session. WebSphere Application Server security determines identity using certificates, LPTA, and other

methods.

After obtaining the identity of the current request, the session management facility determines whether to

return the session requested using a getSession call.

The following table lists possible scenarios in which security integration is enabled with outcomes

dependent on whether the HTTP request is authenticated and whether a valid session ID and user name

was passed to the session management facility.

 Unauthenticated HTTP request is

used to retrieve a session

HTTP request is authenticated, with

an identity of ″FRED″ used to

retrieve a session

No session ID was passed in for

this request, or the ID is for a

session that is no longer valid

A new session is created. The user

name is anonymous

A new session is created. The user

name is FRED

A session ID for a valid session is

passed in. The current session

user name is ″anonymous″

The session is returned. The session is returned. session

management changes the user name to

FRED

A session ID for a valid session is

passed in. The current session

user name is FRED

The session is not returned. An

UnauthorizedSessionRequestException

error is created*

The session is returned.

A session ID for a valid session is

passed in. The current session

user name is BOB

The session is not returned. An

UnauthorizedSessionRequestException

error is created*

The session is not returned. An

UnauthorizedSessionRequestException

error is created*

Chapter 8. Developing WebSphere applications 793

* A com.ibm.websphere.servlet.session.UnauthorizedSessionRequestException error is created to the

servlet.

Session management support

WebSphere Application Server provides facilities, grouped under the heading Session Management, that

support the javax.servlet.http.HttpSession interface described in the Servlet API specification.

In accordance with the Servlet 2.3 API specification, the session management facility supports session

scoping by Web modules. Only servlets in the same Web module can access the data associated with a

particular session. Multiple requests from the same browser, each specifying a unique Web application,

result in multiple sessions with a shared session ID. You can invalidate any of the sessions that share a

session ID without affecting the other sessions.

You can configure a session timeout for each Web application. A Web application timeout value of 0 (the

default value) means that the invalidation timeout value from the Session Management facility is used.

When an HTTP client interacts with a servlet, the state information associated with a series of client

requests is represented as an HTTP session and identified by a session ID. Session Management is

responsible for managing HTTP sessions, providing storage for session data, allocating session IDs, and

tracking the session ID associated with each client request through the use of cookies or URL rewriting

techniques. Session Management can store session-related information in several ways:

v In application server memory (the default). This information cannot be shared with other application

servers.

v In a database. This storage option is known as database persistent sessions.

v In another WebSphere Application Server instance. This storage option is known as

memory-to-memory sessions.

The last two options are referred to as distributed sessions. Distributed sessions are essential for using

HTTP sessions for failover facility. When an application server receives a request associated with a

session ID that it currently does not have in memory, it can obtain the required session state by accessing

the external store (database or memory-to-memory). If distributed session support is not enabled, an

application server cannot access session information for HTTP requests that are sent to servers other than

the one where the session was originally created. Session Management implements caching optimizations

to minimize the overhead of accessing the external store, especially when consecutive requests are routed

to the same application server.

Storing session states in an external store also provides a degree of fault tolerance. If an application

server goes offline, the state of its current sessions is still available in the external store. This availability

enables other application servers to continue processing subsequent client requests associated with that

session.

Saving session states to an external location does not completely guarantee their preservation in case of a

server failure. For example, if a server fails while it is modifying the state of a session, some information is

lost and subsequent processing using that session can be affected. However, this situation represents a

very small period of time when there is a risk of losing session information.

The drawback to saving session states in an external store is that accessing the session state in an

external location can use valuable system resources. session management can improve system

performance by caching the session data at the server level. Multiple consecutive requests that are

directed to the same server can find the required state data in the cache, reducing the number of times

that the actual session state is accessed in external store and consequently reducing the overhead

associated with external location access.

Session tracking options

There are several options for session tracking, depending on what sort of tracking method you want to

use:

794 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

v Session tracking with cookies

v Session tracking with URL rewriting

v Session tracking with Secure Sockets Layer (SSL) information

Session tracking with cookies: Tracking sessions with cookies is the default. No special programming

is required to track sessions with cookies.

Session tracking with URL rewriting: An application that uses URL rewriting to track sessions must

adhere to certain programming guidelines. The application developer needs to do the following:

v Program servlets to encode URLs

v Supply a servlet or JavaServer Pages (JSP) file as an entry point to the application

Using URL rewriting also requires that you enable URL rewriting in the session management facility.

Note: In certain cases, clients cannot accept cookies. Therefore, you cannot use cookies as a session

tracking mechanism. Applications can use URL rewriting as a substitute.

Program session servlets to encode URLs

Depending on whether the servlet is returning URLs to the browser or redirecting them, include either the

encodeURL method or the encodeRedirectURL method in the servlet code. Examples demonstrating what

to replace in your current servlet code follow.

Rewrite URLs to return to the browser

Suppose you currently have this statement:

out.println("catalog<a>");

Change the servlet to call the encodeURL method before sending the URL to the output stream:

out.println("<a href=\"");

out.println(response.encodeURL ("/store/catalog"));

out.println("\">catalog");

Rewrite URLs to redirect

Suppose you currently have the following statement:

response.sendRedirect ("http://myhost/store/catalog");

Change the servlet to call the encodeRedirectURL method before sending the URL to the output stream:

response.sendRedirect (response.encodeRedirectURL ("http://myhost/store/catalog"));

The encodeURL method and encodeRedirectURL method are part of the HttpServletResponse object.

These calls check to see if URL rewriting is configured before encoding the URL. If it is not configured, the

calls return the original URL.

If both cookies and URL rewriting are enabled and the response.encodeURL method or

encodeRedirectURL method is called, the URL is encoded, even if the browser making the HTTP request

processed the session cookie.

You can also configure session support to enable protocol switch rewriting. When this option is enabled,

the product encodes the URL with the session ID for switching between HTTP and HTTPS protocols.

Supply a servlet or JSP file as an entry point

The entry point to an application, such as the initial screen presented, may not require the use of

sessions. However, if the application in general requires session support (meaning some part of it, such as

Chapter 8. Developing WebSphere applications 795

a servlet, requires session support), then after a session is created, all URLs are encoded to perpetuate

the session ID for the servlet (or other application component) requiring the session support.

The following example shows how you can embed Java code within a JSP file:

<%

response.encodeURL ("/store/catalog");

%>

Session tracking with SSL information: No special programming is required to track sessions with

Secure Sockets Layer (SSL) information.

To use SSL information, turn on Enable SSL ID tracking in the session management property page.

Because the SSL session ID is negotiated between the Web browser and HTTP server, this ID cannot

survive an HTTP server failure. However, the failure of an application server does not affect the SSL

session ID if an external HTTP server is present between WebSphere Application Server and the browser.

SSL tracking is supported for the IBM HTTP Server and iPlanet Web servers only. You can control the

lifetime of an SSL session ID by configuring options in the Web server. For example, in the IBM HTTP

Server, set the configuration variable SSLV3TIMEOUT to provide an adequate lifetime for the SSL session

ID. An interval that is too short can cause a premature termination of a session. Also, some Web browsers

might have their own timers that affect the lifetime of the SSL session ID. These Web browsers may not

leave the SSL session ID active long enough to serve as a useful mechanism for session tracking. The

internal HTTP Server of WebSphere Application Server also supports SSL tracking.

When using the SSL session ID as the session tracking mechanism in a cloned environment, use either

cookies or URL rewriting to maintain session affinity. The cookie or rewritten URL contains session affinity

information that enables the Web server to properly route a session back to the same server for each

request.

Session recovery support

For session recovery support, WebSphere Application Server provides distributed session support in the

form of database sessions. Use session recovery support under the following conditions:

v When the user’s session data must be maintained across a server restart

v When the user’s session data is too valuable to lose through an unexpected server failure

All the attributes set in a session must implement java.io.Serializable if the session requires external

storage. In general, consider making all objects held by a session serialized, even if immediate plans do

not call for session recovery support. If the Web site grows, and session recovery support becomes

necessary, the transition occurs transparently to the application if the sessions only hold serialized objects.

If not, a switch to session recovery support requires coding changes to make the session contents

serialized.

Distributed environment settings:

Use this page to specify a type for saving a session in a distributed environment.

 To view this administrative console page, click Servers > Application servers > server_name > Web

container settings > Session management > Distributed environment settings.

Distributed sessions:

Specifies the type of distributed environment to be used for saving sessions.

 None Specifies that the session management facility discards

the session data when the server shuts down.

796 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Database Specifies that the session management facility stores

session information in the data source specified by the

data source connection settings. Click Database to

change these data source settings.

Memory-to-memory replication Specifies that the session management facility stores the

session information in a data source in memory. The

session information is copied to other session

management facilities for failure recovery.

Clustered session support

A clustered environment supports load balancing, where the workload is distributed among the application

servers that compose the cluster. In a cluster environment, the same Web application must exist on each

of the servers that can access the session. You can accomplish this setup by installing an application onto

a cluster definition. Each of the servers in the group can then access the Web application

In a clustered environment, the session management facility requires an affinity mechanism so that all

requests for a particular session are directed to the same application server instance in the cluster. This

requirement conforms to the Servlet 2.3 specification in that multiple requests for a session cannot coexist

in multiple application servers. One such solution provided by IBM WebSphere Application Server is

session affinity in a cluster; this solution is available as part of the WebSphere Application Server plug-ins

for Web servers. It also provides for better performance because the sessions are cached in memory. In

clustered environments other than WebSphere Application Server clusters, you must use an affinity

mechanism (for example, IBM WebSphere Edge Server affinity).

If one of the servers in the cluster fails, it is possible for the request to reroute to another server in the

cluster. If distributed sessions support is enabled, the new server can access session data from the

database or another WebSphere Application Server instance. You can retrieve the session data only if a

new server has access to an external location from which it can retrieve the session.

Tuning session management

WebSphere Application Server session support has features for tuning session performance and operating

characteristics, particularly when sessions are configured in a distributed environment. These options

support the administrator flexibility in determining the performance and failover characteristics for their

environment.

The table summarizes the features, including whether they apply to sessions tracked in memory, in a

database, with memory-to-memory replication, or all. Click a feature for details about the feature. Some

features are easily manipulated using administrative settings; others require code or database changes.

 Feature or option Goal Applies to sessions in memory,

database, or memory-to-memory

Write frequency Minimize database write operations. Database and Memory-to-Memory

Session affinity Access the session in the same

application server instance.

All

Multirow schema Fully utilize database capacities. Database

Base in-memory session pool size Fully utilize system capacity without

overburdening system.

All

Write contents Allow flexibility in determining what

session data to write

Database and Memory-to-Memory

Scheduled invalidation Minimize contention between session

requests and invalidation of sessions

by the Session Management facility.

Minimize write operations to database

for updates to last access time only.

Database and Memory-to-Memory

Chapter 8. Developing WebSphere applications 797

Feature or option Goal Applies to sessions in memory,

database, or memory-to-memory

Tablespace and row size Increase efficiency of write operations

to database.

Database (DB2 only)

Base in-memory session pool size: The base in-memory session pool size number has different

meanings, depending on session support configuration:

v With in-memory sessions, session access is optimized for up to this number of sessions.

General memory requirements for the hardware system, and the usage characteristics of the e-business

site, determines the optimum value.

Note that increasing the base in-memory session pool size can necessitate increasing the heap sizes of

the Java processes for the corresponding WebSphere Application Servers.

Overflow in non-distributed sessions

By default, the number of sessions maintained in memory is specified by base in-memory session pool

size. If you do not wish to place a limit on the number of sessions maintained in memory and allow

overflow, set overflow to true.

Allowing an unlimited amount of sessions can potentially exhaust system memory and even allow for

system sabotage. Someone could write a malicious program that continually hits your site and creates

sessions, but ignores any cookies or encoded URLs and never utilizes the same session from one HTTP

request to the next.

When overflow is disallowed, the Session Management facility still returns a session with the

HttpServletRequest getSession(true) method when the memory limit is reached, and this is an invalid

session that is not saved.

With the WebSphere Application Server extension to HttpSession,

com.ibm.websphere.servlet.session.IBMSession, an isOverflow method returns true if the session is such

an invalid session. An application can check this status and react accordingly.

Tuning parameter settings:

Use this page to set tuning parameters for distributed sessions.

 To view this administrative console page, click Servers > Application servers >server_name> Web

container settings > Session management >Distributed environment settings >Custom tuning

parameters.

Tuning level:

Specifies that the session management facility provides certain predefined settings that affect

performance.

 Select one of these predefined settings or customize a setting. To customize a setting, select one of the

predefined settings that comes closest to the setting desired, click Custom settings, make your changes,

and then click OK.

Very high (optimize for performance)

 Write frequency Time based

Write interval 300 seconds

798 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Write contents Only updated attributes

Schedule sessions cleanup true

First time of day default 0

Second time of day default 2

High

 Write frequency Time based

Write interval 300 seconds

Write contents All session attributes

Schedule sessions cleanup false

Medium

 Write frequency End of servlet service

Write contents Only updated attributes

Schedule sessions cleanup false

Low (optimize for failover)

 Write frequency End of servlet service

Write contents All session attributes

Schedule sessions cleanup false

Custom settings

 Write frequency default Time based

Write interval default 10 seconds

Write contents default All session attributes

Schedule sessions cleanup default false

Tuning parameter custom settings:

Use this page to customize tuning parameters for distributed sessions.

 To view this administrative console page, click Servers > Application servers > server_nameWeb

container settings > Session management > Distributed environment settings > Custom tuning

parameters > Custom settings.

Write frequency:

Specifies when the session is written to the persistent store.

 End of servlet service A session writes to a database or another WebSphere

Application Server instance after the servlet completes

execution.

Manual update A programmatic sync on the IBMSession object is required

to write the session data to the database or another

WebSphere Application Server instance.

Time based Session data writes to the database or another

WebSphere Application Server instance based on the

specified Write interval value. Default: 10 seconds

Chapter 8. Developing WebSphere applications 799

Write contents:

Specifies whether updated attributes are only written to the external location or all of the session attributes

are written to the external location, regardless of whether or not they changed. The external location can

be either a database or another application server instance.

 Only updated attributes Only updated attributes are written to the persistent store.

All session attribute All attributes are written to the persistent store.

Schedule sessions cleanup:

Specifies when to clean the invalid sessions from a database or another application server instance.

 Specify distributed sessions cleanup schedule Enables the scheduled invalidation process for cleaning

up the invalidated HTTP sessions from the external

location. Enable this option to reduce the number of

updates to a database or another application server

instance required to keep the HTTP sessions alive. When

this option is not enabled, the invalidator process runs

every few minutes to remove invalidated HTTP sessions.

When this option is enabled, specify the two hours of a

day for the process to clean up the invalidated sessions in

the external location. Specify the times when there is the

least activity in the application servers. An external

location can be either a database or another application

server instance.

First Time of Day (0 - 23) Indicates the first hour during which the invalidated

sessions are cleared from the external location. Specify

this value as a positive integer between 0 and 23. This

value is valid only when schedule invalidation is enabled.

Second Time of Day (0 - 23) Indicates the second hour during which the invalidated

sessions are cleared from the external location. Specify

this value as a positive integer between 0 and 23. This

value is valid only when schedule invalidation is enabled.

Best practices for using HTTP Sessions

v Enable Security integration for securing HTTP sessions

HTTP sessions are identified by session IDs. A session ID is a pseudo-random number generated at the

runtime. Session hijacking is a known attack HTTP sessions and can be prevented if all the requests

going over the network are enforced to be over a secure connection (meaning, HTTPS). But not every

configuration in a customer environment enforces this constraint because of the performance impact of

SSL connections. Due to this relaxed mode, HTTP session is vulnerable to hijacking and because of

this vulnerability, WebSphere Application Server has the option to tightly integrate HTTP sessions and

WebSphere Application Server security. Enable security in WebSphere Application Server so that the

sessions are protected in a manner that only users who created the sessions are allowed to access

them.

v Release HttpSession objects using javax.servlet.http.HttpSession.invalidate() when finished.

HttpSession objects live inside the Web container until:

– The application explicitly and programmatically releases it using the

javax.servlet.http.HttpSession.invalidate method; quite often, programmatic invalidation is part of an

application logout function.

– WebSphere Application Server destroys the allocated HttpSession when it expires (default = 1800

seconds or 30 minutes). The WebSphere Application Server can only maintain a certain number of

HTTP sessions in memory based on session management settings. In case of distributed sessions,

800 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

when maximum cache limit is reached in memory, the session management facility removes the

least recently used (LRU) one from cache to make room for a session.

.

v Avoid trying to save and reuse the HttpSession object outside of each servlet or JSP file.

The HttpSession object is a function of the HttpRequest (you can get it only through the req.getSession

method), and a copy of it is valid only for the life of the service method of the servlet or JSP file. You

cannot cache the HttpSession object and refer to it outside the scope of a servlet or JSP file.

v Implement the java.io.Serializable interface when developing new objects to be stored in the

HTTP session.

This action allows the object to properly serialize when using distributed sessions. Without this

extension, the object cannot serialize correctly and throws an error. An example of this follows:

public class MyObject implements java.io.Serializable {...}

Make sure all instance variable objects that are not marked transient are serializable.

v The HTTPSession API does not dictate transactional behavior for sessions.

Distributed HTTPSession support does not guarantee transactional integrity of an attribute in a failover

scenario or when session affinity is broken. Use transactional aware resources like enterprise Java

beans to guarantee the transaction integrity required by your application.

v Ensure the Java objects you add to a session are in the correct class path.

If you add Java objects to a session, place the class files for those objects in the correct class path (the

application class path if utilizing sharing across Web modules in an enterprise application, or the Web

module class path if using the Servlet 2.2-complaint session sharing) or in the directory containing other

servlets used in WebSphere Application Server. In the case of session clustering, this action applies to

every node in the cluster.

Because the HttpSession object is shared among servlets that the user might access, consider adopting

a site-wide naming convention to avoid conflicts.

v Avoid storing large object graphs in the HttpSession object.

In most applications each servlet only requires a fraction of the total session data. However, by storing

the data in the HttpSession object as one large object, an application forces WebSphere Application

Server to process all of it each time.

v Utilize Session Affinity to help achieve higher cache hits in the WebSphere Application Server.

WebSphere Application Server has functionality in the HTTP Server plug-in to help with session affinity.

The plug-in reads the cookie data (or encoded URL) from the browser and helps direct the request to

the appropriate application or clone based on the assigned session key. This functionality increases use

of the in-memory cache and reduces hits to the database or another WebSphere Application Server

instance

v Maximize use of session affinity and avoid breaking affinity.

Using session affinity properly can enhance the performance of the WebSphere Application Server.

Session affinity in the WebSphere Application Server environment is a way to maximize the in-memory

cache of session objects and reduce the amount of reads to the database or another WebSphere

Application Server instance. Session affinity works by caching the session objects in the server instance

of the application with which a user is interacting. If the application is deployed in multiple servers of a

server group, the application can direct the user to any one of the servers. If the users starts on server1

and then comes in on server2 a little later, the server must write all of the session information to the

external location so that the server instance in which server2 is running can read the database. You can

avoid this database read using session affinity. With session affinity, the user starts on server1 for the

first request; then for every successive request, the user is directed back to server1. Server1 has to

look only at the cache to get the session information; server1 never has to make a call to the session

database to get the information.

You can improve performance by not breaking session affinity. Some suggestions to help avoid breaking

session affinity are:

– Combine all Web applications into a single application server instance, if possible, and use modeling

or cloning to provide failover support.

Chapter 8. Developing WebSphere applications 801

– Create the session for the frame page, but do not create sessions for the pages within the frame

when using multi-frame JSP files. (See discussion later in this topic.)
v When using multi-framed pages, follow these guidelines:

– Create a session in only one frame or before accessing any frame sets. For example, assuming

there is no session already associated with the browser and a user accesses a multi-framed JSP file,

the browser issues concurrent requests for the JSP files. Because the requests are not part of any

session, the JSP files end up creating multiple sessions and all of the cookies are sent back to the

browser. The browser honors only the last cookie that arrives. Therefore, only the client can retrieve

the session associated with the last cookie. Creating a session before accessing multi-framed pages

that utilize JSP files is recommended.

– By default, JSP files get a HTTPSession using request.getSession(true) method. So by default

JSP files create a new session if none exists for the client. Each JSP page in the browser is

requesting a new session, but only one session is used per browser instance. A developer can use

<% @ page session=″false″ %> to turn off the automatic session creation from the JSP files that do

not access the session. Then if the page needs access to the session information, the developer can

use <%HttpSession session = javax.servlet.http.HttpServletRequest.getSession(false); %> to

get the already existing session that was created by the original session creating JSP file. This

action helps prevent breaking session affinity on the initial loading of the frame pages.

– Update session data using only one frame. When using framesets, requests come into the HTTP

server concurrently. Modifying session data within only one frame so that session changes are not

overwritten by session changes in concurrent frameset is recommended.

– Avoid using multi-framed JSP files where the frames point to different Web applications. This action

results in losing the session created by another Web application because the JSESSIONID cookie

from the first Web application gets overwritten by the JSESSIONID created by the second Web

application.
v Secure all of the pages (not just some) when applying security to servlets or JSP files that use

sessions with security integration enabled, .

When it comes to security and sessions, it is all or nothing. It does not make sense to protect access to

session state only part of the time. When security integration is enabled in the session management

facility, all resources from which a session is created or accessed must be either secured or unsecured.

You cannot mix secured and unsecured resources.

The problem with securing only a couple of pages is that sessions created in secured pages are

created under the identity of the authenticated user. Only the same user can access sessions in other

secured pages. To protect these sessions from use by unauthorized users, you cannot access these

sessions from an unsecured page. When a request from an unsecured page occurs, access is denied

and an UnauthorizedSessionRequestException error is created. (UnauthorizedSessionRequestException

is a runtime exception; it is logged for you.)

v Use manual update and either the sync() method or time-based write in applications that read

session data, and update infrequently.

With END_OF_SERVICE as write frequency, when an application uses sessions and anytime data is

read from or written to that session, the LastAccess time field updates. If database sessions are used, a

new write to the database is produced. This activity is a performance hit that you can avoid using the

Manual Update option and having the record written back to the database only when data values

update, not on every read or write of the record.

To use manual update, turn it on in the session management service. (See the tables above for location

information.) Additionally, the application code must use the

com.ibm.websphere.servlet.session.IBMSession class instead of the generic HttpSession. Within the

IBMSession object there is a sync method. This method tells the WebSphere Application Server to write

the data in the session object to the database. This activity helps the developer to improve overall

performance by having the session information persist only when necessary.

Note: An alternative to using the manual updates is to utilize the timed updates to persist data at

different time intervals. This action provides similar results as the manual update scheme.

v Implement the following suggestions to achieve high performance:

802 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

– If your applications do not change the session data frequently, use Manual Update and the sync

function (or timed interval update) to efficiently persist session information.

– Keep the amount of data stored in the session as small as possible. With the ease of using sessions

to hold data, sometimes too much data is stored in the session objects. Determine a proper balance

of data storage and performance to effectively use sessions.

– If using database sessions, use a dedicated database for the session database. Avoid using the

application database. This helps to avoid contention for JDBC connections and allows for better

database performance.

– If using memory-to-memory sessions, employ partitioning (either group or single replica) as your

clusters grow in size and scaling decreases.

– Verify that you have the latest fix packs for the WebSphere Application Server.
v Utilize the following tools to help monitor session performance.

– Run the com.ibm.servlet.personalization.sessiontracking.IBMTrackerDebug servlet. - To run this

servlet, you must have the servlet invoker running in the Web application you want to run this from.

Or, you can explicitly configure this servlet in the application you want to run.

– Use the WebSphere Application Server Resource Analyzer which comes with WebSphere Application

Server to monitor active sessions and statistics for the WebSphere Application Server environment.

– Use database tracking tools such as ″Monitoring″ in DB2. (See the respective documentation for the

database system used.)

Managing HTTP sessions: Resources for learning

Use the following links to find relevant supplemental information about HTTP sessions. The information

resides on IBM and non-IBM Internet sites, whose sponsors control the technical accuracy of the

information.

These links are provided for convenience. Often, the information is not specific to the WebSphere

Application Server product, but is useful all or in part for understanding the product. When possible, links

are provided to technical papers and Redbooks that supplement the broad coverage of the release

documentation with in-depth examinations of particular product areas.

View links to additional information about:

Programming model and decisions

v Best practices

v HTTP Session Persistence Best Practices

v Improving session persistence performance with DB2

v Persistent client state HTTP cookies specification

Programming instructions and examples

v Java Servlet documentation, tutorials, and examples site

Programming specifications

v Java Servlet 2.4 API specification download site

v J2EE 1.4 specification download site

Modifying the default Web container configuration

The Web container is created initially with default properties values suitable for simple Web applications.

However, these values might not be appropriate for more complex Web applications.

Your application is considered complex if it requires any of the following features:

v Virtual host

v Servlet caching

v Special client request loads

v Persistent HTTP session support

v Special HTTP transport settings

Chapter 8. Developing WebSphere applications 803

http://www7b.software.ibm.com/wsdd/zones/bp/
http://www7b.software.ibm.com/wsdd/library/techarticles/0209_draeger/draeger.html
http://www7b.software.ibm.com/dmdd/library/techarticle/0203kitchlu/0203kitchlu.html
http://www.netscape.com/newsref/std/cookie_spec.html
http://java.sun.com/products/servlet/docs.html
http://java.sun.com/products/servlet/download.html
http://java.sun.com/j2ee/download.html

v Transaction class mappings

Make the following configuration changes if you have a complex application:

1. In the administrative console, click Servers > Application servers >server_name. Then under Web

container settings, click on one of the following:

a. Web container, if your Web application requires a virtual host, other than the default_host, or

requires servlet caching.

b. Web container transport chains, if you need to reconfigure your HTTP connections.

c. Session management, if your application requires persistent HTTP session support.

2. If your application handles special client request loads, in the administrative console, click Servers >

Application servers >server_name. Then under Additional Properties, click Thread Pools to modify

your thread pool settings.

3. If your application requires global settings for internal servlets for WAR files packaged by third-party

tools, iIn the administrative console, click Servers > Application servers >server_name > Web

container settings > Web container. Then under Additional Properties, click Custom Properties and

enter the appropriate custom property.

Web container

A Web container handles requests for servlets, JavaServer Pages (JSP) files, and other types of files that

include server-side code. The Web container creates servlet instances, loads and unloads servlets,

creates and manages request and response objects, and performs other servlet management tasks.

The Web server plug-ins, provided by the WebSphere Application Server, help supported Web servers

pass servlet requests to Web containers.

Web container settings

Use this page to configure the Web container settings.

To view this administrative console page, click Servers > Application servers > server_instance > Web

container settings > Web container.

Default virtual host:

Specifies a virtual host that enables a single host machine to resemble multiple host machines. Resources

associated with one virtual host cannot share data with resources associated with another virtual host,

even if the virtual hosts share the same physical machine.

 Select a virtual host option:

default_host

The product provides a default virtual host with some common aliases, such as the machine IP

address, short host name, and fully qualified host name. The alias comprises the first part of the

path for accessing a resource such as a servlet. For example, it is localhost:9080 in the request

http://localhost:9080/myServlet.

admin_host

This is another name for the application server; also known as server1 in the base installation.

This process supports the use of the administrative console.

Enable servlet caching:

Specifies that if a servlet is invoked once and it generates output to be cached, a cache entry is created

containing not only the output, but also side effects of the invocation. These side effects can include calls

to other servlets or Java Server Pages (JSP) files, as well as metadata about the entry, including timeout

and entry priority information.

804 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Web module deployment settings

Use this page to configure an instance of Web module deployment.

To view this administrative console page, click Applications > Enterprise Application >

application_instance > Web modules > Web_module_instance.

URI:

Specifies a URI that, when resolved relative to the application URL, specifies the location of the module

archive contents on a file system. The URI must match the ModuleRef URI in the deployment descriptor of

an application if the module was packaged as part of a deployed application or enterprise archive (EAR)

file.

Alternate deployment descriptor:

Specifies the file name for an alternative deployment descriptor file to use instead of the original

deployment descriptor file in the module JAR file.

 This file is the post-assembly version of the deployment descriptor file. You can edit the original

deployment descriptor file to resolve dependencies and security information. Specifying the use of the

alternative deployment descriptor keeps the original deployment descriptor file intact.

The value of the Alternate deployment descriptor property must be the full path name of the deployment

descriptor file, relative to the module root directory. By convention, the file is in the ALT-INF directory. If this

property is not specified, the deployment descriptor file is read from the module JAR file.

Starting weight:

Specifies the order in which modules are started. Lower weighted modules are started before higher

weighted modules.

Class loader mode:

Specifies whether the class loader should search in the parent class loader or in the application class

loader first to load a class. The standard for JDK class loaders and WebSphere class loaders is Parent

First. By specifying Parent Last, your application can override classes contained in the parent class loader,

but this action can potentially result in ClassCastException or LinkageErrors if you have mixed use of

overriden classes and non-overriden classes.

 The options are Parent First and Parent Last. The default is to search in the parent class loader before

searching in the application class loader to load a class.

 Data type String

Default Parent First

Web container custom properties

Use this page to configure arbitrary name-value pairs of data, where the name is a property key and the

value is a string value that you can use to set internal system configuration properties. Defining a new

property enables you to configure a setting beyond that which is available in the administrative console.

To view this administrative console page, click Servers > Application servers >server_name > Web

container settings > Web container > Custom properties.

HTTP Transport custom properties can also be set at the Web container level. See HTTP transport custom

properties for a description of these properties.

Chapter 8. Developing WebSphere applications 805

Name:

Specifies the name or key for the property.

 Value:

Specifies the value that is paired with the specified name.

 Data type String

Description:

Specifies information about the name-value pair.

 Data type String

Global settings for internal servlets

Web application archive (WAR) files that are packaged using third-party tools cannot specify behavior for

the services that are exposed by the Web container internal servlets. You can globally enable and disable

internal servlets for all Web applications at the Web container level by creating name-value pairs such as:

 Name Value

fileServingEnabled true

directoryBrowsingEnabled true

serveServletsByClassnameEnabled true

Settings that are defined in an assembly tool take precedence over the global settings that are set through

the custom properties at the Web container level.

Web application deployment extensions continue to hold configuration information for the services that are

provided by the internal servlets, and take precedence over the global settings that are set through the

custom properties at the Web container level.

UTF-8 encoded URLs

The UTF-8 encoded URL feature, which provides UTF-8 encoded Uniform Resource Locators (URLs) to

support the double-byte characters in URLs is enabled by default. You can prevent the Web container from

explicitly decoding URLs in UTF-8 and have them use the ISO-8859 standard as per the current HTTP

specification by using the following name-value pair:

 Name Value

DecodeUrlAsUTF8 false

Global configuration of servlet listeners

The servlet specification supports applications registering listeners for servlet-related events on an

individual application basis through the web.xml descriptor. However, using the listeners custom property, a

server can listen to servlet events across Web applications. To implement global listening, a listener is

registered at the Web container level and is propagated to all of the installed and new Web applications.

This global behavior of internal servlet listeners is controlled by the listeners custom property by using the

following name-value pair format:

806 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Name Value

listeners listener_class

The values for this property is a string specifying a comma separated list of listener classes. The listener

supplied must implement standard listener classes from the Java Servlet API or IBM listener extension

classes.

Binary Large Object (BLOB) data type for Oracle databases

The UseOracleBLOB custom property creates the HTTP session database table using the Binary Large

Object (BLOB) data type for the medium column. This property increases performance of persistent

sessions when Oracle databases are used. Due to an Oracle restriction, BLOB support requires use of the

Oracle’s oci database driver for more than 4000 bytes of data. You must also ensure that a new sessions

table is created before the server is restarted by dropping your old sessions table or by changing the

datasource definition to reference a database that does not contain a sessions table. To create a sessions

table using the BLOB data type, use the following name-vaule pair:

 Name Value

UseOracleBLOB true

Detecting Session Data Crossover

The DebugSessionCrossover custom property enables code to perform additional checks to verify that

only the session associated with the request is accessed or referenced. Messages are logged if any

discrepancies are detected. To enable session data crossover detection, use the following name-vaule

pair:

 Name Value

DebugSessionCrossover true

See article, ″Problems creating or using HTTP sessions″, for additional information.

Optimizing web services client to Web container communication

To improve performance, there is an optimized communication path between a Web services client

application and a Web container that are located in the same application server process. Requests from

the Web services client that are normally sent to the Web container using a network connection are

delivered directly to the Web container using an optimized local path. The local path is available because

the Web services client application and the Web container are running in the same process. This

optimized communication path is disabled by default. Before enabling this property, make sure that wild

cards are not specified for the Web container ports. Use specific ports for the web container when the

optimized communication path is enabled. To enable the optimized communication path, use the following

name-value pair:

 Name Value

enableInProcessConnections true

See article, “Web services client to Web container optimized communication” on page 168, for additional

information.

Chapter 8. Developing WebSphere applications 807

Transaction class mapping file entries

Following is the syntax for entries in a transaction class mapping file:

TransClassMap host:port uritemplate tclass

where:

host Is the value compared against the hostname of the HOST: header of the request. This value can

be a wildcard ’*’.

Note: A value of ’*’ for the host:port value is acceptable and is equivalent to ’*:*’.

port Is the value compared against the port of the request. This value can be a wildcard ’*’.

uritemplate

Is the value compared against the URI of the request. Any query string will not be used in the

comparison. This value can be a wildcard ’*’, or end in a wildcard.

tclass Is the Workload Manager Transaction Class name that will be used in the creation of the enclave.

 Examples:

TransClassMap www.ibm.com:80 /webap1/myservlet TCLASS1

TransClassMap www.ibm.com:* /webap1/myservlet TCLASS2

TransClassMap *:443 * TCLASS3

TransClassMap *:* /webap1/myservlet TCLASS4

TransClassMap www.ibm.com:* /webap2/* TCLASS5

TransClassMap * /myservlet TCLASS6

TransClassMap * * TCLASS6

Configuring session management by level

When you configure session management at the Web container level, all applications and the respective

Web modules in the Web container normally inherit that configuration, setting up a basic default

configuration for the applications and Web modules below it.

However, you can set up different configurations individually for specific applications and Web modules

that vary from the Web container default. These different configurations override the default for these

applications and Web modules only.

Note: When you overwrite the default session management settings on the application level, all the Web

modules below that application inherit this new setting unless they too are set to overwrite these

settings.

1. Open the Administrative console.

2. Select the level that this configuration applies to:

v For the web container level:

a. Click Servers > Application Servers.

b. Select a server from the list of application servers.

c. Under Additional Properties, click Web Container.
v For the enterprise application level:

a. Click Applications > Applications.

b. Select an applications from the list of applications.
v For the Web module level:

a. Click Applications > Enterprise Applications.

b. Select an applications from the list of applications.

808 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

c. Under Related Items, click Web Modules.

d. Select a Web module from the list of Web modules defined for this application.

3. Under Additional Properties, click Session Management.

4. Make whatever changes you need to manage sessions

5. If you are working on the Web module or application level and want these settings to override the

inherited Session Management settings, under General Properties, select Overwrite.

6. Click Apply and Save.

Configuring session tracking

To configure session tracking, complete the following:

1. Go to the appropriate level of Session Management.

2. Specify which session tracking mechanism you want to pass the session ID between the browser and

the servlet:

v To track sessions with cookies, click Enable Cookies.

To change the cookie settings, click Modify.

v To track sessions with URL rewriting, click Enable URL Rewriting.

If you want to enable protocol switch rewriting, click Enable protocol switch rewriting.

v To track sessions with SSL information, click Enable SSL ID tracking.

3. Click Apply.

4. Click Save.

5. Define the session recovery characteristics.

Serializing access to session data

The Servlet API supports concurrent access to a session in a given server instance. WebSphere

Application Server provides an option to prevent the concurrent access to a session in a given server

instance so that concurrent modification of a session does not occur in a given server instance. This

prevention is achieved by synchronizing the requests based on session. When this feature is turned on, a

session is obtained for the request before invoking the servlet and requests are synchronized by locking

the session for the servlet execution time. Note that synchronization is based on the memory copy of

session. So this feature cannot serialize requests across servers based on session when session affinity

fails.

Restriction: Use this feature only when concurrent modification of the same session data is possible and

is not desirable by the application. This feature has overhead of serializing the requests based on a

session.

Do the following to synchronize session access:

1. Select the level of Session Management on which you want to serialize session access.

2. Under Serialize Session access, click Allow serial access.

3. In the Maximum wait time box, type the amount of time, in milliseconds, a servlet waits on a session

before continuing execution. The default is 120000 milliseconds or two minutes.

4. Select Allow access on timeout if you want the servlet to gain access to the session and continue

normal execution even if the session is still locked by another servlet. If you do not select this box, the

servlet execution will abort when the session request times out.

5. Click Apply.

6. Click Save.

Chapter 8. Developing WebSphere applications 809

Session management settings

Use this page to manage HTTP session support. This support includes specifying a session tracking

mechanism, setting maximum in-memory session count, controlling overflow, and configuring session

timeout.

To view this administrative console page, click Servers > Application servers > server_name > Web

container settings > Session management.

Override session management:

Specifies whether or not these session management settings take precedence over those normally

inherited from a higher level for the current application or web module.

 By default, web modules inherit session management settings from the application level above it, and

applications inherit session management settings from the Web container level above it.

Session tracking mechanism:

Specifies a mechanism for HTTP session management.

 Mechanism Function Default

Enable SSL ID Tracking Specifies that session tracking uses

Secure Sockets Layer (SSL)

information as a session ID. Enabling

SSL tracking takes precedence over

cookie-based session tracking and

URL rewriting.

There are two parameters available if

you enable SSL ID tracking:

SSLV3Timeout and Secure

Authentication Service (SAS).

SSLV3Timeout specifies the time

interval after which SSL sessions are

renegotiated. This is a high setting

and modification does not provide any

significant impact on performance.

The SAS parameter establishes an

SSL connection only if it goes out of

the Java Virtual Machine (JVM) to

another JVM. If all the beans are

co-located within the same JVM, the

SSL used by SAS does not hinder

performance.

These are set by editing the

sas.server.properties and

sas.client.props files located in the

product_installation_root\properties

directory, where

product_installation_root is the

directory where WebSphere

Application Server is installed.

9600 seconds

810 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Enable cookies Specifies that session tracking uses

cookies to carry session IDs. If

cookies are enabled, session tracking

recognizes session IDs that arrive as

cookies and tries to use cookies for

sending session IDs. If cookies are

not enabled, session tracking uses

Uniform Resource Identifier (URL)

rewriting instead of cookies (if URL

rewriting is enabled).

Enabling cookies takes precedence

over URL rewriting. Do not disable

cookies in the session management

facility of the application server that is

running the administrative application

because this action causes the

administrative application not to

function after a restart of the server.

As an alternative, run the

administrative application in a

separate process from your

applications.

Click Modify to change these settings.

Enable URL rewriting Specifies that the session

management facility uses rewritten

URLs to carry the session IDs. If URL

rewriting is enabled, the session

management facility recognizes

session IDs that arrive in the URL if

the encodeURL method is called in

the servlet.

Enable protocol switch rewriting Specifies that the session ID is added

to a URL when the URL requires a

switch from HTTP to HTTPS or from

HTTPS to HTTP. If rewriting is

enabled, the session ID is required to

go between HTTP and HTTPS.

Maximum in-memory session count:

Specifies the maximum number of sessions to maintain in memory.

 The meaning differs depending on whether you are using in-memory or distributed sessions. For

in-memory sessions, this value specifies the number of sessions in the base session table. Use the Allow

overflow property to specify whether to limit sessions to this number for the entire session management

facility or to allow additional sessions to be stored in secondary tables. For distributed sessions, this value

specifies the size of the memory cache for sessions. When the session cache has reached its maximum

size and a new session is requested, the session management facility removes the least recently used

session from the cache to make room for the new one.

Allow overflow:

Specifies that the number of sessions in memory can exceed the value specified by the Max in-memory

session count property. This option is valid only in non-distributed sessions mode.

Session timeout:

Chapter 8. Developing WebSphere applications 811

Specifies how long a session can go unused before it is no longer valid. Specify either Set timeout or No

timeout. Specify the value in minutes greater than or equal to two.

 The value specified in a web module deployment descriptor file takes precedence over the administrative

console settings. However, the value of this setting is used as a default when the session timeout is not

specified in a web module deployment descriptor. Note that to preserve performance, the invalidation timer

is not accurate to the second. When the write frequency is time based, ensure that this value is least twice

as large as the write interval.

Security integration:

Specifies that when security integration is enabled, the session management facility associates the identity

of users with their HTTP sessions

Serialize session access:

Specifies that concurrent session access in a given server is not allowed.

 Maximum wait time Specifies the maximum amount of time a servlet request

waits on an HTTP session before continuing execution.

This parameter is optional and expressed in seconds. The

default is 120 seconds, or 2 minutes. Under normal

conditions, a servlet request waiting for access to an

HTTP session gets notified by the request that currently

owns the given HTTP session when the request finishes.

Allow access on timeout Specifies whether the servlet is executed normally or

aborted in the event of a timeout. If this box is checked,

the servlet executes normally. If this box is not checked,

the servlet execution aborts and error logs are generated.

Cookie settings

Use this page to configure cookie settings for session management.

To view this administrative console page, click Servers > Application servers > server_name > Web

container settings > Session management > Enable cookies.

Cookie name:

Specifies a unique name for the session management cookie. The servlet specification requires the name

JSESSIONID. However, for flexibility this value can be configured.

Restrict cookies to HTTP sessions:

Specifies that the session cookies include the secure field. Enabling the feature restricts the exchange of

cookies to HTTPS sessions only.

Cookie domain:

Specifies the domain field of a session tracking cookie. This value controls whether or not a browser

sends a cookie to particular servers. For example, if you specify a particular domain, session cookies are

sent to hosts in that domain. The default domain is the server.

Cookie path:

Specifies that a cookie is sent to the URL designated in the path. Specify any string representing a path

on the server. ″/″ indicates root directory. Specify a value to restrict the paths to which the cookie will be

812 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

sent. By restricting paths, you prevent the cookie from going to certain URLs on the server. If you specify

the root directory, the cookie is sent no matter which path on the given server is accessed.

Cookie maximum age:

Specifies the amount of time that the cookie lives on the client browser. Specify that the cookie lives only

as long as the current browser session, or to a maximum age. If you choose the maximum age option,

specify the age in seconds. This value corresponds to the Time to Live (TTL) value described in the

Cookie specification.

 Default is the current browser session which is equivalent to setting the value to -1.

Session management custom properties

Custom properties for session management:

CloneSeparatorChange

Use this property to maintain session affinity. The clone ID of the server is appended to session

identifier separated by colon. On some Wireless Application Protocol (WAP) devices, a colon is not

allowed. Set this property to ″true″ to change clone separator to a plus sign (+).

HttpSessionCloneId

Use this property to change the clone ID of the cluster member. Within a cluster, this name must

be unique to maintain session affinity. When set, this name overwrites the default name generated

by WebSphere Application Server. Default clone ID length: 8 or 9.

HttpSessionIdLength

Use this property to configure the session identifier length. Do not use an extremely low value;

using a low value results in reduced number of combinations possible, thereby increasing risk of

guessing the session identifier. In a cluster, all cluster members should be configured with same ID

length. Allowed range: 8 to 128. Default length: 23.

HttpSessionReaperPollInterval

Use this property to set a wake-up interval for the process that removes invalid sessions. Default

is based on maximum inactive interval set in session management. Allowed value: integer.

NoAdditionalSessionInfo

Set this value to ″true″ to force removal of information that is not needed in session identifiers. In

WebSphere Application Server base edition,a clone ID of -1 is never used; therefore, a clone ID is

not included in base edition when this is set. Also, cache ID is not used with nonpersistent

sessions; so the cache ID is not included with nonpersistent sessions when this value is set.

SessionIdentifierMaxLength

Use this value to set maximum length that a session identifier can grow. In a cluster, because of

fail-over when a request goes to new cluster member, session management appends a new clone

ID to the existing clone ID. In a large cluster, if for some reason servers are failing more often,

then it is possible that the session identifier length can be more than expected reducing room for

URL. So this property helps to find out the condition and take appropriate action to address

servers fail-over. When this is specified, message is logged when specified maximum length is

reached. Allowed value: integer.

SessionRewriteIdentifier

Use this property to change the key used with URL rewriting. Default key: jsessionid.

Configuring session tracking for Wireless Application Protocol (WAP)

devices

Most Wireless Application Protocol (WAP) devices do not support cookies. The preferred way to track

sessions for WAP devices is to use URL rewriting. However on most WAP devices, the maximum allowed

URL length is 128 characters. With URL rewriting, a session indentifier is added to the URL itself,

effectively decreasing the space available for the actual URL and the number of parameters that can be

sent on a request.

Chapter 8. Developing WebSphere applications 813

To reduce the length of session identifier, you can configure key (jsessionid), session ID length and clone

ID. To make these configuration changes, complete the following:

1. Open the Administrative console.

2. Click Servers > Application Servers.

3. Select a server from the list of application servers.

4. Under Additional Properties, click Web Container

5. Under Additional Properties, click Custom Properties.

6. Add the appropriate properties from the following list:

v HttpSessionIdLength

v SessionRewriteIdentifier

v HttpSessionCloneId

v CloneSeparatorChange

v NoAdditionalSessionInfo

v SessionIdentifierMaxLength

7. Click Apply and Save.

Configuring for database session persistence

To configure the session management facility for database session persistence, complete the following:

 1. Create and configure a JDBC provider.

 2. Create a data source pointing to an existing database, using the JDBC provider that you defined.

Resources > JDBC Providers > JDBC_provider > Data Sources > New. The data source should be

non-JTA, for example, non-XA enabled. Note the JNDI name of the data source.

 3. Verify that the correct database is listed for the value of the databaseName property under Data

Sources > datasource_name > Custom Properties. If necessary, contact your database

administrator to verify the correct database name.

 4. Go to the appropriate level of Session Management.

 5. Click Distributed Environment Settings

 6. Select and click Database.

 7. Specify the Data Source JNDI name from step 2.

 8. Specify the database user ID and password for accessing the database.

 9. Retype the password for confirmation.

10. Configure a table space and page sizes for DB2 session databases.

11. Switch to a multirow schema.

12. Click OK.

13. If you want to change the tuning parameters, click Custom Tuning Parameters and select a setting

or customize one.

14. Click Apply.

15. Click Save.

Switching to a multirow schema

By default, a single session maps to a single row in the database table used to hold sessions. With this

setup, there are hard limits to the amount of user-defined, application-specific data that WebSphere

Application Server can access.

1. Modify the Session Management facility properties to switch from single to multirow schema.

2. Manually drop the database table or delete all the rows in the database table that the product uses to

maintain HttpSession objects.

To drop the table:

a. Determine which data source configuration Session Management is using.

814 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

b. In the data source configuration, look up the database name.

c. Use the database facilities to connect to the database.

d. Drop the SESSIONS table.

Configuring tablespace and page sizes for DB2 session databases

If you are using DB2 for session persistence, you can increase the page size to optimize performance for

writing large amounts of data to the database. Page sizes of 8K, 16K, and 32K are supported.

To use a page size other than the default (4K), do the following:

1. If the SESSIONS table already exists, drop it from the DB2 database.

2. Create a new DB2 buffer pool and table space, specifying the same page size (8K, 16K or 32K) for

both, and assign the new buffer pool to this table space.

DB2 Connect to session

DB2 CREATE BUFFERPOOL sessionBP SIZE 1000 PAGESIZE 8K

DB2 Connect reset

DB2 Connect to session

DB2 CREATE TABLESPACE sessionTS PAGESIZE 8K MANAGED BY SYSTEM

 USING (’D:\DB2\NODE0000\SQL00005\sessionTS.0’) BUFFERPOOL sessionBP

DB2 Connect reset

Refer to DB2 product documentation for details.

3. Configure the correct table space name and page size in the Session Management facility. Page size

is referred to as row size on the Session Management page.)

When the product is restarted, the Session Management facility creates the new SESSIONS table in the

specified tablespace based on the indicated page size.

Database settings

Use this page to specify the settings for database session support.

To view this administrative console page, click Servers > Application servers > server_name > Web

container settings > Session management > Distributed environment settings > Database.

Datasource JNDI name:

Specifies the datasource description.

 The JNDI name of the non-XA enabled data source from which session management obtains database

connections. For example, if the JNDI name of the datasource is ″jdbc/sessions″, specify ″jdbc/sessions.″

The data source represents a pool of database connections and a configuration for that pool (such as the

pool size). The data source must already exist as a configured resource in the environment.

User ID:

Specifies the user ID for database access.

Password:

Specifies the password for database access.

DB2 row size:

Specifies the table space page size configured for the sessions table, if using a DB2 database. Possible

values are 4, 8, 16, and 32 kilobytes (KB). The default row size is 4KB.

Chapter 8. Developing WebSphere applications 815

The default row size is 4KB. In DB2, it can be updated to a larger value. This can help database

performance in some environments. When this value is other than 4, you must specify table space name

to use this property. For 4KB pages, the table space name is optional.

Table space name:

Specifies that table space to be used for the sessions table.

 This value is required when the DB2 page size is other than 4KB.

Use multi row schema:

Specifies that each instance of application data be placed in a separate row in the database, allowing

larger amounts of data to be stored for each session. This action can yield better performance in certain

usage scenarios. If using multirow schema is not enabled, instances of application data can be placed in

the same row.

Multirow schema considerations

WebSphere Application Server supports the use of a multirow schema option in which each piece of

application specific data is stored in a separate row of the database. With this setup, the total amount of

data you can place in a session is now bound only by the database capacities. The only practical limit that

remains is the size of the session attribute object.

The multirow schema potentially has performance benefits in certain usage scenarios, such as when larger

amounts of data are stored in the session but only small amounts are specifically accessed during a given

servlet processing of an HTTP request. In such a scenario, avoiding unneeded Java object serialization is

beneficial to performance.

Understand that switching between multirow and single row is not a trivial proposition.

In addition to allowing larger session records, using multirow schema can yield performance benefits.

However, it requires a little work to switch from single-row to multirow schema, as shown in the

instructions below.

Coding considerations and test environment

Consider configuring direct single-row usage to one database and multirow usage to another database

while you verify which option suits your application needs. (Do this in code by switching the data source

used; then monitor performance.)

 Programming issue Application scenario

Reasons to use single-row v You can read or write all values with just one record

read and write.

v This takes up less space in a database because you

are guaranteed that each session is only one record

long.

Reasons not to use single-row 2-megabyte limit of stored data per session.

Reasons to use multirow v The application can store an unlimited amount of data;

that is, you are limited only by the size of the database

and a 2-megabyte-per-record limit.

v The application can read individual fields instead of the

whole record. When large amounts of data are stored

in the session but only small amounts are specifically

accessed during servlet processing of an HTTP

request, multirow sessions can improve performance

by avoiding unneeded Java object serialization.

816 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Programming issue Application scenario

Reasons not to use multirow If data is small in size, you probably do not want the extra

overhead of multiple row reads when you can store

everything in one row.

In the case of multirow usage, design your application data objects not to have references to each other,

to prevent circular references. For example, suppose you are storing two objects A and B in the session

using HttpSession.put(..) method, and A contains a reference to B. In the multirow case, because objects

are stored in different rows of the database, when objects A and B are retrieved later, the object graph

between A and B is different than stored. A and B behave as independent objects.

EJB applications

Task overview: Using enterprise beans in applications

 1. Design a J2EE application and the enterprise beans that it needs. For links to design information that

is specific to enterprise beans, see “Data access : Resources for learning” on page 1154 and

“Messaging: Resources for learning” on page 1251.

 2. Develop any enterprise beans that your application will use. See ″Developing enterprise beans″ in the

information center.

 3. Prepare for assembly. For your EJB 2.x-compliant entity beans, decide on an appropriate access

intent policy.

 4. Assemble the beans into one or more EJB modules using the assembly tool. See ″Assembling EJB

modules″ in the information center for more information. This process includes setting security, see

″Securing enterprise bean applications″. For your EJB 2.x-compliant entity beans, you might also

want to designate container-managed persistence (CMP) sequence groups. See ″Setting the run time

for CMP sequence groups″ in the information center.

 5. Assemble the modules into a J2EE application using the assembly tool. See ″Assembling

applications″ in the information center.

 6. For a given application server, update the EJB container configuration if needed for the application to

be deployed, and determine if you want to batch commands or defer commands for container

managed persistence. See ″Setting the run time for batched commands with JVM arguments″ and

″Setting the run time for deferred create with JVM arguments″ in the information center.

 7. Deploy the application in an application server.

 8. Test the modules.

v As needed, debug problems with the container.

v Debug access problems.

 9. Assemble the production application using the assembly tools. See ″Assembling applications″ in the

information center

10. Deploy the application to a production environment.

11. Manage the application:

a. Manage installed EJB modules. After an application has been installed, you can manage its EJB

modules individually through the Assembly Service Toolkit.

b. Manage other aspects of the J2EE application.

12. Update the module and redeploy it using the assembly tools. See ″Assembling applications″ in the

information center.

13. Tune the performance of the application. See ″Best practices for developing enterprise beans″ in the

information center.

Chapter 8. Developing WebSphere applications 817

Enterprise beans

An enterprise bean is a Java component that can be combined with other resources to create J2EE

applications. There are three types of enterprise beans, entity beans, session beans, and message-driven

beans.

All beans reside in EJB containers, which provide an interface between the beans and the application

server on which they reside.

Entity beans store permanent data, so they require connections to a form of persistent storage. This

storage might be a database, an existing legacy application, a file, or another type of persistent storage.

Session beans typically contain the high-level and mid-level business logic for an application. Each method

on a session bean typically performs a particular high-level operation. For example, submitting an order or

transferring money between accounts. Session beans often invoke methods on entity beans in the course

of their business logic.

Session beans can be either stateful or stateless. A stateful bean instance is intended for use by a single

client during its lifetime, where the client performs a series of method calls that are related to each other in

time for that client. One example is a ″shopping cart″ where the client adds items to the cart over the

course of an online shopping session. In contrast, a stateless bean instance is typically used by many

clients during its lifetime, so stateless beans are appropriate for business logic operations that can be

completed in the span of a single method invocation. Stateful beans should be used only where absolutely

necessary -- using stateless beans improves the ability to debug, maintain, and scale the application.

Message-driven beans enable asynchronous message servicing.

v The EJB container and a Java Message Service (JMS) provider work together to process messages.

When a message arrives from another application component through JMS, the EJB container forwards

it through an onMessage() call to a message-driven bean instance, which then processes the message.

In other respects, message-driven beans are similar to stateless session beans.

v The EJB container and a Java Connector Architecture (JCA) resource adapter work together to process

messages from an enterprise information system (EIS). When a message arrives from an EIS, the

resource adapter receives the message and forwards it to a message-driven bean, which then

processes the message. The message-driven bean is provided services such as transaction support by

the EJB container in the same way that other enterprise beans are provided service.

Beans that require data access use data sources, which are administrative resources that define pools of

connections to persistent storage mechanisms.

For more information about enterprise beans, see ″Resources for learning.″

EJB modules

An EJB module is used to assemble one or more enterprise beans into a single deployable unit. An EJB

module is stored in a standard Java archive (JAR) file.

An EJB module contains the following:

v One or more deployable enterprise beans.

v A deployment descriptor, stored in an Extensible Markup Language (XML) file. This file declares the

contents of the module, defines the structure and external dependencies of the beans in the module,

and describes how the beans are to be used at run time.

You can deploy an EJB module as a stand alone application, or combine it with other EJB modules or with

Web modules to create a J2EE application. An EJB module is installed and run in an enterprise bean

container.

For more information about EJB modules, see ″Resources for learning.″

818 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

EJB containers

An Enterprise JavaBeans (EJB) container provides a run-time environment for enterprise beans within the

application server. The container handles all aspects of an enterprise bean’s operation within the

application server and acts as an intermediary between the user-written business logic within the bean and

the rest of the application server environment.

One or more EJB modules, each containing one or more enterprise beans, can be installed in a single

container.

The EJB container provides many services to the enterprise bean, including the following:

v Beginning, committing, and rolling back transactions as necessary.

v Maintaining pools of enterprise bean instances ready for incoming requests and moving these instances

between the inactive pools and an active state, ensuring that threading conditions within the bean are

satisfied.

v Most importantly, automatically synchronizing data in an entity bean’s instance variables with

corresponding data items stored in persistent storage.

By dynamically maintaining a set of active bean instances and synchronizing bean state with persistent

storage when beans are moved into and out of active state, the container makes it possible for an

application to manage many more bean instances than could otherwise simultaneously be held in the

application server’s memory. In this respect, an EJB container provides services similar to virtual memory

within an operating system.

Between transactions, the state of an entity bean can be cached. The EJB container supports option A, B,

and C caching.

By default, an EJB container runs in the quick start mode. The EJB container startup logic delays the

loading and processing of all EJB types except Message Driven Beans (because they must exist before

messages are posted for them), Startup Beans (which must be processed at server startup time), and

those EJB types that you specify to initialize at server start. For more information about disabling quick

start for EJB types, see ″Changing enterprise bean types to initialize at application start time using the

Application Server Toolkit″ in the information center.

All other EJB initialization is delayed until the first use of the EJB type. When using Local Interfaces, the

first use is when you perform an InitialContext.lookup() method for the type. For Remote Interfaces, it is

when you call the first method on an EJB or its Home.

For more information about EJB containers, see ″Resources for learning.″

Enterprise beans: Resources for learning

Use the following links to find relevant supplemental information about enterprise beans. The information

resides on IBM and non-IBM Internet sites, whose sponsors control the technical accuracy of the

information.

These links are provided for convenience. Often, the information is not specific to this product but is useful

all or in part for understanding the product. When possible, links are provided to technical papers and

Redbooks that supplement the broad coverage of the release documentation with in-depth examinations of

particular product areas.

View links to additional information about:

v Planning, business scenarios, and IT architecture

v Programming model and decisions

v Programming instructions and examples

v Programming specifications

Chapter 8. Developing WebSphere applications 819

Planning, business scenarios, and IT architecture

v Mastering Enterprise JavaBeans

A comprehensive treatment of Enterprise JavaBeans (EJB) programming in nonprintable form (PDF).

One must be registered to download the PDF, but registration is free. Information about purchasing a

hardcopy is available on the Web site.

v Enterprise JavaBeans by Richard Monson-Haefel (O’Reilly and Associates, Inc.: Third Edition, 2001)

Programming model and decisions

v Read all about EJB 2.0

A comprehensive overview of the 2.0 specification that is still relevant to users of EJB 2.1.

v The J2EE Tutorial

This set of articles by Sun Microsystems covers several EJB-related topics, including the basic

programming models, persistence, and EJB Query Language.

Programming instructions and examples

v Rules and Patterns for Session Facades

EJB programming practice: Fronting entity beans with a session-bean facade.

v WebSphere Application Server Development Best Practices for Performance and Scalability

Programming practice for enterprise beans and other types of J2EE components.

v Optimistic Locking in IBM WebSphere Application Server 4.0.2

Examples of the effect of optimistic concurrency on application behavior. Although the paper is based on

a previous version of this product, the data access issues discussed in it are current.

This paper does not seem to be available directly by URL. To view this paper, visit the specified URL

and search on ″optimistic locking″

Programming specifications

v Enterprise JavaBeans 2.1 Specification

You can download the specification from this URL.

v JavaTM 2 Platform: Compatibility with Previous Releases

This Sun Microsystems article includes both source and binary compatibility issues.

EJB method Invocation Queuing

Method invocations to enterprise beans are only queued for remote clients, making the method call. An

example of a remote client is an enterprise Java bean (EJB) client running in a separate Java virtual

machine (JVM) (another address space) from the enterprise bean. In contrast, no queuing occurs if the

EJB client, either a servlet or another enterprise bean, is installed in the same JVM on which the EJB

method runs and on the same thread of execution as the EJB client.

Remote enterprise beans communicate by using the Remote Method Invocation over Internet Inter-ORB

Protocol (RMI-IIOP). Method invocations initiated over RMI-IIOP are processed by a server-side object

request broker (ORB). The thread pool acts as a queue for incoming requests. However, if a remote

method request is issued and there are no more available threads in the thread pool, a new thread is

created. After the method request completes the thread is destroyed. Therefore, when the ORB is used to

process remote method requests, the EJB container is an open queue, due to the use of unbounded

threads. The following illustration depicts the two queuing options of enterprise beans.

820 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

http://www.theserverside.com/books/masteringEJB/index.jsp
http://www-106.ibm.com/developerworks/java/library/j-jw-ejb20/
http://java.sun.com/j2ee/tutorial/1_3-fcs/index.html
http://www7b.boulder.ibm.com/wsdd/library/techarticles/0106_brown/sessionfacades.html
http://www-4.ibm.com/software/webservers/appserv/ws_bestpractices.pdf
http://www7b.boulder.ibm.com/wsdd/
http://java.sun.com/products/ejb/docs.html
http://java.sun.com/j2se/1.4.1/compatibility.html

EJB Queuing

Request queued
in the Servlet Engine

Threads

Request
queued
in the ORB
Thread Pool

EJB Client

Servlet

Servlet Engine

EJB Container

ORB Thread Pool

REMOTE

WebSphere

Application Server

WebSphere

Application Server

The following are two tips for queueing enterprise beans:

v Analyze the calling patterns of the EJB client.

When configuring the thread pool, it is important to understand the calling patterns of the EJB client. If a

servlet is making a small number of calls to remote enterprise beans and each method call is relatively

quick, consider setting the number of threads in the ORB thread pool to a value lower than the Web

container thread pool size value.

Longer-lived EJB calls

Short-lived EJB calls

Servlet service() Servlet service()

BEGIN END

Execution timeline

Servlet service() Servlet service()

BEGIN END

Execution timeline

Remote Call Remote Call

Remote Call Remote Call

Chapter 8. Developing WebSphere applications 821

The degree to which the ORB thread pool value needs increasing is a function of the number of

simultaneous servlets, that is, clients, calling enterprise beans and the duration of each method call. If

the method calls are longer or the applications spend a lot of time in the ORB, consider making the

ORB thread pool size equal to the Web container size. If the servlet makes only short-lived or quick

calls to the ORB, servlets can potentially reuse the same ORB thread. In this case, the ORB thread

pool can be small, perhaps even one-half of the thread pool size setting of the Web container.

v Monitor the percentage of configured threads in use.

Tivoli Performance Viewer shows a metric called percent maxed, which is used to determine how often

the configured threads are used. A value that is consistently in the double-digits, indicates a possible

bottleneck a the ORB. Increase the number of threads.

See also ″Queuing network″ in the information center.

Using access intent policies

Apply access intent policies to methods of CMP entity beans.

Access intent policies

An access intent policy is a named set of properties (access intents) that governs data access for

Enterprise JavaBeans (EJB) persistence. You can assign policies to an entity bean and to individual

methods on an entity bean’s home, remote, or local interfaces during assembly. You can set access

intents only within EJB Version 2.x-compliant modules for entity beans with CMP Version 2.x.

This product supplies a number of access intent policies that specify permutations of read intent and

concurrency control; the pessimistic/update policy can be qualified further. The selected policy determines

the appropriate isolation level and locking strategy used by the run time environment.

Access intent policies are specifically designed to supplant the use of isolation level and access intent

method-level modifiers found in the extended deployment descriptor for EJB version 1.1 enterprise beans.

You cannot specify isolation level and read-only modifiers for EJB version 2.x enterprise beans.

Access intent policies configured on an entity basis define the default access intent for that entity. The

default access intent controls the entity unless you specify a different access intent policy based on either

method-level configuration or application profiling.

Note: Method level access intent has been deprecated for Version 6.

You can use application profiling or method level access intent policies to control access intent more

precisely. Method-level access intent policies are named and defined at the module level. A module can

have one or many such policies. Policies are assigned, and apply, to individual methods of the declared

interfaces of entity beans and their associated home interfaces. A method-based policy is acted upon by

the combination of the EJB container and persistence manager when the method causes the entity to

load.

For entity beans that are backed by tables with nullable columns, use an optimistic policy with caution.

Nullable columns are automatically excluded from overqualified updates at deployment time; concurrent

changes to a nullable field might result in lost updates. When used with the IBM Rational Application

Developer product, this product provides support for selecting a subset of the non-nullable columns that

are to be reflected in the overqualified update statement that is generated in the deployment code to

support optimistic policies.

Concurrency control:

Concurrency control is the management of contention for data resources. A concurrency control scheme is

considered pessimistic when it locks a given resource early in the data-access transaction and does not

822 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

release it until the transaction is closed. A concurrency control scheme is considered optimistic when locks

are acquired and released over a very short period of time at the end of a transaction.

 The objective of optimistic concurrency is to minimize the time over which a given resource would be

unavailable for use by other transactions. This is especially important with long-running transactions, which

under a pessimistic scheme would lock up a resource for unacceptably long periods of time.

Under an optimistic scheme, locks are obtained immediately before a read operation and released

immediately afterwards. Update locks are obtained immediately before an update operation and held until

the end of the transaction.

To enable optimistic concurrency, this product uses an overqualified update scheme to test whether the

underlying data source has been updated by another transaction since the beginning of the current

transaction. With this scheme, the columns marked for update and their original values are added explicitly

through a WHERE clause in the UPDATE statement so that the statement fails if the underlying column

values have been changed. As a result, this scheme can provide column-level concurrency control;

pessimistic schemes can control concurrency at the row level only.

Optimistic schemes typically perform this type of test only at the end of a transaction. If the underlying

columns have not been updated since the beginning of the transaction, pending updates to

container-managed persistence fields are committed and the locks are released. If locks cannot be

acquired or if some other transaction has updated the columns since the beginning of the current

transaction, the transaction is rolled back: All work performed within the transaction is lost.

Pessimistic and optimistic concurrency schemes require different transaction isolation levels. Enterprise

beans that participate in the same transaction and require different concurrency control schemes cannot

operate on the same underlying data connection.

Whether or not to use optimistic concurrency depends on the type of transaction. Transactions with a high

penalty for failure might be better managed with a pessimistic scheme. (A high-penalty transaction is one

for which recovery would be risky or resource-intensive.) For low-penalty transactions, it is often worth the

risk of failure to gain efficiency through the use of an optimistic scheme. In general, optimistic concurrency

is more efficient when update collisions are expected to be infrequent; pessimistic concurrency is more

efficient when update collisions are expected to occur often.

Read-ahead hints:

Read-ahead schemes enable applications to minimize the number of database round trips by retrieving a

working set of container-managed persistence (CMP) beans for the transaction within one query.

Read-ahead involves activating the requested CMP beans and caching the data for their related beans,

which ensures that data is present for the beans that are most likely to be needed next by an application.

A read-ahead hint is a representation of the related beans that are to be read. It is associated with the

findByPrimaryKey method for the requested bean type, which must be an EJB 2.x-compliant CMP entity

bean.

 A read-ahead hint takes the form of a character string. You do not have to provide the string; the wizard

generates it for you based on CMRs defined for the bean. The following example is provided as

supplemental information only. Suppose a CMP bean type A has a finder method that returns instances of

bean A. A read-ahead hint for this method is specified using the following notation: RelB.RelC; RelD

Interpret the preceding notation as follows:

v Bean type A has a CMR with bean types B and D.

v Bean type B has a CMR with bean type C.

For each bean of type A that is retrieved from the database, its directly-related B and D beans and its

indirectly-related C beans are also retrieved. The order of the retrieved bean data columns in each row of

Chapter 8. Developing WebSphere applications 823

the result set is the same as their order in the read-ahead hint: an A bean, a B bean (or null), a C bean (or

null), a D bean (or null). For hints in which the same relationship is mentioned more than once (for

example, RelB.RelC;RelB.RelE), a bean’s data columns appear only once, at the position it first appears in

the hint.

The tokens shown in the notation (RelB and so on) must be CMR field names for the relationships as

defined in the deployment descriptor for the bean. In indirect relationships such as RelB.RelC, RelC is a

CMR field name defined in the deployment descriptor for bean type B.

A single read-ahead hint cannot refer to the same bean type in more than one relationship. For example, if

a Department bean has a relationship employees with the Employee bean and also has a relationship

manager with the Employee bean, the read-ahead hint cannot specify both employees and manager.

For more information about how to set read-ahead hints, see the documentation for the Rational

Application Developer product.

Some things to consider

When developing your read-ahead hints, you should keep the following in mind:

v Read ahead on long or complex paths can result in a query that is too complex to be useful. Read

ahead on root or leaf inheritance mappings need particular care. You should add up the number of

tables that are involved in the preload and then consider whether a join that complex is really a

reasonable query on your target database.

v Read ahead does NOT work in the following cases:

– preload paths across M:N relationships

– preload paths across recursive enterprise bean relationships or recursive fk relationships

– where multiple instances of the same table occur on the same path (whether through a recursive

relationship or not).

– when readAhead contains a table join. Different access intents can result in requiring a select for

update statement. Check the matrix on the JDBC driver and select for update support to see if

readAhead is enabled.

Configuring read-read consistency checking with the assembly tools

Read-read consistency checking only applies to LifeTimeInCache beans whose data is read from another

transaction. For the Access Intents that are for repeatable read (RR), this means the product checks that

the data is consistent with that in the data store, and ensures that no one updates it after the checking.

For the Access Intents that are for read committed (RC), this means the product checks that the data is

consistent at the point of checking, it does not guarantee that the data does not change after the

checking. This makes the behavior of the LifeTimeInCache bean the same as non-LifeTimeInCache beans.

To perform this checking, you need to configure CMP entity beans with read-read consistency checking.

You can do this using the Application Server Toolkit.

 1. Start the Application Server Toolkit. See ″Starting an assembly tool″ in the information center

 2. In the Project Explorer view of the J2EE perspective, right-click the Deployment Descriptor: EJB

Module Name under the EJB module for the bean instance, then select Open With > Deployment

Descriptor Editor. A property dialog notebook for the EJB project is displayed in the property pane.

 3. Select the Access tab. The Add Access Intent window appears. There are two areas of the panel that

deal with adding access intent:

v Default Access Intent for Entities 2.x (Bean Level)

v Access Intent for Entities 2.x (Method Level)

 4. Select the Bean or Method level. Another access intent window appears where you can set the

properties you wish to use.

824 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

5. Use the dropdown list to select the Access intent name.

 6. Optional: Enter a description.

 7. Check the Persistence Option box.

 8. Check the Verify Read Only Data box.

 9. Use the dropdown list to select your choice for read-read consistency checking. You have three

options:

NONE No read-read checking is done.

AT_TRAN_BEGIN

During ejbLoad, if the data is from cache, check the database to ensure that the data of the

bean has not changed since the last load (with proper locking based on access intent’s

concurrency control attribute.)

AT_TRAN_END

At the end of transaction, if the bean is not changed and did not load by the current

transaction, check the database to ensure that the data of the bean has not changed from

last load (with proper locking based on access intent’s concurrency control attribute.) If the

data has changed, fail the transaction.

10. Select Finish.

Examples: read-read consistency checking:

Usage Scenario

Read-read consistency checking only applies to LifeTimeInCache beans whose data is read from another

transaction. For the Access Intents that are for repeatable read (RR), this means the product checks that

the data is consistent with that in the data store, and ensures that no one updates it after the checking.

For the Access Intents that are for read committed (RC), this means the product checks that the data is

consistent at the point of checking, it does not guarantee that the data does not change after the

checking. This makes the behavior of the LifeTimeInCache bean the same as non-LifeTimeInCache beans.

You have three options for setting consistency checking, as shown in the following scenarios concerning

the calculation of interest in ″Ann’s″ bank account. In each case, the data store is shared by this EJB CMP

application (to calculate the interest) and other applications, such as EJB BMP, JDBC, or legacy

applications. Also in each case, the EJB Account is configured as a “long-lifetime” bean.

NONE

v The server is started.

v User1 in Transaction 1 calls Account.findByPrimaryKey(″10001″), account data for Ann is read from the

database, with a balance of $100.

v Ann‘s record is cached by the persistence manager (PM) on the server.

v User 2 writes a JDBC call and changes the balance to $120.

v User3 in Transaction 2 calls Account.findByPrimaryKey() for account ″10001″, Ann‘s data is read from

cache, with a balance of $100.

v Calculate Ann‘s interest, but the result might not be correct because of the data integrity issue.

Read-read checking AT_TRAN_BEGIN

v The server is started.

v User1 in Transaction 1 calls Account.findByPrimaryKey(″10001″), account data for Ann is read from the

database, with a balance of $100.

v Ann‘s record is cached by the persistence manager (PM) on the server.

v User 2 writes a JDBC call and changes the balance to $120.

v User3 in Transaction 2 calls Account.findByPrimaryKey() for account ″10001″, Ann‘s data is read from

cache, with a balance of $100.

Chapter 8. Developing WebSphere applications 825

v PM performs read-read check on Ann’s account and finds that the balance of 100 is changed. It issues

a database query to retrieve balance of $120, and Ann‘s data in the cache is refreshed.

v Calculate Ann‘s interest, proceed with the transaction because data integrity is protected.

Read-read checking AT_TRAN_END

v The server is started.

v User1 in Transaction 1 calls Account.findByPrimaryKey(″10001″), account data for Ann is read from the

database, with a balance of $100.

v Ann‘s record is cached by the persistence manager (PM) on the server.

v User 2 writes a JDBC call and changes the balance to $120.

v User 3 in Transaction 2 calls Account.findByPrimaryKey() for account ″10001″, Ann‘s data is read from

database, with balance of $100.

v Calculate Ann‘s interest.

v During end of transaction 2, PM performs read-read check on Ann’s account and finds that the balance

of 100 is changed.

v PM rolls back the transaction and invalidates the cache. The transaction fails and again data integrity is

protected.

Access intent service

Access intent is a WebSphere Application Server run-time service that enables you to more precisely

manage an application’s persistence. The access intent service defines a set of declarative annotations

used by the Enterprise JavaBeans (EJB) container and its agents to make performance optimizations for

entity bean access. These annotations are organized into sets called access intent policies.

Access intent policies contain a set of annotations considered as hints by the EJB container and its

agents. Most access intent policies are hints representing high-level abstractions that can be mapped to a

specific back end resource manager. It is the responsibility of the EJB persistence machinery to ensure the

necessary concurrency control, connection, and cache management when carrying out the persistence

details. The EJB persistence manager can use access intent hints to make better performance decisions

when carrying out its assigned task. A smaller number of access intents are hints to the EJB container,

influencing the management of EJB collections.

Although it is recommended that you always configure bean level access intent for your applications, if you

find it necessary you can apply access intent policies to methods within the scope of an EJB module. In

such cases the policy becomes the default access intent for all requests upon the configured methods.

You can also apply access intent policies to beans within the scope of application profiles. Consequently,

you can configure beans with multiple and opposing access intent policies. The application profiling

documentation explains in more detail how to configure an application to apply a particular access intent

policy to a bean for one request, then apply another access intent policy to the same bean for a different

request.

Access intent design considerations

Use the access intent service to solve clear performance problems. Identify usage patterns that lead to

poor application performance and apply appropriate access intent policies.

Refrain from over-tuning an application. You can introduce errors by incorrectly using the access intent

service. For example, misuse of the wsPessimisticUpdate-NoCollision policy can result in lost updates;

inappropriately setting the collection increment value can introduce performance issues; and problem

determination is more difficult when an application is confusingly configured with multiple access intent

policies. Clarity and simplicity should be your guiding principles when using the access intent service. This

is even more important when applying access intent polices within the scope of application profiles (a

feature of WebSphere Business Integration Server Foundation).

826 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Even though access intent policies can be configured on any method of an entity bean, some attributes of

a policy can only be leveraged by the run-time environment under certain conditions. For example,

concurrency and access intent are only used for CMP entity beans when the ejbLoad() method is driven to

open a connection to, and read data from, a given resource; that data is cached and used to drive the

proper queries during invocation of the ejbStore() method. Read-ahead hints are only used during the

execution of a finder for a bean. Finally, the collection increment and resource manager prefetch increment

are only used on multi-object finders. Configuring policies on methods that will not use the policy is not an

error (only certain attributes of any policy are used, even when the policy is appropriately applied to a

method). However, configuring policies unnecessarily throughout an application obscures the design of the

application and complicates the maintenance of the application.

Applying access intent policies to methods

You apply an access intent policy to a method, or set of methods, in an application’s entity beans through

the assembly tools. See ″Assembling applications″ in the information center.

Note: Method level access intent is deprecated in Version 6.0.

 1. Start the Application Server Toolkit. See ″Starting an assembly tool″ in the information center.

 2. Optional: Open the J2EE perspective to work with J2EE projects. Click Window > Open

Perspective > Other > J2EE.

 3. Optional: Open the Project Explorer view. Click Window > Show View > Project Explorer. Another

helpful view is the Navigator view (Window > Show View > Navigator).

 4. Create a new application EAR file or edit an existing one.

For example, to change attributes of an existing application, use the import wizard to import an EAR

file. To start the import wizard:

a. Select File > Import > EAR file > Next

b. Select the EAR file.

c. Create a WebSphere Application Server v6.0 type of Server Runtime. Select New to open the

New Server Runtime Wizard and follow the instructions.

d. In the Target server field, select WebSphere Application Server v6.0 type of Server Runtime.

e. Select Finish

 5. In the Project Explorer view of the J2EE perspective, right-click the Deployment Descriptor: EJB

Module Name under the EJB module for the bean instance, then select Open With > Deployment

Descriptor Editor. A property dialog notebook for the EJB project is displayed in the property pane.

 6. Select the Access tab.

 7. On the right side of the Access Intent for Entities 2.x (Method Level) panel, select Add. The Add

Access Intent panel displays.

 8. Specify the Name for your new intent policy.

 9. Select the Access intent name from the drop-down list.

10. Enter a Description to help you remember what this policy does.

11. Optional: Select Read Ahead Hint. A single access intent read ahead hint might not refer to the

same bean type in more than one relationship. For example, if a Department enterprise bean has a

relationship employees with the Employee enterprise bean, and also has a relationship manager with

the Employee enterprise bean, then a read ahead hint cannot specify both employees and manager.

12. Click Next. The next Add Access Intent panel displays, with optional attributes.

13. Optional: Decide whether or not to overwrite these optional access intent attributes. Click on those

you want to change.

14. Click Next. The next Add Access Intent panel, with a list of Enterprise Beans, displays.

15. Select one or more Enterprise Beans from the list.

Chapter 8. Developing WebSphere applications 827

Note: If you selected Read Ahead Hint in an earlier step, you can only select ONE bean at this

step.

16. Click Next. The next Add Access Intent panel, with a list of methods, displays.

17. Select the methods you want to use.

18. If you DID NOT select Read Ahead Hint in an earlier step, click Finish. If you DID select the Read

Ahead Hint option, you can click Next to specify your Read Ahead Hint for the specified bean. The

next Add Access Intent panel, with a list of EJB preload paths, displays.

19. Edit the EJB preload path by selecting relationship roles from the Relationship roles: window.

20. Click Finish. A new entry is created in the Access Intent for Entities 2.x (Method Level) panel

Access intent exceptions

The following exceptions are thrown in response to the application of access intent policies:

com.ibm.ws.ejbpersistence.utilpm.PersistenceManagerException

If the method that drives the ejbLoad() method is configured to be read-only but updates are then

made within the transaction that loaded the bean’s state, an exception is thrown during invocation

of the ejbStore() method, and the transaction is rolled back. Likewise, the ejbRemove() method

cannot succeed in a transaction that is set as read-only. If an update hint is applied to methods of

entity beans with bean-managed persistence, the same behavior and exception results. The

forwarded exception object contains the message string PMGR1103E: update instance level read

only bean beanName

 This exception is also thrown if the applied access intent policy cannot be honored because a

finder, ejbSelect, or container-managed relationship (CMR) accessor method returns an inherently

read-only result. The forwarded exception object contains the message string PMGR1001: No such

DataAccessSpec - methodName

 The most common occurrence of this error is when a custom finder that contains a read-only EJB

Query Language (EJB QL) statement is called with an applied access intent of

wsPessimisticUpdate or wsPessimisticUpdate-Exclusive. These policies require the use of a USE

AND KEEP UPDATE LOCKS clause on the SQL SELECT statement to be executed, but a

read-only query cannot support USE AND KEEP UPDATE LOCKS. Other examples of read-only

queries include joins; the use of ORDER BY, GROUP BY, and DISTINCT keywords.

 To eliminate the exception, edit the EJB query so that it does not return an inherently read-only

result or change the access intent policy being applied.

v If an update access is required, change the applied access intent setting to

wsPessimisticUpdate-WeakestLockAtLoad or wsOptimisticUpdate.

v If update access is not truly required, use wsPessimisticRead or wsOptimisticRead.

v If connection sharing between entity beans is required, use wsPessimisticUpdate-
WeakestLockAtLoad or wsPessimisticRead.

com.ibm.websphere.ejb.container.CollectionCannotBeFurtherAccessed

If a lazy collection is driven after it is no longer in scope, and beyond what has already been

locally buffered, a CollectionCannotBeFurtherAccessed exception is thrown.

com.ibm.ws.exception.RuntimeWarning

If an application is configured incorrectly, a run-time warning exception is thrown as the application

starts; startup is ended. You can validate an application’s configuration by choosing the verify

function. Some examples of misconfiguration include:

v A method configured with two different access intent policies

v A method configured with an undefined access intent policy

Access intent assembly settings

Access intent policies contain data-access settings for use by the persistence manager. Default access

intent policies are configured on the entity bean.

828 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

These settings are applicable only for EJB 2.x-compliant entity beans that are packaged in EJB

2.x-compliant modules. Connection sharing between beans with bean-managed persistence and those with

container-managed persistence is possible if they all use the same access intent policy.

Name:

Specifies a name for a mapping between an access intent policy and one or more methods.

Description:

Contains text that describes the mapping.

Methods - Name:

Specifies the name of an enterprise bean method, or the asterisk character (*). The asterisk is used to

denote all of the methods of an enterprise bean’s remote and home interfaces.

Methods - Enterprise bean:

Specifies which enterprise bean contains the methods indicated in the Name setting.

Methods - Type:

Used to distinguish between a method with the same signature that is defined in both the home and

remote interface. Use Unspecified if an access intent policy applies to all methods of the bean.

 Data type String

Range Valid values are Home, Remote,Local, LocalHome or

Unspecified

Methods - Parameters:

Contains a list of fully qualified Java type names of the method parameters. This setting is used to identify

a single method among multiple methods with an overloaded method name.

Applied access intent:

Specifies how the container must manage data access for persistence. Configurable both as a default

access intent for an entity and as part of a method-level access intent policy.

 Data type String

Range Valid settings are wsPessimisticUpdate,

wsPessimisticUpdate-NoCollision, wsPessimisticUpdate-
Exclusive, wsPessimisticUpdate-WeakestLockAtLoad,

wsPessimisticRead, wsOptimisticUpdate, or

wsOptimisticRead. Only wsPessimisticRead and

wsOptimisticRead are valid when class-level caching is

enabled in the EJB container.

This product supports lazy collections. For each segment of a collection, iterating through the collection

(next()) does not trigger a remote method call to retrieve the next remote reference. Two policies

(wsPessimisticUpdate and wsPessimisticUpdate-Exclusive) are extremely lazy; the collection increment

size is set to 1 to avoid overlocking the application. The other policies have a collection increment size of

25.

Chapter 8. Developing WebSphere applications 829

Additional information about valid settings follows:

 Profile name Concurrency control Access type Transaction isolation

wsPessimisticRead (Note 1) pessimistic read For Oracle, read committed.

Otherwise, repeatable read

wsPessimisticUpdate (Note

2)

pessimistic update For Oracle, read committed.

Otherwise, repeatable read

wsPessimisticUpdate-

Exclusive (Note 3)

pessimistic update serializable

wsPessimisticUpdate-

NoCollision (Note 4)

pessimistic update read committed

wsPessimisticUpdate-

WeakestLockAtLoad (Note

5)

pessimistic update Repeatable read

wsOptimisticRead optimistic read read committed

wsOptimisticUpdate (Note

6)

optimistic update read committed

Notes:

1. Read locks are held for the duration of the transaction.

2. The generated SELECT FOR UPDATE query grabs locks at the beginning of the transaction.

3. SELECT FOR UPDATE is generated; locks are held for the duration of the transaction.

4. Generated overqualified-update query forces failure if CMP column values have changed since the beginning of

the transaction.

Access intent best practices

This topic outlines issues to consider when applying access intent policies to Enterprise JavaBeans (EJB)

methods.

v Take care when applying wsPessimisticUpdate-NoCollision. This policy does not ensure data

integrity. No database locks are held, so concurrent transactions can overwrite each other’s updates.

Use this policy only if you can be sure that only one transaction will attempt to update persistent store

at any given time.

Frequently asked questions: Access intent

I have not applied any access intent policies at all. My application runs just fine with a DB2

database, but it fails with an Oracle database with the following message:

com.ibm.ws.ejbpersistence.utilpm.PersistenceManagerException: PMGR1001E: No such

DataAccessSpec :FindAllCustomers. The backend datastore does not support the SQLStatement

needed by this AccessIntent: (pessimistic update-weakestLockAtLoad)(collections: transaction/25)

(resource manager prefetch: 0) (AccessIntentImpl@d23690a). Why?

If you have not configured access intent, all of your data is accessed under the default access intent policy

(wsPessimisticUpdate-WeakestLockAtLoad). On DB2 databases, the weakest lock is a shared one, and the

query runs without a USE AND KEEP UPDATE LOCKS clause. On Oracle databases, however, the

weakest lock is an update lock; this means that the SQL query must contain a USE AND KEEP UPDATE

LOCKS clause. However, not every SQL statement necessarily supports USE AND KEEP UPDATE

LOCKS; for example, if the query is being run against multiple tables in a join, USE AND KEEP UPDATE

LOCKS is not supported. To avoid this problem, try either of the following:

v Modify your SQL query or reconfigure your application so that an update lock is supported

v Apply an access intent policy that supports optimistic concurrency

I am calling a finder method and I get an InconsistentAccessIntentException at run time. Why?

This can occur when you use method-level access intent policies to apply more control over how a bean

instance is loaded. This exception indicates that the entity bean was previously loaded in the same

830 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

transaction. This could happen if you called a multifinder method that returned the bean instance with

access intent policy X applied; you are now trying to load the second bean again by calling its

findByPrimaryKey method with access intent Y applied. Both methods must have the same access intent

policy applied.

Likewise, if the entity was loaded once in the transaction using an access intent policy configured on a

finder, you might have called a container-managed relationship (CMR) accessor method that returned the

entity bean configured to load using that entity’s default access intent.

To avoid this problem, ensure that your code does not load the same bean instance twice within the same

transaction with different access intent policies applied. Avoid the use of method-level access intent unless

absolutely necessary.

I have two beans in a container-managed relationship. I call findByPrimaryKey() on the first bean

and then call getBean2(), a CMR accessor method, on the returned instance. At that point, I get an

InconsistentAccessIntentException. Why?

You are probably using read-ahead. When you loaded the first bean, you caused the second bean to be

loaded under the access intent policy applied to the finder method for the first bean. However, you have

configured your CMR accessor method from the first bean to the second with a different access intent

policy. CMR accessor methods are really finder methods in disguise; the run-time environment behaves as

if you were trying to change the access intent for an instance you have already read from persistent store.

To avoid this problem, beans configured in a read-ahead hint are all driven to load with the same access

intent policy as the bean to which the read-ahead hint is applied.

I have a bean with a one-to-many relationship to a second bean. The first bean has a

pessimistic-update intent policy applied. When I try to add an instance of the second bean to the

first bean’s collection, I get an UpdateCannotProceedWithIntegrityException. Why?

The second bean probably has a read intent policy applied. When you add the second bean to the first

bean’s collection, you are not updating the first bean’s state, you are implicitly modifying the second

bean’s state. (The second bean contains a foreign key to the first bean, which is modified.)

To avoid this problem, ensure that both ends of the relationship have an update intent policy applied if you

expect to change the relationship at run time.

Managing EJB containers

Each application server can have a single EJB container; one is created automatically for you when the

application server is created. The following steps are to be performed only as needed to improve

performance after the EJB application has been deployed.

1. Adjust EJB container settings.

2. Adjust EJB cache settings.

If adjustments do not improve performance, consider adjusting access intent policies for entity beans,

reassembling the module, and redeploying the module in the application.

EJB container settings

Use this page to configure and manage the EJB container of this application server.

To view this administrative console page, click Servers > Application Servers > serverName > EJB

Container Settings > EJB container.

Passivation directory:

Chapter 8. Developing WebSphere applications 831

Specifies the directory into which the container saves the persistent state of passivated stateful session

beans.

 Stateful session beans with an activation policy of TRANSACTION are passivated at the end of the

transaction in which they are enlisted, and stateful session beans with an activation policy of ONCE

(default) are passivated when the number of active bean instances becomes greater than the cache size

specified in the container configuration. When a stateful bean is passivated, the container serializes the

bean instance to a file in the passivation directory and discards the instance from the bean cache. If, at a

later time, a request arrives for the passivated bean instance, the container retrieves it from the

passivation directory, deserializes it, returns it to the cache, and dispatches the request to it. If any step

fails (for example, if the bean instance is no longer in the passivation directory), the method invocation

fails.

Inactive pool cleanup interval:

Specifies the interval at which the container examines the pools of available bean instances to determine if

some instances can be deleted to reduce memory usage.

 Data type Integer

Units Milliseconds

Range 0 to 2 147 483 674

Default datasource JNDI name:

Specifies the JNDI name of a data source to use if no data source is specified during application

deployment. This setting is not applicable for EJB 2.x-compliant CMP beans.

 Servlets and enterprise beans use data sources to obtain these connections. When configuring a

container, you can specify a default data source for the container. This data source becomes the default

data source used by any entity beans installed in the container that use container-managed persistence

(CMP).

The default data source for a container is secure. When specifying it, you must provide a user ID and

password for accessing the data source.

Specifying a default data source is optional if each CMP entity bean in the container has a data source

specified in its configuration. If a default data source is not specified and a CMP entity bean is installed in

the container without specifying a data source for that bean, applications cannot use that CMP entity bean.

Enable stateful session bean failover using memory-to-memory replication:

Specifies that failover is enabled for all stateful session beans installed in this EJB container.

 This checkbox is disabled until you define a replication domain. This selection has a hyperlink to help you

configure the replication settings. If no replication domains are configured, the link takes you to a panel

where you can create one. If at least one domain is configured, the link takes you to a panel where you

can select the replication settings to be used by the EJB container.

 Data type Checkbox

Default Unselected

Range Selected or unselected.

Initial state:

Specifies the execution state requested when the server first starts.

832 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Data type String

Default Started

Range Valid values are Started and Stopped

EJB container system properties

In addition to the settings accessible from the administrative console, you can set the following system

property by command-line scripting:

com.ibm.websphere.ejbcontainer.poolSize

Specifies the size of the pool for the specified bean type. This property applies to stateless,

message-driven and entity beans. If you do not specify a default value, the container defaults of

50 and 500 are used.

 Set the pool size for a given entity bean as follows:

beantype=min,max[:beantype=min,max...]

beantype is the J2EE name of the bean, formed by concatenating the application name, the #

character, the module name, the # character, and the name of the bean (that is, the string

assigned to the <ejb-name> field in the bean’s deployment descriptor). min and max are the

minimum and maximum pool sizes, respectively, for that bean type. Do not specify the square

brackets shown in the previous prototype; they denote optional additional bean types that you can

specify after the first. Each bean-type specification is delimited by a colon (:).

 Use an asterisk (*) as the value of beantype to indicate that all bean types are to use those values

unless overridden by an exact bean-type specification somewhere else in the string, as follows:

*=30,100

To specify that a default value be used, omit either min or max but retain the comma (,) between

the two values, as follows (split for publication):

SMApp#PerfModule#TunerBean=54,

 :SMApp#SMModule#TypeBean=100,200

You can specify the bean types in any order within the string.

com.ibm.websphere.ejbcontainer.allowEarlyInsert

Note: This property is applicable to CMP 1.1 beans only.

By default, the EJB Container creates the entity bean representation in the database only after the

method ejbPostCreate(...) is called. However, some applications may rely on method ejbCreate(...)

to have created the entity bean in the database. For such a requirement, setting the JVM property

com.ibm.websphere.ejbcontainer.allowEarlyInsert to true overrides the default behavior.

Changing enterprise bean types to initialize at application start time using the

Application Server Toolkit

By default, the WebSphere Application Server’s Enterprise JavaBeans (EJB) Container delays the

initialization (loading and processing) of most EJB types until they are needed during runtime. This helps

to speed up the application start time.

EJB types can, however, be forced to initialize at application start time by setting a flag within the bean’s

deployment descriptor. If this flag is set to true then the bean is initialized at application start time.

1. Start the Application Server Toolkit. See ″Starting an assembly tool″ in the information center.

2. Select EJB Deployment Descriptor.

3. In the property pane, select the WebSphere Extensions tab.

4. Check the box labeled Start EJB at Application Start.

5. Select OK.

Chapter 8. Developing WebSphere applications 833

Changing enterprise bean types to initialize at application start time using the

administrative console

By default, the WebSphere Application Server’s Enterprise JavaBeans (EJB) Container delays the

initialization (loading and processing) of most EJB types until they are needed during runtime. This helps

to speed up the application start time.

All EJB types within a server can, however, be forced to initialize at application start time by setting a

system property within the administrative console. If the value of this property is set to true then all beans

within the server are initialized at each application’s start time.

 1. Open the administrative console.

 2. Select Servers.

 3. Select Application Servers.

 4. Select the server you want to configure.

 5. In the Server Infrastructure area, select Java and Process Management.

 6. In the Server Infrastructure area, select Process Definition.

 7. In the Additional Properties area, select Java Virtual Machine.

 8. In the Additional Properties area, select Custom Properties.

 9. Select the New box.

10. In the Name entry field, type com.ibm.websphere.ejbcontainer.initializeEJBsAtStartup.

11. In the Value entry field, type true. Entering true causes all Enterprise JavaBeans to initialize when

your application starts. Entering false causes initialization of all beans to be delayed.

Note: Setting com.ibm.websphere.ejbcontainer.initializeEJBsAtStartup to either true or false takes

precedence over any Start EJB at Application Start settings made on individual EJB types (see

“Changing enterprise bean types to initialize at application start time using the Application

Server Toolkit” on page 833).

12. Select OK.

EJB cache settings

Use this page to configure and manage the cache for a specific EJB container. To determine the cache

absolute limit, multiply the number of enterprise beans active in any given transaction by the total number

of concurrent transactions expected. Then, add the number of active session bean instances. You can use

the Tivoli Performance Viewer to view bean performance information.

To view this administrative console page, click Servers > Application Servers > serverName > EJB

Container Settings > EJB cache settings.

Cleanup interval:

Specifies the interval at which the container attempts to remove unused items from the cache in order to

reduce the total number of items to the value of the cache size.

 The cache manager tries to maintain some unallocated entries that can be allocated quickly as needed. A

background thread attempts to free some entries while maintaining some unallocated entries. If the thread

runs while the application server is idle, when the application server needs to allocate new cache entries, it

does not pay the performance cost of removing entries from the cache. In general, increase this parameter

as the cache size increases.

 Data type Integer

Units Milliseconds

Range 0 to 2 147 483 674

Default 3000

834 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Cache size:

Specifies the number of buckets in the active instance list within the EJB container.

 A bucket can contain more than one active enterprise bean instance, but performance is maximized if

each bucket in the table has a minimum number of instances assigned to it. When the number of active

instances within the container exceeds the number of buckets, that is, the cache size, the container

periodically attempts to reduce the number of active instances in the table by passivating some of the

active instances. For the best balance of performance and memory, set this value to the maximum number

of active instances expected during a typical workload.

 Data type Integer

Units Buckets in the hash table

Range Greater than 0. The container selects the next largest

prime number equal to or greater than the specified value.

Default 2053

Container interoperability

Container interoperability describes the ability of WebSphere Application Server clients and servers at

different versions to successfully negotiate differences in native Enterprise JavaBeans (EJB) finder

methods support and Java 2 Platform, Enterprise Edition (J2EE) compliance.

The product uses interoperable versions of some class types to enable interoperability. However, older

4.0.x client and application server versions do not support the interoperability classes, which makes them

uninteroperable with versions that use the classes. The system property

com.ibm.websphere.container.portable remedies this situation by enabling newer versions of the

application server to turn off the interoperability classes. This lets a more recent application server return

class types that are interoperable with an older client.

Depending on the value of com.ibm.websphere.container.portable, application servers at versions 5 and

later, and 4.0.3 and later, return different classes for the following:

v Enumerations and collections returned by EJB 1.1 finder methods

v EJBMetaData

v Handles to:

– Entity beans

– Session beans

– Home interfaces

If the property is set to false, application servers return the old class types, to enable interoperability with

4.0.2 and earlier. If the property is set to true, application servers return the new classes.

The following tables show interoperability characteristics for various version combinations of application

servers and clients as well as default property values for each combination.

Interoperability of Version 4.0.x client with Version 5 (and later) application server

Ideally, all 4.0.x clients that use Version 5 or later application servers should be at Version 4.0.3 or later.

Version 5 and later application servers return the interoperability class types by default (true). This can

cause interoperability problems for distributed clients at versions 4.0.1 or 4.0.2. In particular, problems can

occur with collections and enumerations returned by Enterprise JavaBeans Version 1.1 finder methods.

Although it is strongly discouraged, you can set com.ibm.websphere.container.portable to false on a

Version 5 and later application server. This causes the application server to return the old class types,

providing interoperability with clients at Version 4.0.2 and earlier. This is discouraged because:

Chapter 8. Developing WebSphere applications 835

v The Version 5 application server instance would become non-J2EE 1.3 (and later) compliant with regard

to handles, home interface handles, and EJBMetaData.

v EJB 1.x finder methods return collection and enumeration objects that do not originate from

ejbportable.jar.

v Interoperability restrictions still exist with the property set to false.

v Version 5 and later client handles to entity beans and home interfaces do not work across domains for

the server you set to false.

If you would like to use updated Handle classes in EJB 2.x-compliant beans but have one of the older

clients (versions 4.0.2 and earlier) installed, set the system property

com.ibm.websphere.container.portable.finder to false. With this setting in place, the Version 5 and later

application server uses the updated handles but returns the enumerations and collections that were

used in the earlier clients.

Interoperability of client at Version 4.0.2 and earlier with Version 5 (and later) application server

 Client at Version 4.0.2 and earlier,

using this function

Application server at Version 5 and

later, property true (default)

Application server at Version 5 and

later, property false

EJBMetaData Does not work Works for 4.0.2 client

Handle to session bean Does not work Works

Handle to entity bean Does not work Does not work across cells

Enumeration returned by EJB 1.x

finder method

Does not work Works

Collection returned by EJB 1.x finder

method

Does not work Works

Handle to home interface Does not work Does not work across cells

If you would like to use updated Handle classes in EJB 2.x-compliant beans but have one of the older

clients (versions 4.0.2 and earlier) installed, set the system property

com.ibm.websphere.container.portable.finder to false. With this setting in place, the Version 5 and later

server uses the new Handle classes but returns the older enumeration and collection classes.

Interoperability of client at Version 4.0.3 and later with Version 5 and later application server

Clients at Version 4.0.3 and later work well with Version 5 and later application servers. However, if you

set the com.ibm.websphere.container.portable to false, client handles to entity beans and home interfaces

do not work across domains for the server you set to false.

 Client at Version 4.0.3 and later,

using this function

Application server at Version 5 and

later, property true (default)

Application server at Version 5 and

later, property false

EJBMetaData Works Works

Handle to session bean Works Works

Handle to entity bean Works Does not work across cells

Enumeration returned by EJB 1.x

finder method

Works Works

Collection returned by EJB 1.x finder

method

Works Works

Handle to home interface Works Does not work across cells

836 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Interoperability of Version 5 and later client with Version 4.0.x application server

Clients at Version 5 and later work well with Version 4.0.3 application servers if you set

com.ibm.websphere.container.portable to true. Client handles to entity beans and home interfaces do not

work across domains for any Version 4.0.3 server with com.ibm.websphere.container.portable at the

default value, false. Version 5 client handles to application servers at Version 4.0.2 and earlier also have

restrictions.

 Client at Version 5 and

later, using this function

Application server at

Version 4.0.3, property

true

Application server at

Version 4.0.3, property

false (default)

Application server at

Version 4.0.2 or earlier

EJBMetaData Works Works Works for 4.0.2 server only

Handle to session bean Works Works Works

Handle to entity bean Works Does not work across

domains

Does not work across

domains

Enumeration returned by

EJB 1.x finder method

Works Works Works

Collection returned by EJB

1.x finder method

Works Works Works

Handle to home interface Works Does not work across

domains

Does not work across

domains

Interoperability of zSeries Version 4.0.x client with Version 5 and later application server

The only valid configuration for container interoperability with zSeries Version 4.0.x clients is the default

configuration for the Version 5 application server.

Interoperability of Version 5 and later client with zSeries Version 4.0.x application server

Version 5 clients should work with a zSeries Version 4.0.x application server with the correct

interoperability fixes described in the zSeries documentation. The interoperability characteristics should be

the same as for a Version 4.0.3 distributed application server with the property set to true.

 Client at Version 5 and later, using this function zSeries application server at Version 4.0.x

EJBMetaData Works

Handle to session bean Works

Handle to entity bean Works

Enumeration returned by EJB 1.x finder method Works

Collection returned by EJB 1.x finder method Works

Handle to home interface Works

Deploying EJB modules

When you deploy an EJB module, you install that module on a server that has been configured to support

deployed modules.

Assemble one or more EJB modules, assemble one or more Web modules, and assemble them into a

J2EE application. See ″Assembling EJB modules″, ″Assembling Web applications″, and ″Assembling

applications″ in the information center.

1. Prepare the deployment environment.

Chapter 8. Developing WebSphere applications 837

2. Update the configuration for each EJB module as needed for the deployment environment. See

″Preparing to host applications″ in the information center.

3. Deploy the application.

If you specify that EJB deploy be run during application installation and the installation fails with a

NameNotFoundException message, ensure that the input JAR or EAR file does not contain source files.

Either remove the source files or include all dependent classes and resource files on the class path. If

there are source files in the input JAR or EAR file, the EJB deployment tools runs a rebuild before

generating the deployment code.

If the module deploys successfully, test and debug the module.

EJB module collection

Use this page to manage the EJB modules deployed in a specific application.

To view this administrative console page, click Applications > Enterprise Applications >

applicationName > EJB modules. Click the check boxes to select one or more of the EJB modules in

your collection.

Remove: Removes a module from the deployed application. The module is deleted from the application

in the WebSphere Application Server configuration repository and also from all the nodes where the

application is installed and running (or expected to run). If the application is running on a node when the

module file is deleted from the node as a result of configuration synchronization then the application is

stopped, the module file is deleted from the node’s file system, and then the application is restarted.

Update: Opens a wizard that helps you update module in an application. If a module has the same URI

as a module already existing in the application, the new module replaces the existing module. If the new

module does not exist in the application, it is added to the deployed application. If the application is

running on a node when the module file is updated on the node as a result of configuration

synchronization then the application is stopped, the module file is updated on the node’s file system, and

then the application is restarted.

Remove File: Deletes a file from a module of a deployed application. The file is also deleted from all the

nodes where the module is installed after configuration is synchronized with nodes. If the application is

running on a node when the module file is updated on the node as a result of configuration

synchronization then the application is stopped, the module file is updated on the node’s file system, and

then the application is restarted.

URI:

When resolved relative to the application URL, this specifies the location of the module’s archive contents

on a file system. The URI matches the <ejb> or <web> tag in the <module> tag of the application

deployment descriptor.

 There are three buttons on this panel.

Remove

removes the EJB Module

Remove File

removes the specified file from the EJB Module

Update

updates the module or the application. With Update, you can add, remove, or replace modules

EJB module settings

Use this page to configure and manage a specific deployed EJB module.

838 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Note: You cannot start or stop an individual EJB module for modification. You must start or stop the

appropriate application entirely.

To view this administrative console page, click Applications > Enterprise Applications >

applicationName > EJB modules > moduleName.

URI:

When resolved relative to the application URL, this specifies the location of the module archive contents

on a file system. The URI must match the URI of a ModuleRef URI in the deployment descriptor of the

deployed application (EAR).

Alternate DD:

Specifies a deployment descriptor to be used at run time instead of the one installed in the module.

Starting weight:

Specifies the order in which modules are started when the server starts. The module with the lowest

starting weight is started first.

 Data type Integer

Default 5000

Range Greater than 0

Client applications

Using application clients

An application client module is a Java Archive (JAR) file that contains a client for accessing a Java

application. Complete the following steps for developing different types of application clients.

1. Decide on a type of application client.

2. Develop the application client code.

a. Develop ActiveX application client code.

b. Develop J2EE application client code.

c. Develop pluggable application client code.

d. Develop thin application client code.

View the WebSphere Application Server Clients Samples Gallery for more information. To access these

samples, install WebSphere Application Server Clients, and retrieve the samples from your local file

system as the following command indicates:

<install_root>/samples/index.html

Application Client for WebSphere Application Server

In a traditional client-server environment, the client requests a service and the server fulfills the request.

Multiple clients use a single server. Clients can also access several different servers. This model persists

for Java clients except that now these requests use a client run-time environment.

In this model, the client application requires a servlet to communicate with the enterprise bean, and the

servlet must reside on the same machine as the WebSphere Application Server.

The Application Client for WebSphere Application Server Version 6 (Application Client) consists of the

following client applications:

Chapter 8. Developing WebSphere applications 839

v J2EE application client application (Uses services provided by the J2EE Client Container)

v Thin application client application (Does not use services provided by the J2EE Client Container)

v Applet application client application

v ActiveX to EJB Bridge application client application

The Application Client is packaged with the following components:

v Java Runtime Environment (JRE) (or an optional full Software Development Kit) that IBM provides

v WebSphere Application Server run time for J2EE application client applications or Thin application client

applications.

v An ActiveX to EJB Bridge run time for ActiveX to EJB Bridge application client applications (only for

Windows)

v IBM plug-in for Java platforms for Applet client applications (Windows only).

Note: The Pluggable application client is a kind of Thin application client. However, the Pluggable

application client uses a Sun JRE and Software Development Kit instead of the JRE and

Software Development Kit that IBM provides.

The ActiveX application client model, uses the Java Native Interface (JNI) architecture to programmatically

access the Java virtual machine (JVM) API. Therefore the JVM code exists in the same process space as

the ActiveX application (Visual Basic, VBScript, or Active Server Pages (ASP) files) and remains attached

to the process until that process terminates.

In the Applet client model, a Java applet embeds in a HyperText Markup Language (HTML) document

residing on a remote client machine from the WebSphere Application Server. With this type of client, the

user accesses an enterprise bean in the WebSphere Application Server through the Java applet in the

HTML document.

The J2EE application client is a Java application program that accesses enterprise beans, Java DataBase

Connectivity (JDBC) APIs, and Java Message Service message queues. The J2EE application client

program runs on client machines. This program follows the same Java programming model as other Java

programs; however, the J2EE application client depends on the Application Client run time to configure its

execution environment, and uses the Java Naming and Directory Interface (JNDI) name space to access

resources.

The Pluggable and Thin application clients provide a lightweight Java client programming model. These

clients are useful in situations where a Java client application exists but the application needs

enhancements to use enterprise beans, or where the client application requires a thinner, more lightweight

environment than the one offered by the J2EE application client. The difference between the Thin

application client and the Pluggable application client is that the Thin application client includes a Java

virtual machine (JVM) API, and the Pluggable application client requires the user to provide this code. The

Pluggable application client uses the Sun Java Development Kit, and the Thin application client uses the

IBM Developer Kit for the Java platform.

The J2EE application client programming model provides the benefits of the J2EE platform for the Java

client application. Use the J2EE application client to develop, assemble, deploy and launch a client

application. The tooling provided with the WebSphere platform supports the seamless integration of these

stages to help the developer create a client application from start to finish.

When you develop a client application using and adhering to the J2EE platform, you can put the client

application code from one J2EE platform implementation to another. The client application package can

require redeployment using each J2EE platform deployment tool, but the code that comprises the client

application remains the same.

840 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

The Application Client run time supplies a container that provides access to system services for the client

application code. The client application code must contain a main method. The Application Client run time

invokes this main method after the environment initializes and runs until the Java virtual machine code

terminates.

The J2EE platform supports the Application Client use of nicknames or short names, defined within the

client application deployment descriptor. These deployment descriptors identify enterprise beans or local

resources (JDBC, Java Message Service (JMS), JavaMail and URL APIs) for simplified resolution through

JNDI. This simplified resolution to the enterprise bean reference and local resource reference also

eliminates changes to the client application code, when the underlying object or resource either changes

or moves to a different server. When these changes occur, the Application Client can require

redeployment.

The Application Client also provides initialization of the run-time environment for the client application. The

deployment descriptor defines this unique initialization for each client application. The Application Client

run time also provides support for security authentication to enterprise beans and local resources.

The Application Client uses the Java Remote Method Invocation-Internet InterORB Protocol (RMI-IIOP).

Using this protocol enables the client application to access enterprise bean references and to use

Common Object Request Broker Architecture (CORBA) services provided by the J2EE platform

implementation. Use of the RMI-IIOP protocol and the accessibility of CORBA services assist users in

developing a client application that requires access to both enterprise bean references and CORBA object

references.

When you combine the J2EE and CORBA environments or programming models in one client application,

you must understand the differences between the two programming models to use and manage each

appropriately.

View the Samples gallery for more information about the Application Client.

Application client functions: Use the following table to identify the available functions in the different

types of clients.

 Available functions ActiveX client Applet client J2EE

client

Pluggable client Thin client

Provides all the benefits of a

J2EE platform

Yes No Yes No No

Portable across all J2EE

platforms

No No Yes No No

Provides the necessary run-time

support for communication

between a client and a server

Yes Yes Yes Yes Yes

Supports the use of nicknames in

the deployment descriptor files.

Note: Although you can edit

deployment descriptor files, do

not use the administrative

console to modify them.

Yes No Yes No No

Supports use of the RMI-IIOP

protocol

Yes Yes Yes Yes Yes

Browser-based application No Yes No No No

Enables development of client

applications that can access

enterprise bean references and

CORBA object references

Yes Yes Yes Yes Yes

Chapter 8. Developing WebSphere applications 841

Enables the initialization of the

client application run-time

environment

Yes No Yes No No

Supports security authentication

to enterprise beans

Yes Limited Yes Yes Yes

Supports security authentication

to local resources

Yes No Yes No No

Requires distribution of

application to client machines

Yes No Yes Yes Yes

Enables access to enterprise

beans and other Java classes

through Visual Basic, VBScript,

and Active Server Pages (ASP)

code

Yes No No No No

Provides a lightweight client

suitable for download

No Yes No Yes Yes

Enables access JNDI APIs for

enterprise bean resolution

Yes Yes Yes Yes Yes

Runs on client machines that use

the Sun Java Runtime

Environment

No No No Yes No

Supports CORBA services (using

CORBA services can render the

application client code

nonportable)

No No Yes No No

ActiveX application clients:

WebSphere Application Server provides an ActiveX to EJB bridge that enables ActiveX programs to

access enterprise beans through a set of ActiveX automation objects.

 The bridge accomplishes this access by loading the Java virtual machine (JVM) into any ActiveX

automation container such as Visual Basic, VBScript, and Active Server Pages (ASP).

There are two main environments in which the ActiveX to EJB bridge runs:

v Client applications, such as Visual Basic and VBScript, are programs that a user starts from the

command line, desktop icon, or Start menu shortcut.

v Client services, such as Active Server Pages, are programs started by some automated means like the

Services control panel applet.

The ActiveX to EJB bridge uses the Java Native Interface (JNI) architecture to programmatically access

the JVM code. Therefore the JVM code exists in the same process space as the ActiveX application

(Visual Basic, VBScript, or ASP) and remains attached to the process until that process terminates. To

create JVM code, an ActiveX client program calls the XJBInit() method of the XJB.JClassFactory object.

For more information about creating JVM code for an ActiveX program, see ″ActiveX to EJB bridge,

initializing JVM code’ in the information center.

After an ActiveX client program has initialized the JVM code, the program calls several methods to create

a proxy object for the Java class. When accessing a Java class or object, the real Java object exists in the

JVM code; the automation container contains the proxy for that Java object. The ActiveX program can use

the proxy object to access the Java class, object fields, and methods. For more information about using

Java proxy objects, see ″Example: Developing an ActiveX application client to enterprise beans″. For more

information about calling methods and access fields, see ″Example: Calling Java methods in the ActiveX

to enterprise beans″ and ″Java field programming tips″ in the information center.

842 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

The client program performs primitive data type conversion through the COM IDispatch interface (use of

the IUnknown interface is not directly supported). Primitive data types are automatically converted between

native automation types and Java types. All other types are handled automatically by the proxy objects For

more information about data type conversion, see ″ActiveX to Java primitive data type conversion values″

in the information center.

Any exceptions thrown in Java code are encapsulated and thrown again as a COM error, from which the

ActiveX program can determine the actual Java exceptions. For more information about handling

exceptions, see ActiveX to EJB bridge, handling errors.

The ActiveX to EJB bridge supports both free-threaded and apartment-threaded access and implements

the free threaded marshaler (FTM) to work in a hybrid environment such as Active Server Pages. For

more information about the support for threading, see ″Threading tips″ for ActiveX to EJB bridge, using

threading.

Applet clients:

The applet client provides a browser-based Java run time capable of interacting with enterprise beans

directly, instead of indirectly through a servlet.

 This client is designed to support users who want a browser-based Java client application programming

environment that provides a richer and more robust environment than the one offered by the Applet >

Servlet > enterprise bean model.

The programming model for this client is a hybrid of the Java application thin client and a servlet client.

When accessing enterprise beans from this client, the applet can consider the enterprise bean object

references as CORBA object references.

No tooling support exists for this client to develop, assemble or deploy the applet. You are responsible for

developing the applet, generating the necessary client bindings for the enterprise beans and CORBA

objects, and bundling these pieces together to install or download to the client machine. The Java applet

client provides the necessary run time to support communication between the client and the server. The

applet client run time is provided through the Java applet browser plug-in that you install on the client

machine.

Generate client-side bindings using an assembly tool such as the Application Server Toolkit (AST) or

Rational Web Developer. See ″Assembly tools″ in the information center for additional information. An

applet can utilize these bindings, or you can generate client-side bindings using the rmic command. This

command is part of the IBM Developer Kit, Java edition that is installed with the WebSphere Application

Server.

The applet client uses the RMI-IIOP protocol. Using this protocol enables the applet to access enterprise

bean references and CORBA object references, but the applet is restricted in using some supported

CORBA services.

If you combine the enterprise bean and CORBA environments in one applet, you must understand the

differences between the two programming models, and you must use and manage each model

appropriately.

The applet environment restricts access to external resources from the browser run-time environment. You

can make some of these resources available to the applet by setting the correct security policy settings in

the WebSphere Application Server client.policy file. If given the correct set of permissions, the applet

client must explicitly create the connection to the resource using the appropriate API. This client does not

perform initialization of any service that the client applet can need. For example, the client application is

responsible for the initialization of the naming service, either through the CosNaming, or the Java Naming

and Directory Interface (JNDI) APIs.

Chapter 8. Developing WebSphere applications 843

J2EE application clients:

The J2EE application client programming model provides the benefits of the Java 2 Platform for

WebSphere Application Server Enterprise product.

 The J2EE platform offers the ability to seamlessly develop, assemble, deploy and launch a client

application. The tooling provided with the WebSphere platform supports the seamless integration of these

stages to help the developer create a client application from start to finish.

When you develop a client application using and adhering to the J2EE platform, you can put the client

application code from one J2EE platform implementation to another. The client application package can

require redeployment using each J2EE platform deployment tool, but the code that comprises the client

application does not change.

The J2EE application client run time supplies a container that provides access to system services for the

application client code. The J2EE application client code must contain a main method. The J2EE

application client run time invokes this main method after the environment initializes and runs until the

Java virtual machine application terminates.

Application clients can use nicknames or short names, defined within the client application deployment

descriptor with the J2EE platform. These deployment descriptors identify enterprise beans or local

resources (JDBC data sources, J2C connection factories, Java Message Service (JMS), JavaMail and

URL APIs) for simplified resolution through JNDI use. This simplified resolution to the enterprise bean

reference and local resource reference also eliminates changes to the application client code, when the

underlying object or resource either changes or moves to a different server. When these changes occur,

the application client can require redeployment. Although you can edit deployment descriptor files, do not

use the administrative console to modify them.

The J2EE application client also provides initialization of the run-time environment for the client application.

The deployment descriptor defines this unique initialization for each client application. The J2EE

application client run time also provides support for security authentication to the enterprise beans and

local resources.

The J2EE application client uses the Java Remote Method Invocation technology run over Internet

Inter-Orb Protocol (RMI-IIOP). Using this protocol enables the client application to access enterprise bean

references and to use Common Object Request Broker Architecture (CORBA) services provided by the

J2EE platform implementation. Use of the RMI-IIOP protocol and the accessibility of CORBA services

assist users in developing a client application that requires access to both enterprise bean references and

CORBA object references.

When you combine the J2EE and the CORBA WebSphere Application Server Enterprise environments or

programming models in one client application, you must understand the differences between the two

programming models to use and manage each appropriately.

Pluggable application clients:

The Pluggable application client provides a lightweight, downloadable Java application run time capable of

interacting with enterprise beans.

 The Pluggable application client requires that you have previously installed the Sun Java Runtime

Environment (JRE) files. In all other aspects, the Pluggable application client, and the Thin application

client are similar.

Note: The Pluggable application client is only available on the Windows platform.

844 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

This client is designed to support those users who want a lightweight Java client application programming

environment, without the overhead of the J2EE platform on the client machine. The programming model

for this client is heavily influenced by the CORBA programming model, but supports access to enterprise

beans.

When accessing enterprise beans from this client, the client application can consider the enterprise beans

object references as CORBA object references.

Tooling does not exist on the client; however, tooling does exists on the server. You are responsible for

developing the client application, generating the necessary client bindings for the enterprise bean and

CORBA objects, and after bundling these pieces together, installing them on the client machine.

The Pluggable application client provides the necessary run time to support the communication needs

between the client and the server.

The Pluggable application client uses the RMI-IIOP protocol. Using this protocol enables the client

application to access enterprise bean references and CORBA object references and use any supported

CORBA services. Using the RMI-IIOP protocol along with the accessibility of CORBA services can assist a

user in developing a client application that needs to access both enterprise bean references and CORBA

object references.

When you combine the J2EE and CORBA environments in one client application, you must understand the

differences between the two programming models to use and manage each appropriately.

The Pluggable application client run time provides the necessary support for the client application for

object resolution, security, Reliability Availability and Serviceability (RAS), and other services. However,

this client does not support a container that provides easy access to these services. For example, no

support exists for using nicknames for enterprise beans or local resource resolution. When resolving to an

enterprise bean (using either the Java Naming and Directory Interface (JNDI) API or CosNaming) sources,

the client application must know the location of the name server and the fully qualified name used when

the reference was bound into the name space.

When resolving to a local resource, the client application cannot resolve to the resource through a JNDI

lookup. Instead the client application must explicitly create the connection to the resource using the

appropriate API (JDBC, Java Message Service (JMS), and so on). This client does not perform

initialization of any of the services that the client application might require. For example, the client

application is responsible for the initialization of the naming service, either through CosNaming or JNDI

APIs.

The Pluggable application client offers access to most of the available client services in the J2EE

application client. However, you cannot access the services in the Pluggable application client as easily as

you can in the J2EE application client. The J2EE client has the advantage of performing a simple Java

Naming and Directory Interface (JNDI) name space lookup to access the desired service or resource. The

Pluggable application client must code explicitly for each resource in the client application. For example,

looking up an enterprise bean Home object requires the following code in a J2EE application client:

 java.lang.Object ejbHome = initialContext.lookup("java:/comp/env/ejb/MyEJBHome"

);

 MyEJBHome = (MyEJBHome)javax.rmi.PortableRemoteObject.narrow(ejbHome,

MyEJBHome.class);

However, you need more explicit code in a Pluggable application client for Java:

 java.lang.Object ejbHome = initialContext.lookup("the/fully/qualified

/path/to/actual/home/in/namespace/MyEJBHome");

 MyEJBHome = (MyEJBHome)javax.rmi.PortableRemoteObject.narrow(ejbHome,

MyEJBHome.class);

Chapter 8. Developing WebSphere applications 845

In this example, the J2EE application client accesses a logical name from the java:/comp name space.

The J2EE client run time resolves that name to the physical location and returns the reference to the client

application. The pluggable client must know the fully qualified physical location of the enterprise bean

Home object in the name space. If this location changes, the pluggable client application must also change

the value placed on the lookup() statement.

In the J2EE client, the client application is protected from these changes because it uses the logical name.

A change can require a redeployment of the EAR file, but the actual client application code remains the

same.

The Pluggable application client is a traditional Java application that contains a main function. The

WebSphere Pluggable application client provides run-time support for accessing remote enterprise beans,

and provides the implementation for various services (security, Workload Management (WLM), and

others). This client can also access CORBA objects and CORBA-based services. When using both

environments in one client application, you need to understand the differences between the enterprise

bean and the CORBA programming models to manage both environments.

For instance, the CORBA programming model requires the CORBA CosNaming name service for object

resolution in a name space. The enterprise beans programming model requires the JNDI name service.

The client application must initialize and properly manage these two naming services.

Another difference applies to the enterprise bean model. Use the Java Naming and Directory Interface

(JNDI) implementation in the enterprise bean model to initialize the Object Request Broker (ORB). The

client application is unaware that an ORB is present. The CORBA model, however, requires the client

application to explicitly initialize the ORB through the ORB.init() static method.

The Pluggable application client provides a batch command that you can use to set the CLASSPATH and

JAVA_HOME environment variables to enable the Pluggable application client run time.

Thin application clients:

The thin application client provides a lightweight, downloadable Java application run time capable of

interacting with enterprise beans.

 This client is designed to support those users who want a lightweight Java client application programming

environment, without the overhead of the J2EE platform on the client machine. The programming model

for this client is heavily influenced by the CORBA programming model, but supports access to enterprise

beans.

When accessing enterprise beans from this client, the client application can consider the enterprise beans

object references as CORBA object references.

Tooling does not exist on the client, it exists on the server. You are responsible for developing the client

application, generating the necessary client bindings for the enterprise bean and CORBA objects, and

bundling these pieces together to install on the client machine.

The thin application client provides the necessary run-time to support the communication needs between

the client and the server.

The thin application client uses the RMI-IIOP protocol. Using this protocol enables the client application to

access not only enterprise bean references and CORBA object references, but also allows the client

application to use any supported CORBA services. Using the RMI-IIOP protocol along with the accessibility

of CORBA services can assist a user in developing a client application that needs to access both

enterprise bean references and CORBA object references.

846 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

When you combine the J2EE and CORBA environments in one client application, you must understand the

differences between the two programming models, to use and manage each appropriately.

The thin application client run time provides the necessary support for the client application for object

resolution, security, Reliability Availability and Servicability (RAS), and other services. However, this client

does not support a container that provides easy access to these services. For example, no support exists

for using nicknames for enterprise beans or local resource resolution. When resolving to an enterprise

bean (using either Java Naming and Directory Interface (JNDI) or CosNaming) sources, the client

application must know the location of the name server and the fully qualified name used when the

reference was bound into the name space. When resolving to a local resource, the client application

cannot resolve to the resource through a JNDI lookup. Instead the client application must explicitly create

the connection to the resource using the appropriate API (JDBC, Java Message Service (JMS), and so

on). This client does not perform initialization of any of the services that the client application might

require. For example, the client application is responsible for the initialization of the naming service, either

through CosNaming or JNDI APIs.

The thin application client offers access to most of the available client services in the J2EE application

client. However, you cannot access the services in the thin client as easily as you can in the J2EE

application client. The J2EE client has the advantage of performing a simple Java Naming and Directory

Interface (JNDI) name space lookup to access the desired service or resource. The thin client must code

explicitly for each resource in the client application. For example, looking up an enterprise bean Home

requires the following code in a J2EE application client:

 java.lang.Object ejbHome = initialContext.lookup("java:/comp/env/ejb/MyEJBHome");

 MyEJBHome = (MyEJBHome)javax.rmi.PortableRemoteObject.narrow(ejbHome, MyEJBHome.class);

However, you need more explicit code in a Java thin application client:

 java.lang.Object ejbHome =

initialContext.lookup("the/fully/qualified/path/to/actual/home/in/namespace/MyEJBHome");

 MyEJBHome = (MyEJBHome)javax.rmi.PortableRemoteObject.narrow(ejbHome, MyEJBHome.class);

In this example, the J2EE application client accesses a logical name from the java:/comp name space.

The J2EE client run time resolves that name to the physical location and returns the reference to the client

application. The thin client must know the fully qualified physical location of the enterprise bean Home in

the name space. If this location changes, the thin client application must also change the value placed on

the lookup() statement.

In the J2EE client, the client application is protected from these changes because it uses the logical name.

A change might require a redeployment of the EAR file, but the actual client application code remains the

same.

The thin application client is a traditional Java application that contains a main function. The WebSphere

thin application client provides run-time support for accessing remote enterprise beans, and provides the

implementation for various services (security, Workload Management (WLM), and others). This client can

also access CORBA objects and CORBA based services. When using both environments in one client

application, you need to understand the differences between the enterprise bean and CORBA

programming models to manage both environments.

For instance, the CORBA programming model requires the CORBA CosNaming name service for object

resolution in a name space. The enterprise beans programming model requires the JNDI name service.

The client application must initialize and properly manage these two naming services.

Another difference applies to the enterprise bean model. Use the Java Naming and Directory Interface

(JNDI) implementation in the enterprise bean model to initialize the Object Request Broker (ORB). The

client application is unaware that an ORB is present. The CORBA model, however, requires the client

application to explicitly initialize the ORB through the ORB.init() static method.

Chapter 8. Developing WebSphere applications 847

The thin application client provides a batch command that you can use to set the CLASSPATH and

JAVA_HOME environment variables to enable the thin application client run time.

Application client troubleshooting tips

This section provides some debugging tips for resolving common Java 2 Platform Enterprise Edition

(J2EE) application client problems. To use this troubleshooting guide, review the trace entries for one of

the J2EE application client exceptions, and then locate the exception in the guide. Some of the errors in

the guide are samples, and the actual error you receive can be different than what is shown here. You

might find it useful to rerun the launchClient command specifying the -CCverbose=true option. This option

provides additional information when the J2EE application client run time is initializing

Error: java.lang.NoClassDefFoundError

 Explanation This exception is thrown when Java code cannot load the specified class.

Possible causes v Invalid or non-existent class

v Class path problem

v Manifest problem

Recommended

response

Check to determine if the specified class exists in a Java Archive (JAR) file within your

Enterprise Archive (EAR) file. If it does, make sure the path for the class is correct. For

example, if you get the exception:

java.lang.NoClassDefFoundError:

WebSphereSamples.HelloEJB.HelloHome

verify that the HelloHome class exists in one of the JAR files in your EAR file. If it exists,

verify that the path for the class is WebSphereSamples.HelloEJB.

If both the class and path are correct, then it is a class path issue. Most likely, you do not

have the failing class JAR file specified in the client JAR file manifest. To verify this situation,

perform the following steps:

1. Open your EAR file with the Application Server Toolkit or the Rational Web Developer

assembly tool, and select the Application Client.

2. Add the names of the other JAR files in the EAR file to the Classpath field.

This exception is generally caused by a missing Enterprise Java Beans (EJB) module name

from the Classpath field.

If you have multiple JAR files to enter in the Classpath field, be sure to separate the JAR

names with spaces.

If you still have the problem, you have a situation where a class is loaded from the file

system instead of the EAR file. This error is difficult to debug because the offending class is

not the one specified in the exception. Instead, another class is loaded from the file system

before the one specified in the exception. To correct this error, review the class paths

specified with the -CCclasspath option and the class paths configured with the Application

Client Resource Configuration Tool. Look for classes that also exist in the EAR file. You must

resolve the situation where one of the classes is found on the file system instead of in the

.ear file. Remove entries from the classpaths, or include the .jar files and classes in the

.ear file instead of referencing them from the file system.

If you use the -CCclasspath parameter or resource classpaths in the Application Client

Resource Configuration Tool, and you have configured multiple JAR files or classes, verify

they are separated with the correct character for your operating system. Unlike the Classpath

field, these class path fields use platform-specific separator characters, usually a colon (on

UNIX platforms) or a semi-colon (on Windows systems).

Note: The system class path is not used by the Application Client run time if you use the

launchClient batch or shell files. In this case, the system class path would not cause this

problem. However, if you load the launchClient class directly, you do have to search through

the system class path as well.

848 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Error: com.ibm.websphere.naming.CannotInstantiateObjectException: Exception occurred while

attempting to get an instance of the object for the specified reference object. [Root exception is

javax.naming.NameNotFoundException: xxxxxxxxxx]

 Explanation This exception occurs when you perform a lookup on an

object that is not installed on the host server. Your

program can look up the name in the local client Java

Naming and Directory Interface (JNDI) name space, but

received a NameNotFoundException exception because it

is not located on the host server. One typical example is

looking up an EJB component that is not installed on the

host server that you access. This exception might also

occur if the JNDI name you configured in your Application

Client module does not match the actual JNDI name of

the resource on the host server.

Possible causes v Incorrect host server invoked

v Resource is not defined

v Resource is not installed

v Application server is not started

v Invalid JNDI configuration

Recommended response If you are accessing the wrong host server, run the

launchClient command again with the -CCBootstrapHost

parameter specifying the correct host server name. If you

are accessing the correct host server, use the product

dumpnamespace command line tool to see a listing of the

host server JNDI name space. If you do not see the failing

object name, the resource is either not installed on the

host server or the appropriate application server is not

started. If you determine the resource is already installed

and started, your JNDI name in your client application

does not match the global JNDI name on the host server.

Use the Application Server Toolkit to compare the JNDI

bindings value of the failing object name in the client

application to the JNDI bindings value of the object in the

host server application. The values must match.

Error: javax.naming.ServiceUnavailableException: A communication failure occurred while

attempting to obtain an initial context using the provider url: ″iiop://[invalidhostname]″. Make sure

that the host and port information is correct and that the server identified by the provider URL is a

running name server. If no port number is specified, the default port number 2809 is used. Other

possible causes include the network environment or workstation network configuration. Root

exception is org.omg.CORBA.INTERNAL: JORB0050E: In Profile.getIPAddress(),

InetAddress.getByName[invalidhostname] threw an UnknownHostException. minor code: 4942F5B6

completed: Maybe

 Explanation This exception occurs when you specify an invalid host

server name.

Possible causes v Incorrect host server invoked

v Invalid host server name

Recommended response Run the launchClient command again and specify the

correct name of your host server with the

-CCBootstrapHost parameter.

Chapter 8. Developing WebSphere applications 849

Error: javax.naming.CommunicationException: Could not obtain an initial context due to a

communication failure. Since no provider URL was specified, either the bootrap host and port of an

existing ORB was used, or a new ORB instance was created and initialized with the default

bootstrap host of ″localhost″ and the default bootstrap port of 2809. Make sure the ORB bootstrap

host and port resolve to a running name server. Root exception is

org.omg.CORBA.COMM_FAILURE: WRITE_ERROR_SEND_1 minor code: 49421050 completed: No

 Explanation This exception occurs when you run the launchClient

command to a host server that does not have the

Application Server started. You also receive this exception

when you specify an invalid host server name. This

situation might occur if you do not specify a host server

name when you run the launchClient tool. The default

behavior is for the launchClient tool to run to the local

host, because WebSphere Application Server does not

know the name of your host server. This default behavior

only works when you are running the client on the same

machine with WebSphere Application Server is installed.

Possible causes v Incorrect host server invoked

v Invalid host server name

v Invalid reference to localhost

v Application server is not started

v Invalid bootstrap port

Recommended response If you are not running to the correct host server, run the

launchClient command again and specify the name of

your host server with the -CCBootstrapHost parameter.

Otherwise, start the Application Server on the host server

and run the launchClient command again.

Error: javax.naming.NameNotFoundException: Name comp/env/ejb not found in context ″java:″

 Explanation This exception is thrown when the Java code cannot

locate the specified name in the local JNDI name space.

Possible causes v No binding information for the specified name

v Binding information for the specified name is incorrect

v Wrong class loader was used to load one of the

program classes

v A resource reference does not include any client

configuration information

Recommended response Open the EAR file with the Application Server Toolkit, and

check the bindings for the failing name. Ensure this

information is correct. If you are using Resource

References, open the EAR file with the Application Client

Resource Configuration Tool, and verify that the Resource

Reference has client configuration information and the

name of the Resource Reference exactly matches the

JNDI name of the client configuration. If the values are

correct, you might have a class loader error.

Error: java.lang.ClassCastException: Unable to load class:

org.omg.stub.WebSphereSamples.HelloEJB._HelloHome_Stub at

com.ibm.rmi.javax.rmi.PortableRemoteObject.narrow(portableRemoteObject.java:269)

 Explanation This exception occurs when the application program

attempts to narrow to the EJB home class and the class

loaders cannot find the EJB client side bindings.

850 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Possible causes v The files, *_Stub.class and _Tie.class, are not in the

EJB .jar file

v Class loader could not find the classes

Recommended response Look at the EJB .jar file located in the .ear file and verify

the class contains the Enterprise Java Beans (EJB) client

side bindings. These are class files with file names that

end in _Stub and _Tie. If the binding classes are in the

EJB .jar file, then you might have a class loader error.

Error: WSCL0210E: The Enterprise archive file [EAR file name] could not be found.

com.ibm.websphere.client.applicationclient.ClientContainerException:

com.ibm.etools.archive.exception.OpenFailureException

 Explanation This error occurs when the application client run time

cannot read the Enterprise Archive (EAR) file.

Possible causes The most likely cause of this error is that the system

cannot find the EAR file cannot be found in the path

specified on the launchClient command.

Recommended response Verify that the path and file name specified on the

launchclient command are correct. If you are running on

the Windows operating system and the path and file name

are correct, use a short version of the path and file name

(8 character file name and 3 character extension).

The launchClient command appears to hang and does not return to the command line when the

client application has finished.

 Explanation When running your application client using the

launchClient command the WebSphere Application

Server run time might need to display the security login

dialog. To display this dialog, WebSphere Application

Server run time creates an Abstract Window Toolkit (AWT)

thread. When your application returns from its main

method to the application client run time, the application

client run time attempts to return to the operating system

and end the Java virtual machine (JVM) code. However,

since there is an AWT thread, the JVM code will not end

until System.exit is called.

Possible causes The JVM code does not end because there is an AWT

thread. Java code requires that System.exit() be called

to end AWT threads.

Recommended response v Modify your application to call System.exit(0) as the

last statement.

v Use the -CCexitVM=true parameter when you call the

launchClient command.

For current information available from IBM Support on known problems and their resolution, see the IBM

customer support page.

IBM Support has documents that can save you time gathering information needed to resolve this problem.

Before opening a PMR, see the IBM customer support page.

Chapter 8. Developing WebSphere applications 851

http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSC3NAD
http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSC3NAD
http://www-1.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSC3NAD&q=mustgather

Running application clients

The J2EE specification requires support for a client container that runs stand-alone Java applications

(known as J2EE application clients) and provides J2EE services to the applications. J2EE services include

naming, security, and resource connections.

You are ready to run your application client using this tool after you have:

1. Written the application client program.

2. Assembled and installed an application module (.ear file) in the application server run time.

3. Deployed the application using the Application Client Resource Configuration Tool (ACRCT).

This task only applies to J2EE application clients.

1. Open a command window and invoke the following script to launch J2EE application clients using the

launchClient shell:

install_root/bin/launchClient.bat

The launchClient batch command starts the application client run time, which:

v Initializes the client run time.

v Loads the class that you designated as the main class with an assembly tool. See ″Starting an

assembly tool″ in the information center.

v Runs the main method of the application client program.

When your program terminates, the application client run time cleans up the environment and the Java

virtual machine (JVM) code ends.

2. Pass parameters to the launchClient command or to your application client program as well. The

launchClient command allows you to do both. The launchClient command requires that the first

parameter is either:

v An EAR file specifying the application client to launch.

v A request for launchClient usage information.

The following example illustrates the command line invocation syntax for the launchClient tool (shown

here on 2 lines for publication):

launchClient [-profileName pName | -JVMOptions options | -help | -?] <userapp>

 [-CC<name>=<value>] [app args]

where

v userapp.ear is the path and the name of the EAR file that contains the application client.

v -CC<name>=<value> is the client container name-value pair parameter. See the client container

parameters section, for supported name-value pair arguments.

v app args are arguments that pass to the application client.

v -profileName defines the profile of the Application Server process in a multi-profile installation. The

-profileName option is not required for running in a single profile environment or in an Application

Clients installation. The default is default_profile.

v -JVMOptions is a valid Java standard or non-standard option string. Insert quotation marks around

the string.

v -help, -? prints the usage information.

All other parameters intended for the launchClient command must begin with the -CC prefix.

Parameters that are not EAR files, or usage requests, or that do not begin with the -CC prefix, are

ignored by the application client run time, and are passed directly to the application client program.

The launchClient command retrieves parameters from three places:

v The command line

v A properties file

v System properties

852 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

The parameters are resolved in the order listed above, with command line values having the highest

priority and system properties the lowest. Using this prioritization you can set and override default

values.

3. Specify the server name. By default, the launchClient command uses the localhost for the

BootstrapHost property value. This setting is effective for testing your application client when it is

installed on the same computer as the server. However, in other cases override this value with the

name of your server.

You can override the BootstrapHost value by invoking launchClient command with the following

parameters:

launchClient myapp.ear -CCBootstrapHost=abc.midwest.mycompany.com

You can also override the default by specifying the value in a properties file and passing the file name

to the launchClient shell.

Security is controlled by the server. You do not need to configure security on the client because the

client assumes that security is enabled. If server security is not enabled, then the server ignores the

security request, and the application client functions as expected.

You can store launchClient values in a properties file, which is a good method for distributing default

values. You can then override one or more values on the command line. The format of the file is one

launchClient -CC parameter per line without the -CC prefix. For example:

 verbose=true classpath=c:\mydir\util.jar;c:\mydir\harness.jar;c:\production\G19

\global.jar BootstrapHost=abc.westcoast.mycompany.com tracefile=c:\WebSphere\mylog.txt

launchClient tool

This section describes the Java 2 Platform Enterprise Edition (J2EE) command line syntax for the

launchClient tool for WebSphere Application Server.

The following example illustrates the command line invocation syntax for the launchClient tool (shown here

on 2 lines for publication):

launchClient [-profileName pName | -JVMOptions options | -help | -?]

 <userapp> [-CC<name>=<value>] [app args]

where

v userapp.ear is the path and the name of the EAR file that contains the application client.

v -CC<name>=<value> is the client container name-value pair parameter. See the client container

parameters section, for supported name-value pair arguments.

v app args are arguments that pass to the application client.

v -profileName defines the profile of the Application Server process in a multi-profile installation. The

-profileName option is not required for running in a single profile environment or in an Application

Clients installation. The default is default_profile.

v -JVMOptions is a valid Java standard or nonstandard option string. Insert quotation marks around the

string.

v -help, -? prints the usage information.

The first parameter must be -help, -? or contain no parameter at all. The -profileName pName and

-JVMOptions options are optional parameters. If used, they must appear before the <userapp> parameter.

All other parameters are optional and can appear in any order after the <userapp> parameter. The J2EE

Application client run time ignores any optional parameters that do not begin with a -CC prefix and passes

those parameters to the application client.

Client container parameters

Supported arguments include:

Chapter 8. Developing WebSphere applications 853

-CCsoapConnectorPort

The Simple Object Access Protocol (SOAP) connector port. If you do not specify this argument, the

WebSphere Application Server default value is used.

-CCverbose

This option displays additional information messages. The default is false.

-CCclasspath

A class path value. When you launch an application, the system class path is used. If you want to

access classes that are not in the EAR file or part of the system class paths, specify the appropriate

class path here. Multiple paths can be concatenated.

-CCjar

The name of the client Java Archive (JAR) file that resides within the EAR file for the application you

wish to launch. Use this argument when you have multiple client JAR files in the EAR file.

-CCadminConnectorHost

Specifies the host name of the server from which configuration information is retrieved. The default is

the value of the -CCBootstrapHost parameter or the value, localhost, if the -CCBootstrapHost

parameter is not specified.

-CCadminConnectorPort

Indicates the port number for the administrative client function to use. The default value is 8880 for

SOAP connections and 2809 for Remote Method Invocation (RMI) connections.

-CCadminConnectorType

Specifies how the administrative client connects to the server. Specify RMI to use the RMI connection

type, or specify SOAP to use the SOAP connection type. The default value is SOAP.

-CCadminConnectorUser

Administrative clients use this user name when a server requires authentication. If the connection type

is SOAP, and security is enabled on the server, this parameter is required. The SOAP connector does

not prompt for authentication.

-CCadminConnectorPassword

The password for the user name that the -CCadminConnectorUser parameter specifies.

-CCaltDD

The name of an alternate deployment descriptor file. This parameter is used with the -CCjar parameter

to specify the deployment descriptor to use. Use this argument when a client JAR file is configured

with more than one deployment descriptor. Set the value to null to use the client JAR file standard

deployment descriptor.

-CCBootstrapHost

The name of the host server you want to connect to initially. The format is:

your_server_of_choice.com

-CCBootstrapPort

The server port number. If you do not specify this argument, the WebSphere Application Server default

value is used.

-CCproviderURL

Provides bootstrap server information that the initial context factory can use to obtain an initial context.

WebSphere Application Server initial context factory can use either a Common Object Request Broker

Architecture (CORBA) object URL or an Internet Inter-ORB Protocol (IIOP) URL. CORBA object URLs

are more flexible than IIOP URLs and are the recommended URL format to use. This value can

contain more than one bootstrap server address. This feature can be used when attempting to obtain

an initial context from a server cluster. You can specify bootstrap server addresses, for all servers in

the cluster, in the URL. The operation will succeed if at least one of the servers is running, eliminating

a single point of failure. The address list does not process in a particular order. For naming operations,

this value overrides the -CCBootstrapHost and -CCBootstrapPort parameters. A CORBA object URL

specifying multiple systems is illustrated in the following example:

854 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

-CCproviderURL=corbaloc:iiop:myserver.mycompany.com:9810,:mybackupserver.mycompany.com:2809

This value is mapped to the java.naming.provider.url system property.

-CCinitonly

Use this option to initialize application client run time for ActiveX application clients without launching

the client application. The default is false.

-CCtrace

Use this option to obtain debug trace information. You might need this information when reporting a

problem to IBM customer support. The default is false For more information, read the topic ″Enabling

trace″ in the Troubleshooting and support PDF.

-CCtracefile

Indicates the name of the file to which trace information is written. The default is to write output to the

console.

-CCpropfile

Indicates the name of a properties file that contains launchClient properties. Specify the properties

without the -CC prefix in the file. For example: verbose=true.

-CCsecurityManager

Enables and runs the WebSphere Application Server with a security manager. The default is disable.

-CCsecurityMgrClass

Indicates the fully qualified name of a class that implements a security manager. Only use this

argument if the -CCsecurityManager parameter is set to enable. The default is

java.lang.SecurityManager.

-CCsecurityMgrPolicy

Indicates the name of a security manager policy file. Only use this argument if the -CCsecurityManager

parameter is set to enable. When you enable this parameter, the java.security.policy system

property is set. The default is <install_root>/ properties/client.policy.

-CCD

Use this option to have the WebSphere Application Server set the specified system property during

initialization. Do not use the equals (=) character after the -CCD. For example:

-CCDcom.ibm.test.property=testvalue. You can specify multiple -CCD parameters. The general format

of this parameter is -CCD<property key>=<property value>.

-CCexitVM

Use this option to have the WebSphere Application Server call the System.exit() method after the

client application completes. The default is false.

-CCdumpJavaNameSpace

Prints out the Java portion of the Java Naming and Directory Interface (JNDI) name space for

WebSphere Application Server. The true value uses the short format that prints out the binding name

and the type of the object bound at that location. The long value uses the long format that prints out

the binding name, bound object type, local object, type and string representation of the local object, for

example, IORs and string values. The default value is false.

-CCtraceMode

Specifies the trace format to use for tracing. If the valid value, basic, is not specified the default is

advanced. Basic tracing format is a more compact form of tracing. For more information on basic and

advanced trace formatting, read the topic ″Interpreting trace output″ in the Troubleshooting and

support PDF.

-CCclassLoaderMode

Specifies the class loader mode. If PARENT_LAST is specified, the class loader loads classes from

the local class path before delegating the class loading to its parent. The classes loaded for the

following are affected:

v Classes defined for the J2EE application client

Chapter 8. Developing WebSphere applications 855

v Resources defined in the J2EE application

v Classes specified on the manifest of the J2EE client JAR file

v Classes specified using the -CCclasspath option

If PARENT_LAST is not specified, then the default mode, PARENT_FIRST, causes the class loader to

delegate the loading of classes to its parent class loader before attempting to load the class from its

local class path.

The following examples demonstrate correct syntax.

On the Windows operating system:

launchClient c:\earfiles\myapp.ear -CCBootstrapHost=myWASServer -CCverbose=true

app_parm1 app_parm2

On the UNIX operating system:

./launchClient.sh /usr/earfiles/myapp.ear -CCBootstrapHost=myWASServer -CCverbose=true

app_parm1 app_parm2

Specifying the directory for an expanded EAR file:

Each time the launchClient tool is called, it extracts the Enterprise Archive (EAR) file to a random directory

name in the temporary directory on your hard drive. Then the tool sets up the thread ClassLoader to use

the extracted EAR file directory and JAR files included in the Manifest.mf client Java Archive (JAR) file. In

a normal J2EE Java client, these files are automatically cleaned up after the application exits. This

cleanup occurs when the client container shutdown hook is called. To avoid extracting the EAR file (and

removing the temporary directory) each time the launchClient tool is called, complete the following steps:

1. Specify a directory to extract the EAR file by setting the

com.ibm.websphere.client.applicationclient.archivedir Java system property. If the directory does

not exist or is empty, the EAR file is extracted normally. If the EAR file was previously extracted, the

launchClient tool reuses the directory.

2. Delete the directory before running the launchClient tool again, if you need to update your EAR file.

When you call the launchClient command, it extracts the new EAR file to the directory. If you do not

delete the directory or change the system property value to point to a different directory, the

launchClient tool reuses the currently extracted EAR file and does not use your changed EAR file.

When specifying the com.ibm.websphere.client.applicationclient.archivedir property, make sure

that the directory you specify is unique for each EAR file you use. For example, do not point the

MyEar1.ear and the MyEar2.ear files to the same directory.

Java Web Start architecture for deploying application clients

Java Web Start is an application-deployment technology that includes the portability of applets, the

maintainability of servlets and JavaServer Pages (JSP) file technology, and the simplicity of mark-up

languages such as XML and HTML. It is a Java application that allows full-featured Java 2 client

applications to be launched, deployed and updated from a standard Web server. Upon launching Java

Web Start for the first time, you might download new client applications from the Web. Each time you

launch JWS thereafter, you can initiate applications either through a link on a Web page or (in Windows)

from desktop icons or the Start menu. You can deploy applications quickly using Java Web Start, cache

applications on the client machine, and launch applications remotely offline. Additionally, because Java

Web Start is built from the J2EE infrastructure, the technology inherits the complete security architecture of

the J2EE platform.

The technology underlying Java Web Start is the Java Network Launching Protocol & API (JNLP). Java

Web Start is a JNLP client and it reads and parses a JNLP descriptor file (JNLP file). Base on the JNLP

descriptor, it downloads appropriate pieces of a client application and any of its dependencies. If any of the

pieces of the application are already cached on the client machine, then those components are not

downloaded again, unless they have been updated on the server machine. After you download and cache

the client application, JWS launches it natively on the client machine.

856 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

The following diagram shows an overview of launching a client application, include the Application Client

for WebSphere Application Server, Version 6 as a dependent resource, using Java Web Start.

Java Network

Launching Protocol

files(JNLP)

Web

browser

Java WebStart

(JWS)

application-desc

JNLP

installer-desc

JNLP

WebSphere JARs

WebSphereClientLauncher.jar

WASClient6.0_runtime.jar

EAR file

JAR file

for a J2EE application

or for a non-J2EE application

WebSphereClientRuntimeInstaller.jar

component-desc

JNLP

The Web browser running on a client machine connects to a Web application located on a server

machine. The client application JNLP descriptor file is downloaded and processed by Java Web Start on

the client machine.

In this diagram, there are three JNLP descriptor files:

v Client application JNLP descriptor (application-desc in the diagram)

v Application Clients run-time installer JNLP descriptor (installer-desc in the diagram)

v Application Clients run-time library component JNLP descriptor (component-desc in the diagram)

Each of these JNLP descriptor files, the client application (JAR or EAR) and the dependent resource JAR

files are packaged as Web applications in an EAR file. This EAR file is deployed to an Application server.

The client machine with JWS installed uses a Web browser to connect to the url of the client application

JNLP descriptor file to download and run the client application.

Using Java Web Start product version 1.4.2 or later is highly recommended. The following operating

systems support running J2EE application client applications and or Thin application client applications

using Java Web Start:

v Red Hat Enterprise Linux for Intel, Version 3.0

v SuSE Linux Enterprise Server, Versions 8 and 9

v Windows 2000 Professional, Windows 2000 Professional, Windows Advance Server, and Windows 2000

Advance Server

v AIX, Versions 5.1, 5.2, and 5.3

v Solaris, Versions 8 and 9

v HP-UX 11i

You can use Java Web Start on the Java 2 Standard Edition Developer Kits that IBM provides, packaged

in Application Client for WebSphere Application Server, Version 6; Java Web Start on Sun Microsystems

J2SE Software Development Kit or J2SE Java Runtime Environment 1.4.2, which you can download from

the Sun Microsystems Web site for Windows, Linux and Solaris operating systems, or the Java Web Start

on HP SDK or RTE for Java 2 version 1.4.2, which you can download from the HP Web site.

Chapter 8. Developing WebSphere applications 857

http://www.sun.com
http://www.hp.com/products1/unix/java/java2/sdkrte14/downloads/index_pa-risc.html

Using Java Web Start

Before you begin this task, see the following topics to understand Java Web Start technology and its

components:

v “Java Web Start architecture for deploying application clients” on page 856

v “Client application Java Network Launcher Protocol deployment descriptor file”

v “ClientLauncher class” on page 861

Note: You can use Java Web Start on Java 2 Standard Edition Developer Kits that IBM provides,

packaged in the Application Client for WebSphere Application Server, Version 6; Java Web Start on

Sun Microsystems J2SE Software Development Kit or J2SE Java Runtime Environment 1.4.2,

which you can download from the Sun Microsystems Web site for Windows, Linux and Solaris

operating systems, or the Java Web Start on HP SDK or RTE for Java 2 version 1.4.2, which you

can download from the HP Web site.

1. Prepare the Application Clients run-time dependency component for JWS.

2. Prepare the Application Clients run-time library component for JWS.

3. Optional: Run the Java Web Start sample.

Note: Problem: When you run Web services clients from Java Web Start using a Mozilla browser, you

might get errors if the client argument contains quotations in the jnlp.jsp file. For example, the

following argument (shown here on 2 lines for publication))results in an error:

<argument>-url="wsejb:/com.ibm.wssvt.tc.pli.ejb.WSMultiProtocolHome?jndiName=com/ibm

 /wssvt/tc/pli/ejb/WSMultiProtocolHome&"</argument>

Error: The following errors display in the Java Web Start console:

Client caught exception getting the InsuranceWebServicesPort

using the URL

"wsejb:/com.ibm.wssvt.tc.pli.ejb.WSMultiProtocolHome?jndiName=

 com/ibm/wssvt/tc/pli/ejb/WSMultiProtocolHome&"

java.net.MalformedURLException: no protocol:

 "wsejb:/com.ibm.wssvt.tc.pli.ejb.WSMultiProtocolHome?jndiName=

 com/ibm/wssvt/tc/pli/ejb/WSMultiProtocolHome&"

 at java.net.URL.<init>(URL.java(Compiled Code))

 at java.net.URL.<init>(URL.java(Compiled Code))

 at java.net.URL.<init>(URL.java:411)

 at com.ibm.wssvt.tc.pli.webservice.InsuranceWebServicesClient.getInsuranceServicesClientURL(

 InsuranceWebServicesClient.java:231)

 at com.ibm.wssvt.tc.pli.webservice.InsuranceWebServicesClient.main(

 InsuranceWebServicesClient.java:748)

 at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)

 at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:85)

 at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:58)

 at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:60)

 at java.lang.reflect.Method.invoke(Method.java:391)

 at com.ibm.websphere.client.applicationclient.launchClient.createContainerAndLaunchApp(

 launchClient.java:649)

Solution: Update the jnlp.jsp file to remove the quotation marks (″ ″) from the argument. Use

the following example argument (shown here on 2 lines for publication) to correct the errors:

<argument>-url=wsejb:/com.ibm.wssvt.tc.pli.ejb.WSMultiProtocolHome?jndiName=

 com/ibm/wssvt/tc/pli/ejb/WSMultiProtocolHome&</argument>

Now rerun the client from Java Web Start.

Client application Java Network Launcher Protocol deployment descriptor file: The deployment

descriptor file is the main Java Network Launcher Protocol (JNLP) descriptor file for the client application.

The client application has an Application Clients run-time dependency that provides the Java 2 Runtime

Environment from IBM, Application Clients run-time properties, the SSL KeyStore and TrustStore file, and

858 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

http://www.sun.com
http://www.hp.com/products1/unix/java/java2/sdkrte14/downloads/index_pa-risc.html

the Application Clients run-time library JAR files (optional for Thin Application client applications). If the

Application Clients run-time dependency is not met, it is downloaded and installed in Java Web Start

(JWS), as described by the Application Clients run-time installer JNLP descriptor file.

<j2se version="WASclient6.0" href="/WebSphereClientRuntimeWeb/Runtime/jnlp.jsp"/>

It must also include the WebSphereClientLauncher.jar file, which contains the launcher class,

com.ibm.websphere.client.launcher.ClientLauncher, that completes one of the following actions:

v If it is a J2EE Application client application (that is the resources for the application contain an EAR file

with a client application), then the launcher class starts a second Java Virtual Machine (JVM) using the

JRE provided by the Application Clients run-time dependency and launches the J2EE Application client

application which is packaged in the EAR file.

The EAR file must be specified as a JAR resource so that it can be downloaded to JWS and specified

in the system property, com.ibm.websphere.client.launcher.ear. See the following example for details:

<resources>

<j2se version="WASclient6.0" href="/WebSphereClientRuntimeWeb/Runtime/jnlp.jsp"/>

<jar href="Launcher/WebSphereClientLauncher.jar" main="true"/>

<jar href="lib/j2eeclient.ear"/>

<property name="com.ibm.websphere.client.launcher.ear" value="j2eeclient.ear"/>

</resources>

v If it is a Thin Application client application, then the launcher class uses the current JVM from the

Application Clients run-time dependency and invokes the Thin Application client application main

method.

The Thin Application client application JAR file must be specified as a JAR resource so that it can be

download to JWS and the name of the class containing main method entry point is specified in the

system property, com.ibm.websphere.launcher.main.

<resources>

<j2se version="WASclient6.0" href="/WebSphereClientRuntimeWeb/Runtime/jnlp.jsp"/>

 <extension name="WebSphere Runtime"

 href="/WebSphereClientRuntimeWeb/Runtime/WebSphereJars/jnlp.jsp"/>

 <jar href="Launcher/WebSphereClientLauncher.jar" main="true"/>

 <jar href="lib/thinclient.jar"/>

 <property name="com.ibm.websphere.client.launcher.main"

 value="myapp.sample.thinclient.ThinClientMain”/>

</resources>

Unlike the J2EE Application client application, the Thin Application client application is not loading the

Application Clients run-time library JAR files from the Application Clients run-time dependency. It is

downloaded from the server directly as it is for the Thin Application client application JAR file. An

Application Clients run-time library component JNLP descriptor is used for specifying the Application

Clients run-time library JAR files resources, as shown in the following example:

<extension name="WebSphere Runtime"

 href="/WebSphereClientRuntimeWeb/Runtime/WebSphereJars/jnlp.jsp"/>

The JNLP specification requires all the resource (JAR or EAR) files used in a JNLP file to be signed.

You can specify the –CC arguments defined in the launchClient tool for a J2EE Application client

application in application arguments section of the JNLP descriptor files. However, only –CCD is

supported for a Thin Application client application to define system properties and the JNLP <property>

tag can also be used to define system properties. See the following example for details:

<property name="java.naming.provider.url" value="corbaloc:iiop:myserver.com:9089"/>

For a J2EE Application client application, specify the following application arguments as defined in the

JNLP.

1. Specify your target server provider URL, as shown in the following example:

<argument> >-CCDjava.naming.provider.url =corbaloc:iiop:myserver.mydomain.com:9080</argument>

2. Specify the SSL Key File and SSL Trust File location. These files are expected to be available in the

client machine. To use the ones in the Application Clients run-time dependency installed in JWS

cache, specify these application arguments:

Chapter 8. Developing WebSphere applications 859

<argument> -CCDcom.ibm.ssl.keyStore=${WAS_ROOT}/etc/DummyClientKeyFile.jks </argument>

<argument>-CCDcom.ibm.ssl.trustStore=${WAS_ROOT}/etc/DummyClientTrustFile.jks </argument>

3. Specify the initial naming context factor, as shown in the following example:

<argument>-CCDjava.naming.factory.initial=

 com.ibm.websphere.naming.WsnInitialContextFactory </argument>

For a Thin Application client application, you also need to specify the actual location of the

sas.client.props file located in the Application Clients run-time dependency that is installed in the

JWS cache.

<argument>-CCDcom.ibm.CORBA.ConfigURL=file:${WAS_ROOT}/properties/sas.client.props</argument>

If any of the default settings in the sas.client.props file need modifying, use the –CCD to change

the settings through the system properties, as shown in the following example:

<argument>-CCDjavacom.ibm.CORBA.securityEnabled=false </argument>

Note: The ${install_root} token used in the JNLP file is replaced by the launcher class,

com.ibm.websphere.client.launcher.ClientLauncher, to the actual location of the Application

Clients run-time dependency installation in the JWS cache. If you are using JSP to

dynamically create this JNLP description file, you must escape this token because it has a

different meaning in JSP 2.0. See the following example for details:

<argument>-CCDcom.ibm.ssl.keyStore=\${WAS_ROOT}/etc/DummyClientKeyFile.jks </argument>

<argument>-CCDcom.ibm.ssl.trustStore=\${WAS_ROOT}/etc/DummyClientTrustFile.jks </argument>

Here is an example of the client application JNLP descriptor file for a J2EE Application client application.

<%-- This is a generic jnlp for a client app. It will specify the WAS JRE

 as a dependency as well as the client launcher

-->

<%! private final String description="J2EE Client Example"; private final

String earName="J2EEWebStart.ear";

%>

<% // locally declared variable

String urlSt = request.getRequestURL().toString();

String jnlpCodeBase=urlSt.substring(0,urlSt.lastIndexOf(’/’));

String jnlpRefURL=urlSt.substring(urlSt.lastIndexOf(’/’)+1,urlSt.length());

// The client application descriptor noted a resource reference to be resolved

// at deploy time as following

%>

<%--

 Need to set a JNLP mime type - if Web Start is installed on the client,

 this header will induce the browser to drive the Web Start Client

--%><%

 response.setContentType("application/x-java-jnlp-file"); 1

 response.setHeader("Cache-Control", null);

 response.setHeader("Set-Cookie", null);

 response.setHeader("Vary", null);

%>

<?xml version="1.0" encoding="utf-8"?

<!-- JNLP File for <%=description %> -->

<jnlp

 spec="1.0+"

 <%-- Automate the code base response

-->% codebase="<%=jnlpCodeBase%>"

href="<%=jnlpRefURL%>"

 <information>

 <title><%=description %></title>

 <description kind="short"><%=description %></description>

 <description kind="tooltip"><%=description %></description>

 <offline-allowed></offline-allowed>

 </information>

 <security>

 <all-permissions></all-permissions>

860 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

</security>

 <resources>

 <%-- The URL for the Client JRE installer --%>

 WASclient6.0"

href="/WebSphereClientRuntimeWeb/Runtime/jnlp.jsp"></j2se> 2

 <%-- Specify the client launcher --%>

 <jar href="../Launcher/WebSphereClientLauncher.jar" main="true"> </jar> 3

 <%-- Ear we want to download to the client --%>

 <jar href="<%=earName%>"></jar> 4

 <%-- The launcher depends on this property to be set --%>

 <property name="com.ibm.websphere.client.launcher.ear"

value="<%=earName%>"><property> 5

 <resources>

<%-- Web Start will consider the Launcher as the application to run -->

<application-desc> 6

<argument>-CCproviderURL=corbaloc:iiop:your_server_hostname </argument> 7

<

 <argument>-

CCDcom.ibm.ssl.keyStore=\${install_root}/etc/DummyClientKeyFile.jks</argument> 8

<argument>-

CCDcom.ibm.ssl.trustStore=

 \${install_root}/etc/DummyClientTrustFile.jksCCDcom.ibm.ssl.trustStore=

 \${install_root}/etc/DummyClientTrustFile.jks</argument> 9

</application-desc>

</jnlp>

v 1--Specifies the mime type of the file must be JNLP so that the browser will know what to do with the

file.

v 2--Specifies that the application is depending on the WASclient6.0 Java Runtime Environment and

specifies the URL of the JNLP for the Application Clients run-time dependency.

v 3--Specifies the JAR file containing the launcher class. This should be the first jar specified and must

contain the URL of the JAR file.

v 4--Specifies the EAR file to be downloaded, which is similar to the one you run on an Application Client

for WebSphere Application Server installation.

v 5--Specifies the value of the EAR file name of the J2EE application.

v 6--Specifies an application descriptor.

v 7--Specifies the arguments for the J2EE Application client application as they are specified on the

launchClient call.

v 8, 9--Overrides the values in the sas.client.props file. They are needed because the installation

location of the Application Clients run-time dependency component is unknown before it is actually

installed. By default, security is turned on for the client application, and these values are required. The

${install_root} directory name is substituted with the Application Clients run-time dependency component

installation location at run time.

ClientLauncher class: The class, com.ibm.websphere.client.installer.ClientLauncher, contains a main()

method that is called by Java Web Start (JWS) to launch the client application. It is packaged in the

WebSphereClientLauncher.jar file that is located in a WebSphere Application Server clients installation

under the <install_root>/ JWS directory.

This launcher class configures the run-time environment for J2EE application clients and thin client

applications (not J2EE application clients).

Chapter 8. Developing WebSphere applications 861

The launcher class requires that the following properties are defined. These properties are not defined in a

separate properties file. Instead, they are defined as part of the Java Network Launching Protocol (JNLP)

files.

com.ibm.websphere.client.launcher.main

If the client application is a Thin Application client, then this property should be specified. It

specifies the class where the main entry point of the client application resides.

com.ibm.websphere.client.launcher.ear

If the client application is a J2EE Application client, then this property should be specified. It

specifies the name of the EAR file to be executed. This property takes precedence over

com.ibm.websphere.client.launcher.main. However, only one of the two properties should be

specified.

com.ibm.websphere.client.launcher.classpath.* (required for J2EE client applications only)

There can be a set of properties that are prefixed with

com.ibm.websphere.client.launcher.classpath. Each property specifies a JAR file that is to be

added to the class path of the client application. This JAR file is a JAR file that is already defined

as a resource for the client application. This file is needed so that the correct elements of the class

path of the Java Virtual Machine (JVM) starting the client launcher can be retrieved and added to

the class path of the (JVM) that is to be spawned for the client application.

Preparing the Application Client run-time dependency component for Java Web Start:

For a J2EE application client application and or Thin application client application to be launched using

Java Web Start (JWS), an Java Runtime Environment that IBM provides, the library JAR files and

properties files bundled in Application Client for WebSphere Application Server must be installed in the

JWS. This article provides the steps to build the Application Client run-time dependency component from

an Application Client installation. It is packaged as a Web Archive Resource (WAR) file that can be

installed in an Application Server.

 Install the Application Client for WebSphere Application Server for the platform to which the client

application deploys. If there is a requirement to deploy the client application to multiple platforms, the

Application Client run-time dependency component must be built separately for each platform that client

application supports.

For example, if the client application deploys to both the Windows platform and Linux platform, follows the

steps for this task to build the Application Client run-time dependency component for Windows on a

Windows platform machine with the Application Client for WebSphere Application Server for Windows

installed. Now, repeat the steps for this task to build the Application Client run-time dependency

component for Linux on a Linux platform machine with the Application Client for WebSphere Application

Server for Linux installed.

1. Install the Application Client for WebSphere Application Server for the client application supported

operating systems. Install Application Client in the C:\Program Files\IBM\WebSphere\AppClient

directory.

2. Change the directory to the installation bin directory. See the following example for help:

CD C:\Program files\IBM\WebSphere\AppClient\bin

3. Run the buildClientRuntime tool to generate the Application Client run-time JAR file in a temporary

directory which contains the Java 2 Runtime Environment, Application Client run-time properties, the

SSL KeyStore and TrustStore file, and the Application Client run-time library JAR files. See the

following example for help:

buildClientRuntime C:\WebApp1\runtime\WASClient6.0_windows.jar

If you are building an Application Client run-time JAR file only for serving Thin application client

applications and not for J2EE application client applications, you can reduce the size of the generated

JAR file by not including the Application Client run-time library JAR files. An extra parameter is passed

to the buildClientRuntime tool, as the following example shows:

862 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

buildClientRuntime C:\WebApp1\runtime\WASClient6.0_windows.jar

 buildThin

4. Copy the WebSphereClientRuntimeInstaller.jar file to the same location of the JAR file generated in

the previous step. This JAR file is located in the JWS directory of the WebSphere Application Server

clients installation. See the following example for help:

copy ..\JWS\WebSphereClientRuntimeInstaller.jar C:\WebApp1\runtime

5. Sign the JAR files created from the previous steps, using the Java 2 SDK jarsigner utility, as the

following example shows:

cd C:\WebApp1\runtime

jarsigner -keystore myKeystore -storepass myPassword

 WASClient6.0_windows.jar myKeyAliasName

jarsigner -keystore myKeystore -storepass myPassword

 WebSphereClientRuntimeInstaller.jar myKeyAliasName

a. This step also requires you to create a keystore file, such as myKeystore.

b. You must also create a self-signed certificate for the myKeystore file. For more information, see the

topic, ″Creating self-signed personal certificates″ in the Securing applications and their environment

PDF.

6. Create an Application Client run-time installer JNLP descriptor file or a JavaServer Pages (JSP) file if it

is generated dynamically in the same temporary directory as previous step. See the sample JNLP file

shown in the Example section of this topic.

7. Package the two signed JAR files and the Application Client run-time installer JNLP descriptor file into

a WAR file. This WAR file is packaged into an EAR file that can be deployed to an Application Server.

Your Web application is ready to serve the Application Client run time and the JRE environment.

<%--

 This is an Installer JNLP

 It will download two .jars:

 WebSphereClientRuntimeInstaller.jar - includes the installer utility

 WASClient6.0_<platform>.jar - the client runtime JRE image

 The installer will unzip the client runtime jar on the client machine, and register

 it with Java Web Start

 --%>

<%! private final String description=″WebSphere Client 6.0 Runtime JRE″;

 // The version here is (WAS based) JRE version - as to be managed on the client

 private final String JREversion=″WASclient6.0″;%>

<%

 // locally declared variable

 String url=request.getRequestURL().toString();

 String jnlpCodeBase=url.substring(0,url.lastIndexOf(’/’));

 String jnlpRefURL=url.substring(url.lastIndexOf(’/’)+1,url.length());

 // Need to set a JNLP mime type - if Web Start is installed on the client,

 // this header will induce the browser to drive the Web Start Client

 response.setContentType(″application/x-java-jnlp-file″); 1

 response.setHeader(″Cache-Control″, null);

 response.setHeader(″Set-Cookie″, null);

 response.setHeader(″Vary″, null);

 // An installer must reply with the version number for a given install

 if (response.containsHeader(″x-java-jnlp-version-id″))

Chapter 8. Developing WebSphere applications 863

response.setHeader(″x-java-jnlp-version-id″, JREversion); 2

 else

 response.addHeader(″x-java-jnlp-version-id″, JREversion);

%>

<?xml version=″1.0″ encoding=″utf-8″?>

<!-- JNLP File for <%=description %> -->

<jnlp

 spec=″1.0+″ <%--

 Automate the code base response --%>

 codebase=″<%=jnlpCodeBase%>″

 href=″<%=jnlpRefURL%>″>

 <information>

 <title><%=description%></title>

 <vendor>IBM</vendor>

 <icon href=″icon.gif″>

 <description><%=description%></description>

 <description kind=″short″><%=description></description>

 <description kind=″tooltip″><%=description></description

 <offline-allowed/>

 </information>

 <security>

 </all-permissions>

 </security>

 <resources>

 <j2se version=″1.4+″/><%-- The installer can use any 1.4 JRE --%> 3

 <jar href=″WebSphereClientRuntimeInstaller.jar″ main=″true″/> 4

 <%-- JRE version registration with Web Start --%>

 <property name=″com.ibm.websphere.client.jre.version″ value=″<%=JREversion%>″/> 5

 </resources>

 <resources os=″Windows″> 6

 <jar href=″windows/WASClient6.0_windows.jar″/> 7

 <%-- relative path of the jre executable --%>

 <property name=″com.ibm.websphere.client.jre.launch.java″

 value=″java\jre\bin\java.exe″/> 8

 <resources os=″Linux″>

 <jar href=″linux/WASClient6.0_linux.jar″/>

 <property name=″com.ibm.websphere.client.jre.launch.java″ value=″java/jre/bin/java″/>

 </resources>

 <installer-desc />

</jnlp>

1. Specifies that the file is a JNLP mime type so that the browser can process the JNLP file.

2. Specifies the exact version of this Application Client run-time dependency component in the response

by setting the HTTP header field: x-java-jnlp-version-id.

3. Specifies the required JRE version to run the installer program.

4. Specifies the installer WebSphereClientRuntimeInstaller.jar file, which contains the

ClientRuntimeInstaller class.

5. Specifies a system property that defines the version of Application Client run-time dependency

component. This version is registered to the JNLP client.

864 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

6. Specifies resources for a particular platform. Each supported client application platform needs its own

separate JAR file.

7. Specifies the Application Client run-time dependency component JAR file.

8. Specifies the program to call that starts a JVM for the client application.

Preparing Application Client run-time library component for Java Web Start.

buildClientRuntime tool: The buildClientRuntime tool builds the required components from the WebSphere

Application Server clients installation into the JAR file specified on the command. This JAR file contains:

v License files

v Java 2 Runtime Environment (JRE) that IBM provides

v Application Clients run-time properties and configuration

v SSL KeyStore and TrustStore files

v Run-time library JAR files

In the case of building an Application Clients run-time JAR file only for serving Thin Application client

applications and not for J2EE Application client applications, the run-time library JAR files and the

Application Clients run-time properties files are not included, except the two configuration files,

sas.client.props and soap.client.props.

The command-line invocation syntax for the buildClientRuntime tool is shown in the following example:

Windows Usage: buildClientRuntime .bat jar_file [type]

Unix Usage: buildClientRuntime.sh jar_file [type]

Where:

 jar_file Specifies the target jar file name.

 type Range:

 buildJ2EE - Default value that builds a Application Clients

 run-time library for J2EE application.

 buildThin - Builds a Application Clients run-time library

 for Thin application.

ClientRuntimeInstaller class: This class, com.ibm.websphere.client.installer.ClientRuntimeInstaller,

contains a main() method that Java Web Start (JWS) calls to install the Application Client for WebSphere

Application Server run-time dependency component in JWS cache. It is packaged in

WebSphereClientRuntimeInstaller.jar file located in the Application Client for WebSphere Application

Server installation in the <install_root>/JWS directory.

Specify the WebSphereClientRuntimeInstaller.jar file and the Application Client run-time dependency

component JAR file as JAR resources in the Application Client run-time installer Java Network Launcher

Protocol (JNLP) descriptor file. See the following example for details:

<jar href="Launcher/WebSphereClientRuntimeInstall.jar" main="true"/>

<jar href="Launcher/WASClient6.0_windows.jarRuntimeInstall.jar" main="true"/>

The ClientRuntimeInstaller class main method requires the following properties to be set in the JNLP file:

com.ibm.websphere.client.jre.version

Specifies a Java Runtime Environment (JRE) version name that is to be used when referring to

the Application Client run-time dependency component.

com.ibm.websphere.client.jre.launch.java

Specifies the relative location of the javaw.exe program in the Application Client run-time

dependency component JAR file.

 The previously mentioned properties, JRE version name and the location of the javaw.exe program are

registered to the Java Web Start Application Manager, as shown in the following example:

<property name="com.ibm.websphere.client.jre.version" value="java\jre\bin\javaw.exe"/>

<property name="com.ibm.websphere.client.jre.launch.java" value="WASclient6.0"/>

Chapter 8. Developing WebSphere applications 865

Preparing Application Clients run-time library component for Java Web Start:

For a Thin Application client application to be launched using Java Web Start (JWS), you also need to

create a Java Network Launching Protocol (JNLP) component to serve the Application Clients run-time

library JAR files from the Application server. This JNLP component is referenced in the client application

JNLP file with the <extension> tag. This article provides the steps to build the Application Clients run-time

library component from an Application Clients installation. It is packaged as its own Web Archive Resource

(WAR) file or to the same WAR file that contains the Application Clients run-time dependency component,

and can be installed in an Application server.

 Install the Application Client for WebSphere Application Server for the platform to which client applications

deploy.

1. Install the Application Clients on the client application supported operating system. For example, install

Application Clients in the C:\Program Files\IBM\WebSphere\AppClient directory.

2. Change directory to the installation bin directory. See the following example for help:

CD C:\Program files\IBM\WebSphere\AppClient\bin

3. Run buildClientLibJars to copy the Application Clients run-time library JAR files from the Application

Clients installation to a temporary directory. All the JAR files in the temporary directory are signed, as

shown in the following example.

buildClientLibJars C:\WebApp1\runtime\WebSphereJars

 myKeystore myPassword myKeyAliasName

a. This step also requires you to create a keystore file, such as myKeystore.

b. You must also create a self-signed certificate for the myKeystore file. For more information, see the

topic, ″Creating self-signed personal certificates″ in the Securing applications and their environment

PDF.

4. Create an Application Clients run-time installer JNLP descriptor file or a JavaServer Pages (JSP) file, if

it is generated dynamically in the same temporary directory as previous step. See the sample JNLP file

shown in the Example section of this topic.

5. Package these JAR files and the Application Clients run-time library component JNLP descriptor file

into a WAR file. You can also package both Application Clients run-time library component and

Application Clients run-time dependency component in the same WAR file. This WAR file is packaged

into an EAR file that can deployed to an Application server.

<!--

 "This sample program is provided AS IS and may be used, executed, copied

and modified without royalty payment by customer (a) for its own instruction

and study, (b) in order to develop applications designed to run with an IBM

WebSphere product, either for customer’s own internal use or for redistribution

by customer, as part of such an application, in customer’s own products."

Product 5630-A36, (C) COPYRIGHT International Business Machines Corp., 2004

All Rights Reserved * Licensed Materials - Property of IBM

-->

<%! private final String description="WebSphere Jars";

%>

<% // locally declared variable

String urlSt = request.getRequestURL().toString();

String jnlpCodeBase=urlSt.substring(0,urlSt.lastIndexOf(’/’));

String jnlpRefURL=urlSt.substring(urlSt.lastIndexOf(’/’)+1,urlSt.length());

// The client application descriptor noted a resource reference to be resolved at deploy time as following

%>

<%--

 Need to set a JNLP mime type - if Web Start is installed on the client,

 this header will induce the browser to drive the Web Start Client

--%><%

 response.setContentType("application/x-java-jnlp-file"); 1

 response.setHeader("Cache-Control", null);

 response.setHeader("Set-Cookie", null);

866 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

response.setHeader("Vary", null);

 response.setDateHeader("Last-Modified", lastModified); 2

%>

<?xml version="1.0" encoding="utf-8"?>

<!-- JNLP File for <%=description %> -->

<jnlp

 spec="1.0+"

 <%-- Automate the code base response

--%> codebase="<%=jnlpCodeBase%>"

href="<%=jnlpRefURL%>">

 <information>

 <title><%=description %></title>

 <description kind="short"><%=description %></description>

 <description kind="tooltip"><%=description %></description>

 <offline-allowed></offline-allowed>

 </information>

 <security>

 <all-permissions></all-permissions>

</security>

 <resources>

 <jar href="activation-impl.jar"/> 3

 <jar href="activity.jar"/>

 <jar href="activityImpl.jar"/>

 <jar href="activitySession.jar"/>

 <jar href="activitySessionPrivate.jar"/>

 <jar href="acwa.jar"/>

 <jar href="admin.jar"/>

 <jar href="annotations-core.jar"/>

 <jar href="appprofile-impl.jar"/>

 <jar href="appprofile.jar"/>

 <jar href="b2bjaxp.jar"/>

 <!-- == -->

 <!-- -->

 <!-- specify all the signed jars created by -->

 <!-- buildClientlibJars tool -->

 <!-- -->

 <!-- == -->

 <jar href="wsif-j2c.jar"/>

 <jar href="wsif.jar"/>

 <jar href="wssec.jar"/>

 <jar href="wtp-util.jar"/>

 <jar href="wtpemf.jar"/>

 <jar href="xsd.jar"/>

 <jar href="xsd.resources.jar"/>

 <jar href="xss4j-dsig.jar"/>

 <jar href="xss4j-enc.jar"/>

 </resources>

 <component-desc/>

</jnlp>

v 1--Specifies that the file is a JNLP mime type so that the browser can process the JNLP file.

v 2--Specifies the Last-Modified header so that any changes to this JSP file are downloaded to the JNLP

client.

v 3--Specifies all the JAR files in the Application Clients run-time library component that are generated by

the buildClientLibJars tool.

buildClientLibJars tool: The buildClientLibJars tool copies the JAR files from the Application Client for

WebSphere Application Server installation and creates a properties.jar file, which contains the properties

files from the Application Clients installation properties directory to a specified location. When this property

is created, the tool uses the value of keystore, storepass and alias to sign all the JAR files in the

specified location.

Chapter 8. Developing WebSphere applications 867

Windows Usage: buildClientLibJars.bat target_dir keystore storepass alias

Unix Usage: buildClientLibJars.sh target_dir keystore storepass alias

Where:

 target_dir Specifies the target directory where the Application

 Clients library JAR files copied to.

 keystore Specifies a keystore file.

 storepass Specifies the keystore password.

 alias Specifies an alias for the key object in the key file.

Using the Java Web Start sample:

The EAR file, WebSphereClientRuntime.ear, is provided in the JWS directory of the Client Application for

WebSphere Application Server installation. This EAR file provides a sample Application Clients run-time

installer JNLP descriptor file and a sample Application Clients run-time library component JNLP descriptor

file. Follow the steps in this task to build the Application Clients run-time dependency component and the

Application Clients run-time library component. Add these components to the WebSphereClientRuntime.ear

file, and then install the EAR file in an Application Server to be used by the client application.

 Install the Application Client for WebSphere Application Server for the platform to which the client

application deploys. If there is a requirement to deploy the client application to multiple platforms, the

Application Clients run-time dependency component must be built separately for each platform that the

client application supports.

1. Install the Application Clients on the client application supported operating system. For example, install

Application Clients in the C:\Program Files\IBM\WebSphere\AppClient directory.

2. Create the following temporary working directories:

MKDIR C:\WebApp1

MKDIR C:\WebApp1\runtime

MKDIR C:\WebApp1\runtime\Widnows

MKDIR C:\WebApp1\runtime\WebSphereJars

3. Change directory to the installation bin directory. See the following example for help:

CD C:\Program files\IBM\WebSphere\AppClient\bin

4. Run the buildClientRuntime tool to generate the Application Clients run-time JAR file in a temporary

directory that contains the Java 2 Runtime Environment that IBM provides, Application Clients run-time

properties, the SSL KeyStore and TrustStore files, and the Application Clients run-time library JAR

files. See the following example for details:

buildClientRuntime C:\WebApp1\runtime\windows\WASClient6.0_windows.jar

5. Copy the WebSphereClientRuntimeInstaller.jar file to the same location of the JAR file generated in

the previous step. This JAR file is located in the JWS directory of the Application Client for WebSphere

Application Server installation. For example, copy the ..\JWS\WebSphereClientRuntimeInstaller.jar

file to the C:\WebApp1\runtime directory.

6. Sign the JAR files created from the previous steps, using the Java 2 SDK jarsigner utility. See the

following example for details:

cd C:\WebApp1\runtime

jarsigner -keystore myKeystore -storepass myPassword

 WASClient6.0_windows.jar myKeyAliasName

jarsigner -keystore myKeystore -storepass myPassword

 WebSphereClientRuntimeInstaller.jar myKeyAliasName

a. This step also requires you to create a keystore file, such as myKeystore.

b. You must also create a self-signed certificate for the myKeystore file. For more information, see the

topic, ″Creating self-signed personal certificates″ in the Securing applications and their environment

PDF.

7. Run buildClientLibJars to copy the Application Clients run-time library JAR files from the Application

Client for WebSphere Application Server installation to a temporary directory. All the JAR files in the

temporary directory are signed. See the following example for details:

868 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

buildClientLibJars C:\WebApp1\runtime\WebSphereJars

 myKeystore myPassword myKeyAliasName

a. This step also requires you to create a keystore file, such as myKeystore.

b. You must also create a self-signed certificate for the myKeystore file. For more information, see the

topic, ″Creating self-signed personal certificates″ in the Securing applications and their environment

PDF.

8. Add all the JAR files created in the previous steps in the C:\WebApp1 directory to the WAR file within

the WebSphereClientRuntime.ear file. The contents of the WAR file are shown in the following example:

The root of the WAR

├───META-INF

│ MANIFEST.MF

│

├───Runtime

│ │ jnlp.jsp

│ │ WebSphereClientRuntimeInstaller.jar

│ ├───windows │

│ │ WASClient6.0_windows.jar

│ │

│ └───WebSphereJars

│ jnlp.jsp

│ activities.jar

│ :

│ (all the jars created in step 7 under

│ c:\WebApp1\Runtime\WebSphereJars)

│

├───theme

│ Master.css

│

└───WEB-INF

 ibm-web-bnd.xmi

 ibm-web-ext.xmi

 web.xml

9. Install the WebSphereClientRuntime.ear file to an Application Server. You have just created an

Application Clients run-time dependency component and Application Clients run-time libraries for

serving J2EE Application client applications and Thin Application client applications using Java Network

Launching Protocol (JNLP) or Java Web Start (JWS).

Installing Application Client for WebSphere Application Server

Running J2EE and Thin application clients that communicate with WebSphere Application Server requires

that elements of the Application Server are installed on the machine on which the client runs. However, if

the system does not have the Application Server installed, you can install Application Clients, which

provide a stand-alone client run-time environment for your client applications. See the Supported

Prerequisites page for more information on supported product platforms.

This article describes how to install the Application Client for WebSphere Application Server using the

installation image on the product CD-ROM. The steps that follow provide enough detail to guide you

through preparing for, choosing, and installing the variety of options and features provided. To prepare for

installation and to make yourself familiar with installation options, complete the steps in this article and

read the related topics, before you start to use the installation tools. Specifically, read these topics before

installing the product:

v Installing silently

v Best practices for installing

As a general rule, if you launch an installation and there is a problem such as not having enough

temporary space or not having the right packages on your Linux or UNIX systems, then cancel the

installation, and make the required changes. Restart the installation to initiate your changes.

Chapter 8. Developing WebSphere applications 869

http://www.ibm.com/software/webservers/appserv/doc/latest/prereq.html
http://www.ibm.com/software/webservers/appserv/doc/latest/prereq.html

Although it is not supported or recommended, you can install this product as a non-root user on a UNIX

operating system. However, you must use a user ID that is part of the administrator group on Windows

platforms.

In Version 6, the Application Server for WebSphere Application Server is installable on a machine with a

previous version of Application Clients. However, you cannot install a Version 6 Application Client on top of

a previous version of the Application Client. For example, if a Version 5 Application Clients install under the

C:\WebSphere\AppClient directory, you can not choose the same install location for your V6 Application

Clients installation.

Note: For Application Client coexisting, there is a limitation on Applet client and ActiveX client on Windows

that can not be coexisted with V5.0.x and V4.x of the clients. For example, the Applet client feature

in Version 6 cannot coexist with the Applet client feature in any previous release. This coexistence

is not available because the installation of Applet client feature in Version 6 sets the browser default

Java Virtual Machine (JVM) using the Java Runtime Environment (JRE) from the Version 6

installation, which is Java Runtime Environment Version 1.4.2. Similarly, the ActiveX to EJB Bridge

feature in Version 6 sets the Windows system path to use the JRE from the Version 6 installation.

1. Install Application Client for WebSphere Application Server using the launchpad. The launchpad

program is available on the root directory of the product CD in the program, launchpad.sh, on Linux

and UNIX platforms and launchpad.bat on Windows platforms.

Note: The free download Application Client installation is not packaged with the launchPad program.

a. Click Launch the installation wizard for Application Client for WebSphere Application Server

from the launchpad tool to launch the InstallShield for MultiPlatforms installation wizard. This action

launches the installation wizard.

The Readme documentation to which the launchpad links is the readme.html file in the CD root

directory. The readme directory off the root of the CD has more detailed Readme files. The

Installation Guide is in the /docs directory of the CD root directory.

Note: Readme file names are based on product offerings.

When you install application clients, the current working directory must be the directory where the

installer binary program is located. This placement is important because the resolution of the class

files location is done in the current working directory. For example:

cd /install_root/AppClient

./install

or

 cd <CD mount point>/AppClient

 ./install

Failing to use the correct working directory can cause ISMP errors that abort the installation.

The installation wizard does not upgrade or remove previous Application Clients installation

automatically. However, you must change the directory of any previously installed versions of the

Application Client because you cannot install Version 6 on top of previously existing Application

Client.

b. As indicated in the previous example, you can start the installation wizard from the product

CD-ROM, using the command line.

On other Linux platforms and UNIX-based platforms, run the ./install command.

On Windows platforms, run the Install.exe command.

c. You can also perform a silent installation using the -options responsefile parameter, which

causes the installation wizard to read your responses from the options response file, instead of

from the interactive graphical user interface. Customize the response file before installing silently.

After customizing the file, issue the command to silently install. Silent installation is particularly

useful if you install the product often.

870 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

The rest of this procedure assumes that you are using the installation wizard. There are

corresponding entries in the response file for every prompt that is described as part of the wizard.

Review the description of the response file for more information. Comments in the file describe how

to customize its options.

2. Click Next to continue when the Welcome panel is displayed.

a. Click the radio button beside the I accept the terms in the license agreement message if you

agree to the license agreement, and click Next to continue.

3. Specify a destination directory. Click Next to continue.

a. Ensure that there is adequate space available in the target directory.

b. Specify a target directory for the Application Client product.

c. Enter the required target directory to proceed to the next panel. Deleting the default target location

and leaving an installation directory field empty prevents you from continuing the installation

process.

4. Choose a type of installation, and click Next.

If you use the GUI, you can choose a Typical installation type, which installs J2EE and Thin application

client, Samples and IBM Developer Kit, Java 2 Technology Edition or a Custom installation type.

The Custom installation type lets you select which features to install. However you can not install the

J2EE and Java Thin application client feature and the Pluggable application client feature together.

(Windows Only) If you select the ActiveX to EJB Bridge feature, then the following is displayed in a

dialog box: Do you want to add Java runtime to the system path and make it the default JRE? If

you answer Yes, then the Java run time is added to the beginning of the system path. If you answer

No, then the ActiveX to EJB Bridge does not function from the Active Server Pages (ASP), unless you

add the Java run time to the path. To add the Java run time later, see the topic ActiveX application

clients or reinstall the Application Client.(Windows Only) If you select the Applet client feature, then

the following message might be displayed: An existing JDK or JRE has been detected on your

computer. You chose to install the Applet Client, which will overwrite the registry entries

for this JDK or JRE. Do you want to continue and install the Applet Client? If you select Yes,

the installation overrides the registry on your machine. If you select No, the Applet client feature is not

installed, and you are directed back feature dialog box.

5. Install the Software Developer Kit, if you need to use any of the utilities that it provides, such as the

javaccompiler, the jarutility or the jarsinger utility. The Java 2 Development Kit that IBM provides has

two components, Java Runtime Environment (JRE) and a complete Software Developer Kit (SDK). The

JRE sub feature is selected by default when the J2EE or Thin application client feature is selected.

The SDK component is optional; however, you must install the SDK component to compile the sample.

6. Enter the host name of the WebSphere Application Server machine. Click Next to continue. The

default port number for product Version 6 server is 2809.

7. Review the summary information, and click Next to install the product code or you might also click

Back to change your specifications.

8. Click Finish to exit the wizard, after the Application Client installs.

9. Verify the success of the installer program by examining the Completion panel and the

<install_root>/logs/WAS.Client.isntall.log file for installation status. The installer program records

the following indicators of success in the logs:

v INSTCONFSUCCESS indicates that the installation is successful and that no further log analysis is

required.

v INSTCONFFAILED indicates an installation failure that you cannot retry or recover from without

reinstalling.

You successfully installed the Application Client for WebSphere Application Server and the features you

selected.

If the installation is not successful, fix the error as indicated in the installation error message. For example,

if you do not have enough disk space, add more space, and reinstall the Application Client.

Chapter 8. Developing WebSphere applications 871

Best practices for installing application clients

The following table offers tips for installing application clients on multiple platforms.

 Operating environment Tip

Linux and UNIX systems Spaces are not supported in the name of the installation directory on

Linux and UNIX platforms.

UNIX systems When the application client installations are successful, the return

code 1 is issued from the UNIX shell where you issued the /install

command. Any other return code indicates an unsuccessful

installation.

Solaris systems Double-byte character set (DBCS) characters are not supported in the

name of the installation directory on Solaris systems.

All platforms Reserve at least 4 to 5MB free space in the target platform temporary

directory.

All platforms When specifying a different temporary directory while installing

application clients, the following message is displayed if the target

platform default temporary directory does not have enough free space

to install application clients:

Error writing file = There may not be enough

temporary disk space.

Try using -is:tempdir to use a temporary

directory on a partition with more disk

space.

Use the -is:tempdir installation option to specify a different

temporary directory. For example, the following command uses /swap

as a temporary directory during installation:

./install -is:tempdir /swap

All platforms After the installation, when changing the installation settings for the

WebSphere Application Server host name and the port number, edit

the setupClient.bat for Windows or setupClient.sh for UNIX.

Change the DEFAULTSERVERNAME and SERVERPORTNUMBER to the new

WebSphere Application Server host name and port number,

respectively. If the SERVERPORTNUMBER is not set, then the default is

2809. Review the following example:

set DEFAULTSERVERNAME=NDServerName

set SERVERPORTNUMBER=9810

The setupClient.bat file or setupClient.sh file is located in the bin

sub-directory under the application clients installation destination.

Installing application clients silently

Use these steps to perform a silent installation, which uses the installation wizard to install the product.

Instead of displaying a user interface, the silent installation provides interaction between you and the

wizard by reading all of your responses from a file that you must customize.

1. Verify that the user ID that you are using to run the silent installation has sufficient authority to perform

the task.

2. Customize the option response file.

a. Locate the sample options response file. The file name is setup.response in the operating system

platform directory on the product CD-ROM.

b. Make a copy to preserve the original response file. For example, copy the file as myoptionsfile.

c. Edit the copy in your flat file editor of choice, on the target operating system. Read the directions

within the response file to choose appropriate values.

872 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Note: To prepare the file for a silent installation on AIX, use UNIX line-end characters (0x0D0A) to

terminate each line of the options response file.

d. Make a non-commented option to have a silent install.

e. Include custom option responses that reflect parameters for your system.

f. Follow the instructions in the response file to choose appropriate values.

g. Save the file.

3. Issue a command to use your custom response file: Install.exe -options myoptionsfile for

Windows platforms and install -options ./myoptionsfile for Linux and UNIX platforms.

The sample options response file is located in the operating-system platform directory on the product

CD-ROM.

a. Issue the following command from a command prompt to update your response file: -W

silentInstallLicenseAcceptance.value=″true’.

Issuing this command changes the value for silentInstallLicenseAcceptance.value from false to

true, which is necessary for installing application clients.

4. Optional: Restart your machine in response to the prompt that appears on Windows platforms when

the installation is complete.

You installed application clients silently by using the response file.

To verify the silent install, look for the string RC=INSTCONFSUCCESS in the log file for successful installation

and RC=INSTCONFFAILED for a failed install installation.

For UNIX platforms, the install command returns a return code of 1 to indicate a successful installation.

Any other return code means that the installation failed.

Uninstalling Application Client for WebSphere Application Server

This task describes using the uninstaller program to uninstall the Application Client for WebSphere

Application Server.

Before uninstalling, verify that you have no open Web browsers that are accessing the administrative

console.

If you want to uninstall Application Clients manually, see the topic, ″Manually uninstalling on a Windows

system″ in the information center.

1. Stop any browsers and any Java processes related to WebSphere Application Server products as

described in ″Uninstalling the product″ in the information center.

2. Change directories to the _uninst directory before issuing the uninstall command. The command file is

located in the install_root/product/_uninst directory on a Linux or UNIX platform, and in the

install_root\product_uninst directory on a Windows system.

For example, to change directories before uninstalling the product from a Linux platform, issue this

command if your installation root is /opt/IBM/WebSphere/AppServer:

cd /opt/IBM/WebSphere/AppServer/product/_uninst

3. Issue the uninstaller command. The command file is named uninstaller.bin for Linux and UNIX

platforms and uninstaller.exe on Windows platforms.

On Linux and UNIX platforms, issue the uninstaller.bin command from the

install_root/product/_uninst directory:

./uninstaller.bin

On Windows platforms, call the uninstaller.exe command:

install_root\product_uninst\uninstaller.exe

Chapter 8. Developing WebSphere applications 873

Call the program directly from the install_root\product_uninst directory. For example, if

the installation root is C:\IBM\WebSphere\AppServer, issue the following command:

C:\IBM\WebSphere\AppServer\product_uninst> uninstaller.exe

The Uninstaller wizard begins and displays the Welcome panel.

4. Click Next to begin uninstalling the product. The Uninstaller wizard displays a Confirmation panel that

lists the product and features that you are uninstalling.

5. Click Next to continue uninstalling the product. The Uninstaller wizard deletes existing profiles first.

After deleting profiles, the Uninstaller wizard deletes core product files by component.

6. Click Finish to close the wizard after the wizard removes the product.

Application Client for WebSphere Application Server is uninstalled.

Verify the uninstall procedure by viewing the install_root/product/logs/uninstlog.txt log file for errors.

Look for the INSTCONFSUCCESS, indicating a successful uninstall in the log file:

Uninstall, com.ibm.ws.install.ni.ismp.actions.ISMPLogSuccessMessageAction, msg1,

 INSTCONFSUCCESS

Deploying J2EE application clients on workstation platforms

After developing an application client, deploy this application on client machines. Deployment consists of

pulling together the various artifacts that the application client requires.

The Application Client Resource Configuration Tool (ACRCT) defines resources for the application client.

These configurations are stored in the client .jar file within the application .ear file. The application client

run time uses these configurations for resolving and creating an instance of the resources for the

application client.

Note: This task only applies to J2EE application clients. Only perform this task if you configured your

J2EE application client to use resource references.

1. Start the ACRCT and open an EAR file.

2. Configure new data source providers.

3. Configure mail providers and sessions.

4. Configure URL providers and sessions.

5. Configure Java messaging resources.

6. Configure new environment entries.

7. (Optional) Remove application client resources.

8. Save the EAR file.

Resource Adapters for the client

A resource adapter is a system-level software driver that a Java application uses to connect to an

enterprise information system (EIS). A resource adapter plugs into an application client and provides

connectivity between the EIS and the enterprise application.

The resource adapter support for the J2EE client applications is a subset of the support for the server. For

any resource adapter installed using the clientRAR tool, the client resource adapter is used in a

non-managed environment and must conform to the J2EE Connector Architecture Specification Version 1.5

or higher. Only outbound connections to the EIS are supported through the ManagedConnectionFactory

interfaces. The inbound messaging support (from the EIS), life cycle management, and work management

aspects of the specification are not supported on the client.

For a client application to use a resource adapter, it must be installed in the directory specified by the

environment variable, CLIENT_CONNECTOR_INSTALL_ROOT, defined when the setupCmdLine.bat

874 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

command (on Windows systems) or setupCmdLine.sh (on UNIX platforms) command runs. The

launchClient tool, Application Client Resource Configuration Tool (ACRCT) and clientRAR tool all use this

variable to find the default location of all installed resource adapters. To install a resource adapter in the

client, use the clientRAR tool. Once the resource adapter is installed, it must be configured using the

ACRCT. The client configuration tool adds the resource adapter configuration to the EAR file. Then,

connection factories and administered objects are defined.

When running J2EE application clients, the launchClient script specifies a system property called

com.ibm.ws.client.installedConnector, which is set to the same value as the

CLIENT_CONNECTOR_INSTALL_ROOT variable. This is the default location for installed resource adapters and

can be overridden for each launchClient call by specifying the -CCD parameter. When the client container

is activated, all resource adapter subdirectories under the specified default location for the resource

adapters directory are added to the classpath. This action allows the client application to use the resource

adapters without using the ACRCT to specify any of the client resources.

Using resource adapters is a new mechanism for easily extending client applications.

Configuring resource adapters

1. Start the Application Client Resource Configuration Tool (ACRCT).

2. Open the EAR file for which you want to configure new resource adapters. The EAR file contents

display in a tree view.

3. Select the JAR file in which you want to configure the new resource adapters from the tree.

4. Expand the JAR file to view its contents.

5. Right-click the Resource Adapters folder, and click New.

6. Configure the resource adapter settings in the resulting property dialog.

7. Click OK.

8. Click File > Save on the menu bar to save your changes.

Resource adapter settings:

Use this panel to view or change the configuration properties of the resource adapter. These configuration

properties control how resource adapters are created.

 To view this Application Client Resource Configuration Tool (ACRCT) page, click File > Open. After you

browse for an EAR file, click Open. Expand the selected JAR file > Resource Adapter. Right-click

Resource Adapter and click New. The following fields appear on the General tab.

Name:

The name by which this Resource Adapter is known for administrative purposes within IBM WebSphere

Application Server. The name must be unique within the Resource Adapters across the product

administrative domain.

 Data type String

Description:

A description of this resource adapter for administrative purposes within IBM WebSphere Application

Server.

 Data type String

Class Path:

Chapter 8. Developing WebSphere applications 875

Any additional class path. The path to the resource adapter directory is automatically added.

 Data type String

Default The path to your Resource Adapter directory.

Native Path:

The native path where the Resource Adapter is located. Enter any additional native class path here.

 Data type String

Resource Adapter Name:

A mandatory field that points to an installed resource adapter subdirectory. The entry does not represent

the full directory name for the resource adapter. The full directory name is the installed resource adapter

path, plus the resource adapter name.

 Data type String

Installed Resource Adapter Path:

The directory where resource adapters are installed. If you do not complete this field, then the default

takes effect.

 If you specify the value, ${CONNECTOR_INSTALL_ROOT}, then this value replaces the value of the

CLIENT_CONNECTOR_INSTALL_ROOT variable on the machine on which the client application runs. This action

allows the application to run easily on different machines, where the client installation might be in different

locations.

 Data type String

Default ${CONNECTOR_INSTALL_ROOT}

clientRAR tool:

This section describes the command line syntax for the client resource adapter installation tool. If this tool

is used to add or delete resource adapters on the server, then only the client can use the resource

adapter. If the resource adapter is installed on the server using the wsadmin tool or the administrative

console, then do not use the clientRAR tool remove it. Only resource adapters that are installed using the

clientRAR tool should be removed using the clientRAR tool.

The command line invocation syntax for the clientRAR tool follows:

clientRAR [-help | -?] [-CRDcom.ibm.ws.client.installedConnectors=<dir>] <task> <archive>

where

-help, -?

Print the usage information.

-CRDcom.ibm.ws.client.installedConnectors

The directory where resource adapters are installed.

This will override the system property of the same name (com.ibm.ws.client.installedConnectors).

<task>

The task to perform: add - install, delete - uninstall.

876 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

<archive>

if task=add then this is the fully qualified name of the resource adapter archive file.

If task=delete then this is the filename of the resource adapter archive to be uninstalled.

The following examples demonstrate correct syntax.

On the Windows operating systems:

v clientRAR add c:\rars\myrar.rar

v clientRAR delete myrar.rar

On the UNIX operating systems:

v ./clientRAR add /usr/rars/myrar.rar

v ./clientRAR delete myrar.rar

Configuring new connection factories for resource adapters:

Complete this task to configure new connection factories for resource adapters.

 1. Start the Application Client Resource Configuration Tool (ACRCT).

 2. Open the EAR file for which you want to configure new connection factories. The EAR file contents

display in a tree view.

 3. Select the JAR file in which you want to configure the new connection factories from the tree.

 4. Expand the JAR file to view its contents.

 5. Click the Resource Adapters folder.

 6. Expand the resource adapter for which you want to create connection factories.

 7. Right-click the Connection Factories folder and click New.

 8. Configure the connection factory properties in the resulting property dialog.

 9. Click OK.

10. Click File > Save on the menu bar to save your changes.

Resource adapter connection factory settings:

Use this panel to view or change the configuration properties of the selected resource adapter connection

factory.

 To view this Application Client Resource Configuration Tool (ACRCT) page, click File > Open. After you

browse for an EAR file, click Open. Expand the selected JAR file > Resource Adapters. Right-click the

Connection Factories folder, and click New. The following fields appear on the General tab.

Name:

The name by which this connection factory is known for administrative purposes within WebSphere

Application Server. The name must be unique within the resource adapter connection factories across the

product administrative domain.

 Data type String

Description:

An optional description of this connection factory for administrative purposes within IBM WebSphere

Application Server.

 Data type String

Chapter 8. Developing WebSphere applications 877

JNDI Name:

The JNDI name that is used to match this resource adapter connection factory definition to the deployment

descriptor. This entry should be a resource-ref name.

 Data type String

User Name:

The User Name used, with the Password property, for authentication if the calling application does not

provide a userid and password explicitly when getting a connection. If this field is used, then the Properties

field UserName is ignored.

 If you specify a value for the User Name property, you must also specify a value for the Password

property.

The connection factory User Name and Password properties are used if the calling application does not

provide a userid and password explicitly when getting a connection.

 Data type String

Password:

Specifies an encrypted password. If you complete this field, then the Password field in the Properties box

is ignored.

 If you specify a value for the UserName property, you must also specify a value for the Password

property.

 Data type String

Re-Enter Password:

Confirms the password.

Type:

A drop-down list of all the connectionFactoryInterfaces as defined for the factories in the Resource

Adapter Archive.

 For each Type, there is a set of properties specified in the Properties box. This set of properties is

constructed by retrieving the properties from each connection definition object. For any existing connection

factories that are displayed for updating, this list of properties is overlaid with the properties specified for

the objects. When the Type field is changed, the properties also change to reflect the correct properties for

that type.

 Data type String

Configuring administered objects:

Before you configure new administered objects, you must complete the following prerequisites:

1. Install the Resource Adapter Archive file (RAR) using the clientRAR tool.

2. Configure the resource adapter for the .ear file, using the Application Client Resource Configuration

Tool (ACRCT) tool.

878 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Complete this task to configure new administered objects for installed resource adapters.

 1. Start the Application Client Resource Configuration Tool (ACRCT).

 2. Open the EAR file for which you want to configure new administered objects. The EAR file contents

display in a tree view.

 3. Select the JAR file in which you want to configure the new administered objects from the tree.

 4. Expand the JAR file to view its contents.

 5. Click the Resource Adapters folder.

 6. Expand the resource adapter for which you want to create administered objects.

 7. Right-click the Administered Objects folder and click New.

 8. Configure the administered object properties in the resulting property dialog.

 9. Click OK.

10. Click File > Save on the menu bar to save your changes.

Administered objects settings:

Use this panel to view or change the configuration properties of the selected administered objects.

 To view this Application Client Resource Configuration Tool (ACRCT) page, click File > Open. After you

browse for an EAR file, click Open. Expand the selected JAR file > Resource Adapters >

resource_adapter_instance. Right-click Administered Objects and click New. The following fields appear

on the General tab.

The settings for administered objects are handled similarly to connection factories. When updating

administered objects, use the same panels that you used to create administered objects.

Name:

The name by which this administered object is known for administrative purposes within IBM WebSphere

Application Server. The name must be unique within the resource adapter administered objects across the

product administrative domain.

 Data type String

Description:

An optional description of this connection factory for administrative purposes within IBM WebSphere

Application Server.

 Data type String

JNDI Name:

This entry is a resource-env-ref name, a message-destination-ref name (if the message-destination-
ref has no link), or a message-destination link.

 Data type String

Type:

A drop-down list of all the administered object class-interface pairs as defined for the admin objects in the

Resource Adapter Archive (RAR) file.

Chapter 8. Developing WebSphere applications 879

For each Type, there is a set of properties specified in the Properties box. This set of properties is

constructed by retrieving the properties from each administered object definition. For any existing

administered objects that are displayed for updating, this list of properties is overlaid with the properties

specified for the objects. When the Type field is changed, the properties also change to reflect the correct

properties for that type.

 Data type String

Starting the Application Client Resource Configuration Tool and opening an EAR

file

Note: This task only applies to J2EE application clients.

Use these steps to start the Application Client Resource Configuration Tool. When you start the tool, one

of the most common tasks that you perform is opening and modifying the components of EAR files.

1. Open a command prompt and change to the install_root\bin directory.

2. Run the clientConfig.bat file for a Windows system or the clientConfig.sh file for a UNIX system.

3. Open an EAR file within the Application Client Resource Configuration Tool (ACRCT):

v Click File > Open.

v Select the file and click Open.

4. Save your changes to the file and close the tool:

v Click File > Save.

v Click File > Exit.

Data sources for the Application Client

WebSphere Application Server and the Application Client for WebSphere Application Server do not provide

client database drivers to be used directly from a J2EE application client. If your application client

accesses a database directly, you must provide the database drivers on the client machine. You might

contact your database vendor to acquire client database driver code and licenses. In addition, data

sources configured on the server and looked up on the client do not participate in global transactions.

Instead of accessing the database directly, it is recommended that your client application use an enterprise

bean. Accessing a database through an enterprise bean eliminates the need to have database drivers on

the client machine, since the database access is handled by the enterprise bean running on WebSphere

Application Server. For a current list of providers that are supported on WebSphere Application Server visit

the Supported hardware, software, and APIs Web site:

Configuring new data source providers (JDBC providers) for application clients

During this task, you create new data source providers, also known as JDBC providers, for your

application client. In a separate administrative task, install the Java code for the required data source

provider on the client machine on which the application client resides.

Use this task to connect application clients to relational databases.

1. Start the Application Client Resource Configuration Tool (ACRCT) and open the EAR file for which you

want to configure the new data source provider. The EAR file contents display in a tree view.

2. Select the JAR file in which you want to configure the new data source provider from the tree.

3. Expand the JAR file to view its contents.

4. Click the Data Source Providers folder. Do one of the following:

v Right-click the folder and click New Provider.

v Click Edit > New on the menu bar.

5. Configure the data source provider properties in the resulting property dialog.

6. Click OK when you finish.

7. Click File > Save on the menu bar to save your changes.

880 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

http://www-3.ibm.com/software/webservers/appserv/doc/latest/prereq.html

Example: Configuring data source provider and data source settings: The purpose of this article is

to help you to configure data source provider and data source settings.

v Required fields:

– Data Source Provider Properties page: name

– Data Source Properties page: name, jndiName
v Special cases:

– The user name and password fields have no equivalent XMI tags. You must specify these fields in

the custom properties.

– The password is encrypted when you use the Application Client Resource Configuration Tool

(ACRCT). If you do not use the ACRCT the field cannot be encrypted.
v Example:

<resources.jdbc:JDBCProvider xmi:id="JDBCProvider_1" name="jdbcProvider:name"

description="jdbcProvider:description" implementationClassName="jdbcProvider:

ImplementationClass">

<classpath>jdbcProvider:classPath</classpath>

<factories xmi:type="resources.jdbc:WAS40DataSource" xmi:id="WAS40DataSource_1"

name="jdbcFactory:name" jndiName="jdbcFactory:jndiName"

description="jdbcFactory:description" databaseName="jdbcFactory:databasename">

<propertySet xmi:id="J2EEResourcePropertySet_13">

<resourceProperties xmi:id="J2EEResourceProperty_13" name="jdbcFactory:customName"

value="jdbcFactory:customValue"/>

<resourceProperties xmi:id="J2EEResourceProperty_14" name="user"

value="jdbcFactory:user"/>

<resourceProperties xmi:id="J2EEResourceProperty_15" name="password"

value="{xor}NTs9PBk+PCswLSZlMT4yOg=="/>

</propertySet>

</factories>

<propertySet xmi:id="J2EEResourcePropertySet_14">

<resourceProperties xmi:id="J2EEResourceProperty_16" name="jdbcProvider:customName"

value="jdbcProvider:customeValue"/>

</propertySet>

</resources.jdbc:JDBCProvider>

Data source provider settings for application clients:

Use this page to create a data source under a JDBC provider which provides the specific JDBC driver

implementation class.

 To view this Application Client Resource Configuration Tool (ACRCT) page, click File > Open. After you

browse for an EAR file, click Open. Expand the selected JAR file. Right-click Data Source Providers >

and click New. The following fields appear on the General tab:

Name:

Specifies the display name for the data source.

 For example you can set this field to Test Data Source.

 Data type String

Description:

Specifies a text description for the resource.

 Data type String

Class Path:

Chapter 8. Developing WebSphere applications 881

A list of paths or .jar file names which together form the location for the resource provider classes.

Implementation class:

Use this setting to perform database specific functions.

 Data type String

Default Dependent on JDBC driver implementation class

Custom Properties:

Specifies name-value pairs for setting additional properties on the object that is created at run time for this

resource.

 You must enter a name that is a public property on the object and a value that can be converted from a

string to the type required by the set method of the property. The acceptable properties and values depend

on the object that is created. Refer to the object documentation for a list of valid properties and values.

Data source properties for application clients:

Use this page to create or modify the data sources.

 To view this Application Client Resource Configuration Tool (ACRCT) page, click File > Open. After you

browse for an EAR file, click Open. Expand the selected JAR file > Data Source Providers > Data source

provider instance. Right-click Data Sources and click New. The following fields are displayed on the

General tab:

Name:

Specifies the display name of this data source.

 Data type String

Description:

Specifies a text description of the data source.

 Data type String

JNDI Name:

The application client run time uses this field to retrieve configuration information.

Database Name:

The name of the database to which you want to connect.

User:

Use the user ID with the Password property, for authentication if the calling application does not provide a

user ID and password explicitly.

 If you specify a value for the User ID property, then you must also specify a value for the Password

property. The connection factory User ID and Password properties are used if the calling application does

not provide a user ID and password explicitly.

882 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Password:

Use the password with the User ID property, for authentication if the calling application does not provide a

user ID and password explicitly.

 If you specify a value for the Password property, then you must also specify a value for the User ID

property.

Re-Enter Password:

Confirms the password.

Custom Properties:

Specifies name-value pairs for setting additional properties on the object that is created at run time for this

resource.

 You must enter a name that is a public property on the object and a value that can be converted from a

string to the type required by the set method of the property. The acceptable properties and values depend

on the object that is created. Refer to the object documentation for a list of valid properties and values.

Configuring new data sources for application clients

During this task, you create new data sources for your application client.

1. Click the data source provider for which you want to create a data source in the tree. Take one of the

following actions as needed:

v Configure a new data source provider.

v Click an existing data source provider.

2. Expand the data source provider to view its Data Sources folder.

3. Click the data source folder. Take one of the following actions as needed:

v Right click the data source folder and click New Factory.

v Click Edit > New on the menu bar.

4. Configure the data source properties in the displayed fields.

5. Click OK when you finish.

6. Click File > Save on the menu bar to save your changes.

Configuring mail providers and sessions for application clients

Use the Application Client Resource Configuration Tool (ACRCT) to edit the configurations of JavaMail

sessions and providers for your application clients to use.

1. Start the ACRCT.

2. Open an EAR file.

3. Locate the JavaMail objects in the tree that displays. For example, if your file contains JavaMail

sessions, expand Resources > application.jar > JavaMail Providers >

java_mail_provider_instance > JavaMail Sessions.

In this example, java_mail_provider_instance is a particular JavaMail provider.

The JavaMail session instances are located in the JavaMail Sessions folder.

Mail provider settings for application clients:

Use this page to implement the JavaMail API and create mail sessions.

Chapter 8. Developing WebSphere applications 883

To view this Application Client Resource Configuration Tool (ACRCT) page, click File > Open. After you

browse for an EAR file, click Open. Expand the selected JAR file. Right-click Mail Providers > and click

New. The following fields appear on the General tab:

Name:

The name of the JavaMail resource provider.

Description:

An optional description for the resource provider.

Class Path:

Specifies a list of paths or JAR file names which together form the location for the resource provider

classes.

Protocol:

Specifies the name of the protocol.

Classname:

Specifies the name of the class implementing the protocol. Leave this field blank if you want to use the

default implementation.

Type:

This menu contains the following two values: TRANSPORT or STORE.

Custom Properties:

Specifies name-value pairs for setting additional properties on the object that is created at run time for this

resource.

 You must enter a name that is a public property on the object and a value that can be converted from a

string to the type required by the set method of the property. The acceptable properties and values depend

on the object that is created. Refer to the object documentation for a list of valid properties and values.

Mail session settings for application clients:

Use this page to configure mail session properties.

 To view this Application Client Resource Configuration Tool (ACRCT) page, click File > Open. After you

browse for an EAR file, click Open. Expand the selected JAR file > Mail Providers > mail provider

instance. Right-click Mail Sessions and click New. The following fields appear on the General tab:

Name:

Represents the administrative name of the JavaMail session object.

Description:

Provides an optional description for your administrative records.

JNDI Name:

884 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

The application client run time uses this field to retrieve configuration information.

Mail Transport Host:

Specifies the server to connect to when sending mail.

Mail Transport Protocol:

Specifies the transport protocol to use when sending mail.

Mail Transport User:

Specifies the user ID to use when the mail transport host requires authentication.

Mail Transport Password:

Specifies the password to use when the mail transport host requires authentication.

Enable strict Internet address parsing:

Specifies whether the recipient addresses must be parsed strictly in compliance with RFC 822, which is a

specifications document issued by the Internet Architecture Board.

 This setting is not generally used for most mail applications. RFC 822 syntax for parsing addresses

effectively enforces a strict definition of a valid e-mail address. If you select this setting, JavaMail will

adhere to RFC 822 syntax and reject recipient addresses that do not parse into valid e-mail addresses (as

defined by the specification). If you do not select this setting, JavaMail will not adhere to RFC 822 syntax

and will accept recipient addresses that do not comply with the specification. By default, this setting is

deselected. You can view the RFC 822 specification at the following URL for the World Wide Web

Consortium (W3C): http://www.w3.org/Protocols/rfc822/.

Re-Enter Password:

Confirms the password.

Mail From:

Specifies the mail originator.

Mail Store Host:

Specifies the mail account host (or ″domain″) name.

Mail Store User:

Specifies the user ID of the mail account.

Mail Store Password:

Specifies the password of the mail account.

Re-Enter Password:

Confirms the password.

Mail Store Protocol:

Chapter 8. Developing WebSphere applications 885

Specifies the protocol to be used when receiving mail.

Mail Debug:

When true, JavaMail interaction with mail servers, along with these mail session properties are printed to

the stdout file.

Custom Properties:

Specifies name-value pairs for setting additional properties on the object that is created at run time for this

resource.

 You must enter a name that is a public property on the object and a value that can be converted from a

string to the type required by the set method of the property. The acceptable properties and values depend

on the object that is created. Refer to the object documentation for a list of valid properties and values.

Example: Configuring JavaMail provider and JavaMail session settings for application clients: The

purpose of this article is to help you configure JavaMail provider and JavaMail session settings.

v Required fields:

– JavaMail Provider Properties page: name, and at least one protocol provider

– JavaMail Session Properties page: name, jndiName, mail transport protocol, mail store protocol
v Special cases:

– The password is encrypted when using the ACRCT tool. Without the tool, you cannot encrypt this

field.
v Example:

<resources.mail:MailProvider xmi:id="MailProvider_1" name="Default Mail Provider"

description="IBM JavaMail Implementation">

<classpath>mailProvider:classpath</classpath>

<factories xmi:type="resources.mail:MailSession" xmi:id="MailSession_1"

name="mailSession:name" jndiName="mailSession:jndiName"

description="mailSession:description" mailTransportHost="mailSession:mailTransportHost"

mailTransportUser="mailSession:mailTransportUser"

mailTransportPassword="{xor}Mj42Mww6LCw2MDFlMT4yOg=="

mailFrom="mailSession:mailFrom" mailStoreHost="mailSession:mailStoreHost"

mailStoreUser="mailSession:mailStoreUser"

mailStorePassword="{xor}Mj42Mww6LCw2MDFlMT4yOg==" debug="true"

mailTransportProtocol="ProtocolProvider_1" mailStoreProvider="ProtocolProvider_1">

<propertySet xmi:id="J2EEResourcePropertySet_1">

<resourceProperties xmi:id="J2EEResourceProperty_1"

name="mailSession:customName" value="mailSession:customValue"/>

</propertySet>

</factories>

<propertySet xmi:id="J2EEResourcePropertySet_2">

<resourceProperties xmi:id="J2EEResourceProperty_2" name="mailProvider:customName"

value="mailProvider:customValue"/>

</propertySet>

<protocolProviders xmi:id="ProtocolProvider_1" protocol="smtp"

classname="smtp:className"/>

<protocolProviders xmi:id="ProtocolProvider_2" protocol="pop3"

classname="pop3:className"/>

<protocolProviders xmi:id="ProtocolProvider_3" protocol="imap"

classname="imap:className"/>

</resources.mail:MailProvider>

Configuring new mail sessions for application clients

During this task, you configure new mail sessions for your application client. The mail sessions are

associated with the pre-configured default mail provider supplied by the product.

1. Start the Application Client Resource Configuration Tool (ACRCT) and open the EAR file. The EAR file

contents are displayed in a tree view.

886 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

2. Select the JAR file in which you want to configure the new JavaMail session.

3. Expand the JAR file to view its contents.

4. Click JavaMail Providers > MailProvider > JavaMail Sessions. Complete one of the following

actions:

v Right click the JavaMail Sessions folder and select New Factory.

v Click Edit > New on the menu bar.

5. Configure the JavaMail session properties in the displayed fields.

6. Click OK.

7. Click File > Save on the menu bar to save your changes.

URLs for application clients

A Uniform Resource Locator (URL) is an identifier that points to an electronically accessible resource, such

as a directory file on a machine in a network, or a document stored in a database.

URLs appear in the format scheme:scheme_information.

You can represent a scheme as http, ftp, file, or another term that identifies the type of resource and

the mechanism by which you can access the resource.

In a World Wide Web browser location or address box, a URL for a file available using HyperText Transfer

Protocol (HTTP) starts with http:. An example is http://www.ibm.com. Files available using File Transfer

Protocol (FTP) start with ftp:. Files available locally start with file:.

The scheme_information commonly identifies the Internet machine making a resource available, the path

to that resource, and the resource name. The scheme_information for HTTP, FTP and File generally starts

with two slashes (//), then provides the Internet address separated from the resource path name with one

slash (/). For example,

http://www-4.ibm.com/software/webservers/appserv/library.html.

For HTTP and FTP, the path name ends in a slash when the URL points to a directory. In such cases, the

server generally returns the default index for the directory.

URL providers for the Application Client Resource Configuration Tool

A URL provider implements the function for a particular URL protocol, such as Hyper Text Transfer

Protocol (HTTP). This provider, comprised of a pair of classes, extends the java.net.URLStreamHandler

and java.net.URLConnection classes.

Configuring new URL providers for application clients

During this task, you create URL providers and URLs for your client application. In a separate

administrative task, you must install the Java code for the required URL provider on the client machine on

which the client application resides.

1. Start the Application Client Resource Configuration Tool (ACRCT).

2. Open the EAR file for which you want to configure the new URL provider. The EAR file contents

display in a tree view.

3. Select the JAR file in which you want to configure the new URL provider from the tree.

4. Expand the JAR file to view the contents.

5. Click the folder called URL Providers. Complete one of the following actions:

v Right click the folder and select New Provider.

v Click Edit > New on the menu bar.

6. Configure the URL provider properties in the resulting property dialog.

7. Click OK.

Chapter 8. Developing WebSphere applications 887

8. Click File > Save on the menu bar to save your changes.

Configuring URL providers and sessions using the Application Client Resource Configuration

Tool:

Use the Application Client Resource Configuration Tool (ACRCT) to edit the configurations of URL

providers and URLs to be used by your application clients.

1. Start the ACRCT.

2. Open an EAR file.

3. Locate the URL objects in the tree that displays. For example, if your file contains URL providers and

URLs, expand Resources -> application.jar -> URL Providers -> url_provider_instance

where url_provider_instance is a particular URL provider.

4. If you expand the tree further, you will also see the URLs folders containing the URL instances for

each URL provider instance.

URL settings for application clients:

Use this page to implement the function for a particular URL protocol, such as Hyper Text Transfer

Protocol (HTTP).

 To view this Application Client Resource Configuration Tool (ACRCT) page, click File > Open. After you

browse for an EAR file, click Open. Expand the selected JAR file > URL Providers > URL provider

instance. Right-click URLs and click New. The following fields appear on the General tab.

This provider, comprised of classes, extends the java.net.URLStreamHandler and java.net.URLConnection

classes.

Name:

The administrative name for the URL.

Description:

This is an optional description of the URL for your administrative records.

JNDI Name:

The application client run time uses this field to retrieve configuration information.

URL:

A Uniform Resource Locator (URL) name that points to an Internet or intranet resource. For example:

http://www.ibm.com.

Custom Properties:

Specifies name-value pairs for setting additional properties on the object that is created at run time for this

resource.

 You must enter a name that is a public property on the object and a value that can be converted from a

string to the type required by the set method of the property. The acceptable properties and values depend

on the object that is created. Refer to the object documentation for a list of valid properties and values.

URL provider settings for application clients:

888 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Use this page create new URL providers.

 To view this Application Client Resource Configuration Tool (ACRCT) page, click File > Open. After you

browse for an EAR file, click Open. Expand the selected JAR file. Right click URL Providers, and click

New. The following fields appear on the General tab.

A URL provider implements the function for a particular URL protocol, such as Hyper Text Transfer

Protocol (HTTP). This provider, comprised of classes, extends the java.net.URLStreamHandler and

java.net.URLConnection classes.

Name:

Administrative name for the URL.

Description:

Optional description of the URL, for your administrative records.

Class Path:

A list of paths or JAR file names which together form the location for the resource provider classes.

Protocol:

Protocol supported by this stream handler. For example, nntp, smtp, ftp, and so on.

 To use the default protocol, leave this field blank.

Stream handler class:

Fully qualified name of a User-defined Java class that extends the java.net.URLStreamHandler for a

particular URL protocol, such as FTP.

 To use the default stream handler, leave this field blank.

Custom Properties:

Specifies name-value pairs for setting additional properties on the object that is created at run time for this

resource.

 You must enter a name that is a public property on the object and a value that can be converted from a

string to the type required by the set method of the property. The acceptable properties and values depend

on the object that is created. Refer to the object documentation for a list of valid properties and values.

Example: Configuring URL and URL provider settings for application clients: The purpose of this

article is to help you to configure URL and URL provider settings.

v Required fields:

– URL Properties page: name, jndiName, url

– URL Provider Properties page: name
v Example:

<resources.url:URLProvider xmi:id="URLProvider_1" name="urlProvider:name"

description="urlProvider:description"

streamHandlerClassName="urlProvider:streamHandlerClass"

protocol="urlProvider:protocol">

<classpath>urlProvider:classpath</classpath>

<factories xmi:type="resources.url:URL" xmi:id="URL_1" name="urlFactory:name"

jndiName="urlFactory:jndiName" description="urlFactory:description"

spec="urlFactory:url">

Chapter 8. Developing WebSphere applications 889

<propertySet xmi:id="J2EEResourcePropertySet_18">

<resourceProperties xmi:id="J2EEResourceProperty_20" name="urlFactory:customName"

value="urlFactory:customValue"/>

</propertySet>

</factories>

<propertySet xmi:id="J2EEResourcePropertySet_19">

<resourceProperties xmi:id="J2EEResourceProperty_21" name="urlProvider:customName"

value="urlProvider:customValue"/>

</propertySet>

</resources.url:URLProvider>

Configuring new URLs with the Application Client Resource Configuration Tool

During this task, you create URLs for your client application.

1. Click the URL provider for which you want to create a URL in the tree. Do one of the following:

v Configure a new URL provider.

v Click an existing URL provider.

2. Expand the URL provider to view the URLs folder.

3. Click the URL folder. Complete one of the following actions:

v Right click the folder and click New Factory.

v Click Edit -> New on the menu bar.

4. Configure the URL properties in the displayed fields.

5. Click OK when you finish.

6. Click File > Save in the menu bar to save your changes.

WebSphere asynchronous messaging using the Java Message Service API for the

Application Client Resource Configuration Tool

WebSphere Application Server supports asynchronous messaging as a method of communication based

on the Java Message Service (JMS) programming interface. The JMS interface provides a common way

for Java programs (clients and J2EE applications) to create, send, receive, and read asynchronous

requests as JMS messages.

This topic provides an overview of asynchronous messaging using JMS support provided by the

WebSphere Application Server.

The base support for asynchronous messaging using the JMS API provides the common set of JMS

interfaces and associated semantics that define how a JMS client can access the facilities of a JMS

provider. This support enables WebSphere product J2EE applications, as JMS clients, to exchange

messages asynchronously with other JMS clients, by using JMS destinations (queues or topics). A J2EE

application can use JMS queue destinations for point-to-point messaging and JMS topic destinations for

Publisher and Subscriber messaging. A J2EE application can explicitly poll for messages on a destination,

and then retrieve messages for processing by business logic beans (enterprise beans).

With the base JMS and XA support, the J2EE application uses standard JMS calls to process messages,

including any responses or outbound messaging. An enterprise bean can handle responses acting as a

sender bean, or within the enterprise bean that receives the incoming messages. Optionally, this process

can use two-phase commit within the scope of a transaction. This level of function for asynchronous

messaging is called bean-managed messaging, and gives an enterprise bean complete control over the

messaging infrastructure, for example, connection and session pool management. The common container

has no role in bean-managed messaging.

WebSphere Application Server also supports automatic asynchronous messaging using message-driven

beans (a type of enterprise bean defined in the EJB 2.0 specification) and JMS listeners (part of the JMS

application server facilities). Messages are automatically retrieved from JMS destinations, optionally within

a transaction, then sent to the message-driven bean in a J2EE application, without the application having

to explicitly poll JMS destinations.

890 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Java Message Service (JMS) providers for clients

This topic describes the different ways that client applications can use JMS providers with WebSphere

Application Server. A JMS provider enables use of the Java Message Service (JMS) and other message

resources in WebSphere Application Server.

IBM WebSphere Application Server supports asynchronous messaging through the use of a JMS provider

and its related messaging system. JMS providers must conform to the JMS specification version 1.1. To

use message-driven beans the JMS provider must support the optional Application Server Facility (ASF)

function defined within that specification, or support an inbound resource adapter as defined in the JCA

specification version 1.5.

The service integration technologies of IBM WebSphere Application Server can act as a messaging

system when you have configured a service integration bus that is accessed through the default

messaging provider. This support is installed as part of WebSphere Application Server, administered

through the administrative console, and is fully integrated with the WebSphere Application Server runtime.

WebSphere Application Server also includes support for the following JMS providers:

WebSphere MQ

Provided for use with supported versions of WebSphere MQ.

Generic

Provided for use with any 3rd party messaging system which supports ASF.

For backwards compatibility with earlier releases, WebSphere Application Server also includes support for

the V5 default messaging provider which enables you to configure resources for use with the WebSphere

Application Server version 5 Embedded Messaging system. The V5 default messaging provider can also

be used with a service integration bus.

WebSphere applications can use messaging resources provided by any of these JMS providers. However

the choice of provider is most often dictated by requirements to use or integrate with an existing

messaging system. For example, you may already have a messaging infrastructure based on WebSphere

MQ. In this case you may either connect directly using the included support for WebSphere MQ as a JMS

provider, or configure a service integration bus with links to a WebSphere MQ network and then access

the bus through the default messaging provider.

Configuring Java messaging client resources

In a separate administrative task, install the Java Message Service (JMS) client on the client machine

where the application client resides. The messaging product vendor must provide an implementation of the

JMS client. For more information, see your messaging product documentation.

During this task, you create new JMS provider configurations for your application client. The application

client can use a messaging service through the Java Message Service APIs. A JMS provider provides two

kinds of J2EE factories. One is a JMS connection factory, and the other is a JMS destination factory.

1. Start the Application Client Resource Configuration Tool (ACRCT).

2. Open the EAR file for which you want to configure the new JMS provider. The EAR file contents are in

the displayed tree view.

3. Select the JAR file in which you want to configure the new JMS provider from the tree.

4. Expand the JAR file to view its contents.

5. Right-click Messaging Providers and select New.

6. Configure the JMS provider properties in the resulting property dialog.

7. Click OK.

8. Click File > Save.

Chapter 8. Developing WebSphere applications 891

Configuring new JMS providers with the Application Client Resource Configuration Tool:

During this task, you create new Java Message Service (JMS) provider configurations for the Application

Client. The Application Client makes use of a messaging service through the JMS interfaces. A JMS

provider provides two kinds of J2EE resources. One is a JMS connection factory, and the other is a JMS

destination.

In a separate administrative task, you must install the JMS client on the client machine where your

particular application client resides. The messaging product vendor must provide an implementation of the

JMS client. For more information, see your messaging product documentation.

1. Start the Application Client Resource Configuration Tool and open the EAR file for which you want to

configure the new JMS provider. The EAR file contents are displayed in a tree view.

2. From the tree, select the JAR file in which you want to configure the new JMS provider.

3. Expand the JAR file to view its contents.

4. Right-click Messaging Providers. Complete one of the following actions:

v Right click the folder and select New.

v On the menu bar, click Edit > New.

5. In the resulting property dialog, configure the JMS provider properties.

6. Click OK when finished.

7. Click File -> Save on the menu bar to save your changes.

JMS provider settings for application clients:

Use this page to configure properties of the Java Message Service (JMS) provider, if you want to use a

JMS provider other than the default messaging provider or the WebSphere MQ as a JMS provider.

 To view this Application Client Resource Configuration Tool (ACRCT) page, click File > Open. After you

browse for an EAR file, click Open. Expand the selected JAR file. Right click Messaging Providers, and

click New. The following fields appear on the General tab.

Name:

The name by which the JMS provider is known for administrative purposes.

 Data type String

Description:

A description of the JMS provider, for administrative purposes.

 Data type String

Class Path:

A list of paths or .jar file names which together form the location for the resource provider classes.

Context factory class:

The Java class name of the initial context factory for the JMS provider.

 For example, for an LDAP service provider the value has the form: com.sun.jndi.ldap.LdapCtxFactory.

 Data type String

892 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Provider URL:

The JMS provider URL for external JNDI lookups.

 For example, an LDAP URL for a JMS provider has the form: ldap://hostname.company.com/contextName.

 Data type String

Custom Properties:

Specifies name-value pairs for setting additional properties on the object that is created at run time for this

resource.

 You must enter a name that is a public property on the object and a value that can be converted from a

string to the type required by the set method of the property. The acceptable properties and values depend

on the object that is created. Refer to the object documentation for a list of valid properties and values.

Default Provider connection factory settings:

Use this panel to view or change the configuration properties of the selected JMS connection factory for

use with the internal product Java Message Service (JMS) provider that is installed with WebSphere

Application Server. These configuration properties control how connections are created between the JMS

provider and the service integration bus that it uses

 To view this Application Client Resource Configuration Tool (ACRCT) page, click File > Open. After you

browse for an EAR file, click Open. Expand the selected JAR file > Messaging Providers > Default

Provider. Right-click Connection Factories and click New. The following fields appear on the General

tab.

Settings that have a default value display the appropriate value. Any settings that have fixed values have a

drop down menu.

Name:

The name of the connection factory.

 Data type String

Description:

A description of this connection factory for administrative purposes within IBM WebSphere Application

Server.

 Data type String

JNDI Name:

The JNDI name that is used to match this Resource Adapter connection factory definition to the

deployment descriptor. This entry is a resource-ref name.

 Data type String

User Name:

Chapter 8. Developing WebSphere applications 893

The User Name used with the Password property for connecting to an application.

 If you specify a value for the User Name property, you must also specify a value for the Password

property.

The connection factory User ID and Password properties are used if the calling application does not

provide a userid and password explicitly. If a user name and password are specified, then an

authentication alias is created for the factory where the password is encrypted.

 Data type String

Password:

The password used to authenticate connection to an application.

 If you specify a value for the User Name property, you must also specify a value for the Password

property.

 Data type String

Re-Enter Password:

Confirms the password.

Bus Name:

The name of the bus to which the connection factory connects.

 Data type String

Client Identifier:

The name of the client. Required for durable topic subscriptions.

 Data type String

Nonpersistent Messaging Reliability:

The reliability applied to nonpersistent JMS messages sent using this connection factory.

 If you want different reliability delivery options for individual JMS destinations, you can set this property to

As bus destination. The reliability is then defined by the Reliability property of the bus destination to which

the JMS destination is assigned.

 Default ReliablePersistent

894 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Range

None There is no message reliability for nonpersistent

messages. If a nonpersistent message cannot be

delivered, it is discarded.

Best effort nonpersistent

Messages are never written to disk, and are

thrown away if memory cache overruns.

Express nonpersistent

Messages are written asynchronously to

persistent storage if memory cache overruns, but

are not kept over server restarts.

Reliable nonpersistent

Messages can be lost if a messaging engine

fails, and can be lost under normal operating

conditions.

Reliable persistent

Messages can be lost if a messaging engine

fails, but are not lost under normal operating

conditions.

Assured persistent

Highest degree of reliability where assured

message delivery is supported.

As Bus destination

Use the delivery option configured for the bus

destination.

Persistent Message Reliability:

The reliability applied to persistent JMS messages sent using this connection factory.

 If you want different reliability delivery options for individual JMS destinations, you can set this property to

As bus destination. The reliability is then defined by the Reliability property of the bus destination to

which the JMS destination is assigned.

 Default ReliablePersistent

Chapter 8. Developing WebSphere applications 895

Range

None There is no message reliability for nonpersistent

messages. If a nonpersistent message cannot be

delivered, it is discarded.

Best effort nonpersistent

Messages are never written to disk, and are

thrown away if memory cache overruns.

Express nonpersistent

Messages are written asynchronously to

persistent storage if memory cache overruns, but

are not kept over server restarts.

Reliable nonpersistent

Messages can be lost if a messaging engine

fails, and can be lost under normal operating

conditions.

Reliable persistent

Messages can be lost if a messaging engine

fails, but are not lost under normal operating

conditions.

Assured persistent

Highest degree of reliability where assured

message delivery is supported.

As Bus destination

Use the delivery option configured for the bus

destination.

Durable Subscription Home:

The name of the durable subscription home.

 Data type String

Share durable subscriptions:

Controls whether or not durable subscriptions are shared across connections with members of a server

cluster.

 Normally, only one session at a time can have a TopicSubscriber for a particular durable subscription. This

property enables you to override this behavior, to enable a durable subscription to have multiple

simultaneous consumers.

 Data type Selection list

Default In cluster

Range

In cluster

Allows sharing of durable subscriptions when

connections are made from within a server

cluster.

Always shared

Durable subscriptions can be shared across

connections.

Never shared

Durable subscriptions are never shared across

connections.

896 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Read Ahead:

Controls the read-ahead optimization during message delivery.

 Default Default

Range Default, AlwaysOn and AlwaysOff

 Related concepts

 “Resource Adapters for the client” on page 874

Target:

The name of the Workload Manager target group containing the messaging engine.

 Data type String

Target Type:

The type of Workload Manager target group that contains the messaging engine.

 Default BusMember

Range BusMember, Custom, ME

Target Significance:

The priority of significance for the target specified.

 Default Preferred

Range Preferred, Required

Target Inbound Transport Chain:

The name of the protocol that resolves to a group of messaging engines.

 Data type String

Provider Endpoints:

The list of comma separated endpoints used to connect to a bootstrap server.

 Type a comma-separated list of endpoint triplets with the syntax: host:port:protocol.

 Example merlin:7276:BootstrapBasicMessaging,Gandalf:5557:BootstrapSecureMessaging

where

BootstrapBasicMessaging corresponds to the remote protocol InboundBasicMessaging

(JFAP-TCP/IP).

Default v If the host name is not specified, then the default localhost is used as a default

value.

v If the port number is not specified, then 7276 is used as a default value.

v If the chain name is not specified, a predefined chain, such as

BootstrapBasicMessaging, is used as a default value.

Chapter 8. Developing WebSphere applications 897

Connection Proximity:

The proximity that the messaging engine should have to the requester.

 Default Bus

Range Bus, Host, Cluster, Server

Temporary Queue Name Prefix:

The prefix to apply to the names of temporary queues. This name is a maximum of 12 characters.

 Data type String

Temporary Topic Name Prefix:

The prefix to apply to the names of temporary topics. This name is a maximum of 12 characters.

 Data type String

Default Provider queue connection factory settings:

Use this panel to view or change the configuration properties of the selected JMS queue connection

factory for use with the internal product Java Message Service (JMS) provider that is installed with

WebSphere Application Server. These configuration properties control how connections are created

between the JMS provider and the service integration bus that it uses

 To view this Application Client Resource Configuration Tool (ACRCT) page, click File > Open. After you

browse for an EAR file, click Open. Expand the selected JAR file > Messaging Providers > Default

Provider. Right-click Queue Connection Factories and click New. The following fields appear on the

General tab.

Settings that have a default value display the appropriate value. Any settings that have fixed values have a

drop down menu.

Name:

The name of the queue connection factory.

 Data type String

Description:

A description of this queue connection factory for administrative purposes within IBM WebSphere

Application Server.

 Data type String

JNDI Name:

The JNDI name that is used to match this queue connection factory definition to the deployment

descriptor. This entry is a resource-ref name.

 Data type String

898 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

User Name:

The User Name used, with the Password property, for authentication if the calling application does not

provide a userid and password explicitly. If this field is used, then the Properties field UserName is ignored.

 If you specify a value for the User Name property, you must also specify a value for the Password

property.

The connection factory User Name and Password properties are used if the calling application does not

provide a userid and password explicitly. If a user name and password are specified, then an

authentication alias is created for the factory where the password is encrypted.

 Data type String

Password:

The password used to create an encrypted. If you complete this field, then the Password field in the

Properties box is ignored.

 If you specify a value for the User Name property, you must also specify a value for the Password

property.

 Data type String

Re-Enter Password:

Confirms the password.

Bus Name:

The name of the bus to which the queue connection factory connects.

 Data type String

Client Identifier:

The client identifier. Required for durable topic subscriptions.

 Data type String

Nonpersistent Messaging Reliability:

The reliability applied to nonpersistent JMS messages sent using this connection factory.

 If you want different reliability delivery options for individual JMS destinations, you can set this property to

As bus destination. The reliability is then defined by the Reliability property of the bus destination to which

the JMS destination is assigned.

 Default ReliablePersistent

Chapter 8. Developing WebSphere applications 899

Range

None There is no message reliability for nonpersistent

messages. If a nonpersistent message cannot be

delivered, it is discarded.

Best effort nonpersistent

Messages are never written to disk, and are

thrown away if memory cache overruns.

Express nonpersistent

Messages are written asynchronously to

persistent storage if memory cache overruns, but

are not kept over server restarts.

Reliable nonpersistent

Messages can be lost if a messaging engine

fails, and can be lost under normal operating

conditions.

Reliable persistent

Messages can be lost if a messaging engine

fails, but are not lost under normal operating

conditions.

Assured persistent

Highest degree of reliability where assured

message delivery is supported.

As Bus destination

Use the delivery option configured for the bus

destination.

Persistent Message Reliability:

The reliability applied to persistent JMS messages sent using this connection factory.

 If you want different reliability delivery options for individual JMS destinations, you can set this property to

As bus destination. The reliability is then defined by the Reliability property of the bus destination to

which the JMS destination is assigned.

 Default ReliablePersistent

900 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Range

None There is no message reliability for nonpersistent

messages. If a nonpersistent message cannot be

delivered, it is discarded.

Best effort nonpersistent

Messages are never written to disk, and are

thrown away if memory cache overruns.

Express nonpersistent

Messages are written asynchronously to

persistent storage if memory cache overruns, but

are not kept over server restarts.

Reliable nonpersistent

Messages can be lost if a messaging engine

fails, and can be lost under normal operating

conditions.

Reliable persistent

Messages can be lost if a messaging engine

fails, but are not lost under normal operating

conditions.

Assured persistent

Highest degree of reliability where assured

message delivery is supported.

As Bus destination

Use the delivery option configured for the bus

destination.

Read Ahead:

Controls the read-ahead optimization during message delivery.

 Default Default

Range Default, AlwaysOn and AlwaysOff

Target:

The name of the Workload Manager target group containing the messaging engine.

 Data type String

Target Type:

The type of Workload Manager target group that contains the messaging engine.

 Default BusMember

Range BusMember, Custom, Destination, ME

Target Significance:

The priority of significance for the target specified.

 Default Preferred

Range Preferred, Required

Chapter 8. Developing WebSphere applications 901

Target Inbound Transport Chain:

The name of the protocol that resolves to a group of messaging engines.

 Data type String

Provider Endpoints:

The list of comma separated endpoints used to connect to a bootstrap server.

 Type a comma-separated list of endpoint triplets with the syntax: host:port:protocol.

 Example localhost:7777:BootstrapBasicMessaging

where

BootstrapBasicMessaging corresponds to the remote

protocol InboundBasicMessaging (JFAP-TCP/IP).

Default v If the host name is not specified, then the default

localhost is used as a default value.

v If the port number is not specified, then 7276 is used as

a default value.

v If the chain name is not specified, a predefined chain,

such as BootstrapBasicMessaging, is used as a default

value.

Connection Proximity:

The proximity that the messaging engine should have to the requester.

 Default Bus, Cluster, Server

Range Bus, Host

Temporary Queue Name Prefix:

The prefix to apply to the names of temporary queues. This name is a maximum of 12 characters.

 Data type String

Default Provider topic connection factory settings:

Use this panel to view or change the configuration properties of the selected JMS topic connection factory

for use with the internal product Java Message Service (JMS) provider that is installed with WebSphere

Application Server. These configuration properties control how connections are created between the JMS

provider and the service integration bus that it uses.

 To view this Application Client Resource Configuration Tool (ACRCT) page, click File > Open. After you

browse for an EAR file, click Open. Expand the selected JAR file > Messaging Providers > Default

Provider. Right-click Topic Connection Factories and click New. The following fields appear on the

General tab.

Settings that have a default value display that appropriate value. Any settings that have fixed values have

a drop down menu.

902 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Name:

The name of the topic connection factory.

 Data type String

Description:

A description of this topic connection factory for administrative purposes within IBM WebSphere Application

Server.

 Data type String

JNDI Name:

The JNDI name that is used to match this topic connection factory definition to the deployment descriptor.

This entry is a resource-ref name.

 Data type String

User Name:

The User Name used, with the Password property, for authentication if the calling application does not

provide a userid and password explicitly. If this field is used, then the Properties field UserName is ignored.

 If you specify a value for the User Name property, you must also specify a value for the Password

property.

The connection factory User Name and Password properties are used if the calling application does not

provide a userid and password explicitly. If a user name and password are specified, then an

authentication alias is created for the factory where the password is encrypted.

 Data type String

Password:

The password used to create an encrypted. If you complete this field, then the Password field in the

Properties box is ignored.

 If you specify a value for the User Name property, you must also specify a value for the Password

property.

 Data type String

Re-Enter Password:

Confirms the password.

Bus Name:

The name of the bus to which the topic connection factory connects.

 Data type String

Chapter 8. Developing WebSphere applications 903

Client Identifier:

The name of the client. This field is required for durable topic subscriptions.

 Data type String

Nonpersistent Messaging Reliability:

The reliability applied to nonpersistent JMS messages sent using this connection factory.

 If you want different reliability delivery options for individual JMS destinations, you can set this property to

As bus destination. The reliability is then defined by the Reliability property of the bus destination to which

the JMS destination is assigned.

 Default ReliablePersistent

Range

None There is no message reliability for nonpersistent

messages. If a nonpersistent message cannot be

delivered, it is discarded.

Best effort nonpersistent

Messages are never written to disk, and are

thrown away if memory cache overruns.

Express nonpersistent

Messages are written asynchronously to

persistent storage if memory cache overruns, but

are not kept over server restarts.

Reliable nonpersistent

Messages can be lost if a messaging engine

fails, and can be lost under normal operating

conditions.

Reliable persistent

Messages can be lost if a messaging engine

fails, but are not lost under normal operating

conditions.

Assured persistent

Highest degree of reliability where assured

message delivery is supported.

As Bus destination

Use the delivery option configured for the bus

destination.

Persistent Message Reliability:

The reliability applied to persistent JMS messages sent using this connection factory.

 If you want different reliability delivery options for individual JMS destinations, you can set this property to

As bus destination. The reliability is then defined by the Reliability property of the bus destination to

which the JMS destination is assigned.

 Default ReliablePersistent

904 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Range

None There is no message reliability for nonpersistent

messages. If a nonpersistent message cannot be

delivered, it is discarded.

Best effort nonpersistent

Messages are never written to disk, and are

thrown away if memory cache overruns.

Express nonpersistent

Messages are written asynchronously to

persistent storage if memory cache overruns, but

are not kept over server restarts.

Reliable nonpersistent

Messages can be lost if a messaging engine

fails, and can be lost under normal operating

conditions.

Reliable persistent

Messages can be lost if a messaging engine

fails, but are not lost under normal operating

conditions.

Assured persistent

Highest degree of reliability where assured

message delivery is supported.

As Bus destination

Use the delivery option configured for the bus

destination.

Durable Subscription Home:

The name of the durable subscription home.

 Data type String

Share durable subscriptions:

Controls whether or not durable subscriptions are shared across connections with members of a server

cluster.

 Normally, only one session at a time can have a TopicSubscriber for a particular durable subscription. This

property enables you to override this behavior, to enable a durable subscription to have multiple

simultaneous consumers.

 Data type Selection list

Default In cluster

Range

In cluster

Allows sharing of durable subscriptions when

connections are made from within a server

cluster.

Always shared

Durable subscriptions can be shared across

connections.

Never shared

Durable subscriptions are never shared across

connections.

Chapter 8. Developing WebSphere applications 905

Read Ahead:

Controls the read-ahead optimization during message delivery.

 Default Default

Range Default, AlwaysOn and AlwaysOff

Target:

The name of the Workload Manager target group containing the messaging engine.

 Data type String

Target Type:

The type of Workload Manager target group that contains the messaging engine.

 Default BusMember

Range BusMember, Custom, ME

Target Significance:

The priority of significance for the target specified.

 Default Preferred

Range Preferred, Required

Target Inbound Transport Chain:

The name of the protocol that resolves to a group of messaging engines.

 Data type String

Provider Endpoints:

The list of comma separated endpoints used to connect to a bootstrap server.

 Type a comma-separated list of endpoint triplets with the syntax: host:port:protocol.

 Example localhost:7777:BootstrapBasicMessaging

where

BootstrapBasicMessaging corresponds to the remote

protocol InboundBasicMessaging (JFAP-TCP/IP).

Default v If the host name is not specified, then the default

localhost is used as a default value.

v If the port number is not specified, then 7276 is used as

a default value.

v If the chain name is not specified, a predefined chain,

such as BootstrapBasicMessaging, is used as a default

value.

906 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Connection Proximity:

The proximity that the messaging engine should have to the requester.

 Default Bus

Range Bus, Host, Cluster, Server

Temporary Topic Name Prefix:

The prefix to apply to the names of temporary topics. This name is a maximum of 12 characters.

 Data type String

Default Provider queue destination settings:

Use this panel to view or change the configuration properties of the selected JMS queue destination for

use with the internal product Java Message Service (JMS) provider that is installed with WebSphere

Application Server.

 To view this Application Client Resource Configuration Tool (ACRCT) page, click File > Open. After you

browse for an EAR file, click Open. Expand the selected JAR file > Messaging Providers > Default

Provider. Right-click Queue Destinations. Click New. The following fields appear on the General tab.

Name:

The name of the queue destination factory. You must complete this field.

 Data type String

Description:

A description of this queue destination for administrative purposes within WebSphere Application Server.

 Data type String

JNDI Name:

The JNDI name used to match this definition to a deployment descriptor resource-env-ref name.

 Data type String

Queue Name:

The name of the queue.

 Data type String

Delivery Mode:

The delivery mode for messages sent to this destination.

 Data type String

Range Application, Persistent or NonPersistent

Chapter 8. Developing WebSphere applications 907

Default Application

Time to Live:

The default length of time from its dispatch time that a message sent to this destination should be retained

by the system, where 0 indicates that time to live value does not expire. Value from the producer is used if

the Time to Live field is not completed.

 Data type Integer

Units Milliseconds

Priority:

The priority for messages sent to this destination. The value from the producer is used if not completed.

 Data type Integer

Range 0 to 9 with 0 as the lowest priority and 9 as the highest

priority

Read Ahead:

Used to control read-ahead optimization during message delivery.

 Data type String

Range AsConnection, AlwaysOn and AlwaysOff

Default AsConnection

Default Provider topic destination settings:

Use this panel to view or change the configuration properties of the selected JMS topic destination for use

with the internal product Java Message Service (JMS) provider that is installed with WebSphere

Application Server.

 To view this Application Client Resource Configuration Tool (ACRCT) page, click File > Open. After you

browse for an EAR file, click Open. Expand the selected JAR file > Messaging Providers > Default

Provider. Right-click Topic Destinations, and click New. The following fields appear on the General tab.

Name:

The name of the topic destination entry.

 Data type String

Description:

A description of the entry.

 Data type String

JNDI Name:

The JNDI name used to match this definition to a deployment descriptor resource-env-ref name.

908 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Data type String

Topic Space:

The name of the topic space. This field is required.

 Data type String

Default DEFAULT_TOPIC_SPACE

Topic Name:

The name of the topic. This field is required.

 Data type String

Delivery Mode:

The default mode for messages sent to this destination.

 Data type String

Range Application, Persistent or NonPersistent

Default Application

Time to Live:

The default length of time from its dispatch time that a message sent to this destination should be retained

by the system, where 0 indicates that time to live value does not expire. Value from the producer is used if

not completed.

 Data type Long

Units Milliseconds

Priority:

The priority for messages sent to this destination. Value from producer is used if not completed.

 Data type Integer

Range 0 to 9 with 0 as the lowest priority and 9 as the highest

priority

Read Ahead:

Used to control read-ahead optimization during message delivery.

 Data type String

Range AsConnection, AlwaysOn and AlwaysOff

Default AsConnection

Version 5 Default Provider queue connection factory settings for application clients:

Chapter 8. Developing WebSphere applications 909

Use this panel to browse or change the configuration properties of the selected JMS queue connection

factory for point-to-point messaging for use by WebSphere Application Server version 5 applications.

These configuration properties control how connections are created between the JMS provider and the

default messaging system that it uses.

 To view this Application Client Resource Configuration Tool (ACRCT) page, click File > Open. After you

browse for an EAR file, click Open. Expand the selected JAR file > Messaging Provider > Version 5

Default Provider. Right-click Queue Connection Factories and click New. The following fields appear on

the General tab.

A queue connection factory is used to create JMS connections to queue destinations. The queue

connection factory is created by the internal WebSphere Application Server product JMS provider. A

Version 5 Default Provider queue connection factory has the following properties:

Name:

The name by which this queue connection factory is known for administrative purposes within IBM

WebSphere Application Server. The name must be unique within the JMS connection factories across the

WebSphere administrative domain.

 Data type String

Description:

A description of this connection factory for administrative purposes within IBM WebSphere Application

Server.

 Data type String

Default Null

JNDI Name:

The application client run time uses this field to retrieve configuration information.

User ID:

The User ID used, with the Password property, for authentication if the calling application does not

provide a userid and password explicitly.

 If you specify a value for the User ID property, you must also specify a value for the Password property.

The connection factory User ID and Password properties are used if the calling application does not

provide a User ID and password explicitly, for example, if the calling application uses the method

createQueueConnection(). The JMS client flows the userid and password to the JMS server.

 Data type String

Password:

The password used, with the User ID property, for authentication if the calling application does not provide

a userid and password explicitly.

 If you specify a value for the User ID property, you must also specify a value for the Password property.

Re-Enter Password:

910 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Confirms the password.

Node:

The WebSphere node name of the administrative node where the JMS server runs for this connection

factory. Connections created by this factory connect to that JMS server.

 Data type String

Application Server:

Enter the name of the application server. This name is not the host name of the machine, but the name of

the configured application server.

Custom Properties:

Specifies name-value pairs for setting additional properties on the object that is created at run time for this

resource.

 You must enter a name that is a public property on the object and a value that can be converted from a

string to the type required by the set method of the property. The acceptable properties and values depend

on the object that is created. Refer to the object documentation for a list of valid properties and values.

Version 5 Default Provider topic connection factory settings for application clients:

Use this panel to view or change the configuration properties of the selected topic connection factory for

use with the internal product Java Message Service (JMS) provider. These configuration properties control

how connections are created between the JMS provider and the messaging system that it uses.

 To view this Application Client Resource Configuration Tool (ACRCT) page, click File > Open. After you

browse for an EAR file, click Open. Expand the selected JAR file > Messaging Providers > Version 5

Default Provider. Right click Topic Connection Factories and click New. The following fields appear on

the General tab.

A Version 5 Default Provider topic connection factory has the following properties.

Name:

The name by which this queue connection factory is known for administrative purposes within WebSphere

Application Server. The name must be unique within the JMS connection factories across the WebSphere

Application Server administrative domain.

 Data type String

Description:

A description of this topic connection factory for administrative purposes within WebSphere Application

Server.

 Data type String

JNDI Name:

The application client run time uses this field to retrieve configuration information.

Chapter 8. Developing WebSphere applications 911

User ID:

The user ID used, with the Password property, for authentication if the calling application does not provide

a userid and password explicitly.

 If you specify a value for the User ID property, you must also specify a value for the Password property.

The connection factory User ID and Password properties are used if the calling application does not

provide a userid and password explicitly, for example, if the calling application uses the method

createTopicConnection(). The JMS client flows the userid and password to the JMS server.

 Data type String

Password:

The password used, with the User ID property, for authentication if the calling application does not provide

a userid and password explicitly.

 If you specify a value for the User ID property, you must also specify a value for the Password property.

 Data type String

Re-Enter Password:

Confirms the password.

Node:

The WebSphere Application Server node name of the administrative node where the JMS server runs for

this connection factory. Connections created by this factory connect to that JMS server.

 Data type Enum

Range Pull-down list of nodes in the WebSphere Application

Server administrative domain.

Application Server:

Enter the name of the application server. This name is not the host name of the machine, but the name of

the configured application server.

Port:

Which of the two ports that connections use to connect to the JMS Server. The QUEUED port is for

full-function JMS publish/subscribe support, the DIRECT port is for nonpersistent, nontransactional,

nondurable subscriptions only.

Note: Message-driven beans cannot use the direct listener port for publish or subscribe support.

Therefore, any topic connection factory configured with the Port set to Direct cannot be used with

message-driven beans.

 Data type Enum

Default QUEUED

912 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Range QUEUED

The listener port used for full-function JMS

compliant, publish or subscribe support.

DIRECT

The listener port used for direct TCP/IP

connection (nontransactional, nonpersistent, and

nondurable subscriptions only) for publish or

subscribe support.

The TCP/IP port numbers for these ports are defined on

the product internal JMS server.

Client ID:

The JMS client identifier used for connections to the MQSeries queue manager.

 Data type String

Custom Properties:

Specifies name-value pairs for setting additional properties on the object that is created at run time for this

resource.

 You must enter a name that is a public property on the object and a value that can be converted from a

string to the type required by the set method of the property. The acceptable properties and values depend

on the object that is created. Refer to the object documentation for a list of valid properties and values.

Version 5 Default Provider queue destination settings for application clients:

Use this panel to view or change the configuration properties of the selected queue destination for use

with product Java Message Service (JMS) provider.

 To view this Application Client Resource Configuration Tool (ACRCT) page, click File > Open. After you

browse for an EAR file, click Open. Expand the selected JAR file > Messaging Providers > Version 5

Default Provider. Right click Queue Destinations and click New. The following fields are displayed on

the General tab.

A queue destination is used to configure the properties of a JMS queue. A Version 5 Default Provider

queue destination has the following properties.

Name:

The name by which the queue is known for administrative purposes within WebSphere Application Server.

 Data type String

Description:

A description of the queue, for administrative purposes.

 Data type String

JNDI Name:

The application client run time uses this field to retrieve configuration information.

Chapter 8. Developing WebSphere applications 913

Persistence:

Whether all messages sent to the destination are persistent, nonpersistent, or have their persistence

defined by the application.

 Data type Enum

Default APPLICATION_DEFINED

Range Application defined

Messages on the destination have their

persistence defined by the application that put

them onto the queue.

Queue defined

[WebSphere MQ destination only] Messages on

the destination have their persistence defined by

the WebSphere MQ queue definition properties.

Persistent

Messages on the destination are persistent.

Nonpersistent

Messages on the destination are not persistent.

Priority:

Whether the message priority for this destination is defined by the application or the Specified priority

property.

 Data type Enum

Default APPLICATION_DEFINED

Range Application defined

The priority of messages on this destination is

defined by the application that put them onto the

destination.

Queue defined

[WebSphere MQ destination only] Messages on

the destination have their persistence defined by

the WebSphere MQ queue definition properties.

Specified

The priority of messages on this destination is

defined by the Specified priority property. If you

select this option, you must define a priority on

the Specified priority property.

Specified Priority:

If the Priority property is set to Specified, type here the message priority for this queue, in the range 0

(lowest) through 9 (highest).

 If the Priority property is set to Specified, messages sent to this queue have the priority value specified

by this property.

 Data type Integer

Units Message priority level

Range 0 (lowest priority) through 9 (highest priority)

Expiry:

914 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Whether the expiry timeout for this queue is defined by the application or the Specified expiry property, or

whether messages on the queue expire (have an unlimited expiry timeout).

 Data type Enum

Default APPLICATION_DEFINED

Range Application defined

The expiry timeout for messages in this queue is

defined by the application that put them onto the

queue.

Specified

The expiry timeout for messages in this queue is

defined by the Specified expiry property.If you

select this option, you must define a time out on

the Specified expiry property.

Unlimited

Messages in this queue have no expiry timeout,

and those messages never expire.

Specified Expiry:

If the Expiry timeout property is set to Specified, specify the number of milliseconds (greater than 0)

after which messages on this queue expire.

 Data type Integer

Units Milliseconds

Range Greater than or equal to 0

v 0 indicates that messages never timeout.

v Other values are an integer number of milliseconds.

Custom Properties:

Specifies name-value pairs for setting additional properties on the object that is created at run time for this

resource.

 You must enter a name that is a public property on the object and a value that can be converted from a

string to the type required by the set method of the property. The acceptable properties and values depend

on the object that is created. Refer to the object documentation for a list of valid properties and values.

Version 5 Default Provider topic destination settings for application clients:

Use this panel to view or change the configuration properties of the selected topic destination for use with

the internal product Java Message Service (JMS) provider.

 To view this Application Client Resource Configuration Tool (ACRCT) page, click File > Open. After you

browse for an EAR file, click Open. Expand the selected JAR file > Messaging Providers > Version 5

Default Provider. Right click Topic Destinations and click New. The following fields appear on the

General tab.

A topic destination is used to configure the properties of a JMS topic for the associated JMS provider. A

Version 5 Default Provider topic has the following properties.

Name:

The name by which the topic is known for administrative purposes.

 Data type String

Chapter 8. Developing WebSphere applications 915

Description:

A description of the topic, for administrative purposes within WebSphere Application Server.

 Data type String

JNDI Name:

The application client run-time environment uses this field to retrieve configuration information.

Topic Name: The name of the topic as defined to the JMS provider.

 Data type String

Persistence:

Whether all messages sent to the destination are persistent, nonpersistent, or have their persistence

defined by the application.

 Data type Enum

Default APPLICATION_DEFINED

Range Application defined

Messages on the destination have their

persistence defined by the application that put

them onto the queue.

Queue defined

[WebSphere MQ destination only] Messages on

the destination have their persistence defined by

the WebSphere MQ queue definition properties.

Persistent

Messages on the destination are persistent.

Nonpersistent

Messages on the destination are not persistent.

Priority:

Whether the message priority for this destination is defined by the application or the Specified priority

property.

 Data type Enum

Default APPLICATION_DEFINED

Range Application defined

The priority of messages on this destination is

defined by the application that put them onto the

destination.

Queue defined

[WebSphere MQ destination only] Messages on

the destination have their persistence defined by

the WebSphere MQ queue definition properties.

Specified

The priority of messages on this destination is

defined by the Specified priority property.If you

select this option, you must define a priority on

the Specified priority property.

Specified Priority:

916 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

If the Priority property is set to Specified, specify the message priority for this queue, in the range 0

(lowest) through 9 (highest).

 If the Priority property is set to Specified, messages sent to this queue have the priority value specified

by this property.

 Data type Integer

Units Message priority level

Range 0 (lowest priority) through 9 (highest priority)

Expiry:

Whether the expiry timeout for this queue is defined by the application or the Specified expiry property, or

messages on the queue never expire (have an unlimited expiry timeout).

 Data type Enum

Default APPLICATION_DEFINED

Range Application defined

The expiry timeout for messages on this queue is

defined by the application that put them onto the

queue.

Specified

The expiry timeout for messages on this queue is

defined by the Specified expiry property. If you

select this option, you must define a timeout on

the Specified expiry property.

Unlimited

Messages on this queue have no expiry timeout,

so those messages never expire.

Specified Expiry:

If the Expiry timeout property is set to Specified, type here the number of milliseconds (greater than 0)

after which messages on this queue expire.

 Data type Integer

Units Milliseconds

Range Greater than or equal to 0

v 0 indicates that messages never time out.

v Other values are an integer number of milliseconds.

Custom Properties:

Specifies name-value pairs for setting additional properties on the object that is created at run time for this

resource.

 You must enter a name that is a public property on the object and a value that can be converted from a

string to the type required by the set method of the property. The acceptable properties and values depend

on the object that is created. Refer to the object documentation for a list of valid properties and values.

WebSphere MQ Provider queue connection factory settings for application clients:

Use this panel to view or change the configuration properties of the selected queue connection factory for

use with the MQSeries product Java Message Service (JMS) provider. These configuration properties

control how connections are created between the JMS provider and WebSphere MQ.

Chapter 8. Developing WebSphere applications 917

To view this Application Client Resource Configuration Tool (ACRCT) page, click File > Open. After you

browse for an EAR file, click Open. Expand the selected JAR file > Messaging Providers > WebSphere

MQ Provider. Right click Queue Connection Factories, and click New. The following fields are displayed

on the General tab.

Note:

v The property values that you specify must match the values that you specified when configuring

WebSphere MQ for JMS resources. For more information about configuring WebSphere MQ for

JMS resources, see the WebSphere MQ Using Java book, located in the WebSphere MQ Family

library.

v In WebSphere MQ, names can have a maximum of 48 characters, with the exception of

channels which have a maximum of 20 characters.

A queue connection factory for the JMS provider has the following properties.

Name:

The name by which this queue connection factory is known for administrative purposes within IBM

WebSphere Application Server. The name must be unique within the JMS connection factories across the

WebSphere administrative domain.

 Data type String

Description:

A description of this connection factory for administrative purposes within IBM WebSphere Application

Server.

 Data type String

Default Null

JNDI Name:

The application client run time uses this field to retrieve configuration information.

User ID:

The user ID used, with the Password property, for authentication if the calling application does not provide

a userid and password explicitly.

 If you specify a value for the User ID property, you must also specify a value for the Password property.

The connection factory User ID and Password properties are used if the calling application does not

provide a userid and password explicitly; for example, if the calling application uses the method

createQueueConnection(). The JMS client flows the userid and password to the JMS server.

 Data type String

Password:

The password used, with the User ID property, for authentication if the calling application does not provide

a userid and password explicitly.

918 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

http://www-3.ibm.com/software/integration/mqfamily/library/manualsa/
http://www-3.ibm.com/software/integration/mqfamily/library/manualsa/

If you specify a value for the User ID property, you must also specify a value for the Password property.

 Data type String

Default Null

Re-Enter Password:

Confirms the password.

Queue Manager:

The name of the MQSeries queue manager for this connection factory.

 Connections created by this factory connect to that queue manager.

 Data type String

Host:

The name of the host on which the WebSphere MQ queue manager runs for client connection only.

 Data type String

Default Null

Range A valid TCP/IP host name

Port:

The TCP/IP port number used for connection to the WebSphere MQ queue manager, for client connection

only.

 This port must be configured on the WebSphere MQ queue manager.

 Data type Integer

Default Null

Range A valid TCP/IP port number, configured on the WebSphere MQ queue

manager.

Channel:

The name of the channel used for connection to the WebSphere MQ queue manager, for client connection

only.

 Data type String

Default Null

Range 1 through 20 ASCII characters

Transport type:

Specifies whether the WebSphere MQ client connection or JNDI bindings are used for connection to the

WebSphere MQ queue manager. The external JMS provider controls the communication protocols

between JMS clients and JMS servers. Tune the transport type when you are using non-ASF

nonpersistent, nondurable, nontransactional messaging or when you want to satisfy security issues and

the client is local to the queue manager node.

Chapter 8. Developing WebSphere applications 919

Data type Enum

Units Not applicable

Default BINDINGS

Range BINDINGS

JNDI bindings are used to connect to the queue manager.

BINDINGS is a shared memory protocol and can only be used when

the queue manager is on the same node as the JMS client and

poses security risks that should be addressed through the use of

EJB roles.

CLIENT

WebSphere MQ client connection is used to connect to the queue

manager. CLIENT is a typical TCP-based protocol.

DIRECT

For WebSphere MQ Event Broker using DIRECT mode. DIRECT is a

lightweight sockets protocol used in nontransactional, nondurable

and nonpersistent Publish/Subscribe messaging. DIRECT only works

for clients and message-driven beans using the non-ASF protocol.

QUEUED

QUEUED is a standard TCP protocol.

Recommended Queue connection factory transport type

BINDINGS is faster by 30% or more, but it lacks security. When you

have security concerns, BINDINGS is more desirable than CLIENT.

Topic connection factory transport type

DIRECT is the fastest type and should be used where possible. Use

BINDINGS when you want to satisfy additional security tasks and the

queue manager is local to the JMS client. QUEUED is the fallback

for all other cases. WebSphere MQ 5.3 before CSD2 with the

DIRECT setting can lose messages when used with message-driven

beans and under load. This loss also happens with client-side

applications unless the broker maxClientQueueSize is set to 0. You

can set this to 0 with the command (shown here on 2 lines for

publication):

#wempschangeproperties WAS_nodeName_server1 -e default -o

 DynamicSubscriptionEngine -n

 maxClientQueueSize -v 0 -x executionGroupUUID

where executionGroupUUID can be found by starting the broker and

looking in the Event Log/Applications for event 2201. This value is

usually ffffffff-0000-0000-000000000000.

Client ID:

The JMS client identifier used for connections to the MQSeries queue manager.

 Data type String

CCSID:

The coded character set identifier for use with the WebSphere MQ queue manager.

 This coded character set identifier (CCSID) must be one of the CCSIDs supported by WebSphere MQ.

 Data type String

For more information about supported CCSIDs, and about converting between message data from one

coded character set to another, see the WebSphere MQ System Administration and the WebSphere MQ

Application Programming Reference books. These references are available from the WebSphere MQ

920 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

messaging multiplatform and platform-specific books Web pages; for example, at http://www-
3.ibm.com/software/ts/mqseries/library/manualsa/manuals/platspecific.html, the IBM Publications Center, or

from the WebSphere MQ collection kit, SK2T-0730.

Message Retention:

Select this check box to specify that unwanted messages are to be left on the queue. Otherwise,

unwanted messages are handled according to their disposition options.

 Data type Enum

Units Not applicable

Default Cleared

Range Selected

Unwanted messages are left on the queue.

Cleared

Unwanted messages are handled according to their disposition

options.

Temporary model:

The name of the model definition used to create temporary connection factories if a connection factory

does not already exist.

 Data type String

Range 1 through 48 ASCII characters

Temporary queue prefix:

The prefix used for dynamic queue naming.

 Data type String

Fail if quiesce:

Specifies whether applications return from a method call if the queue manager has entered a controlled

failure.

 Data type Check box

Default Selected

Local Server Address:

Specifies the local server address.

 Data type String

Polling Interval:

Specifies the interval, in milliseconds, between scans of all receivers during asynchronous message

delivery

 Data type Integer

Units Milliseconds

Default 5000

Chapter 8. Developing WebSphere applications 921

http://www-3.ibm.com/software/ts/mqseries/library/manualsa/manuals/crosslatest.html.html
http://www-3.ibm.com/software/ts/mqseries/library/manualsa/manuals/crosslatest.html.html
http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi

Rescan interval:

Specifies the interval in milliseconds between which a topic is scanned to look for messages that have

been added to a topic out of order.

 This interval controls the scanning for messages that have been added to a topic out of order with respect

to a WebSphere MQ browse cursor.

 Data type Integer

Units Milliseconds

Default 5000

SSL cipher suite:

Specifies the cipher suite to use for SSL connection to WebSphere MQ.

 Set this property to a valid cipher suite provided by your JSSE provider. The value must match the

CipherSpec specified on the SVRCONN channel as the Channel property.

You must set this property, if you set the SSL Peer Name property.

SSL certificate store:

Specifies a list of zero or more Certificate Revocation List (CRL) servers used to check for SSL certificate

revocation. If you specify a value for this property, you must use WebSphere MQ JVM at Java 2 version

1.4.

 The value is a space-delimited list of entries of the form:

ldap://hostname:[port]

A single slash (/) follows this value. If port is omitted, the default LDAP port of 389 is assumed. At

connect-time, the SSL certificate presented by the server is checked against the specified CRL servers.

For more information about CRL security, see the section “Working with Certificate Revocation Lists” in the

WebSphere MQ Security book; for example at:

http://publibfp.boulder.ibm.com/epubs/html/csqzas01/csqzas012w.htm#IDX2254.

SSL peer name:

For SSL, a distinguished name skeleton that must match the name provided by the WebSphere MQ queue

manager. The distinguished name is used to check the identifying certificate presented by the server at

connection time.

 If this property is not set, such certificate checking is performed.

The SSL peer name property is ignored if SSL Cipher Suite property is not specified.

This property is a list of attribute name and value pairs separated by commas or semicolons. For example:

CN=QMGR.*, OU=IBM, OU=WEBSPHERE

The example given checks the identifying certificate presented by the server at connect-time. For the

connection to succeed, the certificate must have a Common Name beginning QMGR., and must have at

least two Organizational Unit names, the first of which is IBM and the second WEBSPHERE. Checking is

not case-sensitive.

922 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

http://publibfp.boulder.ibm.com/epubs/html/csqzas01/csqzas012w.htm#IDX2254

For more details about distinguished names and their use with WebSphere MQ, see the section

“Distinguished Names” in the WebSphere MQ Security book.

Connection pool:

Specifies an optional set of connection pool settings.

 Connection pool properties are common to all J2C connectors.

The application server pools connections and sessions with the JMS provider to improve performance.

This is independent from any WebSphere MQ connection pooling. You need to configure the connection

and session pool properties appropriately for your applications, otherwise you may not get the connection

and session behavior that you want.

Change the size of the connection pool if concurrent server-side access to the JMS resource exceeds the

default value. The size of the connection pool is set on a per queue or topic basis.

 Data type Check box

Default Selected

WebSphere MQ Provider topic connection factory settings for application clients:

Use this panel to view or change the configuration properties of the selected topic connection factory for

use with the WebSphere MQ product Java Message Service (JMS) provider. These configuration

properties control how connections are created between the JMS provider and WebSphere MQ.

 To view this Application Client Resource Configuration Tool (ACRCT) page, click File > Open. After you

browse for an EAR file, click Open. Expand the selected JAR file > Messaging Providers > WebSphere

MQ Provider. Right-click Topic Connection Factories and click New.

Note:

v The property values that you specify must match the values that you specified when configuring

WebSphere MQ product JMS resources. For more information about configuring WebSphere MQ

product JMS resources, see the WebSphere MQ Using Java book.

v In WebSphere MQ, names can have a maximum of 48 characters, with the exception of

channels which have a maximum of 20 characters.

A topic connection factory for the WebSphere MQ product JMS provider has the following properties.

Name:

The name by which this topic connection factory is known for administrative purposes within IBM

WebSphere Application Server. The name must be unique within the JMS provider.

 Data type String

Description:

A description of this topic connection factory for administrative purposes within IBM WebSphere Application

Server.

 Data type String

JNDI Name:

Chapter 8. Developing WebSphere applications 923

http://publibfp.boulder.ibm.com/epubs/html/csqzas01/csqzas010p.htm#HDRDCDN

The Java Naming and Directory Interface (JNDI) name that is used to bind the topic connection factory

into the application server name space.

 As a convention, use the fully qualified JNDI name; for example, in the form jms/Name, where Name is the

logical name of the resource.

This name is used to link the platform binding information. The binding associates the resources defined

by the deployment descriptor of the module to the actual (physical) resources bound into JNDI by the

platform.

 Data type String

Units En_US ASCII characters

Range 1 through 45 ASCII characters

User ID:

The user ID used, with the Password property, for authentication if the calling application does not provide

a userid and password explicitly.

 If you specify a value for the User property, you must also specify a value for the Password property.

The connection factory User and Password properties are used if the calling application does not provide

a userid and password explicitly, for example, if the calling application uses the method

createTopicConnection(). The JMS client flows the userid and password to the JMS server.

 Data type String

Password:

The password used, with the User ID property, for authentication if the calling application does not provide

a userid and password explicitly.

 If you specify a value for the User ID property, you must also specify a value for the Password property.

 Data type String

Re-Enter Password:

Confirms the password.

Queue Manager:

The name of the WebSphere MQ queue manager for this connection factory. Connections created by this

factory connect to that queue manager.

 Data type String

Host:

The name of the host on which the WebSphere MQ queue manager runs for client connections only.

 Data type String

Range A valid TCP/IP host name

924 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Port:

The TCP/IP port number used for connection to the WebSphere MQ queue manager, for client connection

only.

 This port must be configured on the WebSphere MQ queue manager.

 Data type Integer

Range A valid TCP/IP port number, configured on the WebSphere

MQ queue manager.

Channel:

The name of the channel used for client connections to the WebSphere MQ queue manager for client

connection only.

 Data type String

Range 1 through 20 ASCII characters

Transport Type:

Whether WebSphere MQ client connection or JNDI bindings are used for connection to the WebSphere

MQ queue manager.

 Data type Enum

Default BINDINGS

Range CLIENT

WebSphere MQ client connection is used to

connect to the WebSphere MQ queue manager.

BINDINGS

JNDI bindings are used to connect to the

WebSphere MQ queue manager.

Client ID:

The JMS client identifier used for connections to the WebSphere MQ queue manager.

 Data type String

CCSID:

The coded character set identifier to be used with the WebSphere MQ queue manager.

 This coded character set identifier (CCSID) must be one of the CCSIDs supported by WebSphere MQ.

 Data type String

Broker Control Queue:

The name of the broker control queue to which all command messages (except publications and requests

to delete publications) are sent.

 Data type String

Units En_US ASCII characters

Chapter 8. Developing WebSphere applications 925

Range 1 through 48 ASCII characters

Broker Queue Manager:

The name of the WebSphere MQ queue manager that provides the Publisher and Subscriber message

broker.

 Data type String

Units En_US ASCII characters

Range 1 through 48 ASCII characters

Broker Publish Queue:

The name of the broker input queue that receives all publication messages for the default stream.

 The name of the broker’s input queue (stream queue) that receives all publication messages for the

default stream. Applications can also send requests to delete publications on the default stream to this

queue.

 Data type String

Units En_US ASCII characters

Range 1 through 48 ASCII characters

Broker Subscribe Queue:

The name of the broker queue from which nondurable subscription messages are retrieved.

 The name of the broker queue from which nondurable subscription messages are retrieved. The

subscriber specifies the name of the queue when it registers a subscription.

 Data type String

Units En_US ASCII characters

Range 1 through 48 ASCII characters

Broker CCSubQ:

The name of the broker queue from which nondurable subscription messages are retrieved for a

ConnectionConsumer request. This property applies only for use of the Web container.

 Data type String

Units En_US ASCII characters

Range 1 through 48 ASCII characters

Broker Version:

Specifies whether the message broker is provided by the WebSphere MQ MA0C SupportPac or newer

versions of WebSphere family message broker products.

 Data type Enum

Default Advanced

926 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Range Advanced

The message broker is provided by newer

versions of WebSphere family message broker

products (MQ Integrator and MQ Publish and

Subscribe).

Basic The message broker is provided by the

WebSphere MQ MA0C SupportPac (WebSphere

MQ - Publish and Subscribe).

Cleanup level:

Specifies the level of clean up provided by the publish or subscribe cleanup utility.

 Data type Enum

Default SAFE

Range

ASPROP

NONE

STRONG

Cleanup interval:

Specifies the interval, in milliseconds, between background executions of the publish/subscribe cleanup

utility.

 Data type Integer

Units Milliseconds

Default 6000

Message selection:

Specifies where broker message selection is performed.

 Data type Enum

Default BROKER

Range

BROKER

Message selection is done at the broker location.

Message CLIENT

Message selection is done at the client location.

Publish acknowledge interval:

The interval, in number of messages, between publish requests that require acknowledgement from the

broker.

 Data type Integer

Default 25

Sparse subscriptions:

Enables sparse subscriptions.

Chapter 8. Developing WebSphere applications 927

Data type Check box

Default Cleared

Status refresh interval:

The interval, in milliseconds, between transactions to refresh publish or subscribe status.

 Data type Integer

Default 6000

Subscription store:

Specifies where WebSphere MQ stores data relating to active JMS subscriptions.

 Data type Enum

Default MIGRATE

Range

MIGRATE

QUEUE

BROKER

Multicast:

Specifies whether this connection factory uses multicast transport.

 Data type Enum

Default NOT USED

Range

NOT USED

This connection factory does not use multicast

transport.

ENABLED

This connection factory always uses multicast

transport.

ENABLED_IF_AVAILABLE

This connection factory uses multicast transport.

ENABLED_RELIABLE

This connection factory uses reliable multicast

transport.

ENABLED_RELIABLE_IF_AVAILABLE

This connection factory uses reliable multicast

transport if available.

Direct authentication:

Specifies whether to use direct broker authorization.

 Data type Enum

Default NONE

928 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Range

NONE Direct broker authorization is not used.

PASSWORD

Direct broker authorization is authenticated with a

password.

CERTIFICATE

Direct broker authorization is authenticated with a

certificates.

Proxy Host Name:

Specifies the host name of a proxy to be used for communication with WebSphere MQ.

 Data type String

Proxy Port:

Specifies the port number of a proxy to be used for communication with WebSphere MQ.

 Data type Integer

Default 0

Fail if quiesce:

Specifies whether applications return from a method call if the queue manager has entered a controlled

failure.

 Data type Check box

Default Selected

Local Server Address:

Specifies the local server address.

 Data type String

Polling Interval:

Specifies the interval, in milliseconds, between scans of all receivers during asynchronous message

delivery.

 Data type Integer

Units Milliseconds

Default 5000

Rescan interval:

Specifies the interval in milliseconds between which a topic is scanned to look for messages that have

been added to a topic out of order.

 This interval controls the scanning for messages that have been added to a topic out of order with respect

to a WebSphere MQ browse cursor.

Chapter 8. Developing WebSphere applications 929

Data type Integer

Units Milliseconds

Default 5000

SSL cipher suite:

Specifies the cipher suite to use for SSL connection to WebSphere MQ.

 Set this property to a valid cipher suite provided by your JSSE provider. The value must match the

CipherSpec specified on the SVRCONN channel as the Channel property.

You must set this property, if you set the SSL Peer Name property.

SSL certificate store:

Specifies a list of zero or more Certificate Revocation List (CRL) servers used to check for SSL certificate

revocation. If you specify a value for this property, you must use WebSphere MQ JVM at Java 2 version

1.4.

 The value is a space-delimited list of entries of the form:

ldap://hostname:[port]

A single slash (/) follows this value. If port is omitted, the default LDAP port of 389 is assumed. At

connect-time, the SSL certificate presented by the server is checked against the specified CRL servers.

For more information about CRL security, see the section “Working with Certificate Revocation Lists” in the

WebSphere MQ Security book; for example at:

http://publibfp.boulder.ibm.com/epubs/html/csqzas01/csqzas012w.htm#IDX2254.

SSL peer name:

For SSL, a distinguished name skeleton that must match the name provided by the WebSphere MQ queue

manager. The distinguished name is used to check the identifying certificate presented by the server at

connection time.

 If this property is not set, such certificate checking is performed.

The SSL peer name property is ignored if SSL Cipher Suite property is not specified.

This property is a list of attribute name and value pairs separated by commas or semicolons. For example:

CN=QMGR.*, OU=IBM, OU=WEBSPHERE

The example given checks the identifying certificate presented by the server at connect-time. For the

connection to succeed, the certificate must have a Common Name beginning QMGR., and must have at

least two Organizational Unit names, the first of which is IBM and the second WEBSPHERE. Checking is

not case-sensitive.

For more details about distinguished names and their use with WebSphere MQ, see the section

“Distinguished Names” in the WebSphere MQ Security book.

Connection pool:

Specifies an optional set of connection pool settings.

 Connection pool properties are common to all J2C connectors.

930 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

http://publibfp.boulder.ibm.com/epubs/html/csqzas01/csqzas012w.htm#IDX2254
http://publibfp.boulder.ibm.com/epubs/html/csqzas01/csqzas010p.htm#HDRDCDN

The application server pools connections and sessions with the JMS provider to improve performance.

This is independent from any WebSphere MQ connection pooling. You need to configure the connection

and session pool properties appropriately for your applications, otherwise you may not get the connection

and session behavior that you want.

Change the size of the connection pool if concurrent server-side access to the JMS resource exceeds the

default value. The size of the connection pool is set on a per queue or topic basis.

 Data type Check box

Default Selected

 Related tasks

 “Configuring new JMS providers with the Application Client Resource Configuration Tool” on page 892

WebSphere MQ Provider queue destination settings for application clients:

Use this panel to view or change the configuration properties of the selected queue destination for use

with the WebSphere MQ product Java Message Service (JMS) provider.

 To view this Application Client Resource Configuration Tool (ACRCT) page, click File > Open. After you

browse for an EAR file, click Open. Expand the selected JAR file > Messaging Providers > WebSphere

MQ Provider. Right-click Queue Destinations and click New. The following fields are displayed on the

General tab.

Note:

v The property values that you specify must match the values that you specified when configuring

WebSphere MQ product for JMS resources. For more information about configuring WebSphere

MQ product for JMS resources, see the WebSphere MQ Using Java book.

v In WebSphere MQ, names can have a maximum of 48 characters.

A queue for use with the WebSphere MQ product JMS provider has the following properties.

Name:

The name by which the queue is known for administrative purposes within IBM WebSphere Application

Server.

 Data type String

Description:

A description of the queue, for administrative purposes.

 Data type String

JNDI Name:

The application client run-time environment uses this field to retrieve configuration information.

Persistence:

Whether all messages sent to the destination are persistent, nonpersistent or have their persistence

defined by the application.

 Data type Enum

Chapter 8. Developing WebSphere applications 931

Default APPLICATION_DEFINED

Range Application defined

Messages on the destination have their

persistence defined by the application that put

them onto the queue.

Queue defined

[WebSphere MQ destination only] Messages on

the destination have their persistence defined by

the WebSphere MQ queue definition properties.

Persistent

Messages on the destination are persistent.

Nonpersistent

Messages on the destination are not persistent.

Priority:

Whether the message priority for this destination is defined by the application or the Specified priority

property.

 Data type Enum

Units Not applicable

Default APPLICATION_DEFINED

Range Application defined

The priority of messages on this destination is

defined by the application that put them onto the

destination.

Queue defined

[WebSphere MQ destination only] Messages on

the destination have their persistence defined by

the WebSphere MQ queue definition properties.

Specified

The priority of messages on this destination is

defined by the Specified priority property. If you

select this option, you must define a priority on

the Specified priority property.

Specified Priority:

If the Priority property is set to Specified, specify the message priority for this queue, in the range 0

(lowest) through 9 (highest).

 Data type Integer

Units Message priority level

Range 0 (lowest priority) through 9 (highest priority)

Expiry:

Whether the expiry timeout value for this queue is defined by the application or the by Specified expiry

property or whether messages on the queue never expire (have an unlimited expiry time out).

 Data type Enum

Units Not applicable

Default APPLICATION_DEFINED

932 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Range Application defined

The expiry timeout for messages on this queue is

defined by the application that put them onto the

queue.

Specified

The expiry timeout for messages on this queue is

defined by the Specified expiry property. If you

select this option, you must define a timeout on

the Specified expiry property.

Unlimited

Messages on this queue have no expiry timeout

and those messages never expire.

Specified Expiry:

If the Expiry timeout property is set to Specified, type here the number of milliseconds (greater than 0)

after which messages on this queue expire.

 Data type Integer

Units Milliseconds

Range Greater than or equal to 0

v 0 indicates that messages never time out

v Other values are an integer number of milliseconds

Base Queue Name:

The name of the queue to which messages are sent, on the queue manager specified by the Base queue

manager name property.

 Data type String

Base Queue Manager Name:

The name of the WebSphere MQ queue manager to which messages are sent.

 This queue manager provides the queue specified by the Base queue name property.

 Data type String

Units En_US ASCII characters

Range A valid WebSphere MQ Queue Manager name, as 1

through 48 ASCII characters

CCSID:

The coded character set identifier to use with the WebSphere MQ queue manager.

 This coded character set identifier (CCSID) must be one of the CCSID identifier supported by WebSphere

MQ queue manager.

 Data type String

Integer encoding:

If native encoding is not enabled, select whether integer encoding is normal or reversed.

Chapter 8. Developing WebSphere applications 933

Data type Enum

Default NORMAL

Range NORMAL

Normal integer encoding is used.

REVERSED

Reversed integer encoding is used.

For more information about encoding properties, see the

WebSphere MQ Using Java document.

Decimal encoding:

Indicates that if native encoding is not enabled to select whether decimal encoding is normal or reversed.

 Data type Enum

Default NORMAL

Range NORMAL

Normal decimal encoding is used.

REVERSED

Reversed decimal encoding is used.

For more information about encoding properties, see the

WebSphere MQ Using Java document.

Floating point encoding:

Indicates that if native encoding is not enabled to select the type of floating point encoding.

 Data type Enum

Default IEEENORMAL

Range IEEENORMAL

IEEE normal floating point encoding is used.

IEEEREVERSED

IEEE reversed floating point encoding is used.

S390 S390 floating point encoding is used.

For more information about encoding properties, see the

WebSphere MQ Using Java document.

Native encoding:

Indicates that the queue destination use native encoding (appropriate encoding values for the Java

platform) when you select this check box.

 Data type Enum

Default Cleared

Range Cleared

Native encoding is not used, so specify the

following properties for integer, decimal and

floating point encoding.

Selected

Native encoding is used (to provide appropriate

encoding values for the Java platform).

For more information about encoding properties, see the

WebSphere MQ Using Java document.

934 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Target client:

Whether the receiving application is JMS-compliant or is a traditional WebSphere MQ application.

 Data type Enum

Default WebSphere MQ

Range WebSphere MQ

The target is a traditional WebSphere MQ

application that does not support JMS.

JMS The target application supports JMS.

Custom Properties:

Specifies name-value pairs for setting additional properties on the object that is created at run time for this

resource.

 You must enter a name that is a public property on the object and a value that can be converted from a

string to the type required by the set method of the property. The acceptable properties and values depend

on the object that is created. Refer to the object documentation for a list of valid properties and values.

WebSphere MQ Provider topic destination settings for application clients:

Use this panel to view or change the configuration properties of the selected topic destination for use with

the WebSphere MQ product Java Message Service (JMS) provider.

 To view this Application Client Resource Configuration Tool (ACRCT) page, click File > Open. After you

browse for an EAR file, click Open. Expand the selected JAR file > Messaging Providers > WebSphere

MQ Provider. Right click Topic Destinations, and click New. The following fields are displayed on the

General tab.

Note:

v The property values that you specify must match the values that you specified when configuring

WebSphere MQ product JMS resources. For more information about configuring WebSphere MQ

product JMS resources, see the WebSphere MQ Using Java book.

v In WebSphere MQ, names can have a maximum of 48 characters.

A topic destination is used to configure the properties of a JMS topic for the associated JMS provider. A

topic for use with the WebSphere MQ product JMS provider has the following properties.

Name:

The name by which the topic is known for administrative purposes.

 Data type String

Description:

A description of the topic for administrative purposes within IBM WebSphere Application Server.

JNDI Name:

The application client run time uses this field to retrieve configuration information.

Persistence:

Chapter 8. Developing WebSphere applications 935

Specifies whether all messages sent to the destination are persistent, nonpersistent, or have their

persistence defined by the application.

 Data type Enum

Default APPLICATION_DEFINED

Range Application defined

Messages on the destination have their

persistence defined by the application that put

them in the queue.

Queue defined

[WebSphere MQ destination only] Messages on

the destination have their persistence defined by

the WebSphere MQ queue definition properties.

Persistent

Messages on the destination are persistent.

Nonpersistent

Messages on the destination are not persistent.

Priority:

Specifies whether the message priority for this destination is defined by the application or the Specified

priority property.

 Data type Enum

Default APPLICATION_DEFINED

Range Application defined

The priority of messages on this destination is

defined by the application that put them in the

destination.

Queue defined

[WebSphere MQ destination only] Messages on

the destination have their persistence defined by

the WebSphere MQ queue definition properties.

Specified

The priority of messages on this destination is

defined by the Specified priority property. If you

select this option, you must define a priority for

the Specified priority property.

Specified Priority:

If the Priority property is set to Specified, type the message priority for this queue, in the range 0 (lowest)

through 9 (highest).

 If the Priority property is set to Specified, messages sent to this queue have the priority value specified

by this property.

 Data type Integer

Units Message priority level

Range 0 (lowest priority) through 9 (highest priority)

Expiry:

Whether the expiry timeout for this queue is defined by the application or by the Specified expiry property

or by messages on the queue never expire (have an unlimited expiry timeout).

936 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Data type Enum

Default APPLICATION_DEFINED

Range Application defined

The expiry timeout for messages on this queue is

defined by the application that put them in the

queue.

Specified

The expiry timeout for messages in this queue is

defined by the Specified expiry property. If you

select this option, you must define a timeout

value for the Specified expiry property.

Unlimited

Messages on this queue have no expiry timeout,

and these messages never expire.

Specified Expiry:

If the Expiry timeout property is set to Specified, type the number of milliseconds (greater than 0) after

which messages on this queue expire.

 Data type Integer

Units Milliseconds

Range Greater than or equal to 0

v 0 indicates that messages never time out.

v Other values are an integer number of milliseconds.

Base Topic Name:

The name of the topic to which messages are sent.

 Data type String

CCSID:

The coded character set identifier to use with the WebSphere MQ queue manager.

 This coded character set identifier (CCSID) must be one of the CCSID identifiers that WebSphere MQ

supports.

 Data type String

Integer encoding:

Indicates whether integer encoding is normal or reversed when native encoding is not enabled.

 Data type Enum

Default NORMAL

Range NORMAL

Normal integer encoding is used.

REVERSED

Reversed integer encoding is used.

For more information about encoding properties, see the

WebSphere MQ Using Java document.

Chapter 8. Developing WebSphere applications 937

Decimal encoding:

If native encoding is not enabled, select whether decimal encoding is normal or reversed.

 Data type Enum

Default NORMAL

Range NORMAL

Normal decimal encoding is used.

REVERSED

Reversed decimal encoding is used.

For more information about encoding properties, see the

WebSphere MQ Using Java document.

Floating point encoding:

Indicates the type of floating point encoding when native encoding is not enabled.

 Data type Enum

Default IEEENORMAL

Range IEEENORMAL

IEEE normal floating point encoding is used.

IEEEREVERSED

IEEE reversed floating point encoding is used.

S390 S/390 floating point encoding is used.

For more information about encoding properties, see the

WebSphere MQ Using Java document.

Native encoding:

Indicates that the queue destination uses native encoding (appropriate encoding values for the Java

platform) when you select this check box.

 Data type Enum

Default Cleared

Range Cleared

Native encoding is not used, so specify the

previous properties for integer, decimal and

floating point encoding.

Selected

Native encoding is used (to provide appropriate

encoding values for the Java platform).

For more information about encoding properties, see the

WebSphere MQ Using Java document.

BrokerDurSubQueue:

The name of the broker queue from which durable subscription messages are retrieved.

 The subscriber specifies the name of the queue when it registers a subscription.

 Data type String

Units En_US ASCII characters

Range 1 through 48 ASCII characters

938 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

BrokerCCDurSubQueue:

The name of the broker queue from which durable subscription messages are retrieved for a

ConnectionConsumer. This property applies only for use of the Web container.

 Data type String

Units En_US ASCII characters

Range 1 through 48 ASCII characters

Target Client:

Specifies whether the receiving application is JMS compliant or is a traditional WebSphere MQ application.

 Data type Enum

Default WebSphere MQ

Range WebSphere MQ

The target is a traditional WebSphere MQ

application that does not support JMS.

JMS The target is a JMS compliant application.

Multicast:

Specifies whether this connection factory uses multicast transport.

 Data type Enum

Default AS_CF

Range

AS_CF This connection factory uses multicast transport.

DISABLED

This connection factory does not use multicast

transport.

NOT_RELIABLE

This connection factory always uses multicast

transport.

RELIABLE

This connection factory uses multicast transport

when the topic destination is not reliable.

ENABLED

This connection factory uses reliable multicast

transport.

Generic JMS connection factory settings for application clients:

Use this panel to view or change the configuration properties of the selected Java Message Service (JMS)

connection factory for use with the associated JMS provider. These configuration properties control how

connections are created between the JMS provider and the messaging system that it uses.

 To view this Application Client Resource Configuration Tool (ACRCT) page, click File > Open. After you

browse for an EAR file, click Open. Expand the selected JAR file > Messaging Providers >

new_JMS_Provider_instance. Right-click Connection Factories, and click New. The following fields are

displayed on the General tab.

Chapter 8. Developing WebSphere applications 939

A Java Message Service (JMS) connection factory creates connections to JMS destinations. The JMS

connection factory is created by the associated JMS provider. A JMS connection factory for a generic JMS

provider (other than the internal default messaging provider or WebSphere MQ as a JMS provider) has the

following properties:

Name:

The name by which this JMS connection factory is known for administrative purposes within IBM

WebSphere Application Server. The name must be unique within the associated JMS provider.

 Data type String

Description:

A description of this connection factory for administrative purposes within IBM WebSphere Application

Server.

 Data type String

Default Null

JNDI Name:

The application client run time uses this field to retrieve configuration information.

User ID:

Indicates the user ID used with the Password property, for authentication if the calling application does

not provide a userid and password explicitly.

 If you specify a value for the User ID property, you must also specify a value for the Password property.

The connection factory User ID and Password properties are used if the calling application does not

provide a userid and password explicitly; for example, if the calling application uses the method

createQueueConnection(). The JMS client flows the userid and password to the JMS server.

 Data type String

Password:

The password used with the User ID property for authentication if the calling application does not provide

a userid and password explicitly.

 If you specify a value for the User ID property, you must also specify a value for the Password property.

 Data type String

Default Null

Re-Enter Password:

Confirms the password entered in the Password field.

External JNDI Name:

The JNDI name that is used to bind the queue into the application server name space.

940 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

As a convention, use the fully qualified JNDI name, for example, jms/Name, where Name is the logical

name of the resource.

This name is used to link the platform binding information. The binding associates the resources defined

by the deployment descriptor of the module to the actual (physical) resources bound into JNDI API by the

platform.

 Data type String

Connection Type:

Whether this JMS destination is a queue (for point-to-point) or topic (for publication or subscription).

 Select one of the following options:

Queue

A JMS queue destination for point-to-point messaging.

Topic A JMS topic destination for publish subscribe messaging.

Custom Properties:

Specifies name-value pairs for setting additional properties on the object that is created at run time for this

resource.

 You must enter a name that is a public property on the object and a value that can be converted from a

string to the type required by the set method of the property. The acceptable properties and values depend

on the object that is created. Refer to the object documentation for a list of valid properties and values.

Generic JMS destination settings for application clients:

Use this panel to view or change the configuration properties of the selected JMS destination for use with

the associated JMS provider.

 To view this Application Client Resource Configuration Tool (ACRCT) page, click File > Open. After you

browse for an EAR file, click Open. Expand the selected JAR file > Messaging Providers > new JMS

Provider instance. Right-click Destinations, and click New. The following fields are displayed on the

General tab.

A JMS destination is used to configure the properties of a JMS destination for the associated generic JMS

provider. Connections to the JMS destination are created by the associated JMS connection factory. A

JMS destination for use with a generic JMS provider (not the default messaging provider or WebSphere

MQ as a JMS provider) has the following properties.

Name:

The name by which the queue is known for administrative purposes within WebSphere Application Server.

 Data type String

Description:

A description of the queue, for administrative purposes.

JNDI Name:

The JNDI name of the actual (physical) name of the JMS destination bound into JNDI.

Chapter 8. Developing WebSphere applications 941

External JNDI Name:

The JNDI name that is used to bind the queue into the application server name space.

 As a convention, use the fully qualified JNDI name; for example, in the form jms/Name, where Name is the

logical name of the resource.

This name is used to link the platform binding information. The binding associates the resources defined

by the deployment descriptor of the module to the actual (physical) resources bound into JNDI by the

platform.

 Data type String

Destination Type:

Whether this JMS destination is a queue (for point-to-point) or topic (for publishing or subscribing).

 Select one of the following options:

Queue

A JMS queue destination for point-to-point messaging.

Topic A JMS topic destination for pub/sub messaging.

Custom Properties:

Specifies name-value pairs for setting additional properties on the object that is created at run time for this

resource.

 You must enter a name that is a public property on the object and a value that can be converted from a

string to the type required by the set method of the property. The acceptable properties and values depend

on the object that is created. Refer to the object documentation for a list of valid properties and values.

Example: Configuring JMS provider, JMS connection factory and JMS destination settings for

application clients: The purpose of this article is to help you to configure JMS Provider, JMS

Connection Factory and JMS Destination settings.

v Required fields include:

– JMS Provider Properties page: name, and at least one protocol provider

– JMS Connection Factory Properties page: name, jndiName, destination type

– JMS Destination Properties page: name, jndiName, destination type
v Special cases:

– The destination type must be QUEUE, or TOPIC.
v Example:

<resources.jms:JMSProvider xmi:id="JMSProvider_3" name="genericJMSProvider:name"

description="genericJMSProvider:description"

externalInitialContextFactory="genericJMSProvider:contextFactoryClass"

externalProviderURL="genericJMSProvider:providerUrl">

<classpath>genericJMSProvider:classpath</classpath>

<factories xmi:type="resources.jms:GenericJMSDestination"

xmi:id="GenericJMSDestination_1" name="jmsDestination:name"

jndiName="jmsDestination:jndiName" description="jmsDestination:description"

externalJNDIName="jmsDestination:externalJndiName" type="QUEUE">

<propertySet xmi:id="J2EEResourcePropertySet_15">

<resourceProperties xmi:id="J2EEResourceProperty_17" name="jmsDestination:customName"

value="jmsDestination:customValue"/>

</propertySet>

</factories>

<factories xmi:type="resources.jms:GenericJMSConnectionFactory"

xmi:id="GenericJMSConnectionFactory_1" name="jmsCF:name" jndiName="jmsCF:jndiName"

description="jmsCF:description" userID="jmsCF:user" password="{xor}NTIsHBllMT4yOg=="

942 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

externalJNDIName="jmsCF:externalJndiName" type="QUEUE">

<propertySet xmi:id="J2EEResourcePropertySet_16">

<resourceProperties xmi:id="J2EEResourceProperty_18" name="jmsCF:customName"

value="jmsCF:customValue"/>

</propertySet>

</factories>

<propertySet xmi:id="J2EEResourcePropertySet_17">

<resourceProperties xmi:id="J2EEResourceProperty_19"

name="genericJMSProvider:customName" value="genericJMSProvider:customValue"/>

</propertySet>

</resources.jms:JMSProvider>

Configuring new JMS connection factories for application clients

Use this task to create a new Java Message Service (JMS) connection factory configuration for your

application client.

1. Click the JMS provider for which you want to create a connection factory in the tree. Complete one of

the following actions:

v Configure a new JMS provider.

v Click an existing JMS provider.

2. Expand the JMS provider to view its JMS Connection Factories folder.

3. Click the connection factory folder, and complete one of the following actions:

v Right-click the folder and selectNew Factory.

v Click Edit > New on the menu bar.

4. Configure the JMS connection factory properties in the displayed fields.

5. Click OK when you finish.

6. Click File > Save on the menu bar to save your changes.

Configuring new Java Message Service destinations for application clients

Use this task to create a new Java Message Service (JMS) destination configuration for your application

client.

1. Click the JMS provider in the tree for which you want to create a destination. Complete one of the

following actions:

v Configure a new JMS provider.

v Click an existing JMS provider.

2. Expand the JMS provider to view its JMS Destinations folder.

3. Click the provider folder, and complete one of the following actions:

v Right-click the folder and select New.

v Click Edit > New on the menu bar.

4. Configure the JMS destination properties in the displayed fields.

5. Click OK when you finish.

6. Click File > Save on the menu bar to save your changes.

Example: Configuring MQ Queue and Topic connection factories and destination

factories for application clients

The purpose of this article is to help you configure MQ Queue connection factory, MQ Topic connection

factory, MQ Queue destination factory, and MQ Topic destination factory settings.

v Required fields:

– MQ Queue Connection Factory Properties page: name, jndiName and transport type

– MQ Topic Connection Factory Properties page: name, jndiName and broker Version

– MQ Queue Factory Properties page: name, jndiName, persistence, priority, expiry, baseQueueName

and targetClient

– MQ Topic Factory Properties page: name, jndiName, persistence, priority, expiry, baseQueueName

and targetClient
v Special cases:

– The transport type must be CLIENT, or BINDINGS.

Chapter 8. Developing WebSphere applications 943

– The Broker Version must be MA0C, or MQSI.

– The port must be a numerical value between -2417483648 and 2417483647.

– The CCSID must be a numerical value between -2417483648 and 2417483647.

– The persistence value must be APPLICATION_DEFINED, QUEUE_DEFINED, PERSISTENT or, NONPERSISTENT.

– The priority must be APPLICATION_DEFINED, QUEUE_DEFINED, or SPECIFIED.

– The expiry must be APPLICATION_DEFINED, UNLIMITED, or SPECIFIED.

– The integer encoding must be Normal, or Reversed.

– The decimal encoding must be Normal, or Reversed.

– The floating encoding must be IEEENormal, IEEEReversed or S390.

– The target client must be JMS or MQ.

– On the MQ Queue Connection Factory Properties page, only set the queueManager, host, and port

values. These are required fields if the transport type is CLIENT.

– On the MQ Topic Connection Factory Properties page, only set the queueManager, host, and port

(required) fields if the transport type is CLIENT.

– On the MQ Topic Factory Properties, and the MQ Queue Factory Properties pages, only set the

Integer encoding, decimal encoding, and floating point encoding (required) fields if you do not set the

nativeEncoding value.

– On the MQ Topic Factory Properties and the MQ Queue Factory Properties pages, the specified

priority entry field must be an integer between 0 and 9 if priority is set to SPECIFIED .

– On the MQ Topic Factory Properties and the MQ Queue Factory Properties pages, the specified

expiry entry field must be a value greater than 0 if the expiry value is set to SPECIFIED.
v Example:

<resources.jms:JMSProvider xmi:id="JMSProvider_1" name="MQ JMS Provider"

description="mqJMSProvider:description"

externalInitialContextFactory="mqJMSProvider:contextFactoryClass"

externalProviderURL="mqJMSProvider:providerUrl">

<classpath>mqJMSProvider:classpath</classpath>

<factories xmi:type="resources.jms.mqseries:MQQueueConnectionFactory"

xmi:id="MQQueueConnectionFactory_1" name="mqQCF:name" jndiName="mqQCF:jndiName"

description="mqQCF:description" userID="mqQCF:user" password="{xor}Mi4OHBllMT4yOg=="

queueManager="mqQCF:queueManager" host="mqQCF:host" port="1" channel="mqQCF:channel"

transportType="CLIENT" clientID="mqQCF:clientId" CCSID="2">

<propertySet xmi:id="J2EEResourcePropertySet_3">

<resourceProperties xmi:id="J2EEResourceProperty_3" name="mqQCF:customName"

value="mqQCF:customValue"/>

</propertySet>

</factories>

<factories xmi:type="resources.jms.mqseries:MQTopicConnectionFactory"

xmi:id="MQTopicConnectionFactory_1" name="mqTCF:name" jndiName="mqTCF:jndiName"

description="mqTCF:description" userID="mqTCF:user"

password="{xor}Mi4LHBllNTE7NhE+Mjo=" host="mqTCF:host" port="1"

transportType="CLIENT" channel="mqTCF:channel" queueManager="mqTCF:queueManager"

brokerControlQueue="mqTCF:brokerControlQueue"

brokerQueueManager="mqTCF:brokerQueueManager" brokerPubQueue="mqTCF:brokerPubQueue"

brokerSubQueue="mqTCF:brokerSubQueue" brokerCCSubQ="mqTCF:brokerCCSubQ"

brokerVersion="MA0C" clientID="mqTCF:clientId" CCSID="2">

<propertySet xmi:id="J2EEResourcePropertySet_4">

<resourceProperties xmi:id="J2EEResourceProperty_4" name="mqTCF:customName"

value="mqTCF:customValue"/>

</propertySet>

</factories>

<factories xmi:type="resources.jms.mqseries:MQQueue" xmi:id="MQQueue_1" name="mqQ:name"

jndiName="mqQ:jndiName" description="mqQ:description" persistence="APPLICATION_DEFINED"

priority="SPECIFIED" specifiedPriority="1" expiry="SPECIFIED" specifiedExpiry="1"

baseQueueName="mqQ:baseQueueName" baseQueueManagerName="mqQ:baseQueueManagerName"

CCSID="1" integerEncoding="Normal" decimalEncoding="Normal"

floatingPointEncoding="IEEENormal" targetClient="JMS">

<propertySet xmi:id="J2EEResourcePropertySet_5">

<resourceProperties xmi:id="J2EEResourceProperty_5" name="mqQ:customName"

value="mqQ:customValue"/>

</propertySet>

</factories>

944 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

<factories xmi:type="resources.jms.mqseries:MQTopic" xmi:id="MQTopic_1"

name="mqT:name" jndiName="mqT:jndiName" description="mqT:description"

persistence="APPLICATION_DEFINED" priority="SPECIFIED" specifiedPriority="1"

expiry="SPECIFIED" specifiedExpiry="2" baseTopicName="mqT:baseTopicName" CCSID="3"

integerEncoding="Normal" decimalEncoding="Normal" floatingPointEncoding="IEEENormal"

targetClient="JMS" brokerDurSubQueue="mqT:brokerDurSubQueue"

brokerCCDurSubQueue="mqT:brokerCCDurSubQueue">

<propertySet xmi:id="J2EEResourcePropertySet_6">

<resourceProperties xmi:id="J2EEResourceProperty_6" name="mqT:customName"

value="mqT:customValue"/>

</propertySet>

</factories>

<propertySet xmi:id="J2EEResourcePropertySet_7">

<resourceProperties xmi:id="J2EEResourceProperty_7" name="mqJMSProvider:customName"

value="mqJMSProvider:customValue"/>

</propertySet>

</resources.jms:JMSProvider>

Example: Configuring WAS Queue and Topic connection factories and destination

factories for application clients

The purpose of this article is to help you configure Queue connection factory, Topic connection factory,

Queue destination factory, and Topic destination factory settings.

v Required fields include:

– Java Message Service (JMS) Provider Properties page: name

– WebSphere Application Server Queue Connection Factory Properties page: name, jndiName and

node

– WebSphere Application Server Topic Connection Factory Properties page: name, jndiName, node

and port

– WebSphere Application Server Queue Factory Properties page: name, jndiName, node, persistence,

priority and expiry

– WebSphere Application Server Topic Factory Properties page: name, jndiName, topic name,

persistence, priority and expiry
v Special cases:

– The port value must be QUEUED or DIRECT.

– The CCSID must be a numerical value between -2417483648 and 2417483647.

– The persistence value must be APPLICATION_DEFINED, PERSISTENT, or NONPERSISTENT.

– The priority value must be APPLICATION_DEFINED, or SPECIFIED.

– The expiry value must be APPLICATION_DEFINED, UNLIMITED, or SPECIFIED.

– On the WAS Topic Factory Properties, and the WAS Queue Factory Properties pages, the specified

priority entry field must be an integer between 0 and 9, if the priority value is set to SPECIFIED .

– On the WAS Topic Factory Properties, and the WAS Queue Factory Properties pages, the specified

expiry entry field must be a value greater than 0 if expiry is set to SPECIFIED.
v Example:

<resources.jms:JMSProvider xmi:id="JMSProvider_2" name="WebSphere JMS Provider"

description="wasJMSProvider:description"

externalInitialContextFactory="wasJMSProvider:contextfactoryclass"

externalProviderURL="wasJMSProvider:providerURL">

<classpath>wasJMSProvider:classpath</classpath>

<factories xmi:type="resources.jms.internalmessaging:WASQueueConnectionFactory"

xmi:id="WASQueueConnectionFactory_1" name="wasQCF:name" jndiName="wasQCF:jndiName"

description="wasQCF:description" userID="wasQCF:user" password="{xor}KD4sDhwZZSosOi0="

node="wasQCF:Node">

<propertySet xmi:id="J2EEResourcePropertySet_8">

<resourceProperties xmi:id="J2EEResourceProperty_8" name="wasQCF:customName"

value="wasQCF:customValue"/>

</propertySet>

</factories>

<factories xmi:type="resources.jms.internalmessaging:WASTopicConnectionFactory"

xmi:id="WASTopicConnectionFactory_1" name="wasTCF:name" jndiName="wasTCF:jndiName"

description="wasTCF:description" userID="wasTCF:user" password="{xor}KD4sCxwZZTE+Mjo="

node="wasTCF:node" port="QUEUED" clientID="wasTCF:clientId">

<propertySet xmi:id="J2EEResourcePropertySet_9">

Chapter 8. Developing WebSphere applications 945

<resourceProperties xmi:id="J2EEResourceProperty_9" name="wasTCF:customName"

value="wasTCF:customValue"/>

</propertySet>

</factories>

<factories xmi:type="resources.jms.internalmessaging:WASQueue" xmi:id="WASQueue_1"

name="wasQ:name" jndiName="wasQ:jndiName" description="wasQ:description"

node="wasQ:node" persistence="APPLICATION_DEFINED" priority="SPECIFIED"

specifiedPriority="1" expiry="SPECIFIED" specifiedExpiry="1">

<propertySet xmi:id="J2EEResourcePropertySet_10">

<resourceProperties xmi:id="J2EEResourceProperty_10" name="wasQ:customName"

value="wasQ:customValue"/>

</propertySet>

</factories>

<factories xmi:type="resources.jms.internalmessaging:WASTopic" xmi:id="WASTopic_1"

name="wasT:name" jndiName="wasT:jndiName" description="wasT:description"

topic="wasT:topicName" persistence="APPLICATION_DEFINED" priority="SPECIFIED"

specifiedPriority="1" expiry="SPECIFIED" specifiedExpiry="1">

<propertySet xmi:id="J2EEResourcePropertySet_11">

<resourceProperties xmi:id="J2EEResourceProperty_11" name="wasT:customName"

value="wasT:customValue"/>

</propertySet>

</factories>

<propertySet xmi:id="J2EEResourcePropertySet_12">

<resourceProperties xmi:id="J2EEResourceProperty_12" name="wasJMSProvider:customName"

value="wasJMSProvider:customValue"/>

</propertySet>

</resources.jms:JMSProvider>

Configuring new resource environment providers for application clients

During this task, you create new resource environment provider configurations for your application client.

To configure a new resource environment provider, perform the following steps:

1. Start the Application Configuration Resource Tool and open the EAR file for which you want to

configure the new Java Message Service (JMS) provider. The EAR file contents display in a tree view.

2. Select from the tree the JAR file in which you want to configure the new JMS provider.

3. Expand the JAR file to view its contents.

4. Click the Resource Environment Providers folder. Take one of the following actions:

v Right-click the provider folder, and click New Provider.

v Click Edit > New on the menu bar.

5. Configure the JMS provider properties in the displayed fields.

6. Click OK when you finish.

7. Click File > Save on the menu bar to save your changes.

Resource environment provider settings for application clients:

Use this page to specify resource environment entry properties.

 To view this Application Client Resource Configuration Tool (ACRCT) page, click File > Open. After you

browse for an EAR file, click Open. Expand the selected Java Archive (JAR) file. Right-click Resource

Environment Providers, and click New. The following fields are displayed on the General tab:

Name:

Specifies the administrative name for the resource environment provider.

Description:

Specifies a description of the resource environment provider for your administrative records.

946 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Class Path:

Specifies the path to the JAR file that contains the implementation classes for the resource environment

provider.

Custom Properties:

Specifies name-value pairs for setting additional properties on the object that is created at run time for this

resource.

 You must enter a name that is a public property on the object and a value that can be converted from a

string to the type required by the set method of the property. The acceptable properties and values depend

on the object that is created. Refer to the object documentation for a list of valid properties and values.

Configuring new resource environment entries for application clients

During this task, you create new resource environment entries for your client application.

1. Start the Application Client Resource Configuration Tool (ACRCT).

2. Open the EAR file for which you want to configure the new resource environment entry. The EAR file

contents are in the displayed tree view.

3. Click the desired resource environment provider, and complete the following action to configure new

providers:

v Configure a new resource environment provider.

4. Expand the resource environment provider to view the Resource Environment Entries folder.

5. Click the resource environment entries folder, and complete one of the following actions:

v Right-click the folder and select New.

v Click Edit > New on the menu bar.

6. Configure the resource environment entry properties in the displayed fields.

7. Click OK.

8. Click File > Save on the menu bar to save your changes.

Resource environment entry settings for application clients:

Use this page to specify resource environment entry properties.

 To view this Application Client Resource Configuration Tool (ACRCT) page, click File > Open. After you

browse for an EAR file, click Open. Expand the selected JAR file > Resource Environment Providers >

resource environment instance. Right-click Resource environment entry, and click New. The following

fields appear on the General tab:

Name:

Specifies the administrative name for the resource environment entry.

Description:

Specifies a description of the URL for your administrative records.

JNDI Name:

Specifies the Java Naming and Directory Interface (JNDI) name for the resource, including any naming

subcontexts.

Chapter 8. Developing WebSphere applications 947

Use this name to link to the binding information of the platform. The binding associates the resources

defined in the deployment descriptor of the module to the actual (or physical) resources bound into JNDI

by the platform.

Custom Properties:

Specifies name-value pairs for setting additional properties on the object that is created at run time for this

resource.

 You must enter a name that is a public property on the object and a value that can be converted from a

string to the type required by the set method of the property. The acceptable properties and values depend

on the object that is created. Refer to the object documentation for a list of valid properties and values.

Creating locally defined objects for message destination references and message

destinations

After developing an application client, deploy this application on client machines. Deployment consists of

pulling together the various artifacts that the application client requires.

The Application Client Resource Configuration Tool (ACRCT) defines resources for the application client.

These configurations are stored in the application client .ear file. The application client run time uses

these configurations for resolving and creating an instance of the resources for the application client.

Note: This task only applies to J2EE application clients. Only perform this task if you configured your

J2EE application client to use resource references.

When a local object definition is created using the ACRCT, the JNDI name of the local object definition

points to the reference for which the local object definition applies. The object might be a resource-ref,

resource-env-ref or message-destination-ref. If the message-destination-ref has a

message-destination-link, then point the local object definition to the message-destination. Local object

definitions either point to the message-destination-ref (if the message-destination-ref has no link) or to

the message-destination (if the message-destination-ref has a link). Any local object definitions pointing to

message-destination-refs that have a link are ignored.

1. Start an assembly tool such as Application Server Toolkit (AST) or Rational Web Developer, and open

an EAR file. See ″Starting an assembly tool″ in the information center for additional information.

2. Create a locally defined object.

3. Point the object to the appropriate message destination.

4. Save the EAR file.

Managing application clients

Perform the following tasks after deploying application clients. This task only applies to J2EE application

clients.

1. Update data source and data source provider configurations.

2. Update URLs and URL provider configurations.

3. Update mail session configurations.

4. Update JMS provider, connection factories, and destination configurations.

5. Update MQ JMS provider, MQ connection factories and MQ destination configurations.

6. Update Resource Environment Entry and Resource Environment Provider configurations.

7. (Optional) Remove application client resources.

Updating data source and data source provider configurations with the Application Client Resource

Configuration Tool:

948 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

During this task, you update the configuration of an existing data source or data source provider. Perform

this task when your database configuration changes.

1. Start the Application Client Resource Configuration Tool (ACRCT), and open the Enterprise Archive

(EAR) file containing the data source or data source provider. The EAR file contents display in a tree

view.

2. Select Java Archive (JAR) file from the navigation tree containing the data source or data source

provider to update.

3. Expand the JAR file to view its contents until you locate the particular data source or data source

provider to update. Take one of the following actions:

v Right-click the data source object and click Properties.

v Click Edit > Properties on the menu bar.

4. Update the properties in the displayed fields. For detailed field help, see:

v Data source provider properties

v Data source properties

5. Click OK when you finish.

6. Click File > Save on the menu bar to save your changes.

Updating URLs and URL provider configurations for application clients:

1. Start the tool and open the Enterprise Archive (EAR) file containing the URL or URL provider. The EAR

file contents are displayed in a tree view.

2. Select from the tree the Java Archive (JAR) file containing the URL or URL provider to update.

3. Expand the JAR file to view its contents.

4. Keep expanding the JAR file contents until you locate the particular URL or URL provider to update.

Take one of the following actions:

a. Right-click the URL object and click Properties.

b. Click Edit > Properties on the menu bar.

5. Update the properties in the displayed fields.

6. Click OK when you finish.

7. Click File > Save on the menu bar to save your changes.

Updating mail session configurations for application clients:

During this task, you update the configuration of an existing JavaMail session. You cannot update the

name of the default JavaMail provider, and you cannot delete the default JavaMail provider from the

navigation tree.

1. Start the tool and open the Enterprise Archive (EAR) file containing the JavaMail session. The EAR file

contents are displayed in the navigation tree view.

2. Select the Java Archive (JAR) file containing the JavaMail session to update from the navigation tree.

3. Expand the JAR file to view its contents.

4. Keep expanding the JAR file contents until you locate the particular JavaMail session to update. Take

one of the following actions:

a. Right-click the object and click Properties

b. Click Edit > Properties from the menu bar.

5. Update the properties in the displayed fields.

6. Click OK when you finish.

7. Select File > Save from the menu bar to save your changes.

Updating Java Message Service provider, connection factories, and destination configurations for

application clients:

Chapter 8. Developing WebSphere applications 949

During this task, you update the configuration of an existing Java Message Service (JMS) provider,

connection factory or destination.

1. Start the tool and open the Enterprise Archive (EAR) file containing the Java Message Service (JMS)

provider, connection factory, or destination. The EAR file contents display in a tree view.

2. Select the Java Archive (JAR) file containing the JMS provider, connection factory, or destination to

update from the navigation tree.

3. Expand the JAR file to view its contents until you locate the particular JMS provider, connection

factory, or destination to update. When you find it, do one of the following actions:

v Right-click the provider, and click Properties.

v Click Edit > Properties on the menu bar.

4. Update the properties in the displayed fields. For detailed field help, see:

v JMS provider properties

v WebSphere Application Server Queue connection factory properties

v WebSphere Application Server Topic connection factory properties

v WebSphere Application Server Queue destination properties

v WebSphere Application Server Topic destination properties

5. Click OK.

6. Click File > Save to save your changes.

Updating WebSphere MQ as a Java Message Service provider, and its JMS resource

configurations, for application clients:

Use this task to update an existing configuration of WebSphere MQ as a Java Message Service (JMS)

provider, and to update the configuration of WebSphere MQ connection factories or WebSphere MQ

destinations.

1. Start the Application Client Resource Configuration Tool (ACRCT).

2. Open the Enterprise Archive (EAR) file containing the WebSphere MQ JMS provider, WebSphere MQ

connection factory, or WebSphere MQ destination. The EAR file contents are displayed in the

navigation tree view.

3. Select the Java Archive (JAR) file containing the JMS provider, connection factory, or destination to

update.

4. Expand the JAR file to view its contents until you locate the particular JMS provider, connection

factory, or destination that you want to update. Complete one of the following actions:

v Right-click the appropriate object and click Properties.

v Click Edit > Properties on the menu bar.

5. Update the properties in the displayed fields. For detailed field help, see:

v JMS provider properties

v MQ Queue connection factory properties

v MQ Topic connection factory properties

v MQ Queue destination properties

v MQ Topic destination properties

6. Click OK.

7. Click File > Save to save your changes.

Updating resource environment entry and resource environment provider configurations for

application clients:

During this task, you update the configuration of an existing resource environment entry or resource

environment provider.

1. Start the tool and open the Enterprise Archive (EAR) file containing the resource environment entry or

resource environment provider. The EAR file contents display in a navigation tree view.

950 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

2. Select from the tree the Java Archive (JAR) file containing the resource environment entry or resource

environment provider to update.

3. Expand the JAR file to view its contents until you locate the resource environment entry or resource

environment provider to update. Take one of the following actions:

v Right-click the resource environment object, and click Properties.

v Click Edit > Properties on the menu bar.

4. Update the properties in the displayed fields. For detailed field help, see:

v Resource environment provider properties

v Resource environment entry properties

5. Click OK when you finish.

6. Click File > Save on the menu bar to save your changes.

Example: Configuring Resource Environment settings: The purpose of this topic is to help you configure

Resource Environment settings.

v Required fields:

– Resource Environment Provider page: Name

– Resource Environment Entry page: Name, JNDI Name
v Example:

<resources.env:ResourceEnvironmentProvider xmi:id="ResourceEnvironmentProvider_1"

name="resourceEnvProvider:name" description="resourceEnvProvider:description">

<classpath>resourceEnvProvider:classpath</classpath>

<factories xmi:type="resources.env:ResourceEnvEntry" xmi:id="ResourceEnvEntry_1"

name="resourceEnvEntry:name" jndiName="resourceEnvEntry:jndiName"

description="resourceEnvEntry:description">

<propertySet xmi:id="J2EEResourcePropertySet_20">

<resourceProperties xmi:id="J2EEResourceProperty_22"

name="resourceEnvEntry:customName" value="resourceEnvEntry:customValue"/>

</propertySet>

</factories>

<propertySet xmi:id="J2EEResourcePropertySet_21">

<resourceProperties xmi:id="J2EEResourceProperty_23"

name="resourceEnvProvider:customName" value="resourceEnvProvider:customValue"/>

</propertySet>

</resources.env:ResourceEnvironmentProvider>

Example: Configuring resource environment custom settings for application clients: The purpose of this

topic is to help you configure resource environment custom settings.

v The custom page applies to every resource type. You can specify as many custom names and values

as you need.

v Example:

<propertySet xmi:id="J2EEResourcePropertySet_20">

<resourceProperties xmi:id="J2EEResourceProperty_22"

name="resourceEnvEntry:customName" value="resourceEnvEntry:customValue"/>

</propertySet>

Removing application client resources:

The option to delete an item does not offer a confirmation dialog. As a safeguard, consider saving your

work right before you begin this task. If you change your mind after removing an item, you can close the

EAR file without saving your changes, canceling your deletion. Remember to close the EAR file

immediately after the deletion, or you also lose any unsaved work that you performed since the deletion.

This task only applies to J2EE application clients.

1. Start the Application Client Resource Configuration Tool (ACRCT) and open the Enterprise Archive

(EAR) file from which you want to remove an object. The EAR file contents display in the navigation

tree view. If you already have an EAR file open and have made some changes, click File > Save to

save your work before preceding to delete an object.

Chapter 8. Developing WebSphere applications 951

2. Locate the object that you want to remove in the tree.

3. Right-click the object, and click Delete.

4. Click File > Save.

Web services

Implementing Web services applications

This topic introduces you to using Web services that are based on the Web Services for Java 2 Platform,

Enterprise Edition (J2EE) specification. WebSphere Application Server supports Web services that are

developed and implemented based on Web Services for J2EE. Use Web services when operating across

a variety of platforms, including the J2EE 1.4 and non-J2EE platforms.

Using Web services makes most sense if your application clients are non-J2EE applications, unless you

have J2EE applications spread across the Web. It is recommended that you use J2EE technologies if all

your clients are J2EE applications because performance can decrease when you use a Web service in a

J2EE exclusive environment.

Decide if a Web service implementation benefits your business process.

Implementing Web services applications is an easy way to integrate application systems together within or

outside your company’s infrastructure that otherwise function as a standalone systems. For example, your

customer information database is a standalone application, but you want your accounting application to be

able to access the customer data. You can create a web service for the customer database and then

enable the accounting application as Web service client. Now, the accounting application can access the

customer information. By implementing a Web service, these two applications can share information in an

efficient manner.

Because Web services are easily applied to existing applications and information technology assets, new

solutions can be deployed quickly and recomposed to address new opportunities. As Web services

become more popular, the pool of services grows, promoting development of more robust models of

just-in-time application and business integration over the Internet.

Use Web services applications with WebSphere Application Server by following the steps provided:

 1. Plan to use Web services.

 2. (Optional) Migrate existing Web services.

If you have used Web services based on Apache SOAP and now want to develop and implement

Web services based on the Web Services for J2EE specification, you need to migrate client

applications developed with all versions of 4.0, and versions of 5.0 prior to 5.0.2.

 3. Deploying Web services

This topic is a good starting point in learning about how to develop a J2EE Web service.

 4. Configure Web services deployment descriptors

You need to configure the deployment descriptors so that WebSphere Application Server can process

the incoming Web services requests.

 5. Assemble Web services.

This topic presents what you need to assemble a Web service and in what order you should

assemble the parts, for example an enterprise archive (EAR) file.

 6. Deploy Web services.

This topic presents the steps necessary to deploy the EAR file that has been configured and enabled

for Web services.

952 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

7. Configure Web service client bindings. This topic explains how to edit bindings for a Web service after

these bindings are deployed on a server. When one Web service communicates with another Web

service, you must configure the client bindings to access the downstream Web service.

 8. Publish the WSDL file. Refer to ″Publishing the WSDL file″ in the information center or in the

Administering applications and their environment PDF.

After installing a Web services application, and optionally modifying the endpoint information, you

might need WSDL files containing the updated endpoint information. This topic presents the steps

necessary to publish the WSDL files so that this information is available.

 9. Develop Web services clients.

This topic explains how to develop a Web services client based on the Web Services for J2EE

specification.

10. Secure Web services.

This topic presents the methods used to integrate message-level security into a WebSphere

Application Server environment.

11. Tune Web services.

This topic includes information to help you use the Performance Monitoring Infrastructure (PMI) to

measure the time required to process Web services requests.

12. Troubleshoot Web services.

You can use this topic to learn more about troubleshooting different processes used to develop,

implement and use Web services, including command-line tools, Java compiling errors, client runtime

errors and exceptions, serialization and deserialization errors, and authentication challenges and

authorization failures with Web services security.

The following example illustrates how a business might use Web services.

The owner of a flower shop wants to start receiving orders from customers through the Web. This owner

starts the process by finding wholesale flower suppliers, pricing the product, and completing contracts for

future flower orders.

Using Web services, the flower shop owner can find wholesale flower suppliers.

The flower shop owner can request price lists from each of the suppliers by obtaining a Web Services

Description Language (WSDL) file for each potential supplier. The WSDL can be downloaded from the

supplier’s Web page, received through e-mail, or retrieved from the supplier’s UDDI registry entry.

The WSDL describes the procedure call. When using WebSphere Application Server, the procedure call is

a Java API for XML-based remote procedure call (JAX-RPC), which retrieves price lists. The WSDL file

also specifies the Universal Resource Locator (URL) where the request is sent.

The flower shop owner now has to compare the prices received back from each supplier, decide which

suppliers to do business with, and make arrangements for future orders to fill. The flower shop can now

sell merchandise through the Web by using Web services to communicate with suppliers for the best

prices and complete the ordering processes. The merchandise price lists need publishing to the Web site

and a mechanism is needed for customers to order flowers.

The Web services clients of the flower supplier are deployed on the flower shop server. When a customer

makes a transaction to purchase flowers through the Web, the order is sent to the supplier through

JAX-RPC. The supplier responds by sending a confirmation with the order number and shipping date. The

suppliers maintain the inventory and the flower shop owner handles billing and customer order

management.

Similarly, the flower shop catalog can be composed automatically from the catalogs of all the suppliers. If

the supplier ships directly to the customer, the order tracking inquiries can pass directly to the supplier’s

Chapter 8. Developing WebSphere applications 953

order tracking system. The supplier can also use Web services to send invoices for orders and by the

flower shop to pay the supplier’s invoices. Processes that previously required forms to fill manually, and

fax or mail, can now be done automatically, saving labor costs for both the flower shop and the supplier.

Using Web services is beneficial because a much larger inventory is made available to the flower shop.

No merchandise maintenance overhead exists, but the flower shop can offer their customers products that

they otherwise might not have. Selling flowers through the Web increases capital for the flower shop

without overhead of another store or money invested into additional product.

For a more detailed scenario, see ″Web services scenario: Overview″ in the information center which tells

the story of a fictional online garden supply retailer named Plants by WebSphere and how they

incorporated the Web services concept.

Web services

Web services are self-contained, modular applications that you can describe, publish, locate, and invoke

over a network.

WebSphere Application Server supports Web services that are developed and implemented based on the

Web Services for Java 2 Platform, Enterprise Edition (J2EE) specification.

A typical Web services scenario is a business application requesting a service from another existing

application. The request is processed through a given Web address using SOAP messages over a HTTP,

Java Message Service (JMS) transport or invoked directly as Enterprise JavaBeans (EJB). The service

receives the request, processes it, and returns a response. Examples of a simple Web service include

weather reports or getting stock quotes. The method call is synchronous, that is, it waits until the result is

available. Transaction Web services, supporting quotes, business-to-business (B2B) or business-to-client

(B2C) operations include airline reservations and purchase orders.

Web services can include the actual service or the client that accesses the service.

Web services are Web applications that help you be more flexible in your business processes by

integrating with applications that otherwise do not communicate. The inner-library loan program at your

local library is a good example of the Web services concept and its evolution. The Web service concept

existed even before the term; the concept became widely accepted with the creation of the Internet. Before

the Internet was created, you visited your library, searched the collections and checked out your books. If

you did not find the book that you wanted, the librarian did a search for you by computer or phone and

located the book at a nearby library. The librarian ordered the book for you and you picked it up after it

was delivered to your local library. By incorporating Web services applications, you can streamline your

library visit.

Now, you can search the local library collection and other local libraries at the same time. When other

libraries provide your library with a Web service to search their collection (the service might have been

provided through UDDI), your results yield their resources. Another Web service application might enable

you to check the book out and get it sent to your home. Using Web services applications saves time and

provides a convenience for you, as well as freeing the librarian to do other business tasks.

Web services reflect the service-oriented architecture (SOA) approach to programming. This approach is

based on the idea of building applications by discovering and implementing network-available services, or

by invoking the available applications to accomplish a task. Web services deliver interoperability, for

example, Web services applications provide components created in different programming languages to

work together as if they were created using the same language. Web services rely on existing transport

technologies, such as HTTP, and standard data encoding techniques, such as Extensible Markup

Language (XML), for invoking the implementation.

The key components of Web services include:

v Web Services Description Language (WSDL)

954 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

WSDL is the XML-based file that describes the Web service. The Web service request uses this file to

bind to the service.

v SOAP

SOAP is the XML-based protocol that the Web service request uses to invoke the service.

For a more detailed scenario, see ″Web services scenario: Overview″ in the information center, which tells

the story of a fictional online garden supply retailer named Plants by WebSphere, and how this retailer

incorporated the Web services concept.

Web Services for J2EE specification

The Web services for Java 2 Platform, Enterprise Edition (J2EE) specification defines the programming

model and run-time architecture for implementing Web services based on the Java language. Another

name for the Web Services for J2EE specification is the Java Specification Requirements (JSR) 109. The

specification includes open standards for developing and implementing Web services.

Version 6.0 uses Web Services for J2EE 1.1 as the standard for developing and implementing Web

services. Web Services for J2EE 1.1 is one of the Web service APIs available in J2EE 1.4.

The Web Services for J2EE specification focuses on Extensible Markup Language (XML) remote

procedure call (RPC) and the Java language, including representing XML-based interface definitions in the

Java language; Java language definitions in XML-based definition languages, such as SOAP, and

assembling.

The J2EE technology can be integrated with Web services in a variety of ways. J2EE components, for

example, JavaBeans and enterprise beans, can be exposed as Web services. These services can be

accessed by clients written in Java code or by existing Web service clients that are not written in Java

code. J2EE components can also act as Web service clients.

The Web Services for J2EE specification is the preferred platform for Web-based programming because it

provides open standards allowing different types of languages, operating systems and software to

communicate seamlessly through the Internet.

For a Java application to act as Web service client, a mapping between the Web Services Description

Language (WSDL) file and the Java application must exist. The mapping is defined by the Java API for

XML-based RPC (JAX-RPC) specification.

You can use a Java component to implement a Web service by specifying the component interface and

binding information in the WSDL file and designing the application server infrastructure to accept the

service request.

This entire process encompassed is based on the Web Services for J2EE specification.

The specification brings with it the webservices.xml deployment descriptor specifically for Web services.

You are responsible for providing various elements to the deployment descriptor, including:

v Port name

v Port service implementation

v Port service endpoint interface

v Port WSDL definition

v Port QName

v JAX-RPC mapping

v Handlers (optional)

v Servlet mapping (optional)

Chapter 8. Developing WebSphere applications 955

The Enterprise JavaBeans (EJB) 2.1 specification also states that for a Web service developed from a

session bean, the EJB deployment descriptor, ejb-jar.xml, must contain the service-endpoint element.

The service-endpoint value must be the same as that stated in the webservices.xml deployment descriptor.

To learn more about the EJB 2.1 specification see Enterprise beans: Resources for learning.

To review the entire Web Services for J2EE specification, see Web services: Resources for learning.

JAX-RPC

The Java API for XML-based RPC (JAX-RPC) specification enables you to develop SOAP-based

interoperable and portable Web services and Web service clients. JAX-RPC 1.1 provides core APIs for

developing and deploying Web services on a Java platform and is a required part of the J2EE 1.4

platform. The J2EE 1.4 platform allows you to develop portable Web services. Web services can also be

developed and deployed on J2EE 1.3 containers.

WebSphere Application Server implements JAX-RPC 1.1 standards.

The JAX-RPC standard covers the programming model and bindings for using Web Services Description

Language (WSDL) for Web services in the Java language. JAX-RPC simplifies development of Web

services by shielding you from the underlying complexity of SOAP communication.

On the surface, JAX-RPC looks like another instantiation of remote method invocation (RMI). Essentially,

JAX-RPC allows clients to access a Web service as if the Web service was a local object mapped into the

client’s address space even though the Web service provider is located in another part of the world. The

JAX-RPC is done by using the XML-based protocol SOAP, which typically rides on top of HTTP.

JAX-RPC defines the mappings between the WSDL port types and the Java interfaces, as well as

between Java language and Extensible Markup Language (XML) schema types.

A JAX-RPC Web service can be created from a JavaBean or a enterprise bean implementation. You can

specify the remote procedures by defining remote methods in a Java interface. You only need to code one

or more classes that implement the methods. The remaining classes and other artifacts are generated by

the Web service vendor’s tools. The following is an example of a Web service interface:

package com.ibm.mybank.ejb;

import java.rmi.RemoteException;

import com.ibm.mybank.exception.InsufficientFundsException;

/**

 * Remote interface for Enterprise Bean: Transfer

 */

public interface Transfer_SEI extends java.rmi.Remote {

 public void transferFunds(int fromAcctId, int toAcctId, float amount)

 throws java.rmi.RemoteException;

}

The interface definition in JAX-RPC must follow specific rules; most of these rules are from RMI with some

additions for JAX-RPC. The following are the rules for defining a JAX-RPC interface:

v The interface must extend java.rmi.Remote just like RMI.

v Methods must throw java.rmi.RemoteException.

v Method parameters cannot be remote references.

v Method parameter must be one of the parameters supported by the JAX-RPC specification. The

following list are examples of method parameters that are supported. For a complete list of method

parameters see the JAX-RPC specification.

– Primitive types: boolean, byte, double, float, short, int and long

– Object wrappers of primitive types: java.lang.Boolean, java.lang.Byte, java.lang.Double,

java.lang.Float, java.lang.Integer, java.lang.Long, java.lang.Short

– java.lang.String

956 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

– java.lang.BigDecimal

– java.lang.BigInteger

– java.lang.Calendar

– java.lang.Date

v Methods can take value objects which consist of a composite of the types previously listed, in addition

to aggregate value objects.

A client creates a stub and invokes methods on it. The stub acts like a proxy for the Web service. From

the client code perspective, it seems like a local method invocation. However, each method invocation gets

marshaled to the remote server. Marshaling includes encoding the method invocation in XML as

prescribed by the SOAP protocol.

The following are key classes and interfaces needed to write Web services and Web service clients:

v Service interface: A factory for stubs or dynamic invocation and proxy objects used to invoke methods

v ServiceFactory class: A factory for Services.

v loadService

The loadService method is provided in WebSphere Application Server Version 6.0 to generate the

service locator which is required by a JAX-RPC implementation. If you recall, in previous versions there

was no specific way to acquire a generated service locator. For managed clients you used a JNDI

method to get the service locator and for non-managed clients, you were required to instantiate IBM’s

specific service locator ServiceLocator service=new ServiceLocator(...); which does not offer

portability. The loadService parameters include:

– wsdlDocumentLocation: A URL for the WSDL document location for the service or null.

– serviceName: A qualified name for the service

– properties: A set of implementation-specific properties to help locate the generated service

implementation class.

v isUserInRole

The isUserInRole method returns a boolean indicating whether the authenticated user for the current

method invocation on the endpoint instance is included in the specified logical role.

– role: The role parameter is a String specifying the name of the role.

v Service

v Call interface: Used for dynamic invocation

v Stub interface: Base interface for stubs

If you are using a stub to access the Web service provider, most of the JAX-RPC API details are hidden

from you. The client creates a ServiceFactory (java.xml.rpc.ServiceFactory). The client instantiates a

Service (java.xml.rpc.Service) from the ServiceFactory. The service is a factory object that creates the

port. The port is the remote service endpoint interface to the Web service. In the case of DII, the Service

object is used to create Call objects, which you can configure to call methods on the Web service’s port.

To learn more about JAX-RPC see Web services: Resources for learning.

SOAP

Simple Object Access Protocol (SOAP) is a specification for the exchange of structured information in a

decentralized, distributed environment. As such, it represents the main way of communication between the

three key actors in a service oriented architecture (SOA): service provider, service requestor and service

broker. The main goal of its design is to be simple and extensible. A SOAP message is used to request a

Web service.

WebSphere Application Server follows the standards outlined in SOAP 1.1.

Chapter 8. Developing WebSphere applications 957

SOAP was submitted to the World Wide Web Consortium (W3C) as the basis of the Extensible Markup

Language (XML) Protocol Working Group by several companies, including IBM and Lotus. This protocol

consists of three parts:

v An envelope that defines a framework for describing message content and processing instructions.

v A set of encoding rules for expressing instances of application-defined data types.

v A convention for representing remote procedure calls and responses.

SOAP is a protocol-independent transport and can be used in combination with a variety of protocols. In

Web services that are developed and implemented with WebSphere Application Server, SOAP is used in

combination with HTTP, HTTP extension framework, and Java Message Service (JMS). SOAP is also

operating-system independent and not tied to any programming language or component technology.

As long as the client can issue XML messages, it does not matter what technology is used to implement

the client. Similarly, the service can be implemented in any language, as long as the service can process

SOAP messages. Also, both server and client sides can reside on any suitable platform.

For more information about SOAP, see Web services: Resources for learning.

SOAP with Attachments API for Java

SOAP with Attachments API for Java (SAAJ) is used for SOAP messaging that works behind the scenes in

the Java API for XML-based RPC (JAX-RPC) implementation.

Web services uses SOAP messages to represent remote procedure calls between the client and the

server. In normal JAX-RPC flows, the SOAP message is deserialized into a series of Java value type

business objects that represent the parameters and return values. In addition, JAX-RPC provides APIs that

support applications and handlers to manipulate the SOAP message directly. The SOAP message is

manipulated using the SAAJ data model. The primary interface in the SAAJ model is

javax.xml.soap.SOAPElement.

WebSphere Application Server uses SAAJ Version 1.2. The main benefit of SAAJ Version 1.2 is that the

model extends the Document Object Model (DOM) model. The DOM model is used by applications that

manipulate XML. Using this model applications are able to process an SAAJ model that uses pre-existing

DOM code. It is also easier to convert pre-existing DOM objects to SAAJ objects.

Messages created using SAAJ follow SOAP standards. A SOAP message is represented in the SAAJ

model as a javax.xml.soap.SOAPMessage object. The XML content of the message is represented by a

javax.xml.soap.SOAPPart object. Each SOAP part has a SOAP envelope. This envelope is represented by

the SAAJ javax.xml.SOAPEnvelope object. The SOAP specification defines various elements that reside in

the SOAP envelope; SAAJ defines objects for the various elements in the SOAP envelope.

The SOAP message can also contain non-XML data that is called attachments. These attachments are

represented by SAAJ AttachmentPart objects that are accessible from the SOAPMessage object.

A number of reasons exist as to why handlers and applications use the generic SOAPElement API instead

of a tightly bound mapping:

v The Web service might be a conduit to another Web service. In this case, the SOAP message is only

forwarded.

v The Web service might manipulate the message using a different data model, for example a Service

Data Object (SDO). It is easier to convert the message from a SAAJ Document Object Model (DOM) to

a different data model.

v A handler, for example, a digital signature validation handler, might want to manipulate the message

generically.

To review the entire SAAJ API, see Web services: Resources for learning.

958 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Web Services-Interoperability Basic Profile

The Web Services-Interoperability (WS-I) Basic Profile is a set of non-proprietary Web services

specifications that promote interoperability.

WebSphere Application Server conforms to the WS-I Basic Profile 1.1.

The WS-I Basic Profile is governed by a consortium of industry-leading corporations, including IBM, under

direction of the WS-I Organization. The profile consists of a set of principles that relate to bringing about

open standards for Web services technology. All organizations that are interested in promoting

interoperability among Web services are encouraged to become members of the Web Services

Interoperability Organization.

Several technology components are used in the composition and implementation of Web services,

including messaging, description, discovery, and security. Each of these components are supported by

specifications and standards, including SOAP 1.1, Extensible Markup Language (XML) 1.0, HTTP 1.1,

Web Services Description Language (WSDL) 1.1, and Universal Description, Discovery and Integration

(UDDI). The WS-I Basic Profile specifies how these technology components are used together to achieve

interoperability, and mandates specific use of each of the technologies when appropriate. You can read

more about the WS-I Basic Profile at the WS-I Organization Web site. A link to this Web site is listed in

Web services: Resources for learning.

Each of the technology components have requirements that you can read about in more detail at the WS-I

Organization Web site. For example, support for Universal Transformation Format (UTF)-16 encoding is

required by WS-I Basic Profile. UTF-16 is a kind of Unicode encoding scheme using 16-bit values to store

Universal Character Set (UCS) characters. UTF-8 is the most common encoding that is used on the

Internet; UTF-16 encoding is typically used for Java and Windows product applications; and UTF-32 is

used by various Linux and Unix systems. Unlike UTF-8, UTF-16 has issues with big-endian and

little-endian, and often involves Byte Order Mark (BOM) to indicate the endian. BOM is mandatory for

UTF-16 encoding and it can be used in UTF-8.

See how to modify your encoding from UTF-8 to UTF-16 if you need to change from UTF-8 to UTF-16.

The following table summarizes some of the properties of each UTF:

 Bytes Encoding form

EF BB BF UTF-8

FF FE UTF-16, little-endian

FE FF UTF-16, big-endian

00 00 FE FF UTF-32, big-endian

FF FE 00 00 UTF-32, little-endian

BOM is written prior to the XML text, and it indicates to the parser how the XML is encoded. The XML

declaration contains the encoding, for example: <?xml version=xxx encoding=″utf-xxx″?>. BOM is used

with the encoding to determine how to interpret the XML. Here is an example of a SOAP message and

how BOM and UTF encoding are used:

POST http://www.whitemesa.net/soap12/add-test-rpc HTTP/1.1

Content-Type: application/soap+xml; charset=utf-16; action=""

SOAPAction:

Host: localhost: 8080

Content-Length: 562

OxFF0xFE<?xml version="1.0" encoding="utf-16"?>

<soap:Envelope xmlns:soap="http://www.w3.org/2002/12/soap-envelope"

 xmlns:soapenc="http://www.w3.org/2002/12/soap-encoding

 xmlns:tns="http://whitemesa.net/wsdl/soap12-test"

Chapter 8. Developing WebSphere applications 959

xmlns:types="http://whitemesa.net/wsdl/soap12-test/encodedTypes"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <soap:Body>

 <q1:echoString xmlns:q1="http://soapinterop.org/">

 <inputString soap:encodingStyle="http://example.org/unknownEncoding"

 xsi:type="xsd:string">

 Hello SOAP 1.2

 </inputString>

 </q1:echoString>

 </soap:Body>

</soap:Envelope>

In the example code, 0xFF0xFE represents the byte codes, while the <?xml> declaration is the textual

representation.

To learn more about the WS-Basic profile, including scenarios, UTF and BOM, see Web services:

Resources for learning.

RMI-IIOP using JAX-RPC

Java API for XML-based Remote Procedure Call (JAX-RPC) is the Java standard API for invoking Web

services through remote procedure calls. A transport is used by a programming language to communicate

over the Internet. You can use protocols with the transport such as SOAP and Remote Method Invocation

(RMI). You can use Remote Method Invocation over Internet Inter-ORB Protocol (RMI-IIOP) with JAX-RPC

to support non-SOAP bindings.

Using RMI-IIOP with JAX-RPC, enables WebSphere Java clients to invoke enterprise beans using a

WSDL file and the JAX-RPC programming model instead of using the standard J2EE programming model.

When a enterprise JavaBeans implementation is used to invoke a Web service, multiprotocol JAX-RPC

permits the Web service invocation path to be optimized for WebSphere Java clients. Learn more about

this by reviewing ″Using WSDL EJB bindings to invoke an EJB from a Web services client ″ in the

information center.

Benefits of using the RMI/IIOP protocol instead of a SOAP- based protocol are:

v XML processing is not required to send and receive messages; Java serialization is used instead.

v The client JAX-RPC call can participate in a user transaction, which is not the case when SOAP is

used.

WS-I Attachments Profile

The Web Services-Interoperability (WS-I) Attachments Profile is a set of non-proprietary Web services

specifications that promote interoperability. This profile compliments the WS-I Basic Profile 1.1 to add

support for interoperable SOAP messages with attachments-based Web services.

WebSphere Application Server conforms to the WS-I Attachments Profile 1.0.

Attachments are typically used to send binary data, for example, data that is mapped in Java code to

java.awt.Image and javax.activation.DataHandler. The raw data can be sent in the SOAP message,

however, this approach is inefficient because an XML parser has to scan the data as it parses the

message.

The WS-I Attachments Profile provides a solution to the limitations that are presented by Web Services

Description Language (WSDL) 1.1. Because WSDL 1.1 attachments are not part of the XML schema type

space, they can be message parts only. As message parts, the attachments cannot be arrays or properties

of Java beans. The profile defines the wsi:swaRef XML schema type.Use the wsi:swaRef XML schema

type to overcome the limitations of WSDL 1.1 attachments.

The wsi:swaRef type is an extension of the xsd:anyURI type, where its value contains the content-ID of

the attachment.

960 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Web services: Resources for learning

This topic provides relevant supplemental information about the following Web services-related topics:

v Web services overview

v Developing Web services:

Includes developing Web services based on the Java 2 Platform, Enterprise Edition (J2EE) and Java

API for XML-based remote procedure call (JAX-RPC) specifications.

v Universal Description Discovery and Integration (UDDI)

Includes an overview about UDDI and information about the UDDI Java API.

v The Web Services Invocation Framework (WSIF)

Includes a look into the Apache Software Foundation and its maintenance of WSIF.

v Web Services-Interoperability (WS-I) Basic Profile

Includes an overview about the WS-I Basic Profile.

v SOAP

Includes an overview about SOAP, information about the SOAP syntax and processing rules.

v Security

Includes a roadmap to security, the WS-Security specification, best practices, a profile of the OASIS

Security Assertion Markup Language (SAML) and more.

v Samples

Includes the Samples Gallery for WebSphere Application Server and Samples Central for UDDI and

WSIF.

The information resides on IBM and non-IBM Internet sites, whose sponsors control the technical accuracy

of the information.

These links are provided for convenience. Often, the information is not specific to an IBM WebSphere

Application Server product, but is useful all or in part for understanding the product. When possible, links

are provided to technical papers and Redbooks that supplement the broad coverage of the release

documentation with in-depth examinations of particular product areas.

Web services overview

v WebSphere Version 5.1.1 Web Services Handbook

This IBM Redbook describes the new concept of Web services from various perspectives. It presents

the major building blocks on which Web services rely. Well-defined standards and new concepts are

presented and discussed.

v Web services (r)evolution, Part 1

This article focuses on the benefits and challenges of building Web services applications. Web services

might be an evolutionary step in designing distributed applications, however, the technology is not

without problems. Outlined are the difficulties developers face in creating a truly workable distributed

system of Web services. This article also outlines author Graham Glass’s plan for building peer-to-peer

Web applications.

Developing Web services

v Java Web Services: SOAP with Attachments API for Java (SAAJ)

This document describes the SOAP with Attachments API for Java (SAAJ) and how this API provides a

standard way to send XML documents over the Internet from the Java platform.

v JSR 109: Implementing Enterprise Web services

This document describes the Java 2 Platform, Enterprise Edition (J2EE) specification.

v JAX-RPC: Core Web services API in the Java platform

This document reviews the JAX-RPC specification which enables Java technology developers to

develop SOAP-based interoperable and portable Web services.

v A developer introduction to the JAX-RPC specification, Part 1: Learn the ins and outs of the JAX-RPC

type-mapping system. The JAX-RPC specification is an important step forward in the quest for Web

services interoperability. This DeveloperWorks WebSphere article explains the mapping between WSDL

Chapter 8. Developing WebSphere applications 961

http://w3.itso.ibm.com/itsoapps/Redbooks.nsf/RedbookAbstracts/sg246891.html?Open
http://www-106.ibm.com/developerworks/library/ws-peer1.html
http://java.sun.com/xml/saaj/
http://jcp.org/en/jsr/detail?id=109
http://java.sun.com/xml/jaxrpc/
http://www.ibm.com/developerworks/webservices/library/ws-jaxrpc1/
http://www.ibm.com/developerworks/webservices/library/ws-jaxrpc1/

and XML types and Java types. It explains how the JAX-RPC standard defines this feature and some of

the important points on designing an interoperable type system.

v A developer introduction to JAX-RPC, Part 2: Mine the JAX-RPC specification to improve Web service

interoperability. This DeveloperWorks WebSphere article explains how you can achieve the next level of

Web service interoperability using the JAX-RPC standard client and server side interface definitions and

message processing model. It includes information on developing JAX-RPC handlers and handler

chains.

v Getting Started with JAX-RPC. This article explains some of the basic JAX-RPC programming concepts.

It describes the JAX-RPC client and server programming models and provides some simple examples

for illustration. The article is intended to give developers a good grasp of how to use the JAX-RPC

specification to develop or use Web services.

v Web Services Description Language

This article is a detailed overview of Web Services Description Language (WSDL), which includes

programming specifications.

UDDI

v Universal Description, Discovery and Integration

This article is a detailed overview of Universal Description, Discovery, and Integration (UDDI).

v A new approach to UDDI and WSDL: Introduction to the new OASIS UDDI WSDL Technical Note

This article is about using WSDL with UDDI. Although it is based on the UDDI Registry in WebSphere

Application Server Version 5, it remains a useful description of the recommended approach for use of

WSDL with UDDI.

v UDDI Version 3 Features List

This article is an introduction to the new features in UDDI Version 3.

WSIF

v The Apache Software Foundation. The Apache Software Foundation provides support for the Apache

community of open-source software projects. Of particular interest is the Apache Web services project.

The WSIF source code is donated by IBM to the Apache Software Foundation, and is maintained here

as an Apache project.

WS-I Basic Profile

v Web Services Interoperability Organization This Web site offers resources and guidelines for Web

services interoperability. You can also view the latest specification documents for WS-I Basic Profile

from the documentation link on the home page.

v UTF and BOM Frequently Asked Questions. This Web site offers general information about UTF-8,

UTF-16, UTF-32, along with Byte Order Mark (BOM) in a question and answer format.

SOAP

v SOAP

This article is a detailed overview of SOAP, which includes programming specifications.

v SOAP Security Extensions: Digital Signature

This document specifies the syntax and processing rules of a SOAP header entry to carry digital

signature information within a SOAP 1.1 Envelope

Security

v Security in a Web Services World: A Proposed Architecture and Roadmap

This document describes a proposed model for addressing security within a Web service environment. It

defines a comprehensive Web Services Security model that supports, integrates, and unifies several

popular security models, mechanisms, and technologies, including both symmetric and public key

962 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

http://www.ibm.com/developerworks/webservices/library/ws-jaxrpc2/
http://www.ibm.com/developerworks/webservices/library/ws-jaxrpc2/
http://developer.java.sun.com/developer/technicalArticles/WebServices/getstartjaxrpc/
http://www.w3.org/TR/wsdl
http://www.uddi.org/about.html
http://www-106.ibm.com/developerworks/webservices/library/ws-udmod1/
http://uddi.org/pubs/uddi_v3_features.htm
http://www.apache.org
http://ws.apache.org
http://ws.apache.org/wsif/
http://ws-i.org/
http://www.unicode.org/unicode/faq/utf_bom.html
http://www.w3.org/TR/SOAP
http://www.w3.org/TR/SOAP-dsig
http://www-106.ibm.com/developerworks/webservices/library/ws-secmap/

technologies. Enable a variety of systems to securely interoperate in a platform and language-neutral

manner. It also describes a set of specifications and scenarios that show how these specifications can

be used together.

v Web Services Security (WS-Security)

The Web Services security specifications describe enhancements to SOAP messaging to provide the

quality of protection through message integrity, message confidentiality, and single message

authentication. Use these mechanisms to accommodate a wide variety of security models and

encryption technologies. Web Services security also provides a general-purpose mechanism for

associating security tokens with messages. Additionally, Web Services Security describes how to

encode binary security tokens. Specifically, the specification describes how to encode X.509 certificates

and Kerberos tickets, as well as how to include opaque encrypted keys. It also includes extensibility

mechanisms that can be used to further describe the characteristics of the credentials that are included

with a message.

v SOAP Security Extensions: Digital Signature

This document specifies the syntax and processing rules of a SOAP header entry to carry digital

signature information within a SOAP 1.1 envelope

v Web Services Security Addendum

This document describes clarifications, enhancements, best practices, and errata of the Web Services

Security specification.

v WS-Security Profile of the OASIS Security Assertion Markup Language (SAML) Working Draft 04, 10

September 2002

This document proposes a set of standards for SOAP extensions used to increase message

confidentiality.

v Web Services Security: SOAP Message Security Working Draft 12, Monday 21 April 2003

This document describes the support for multiple token formats, trust domains, signature formats, and

encyrption technologies.

v JSR 55:Certification Path API

This document provides a short description of the certification path API.

v XML-Signature Syntax and Processing

This document specifies XML digital signature processing rules and syntax. XML signatures provide

integrity, message authentication, or signer authentication services for data of any type, whether located

within the XML that includes the signature or elsewhere.

v Canonical XML Version 1.0

This specification describes a method for generating a physical representation, the canonical form, of an

XML document that accounts for the permissible changes.

v Exclusive XML Canonicalization Version 1.0

Canonical XML [XML-C14N] specifies a standard serialization of XML that, when applied to a

subdocument, includes the subdocument ancestor context including all of the namespace declarations

and attributes in the ″xml:″namespace.

v XML Encryption Syntax and Processing

This document specifies a process for encrypting data and representing the result in XML.

v Decryption Transform for XML Signature

This document specifies an XML Signature decryption transform that enables XML Signature

applications to distinguish between those XML encryption structures that are encrypted before signing,

and must not be decrypted, and those that are encrypted after signing, and must be decrypted, for the

signature to validate.

v WS-Security

This document specifies resources for the April 2002 Web Services Security Specification. The following

addenda and drafts are available:

– http://schemas.xmlsoap.org/ws/2002/07/secext/

– http://schemas.xmlsoap.org/ws/2002/07/utility/

– OASIS draft 12 for secext

– OASIS draft 12 for utility

Chapter 8. Developing WebSphere applications 963

http://www-106.ibm.com/developerworks/library/ws-secure/
http://www.w3.org/TR/SOAP-dsig
http://www-106.ibm.com/developerworks/library/ws-secureadd.html
http://www.oasis-open.org/committees/security/docs/draft-sstc-ws-sec-profile-04.pdf
http://www.oasis-open.org/committees/security/docs/draft-sstc-ws-sec-profile-04.pdf
http://www.oasis-open.org/committees/download.php/1686/WSS-SOAPMessageSecurity-12-04021.pdf
http://jcp.org/en/jsr/detail?id=55
http://www.w3.org/TR/xmldsig-core/
http://www.w3.org/TR/xml-c14n
http://www.w3.org/TR/xml-exc-c14n/
http://www.w3.org/TR/xmlenc-core/
http://www.w3.org/TR/xmlenc-decrypt
http://schemas.xmlsoap.org/ws/2002/04/secext/
http://schemas.xmlsoap.org/ws/2002/07/secext/
http://schemas.xmlsoap.org/ws/2002/07/utility/
http://schemas.xmlsoap.org/ws/2003/06/secext/
http://schemas.xmlsoap.org/ws/2003/06/utility/

v Specification: Web Services Security (WS-Security) Version 1.0 05 April 2002

v XML Encryption Syntax and Processing W3C Recommendation 10 December 2002

v XML-Signature Syntax and Processing W3C Recommendation 12 February 2002

v Web Services Security Addendum

v Web Services Security Core Specification Working Draft 01, 20 September 2002

v Web Services Security: SOAP Message Security Working Draft 13, Thursday, 01 May 2003

v Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile,

RFC3280, April 2002

v OASIS Web Services Security Technical Committee

Samples

v Samples Gallery

v Samples Central. Samples and associated documentation for the following Web services components

are available through the Samples Central page of the DeveloperWorks WebSphere Web site:

– The IBM WebSphere UDDI Registry.

– The Web Services Invocation Framework (WSIF).

Deploying Web services

This task explains how to deploy a Web service into WebSphere Application Server.

To deploy Web services that are based on the Web Services for Java 2 Platform, Enterprise Edition

(J2EE) specification, you need an enterprise application, also known as an enterprise archive (EAR) file

that is configured and enabled for Web services.

If you have a Web service that was deployed on a previous version of WebSphere Application Server, you

might want to run the wsdeploy command so that you can benefit from performance features that have

been added to this release.

This task is one of the steps in developing and implementing Web services.

You can use either the administrative console or the wsadmin scripting tool to deploy an EAR file. If you

are installing an application containing Web services by using the wsadmin command, specify the

-deployws option. If you are installing an application containing Web services by using the administrative

console, select Deploy WebServices in the Install New Application wizard. For more information about

installing applications using the administrative console see Installing a new application.

If the Web services application is previously deployed with the wsdeploy command, it is not necessary to

specify Web services deployment during installation.

The following actions deploy the EAR file with the wsadmin command:

1. Start install_root\bin\wsadmin from a command prompt. If you are using Linux or Unix platforms,

start install_root/bin/wsadmin.sh.

2. Enter the $AdminApp install EARfile ″-usedefaultbindings -deployws″ command at the wsadmin

prompt.

You have a Web service installed into the Application Server.

Protect your Web services applications by adding security to the applications.

wsdeploy command

This topic explains how to use the wsdeploy command-line tool with Web services that are based on the

Web Services for Java 2 Platform, Enterprise Edition (J2EE) specification. The wsdeploy command adds

WebSphere product-specific deployment classes to a Web services-compatible enterprise application

enterprise archive (EAR) file or an application client Java archive (JAR) file. These classes include:

v Stubs

964 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

http://www-106.ibm.com/developerworks/webservices/library/ws-secure/
http://www.w3.org/TR/2002/REC-xmlenc-core-20021210
http://www.w3.org/TR/2002/REC-xmldsig-core-20020212/
http://www.ibm.com/developerworks/library/secureadd.html
http://www.oasis-open.org/committees/wss/documents/WSS-Core-01-0920.pdf
http://www.oasis-open.org/committees/download.php/2314/WSS-SOAPMessageSecurity-13-050103-merged.pdf
http://www.ietf.org/rfc/rfc3280.txt
http://www.ietf.org/rfc/rfc3280.txt
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss
http://www7b.software.ibm.com/wsdd/library/samples/AppServer.html
http://www.ibm.com/websphere/developer/library/samples/AppServer.html

v Serializers and deserializers

v Implementations of service interfaces

This deployment step must be performed at least once, and can be performed more often. Deployment

can be performed separately using the wsdeploy command, assembly tools, or when the application is

installed. When using the wsadmin command for installation, specify the -deployws option.

The wsdeploy command operates as noted in the following list:

v Each module in the enterprise application or JAR file is examined

v If the module contains Web services implementations, indicated by the presence of the webservices.xml

deployment descriptor, the associated Web Services Description Language (WSDL) files are located

and the WSDL2Java command is run with the role deploy-server option.

v If the module contains Web services clients, indicated by the presence of the client deployment

descriptor, the associated WSDL files are located and the WSDL2Java command is run with the role

deploy-client option.

v The files generated by the WSDL2Java command are compiled and repackaged.

See WSDL2Java command for more information about the files that are generated for deployment.

When the generated files are compiled, they can reference application-specific classes outside the EAR or

JAR file, if the EAR or JAR file is not self-contained. In this case, use either the -jardir or -cp option to

specify additional JAR or zip files to be added to CLASSPATH variable when the generated files are

compiled.

wsdeploy command syntax

The command syntax is noted in the following example:

wsdeploy Input_filename Output_filename [options]

Required options:

v Input_filename

Specifies the path to the EAR or JAR file to deploy.

v Output_filename

Specifies the path of the deployed EAR or JAR file. If output_filename already exists, it is silently

overwritten. The output_filename can be the same as theinput_filename.

Other options:

v -jardir directory

Specifies a directory that contains JAR or zip files. All JAR and zip files in this directory are added to

the CLASSPATH used to compile the generated files. This option can be specified zero or more times.

v -cp entries

Specifies entries to add to the CLASSPATH when the generated classes are compiled. Multiple entries

are separated the same as they are in the CLASSPATH environment variable, with a semicolon on

Windows platforms and a colon for Linux and Unix platforms.

v -codegen

Specifies to generate but not compile deployment code. This option implicitly specifies the -keep option.

v -debug

Includes debugging information when compiling, that is, use javac -g to compile.

v -help

Displays a help message and exit.

v -ignoreerrors

Do not stop deployment if validation or compilation errors are encountered.

v -keep

Chapter 8. Developing WebSphere applications 965

Do not delete working directories containing generated classes. A message is displayed indicating the

name of the working directory that is retained.

v -novalidate

Do not validate the Web services deployment descriptors in the input file.

v -trace

Displays processing information, including the names of the generated files.

Example The following example illustrates how the options are used with the wsdeploy command:

wsdeploy x.ear x_deployed.ear -trace -keep

Processing web service module x_client.jar.

Keeping directory: f:\temp\Base53383.tmp for module: x_client.jar.

Parsing XML file:f:\temp\Base53383.tmp\WarDeploy.wsdl

Generating f:\temp\Base53383.tmp\generatedSource\com\test\WarDeploy.java

Generating f:\temp\Base53383.tmp\generatedSource\com\test\WarDeployLocator.java

Generating f:\temp\Base53383.tmp\generatedSource\com\test\HelloWsBindingStub.java

Compiling f:\temp\Base53383.tmp\generatedSource\com\test\WarDeploy.java.

Compiling f:\temp\Base53383.tmp\generatedSource\com\test\WarDeployLocator.java.

Compiling f:\temp\Base53383.tmp\generatedSource\com\test\HelloWsBindingStub.java.

Done processing module x_client.jar.

Messages

v Flag -fis not valid.

Option f was not recognized as a valid option.

v Flag -c is ambiguous.

Options can be abbreviated, but the abbreviation must be unique. In this case, the wsdeploy command

cannot determine which option was intended.

v Flag -c is missing parameter -p.

A required parameter for an option is omitted.

v Missing p parameter.

A required option is omitted.

Configuring Web service client bindings

When a Web service application is deployed into WebSphere Application Server, an instance is created for

each application or module. The instance contains deployment information for the Web module or

enterprise JavaBean (EJB) module, including client bindings.

Deploy the Web service into WebSphere Application Server.

To complete this task, you need to know the topology of the URL endpoint address of the Web services

servers and which Web service the client depends upon. You can view the deployment descriptors in the

administrative console to find topology information. See the article ″View Web services server deployment

descriptors″ in the information center for more information.

The client bindings define the Web Services Description Language (WSDL) file name and preferred ports.

The relative path of a Web service in a module is specified within a compatible WSDL file that contains the

actual URL to be used for requests. The address is only needed if the original WSDL file did not contain a

URL, or when a different address is needed. For a service endpoint with multiple ports, you need to define

an alternative WSDL file name.

The following steps describe how to edit bindings for a Web service after these bindings are deployed on

a server. When one Web service communicates with another Web service, you must configure the client

bindings to access the downstream Web service.

You can also configure client bindings with wsadmin.

966 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

To configure client bindings through the administrative console:

1. Open the administrative console.

2. Click Applications > Enterprise Applications > application_instance > Web modules >

module_instance > Web services client bindings.

For EJB modules, click Applications >Enterprise Applications > application_instance > EJB

modules > module_instance > Web services client bindings.

3. Find the Web service you want to update.

The Web services are listed in the Web Service field.

4. Select the WSDL file name from the drop down box in the WSDL file name field.

5. Click Edit in the Preferred port mappings field to configure the default port to use.

a. Specify the port type and the preferred ports in the Port type and Preferred ports fields.

Configuring the preferred port enables you to select an optimal port implementation use non-SOAP

protocols. See RMI-IIOP Web services using JAX-RPC for more information about using

non-SOAP protocols.

b. Click Apply and OK.

6. Click Edit in the Port information field to configure the request timeout, the overridden endpoint, and

the overridden binding namespace for a port.

Configuring the request timeout accommodates complex topologies that can have multiple cascaded

Web services that involve multiple hops or long-running services.

Timeout values can be configured based on observed behavior of the overall system as integration

proceeds. For example, a Web service client might time out because of changing network conditions or

the performance of an external Web service. When you have applications containing Web services

clients that timeout, you can change the request time out values for the clients.

a. Click Apply and OK.

Your Web service client bindings are configured.

Now you can finish any other configurations, start or restart the application, and verify the expected

behavior of the Web service.

Web services client bindings

The client bindings define the Web Service Description Language (WSDL) file name, preferred ports and

other port information. Use this page to specify the client bindings and the port mappings for the Web

services in a module.

A Web service can specify the relative path within the module of a compatible WSDL file containing the

actual URL to be used for requests. The relative path only needs to be specified if the original WSDL file

does not contain a URL or when a different URL is needed. For a service endpoint with multiple ports

defined, a preferred mapping specifies the default port to use for a port type.

To view this page, click Applications >Enterprise Applications > application_instance > Web modules >

module_instance>Web services client bindings.

For EJB modules, click Applications >Enterprise Applications > application_instance > EJB modules >

module_instance>Web services client bindings.

Web service:

Identifies the name of this Web service. A module can contain one or more Web services.

EJB:

Identifies the name of the EJB for the EJB modules.

Chapter 8. Developing WebSphere applications 967

WSDL file name:

Specifies the WSDL file name, which is relative to the module. Locate the WSDL file name in the drop

down menu.

Preferred port mappings:

Specifies and manages the preferred port type mapping for a Web service when a particular port type is

requested.

 Click Edit to edit the preferred port mapping information on the Preferred port mappings panel.

Port information:

Specifies additional configuration information for the ports of this Web service.

 Click Edit to edit the port information on the Port information panel. You can set a request timeout,

override an endpoint and override a binding namespace for each client port.

Preferred port mappings:

Use this page to view and manage a preferred portType mapping for a Web service.

 When you have multiple ports that reference the same portType (service endpoint interface), a preferred

port specifies the port to use when the Service.getPort(Class SEI) method is called with only the service

endpoint interface.

To view this administrative console page, click Applications >Enterprise Application >

application_instance > Web modules > module_instance>Web services client bindings > Edit>

preferred_port_instance.

For EJB modules, click Applications >Enterprise Application > application_instance > EJB modules >

module_instance>Web services client bindings > Edit> preferred_port_instance.

portType:

Specifies the portType.

 The preferred port and the portType values are both of the type java.xml.namespace.QName.

Preferred port:

Specifies the preferred port to be associated with a particular portType. The Service.getPort(Class)

method returns the preferred port associated with the specified service endpoint interface class (portType).

 The preferred ports available are listed, as well as a value of None, which indicates no preferred port is

selected.

Web services client port information:

Use this page to specify a request timeout, override an endpoint, and override a binding namespace for a

Web services client port.

 A Web service can have multiple ports. You can view and configure the port attributes for each defined

Web service port. The Web services are listed on the Web services client bindings panel.

968 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

To view this page, click Applications >Enterprise Applications > application_instance > Web modules >

module_instance>Web services client bindings > Edit.

For EJB modules, click Applications >Enterprise Applications > application_instance > EJB modules >

module_instance>Web services client bindings > Edit.

Port:

Identifies the name of a port.

Request timeout:

Specifies the time, in milliseconds, that the Web service client waits for a request to complete on this port.

If a timeout is not specified, the default request timeout for the client to wait is 360 seconds. If the value is

set at 0 (zero), the client’s request does not timeout.

 A typical use for this setting is to customize the client’s behavior when it is configured to use a JMS

transport to access a Web service to make it wait longer for an expected completion. Depending upon

network conditions, or the nature of a Web service implementation, it might be necessary to tune the

timeout.

Overridden endpoint:

Specifies the name of an endpoint that is used to override the current endpoint. A client invoking a request

on this port uses this endpoint instead of the endpoint specified in the WSDL file.

 If an assembled application contains a Web service client that is statically bound, the client is locked into

using the implementation (service end point) identified in the WSDL file used during development.

Overriding the endpoint is an alternative to configuring the deployed WSDL attribute.

The overridden endpoint URI attribute is specified on a per port basis. It does not require an alternative

WSDL file within the module. The overridden endpoint URI takes precedence over the deployed WSDL

attribute. The client uses this value for the service end point URI or SOAP address, instead of the value in

the static client bindings.

Overridden binding:

Specifies the WSDL file binding namespace URI to use with this port, instead of the namespace in the

WSDL file. This binding does not need to exist in the WSDL file. A client invoking a request on this port

uses this binding instead of the binding specified in the WSDL file. An overridden binding namespace

cannot be specified unless an overridden endpoint is specified.

Configuring the scope of a Web service port

When a Web service application is deployed into WebSphere Application Server, an instance is created for

each application or module. The instance contains deployment information for the Web module or

enterprise bean module, including implementation scope, client bindings and deployment descriptor

information. There are three levels of scope that can be set: application, session and request.

Deploy the Web service into WebSphere Application Server.

Web Services for Java 2 platform Enterprise Edition (J2EE) specifies that Web services implementations

must be stateless. Therefore, to maintain specification compliance, the scope can remain at the application

level because the state relevant to the individual sessions level or the requests level is not supposed to be

maintained in the implementation. If you want to deviate from the specification and want to access a

different JavaBean instance, because you are looking for information that is located in another JavaBean

implementation, the scope settings need to change.

Chapter 8. Developing WebSphere applications 969

The setting that you configure for the scope determines how frequently a new instance of a service

implementation class is created for the Web service ports in a module. Use this task to configure the

scope of a Web service port.

You can also configure the scope with the wsadmin tool.

To change the scope setting through the administrative console:

1. Open the administrative console.

2. Click Applications >Enterprise Applications > application_instance > Web Modules >

module_instance>Web Services Implementation Scope. If you are using an EJB module click EJB

Modules instead of Web Modules.

3. Set the scope to application, session or request. The application scope causes the same instance of

the implementation to be used for all requests on the application. The session scope causes the same

instance to be used for all requests in each session. The request scope causes a new instance to be

used for every request. For example, with the scope set to application, every message that comes to

the server accesses the same JavaBean instance because that is the way the scope settings are

configured.

4. Click Apply.

5. Click OK.

The scope for a Web service port is configured.

Now you can finish any other configurations, start or stop the application, and verify the expected behavior

of the Web service.

Web services implementation scope

The scope determines when a new implementation instance is created for Web service ports. For

example, setting the scope to application causes the same instance of the implementation to be used for

each request. Setting the scope to session causes the same instance of the implementation to be used for

each requests of a session. Setting the scope to request causes a new instance to be created for each

request.

Use this page to view and manage the scope of the ports of a Web service application.

To view this administrative console page, click Applications >Enterprise Applications >

application_instance > Web modules > module_instance>Web services implementation scope.

Port:

Specifies a port name for a Web service. A module can contain one or more Web services, each of which

can contain one or more ports.

Web service:

Specifies the name of the Web service. A module can contain one or more Web services.

URI:

Specifies the Uniform Resource Identifier (URI) of the binding file that defines the scope. The URI is

relative to the Web module.

Scope:

Specifies the scope of a port. The valid values for scope are request, session and application.

970 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Web Services Invocation Framework (WSIF): Enabling Web services

The Web Services Invocation Framework (WSIF) provides a Java API for invoking Web services,

independent of the format of the service or the transport protocol through which it is invoked. This

framework includes an EJB provider for EJB invocation using Remote Method Invocation over Internet

Inter-ORB Protocol (RMI-IIOP). However, for EJB(IIOP)-based Web service invocation you should instead

invoke RMI-IIOP Web services using JAX-RPC.

The Web Services Invocation Framework (WSIF) is a WSDL-oriented Java API. You use this API to invoke

Web services dynamically, regardless of the service implementation format (for example enterprise bean

(EJB)) or the service access mechanism (for example Java Message Service (JMS)).

Using WSIF, you can move away from the usual Web services programming model of working directly with

the SOAP APIs, towards a model where you interact with representations of the services. You can

therefore work with the same programming model regardless of how the service is implemented and

accessed.

If you want to know more about the issues that WSIF addresses, see Goals of WSIF.

If you want to know how WSIF addresses these issues, see An overview of WSIF.

To use WSIF, see the following topics in the information center:

v Using WSIF to invoke Web services.

v WSIF system management and administration.

v WSIF API.

For more information about working with WSIF, visit the Web sites listed in Web services: Resources for

Learning.

Goals of WSIF

SOAP bindings for Web services are part of the WSDL specification, therefore when most developers think

of using a Web service, they immediately think of assembling a SOAP message and sending it across the

network to the service endpoint, using a SOAP client API. For example: using Apache SOAP the client

creates and populates a Call object that encapsulates the service endpoint, the identification of the SOAP

operation to invoke, the parameters to send, and so on.

While this process works for SOAP, it is limited in its use as a general model for invoking Web services for

the following reasons:

v Web services are more than just SOAP services.

v Tying client code to a particular protocol implementation is restricting.

v Incorporating new bindings into client code is hard.

v Multiple bindings can be used in flexible ways.

v A freer Web services environment enables intermediaries.

The goals of the Web Services Invocation Framework (WSIF) are therefore:

v To give a binding-independent mechanism for Web service invocation.

v To free client code from the complexities of any particular protocol used to access a Web service.

v To enable dynamic selection between multiple bindings to a Web service.

v To help the development of Web service intermediaries.

WSIF - Web services are more than just SOAP services: You can deploy as a Web service any

application that has a WSDL-based description of its functional aspects and access protocols. If you are

using the Java 2 platform, Enterprise Edition (J2EE) environment, then the application is available over

multiple transports and protocols.

Chapter 8. Developing WebSphere applications 971

http://www.w3.org/TR/2000/NOTE-SOAP-20000508/
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/

For example, you can take a database-stored procedure, expose it as a stateless session bean, then

deploy it into a SOAP router as a SOAP service. At each stage, the fundamental service is the same. All

that changes is the access mechanism: from Java DataBase Connectivity (JDBC) to Remote Method

Invocation over Internet Inter-ORB Protocol (RMI-IIOP) and then to SOAP.

The WSDL specification defines a SOAP binding for Web services, but you can add binding extensions to

the WSDL so that, for example, you can offer an enterprise bean as a Web service using RMI-IIOP as the

access protocol. You can even treat a single Java class as a Web service, with in-thread Java method

invocations as the access protocol. With this broader definition of a Web service, you need a

binding-independent mechanism for service invocation.

WSIF - Tying client code to a particular protocol implementation is restricting:

If your client code is tightly bound to a client library for a particular protocol implementation, it can become

hard to maintain.

 For example, if you move from Apache SOAP to Java Message Service (JMS) or enterprise bean, the

process can take a lot of time and effort. To avoid these problems, you need a protocol

implementation-independent mechanism for service invocation.

WSIF - Incorporating new bindings into client code is hard: As is explained in Web services are not

just SOAP services, if you want to make an application that uses a custom protocol work as a Web

service, you can add extensibility elements to WSDL to define the new bindings. But in practice, achieving

this capability is hard. For example you have to design the client APIs to use this protocol. If your

application uses just the abstract interface of the Web service, you have to write tools to generate the

stubs that enable an abstraction layer. These tasks can take a lot of time and effort. What you need is a

service invocation mechanism that allows you to update existing bindings, and to add new bindings.

WSIF - Multiple bindings can be used in flexible ways: Imagine that you have successfully deployed

an application that uses a Web service which offers multiple bindings. For example, imagine that you have

a SOAP binding for the service and a local Java binding that lets you treat the local service

implementation (a Java class) as a Web service.

The local Java binding for the service can only be used if the client is deployed in the same environment

as the service. In this case, it is more efficient to communicate with the service by making direct Java calls

than by using the SOAP binding.

If your clients could switch the actual binding used based on run-time information, they could choose the

most efficient available binding for each situation. To take advantage of Web services that offer multiple

bindings, you need a service invocation mechanism that can switch between the available service bindings

at run-time, without having to generate or recompile a stub.

WSIF - Enabling a freer Web services environment promotes intermediaries:

Web services offer application integrators a loosely-coupled paradigm. In such environments,

intermediaries can be very powerful.

 Intermediaries are applications that intercept the messages that flow between a service requester and a

target Web service, and perform some mediating task (for example logging, high-availability or

transformation) before passing on the message. The Web Services Invocation Framework (WSIF) is

designed to make building intermediaries both possible and simple. Using WSIF, intermediaries can add

value to the service invocation without needing transport-specific programming.

972 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

http://www.w3.org/TR/2000/NOTE-SOAP-20000508/
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/

An overview of WSIF

The Web Services Invocation Framework (WSIF) provides a Java API for invoking Web services,

independent of the format of the service or the transport protocol through which it is invoked. This

framework addresses all of the issues identified in the goals of WSIF.

WSIF provides the following features:

v An API that provides binding-independent access to any Web service.

v A close relationship with WSDL, so it can invoke any service that you can describe in WSDL.

v A stubless and completely dynamic invocation of a Web service.

v The capability to plug a new or updated implementation of a binding into WSIF at run-time.

v The option to defer the choice of a binding until run-time.

WSIF is designed to work both in an unmanaged environment (stand-alone) and inside a managed

container. You can use the Java Naming and Directory Interface (JNDI) to find the WSIF service, or you

can use the location described in the WSDL.

For more conceptual information about WSIF and WSDL, see the following topics:

v WSIF and WSDL

v WSIF architecture

v Using WSIF with Web services that offer multiple bindings

v WSIF usage scenarios

v Dynamic invocation

WSIF supports Internet Protocol Version 6, and Java API for XML-based Remote Procedure Calls

(JAX-RPC) Version 1.1 for SOAP.

WSIF architecture: The Web Services Invocation Framework (WSIF) architecture is shown in the figure.

WSDL

document

WSIF

operation

WSIF

service

1. Load WSDL
document

2. Create WSIF
service

3. Use WSIF
service to get

operation

4. Create message 5. Invoke service
with operation name

and message

Service

WSIF
provider

WSDL
describes

service
interface

WSIF

service

factory

The components of this architecture include:

WSDL document

The Web service WSDL document contains the location of the Web service. The binding

document defines the protocol and format for operations and messages defined by a particular

portType.

WSIF service

The WSIFService interface is responsible for generating an instance of the WSIFOperation

interface to use for a particular invocation of a service operation. For more information, see

″Finding a port factory or service″ in the information center.

WSIF operation

The run-time representation of an operation, called WSIFOperation is responsible for invoking a

service based on a particular binding. For more information, see ″WSIF API reference: Using

ports″ in the information center.

WSIF provider

A WSIF provider is an implementation of a WSDL binding that can run a WSDL operation through

Chapter 8. Developing WebSphere applications 973

a binding-specific protocol. WSIF includes SOAP providers, JMS providers, Java providers and

EJB providers. For more information, see ″Using the WSIF providers″ in the information center.

Using WSIF with Web services that offer multiple bindings:

Using WSIF, a client application can choose dynamically the optimal binding to use for invoking Web

service operations.

 For example, a Web service might offer a SOAP binding, and also a local Java binding so that you can

treat the local service implementation (a Java class) as a Web service. If a client application is deployed in

the same environment as the service, then this client can use the local Java binding for the service. This

provides more efficient communication between the client and the service by making direct Java calls

rather than indirect calls using the SOAP binding.

For more information on how to configure a client to dynamically select between multiple bindings, see

″Developing a WSIF service″ in the information center.

WSIF and WSDL: WSDL is the acronym for Web Services Description Language.

In WSDL a service is defined in three distinct sections:

v The portType. This section defines the abstract interface offered by the service. A portType defines a

set of operations. Each operation can be In-Out (request-response), In-Only, Out-Only and Out-In

(Solicit-Response). Each operation defines the input and/or output messages. A message is defined as

a set of parts, and each part has a schema-defined type.

v The binding. This section defines how to map between the abstract portType and a real service format

and protocol. For example the SOAP binding defines the encoding style, the SOAPAction header, the

namespace of the body (the targetURI), and so on.

v The port. This section defines the actual location (endpoint) of the available service. For example, the

HTTP Web address at which a SOAP service is available.

Currently in WSDL, each port has one and only one binding, and each binding has a single portType. But

(more importantly) each service (portType) can have multiple ports, each of which represents an

alternative location and binding for accessing that service.

The Web Services Invocation Framework (WSIF) follows the semantics of WSDL as much as possible:

v The WSIF dynamic invocation API directly exposes run-time equivalents of the model from WSDL. For

example, invocation of an operation involves executing an operation with an input message.

v WSDL has extension points that support the addition of new ports and bindings. This enables WSDL to

describe new systems. The equivalent concept in WSIF is a provider, that enables WSIF to understand

a class of extensions and thereby to support a new service implementation type.

As a metadata-based invocation framework, WSIF follows the design of the metadata. As WSDL is

extended, WSIF is updated to follow.

The implicit and primary type system of WSIF is XML schema. WSIF supports invocation using dynamic

proxies, which in turn support Java type systems, but when you use the WSIFMessage interface it is your

responsibility to populate WSIFMessage objects with data based on the XML schema types as defined in

the WSDL document. You should define your object types by a canonical and fixed mapping from schema

types into the run-time.

For more information on WSDL, see Web services: Resources for learning.

WSIF usage scenarios:

This topic describes two brief scenarios that illustrate the role WSIF plays in the emerging Web services

environment.

974 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

http://www.w3.org/TR/2000/NOTE-SOAP-20000508/
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/

Scenario: Redevelopment and redeployment

When you first implement a Web service, you create a simple prototype. When you want to move a

prototype Web service into production, you often need to redevelop and redeploy it.

The Web Services Invocation Framework (WSIF) uses the same API calls irrespective of the underlying

technologies, therefore if you use WSIF:

v You can reimplement and redeploy your services without changing the client code.

v You can use existing reliable and high-performance infrastructures like Remote Method Invocation over

Internet Inter-ORB Protocol (RMI-IIOP) and Java Message Service (JMS) without sacrificing the

location-independence that the Web service model offers.

Scenario: Service Flow composition

A service flow typically invokes a Web service, then passes the response from one Web service to the

next Web service, perhaps performing some transformation in the middle.

There are two key aspects to this flow that WSIF provides:

v A representation of the service invocation based on the metadata in WSDL.

v The ability to build invocations based solely on the portType, which can therefore be used in any

implementation.

For example, imagine that you build a meta-service that uses a number of services to build a process.

Initially, several of those services are simple Java bean prototypes that are written and exposed through

SOAP, but you plan to reimplement some of them as EJB components, and to out-source others.

If you use SOAP, it ties up multiple threads for every onward invocation, because they pass through the

Web server and servlet engine and on to the SOAP router. If you use WSIF to call the beans directly, you

get much better performance compared to SOAP and you do not lose access or location transparency.

Using WSIF, you can replace the Java bean implementations with EJB implementations without changing

the client code. To move some of the Web services from local implementations to external SOAP services,

you just update the WSDL.

Dynamic invocation: For the Web Services Invocation Framework (WSIF), dynamic invocation means

providing the following levels of support when invoking Web services:

1. Support for WSDL extensions and bindings that were not known at build time.

2. Support for Web services that were not known at build time.

WSIF supports (1) through the use of providers.

The providers support (2) by using the WSDL description to access the target service.

Getting started with UDDI Registry

This section covers the basic knowledge you need to get started either as an administrator of a UDDI

Registry or as a user of a UDDI Registry that has already been set up.

v Getting started for UDDI Administrators

v Getting started for UDDI users

Getting started for UDDI Administrators

Use this topic if you are involved in installing (setting up and deploying), customizing, or managing a UDDI

Registry.

Chapter 8. Developing WebSphere applications 975

http://www.w3.org/TR/2000/NOTE-SOAP-20000508/

This section contains a list of some of the topics that you will need to refer to as an administrator of a

UDDI Registry:

v ″UDDI Registry Terminology″ in the information center introduces some terms with which you will need

to be familiar in order to administer a UDDI Registry

v Setting up and deploying a new UDDI Registry explains how to install a UDDI Registry node by setting

up the resources that it will use, and deploying the UDDI Registry application.

v ″Managing the UDDI Registry″ in the information center explains how to use the UDDI pages in the

WebSphere Administrative Console, or the UDDI Registry Administrative interface, to administer a UDDI

Registry node. It also covers how to back up and restore your UDDI Registry data.

v ″UDDI node settings″ in the information center explains how to view and set UDDI properties and

policies, and how to manage UDDI publishers, tiers and user entitlements.

v ″UDDI Registry Management Interfaces″ covers details of programmatic interfaces that you can use to

administer a UDDI Registry node (UDDI Registry Administrative (JMX) Interface), to add custom Value

Set data to a UDDI Registry (User Defined Value Set Support), and to export and import UDDI version

2 entities (UDDI Utility Tools).

″UDDI Registry troubleshooting″ in the information center might be useful if you encounter any problems

or unexpected behaviour while using the UDDI Registry, and ″UDDI Registry messages″ explains any

UDDI messages which you might see.

Getting started for UDDI users

Use this topic if you use a UDDI Registry to publish or find UDDI entities either through a user interface or

by writing UDDI client applications.

This section contains a list of some of the topics that you might want to refer to as a user of a UDDI

Registry:

″UDDI Registry Terminology″ in the information center introduces some terms with which you might need

to be familiar with to use a UDDI Registry.

″UDDI Registry user interface″ in the information center tells you how to access the UDDI User Console,

which is a user interface that allows you to find UDDI entities and carry out simple UDDI publish

operations.

See ″Displaying the user interface″ in the information center for the URL for the UDDI User Interface.

UDDI Registry SOAP Service End Points contains details for accessing the UDDI version 3 Inquiry,

Publish, Security, and custody transfer APIs, as well as the UDDI version 1 and version 2 APIs.

UDDI Registry Client Programmingexplains how to write UDDI client application programs. The

recommended client programming interface is the IBM UDDI version 3 Client for Java.

″IBM JAXR Provider for the UDDI Registry″ in the information center is for users who want to use the Java

API for XML Registries to access UDDI.

″User Defined Value Set Support in the UDDI Registry″ explains how to add custom value set data to a

UDDI Registry.

″UDDI Registry troubleshooting″ in the information center might be useful if you encounter any problems

or unexpected behaviour while using the UDDI Registry, and ″UDDI Registry messages″ in the information

center explains any UDDI messages which you might see.

976 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Planning to use Web services

This topic discusses how to plan your use of Web services that are developed and implemented based on

the Web Services for Java 2 Platform, Enterprise Edition (J2EE) specification.

Read the ″Web services scenario: Overview″ in the information center which tells the story of a fictional

online garden supply retailer named Plants by WebSphere and how this retailer incorporated the Web

services concept.

Web services are Web applications that help you be more flexible in your business processes by

integrating with applications that otherwise do not communicate.

Web services reflect the service-oriented architecture approach to programming. This approach is based

on the idea of building applications by discovering and implementing network-available services, or by

invoking the available applications to accomplish a task. Web services deliver interoperability, for example,

Web services applications provide a way for components created in different programming languages to

work together as if they were created using the same language. Web services rely on existing transport

technologies, such as HTTP, and standard data encoding techniques, such as Extensible Markup

Language (XML), for invoking the implementation.

To plan to use Web services:

1. Identify your goals and design Web services to fit your e-business solution. Consider what you want to

accomplish by using Web services. Decide how Web services fit into your current topology,

applications and programming model. Determine how the Web services process requests on the server

and how the clients manage and use the Web service.

2. Design your Web services for reliability, availability, manageability and security. For example, you want

your Web services to process a transaction in a reasonable time at all hours of the day and provide

users with good security characteristics, such as authentication for buyers. Planning to use Web

services to work with WebSphere Application Server helps to meet these requirements.

3. To support Web services, extend WebSphere Application Server to support Web services standards.

For interoperable Web services running on platforms supplied by multiple vendors, standards are

essential.

4. Decide what development and implementation tools to use. You can use a variety of manual

development and implementation tasks. Whether you have an existing Web service to implement or

you want to develop your own from a Java bean or from Enterprise JavaBeans (EJB), you can choose

different tasks respective to your resources. You can also use Rational Application Developer (RAD) to

complete development and implementation tasks.

See Developing Web services for information about developing Web services based on the Java

language through the WebSphere Application Server. To read more about RAD see the information

center for the product.

5. Install WebSphere Application Server.

6. Review Web services Samples.

You have a design plan for implementing Web services applications into your business architecture.

Develop a Web service.

This topic explains how to develop a Web service using the Web Services for J2EE specification.

Service-oriented architecture

A service-oriented architecture (SOA) is a collection of services that communicate with each other, for

example, passing data from one service to another or coordinating an activity between one or more

services.

Chapter 8. Developing WebSphere applications 977

Companies want to integrate existing systems to implement Information Technology (IT) support for

business processes that cover the entire business value chain. A variety of designs are used, ranging from

rigid point-to-point electronic data interchange (EDI) to Web auctions. By using the Internet, companies

make their IT systems available to internal departments or external customers, but the interactions are not

flexible and are without standardized architecture.

Because of this increasing demand for technologies that support connecting and sharing resources and

data, a need exists for a flexible, standardized architecture. SOA is a flexible architecture that unifies

business processes by structuring large applications into building blocks, or small modular functional units

or services, for different groups of people to use inside and outside the company. The building blocks can

be one of three roles: service provider, service broker, or service requestor. See Web services approach to

a service-oriented architecture to learn more about these roles.

Requirements for an SOA

To efficiently use an SOA, follow these requirements:

v Interoperability between different systems and programming languages.

The most important basis for a simple integration between applications on different platforms is to

provide a communication protocol. This protocol is available for most systems and programming

languages.

v Clear and unambiguous description language.

To use a service offered by a provider, it is not only necessary to be able to access the provider system,

but the syntax of the service interface must also be clearly defined in a platform-independent fashion.

v Retrieval of the service.

To support a convenient integration at design time or even system run time, a search mechanism is

required to retrieve suitable services. Classify these services as computer-accessible, hierarchical or

taxonomies based on what the services in each category do and how they can be invoked.

Web services approach to a service-oriented architecture

The Web services approach implements a service-oriented architecture (SOA). A major focus of Web

services is to make functional building blocks accessible over standard Internet protocols that are

independent from platforms and programming languages. These services can be new applications or just

wrapped around existing legacy systems to make them network-enabled. A service can rely on another

service to achieve its goals.

Each SOA building block can assume one or more of three roles:

v Service provider

The service provider creates a Web service and possibly publishes its interface and access information

to the service registry. Each provider must decide which services to expose, how to make trade-offs

between security and easy availability, how to price the services, or how to exploit free services for

other value. The provider also has to decide which category to list the service in for a given broker

service and what sort of trading partner agreements are required to use the service.

v Service broker

The service broker, also known as service registry, is responsible for making the Web service interface

and implementation access information available to any potential service requestor. The implementer of

the broker decides the scope of the broker. Public brokers are available through the Internet, while

private brokers are only accessible to a limited audience, for example, users of a company intranet.

Furthermore, some decisions need to be made about the amount of the offered information. Some

brokers specialize in many listings. Others offer high levels of trust in the listed services. Some cover a

broad landscape of services and others focus within an industry. Some brokers catalog other brokers.

Depending on the business model, brokers can attempt to maximize look-up requests, the number of

listings or the accuracy of the listings. The Universal Description, Discovery and Integration (UDDI)

specification defines a way to publish and discover information about Web services.

978 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

v Service requester

The service requestor or Web service client locates entries in the broker registry using various find

operations and then binds to the service provider to invoke one of its Web services.

Service

requester

Service

provider

Legacy

system

Service

broker

Client

Internet

12

3

Characteristics of the SOA

The presented SOA illustrates a loose coupling between the participants, which provides greater flexibility

in the following ways:

v A client is coupled to a service. Therefore, the integration of the server takes place outside the scope of

the client application programs.

v Old and new functional blocks or applications and systems, are encapsulated into components that work

as services.

v Functional components and their interfaces are separate, so that new interfaces can be plugged in more

easily.

v Within complex applications, the control of business processes can be isolated. A business rule engine

can be incorporated to control the workflow of a defined business process. Depending on the state of

the workflow, the engine calls the respective services.

v Services can be incorporated dynamically during run time.

v Bindings are specified using configuration files and can be easily adapted to new needs.

Properties of a service-oriented architecture

The service-oriented architecture offers the following properties:

v Web services are self-contained.

On the client side, no additional software is required. A programming language with Extensible Markup

Language (XML) and HTTP client support is enough to get you started. On the server side, a Web

server and a SOAP server are required. It is possible to enable an existing application for Web services

without writing a single line of code.

v Web services are self-describing.

Neither the client nor the server knows or cares about anything besides the format and content of the

request and response messages (loosely coupled application integration). The definition of the message

format travels with the message; no external metadata repositories or code generation tool are required.

v Web services can be published, located, and invoked across the Internet.

Chapter 8. Developing WebSphere applications 979

This technology uses established lightweight Internet standards such as HTTP and it leverages the

existing infrastructure. Some other standards that are required include, SOAP, Web Services Description

Language (WSDL), and UDDI.

v Web services are language-independent and interoperable.

Client and server can be implemented in different environments. Existing code does not have to change

in order to be Web services enabled.

v Web services are inherently open and standard-based.

XML and HTTP are the major technical foundation for Web services. A large part of the Web service

technology has been built using open-source projects.

v Web services are dynamic.

Dynamic e-business can become reality using Web services because with UDDI and WSDL you can

automate the Web service description and discovery.

v Web services are composable.

Simple Web services can be aggregated to more complex ones, either using workflow techniques or by

calling lower-layer Web services from a Web service implementation. Web services can be chained

together to perform higher-level business functions. This chaining shortens development time and

enables best-of-breed implementations.

v Web services are loosely coupled.

Traditionally, application design has depended on tight interconnections at both ends. Web services

require a simpler level of coordination that supports a more flexible reconfiguration for an integration of

the services.

v Web services provide programmatic access.

The approach provides no graphical user interface; it operates at the code level. Service consumers

need to know the interfaces to Web services, but do not need to know the implementation details of

services.

v Web services provide the ability to wrap existing applications.

Already existing stand-alone applications can easily integrate into the service-oriented architecture by

implementing a Web service as an interface.

Web services business models supported

The properties and benefits of using a service-oriented architecture (SOA) such as Web services is well

suited for binding small modules that perform independent tasks within a highly heterogeneous e-business

model. Web services can be easily wrapped around existing applications in your business model and

plugged into different business processes.

For connecting to a large monolithic system that does not support the implementation of different flexible

business processes, other approaches might be better suited, for example, to satisfy specialized features,

such as performance or security.

The following business models are easily implemented by using an architecture including Web services:

v Business information

Sharing of information with consumers or other businesses. Web services can be used to expand the

reach through such services as news streams, local weather reports, integrated travel planning, and

intelligent agents.

v Business integration

Providing transactional, fee-based services for customers. A global network of suppliers can be easily

created. Web services can be implemented in auctions, e-marketplaces, and reservation systems.

v Business process externalization

980 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Web services can be used to model value chains by dynamically integrating processes to a new

solution within an organizational unit or even with those of other e-businesses. This modeling can be

achieved by dynamically linking internal applications to new partners and suppliers, to offer their

services to complement internal services.

Setting up and deploying a new UDDI Registry

Start the installation of WebSphere Application Server Version 6 and create the profile for your application

server (for example, server1) to be used to host UDDI.

You have a choice of deploying either a default UDDI node, or a user customized UDDI node.

A default UDDI node would be a suitable option for initial evaluation of UDDI and for development and test

purposes. With a customized UDDI node, you have more control over the database management system

used for the UDDI database, and the properties used to set up the UDDI database. With a user

customized UDDI node, you create the UDDI database and datasource to your own specifications, and

then use the uddiDeploy.jacl script to deploy the UDDI application.

The main difference between default and user customized, in the context of these set up tasks, refers to a

number of vital UDDI properties. For a default set up these vital properties are automatically set to default

values and are not changeable by the user. For a user customizable set up, the user is given an

opportunity to set these vital properties, but once set they can not be changed for this configuration.

Important: Important Note for DB2 users - Starting the WebSphere Application Server in which the UDDI

Registry is deployed

On Unix and Linux platforms, before you start the WebSphere server that is hosting your

UDDI DB2 application, you must run the db2profile script which is found in the home directory

for you db2 userid, for example /home/db2inst1/sqllib/db2profile

Similarly when in an ND configuration and starting the server via the Deployment Manager,

you must ensure the db2profile is run before starting the relevant nodeagent.

The information above is true during initial set up and deployment of UDDI and also every

time you start the application server or node agent. For this reason it is strongly recommended

that you update the user profile for the user that will start the nodeagent and server to also

execute the db2profile.

If running the profile manually type:

. /home/db2inst1/sqllib/db2profile

In the above example, notice that the ’.’ is followed by a single space character.

Deploying into a Network Deployment cell (but not a cluster)

It is important to note that the uddiDeploy.jacl script must be run with the Deployment Manager as the

target.

If you are deploying into a network deployment cell you cannot create a default Cloudscape node using

uddiDeploy.jacl. You may, however, manually create the default Cloudscape database (with a default

profile) by following the instructions in Creating a Cloudscape database and adding the parameter

’DEFAULT’ as the last argument.

Chapter 8. Developing WebSphere applications 981

You will not be able to use the default option on uddiRemove for a UDDI node that is deployed into an

application server which is part of a Network Deployment cell. See ″Removing a UDDI Registry node″ for

more information.

If you have a non default UDDI setup in a base application server, you can issue an addNode

-includeapps command which will add the necessary definitions into the deployment manager.

Deploying into a cluster within a Network Deployment cell

It is important to note that uddiDeploy.jacl and uddiRemove.jacl can not be used in a cluster environment.

It is assumed a single database will be used for all members of the cluster.

You can follow the same guidelines for a non cluster set up in general for the resources such as the JDBC

provider and datasource as described in this Information Center, but they may need updating on individual

cluster members to correctly access the shared database for example.

The options that are available are:

v Deploy UDDI into a standalone server , as described in this Information Center (using uddiDeploy), and

then create a cluster using that server as a template for the other members.

v If using an cluster that already exists, you can use the admin console or wsadmin for example (and not

uddiDeploy.jacl), to deploy the uddi.ear across the cluster members, but follow the additional advice in

the main instructions.

Changing from a base application server to a Network Deployment cell.

It is possible to move from a base application server to a network deployment cell using the standard

addNode command. During the move, any applications may be lost unless you use the -includeapps

option. This applies to all applications and not just UDDI applications. See the addNode command for

details. This applies to a default or a user customized UDDI node.

Moving from a default UDDI node to a user customized UDDI node.

After testing the UDDI deployment in a default UDDI node, you can move to a user customized node by

recreating the database using the instructions in Setting up a customized UDDI node, but you must be

aware that any data saved in the default node (both policies, properties and user data) will be lost in the

move.

Moving between Cloudscape, DB2 and Oracle databases.

If you decide to move between one type of database to another, the datasource of the old database will

still have a JNDI name of datasources/uddids. You must either rename this JNDI name to something

different, or delete the datasource before you define the new database, create the new datasource and

initialize the database.

You now have the choice of a default UDDI node, or a user customized UDDI node.

Setting up a customized UDDI node

You can set up a customized UDDI node by completing the following steps:

1. Create a database schema to hold the UDDI registry by executing one of the following:

v Creating a DB2 database

v Creating an Oracle database

v Creating a Cloudscape database

982 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Note: You must not run the final step to set the default node indicator in the database.

2. Create a J2C Authentication Data Entry (not required for Cloudscape):

a. Expand Global Security and JAAS Configuration (on the right), then click on J2C

Authentication Data

b. Select New to create a new J2C authentication data entry

c. Fill in the details as follows:

Alias a suitable (short) name, such as ″UDDIAlias″

Userid

the database userid, which is used to read and write to the UDDI registry database.

Password

The password associated with the userid specified above.

Description

a suitable description to describe the chosen userid.

Click ’Apply’ and then Save the changes to the master configuration

3. Create a JDBC Provider (if a suitable one does not already exist):

v For DB2, select the options DB2 Legacy CLI-based Type 2 JDBC Driver and Connection Pool

datasource.

v For Oracle, select the options Oracle JDBC Driver and Connection Pool datasource.

v For Cloudscape, select the Cloudscape JDBC Driver and Connection Pool datasource.

For details on how to create a JDBC provider, see Creating and configuring a JDBC provider using the

administrative console.

4. Create a datasource for the UDDI Registry by following these steps:

a. Expand Resource and JDBC Providers

b. Select the desired ’scope’ of the JDBC provider you selected or created earlier. For example,

select:

Server: yourservername

This displays the JDBC providers at the server level.

c. Select the JDBC provider created earlier.

d. Under Additional Properties, select Data Sources (not the Data Sources Version 4 option)

e. Select ’New’ to create a new datasource

f. Fill in the details for the datasource as follows:

Name a suitable name, such as UDDI Datasource

JNDI name

set to datasources/uddids - this value is obligatory.

Note: You must not have any other datasources using this JNDI name. If you have another

datasource using this JNDI name, then you must either remove it or change its JNDI

name. For example, if you have previously created a default UDDI node using

Cloudscape, you should use the uddiRemove.jacl script with the default option to

remove the datasource and the UDDI application instance, before continuing.

Description

a suitable description

Category

set to uddi

Data store helper class name

filled in for you as:

Chapter 8. Developing WebSphere applications 983

v for DB2 - com.ibm.websphere.rsadapter.DB2DataStoreHelper

v for Oracle 9i - com.ibm.websphere.rsadapter.OracleDataStoreHelper

v for Oracle 10g - com.ibm.websphere.rsadapter.Oracle10gDataStoreHelper

v for Cloudscape - com.ibm.websphere.rsadapter.CloudscapeDataStoreHelper

Relational Database Management System data source properties

v for DB2 - Database name - for example:

UDDI30

v for Oracle - URL - for example:

 jdbc:oracle:oci8:@<Oracle database name>

v for Cloudscape - Database name - for example:

${USER_INSTALL_ROOT}/databases/com.ibm.uddi/UDDI30

Component-managed authentication alias

v for DB2, select the alias that you created in step 3 from the pulldown. It will have the

node name appended in front of it, for example MyNode/UDDIAlias.

v for Oracle, select the alias that you created in step 3 from the pulldown. It will have the

node name appended in front of it, for example MyNode/UDDIAlias.

v for Cloudscape leave this set to (none).

Container-managed authentication alias

Set to DefaultPrincipalMapping

Mapping-configuration alias

Set to (none)

g. Use this Data Source in container-managed persistence (CMP), and ensure it is unchecked.

5. Test the connection to your UDDI database by clicking on the ″Test Connection″ button for the

datasource. You will see a message similar to ″Test Connection for datasource UDDI Datasource on

server server1 at node MyNode was successful″. If you do not see this message investigate the

problem with the help of the error message.

6. Deploy the UDDI Registry into the server by running the uddiDeploy.jacl command from a command

prompt as shown.

This file is located in

WAS_HOME/bin

The syntax of the command is:

wsadmin [-conntype none] -f uddiDeploy.jacl <node> <server>

where:

-conntype none

is optional, and is only needed if the application server is not running.

<node>

the name of the WebSphere node on which the target server runs. Note that the node name is

case sensitive.

<server>

is the name of the target server on which you wish to deploy the UDDI Registry, such as

server1. Note the server name entered is case sensitive.

You are recommended to deploy the UDDI application using the uddiDeploy.jacl, but note that you can

also use the administrative console to deploy the application in the normal way. If you use the

administrative console you must ensure that the Classloader Mode for the application is set to

PARENT_LAST, and that the WAR class loader Policy is set to Application. The uddiDeploy.jacl

command in a command prompt will do this for you.

984 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

For example, to deploy UDDI on node ’MyNode’ and server ’server1’ on a Windows system you might

enter the following (assuming that server1 is already started):

wsadmin -f uddiDeploy.jacl MyNode server1

You should now start the UDDI application, or start the application server if it is not already running.

As you have chosen a user customized UDDI node, you will need to set up the properties for the UDDI

node using UDDI administration, and initialize the node before it is ready to accept UDDI requests (see

″Configuring the UDDI Registry Application″ in the information center for details).

Setting up a default UDDI node

There are two ways to setup a default UDDI node:

v Either by executing the uddiDeploy.jacl script and specifying the default option. This creates a running

default UDDI node within a Cloudscape database, or

v Executing an additional step after you have created your database.

Run one of the following

1. Optional: For a default Cloudscape UDDI node:

For a default Cloudscape configuration Network Deployment read the section ’Installing into a Network

Deployment Cell’ first.

Deploy the UDDI Registry by running the uddiDeploy.jacl script from a command prompt as shown.

This file is located in

WAS_HOME/bin

The syntax of the command is (shown here on 2 lines for publication):

wsadmin [-conntype none] -wsadmin_classpath WAS_HOME/cloudscape/lib -f

 uddiDeploy.jacl <node> <server> default

where:

-conntype none

is optional, and is only needed if the application server is not running.

WAS_HOME

is the directory name of the WebSphere Application Server install location

<node>

is the name of the WebSphere node on which the target server runs. Note that the node name

is case sensitive.

<server>

is the name of the target server on which you wish to deploy the UDDI Registry, such as

server1. Note the server name entered is case sensitive.

default

using the ’default’ option causes the command to create a UDDI node, with default policies

within a Cloudscape database and datasource. This is a special case only for Cloudscape and

creates everything required to run a UDDI node, in a standalone application server.

For example, to create a UDDI node called ’MyNode’ on server ’server1’ on a Windows system, you

might enter the following (this assumes server1 is started). The command is shown on 2 lines for

publication.

wsadmin -wsadmin_classpath C:\Progra~1\IBM\WebSphere\AppServer\cloudscape\lib

 -f uddiDeploy.jacl MyNode server1 default

If the server is not started the command is (shown here on 2 lines for publication):

wsadmin -conntype none -wsadmin_classpath C:\Progra~1\IBM\WebSphere\AppServer\cloudscape\lib

 -f uddiDeploy.jacl MyNode server1 default

(Note that these should be entered as one command on a single line)

Chapter 8. Developing WebSphere applications 985

You should now start the UDDI application, or start the application server if it is not already running.

2. Optional: For a default DB2, default Cloudscape or default Oracle UDDI node:

DB2, Cloudscape or Oracle may be used for a single application server installation or a Network

Deployment installation.

a. Initially you need to define some resources and run some scripts to set up the database. Go to

Creating the DB2 database, Creating the Cloudscape databaseor Creating the Oracle database to

create and load the database, ensuring you have run the final step to set the default node indicator

in the database, and return to this point. You must create a JDBC Provider if a suitable one does

not already exist or select one, and a Datasource to reference the UDDI database.

v For DB2, select the ’DB2 Legacy CLI-based Type 2 JDBC Driver’ option and Connection Pool

datasource option.

v When using Oracle ensure you select ’Oracle JDBC Driver’ and the Connection Pool datasource

option.

v For Cloudscape, select the supplied Cloudscape JDBC Driver

v Refer to Creating and configuring a JDBC provider using the administrative console for details

on how to create a JDBC Provider.

b. Create a J2C Authentication Data Entry for DB2 or Oracle access (not required for Cloudscape)

using the WebSphere Application Server administrative console by following these steps:

1) Expand ’Global Security’ and ’JAAS Configuration’ and click on ’J2C Authentication Data

Entries’

2) Select ’New’ to create a new J2C authentication data entry

3) Fill in the details as follows:

Alias a suitable (short) name, such as UDDIAlias

Userid

your DB2 userid, such as db2admin, or your Oracle userid, such as SYSTEM.

Password

The password associated with your userid.

Description

a suitable description

Click ’Apply’ and then Save the changes to the master configuration

c. Create a datasource for the UDDI Registry by following these steps:

1) Expand ’Resource’ and ’JDBC Providers’

2) Select the desired ’scope’ of the JDBC provider created earlier. For example, select:

Server: yourservername

to show the JDBC providers at the server level.

3) Select your DB2 or Oracle JDBC provider as selected or created earlier

4) Under ’Additional Properties’, select ’Data Sources’ (not the Data Sources Version 4 option)

5) Select ’New’ to create a new datasource

6) Fill in the details for the datasource as follows:

Name a suitable name, such as UDDI Datasource

JNDI name

set to datasources/uddids - this value is obligatory.

Note: Note that you must not have any other datasources using this JNDI name. If you

have another datasource using this JNDI name, then you must either remove it

or change its JNDI name. For example, if you have previously created a default

986 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

UDDI node using Cloudscape, you should use the uddiRemove.jacl script with

the default option to remove the datasource and the UDDI application instance

before continuing.

Description

a suitable description

Category

set to uddi

Data store helper class name

filled in for you as:

v for DB2 - com.ibm.websphere.rsadapter.DB2DataStoreHelper

v for Oracle 9i - com.ibm.websphere.rsadapter.OracleDataStoreHelper

v for Oracle 10g - com.ibm.websphere.rsadapter.Oracle10gDataStoreHelper

v for Cloudscape - com.ibm.websphere.rsadapter.CloudscapeDataStoreHelper

Relational Database Management System data source properties

v for DB2 - Database name - for example:

UDDI30

v for Oracle - URL - for example:

 jdbc:oracle:oci8:@<Oracle database name>

v for Cloudscape - Database name - for example:

${USER_INSTALL_ROOT}/databases/com.ibm.uddi/UDDI30

Component-managed authentication alias

v for DB2, select the alias that you created in step 3 from the pulldown. It will have the

node name appended in front of it, for example MyNode/UDDIAlias.

v for Oracle, select the alias that you created in step 3 from the pulldown. It will have

the node name appended in front of it, for example MyNode/UDDIAlias.

v for Cloudscape leave this set to (none).

Container-managed authentication alias

select the alias that you created earlier from the pulldown. It will have the node name

appended in front of it, for example MyNode/UDDIAlias.

Mapping-configuration alias

set to DefaultPrincipleMapping from the pulldown (this might already be filled in).

Leave all other fields unchanged.

Click ’Apply’ and Save the changes to the master configuration.

d. Test the connection to your UDDI database by clicking on the ″Test Connection″ button for the

datasource. You will see a message similar to ″Test Connection for datasource UDDI Datasource

on server server1 at node MyNode was successful″. If you do not see this message investigate the

problem with the help of the error message.

e. Deploy the UDDI Registry into the server by running the uddiDeploy.jacl script from a command

prompt as shown.

This file is located in

WAS_HOME/bin

The syntax of the command is:

wsadmin [-conntype none] -f uddiDeploy.jacl <node> <server>

where:

-conntype none

is optional, and is only needed if the application server is not running.

Chapter 8. Developing WebSphere applications 987

<node>

the name of the WebSphere node on which the target server runs. Note that the node

name is case sensitive.

<server>

is the name of the target server on which you wish to deploy the UDDI Registry, such as

server1. Note the server name entered is case sensitive.

You are recommended to deploy the UDDI application using the uddiDeploy.jacl, but note that you

can also use the administrative console to deploy the application in the normal way. If you use the

administrative console you must ensure that the Classloader Mode for the application is set to

PARENT_LAST, and that the WAR class loader Policy is set to Application. The uddiDeploy.jacl

command in a command prompt will do this for you.

For example, to deploy UDDI on node ’MyNode’ and server ’server1’ on a Windows system you

might enter the following (assuming that server1 is already started):

wsadmin -f uddiDeploy.jacl MyNode server1

You should now start the UDDI application, or start the application server if it is not already

running.

As you have chosen to use a default UDDI node, it will be initialized when the UDDI application is started

for the first time.

Creating a DB2 database

Perform this task if you want to use DB2 as the database store for your UDDI Registry data. You only

need do this once for each UDDI Registry, as part of Setting up and deploying a UDDI Registry.

Before you begin

The steps below use a number of variables for which you need to enter appropriate values. You should

decide the values that you will use before you start. The variables used, and suggested values are:

<DataBaseName>

is the name of the UDDI Registry database. A recommended value is UDDI30, and this name is

assumed throughout the UDDI documentation. If you use some other name, then you should

substitute that name whenever you see ’UDDI30’ in other sections of the documentation.

<DB2UserID>

is a DB2 userid with administrative privileges.

<DB2Password>

is the password for the DB2 userid.

<BufferPoolName>

is the name of a buffer pool to be used by the UDDI Registry database. A suggested name is

uddibp, but any name can be used, as the buffer pool is created as part of this task.

<TableSpaceName>

is the name of a table space. A suggested value is uddits, but any name can be used.

<TempTableSpaceName>

is the name of a temporary table space. A suggested value is udditstemp, but any name can be

used, as the temporary table space is created as part of this task.

To create the DB2 database follow the steps shown below:

1. Run the following commands to setup the DB2 environment variables from the DB2 Command Line

Processor (that is, at a prompt which requires db2 to be entered before each command):

a. Not required for DB2 Vesion 8 and onwards: db2set DB2_INDEX_2BYTEVARLEN=YES

b. db2set DB2CODEPAGE=1208

2. Create the DB2 database by entering the following command from the DB2 Command Line Processor:

988 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

a. db2 create database <DataBaseName> using codeset UTF-8 territory en where

<DataBaseName> is the name of the database being created.

3. Configure the DB2 database by entering the following commands from the DB2 Command Line

Processor:

a. db2 connect to <DataBaseName> user <DB2UserID> using <DB2Password>

b. db2 update db cfg for <DataBaseName> using applheapsz 2048

c. db2 update db cfg for <DataBaseName> using logfilsiz 8192

d. db2 connect reset

e. db2 terminate

4. Create additional database structures by entering the following commands from the DB2 Command

Line Processor:

a. db2 connect to <DataBaseName> user <DB2UserID> using <DB2Password>

b. db2 create bufferpool <BufferPoolName> size 250 pagesize 32K

c. db2 connect reset

d. db2 terminate

e. db2 force application all

f. db2 terminate

g. db2stop

h. db2start

5. Create further database structures by entering the following commands from the DB2 Command Line

Processor:

a. db2 connect to <DataBaseName> user <DB2UserID> using <DB2Password>

b. db2 create regular tablespace uddits pagesize 32K managed by system using

(’<TableSpaceName>’) extentsize 64 prefetchsize 32 bufferpool <BufferPoolName>

c. db2 create system temporary tablespace <TempTableSpacename> pagesize 32K managed by

system using (’<TempTableSpacename>’) extentsize 32 overhead 14.06 prefetchsize 32

transferrate 0.33 bufferpool <BufferPoolName>

6. Enter the following commands exactly as shown (noting in particular one step uses -vf rather than -tvf)

into a DB2 Command Window to define the database structures needed to store the UDDI data

(before running these commands change dirstory to WAS_HOME/UDDIReg/databaseScripts):

a. db2 -tvf uddi30crt_10_prereq_db2.sql

b. db2 -tvf uddi30crt_20_tables_generic.sql

c. db2 -tvf uddi30crt_25_tables_db2udb.sql

d. db2 -tvf uddi30crt_30_constraints_generic.sql

e. db2 -tvf uddi30crt_35_constraints_db2udb.sql

f. db2 -tvf uddi30crt_40_views_generic.sql

g. db2 -tvf uddi30crt_45_views_db2udb.sql

h. db2 -vf uddi30crt_50_triggers_db2udb.sql

i. db2 -tvf uddi30crt_60_insert_initial_static_data.sql

7. This last step should only be run if you want your database to be used as a default UDDI node.

a. Enter the following command from the DB2 Command Line Window: db2 -tvf

uddi30crt_70_insert_default_database_indicator.sql

Continue with setting up and deploying your UDDI Registry node.

Creating an Oracle database

Perform this task if you want to use Oracle as the database store for your UDDI Registry data. You need

only do this once for each UDDI registry, as part of Setting up and deploying a UDDI Registry.

Chapter 8. Developing WebSphere applications 989

Note: Only Version 9i1 and Oracle 10g2

Before you begin

Note that this task will create two new schemas, ibmudi30 and ibmuds30. You will be unable to complete

this task if you already have existing schemas of those names.

The steps below use a number of variables for which you need to enter appropriate values. You should

decide the values that you will use before you start. The variables used, and suggested values are:

<OracleUserID>

is the Oracle userid to be used to create the database.

<OraclePassword>

is the password for the Oracle userid.

1. Run the following commands:

a. sqlplus <OracleUserID>/<OraclePassword> @ uddi30crt_10_prereq_oracle.sql

b. sqlplus <OracleUserID>/<OraclePassword> @ uddi30crt_20_tables_generic.sql

c. Complete one of the two following actions depending on your level of Oracle:

v For Version 10g and later:

sqlplus <OracleUserID>/<OraclePassword> @ uddi30crt_25_tables_oracle.sql

v For Oracle 9i:

sqlplus <OracleUserID>/<OraclePassword> @ uddi30crt_25_tables_oracle_pre10g.sql

d. sqlplus <OracleUserID>/<OraclePassword> @ uddi30crt_30_contraints_generic.sql

e. sqlplus <OracleUserID>/<OraclePassword> @ uddi30crt_35_constraints_oracle.sql

f. sqlplus <OracleUserID>/<OraclePassword> @ uddi30crt_40_views_generic.sql

g. sqlplus <OracleUserID>/<OraclePassword> @ uddi30crt_45_views_oracle.sql

h. sqlplus <OracleUserID>/<OraclePassword> @ uddi30crt_50_triggers_oracle.sql

i. sqlplus <OracleUserID>/<OraclePassword> @ uddi30crt_60_insert_initial_static_data.sql

2. This last command should only be run if you want the database to be used as a default UDDI node.

sqlplus <OracleUserID>/<OraclePassword> @ uddi30crt_70_insert_default_database_indicator.sql

Continue with setting up and deploying your UDDI Registry node.

Creating a Cloudscape database

Perform this task if you want to use Cloudscape as the database store for your UDDI Registry, and you do

not want to use the default option on uddiDeploy.jacl (see ’Setting up a default UDDI node’). The most

likely reasons for not using the default option on uddiDeploy.jacl are that you want to set up a customized

1.

Restrictions:

discoveryURL (Business) maximum 4000 bytes, UDDI specification 4096 characters; accessPoint (bindingTemplate)

maximum 4000 bytes), UDDI Specification 4096 characters; instacneParms (tModelInstanceInfo) maximum 4000 bytes,

UDDI specification 8192 characters; overviewURL (tModelInstanceInfo) maximum 4000 bytes, UDDI specification 4096

characters; Digital Signature maximum 4000 bytes.

2.

Restrictions:

discoveryURL (business) maximum 4000 bytes, UDDI specification 4096 characters.

990 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

UDDI node, or that you are deploying UDDI into a Network Deployment cell. You need only perform this

task once for each UDDI Registry, as part of the Setting up and deploying a UDDI Registry.

The commands below use a number of arguments for which you need to enter appropriate values. You

should decide the values that you will use before you start. The arguments used, and suggested values,

are:

arg1 is the path of the SQL files, which on a standard install will be

WAS_HOME/UDDIReg/databasescripts

arg2 is the path to the location where you want to install the Cloudscape database, such as

WAS_HOME/databases/com.ibm.uddi

arg3 is the name of the Cloudscape database. A recommended value is UDDI30, and this name is

assumed throughout the UDDI documentation. If you use some other name, you should substitute

that name whenever you see ’UDDI30’ in other sections of the UDDI documentation.

arg4 is an optional argument, and must either be omitted or be the string ’DEFAULT’. DEFAULT should

only be specified if you want your database to be used as a default UDDI node. Note that this

argument is case sensitive.

Run the following java -jar command to create a UDDI Cloudscape database using

UDDICloudscapeCreate.jar, which is created in WAS_HOME/Lib directory.

1. On Solaris and HP-UX platforms:

java -Djava.ext.dirs=WAS_HOME/cloudscape/lib:WAS_HOME/java/lib/ext -jar

 UDDICloudscapeCreate.jar arg1 arg2 arg3 arg4

2. On all other platforms:

java -cp WAS_HOME/cloudscape/lib/db2j.jar -jar UDDICloudscapeCreate.jar arg1 arg2 arg3 arg4

Continue with setting up and deploying your UDDI Registry node.

Using a remote database for the UDDI Registry

It is possible for the UDDI Registry database to be hosted on a separate system (remote system) from the

system on which the UDDI Registry application is deployed.

This is achieved using standard database capabilities of the database product used for the UDDI Registry

database. You should refer to documentation for the database product if you are not familiar with these

capabilities. Some considerations specific to each database product are:

Remote DB2

Create a DB2 UDDI database on the remote system, and use the DB2 Client to create an alias to

reference it. Use the alias name as the Database name in the UDDI datasource.

Remote Oracle

Create the Oracle tables used for an Oracle UDDI database on the remote system, and use the URL

property of the UDDI datasource to reference the remote Oracle instance.

Networked Cloudscape

Create a Cloudscape UDDI database on the remote system, and use the Cloudscape Network Server

using Universal data source properties (Database name, Server name and Port number) of the UDDI

datasource to reference the remote Cloudscape database.

Chapter 8. Developing WebSphere applications 991

UDDI Registry Installation Verification Program (IVP)

This topic describes a simple test that you can carry out as an Installation Verification Program (IVP) to

verify that you have deployed a UDDI Registry successfully. You should perform this task after you have

followed the instructions in Setting up and Deploying a new UDDI Registry.

Open a browser window and enter the URL to access the UDDI Registry User Interface. Under the ’Quick

Find’ heading on the Find tab, select the ’Business’ radio button and enter ’%’ in the box. Click the ’Find’

button, and you should see the business displayed in the detail frame which will be this UDDI node’s

business entity. You can click on the listed business in order to see its detail.

If you see a business listed in the detail frame, your UDDI Registry has been deployed successfully.

As a further IVP, you can publish and find more UDDI entities by using the UDDI Registry User Interface,

or you can compile and run one or more of the UDDI Registry Samples.

Publishing WSDL files

To publish a Web Services Description Language (WSDL) file you need an enterprise application, also

known as an enterprise archive (EAR) file, that contains a Web services-enabled module and has been

deployed into WebSphere Application Server. See Deploying Web services based on Web Services for

Java 2 platform, Enterprise Edition (J2EE).

The purpose of publishing the WSDL file is to provide clients with a description of the Web service,

including the URL identifying the location of the service.

After installing a Web services application, and optionally modifying the endpoint information, you might

need WSDL files containing the updated endpoint information. You can obtain the updated WSDL files by

publishing them to the file system. If you are a client developer or a system administrator, you can use

WSDL files to enable clients to connect to a Web service.

Before you publish a WSDL file, you can configure Web services to specify endpoint information in the

form of URL fragments to enable full URL specification of WSDL ports. Refer to the tasks describing

configuring endpoint URL information.

The WSDL files for each Web services-enabled module are published to the file system location you

specify. You can provide these WSDL files to clients that want to invoke your Web services.

You can specify endpoint information for HTTP ports, Java Message Service (JMS) ports or directly access

enterprise JavaBeans (EJBs) that are acting as Web services.

To publish a WSDL file:

1. Configure the URL endpoint information. Do one of the following depending on what kind of bindings

you are using:

v Configure the URL endpoint information for HTTP bindings.

v Configure the URL endpoint information for JMS bindings.

v Configure the URL endpoint information to directly access enterprise beans.

2. Externalize or publish the WSDL file out of the application. You can complete this task in one of three

ways:

v Publish a WSDL file with the administrative console

v Publish a WSDL file through a URL.

v Publish a WSDL file with the wsadmin command tool.

Apply security to the Web service.

992 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

WSDL

Web Services Description Language (WSDL) is an Extensible Markup Language (XML)-based description

language. This language was submitted to the World-Wide Web Consortium (W3C) as the industry

standard for describing Web services. The power of WSDL is derived from two main architectural

principles: the ability to describe a set of business operations and the ability to separate the description

into two basic units. These units are a description of the operations and the details of how the operation

and the information associated with it are packaged.

A WSDL document defines services as collections of network endpoints, or ports. In WSDL, the abstract

definition of endpoints and messages is separated from their concrete network deployment or data format

bindings. This separation supports the reuse of abstract definitions: messages, which are abstract

descriptions of exchanged data, and port types, which are abstract collections of operations. The concrete

protocol and data format specifications for a particular port type constitutes a reusable binding. A port is

defined by associating a network address with a reusable binding, and a collection of ports define a

service. Therefore, a WSDL document is composed of several elements. See WSDL architecture for more

information and examples of the WSDL elements.

When creating Web services for WebSphere Application Server, you must first have an implementation

bean that includes a service endpoint interface. Then, you use the Java2WSDL command-line tool to

create a WSDL file that defines the Web services. To learn more about how the WSDL file is used in the

development process, see Developing Web services.

WSDL architecture

Web Services Description Language (WSDL) files are written in Extensible Markup Language (XML). To

learn more about XML, see Web services: Resources for learning.

The following is the structure of the information in a WSDL file:

 A WSDL file contains the following parts:

v Web service interface definition

This is part contains the elements, as well as the namespaces.

v Web service implementation

This part contains the definition of the service and ports.

A WSDL file describes a Web service with the following elements:

Web service

interface

definition

Web service

implementation

Port type

Messages

Types

Bindings

Service

Ports

Operation signatures

Parameter definitions

Complex type definitions

Transport protocol and payload format

Service definition element

Supported interface bindings

Chapter 8. Developing WebSphere applications 993

portType

The description of the operations and associated messages. The portType element defines abstract

operations.

<portType name="EightBall">

 <operation name="getAnswer">

 <input message="ebs:IngetAnswerRequest"/>

 <output message="ebs:OutgetAnswerResponse"/>

 </operation>

</portType>

message

The description of input and output parameters and return values.

<message name="IngetAnswerRequest">

 <part name="meth1_inType" type="ebs:questionType"/>

</message>

<message name="OutgetAnswerResponse">

 <part name="meth1_outType" type="ebs:answerType"/>

</message>

types

The schema for describing XML types used in the messages.

<types>

 <xsd:schema targetNamespace="...">

 <xsd:complexType name="questionType">

 <xsd:element name="question" type="string"/>

 </xsd:complexType>

 <xsd:complexType name="answerType">

 ...

</types>

binding

The bindings describe the protocol that is used to access a portType, as well as the data formats for the

messages that are defined by a particular portType element.

<binding name="EightBallBinding" type="ebs:EightBall">

 <soap:binding style="rpc" transport="schemas.xmlsoap.org/soap/http">

 <operation name="ebs:getAnswer">

 <soap:operation soapAction="urn:EightBall"/>

 <input>

 <soap:body namespace="urn:EightBall" ... />

 ...

The services and ports define the location of the Web service.

Service

The service contains the Web service name and a list of ports.

Ports

The ports contain the location of the Web service and the binding used for service access.

<service name="EightBall">

 <port binding="ebs:EightBallBinding" name="EightBallPort">

 <soap:address location="localhost:8080/axis/EightBall"/>

 </port>

</service>

994 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Multipart WSDL best practices

WebSphere Application Server supports deployment of Web services using a multipart Web Services

Description Language (WSDL) file. In multipart WSDL files, an implementation WSDL file contains the

wsdl:service. This implementation WSDL flie imports an interface WSDL file, which contains the other

WSDL constructs. This supports multiple Web services using the same WSDL interface definition.

The <wsdl:import> element indicates a reference to another WSDL file. If the <wsdl:import> element

location attribute does not contain a URL, that is, it contains only a file name, and does not begin with

http://, https:// or file://, the imported file must be located in the same directory and must not

contain a relative path component. For example, if META-INF/wsdl/A_Impl.wsdl is in your module and

contains the <wsdl:import=″A.wsdl″ namespace=″...″/> import statement, the A.wsdl file must also be

located in the module META-INF/wsdl directory.

It is recommended that you place all WSDL files in either the META-INF/wsdl directory, if you are using

Enterprise JavaBeans (EJB), or the WEB-INF/wsdl directory, if you are using JavaBeans components, even

if relative imports are located within the WSDL files. Otherwise, implications exist with the WSDL

publication when you use a path like <location=″../interfaces/A_Interface.wsdl″namespace=″...″/>.

Using a path like this example fails because the presence of the relative path, regardless of whether the

file is located at that path or not. If the location is a Web address, it must be readable at both deployment

and server startup.

WSDL publication

You can publish the files located in the META-INF/wsdl or the WEB-INF/wsdl directory through either a URL

address or file, including WSDL or XSD files. For example, if the file referenced in the <wsdl-file> element

of the webservices.xml deployment descriptor is located in the META-INF/wsdl or the WEB-INF/wsdl

directory, it is publishable. If the files imported by the <wsdl-file> are located in the wsdl/ directory or its

subdirectory, they are publishable.

If the WSDL file referenced by the <wsdl-file> element is located in a directory other than wsdl, or its

subdirectories, the file and its imported files, either WSDL or XSD files, which are in the same directory,

are copied to the wsdl directory without modification when the application is installed. These types of files

can also be published.

If the <wsdl-file> imports a file located in a different directory (a directory that is not -INF/wsdl or a

subdirectory), the file is not copied to the wsdl directory and not available for publishing.

Configuring endpoint URL information for JMS bindings

WebSphere Application Server supports the use of the Java Message Service (JMS) API to transport Web

services requests, as an alternative to using HTTP.

Review the topic Using the Java Message Service to transport Web services requests.

Configuring a service endpoint is necessary to connect Web service clients to any Web services among

the components being assembled or to any external Web services. You can configure the endpoint URL

information for JMS during application installation

In this task, enter the JMS endpoint URL prefix to use for each Web service-enabled enterprise JavaBean

(EJB) Java archive (JAR) file that belong to the application. The JMS endpoint URLs are included in the

Web Service Description Language (WSDL) files published for clients to use.

You can specify HTTP URL prefixes for Web services that are accessed through HTTP by using the

Provide HTTP endpoint URL information panel in the administrative console. These prefixes are used to

form complete endpoint addresses that are included in WSDL files when published.

Chapter 8. Developing WebSphere applications 995

You can specify JMS URL prefixes by using the Provide JMS and EJB endpoint URL information panel in

the administrative console during or after application installation.

To configure JMS URL prefixes:

1. Open the administrative console.

2. Click Applications > Enterprise Applications > application_instance > Provide JMS and EJB

endpoint URL information.

3. Locate the list of Web services modules that are accessible through JMS transport.

4. Type the JMS URL fragment in the URL fragment field. Enter a URL fragment that is a prefix to the

initial URL part that is obtained by examining the deployment information of the Web service. See the

usage scenario following this task for more information.

The value that you enter is used to define the location attribute of the port soap:address element within

the WSDL file that is published using the application_name_ExtendedWSDLFiles.zip or the

application_name_WSDLFiles.zip file on the Publish WSDL zip files panel.

You have a Web service that is accessible through the JMS transport and configured with JMS bindings.

Suppose an application called StockQuoteService contains an EJB JAR file that is named StockQuoteEJB,

which contains one or more Web services that are accessible through the JMS transport. In Using the

Java Message Service to transport Web services requests you defined a queue with the Java Naming and

Directory Interface (JNDI) name of jms/StockQuote_Q, and a connection factory with the JNDI name of

jms/StockQuote_CF, for your application. In this example, you specify the following string as the JMS URL

prefix within the Provide JMS and EJB endpoint URL information panel:

jms:/queue?destination=jms/StockQuote_Q&connectionFactory=jms/StockQuote_CF

The WSDL publisher uses this partial URL string to produce the actual JMS URL for each port component

that is defined in the module. The targetService=<port_name> string is added to the end of the JMS URL,

for example:

jms:/queue?destination=jms/StockQuote_Q&connectionFactory=jms/

 StockQuote_CF&targetService=getQuote

The published WSDL file is used by clients to invoke the Web service.

Publish WSDL files.

Provide JMS and EJB endpoint URL information

Use this page to specify endpoint URL fragments for Web services accessed through SOAP and Java

Message Service (JMS) or directly as enterprise JavaBean (EJBs). Fragments are used to form complete

endpoint addresses included in published Web Services Description Language (WSDL) files.

To view this administrative console page, click Applications >Enterprise Applications >

application_instance > Provide JMS and EJB endpoint URL information.

You can specify a fragment of the endpoint URL to be used in each Web service module. In a published

WSDL file, the URL defining the target endpoint address is found in the location attribute of the port’s

soap:address element.

If you are using Web services modules that are configured to use JMS or configured to access EJBs

directly, these modules are listed on this panel.

URL fragment for JMS:

Specifies a URL fragment for Web services accessed through a JMS transport. You can enter a value that

is used to define the soap:address of a Web service. When WSDL files are published, a URL is formed

using this fragment and is contained in the WSDL files.

996 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

The URL fragment that is entered as a value is a prefix to which the targetService=property is appended

to form a complete JMS URL endpoint. The default value is obtained by examining the installed service’s

deployment information, for example, jms:/queue?destination=jms/MyQueue&connectionFactory=jms/MyCF.

This information is obtained from the Web service’s configured JMS endpoint, which is a Message Driven

Bean (MDB) defined by the endpointEnabler command-line tool. You can modify the URL fragment, for

example, by adding properties. The URL fragment is combined with the targetService property to form the

complete URL, for example,

jms:/queue?destination=jms/MyQueue&connectionFactory=jms/MyCF&priority=5&targetService=GetQuote.

URL fragment for EJB:

Specifies a URL fragment for Web services accessed through an EJB binding. You can enter a value used

to define the location attribute of the port’s generic:address element of a Web service. This port address

is contained in the WSDL zip file when the zip file is published using the

application_name_ExtendedWSDLFiles.zip field on the Publish WSDL zip file panel.

 The URL fragment value entered is a suffix, which is appended to the initial part of the URL obtained by

examining the Web service’s deployment information. For example, the following URL fragment can be

obtained from the EJB’s deployment information:

wsejb:/com.acme.sample.MyStockQuoteHome?jndiName=ejb/MyStockQuoteHome.

In this case, you can enter the following information in the URL fragment field,

jndiProviderURL=corbaloc:iiop:myhost.mycompany.com:2809, which results in this endpoint URL,

wsejb:/com.acme.sample.MyStockQuoteHome?jndiName=ejb/MyStockQuoteHome&jndiProviderURL=

corbaloc:iiop:myhost.mycompany.com:2809.

Configuring Web services applications with the wsadmin tool

You can use the wsadmin scripting tool to complete the several tasks for a Web services application.

Develop a Web services application.

The WebSphere Application Server wsadmin tool provides the ability to run scripts. You can use the

wsadmin tool to manage a WebSphere Application Server installation, as well as configuration, application

deployment, and server run-time operations. The WebSphere Application Server only supports the Jacl

and Jython scripting languages.

To use the wsadmin tool to configure a Web services application or publish a Web Services Description

Language (WSDL) file:

1. Launch a scripting command.

2. Follow the steps in one of the following topics, depending on what task you want to complete:

v Configure Web service client bindings.

v Configure Web service client preferred port mappings .

v Configure Web service client port information .

v Configure the scope of a Web service port .

You have configured Web services applications with the wsadmin tool.

WSIF system management and administration

The Web Services Invocation Framework (WSIF) is provided as a stand-alone JAR file named wsif.jar.

The JAR file contains the core WSIF classes, and the Java, EJB, SOAP over HTTP and SOAP over JMS

providers. Additional providers are packaged as separate JAR files.

Chapter 8. Developing WebSphere applications 997

http://www.w3.org/TR/2000/NOTE-SOAP-20000508/

When you install WebSphere Application Server, the wsif.jar file is put on the WebSphere or Java Virtual

Machine (JVM) class path.

WSIF requires no further configuration. WSIF is a thin abstraction layer between application code and the

relevant invocation infrastructure.

For specific information on other aspects of managing your WSIF system, see the following topics:

v Maintaining the WSIF properties file

v Enabling security for WSIF

v Trace and logging for WSIF

v Troubleshooting the Web Services Invocation Framework

v WSIF (Web Services Invocation Framework) messages

v WSIF - Known restrictions.

Maintaining the WSIF properties file

The Web Services Invocation Framework (WSIF) properties are stored in the wsif.jar file, in a properties

file named wsif.properties.

The wsif.jar file is located in the install_root/lib directory, where install_root is the root directory for

your installation of IBM WebSphere Application Server.

You must keep the “as shipped” wsif.properties file on the class path, so that WSIF can find it and the

client administrator can use it to configure WSIF. However if you make any changes to the file, you do not

replace the original copy in the wsif.jar file. Instead, you save the modified version in the

install_root/lib/properties directory.

Here is a copy of the initial contents of the wsif.properties file. All the possible properties are listed and

described.

Two properties are used to override which WSIFProvider is selected when there

exists multiple providers supporting the same namespace URI. These properties are:

wsif.provider.default.CLASSNAME=N

wsif.provider.uri.M.CLASSNAME=URI

CLASSNAME is the WSIFProvider class name

N is the number of following default wsif.provider.uri.M.CLASSNAME properties

M is a number from 1 to N to uniquely identify each wsif.provider.uri.M.CLASSNAME

property key.

For example the following two properties would override the default SOAP provider

to be the Apache SOAP provider:

wsif.provider.default.org.apache.wsif.providers.soap.ApacheSOAP.WSIFDynamicProvider_ApacheSOAP=1

wsif.provider.uri.1.org.apache.wsif.providers.soap.ApacheSOAP.WSIFDynamicProvider_ApacheSOAP=\

http://schemas.xmlsoap.org/wsdl/soap/

maximum number of milliseconds to wait for a response to a synchronous request.

Default value if not defined is to wait forever.

wsif.syncrequest.timeout=10000

maximum number of seconds to wait for a response to an async request.

if not defined on invalid defaults to no timeout

wsif.asyncrequest.timeout=60

To enable your legacy Web services to continue to work with WSIF, you might need to change the default

WSIF SOAP provider back to the former Apache SOAP provider.

998 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Enabling security for WSIF

The Web Services Invocation Framework (WSIF) interacts with a security manager in the following ways:

v WSIF runs in the Java 2 platform, Enterprise Edition (J2EE) security context without modification.

v When WSIF is run under a J2EE container, port implementations can use the security context to pass

on security tokens or credentials as necessary.

v WSIF implementations can automatically convert J2EE security context into appropriate context for

onward services.

For WSIF to interact effectively with the WebSphere Application Server security manager, enable the

following permission in the was.policy file: FilePermission to load the WSDL. This permission is required

when a WSDL file is referred to using the file:// protocol.

Troubleshooting the Web Services Invocation Framework

For information on resolving WebSphere-level problems, see the Troubleshooting and support PDF.

To identify and resolve Web Services Invocation Framework (WSIF)-related problems, you can use the

standard WebSphere Application Server trace and logging facilities. If you encounter a problem that you

think might be related to WSIF, you can check for error messages in the WebSphere Application Server

administrative console, and in the application server stdout.log file. You can also enable the application

server debug trace to provide a detailed exception dump.

A list of the WSIF run-time system messages, with details of what each message means, is provided in

Message reference for WSIF.

A list of the main known restrictions that apply when using WSIF is provided in WSIF - Known restrictions.

Here is a checklist of major WSIF activities, with advice on common problems associated with each

activity:

Create service

Handcrafted WSDL can cause numerous problems. To help ensure that your WSDL is valid, use a

tool such as Rational Application Developer to create your service.

Define transport mechanism

For the Java Message Service (JMS), check that you have set up the Java Naming and Directory

Interface (JNDI) correctly, and created the necessary connection factories and queues.

 For SOAP, make sure that the deployment descriptor file dds.xml is correct - preferably by creating

it using Rational Application Developer or similar tooling.

Create client - Java code

Follow the correct format for creating a WSIF service, port, operation and message. For examples

of correct code, see the Address Book Sample.

Compile code (client and service)

Check that the build path against code is correct, and that it contains the correct levels of JAR

files.

 Create a valid EAR file for your service in preparation for deployment to a Web server.

Deploy service

When you install and deploy the service EAR file, check carefully any messages given when the

service is deployed.

Server setup and start

Make sure that the WebSphere Application Server server.policy file (in the /properties

directory) has the correct security settings. For more information, see Enabling security for WSIF.

WSIF setup

Check that the wsif.properties file is correctly set up. For more information, see Maintaining the

WSIF properties file.

Chapter 8. Developing WebSphere applications 999

http://www.w3.org/TR/2000/NOTE-SOAP-20000508/

Run client

Either check that you have defined the class path correctly to include references to your client

classes, WSIF JAR files and any other necessary JAR files, or (preferably) run your client using

the WebSphere Application Server launchClient tool.

Here is a list of common errors, and information on their probable causes:

v “No class definition” errors received when running client code.

This problem usually indicates an error in the class path setup. Check that the relevant JAR files are

included.

v “Cannot find WSDL” error.

Some likely causes are:

– The application server is not running.

– The server location and port number in the WSDL are not correct.

– The WSDL is badly formed (check the error messages in the application server stdout.log file).

– The application server has not been restarted since the service was installed.

You might also try the following checks:

– Can you load the WSDL into your Web browser from the location specified in the error message?

– Can you load the corresponding WSDL binding files into your Web browser?

v Your Web service EAR file does not install correctly onto the application server.

It is likely that the EAR file is badly formed. Verify the installation by completing the following steps:

– For an EJB binding, run the WebSphere Application Server tool \bin\dumpnamespace. This tool lists

the current contents of the JNDI directory.

– For a SOAP over HTTP binding, open the http://pathToServer/WebServiceName/admin/list.jsp

page (if you have the SOAP administration pages installed). This page lists all currently installed

Web services.

– For a SOAP over JMS binding, complete the following checks:

- Check that the queue manager is running.

- Check that the necessary queues are defined.

- Check the JNDI setup.

- Use the “display context” option in the jmsadmin tool to list the current JNDI definitions.

- Check that the Remote Procedure Call (RPC) router is running.

v There is a permissions problem or security error.

Check that the WebSphere Application Server server.policy file (in the /properties directory) has the

correct security settings. For more information, see Enabling security for WSIF.

v Using WSIF with multiple clients causes a SOAP parsing error.

Before you deploy a Web service to WebSphere Application Server, you must decide on the scope of

the Web service. The deployment descriptor file dds.xml for the Web service includes the following line:

 <isd:provider type="java" scope="Application"

You can set the Scope attribute to Application or Session. The default setting is Application, and this

value is correct if each request to the Web service does not require objects to be maintained for longer

than a single instance. If Scope is set to Application the objects are not available to another request

during the execution of the single instance, and they are released on completion. If your Web service

needs objects to be maintained for multiple requests, and to be unique within each request, you must

set the scope to Session. If Scope is set to Session, the objects are not available to another request

during the life of the session, and they are released on completion of the session. If scope is set to

Application instead of Session, you might get the following SOAP error:

SOAPException: SOAP-ENV:ClientParsing error, response was:

FWK005 parse may not be called while parsing.;

nested exception is:

[SOAPException: faultCode=SOAP-ENV:Client; msg=Parsing error, response was:

1000 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

FWK005 parse may not be called while parsing.;

 targetException=org.xml.sax.SAXException:

FWK005 parse may not be called while parsing.]

v Using the same names for JMS messaging queues and queue connection factories that run on

application servers on different machines can cause JNDI lookup errors. You should not use the

same names for messaging queues and queue connection factories that run on application servers on

different machines, because WSIF always looks first for JMS destinations locally, and only uses the full

JNDI reference if it cannot find the destination locally. For example, if you run a Web service on a

remote machine, and have an application server running locally that uses the same names for the

messaging queues and queue connection factories, then WSIF will find and use the local queues even

if the remote JNDI destination is provided in full in the WSDL service definition.

v The current WSIF default SOAP provider (the IBM Web Service SOAP provider) does not fully

interoperate with services that are running on the former (Apache SOAP) provider. This restriction

is due to the fact that the IBM Web Service SOAP provider is designed to interoperate fully with a

JAX-RPC compliant Web service, and Apache SOAP cannot provide such a service. To enable

interoperation, modify either your Web service or the WSIF default SOAP provider as described in WSIF

SOAP provider: working with legacy applications.

Trace and logging for WSIF:

If you want to enable trace for the Web Services Invocation Framework (WSIF) API within WebSphere

Application Server, and have trace, stdout and stderr for the application server written to a well-known

location, see ″Enabling trace″ and ″Setting up component trace (CTRACE)″ in the Troubleshooting and

support PDF.

WSIF offers trace points at the opening and closing of ports, the invocation of services, and the responses

from services.

To trace the WSIF API, you need to specify the following trace string:

wsif=all=enabled

WSIF also includes a SimpleLog utility through which you can run trace when using WSIF outside of

WebSphere Application Server. To enable this utility, complete the following steps:

1. Create a file named commons-logging.properties with the following contents:

org.apache.commons.logging.LogFactory=org.apache.commons.logging.impl.LogFactoryImpl

org.apache.commons.logging.Log=org.apache.commons.logging.impl.SimpleLog

2. Create a file named simplelog.properties with the following contents:

org.apache.commons.logging.simplelog.defaultlog=trace

org.apache.commons.logging.simplelog.showShortLogname=true

org.apache.commons.logging.simplelog.showdatetime=true

3. Put both these files, and the commons-logging.jar file, on the class path.

The SimpleLog uitility writes trace to the System.err file.

WSIF (Web Services Invocation Framework) messages:

This topic contains a list of the WSIF run-time system messages, with details of what each message

means.

 WebSphere system messages are logged from a variety of sources, including application server

components and applications. Messages logged by application server components and associated IBM

products start with a unique message identifier that indicates the component or application that issued the

message.

Chapter 8. Developing WebSphere applications 1001

For more information about the message identifier format, see the topic Message reference.

WSIF0001E: An extension registry was not found for the element type “{0}”

Explanation: Parameters: {0} element type. No extension registry was found for the element type

specified.

 User Response: Add the appropriate extension registry to the port factory in your code.

WSIF0002E: A failure occurred in loading WSDL from “{0}”

Explanation: Parameters: {0} location of the WSDL file. The WSDL file could not be found at the

location specified or did not parse correctly

 User Response: Check that the location of the WSDL file is correct. Check that any network

connections required are available. Check that the WSDL file contains valid WSDL.

WSIF0003W: An error occurred finding pluggable providers: {0}

Explanation: Parameters: {0} specific details about the error. There was a problem locating a

WSIF pluggable provider using the J2SE 1.3 JAR file extensions to support service providers

architecture. The WSIF trace file will contain the full exception details.

 User Response: Verify that a META-INF/services/org.apache.wsif.spi.WSIFProvider file exists in a

provider jar, that each class referenced in the META-INF file exists in the class path, and that each

class implements org.apache.wsif.spi.WSIFProvider. The class in error will be ignored and WSIF

will continue locating other pluggable providers.

WSIF0004E: WSDL contains an operation type “{0}” which is not supported for “{1}”

Explanation: Parameters: {0} name of the operation type specified. {1} name of the portType for

the operation. An operation type which is not supported has been specified in the WSDL.

 User Response: Remove any operations of the unsupported type from the WSDL. If the operation

is required then make sure all messages have been correctly specified for the operation.

WSIF0005E: An error occurred when invoking the method “{1}” . (“{0}”)

Explanation: Parameters: {0} name of communication type. For example EJB or Apache SOAP.

{1} name of the method that failed. An error was encountered when invoking a method on the Web

service using the communication shown in brackets.

 User Response: Check that the method exists on the Web service and that the correct parts have

been added to the operation as described in the WSDL. Network problems might be a cause if the

method is remote and so check any required connections.

WSIF0006W: Multiple WSIFProvider found supporting the same namespace URI “{0}” . Found (“{1}”

) Explanation: Parameters: {0} the namespace URI. {1} a list of the WSIFProvider found.. There

are multiple org.apache.wsif.spi.WSIFProvider classes in the service provider path that support the

same namespace URI.

 User Response: A following WSIF0007I message will be issued notifying which WSIPFProvider

will be used. Which WSIFProvider is chosen is based on settings in the wsif.properties file, or if

not defined in the properties, the last WSIFProvider found will be used. See the wsif.properties file

for more details on how to define which provider should be used to support a namespace URI.

WSIF0007I: Using WSIFProvider “{0}” for namespaceURI “{1}”

Explanation: Parameters: {0} the classname of the WSIFProvider being used. {1} the

namespaceURI the provider will be used to support.. Either a previous WSIF0006W message has

been issued or the SetDynamicWSIFProvider method has been used to override the provider used

to support a namespaceURI.

 User Response: None. See also WSIF0006W.

WSIF0008W: WSIFDefaultCorrelationService removing correlator due to timeout. ID:“{0}”

Explanation: Parameters: {0} the ID of the correlator being removed from the correlation service.

A stored correlator is being removed from the correlation service due to its timeout expiring.

 User Response: Determine why no response has been received for the asynchronous request

within the timeout period. The wsif.asyncrequest.timeout property of the wsif.properties file defines

the length of the timeout period.

1002 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

WSIF0009I: Using correlation service - “{0}”

Explanation: Parameters: {0} the name of the correlation service being used. This identifies the

name of the correlation service that will be used to process asynchronous requests.

 User Response: None. If a correlation service other than the default WSIF supplied one is

required, ensure that it is correctly registered in the JNDI java:comp/wsif/WSIFCorrelationService

namespace.

WSIF0010E: Exception thrown while processing asynchronous response - “{0}”

Explanation: Parameters: {0} the error message string of the exception. While processing the

response from an executeRequestResponseAsync call an exception was thrown.

 User Response: Use the exception error message string to determine the cause of the error. The

WSIF trace will have more details on the error including the exception stack trace.

WSIF0011I: Preferred port “{0}” was not available

Explanation: Parameters: {0} the user’s preferred port. The preferred port set by the user on

org.apache.wsif.WSIFService is not available

 User Response: None unless this message appears for long periods of time in which case the

user might want to pick a different port as their preferred port.

WSIF - Known restrictions:

This topic lists the main known restrictions that apply when using WSIF.

 Threading

WSIF is not thread-safe.

External Standards

WSIF supports:

v SOAP Version 1.1 (not 1.2 or later).

v WSDL Version 1.1 (not 1.2 or later).

WSIF does not provide WS-I compliance, and it does not support the Java API for XML-based

Remote Procedure Calls (JAX-RPC) Version 1.1 (or later).

Full schema parsing

WSIF does not support full schema parsing. For example, WSDL references in complex types in

the schema are not handled, and attributes are not handled.

SOAP WSIF does not support:

v SOAP headers that are passed as <parts>.

v Unreferenced attachments in SOAP responses.

v Document Encoded style SOAP messages.

Note: This is not primarily a WSIF restriction. Although you can specify Document Encoded

style in WSDL, it is not generally considered to be a valid option and is not supported by

the Web Services Interoperability Organization (WS-I).

SOAP provider interoperability

The current WSIF default SOAP provider (the IBM Web Service SOAP provider) does not fully

interoperate with services that are running on the former (Apache SOAP) provider. This restriction

is due to the fact that the IBM Web Service SOAP provider is designed to interoperate fully with a

JAX-RPC compliant Web service, and Apache SOAP cannot provide such a service. For

information on how to overcome this restriction, see WSIF SOAP provider: working with legacy

applications

Type mappings

The current WSIF default SOAP provider (the IBM Web Service SOAP provider) conforms to the

JAX-RPC type mapping rules that were finalized after the former (Apache SOAP) provider was

created. The majority of types are mapped the same way by both providers. The exceptions are:

Chapter 8. Developing WebSphere applications 1003

http://www.ws-i.org/

xsd:date, xsd:dateTime, xsd:hexBinary and xsd:QName. Both client and service need to use the

same mapping rules if any of these four types are used. Below is a table detailing the mapping

rules for these four types:

 XML Data Type Apache SOAP Java Mapping JAX-RPC Java Mapping

xsd:date java.util.Date Not supported

xsd:dateTime Not supported java.util.Calendar

xsd:hexBinary Hexadecimal string byte []

xsd:QName org.apache.soap.util.xml.QName javax.xml.namespace.QName

Arrays and complex types

WSIF does not support general complex types, it only handles complex types that map to Java

Beans. To use schema complex types, you must write your own custom serializers. The specific

complex type and array support for WSIF outbound invocation of Web services is as follows:

v WSIF supports Java classes generated by WebSphere Studio Application Developer -

Integration Edition (WSAD-IE) message generators (the normal case when WSDL files are

downloaded from somewhere else). The WSAD-IE-based generation happens automatically

when you use the BPEL editor, or the generation actions available on the Enterprise Services

context menu, or the Business Integration toolbar.

v WSIF does not support Java beans generated by other tools, including the base WSAD tool.

v For WSAD-IE generated Java beans, attributes defined in the WSDL do not work. That is to say

that these attributes, although they appear in the Java beans generated to represent the

complex type, do not appear in the SOAP request created by WSIF.

v WSIF does not support arrays when they are a field of a Java bean. That is to say, WSIF only

supports an array that is passed in as a named <part>. If an array is wrappered inside a Java

bean, the array is not serialized in the same way.

Object Serialization

WSIF does not support serialization of objects across different releases.

Asynchronous invocation

WSIF supports synchronous invocation for all providers. For the JMS and the SOAP over JMS

providers, WSIF also supports asynchronous invocation. You should call the supportsAsync()

method before trying to execute an asynchronous operation.

The EJB provider

The target service of the WSIF EJB provider must be a remote-home interface, it cannot be an

EJB local-home interface. In addition, the EJB stub classes must be available on the client class

path.

Running outside WebSphere Application Server

WSIF is not supported for use outside WebSphere Application Server.

Using the UDDI Registry

Welcome to the IBM WebSphere UDDI Registry.

Use the table of contents (on the left and below) to view the various topics for a specific product or

technology. Select the topic you are interested in to either open documentation locally or find information

about how to locate documentation.

v An Overview of the IBM Version 3 UDDI Registry

v Terminology

v Getting started with UDDI Registry

v Setting up and deploying a new UDDI Registry

v Removing and reinstalling a UDDI Registry

1004 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

v Configuring the UDDI Registry Application

v Managing the UDDI Registry

v UDDI Registry Client Programming

v UDDI Registry Security

v The UDDI Registry user interface

v UDDI Registry Management Interfaces

v IBM JAXR Provider for the UDDI Registry

v UDDI Registry troubleshooting

v UDDI Registry Messages

v UDDI Registry Samples

An overview of the IBM Version 3 UDDI Registry

The Universal Description, Discovery and Integration (UDDI) specifications define a way to publish and

discover information about Web services. The term ’Web service’ describes specific business functionality

exposed by a company, usually through an Internet connection, to allow another company, or its

subsidiaries, or software program to use the service.

The UDDI specifications define a standard for the visibility, reusability and manageability essential for a

Service Oriented Architecture (SOA) registry service.

IBM WebSphere UDDI Registry

The IBM WebSphere UDDI Registry is a directory for Web services that is implemented using the UDDI

specifications. It is a component of WebSphere Application Server Version 6.

A critical component of IBM’s on-demand Service Oriented Architecture, IBM WebSphere UDDI Registry

solves the problem of discovery of technical components for an enterprise and its partners by:

v Providing control, flexibility and confidentiality so that an enterprise can protect its e-business

investments

v Increasing efficiency by making it easier to identify technical assets

v Leveraging existing infrastructures

For example, the IBM WebSphere UDDI Registry could be used in the following way within a larger

enterprise:

A company has a legacy application that provides telephone numbers and Human Resources (HR)

information about employees. This is turned into a Web service and published to the registry. A developer

in the same company needs to write an application for a procurement function that also needs to provide

HR information to the supplier. The application should allow the supplier to have access to the employee

account codes once the employee provides his name or serial number. Before Web services, the

developer had there choices:

1. Would not have known about the similar application

2. Knew about it but could not reuse due to technical barriers

3. Knew about it and reused only after significant time and negotiation

With UDDI, the developer can search for the ″web service″ and reuse the existing technical component in

their new application for the supplier in a matter of minutes. The developer saves time and gets the

application up and running sooner than they would have otherwise, thereby increasing efficiency and

saving the company time and money. The IBM WebSphere UDDI Registry was the first version 2

standard-compliant UDDI registry for private enterprise work. The IBM WebSphere UDDI Registry in

WebSphere Application Server Version 6.0:

v Supports the UDDI Version 3.0 specifications and also supports the Version 2.0 standard API.

v Leverages the proven, reliable WebSphere Application Server technology

v Uses a relational database, such as DB2, for its persistent store

Chapter 8. Developing WebSphere applications 1005

What’s new in UDDI Version 3

The main aspects of UDDI Version 3 specification that are provided within WebSphere Application Server

Version 6 are as follows: (There are also some additional capabilities provided by the IBM WebSphere

UDDI Registry in WebSphere Application Server Version 6.0 which are described in a section below).

Improved recognition of the importance of Private UDDI Registries

These are registries that are installed, owned, managed and controlled by a department, company,

consortium and so on.

Publisher-assigned keys

This allows the publisher of a UDDI entity to specify its key, rather than having a unique key assigned by

the registry. As well as allowing more human-friendly, URI-based keys, this also makes it easier to manage

multiple registries.

UDDI Information Model improvements

The UDDI data structures have been extended in a number of ways which improve the ability of UDDI to

represent businesses and services via metadata.

Security Enhancements

The introduction of digital signatures provides additional security. Each of the main UDDI entities can be

digitally signed, thus improving the integrity and trustworthiness of UDDI data.

Ownership transfer APIs

These allow the ownership of a UDDI entity to be transferred from one publisher to another.

UDDI Policy

Allows the behavior of a UDDI Registry (or a node within a multi-node registry) to be defined by setting

policy, thus recognizing the various different environments in which a UDDI Registry will be used.

HTTP GET support for UDDI entities

The HTTP GET service is extended beyond the scope for discovery URLs that is a part of the UDDI

Version 2 specification. The service allows HTTP GET to be used to access XML representations of each

of the UDDI data structures.

Additional Capabilities provided by the UDDI Registry

The Version 3 UDDI Registry provided in WebSphere Application Server Version 6.0 provides the following

capabilities in addition to support for the UDDI Version 3 specification:

Version 2 UDDI Inquiry and Publish SOAP API compatibility

Backward compatibility is maintained for the Version 1 and Version 2 SOAP Inquiry and Publish APIs.

UDDI Admin Console extension

1006 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

The WebSphere Application Server Version 6 Administrative Console includes a section which will allow

administrators to manage UDDI-specific aspects of their WebSphere environment. This includes the ability

to set defaults for initialization of the UDDI node (such as its node ID), and to set the UDDI Version 3

Policy values.

UDDI Registry Administrative Interface

A JMX administrative interface allows administrators to programmatically manage UDDI-specific aspects of

the WebSphere environment.

Multi-database support

The UDDI data is persisted to a registry database. In WebSphere Application Server Version 6 the

databases that are supported are DB2, Cloudscape, and Oracle. Support is provided for remote

databases.

User-defined Value Set support

This allows users to create their own categorization schemes or value sets, in addition to the standard

schemes, such as NAICS, that are provided with the product.

UDDI Utility Tools

UDDI Utility Tools allows importing and exporting of entities using the UDDI Version 2 API.

UDDI user interface

The UDDI user console supports the Inquiry and Publish APIs providing a similar level of support for the

Version 3 APIs as was offered for UDDI Version 2 in WebSphere Application Server Version 5.

UDDI Version 3 Client

The IBM Java Client for UDDI Version 3 is a Java client for UDDI which handles the construction of raw

SOAP requests for the client application. It is a JAX-RPC client and uses Version 3 datatypes generated

from the UDDI Version 3 WSDL and schema. These datatypes are serialized/deserialized to the XML

which constitutes the raw UDDI requests.

UDDI Version 2 Clients

The following clients for UDDI Version 2 requests are provided:

v UDDI4J - a Java class library for issuing UDDI requests. This was provided in WebSphere Application

Server Version 5 for both UDDI Version 1 requests (uddi4j.jar) and Version 2 requests (uddi4jv2.jar).

These class libraries continue to be supported but are now both deprecated.

v JAXR - the Java API for XML Registries is a Java client API for accessing UDDI and ebXML registries.

WebSphere Application Server 6.0 provides a JAXR Provider for accessing the IBM WebSphere UDDI

Registry. It conforms to the JAXR 1.0 specification.

v EJB - an EJB interface for issuing UDDI version 2 requests. This continues to be supported but is now

deprecated.

UDDI Registry terminology

Throughout the UDDI documentation in this Information Center the directory location of the WebSphere

Application Server is referred to as WAS_HOME. The default locations are:

Windows

Chapter 8. Developing WebSphere applications 1007

WAS_HOME

C:\Program Files\IBM\WebSphere\AppServer\

Linux/Solaris/HP Platforms

WAS_HOME

/opt/IBM/WebSphere/AppServer/

AIX Platform

WAS_HOME

/usr/IBM/WebSphere/AppServer/

z/OS Platform

WAS_HOME

/WebSphere/V6R0M0/AppServer/

UDDI Definitions

bindingTemplate

Technical information about a service entry point and construction specifications.

 businessEntity

Information about the party who publishes information about a family of services.

 businessService

Descriptive information about a particular service.

 Customized UDDI node

This is a UDDI node that is initialized with customized settings for the UDDI properties and UDDI

policies, in particular with non-default values for those properties that are read-only after

initialization. A customized UDDI node is recommended for anything other than simple testing

purposes (for which a default UDDI node is sufficient). You can set up a customized UDDI node by

following the instructions in Setting up a customized UDDI node. When a customized UDDI node

is first started, you have to set values for certain properties and to initialize the node (using the

Administrative Console or UDDI Administrative Interface), before the node is ready to accept UDDI

requests. The properties that need to be set control characteristics of the UDDI node that cannot

be changed after initialization. An advantage of using a customized UDDI node is that it allows you

to set these properties to values that are suitable for your environment and usage of UDDI. After a

customized UDDI node has been initialized, it differs from a default UDDI node only in that it uses

customized UDDI property and policy values.

Default UDDI node

This is a UDDI node which has been initialized with default settings for the UDDI properties and

UDDI policies, including the properties that are read-only after initialization. A default UDDI node is

intended for test purposes and as a simple way to become familiar with the behavior of the UDDI

Registry. You can set up a default UDDI node in two ways. The first is to specify the ’default’

option when you run uddiDeploy.jacl, in which case the UDDI database will be a Cloudscape

database. The second is to run the supplied SQL script insert_default_database_indicator against

the UDDI database, in which case the UDDI database can be Cloudscape, DB2 or Oracle. After a

default UDDI node has been initialized, it differs from a customized UDDI node only in that it uses

default UDDI property and policy values.

 Policy profile

A set of UDDI policies. The default policy profile is the profile created when the default UDDI node

is created. In this instance, the nodeID and root key generator are set to read only and are

unchangeable after installation.

 publisherAssertion

Information about a relationship between two parties, asserted by one or both.

1008 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

tModel

Short for technical model.

 A tModel is a data structure representing a reusable concept, such as a Web service type, a

protocol used by Web services, or a category system.

 tModel keys within a service description are a technical ″fingerprint″ that you can use to trace the

compatibility origins of a given service. They provide a common point of reference that allows you

to identify compatible services.

 tModels are used to establish the existence of a variety of concepts and to point to their technical

definitions. tModels that represent value sets such as category, identifier, and relationship systems

are used to provide additional data to the UDDI core entities to facilitate discovery along a number

of dimensions. This additional data is captured in keyedReferences that reside in category Bags,

identifierBags, or publisherAssertions. The tModelKey attributes in these keyedReferences refer to

the value set that relates to the concept or namespace being represented. The keyValues contain

the actual values from that value set. In some cases keyNames are significant, such as for

describing relationships and when using the general keywords value set. In all other cases,

however, keyNames are used to provide a human readable version of what is in the keyValue.

UDDI Application

The IBM WebSphere UDDI Registry J2EE application.

 UDDI entitlement

An entitlement that a UDDI user or publisher has within a UDDI registry, such as the capability to

publish keyGenerators, or the tier to which the publisher is assigned (in other words, the number

of entities that the publisher is entitled to published). Each UDDI publisher will have a set of

settings for the various UDDI entitlements. A UDDI entitlement is sometimes referred to as a ’user

entitlement’, or as the UDDI publisher’s set of ’user entitlements’.

 UDDI Node

A set of Web Services supporting at least one of the UDDI API sets, which supports interaction

with UDDI data through the UDDI APIs. There is no direct mapping between a UDDI node and a

WebSphere Application Server (WAS) node. A UDDI node consists of an instance of the UDDI

application running in an application server (or a cluster of UDDI application instances running in a

cluster of application servers) together with an instance of the UDDI database containing UDDI

data.

 UDDI node initialization

The process of node initialization sets up values in the UDDI database, and establishes the

″personality″ of the UDDI node. A UDDI node cannot accept UDDI API requests until it has been

initialized.

 UDDI node state

Describes the current state of the UDDI node, as opposed to the state of the UDDI application

(which is either stopped or started). The state of a UDDI node can be one of not initialized,

initialization pending, initialization in progress, activated or deactivated.

 UDDI NodeId

A unique identifier of a UDDI node.

 UDDI Policy

A UDDI policy is a statement of required and expected behavior of a UDDI Registry, specified via

policy values for the various policies defined in the UDDI Version Specification.

 UDDI property

A value for a property which controls the personality or behavior of a UDDI node.

 UDDI publisher

A WebSphere user who is entitled to publish UDDI entities to a specified UDDI Registry. A UDDI

publisher is sometimes referred to as a ’UDDI user’, or simply as a ’publisher’ when used in a

UDDI context.

Chapter 8. Developing WebSphere applications 1009

UDDI Registry

A UDDI Registry comprises one or more UDDI nodes. The IBM WebSphere UDDI Registry in

WebSphere Application Server Version 6.0 only supports single-node UDDI registries.

 UDDI Tier

Determines the number of UDDI entities of each type (business, services per business, bindings

per service, tModel, publisher assertion) that a UDDI publisher is entitled to publish. Each UDDI

publisher will be assigned (either by default or explicitly by a UDDI administrator) to a particular

tier, and will not be able to publish more entities than are allowed for that tier. There are some

predefined tiers supplied with the UDDI Registry, and a UDDI administrator can create additional

tiers. A UDDI tier is often referred to simply as a ’tier’ when used in a UDDI context.

 Version 2 UDDI Registry

A shorthand term used to refer to an IBM WebSphere UDDI Registry implementation which

supports Version 2 of the UDDI specification (and also Version 1). A Version 2 UDDI Registry is

included in WebSphere Application Server Network Deployment Version 5.x.

 Version 3 UDDI Registry

A shorthand term used to refer to an IBM WebSphere UDDI Registry implementation which

supports Version 3 of the UDDI specification (and also Versions 1 and 2). A Version 3 UDDI

Registry is included in WebSphere Application Server Version 6.0. It should be noted that the term

’Version 3 UDDI Registry’ does not indicate a registry which only supports UDDI version 3

requests.

 The following table shows how the various versions of the IBM UDDI Registry relate to the relevant OASIS

specification and WebSphere Application Server level:

 IBM UDDI Registry Version OASIS UDDI specification levels

supported

Supported on WebSphere Application

Server version

1.1 v UDDI Version 1

v UDDI Version 2

4.0.2

1.1.1 v UDDI Version 1

v UDDI Version 2

4.0.3 and later

2.0.x v UDDI Version 1

v UDDI Version 2

5.0.x

2.1.x v UDDI Version 1

v UDDI Version 2

5.1.x

3.0.2 v UDDI Version 1

v UDDI Version 2.0.4 (APIs), Version

2.0.3 (data structures)

v UDDI Version 3.0.2

6.0

UDDI Registry Security

The IBM UDDI V3 Registry is designed to exploit the advantages of WebSphere security, and it supports

the UDDI v1,v2 security features and UDDI V3 Security API.

For production use, it is recommended that the IBM UDDI V3 Registry is configured to use WebSphere

security and avoid use of UDDI V1,V2 security features and the V3 Security API.

But, for solutions with a strong preference for UDDI security, the IBM UDDI V3 Registry can be configured

to enable its use, both when WAS security is enabled and when it is disabled.

1010 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

http://www.oasis-open.org
http://www.oasis-open.org

Configuring UDDI to use WAS security

To exploit WebSphere security features WebSphere Application Server (WAS) security must be enabled.

When security is enabled, the default settings in UDDI v3 Application and Web deployment descriptors

result in the following features:

Authentication

UDDI exploits WAS security Role Mapping by mapping users of UDDI Publish services to the special

AllAuthenticatedUsers role to ensure that only valid WebSphere registered users can access these

services. This is the default setting for:

v V1,2 SOAP Publish service (SOAP_Publish _User)

v EJB Publish service (EJB_Publish_Role)

v V3 GUI Publish service (GUI_Publish_User)

v V3 Publish service (V3SOAP_Publish_User_Role)

v V3 Custody Transfer service (V3SOAP_CustodyTransfer_User_Role)

v V3 Security service (V3SOAP_Security_User_Role)

The following services are mapped to the special role Everyone and are not protected:

v V1,2 SOAP Inquiry service (SOAP_Inquiry_User)

v EJB Inquiry service (EJB_Inquiry_Role)

v V3 GUI Inquiry service (GUI_Inquiry_User)

v V3 SOAP Inquiry service (V3SOAP_Inquiry_User_Role)

This restriction can be managed using WebSphere Administrative Console features:Applications >

Enterprise Applications> UDDI V3 Registry > Additional Properties > Map security roles to

users/groups.

Further information is also available in: Configuring UDDI Security Roles.

Data Confidentiality

UDDI also exploits the advantages of the WAS security feature enforcing service data confidentiality (

’security constraint‘,’user-data-constraint‘, ’transport-guarantee‘ = ’CONFIDENTIAL‘ requiring the use of

HTTPS) for the following services:

v V1,2 SOAP Publish service (SOAP_Publish _User)

v EJB Publish service (EJB_Publish_Role)

v V3 GUI Publish service (GUI_Publish_User)

v V3 Publish service (V3SOAP_Publish_User_Role)

v V3 Custody Transfer service (V3SOAP_CustodyTransfer_User_Role)

v V3 Security service (V3SOAP_Security_User_Role)

By default the following services are do not enforce data confidentiality (’security constraint‘,

’user-data-constraint‘, ’transport-guarantee‘ = ’NONE‘ not requiring the use of HTTPS, HTTP is OK):

v V1,2 SOAP Inquiry service (SOAP_Inquiry_User)

v EJB Inquiry service (EJB_Inquiry_Role)

v V3 GUI Inquiry service (GUI_Inquiry_User)

v V3 SOAP Inquiry service (V3SOAP_Inquiry_User_Role)

For information on how to manage the data confidentiality restriction, please refer to ’Configuring SOAP

API and GUI services‘ section on user data constraint transport guarantee.

Chapter 8. Developing WebSphere applications 1011

Configuring UDDI to use UDDI security

It is possible to exploit UDDI security features when WebSphere Application Server (WAS) security is

enabled or disabled. Depending on the WAS security enabled/disabled setting, different configuration is

required and different behavior achieved. While useful for test, it is not anticipated that WAS security is

disabled for production configurations.

UDDI security with WAS Security enabled

When WAS security is enabled, to use the UDDI v1//2 (publish) security features

(get_AuthToken,discard_AuthToken) or the UDDI v3 security API (get_AuthToken, discard_AuthToken) it is

necessary to do the following:

v v set the WAS security Role Mappings to Everyone for:

– V1,2 SOAP Publish service (SOAP_Publish _User)

– V3 Publish service (V3SOAP_Publish_User_Role)

– V3 Custody Transfer service (V3SOAP_CustodyTransfer_User_Role)

– V3 Security service (V3SOAP_Security_User_Role)

As identified above this can be managed using the WebSphere Administrative Console: Applications >

Enterprise Applications> UDDI V3 Registry > Additional Properties > Map security roles to

users/groups

v v ensure that UDDI Policy is set to require the use of AuthTokens for the Publish and CustodyTransfer

API services (it is implicit for V1/2 Publish).

This can be managed using the WebSphere Administrative Console: UDDI>UDDI

Nodes>uddinodename>Policy Groups>APIs>‘authorization for publish‘, ’authorization for

custody transfer‘

With this configuration, no Security Role authentication restriction is imposed, but the credentials

associated with the authToken are authenticated by WebSphere. Further information is also available in:

Configuring UDDI Security Roles.

Note, that when WAS security is enabled, WAS data confidentiality management is independent of UDDI

security and is managed as described above.

UDDI security with WAS Security disabled

With WAS Security disabled, neither WAS Security Roles nor data confidentiality constraints apply. This

mode may be useful for test UDDI Registry configurations.

In this mode, UDDI V1/2 security features are active, and UDDI V1/2 authTokens should be used on UDDI

V1/2 publish requests. Publisher requesting an authToken or using an authToken do have to be a

registered WAS users.

With respect to UDDI V3, the use of the UDDI V3 Security API, and the use of authTokens with V3 Publish

and Custody Transfer APIs is optional. If required, the following configuration steps are necessary:

v use the WebSphere Administrative Console to identify that use of authInfo is required: UDDI>UDDI

Nodes>uddinodename >General Properties> check ’Use authInfo credentials if provided‘

v ensure that UDDI Policy is set to require the use of AuthTokens for the Publish and CustodyTransfer

using the WebSphere Administrative Console: UDDI>UDDI Nodes>uddinodename>Policy

Groups>APIs>check ‘authorization for publish‘ and ’authorization for custody transfer

1012 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Additional security considerations

The UDDI Registry also supports use of XML Digital Signatures to sign UDDI entities. This is described in

Use of digital signatures with the UDDI Registry.

Additional Policy considerations

A number of the UDDI property and policy settings also determine the behavior of a UDDI Registry with

respect to security:

v Default user name -used when WAS Security is disabled and no authToken data is supplied (see

WebSphere Administrative Console > UDDI>UDDI Nodes>uddiNodeName >General Properties>

Default user).

v Authorization for Inquiry, Authorization for Publish, Authorization for Custody Transfer – as described

above, checked to require use of authTokens when not ’overridden‘ by WAS Security Role

AllAuthenticatedUsers (see WebSphere Administrative Console> UDDI>UDDI Nodes>uddiNodeName

> Policy Groups>APIs>‘authorization for Inquiry‘, ‘authorization for publish‘ and ’authorization

for custody transfer‘).

v Use authInfo credential if provided – as described above, applicable when WAS security is disabled

(UDDI>UDDI Nodes>uddinodename >General Properties> ’Use authInfo credentials if provided‘).

v Authentication token expiry period – to determine the length of idle time allowed before an authToken

becomes invalid (see WebSphere Administrative Console > UDDI>UDDI Nodes>uddiNodeName

>General Properties> Authentication token expiry period).

v Key space requests require digital signature – determines whether all tModel:keyGenerator requests for

key space must be signed. To understand key space refer to the Entity Keys Section, to manage this

setting (see WebSphere Administrative Console > UDDI>UDDI Nodes>uddiNodeName > General

Properties> Key space requests require digital signature).

In addition to Security specific policies and properties, awareness of some Keying Policy and User Policies

also influences publish behavior:

v Keying Policy – Registry key generation. If this is set, publishers may request key space and if

successful publish with publisher assigned keys (see WebSphere Administrative Console > UDDI>UDDI

Nodes>uddiNodeName >Policy Groups> UDDI Keying).

v Automatically register UDDI publishers – UDDI requires publisher entitlements to be set, before allowing

any publish request. This option automatically registers Users with default entitlements (see WebSphere

Administrative Console > UDDI>UDDI Nodes>uddiNodeName >General Properties> Automatically

register UDDI Publishers).

v UDDI Publishers – if the ’Automatically register UDDI publishers‘ option is not selected, then Users (and

their entitlements) can be registered (see WebSphere Administrative Console > UDDI>UDDI

Nodes>Additional properties> UDDI Publishers).See also the topics on Create UDDI Publishers and

UDDI Publisher settings.

v UDDI tier limits – UDDI V3 publish tier limits management (enforcing publisher tier limit) can be

activated (see WebSphere Administrative Console > UDDI>UDDI Nodes> uddiNodeName>General

Properties>Use TierLimits). Also refer to the ’Use tier limits’ UDDI property.

v If the above option is checked, then it relevant to configure Tiers (see WebSphere Administrative

Console > UDDI>UDDI Nodes> uddiNodeName>Addition Properties>Tiers) also to set any

registered UDDI Publishers Tier entitlement (see WebSphere Administrative Console> UDDI>UDDI

Nodes> uddiNodeName>Addition Properties>UDDI Publishers).

UDDI Registry user interface

This topic describes the UDDI user interface (also referred to as the UDDI User Console), which you can

use to explore the IBM WebSphere UDDI Registry.

For information about how to display the UDDI user console, see Displaying the user interface.

Chapter 8. Developing WebSphere applications 1013

If you will be using the UDDI console, you must configure the application server into which you have

installed the UDDI Registry for UTF-8 encoding support: To do this, refer to ″Configuring application

servers for UTF-8 encoding″ elsewhere in this Information Center.

v The user console provides a graphical user interface to the majority of the UDDI Version 3 API. It is not

intended to support the full API set: there is some focus on inquiry operations, as the main purpose of

the UDDI user console is to allow users to issue inquiry requests and to familiarize themselves with

general UDDI concepts. This section documents those areas for which support through the user console

is not provided, together with other known restrictions to the user console.

– General

- Help is provided in the form of explanatory text on the screens.

- Maximum rows cannot be specified on finds. The single maximum rows value for the registry can

be set through the Maximum inquiry result set size general property on the WebSphere

Administrative console.
– Find business

- The business identifier feature is not supported.
– Find technical model (tModel)

- The business identifier feature is not supported.
– Add business

- You must supply the business contact as a name and role (no other information is supported).
– Add technical model (tModel)

- You can enter the overview URL, but only with one description in English.
– Business Relationships

- There is no support for Business Relationships
v Note: The UDDI Version 3 specification states that when a tModel is deleted, it should not be physically

deleted. This allows the tModel to be reinstated. One effect of this is that, if you delete a tModel using

the UDDI user console, the tModel is still visible through the Show Owned Entities display.

The UDDI user console is split into three distinct areas. At the top of the screen are buttons that activate

various functions in the areas below this bar. These buttons are:

Home Returns you to the IBM WebSphere UDDI Registry welcome page

Find Activates the Find tab on the frame below to the left

Publish

Similarly activates the Publish tab on the frame below to the left

Below the WebSphere UDDI Registry banner the screen is split into two parts. On the left are the two tabs

mentioned above, the Find and Publish tabs.

Find tab

The Find tab is in two parts. At the top, a Quick Find service is provided. There are three radio buttons to

enable a choice of ’service’, ’business’ and ’technical model’ finds. Below these radio buttons is a text

entry box for entering the name to search for and, beneath this, a ’Find’ link to start the search. Comments

are provided to show the user the wildcard character. The results of clicking the ’Find’ link are shown in

the detail frame to the right.

Beneath the Quick Find is a section for Advanced Find functions which enables the user to choose which

entity they want to perform an advanced search on. There are three links: Find services, Find

businesses and Find technical models. Clicking one of these links displays the corresponding advanced

search form in the frame to the right, where the user can specify search criteria. To initiate a Find, the user

must first enter a search path (the % wildcard may be used) and then click the Add Name link to enter the

search. Then click the ’Find Services’ (or ’Find Businesses/Find technical models) link below to initiate the

Find operation. The Locator section has a link (marked in blue with the words ″Show category tree″)

which displays the tree from which the user can select categories (or taxonomies). This is shown in the

left-hand frame. In the advanced search form there are two links to start the search (mid-way down and at

the bottom).

1014 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

The results of the search are displayed in the same detail frame.

Publish tab

The Publish link on the top banner activates the Publish tab in the navigation frame to the left. The Publish

tab is split into three distinct sections.

1. Quick Publish Function

The top part is a Quick Publish section to allow the user to publish a business or technical model by

name only. There are two radio buttons to enable a choice of ’business’ or ’technical model’. Below

these radio buttons is a text entry box for entering the name to assign to the selected entity and,

beneath this, a blue Publish link to publish the entity. The results of clicking the Publish link are

shown in the detail frame to the right.

2. Advanced Publish Functions

To publish an entity with more detail, such as with multiple names, descriptions and categories, use the

Advanced Publish section below this. The comments below each link (’Add a business’ and ’Add a

technical model’) describe individual functions. Clicking one of these links displays the corresponding

advanced publish form in the detail frame where the user may enter details about the entity they want

to publish. Similarly the Locator section allows taxonomies to be shown in the left frame from which

the user can select categories.

Following entry of the relevant details on the Advanced Publish section, the user must click the

Publish Business bar in order for the business to be published to the UDDI Registry.

3. Registered Information

Below the Advanced Publish section is a Registered Information section which has a link to Show

Owned Entities in order to show the businesses, services and technical models registered to the

individual user. Clicking the Show Owned Entities link displays the Show Owned Entities page in the

detail frame at the right. The Show Owned Entities page is organized in two sections: Registered

Businesses and Registered Technical Models. Each section shows the number of registered items.

Edit and Delete Businesses

Users can Edit or Delete businesses owned by them by clicking the appropriate links in the Actions

column.

After an Edit or Delete function has been completed, the user must click the Update Business bar to

publish the service to the UDDI Registry.

To delete a Business select the Show Owner Entities link and click the Delete link shown next to the

business.

Adding a Service to a Business

Services are added to a business by clicking the Add a Service link in the Services column of the

Registered Businesses section.

Click the Add Service button to publish the service to the UDDI Registry.

Technical Models

Technical Models owned by the user are shown in the bottom Registered Technical Models section.

As for businesses, users can Edit or Delete technical models owned by them by clicking the

appropriate links in the Actions column.

Note: Users should take note that deletion of Technical Models (tModels) does not cause them to be

physically deleted, but hidden. This is in accordance with the UDDI Registry Version 3.0

specifications. After deletion Technical Models are shown under the ″Shown Owned Entities″

link on the publish page but not via the Find links on the Find page. ALL other entities are

deleted from the UDDI Registry in the normal way.

Example of publishing a Business, Service and tModel with the User Console

For the example, here, we will assume a business called Modern Cars that sells used cars

1. Add the Business

Chapter 8. Developing WebSphere applications 1015

Click the Publish tab in the left hand navigation frame. Then click ’Add a business’ in the Advanced

Publish in the left pane. This takes you to a ’Publish Business’ pane on the right. Start by adding your

Business Name in the text field labelled (Modern Cars in this example) and select a language and then

click on the blue Add name to the right. This adds the business name. Below the Business Name is

the descriptions field - free text can be added to describe the business. Enter a description and click

the blue Add description link to add the description. You can add multiple descriptions in a variety of

languages as required.

Categorizations can be used to describe the business according to which categories it falls into. This

example uses a Used car dealership. As an example, view the NAICS taxonomy by clicking ’Show

category tree’ and then expanding NAICS 2002 in the left hand panel. Expand the Retail Trade [44]

entry by clicking the (+) plus sign next to it. You may need to drag the division between the left and

right panes to be able to see all the category names. Similarly expand Motor Vehicle and Parts

Dealers [441] then automobile Dealers [4411] and finally Used Car Dealers [441120]. Select ’Used Car

Dealers [441120] and the ’Type’, ’Key Name’, ’Key Value’ fields under categorizations will be filled in

with the relevant values. Click the blue ’Add categorization’ link to add the categorization details.

Once all the fields are filled in, click the Publish Business button at the bottom of the form or at the

top. A page is displayed showing the business details and the business is published to the UDDI

Registry.

2. Add a Service

From the Publish tab, there is a Show owned entities link shows the businesses in the UDDI Registry

owned by the current user. In our Modern Cars example, to add the description of a service provided

by the business click the Add service link and a Publish Service form is shown. At the top of the form

in the Service Name field you can add a name, then select it’s language and click the Add name link.

You can also add a description (free text), one or more bindings (to add link points to the Service), and

Categorizations (to add references to taxonomies to the service. After completion the required areas,

clicking the ’Publish Service’ button will Publish the service to the UDDI Registry with the current form

contents.

3. Adding a new technical model

Clicking the Add a technical model link in the left frame opens up the Publish Technical Model form

on the right. A tModel can only have one name so there is no blue Add link next to the Technical Model

Name field. Beneath this are the descriptions (a free text area to describe the technical model),

overview documents (which gives a URL pointing to an overview document) and Categorizations

(taxonomies describing the technical model). For each of these fields there is a blue Add link which

must be clicked to add the relevant data. At the bottom of the form is a Publish Technical Model link

which creates the technical model in the UDDI Registry.

UDDI Registry Management Interfaces

This topic explains interfaces and tools you can use to programmatically manage UDDI nodes.

UDDI Registry Administrative (JMX) Interface

UDDI Registry Administrative (JMX) Interface provides a Java API that allows you to manage runtime

configuration settings to control UDDI Registry runtime behavior, such as setting the maximum number of

results that UDDI users can receive for inquiry requests, or creating publish limits for UDDI publishers.

Sample client code is provided for you to build on.

User Defined Value Set Support in the UDDI Registry

User Defined Value Set Support in the UDDI Registry explains the tooling provided to manage your own

categorization value sets, including loading value set data into a UDDI Registry node.

1016 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

UDDI Utility Tools

UDDI Utility Tools explains the tooling and Java API for promoting version 2 entities from one UDDI

registry to another while retaining entity keys. This is particularly useful for publishing canonical tModels

with a predefined key.

UDDI Registry Administrative (JMX) Interface:

Each WebSphere UDDI Registry application registers an MBean with an MBean identifier of

’UddiNode‘.

This MBean may be used by client applications to inspect and manage the runtime configuration of a

UDDI application. This includes managing the activation state of and information about a UDDI node,

updating properties and policies, setting publish tier limits, registration of UDDI publishers, and controlling

value set support.

You can read and invoke the UddiNode attributes and operations using standard JMX interfaces. A client

utility class UddiNodeProxy.java provides a ready-made application to connect to a UddiNode MBean and

perform all the available operations. Example classes are also provided to drive UddiNodeProxy and

demonstrate how to use the various UDDI management data types.

UddiNodeProxy Usage

The following jars required for compilation can be found in WAS_HOME/lib/:

v admin.jar

v management.jar

v uddiadmin.jar

v wsexception.jar

The UddiNodeProxy class provides a utility method to programmatically interrogate the UddiNode MBean

and output all the available attributes, operations and notifications to System.out. For each operation, the

return type, operation name and parameter types are output as well as the impact property which indicates

how the operation changes the state of the UddiNode MBean (and the UDDI node). As for all MBeans, the

value for the impact property can be one of:

ACTION:

state of MBean will be changed

INFO: of the MBean remains unchanged and will return information

ACTION_INFO:

state of the MBean will change and return some information

UNKNOWN:

the impact of invoking the operation is not known

1. Invoke outputMBeanInterface:uddiNode.outputMBeanInterface();

Expected output:

java.lang.String getNodeID() [INFO]

(getter for attribute nodeID)

java.lang.String getNodeState() [INFO]

(getter for attribute nodeState)

java.lang.String getNodeDescription() [INFO]

(getter for attribute nodeDescription)

java.lang.String getNodeApplicationName() [INFO]

(getter for attribute nodeApplicationName)

void activateNode() [ACTION]

(activates UDDI node)

void deactivateNode() [ACTION]

(deactivates UDDI node)

Chapter 8. Developing WebSphere applications 1017

void initNode() [ACTION]

(initializes Uddi node)

com.ibm.uddi.v3.management.Property getProperty(java.lang.String propertyId) [INFO]

(returns UDDI Property)

com.ibm.uddi.v3.management.PolicyGroup getPolicyGroup(java.lang.String policyGroup

 Id) [INFO]

(returns UDDI PolicyGroup)

com.ibm.uddi.v3.management.Policy getPolicy(java.lang.String policyId) [INFO]

(returns UDDI Policy)

void updatePolicy(com.ibm.uddi.v3.management.Policy policy) [ACTION]

(updates UDDI Policy)

void updateProperty(com.ibm.uddi.v3.management.ConfigurationProperty property) [ACTION]

(updates UDDI Property)

void updateProperties(java.util.List properties) [ACTION]

(updates collection of UDDI properties)

void updatePolicies(java.util.List policies) [ACTION]

(updates collection of UDDI policies)

java.util.List getProperties() [INFO]

(returns the collection of UDDI properties)

java.util.List getPolicyGroups() [INFO]

(returns collection of policy groups (note that the policies are not populated))

java.util.List getValueSets() [INFO]

(returns collection of value set status objects)

com.ibm.uddi.v3.management.ValueSetStatus getValueSetDetail(java.lang.String

 tModelKey) [INFO]

(returns status for a value set)

com.ibm.uddi.v3.management.ValueSetProperty getValueSetProperty(java.lang.String

 tModelKey,java.lang.String valueSetPropertyId) [INFO]

(returns a property of a value set)

void updateValueSet(com.ibm.uddi.v3.management.ValueSetStatus valueSet) [ACTION]

(updates value set status)

void updateValueSets(java.util.List valueSets) [ACTION]

(updates multiple value sets)

void loadValueSet(java.lang.String filePath,java.lang.String tModelKey) [ACTION]

(loads values for a value set from a UDDI Registry V3/V2 taxonomy data file.)

void loadValueSet(com.ibm.uddi.v3.management.ValueSetData valueSetData) [ACTION]

(loads values for a value set with the given tModel key.)

void changeValueSetTModelKey(java.lang.String oldTModelKey,java.lang.String

 newTModelKey) [ACTION]

(replaces all occurrences of values belonging to original tModelKey to new tModelKey.)

void unloadValueSet(java.lang.String tModelKey) [ACTION]

(unloads values for a value set with the given tModel key.)

java.lang.Boolean isExistingValueSet(java.lang.String tModelKey) [INFO]

(Determine if Value Set data exists for the given tModel key.)

java.util.List getTierInfos() [INFO]

(returns the collection of UDDI tier descriptions.)

java.util.List getLimitInfos() [INFO]

(returns the collection of UDDI limit descriptions.)

java.util.List getEntitlementInfos() [INFO]

(returns the collection of UDDI entitlements.)

com.ibm.uddi.v3.management.Tier getTierDetail(java.lang.String tierId) [INFO]

(returns UDDI Tier detail, specifying limits to the number of entities that

 can be published.)

com.ibm.uddi.v3.management.Tier createTier(com.ibm.uddi.v3.management.Tier tier) [ACTION]

(creates a UDDI Tier, specifying limits to the number of entities that can be

 published. Returns the new tier ID.)

com.ibm.uddi.v3.management.Tier updateTier(com.ibm.uddi.v3.management.Tier tier) [ACTION]

(updates UDDI Tier details. Returns the updated Tier.)

void deleteTier(java.lang.String tierId) [ACTION]

(deletes the UDDI Tier, if it not in use.)

void setDefaultTier(java.lang.String tierId) [ACTION]

(Specifies the tier that auto registered UDDI publishers are assigned to.)

java.lang.Integer getUserCount(java.lang.String tierId) [INFO]

(returns the number of UDDI publisher within the specied tier.)

com.ibm.uddi.v3.management.TierInfo getUserTier(java.lang.String userId) [INFO]

(returns UDDI Tier information, specifying the tier this user belongs to.)

com.ibm.uddi.v3.management.UddiUser getUddiUser(java.lang.String userId) [INFO]

1018 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

(returns UDDI user details, including tier and entitlements details.)

java.util.List getUserInfos() [INFO]

(returns the collection of UDDI user names and the tier they belong to.)

void createUddiUser(com.ibm.uddi.v3.management.UddiUser user) [ACTION]

(creates a new UDDI user.)

void createUddiUsers(java.util.List users) [ACTION]

(creates the collection of new UDDI users.)

void updateUddiUser(com.ibm.uddi.v3.management.UddiUser user) [ACTION]

(updates UDDI user details.)

void deleteUddiUser(java.lang.String userId) [ACTION]

(deletes UDDI publisher.)

void assignTier(java.util.List userIds,java.lang.String tierId) [ACTION]

(sets the tier for a List of users.)

notificationInfo: description=default UDDI event,descriptorType=notification,

 severity=(6),name=uddi.node.event

notificationInfo: description=null,descriptorType=notification,severity=(6),

 name=jmx.attribute.changed

See ManageNodeInfoSample class for sample code that demonstrates the attributes and operations

described in this section.

Managing UDDI Node States and Attributes

UDDI nodes can be in one of several states, depending on the way the UDDI application was installed (as

a default configuration or one where the administrator controls when initialization occurs). The UddiNode

MBean provides four read only attributes: nodeID, nodeState, nodeDescription and nodeApplicationName.

In addition the following MBean operations change UDDI node state: activateNode, deactivateNode and

initNode.

nodeID

The node ID is the unique identifier for a UDDI node. If the UDDI application is installed as a default

configuration the node ID is automatically generated. If the UDDI application is set up manually, the node

ID is set by the administrator. It must be a valid UDDI key.

 String nodeID = uddiNode.getNode();

 System.out.println("node ID: " + nodeId);

nodeState

The nodeState attribute can have one of the following values:

 nodeState value English text associated with state

node.state.uninitialized Not initialized

node.state.initialized Initialized

node.state.initPending Initialization pending

node.state.initInProgress Initialization in progress

node.state.activated Activated

node.state.deactivated Deactivated

node.state.unknown Unknown

After installing a UDDI application using the default configuration, the UDDI node will be in activated state,

that is, ready to receive and process UDDI API requests. The node ID and root key generator and some

other properties are generated and cannot be changed. For a manually installed UDDI application where

you want to specify the UDDI node ID and root key generator values, starting the UDDI application will put

the UDDI node into initPending state. In this state, you can update all writable values up until the point you

Chapter 8. Developing WebSphere applications 1019

http://www.ibm.com/websphere/developer/library/samples/AppServer.html

invoke the initNode operation. The initNode operation loads bas e tModels and value set data and writes

all the configuration data to the UDDI node‘s database. During initialization the state is initInProgress.

When initialization completes, the state changes momentarily to initialized and settles at activated. At this

point the state can only be switched between activated and deactivated using deactivateNode and

activateNode MBean operations.

Each node state value is in fact a message key which can be looked up in the messages.properties

resource bundle. The attribute value can be retrieved using the getNodeState method of UddiNodeProxy:

1. Invoke getNodeState:

 String nodeStateKey = uddiNode.getNodeState();

2. Look up translated text from ResourceBundle and output:

 String messages = "com.ibm.uddi.v3.management.messages";

 ResourceBundle bundle = ResourceBundle.getBundle(messages,

 Locale.ENGLISH);

 String nodeStateText = bundle.getString(nodeStateKey);

 System.out.println("node state: " + nodeStateText);

nodeDescription

You can get the administrator assigned description for the UDDI node using the getNodeDescription

method of UddiNodeProxy:

1. Invoke getNodeDescription and output:

 String nodeDescription = uddiNode.getNodeDescription();

 System.out.println("node description: " + nodeDescription);

nodeApplicationName

The nodeApplicationName attribute is useful for discovering where the UDDI application that corresponds

to the UDDI node is installed. The value will be a concatenation of the cell, node and server names,

separated by colons. Retrieve the application location using the getApplicationId method of

UddiNodeProxy:

1. Invoke getApplicationId and output:

 String nodeApplicationId = uddiNode.getApplicationId();

 System.out.println("node application location: " +

 nodeApplicationId);

activateNode

Changes the state of the UDDI node to activated, if the UDDI node was previously deactivated.

1. . Invoke activateNode:

 uddiNode.activateNode();

deactivateNode

Changes the state of the UDDI node to deactivated, if the UDDI node was previously activated.

1. Invoke deactivateNode:

 uddiNode.deactivateNode();

initNode

Causes UDDI node initialization, and when this completes the state of the UDDI node is ’activated‘.

1020 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

1. Invoke initNode:

 uddiNode.initNode();

Managing Configuration Properties

UDDI node runtime behavior is affected by the setting of several configuration properties. The UddiNode

MBean provides operations to inspect and update their values, as follows: getProperties, getProperty,

updateProperty and updateProperties.

See ManagePropertiesSample class for sample code that demonstrates the operations described in this

section.

get Properties

Returns collection of all configuration properties as ConfigurationProperty objects.

1. Invoke getProperties:

 List properties = uddiNode.getProperties();

2. Cast each collection member to ConfigurationProperty:

 if (properties != null) {

 for (Iterator iter = properties.iterator(); iter.hasNext();) {

 ConfigurationProperty property =

 (ConfigurationProperty) iter.next();

 System.out.println(property);

 }

 }

Once you have the ConfigurationProperty objects you can inspect attributes like the ID, value, type,

whether the property is read only, required for initialization, and get name and description message keys.

For example, invoking the toString method returns results similar to:

 ConfigurationProperty

 id: operatorNodeIDValue

 nameKey: property.name.operatorNodeIDValue

 descriptionKey: property.desc.operatorNodeIDValue

 type: java.lang.String

 value: uddi:capnscarlet:capnscarlet:server1:default

 unitsKey:

 readOnly: true

 required: true

 usingMessageKeys: false

 validValues: none

The nameKey and descriptionKey values can be used to look up the translated name and description for a

given locale, using the messages.properties resource in uddiadmin.jar.

getProperty

Returns ConfigurationProperty object with the specified ID. Available property IDs are specified in

PropertyConstants together with descriptions of the purpose of the corresponding properties.

1. Invoke getProperty:

 ConfigurationProperty property =

 uddiNode.getProperty(PropertyConstants.DATABASE_MAX_RESULT_COUNT);

2. To retrieve the value of the property you could use the getValue method which returns an Object, but

in this case, the property is of type integer, so it‘s easier to retrieve the value using the convenience

method getIntegerValue:

 int maxResults = property.getIntegerValue();

updateProperty

Chapter 8. Developing WebSphere applications 1021

http://www.ibm.com/websphere/developer/library/samples/AppServer.html

Updates the value of the ConfigurationProperty object with the specified ID. Available property IDs are

specified in PropertyConstants together with descriptions of the purpose of the corresponding properties.

Although you can invoke the setter methods in a ConfigurationProperty object, the only value that is

updated in the UDDI node is the value. So to update a property, the steps are typically:

1. Create a ConfigurationProperty object and set its ID:

 ConfigurationProperty defaultLanguage = new ConfigurationProperty();

 defaultLanguage.setId(PropertyConstants.DEFAULT_LANGUAGE);

2. Set the value:

 defaultLanguage.setStringValue("ja");

3. Invoke updateProperty:

 uddiNode.updateProperty(defaultLanguage);

updateProperties

Updates several ConfigurationProperty objects in a single request. Set up the ConfigurationProperty

objects as for the updateProperty operation.

1. Add updated properties to a List:

 List updatedProperties = new ArrayList();

 updatedProperties.add(updatedProperty1);

 updatedProperties.add(updatedProperty2);

2. Invoke updateProperties:

 uddiNode.updateProperties(updatedProperties);

Managing Policies

Policies affecting behavior of the UDDI API are managed using the following UddiNode operations:

getPolicyGroups, getPolicyGroup, getPolicy, updatePolicy and updatePolicies.

See ManagePoliciesSample class for sample code that demonstrates the attributes and operations

described in this section.

getPolicyGroups

Returns collection of all policy groups as PolicyGroup objects.

1. Invoke getPolicyGroups:

 List policyGroups = uddiNode.getPolicyGroups();

2. Cast each collection member to PolicyGroup:

 if (policyGroups != null) {

 for (Iterator iter = policyGroups.iterator(); iter.hasNext();) {

 PolicyGroup policyGroup = (PolicyGroup) iter.next();

 System.out.println(policyGroup);

 }

 }

Each policy group has an ID, name and description key (which can be looked up in the

messages.properties resource in uddiadmin.jar). While the PolicyGroup class does have a getPolicies

method it is important to note that PolicyGroup objects returned by the getPolicyGroups operation do not

contain any Policy objects. This is so clients can determine the known policy groups (and their IDs) without

retrieving the entire set of policies in one request. To retrieve the policies within a policy group, you would

use the getPolicyGroup operation.

getPolicyGroup

Returns the PolicyGroup object with the supplied ID.

1022 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

http://www.ibm.com/websphere/developer/library/samples/AppServer.html

1. Convert policy group ID to a String:

 String groupId = Integer.toString(PolicyConstants.REG_APIS_GROUP);

2. Invoke getPolicyGroup:

 PolicyGroup policyGroup = uddiNode.getPolicyGroup(groupId);

getPolicy

Returns the Policy object for the specified ID. Like a ConfigurationProperty, a Policy object has an ID,

name and description keys, type, value and indicators specifying if the policy is read only or required for

node initialization.

1. Convert policy ID to a String:

 String policyId = Integer.toString(

 PolicyConstants.REG_AUTHORIZATION_FOR_INQUIRY_API);

2. Invoke getPolicy:

 Policy policy = uddiNode.getPolicy(policyId);

updatePolicy

Updates the value of the Policy object with the specified ID. Available policy IDs are specified in

PolicyConstants together with descriptions of the purpose of the corresponding policies. Although you can

invoke the setter methods in a Policy object, the only value that is updated in the UDDI node is the value.

So to update a policy, the steps are typically:

1. Create a Policy object and set its ID:

 Policy updatedPolicy = new Policy();

 String policyId =

 Integer.toString(PolicyConstants.REG_SUPPORTS_UUID_KEYS);

 updatedPolicy.setId(policyId);

2. Set the value:

 updatedPolicy.setBooleanValue(true);

3. Invoke updatePolicy:

 uddiNode.updatePolicy(updatedPolicy);

updatePolicies

Updates several Policy objects in a single request. Set up the Policy objects as for the updatePolicy

operation.

1. Add updated policies to a List:

 List updatedPolicies = new ArrayList();

 updatedPolicies.add(updatedPolicy1);

 updatedPolicies.add(updatedPolicy2);

2. Invoke updatePolicies:

 uddiNode.updatePolicies(updatedPolicies);

Managing Tiers

Tiers control how many of each type of UDDI entities a publisher can save in the UDDI registry. A tier has

an ID, an administrator defined name and description, and a set of limits, one for each type of entity. Tiers

are managed using the following UddiNode operations: createTier, getTierDetail, getTierInfos,

getLimitInfos, setDefaultTier, updateTier, deleteTier and getUserCount.

See ManageTiersSample class for sample code that demonstrates the attributes and operations described

in this section.

Chapter 8. Developing WebSphere applications 1023

http://www.ibm.com/websphere/developer/library/samples/AppServer.html

createTier

Creates a new tier, with specified publish limits for each UDDI entity.

1. Set tier name and description in a TierInfo object.

 String tierName = "Tier 100";

 String tierDescription = "A tier with all limits set to 100.";

 TierInfo tierInfo = new TierInfo(null, tierName, tierDescription);

2. Define Limit objects for each UDDI entity:

 List limits = new ArrayList();

 Limit businessLimit = new Limit();

 businessLimit.setIntegerValue(100);

 businessLimit.setId(LimitConstants.BUSINESS_LIMIT);

 Limit serviceLimit = new Limit();

 serviceLimit.setIntegerValue(100);

 serviceLimit.setId(LimitConstants.SERVICE_LIMIT);

 Limit bindingLimit = new Limit();

 bindingLimit.setIntegerValue(100);

 bindingLimit.setId(LimitConstants.BINDING_LIMIT);

 Limit tModelLimit = new Limit();

 tModelLimit.setIntegerValue(100);

 tModelLimit.setId(LimitConstants.TMODEL_LIMIT);

 Limit assertionLimit = new Limit();

 assertionLimit.setIntegerValue(100);

 assertionLimit.setId(LimitConstants.ASSERTION_LIMIT);

 limits.add(businessLimit);

 limits.add(serviceLimit);

 limits.add(bindingLimit);

 limits.add(tModelLimit);

 limits.add(assertionLimit);

3. Create Tier object:

 Tier tier = new Tier(tierInfo, limits);

4. Invoke create Tier and retrieve created tier:

 Tier createdTier = uddiNode.createTier(tier);

5. Inspect generated tier ID of created tier:

 tierId = createdTier.getId();

 System.out.println("created tier has ID: " + tierId);

getTierDetail

Returns the Tier object for the given tier ID. The Tier class has getter methods for the tier ID, tier name

and description (as set by the administrator), and the collection of Limit objects which specify how many of

each UDDI entity type may be published by UDDI publishers allocated to the tier. The isDefault method

indicates whether the tier is the default tier, that is, the tier that is allocated to UDDI publishers when auto

registration is enabled.

1. Invoke getTierDetail:

 Tier tier = uddiNode.getTierDetail("2");

updateTier

Updates tier contents with the supplied Tier object.

1024 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

1. Update an existing Tier object (which may have been newly instantiated, or returned by the

getTierDetail or createTier operations). This example retains the tier name and description, and all the

limit values except the limit being updated:

 modifiedTier.setName(tier.getName());

 modifiedTier.setDescription(tier.getDescription());

 Limit tModelLimit = new Limit();

 tModelLimit.setId(LimitConstants.TMODEL_LIMIT);

 tModelLimit.setIntegerValue(50);

 List updatedLimits = new ArrayList();

 updatedLimits.add(tModelLimit);

 modifiedTier.setLimits(updatedLimits);

2. Invoke updateTier:

 uddiNode.updateTier(modifiedTier);

getTierInfos

Returns collection of lightweight tier descriptor objects (TierInfo) which contain the tier ID, and tier name

and description values, and whether the tier is the default tier.

1. Invoke getTierInfos:

 List tierInfos = uddiNode.getTierInfos();

2. Output content of each TierInfo:

 if (tierInfos != null) {

 for (Iterator iter = tierInfos.iterator(); iter.hasNext();) {

 TierInfo tierInfo = (TierInfo) iter.next();

 System.out.println(tierInfo);

 }

 }

setDefaultTier

Specifies the tier with the given tier ID is the default tier. The default tier is the tier that is allocated to

UDDI publishers when auto registration is enabled. Typically this would be set to a tier with low publish

limits to prevent casual users publishing too many entities.

1. Invoke setDefaultTier:

 uddiNode.setDefaultTier("4");

deleteTier

Removes the tier with the given tier ID. Tiers can only be removed if they have no UDDI publishers

assigned to them, and the tier is not the default tier.

1. Invoke deleteTier:

 uddiNode.deleteTier("4");

getUserCount

Returns the number of UDDI publishers assigned to tier specified by the tier ID.

1. Invoke getUserCount:

 Integer userCount = uddiNode.getUserCount("4");

 System.out.println("users in tier 4: " + userCount.intValue());

getLimitInfos

Chapter 8. Developing WebSphere applications 1025

Returns collection of Limit objects representing the limit values for each type of UDDI entity. Limits are

used in Tier objects.

1. Invoke getLimitInfos:

 List limits = uddiNode.getLimitInfos();

2. Output the ID and limit value for each Limit object:

 for (Iterator iter = limits.iterator(); iter.hasNext();) {

 Limit limit = (Limit) iter.next();

 System.out.println("limit ID: "

 + limit.getId()

 + ", limit value: "

 + limit.getIntegerValue());

 }

Managing UDDI Publishers

UDDI publishers are managed using the UddiNode MBean operations createUddiUser, createUddiUsers,

updateUddiUser, deleteUddiUser, getUddiUser, getUserInfos, getEntitlementInfos, assignTier, getUserTier.

An example is provided for each, making use of the UddiNodeProxy client class.

See ManagePublishersSample class for sample code that demonstrates the attributes and operations

described in this section.

createUddiUser

Registers a single UDDI publisher, in a specified tier, with specified entitlements. The UddiUser class

represents the UDDI publisher, and this is constructed using a user name (ID), a TierInfo object which

specifies the tier ID to allocate the UDDI publisher to, and a collection of Entitlement objects which specify

what the UDDI publisher is permitted to do.

Tip: to allocate the UDDI publisher default entitlements, set the entitlements parameter to null.

1. Create the UddiUser object:

 UddiUser user = new UddiUser("user1", new TierInfo("3"), null);

2. Invoke createUddiUser:

 uddiNode.createUddiUser(user);

createUddiUsers

Registers multiple UDDI publishers. This example shows how to register 7 UDDI publishers in one call,

with default entitlements.

1. Create TierInfo objects for tiers that publishers will be allocated to:

 TierInfo tier1 = new TierInfo("1");

 TierInfo tier4 = new TierInfo("4");

2. Create UddiUser objects for each UDDI publisher, specifying tier to allocate to:

 UddiUser publisher1 = new UddiUser("Publisher1", tier4, null);

 UddiUser publisher2 = new UddiUser("Publisher2", tier4, null);

 UddiUser publisher3 = new UddiUser("Publisher3", tier4, null);

 UddiUser publisher4 = new UddiUser("Publisher4", tier1, null);

 UddiUser publisher5 = new UddiUser("Publisher5", tier1, null);

 UddiUser cts1 = new UddiUser("cts1", tier4, null);

 UddiUser cts2 = new UddiUser("cts2", tier4, null);

3. Add the UddiUser objects to a List:

 List uddiUsers = new ArrayList();

 uddiUsers.add(publisher1);

 uddiUsers.add(publisher2);

1026 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

http://www.ibm.com/websphere/developer/library/samples/AppServer.html

uddiUsers.add(publisher3);

 uddiUsers.add(publisher4);

 uddiUsers.add(publisher5);

 uddiUsers.add(cts1);

 uddiUsers.add(cts2);

4. Invoke createUddiUsers:

 uddiNode.createUddiUsers(uddiUsers);

updateUddiUser

Updates a UDDI publisher with the details in the supplied UddiUser object. This is typically used to change

the tier of one UDDI publisher or update their entitlements. Tip: only supply the entitlements you want to

update – the remainder of available entitlements will retain their existing value.

1. Create Entitlement objects with appropriate permission. (the entitlement IDs are found in

EntitlementConstants:

 Entitlement publishUuiDKeyGenerator =

 new Entitlement(PUBLISH_UUID_KEY_GENERATOR, true);

 Entitlement publishWithUuidKey =

 new Entitlement(PUBLISH_WITH_UUID_KEY, true);

2. Add Entitlement objects to a List:

 List entitlements = new ArrayList();

 entitlements.add(publishUuiDKeyGenerator);

 entitlements.add(publishWithUuidKey);

3. Update a UddiUser object with the updated entitlements:

 user.setEntitlements(entitlements);

4. Invoke updateUddiUser:

 uddiNode.updateUddiUser(user);

getUddiUser

Retrieves details about a UDDI publisher in the form of a UddiUser object. This specifies the UDDI

publisher ID, information about the tier they are assigned to and the entitlements they possess.

1. Invoke getUddiUser:

 UddiUser user1 = uddiNode.getUddiUser("user1");

2. Output the contents of UddiUser:

 System.out.println("retrieved user: " + user1);

getUserInfos

Returns a collection of UserInfo objects. Each UserInfo represents a UDDI publisher known to the UDDI

node, and the name of the tier they are allocated to. To get details about a specific UDDI publisher,

including the tier ID, and entitlements, use the getUddiUser operation.

1. Invoke getUserInfos:

 List registeredUsers = uddiNode.getUserInfos();

2. Output the UserInfo objects:

 System.out.println("retrieved registered users: ");

 System.out.println(registeredUsers);

getEntitlementInfos

Returns a collection of Entitlement objects. Each entitlement is a property that controls whether permission

is granted to a UDDI publisher to perform a specified action.

1. Invoke getEntitlementInfos:

 List entitlementInfos = uddiNode.getEntitlementInfos();

Chapter 8. Developing WebSphere applications 1027

2. Specify where to find message resources:

 String messages = "com.ibm.uddi.v3.management.messages";

 ResourceBundle bundle = ResourceBundle.getBundle(

 messages, Locale.ENGLISH);

3. Iterate through the Entitlement objects, displaying the ID, name and description:

 for (Iterator iter = entitlementInfos.iterator(); iter.hasNext();) {

 Entitlement entitlement = (Entitlement) iter.next();

 StringBuffer entitlementOutput = new StringBuffer();

 String entitlementId = entitlement.getId();

 String entitlementName =

 bundle.getString(entitlement.getNameKey());

 String entitlementDescription =

 bundle.getString(entitlement.getDescriptionKey());

 entitlementOutput.append("Entitlement id: ");

 entitlementOutput.append(entitlementId);

 entitlementOutput.append("\n name: ");

 entitlementOutput.append(entitlementName);

 entitlementOutput.append("\n description: ");

 entitlementOutput.append(entitlementDescription);

 System.out.println(entitlementOutput.toString());

 }

deleteUddiUser

Removes the UDDI publisher with the specified user name (ID) from the UDDI registry.

1. Invoke deleteUddiUser:

 uddiNode.deleteUddiUser("user1");

assignTier

Assigns UDDI publishers with supplied IDs to the specified tier. This is useful when you want to restrict

several UDDI publishers, perhaps by assigning them all to a tier that doesn‘t allow publishing of any

entities.

1. Create list of publisher IDs:

 List uddiUserIds = new ArrayList();

 uddiUserIds.add("Publisher1");

 uddiUserIds.add("Publisher2");

 uddiUserIds.add("Publisher3");

 uddiUserIds.add("Publisher4");

 uddiUserIds.add("Publisher5");

 uddiUserIds.add("cts1");

 uddiUserIds.add("cts2");

2. Invoke assignTier:

 uddiNode.assignTier(uddiUserIds, "0");

getUserTier

Returns information about the tier a UDDI publisher is assigned to. The returned TierInfo has getters

methods for retrieving the tier ID, tier name, tier description, and whether the tier is the default tier.

1. Invoke getUserTier:

 TierInfo tierInfo = getUserTier("Publisher3");

2. Output the contents of the TierInfo object:

 System.out.println(tierInfo);

1028 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Managing Value Sets

Value sets are represented in a UDDI registry as value set tModels, with a UDDI types keyedReference

with value ’categorization‘. Such value sets are backed with a set of valid values and for user defined

value sets, this data is loaded into the UDDI registry using UddiNode MBean operations (although it is

more convenient to use the User defined value set tool for this purpose). Each value set can be controlled

by policy as being supported or not supported. When a value set is supported by policy, it can be

referenced within UDDI publish requests. The UddiNode operations available to manage value sets and

their data are: getValueSets, getValueSetDetail, getValueSetProperty, updateValueSet, updateValueSets,

loadValueSet, changeValueSetTModelKey, unloadValueSet and isExistingValueSet.

See ManageValueSetsSample class for sample code that demonstrates the attributes and operations

described in this section.

getValueSets

Returns collection of ValueSetStatus objects.

1. Invoke getValueSets:

 List valueSets = uddiNode.getValueSets();

2. Cast each element to ValueSetStatus and output contents:

 for (Iterator iter = valueSets.iterator(); iter.hasNext();) {

 ValueSetStatus valueSetStatus = (ValueSetStatus) iter.next();

 System.out.println(valueSetStatus);

 }

getValueSetDetail

Returns ValueSetStatus object for the given value set tModel key.

1. Invoke getValueSetDetail:

 uddiNode.getValueSetDetail(

 "uddi:uddi.org:ubr:categorization:naics:2002");

2. Retrieve and display details:

 String name = valueSetStatus.getName();

 String displayName = valueSetStatus.getDisplayName();

 boolean supported = valueSetStatus.isSupported();

 System.out.println("name: " + name);

 System.out.println("display name: " + displayName);

 System.out.println("supported: " + supported);

3. Display value set properties:

 List properties = valueSetStatus.getProperties();

 for (Iterator iter = properties.iterator(); iter.hasNext();) {

 ValueSetProperty property = (ValueSetProperty) iter.next();

 System.out.println(property);

 }

getValueSetProperty

Returns a property of a value set as a ValueSetProperty object. This is mainly for use by the WebSphere

administrative console to render properties of a value set as a row in a table. For example, one such

property is the keyedReference which indicates whether the value set is checked.

1. Invoke getValueSetProperty:

Chapter 8. Developing WebSphere applications 1029

http://www.ibm.com/websphere/developer/library/samples/AppServer.html

uddiNode.getValueSetProperty(

 "uddi:uddi.org:ubr:categorization:naics:2002",

 ValueSetPropertyConstants.VS_CHECKED);

2. Read and display boolean value of the property:

 boolean checked = valueSetProperty.getBooleanValue();

 System.out.println("checked: " + checked);

updateValueSet

Updates value set status. Only the supported attribute can be updated (all other setter methods are used

by the UDDI application).

1. Create a ValueSetStatus object specifying the tModel key and the updated supported value:

 ValueSetStatus updatedStatus = new ValueSetStatus();

 updatedStatus.setTModelKey(

 "uddi:uddi.org:ubr:categorization:naics:2002");

 updatedStatus.setSupported(true);

2. Invoke updateValueSet:

 uddiNode.updateValueSet(updatedStatus);

updateValueSets

Updates value set status for multiple value sets. As for the updateValueSet operation, only the supported

attribute is updated.

1. Populate List with updated ValueSetStatus objects:

 List valueSets = new ArrayList();

 ValueSetStatus valueSetStatus = new ValueSetStatus();

 valueSetStatus.setTModelKey(

 "uddi:uddi.org:ubr:categorization:naics:2002");

 valueSetStatus.setSupported(false);

 valueSets.add(valueSetStatus);

 valueSetStatus = new ValueSetStatus();

 valueSetStatus.setTModelKey(

 "uddi:uddi.org:ubr:categorizationgroup:wgs84");

 valueSetStatus.setSupported(false);

 valueSets.add(valueSetStatus);

 valueSetStatus = new ValueSetStatus();

 valueSetStatus.setTModelKey(

 "uddi:uddi.org:ubr:identifier:iso6523:icd");

 valueSetStatus.setSupported(false);

 valueSets.add(valueSetStatus);

2. Invoke updateValueSets:

 uddiNode.updateValueSets(valueSets);

loadValueSet

Loads values for a value set from a UDDI Registry V3/V2 taxonomy data file on the local file system. Note:

there is also a loadValueSet operation that takes a ValueSetData object but this is only for use by the user

defined value set tool.

1. Invoke loadValueSet:

 uddiNode.loadValueSet(

 "C:/valuesets/myvalueset.txt",

 "uddi:cell:node:server:myValueSet");

changeValueSetTModelKey

1030 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Any value set values that were allocated to one value set tModel are allocated to the new value set

tModel.

1. Invoke changeValueSetTModelKey with old and new tModel keys:

 uddiNode.changeValueSetTModelKey(

 "uddi:cell:node:server:myValueSet",

 "uddi:cell:node:server:myNewValueSet");

unloadValueSet

Unloads values for a value set with the given tModel key.

1. Invoke unloadValueSet:

 uddiNode.unloadValueSet("uddi:myValueSet");

isExistingValueSet

Determines if value set data exists for the given tModel key.

1. Invoke isExistingValueSet and display result:

 boolean exists = uddiNode.isExistingValueSet(

 "uddi:uddi.org:ubr:categorization:naics:2002");

 System.out.println("NAICS 2002 is a value set: " + exists);

User-defined value set support in the UDDI registry:

In UDDI Version 2 this was called ’Custom Taxonomy Support’.

Data is worthless if it is lost within a mass of other data and cannot be distinguished or discovered. If a

client of UDDI cannot effectively find information within a registry, the purpose of UDDI is considerably

compromised. Providing the structure and modeling tools to address this problem is at the heart of UDDI’s

design. The verification of data within UDDI is core to its mission of description, discovery and integration.

It achieves this by several means.

It allows users to define multiple value sets that can be used in UDDI. In such a way, multiple classification

schemes can be overlaid on a single UDDI entity. This capability allows organizations to extend the set of

such systems UDDI registries support. One is not tied to a single system, but can rather employ several

different classification systems simultaneously.

While default value sets are shipped with the product, the UDDI Version 3 Private Registry provides tools

enabling ’custom’ value sets to be added, potentially enabling UDDI entities to be more specifically

categorized when published and further enhancing the capability of client to find specific data.

These value sets can be either checked or unchecked, and this is indicated via a keyedReference in the

categoryBag of the tModel that represents a value set (a ″categorization tModel″). These keyedReferences

have the tModel key for uddi-org:types and are added to the categoryBag to further describe the behavior

of the categorization tModel, as follows:

checked

Marking a tModel with this classification asserts that it represents a categorization, identifier, or

namespace tModel that has a validation service to check that category values are present in a

specified value set.

unchecked

Marking a tModel with this classification asserts that it represents a categorization, identifier, or

namespace tModel that does not have a validation service.

The procedure defined below describes how to add additional user-defined value sets, and display their

allowed values in the UDDI user console value set tree display. Rational Application Developer has a Web

Chapter 8. Developing WebSphere applications 1031

Services Explorer user interface that also allows addition and display of custom checked value sets. The

publisher of a value set categorization tModel may specify a ’display name’ for use in UDDI user console

implementations.

Procedure for adding a user defined value set

To add a user defined value set to the IBM WebSphere UDDI Registry requires you to perform three tasks:

v publish a categorization tModel

v load the user defined value set data

v set the value set to supported status using the Administration console.

Only when all are complete will the checked value set be referenced. Value set data must be provided for

validating checked value sets.

Value set data may also be used by user consoles for unchecked value sets, but it is not a requirement

and is usually only used for presentation of deprecated value sets, such as unspc-org:unspc and

back-level compatibility.

If the value set is checked, any publish requests that have a categoryBag containing keyedReferences

with the new categorization tModel will be validated. If there is value set data corresponding to the

categorization tModel in the registry database, only valid values will be accepted. If there is no value set

data in the database all values will be rejected, and the publish request will fail. If the categorization

tModel is unchecked, all values will be allowed, regardless of whether there is a corresponding value set

present in the UDDI Registry database. The value set tModel is not available for use until the administrator

enables support for it using the Administration console, or the JMX interface.

Suggested approach

To introduce a new value set:

1. Publish the categorization tModel with a keyedReference of type ’uddi-org:categorization:types’ with a

key value of categorization, a keyedReference of type ’uddi-org:categorization:types’ with a Key

Name of ’Checked value set’ and a Key Value of ’checked’, or a Key Name of ’Unchecked value

set’ and a Key Value of ’unchecked’ and a keyedReference of type ’uddi-
org:categorization:general_keywords’ supplying the value set display name (as described below).

2. Load user defined value set data into the UDDI Registry database using the

UDDIUserDefinedValueSet utility (described below).

3. Use the Administration Console to set the status of the value set to supported (as described in Value

set settings). This can also be achieved directly using the JMX interface.

Note: The SOAP and EJB interfaces will be able to make use of categorization tModels as soon as they

are published. However, the UDDI Registry user console will require a restart of the UDDI

application because it currently gathers its list of categorizations for use in the value set tree display

when the application starts.

Publishing a Checked Categorization tModel

This section describes how to publish a checked categorization tModel with the ’Checked value set’ Key

Name for use by a user defined value set.

Publish a tModel to the IBM WebSphere UDDI Registry with a categoryBag containing keyedReferences

as follows:

 Note tModelKey KeyName KeyValue

1032 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

1 uddi:uddi-org:categorization:types

In the UDDI Registry user

interface this tModelKey can be

chosen by selecting the category

type of UDDI Types

categorization categorization

2 uddi:uddi-org:categorization:types

In the UDDI Registry user

interface this tModelKey can be

chosen by selecting the category

type of UDDI Types

Checked value set checked

3 uddi:uddi-
org:categorization:general_

keywords

In the UDDI Registry user

interface this tModelKey can be

chosen by selecting the category

type of

categorization:general_keywords

urn:x-ibm:uddi:customTaxonomy:

displayName

<User Defined Value Set

displayName>

1. Indicates this tModel is a categorization tModel (required).

2. Indicates use of the tModel will be checked against a list of valid data (required). (Omitting this

keyedReference, or explicitly specifying a value of ’unchecked’ will indicate this categorization is

unchecked).

3. Indicates special use of the general keywords value set, with a proprietary urn as the keyName value,

defines a name for the user defined value set that is intended for use in user console implementations

where the full tModel name might be too long. The value can be 1-255 characters (inclusive) long.

The displayName is intended to provide a way to label a value set such that, when the UDDI user console

displays it in a value set tree or in a pull-down list of available value sets, the meaning is clear to the user

without being restricted to 8 characters and without needing to be the same as the published tModelName,

which could be as long as 255 characters. An example is shown below:

Taxonomies

test1

udditype

unspsc

Natural Foods

geo

naics

other

unspsc7

Food

Fruit

Apples [101]

Oranges [102]

Pears [103]

Pomegranates [104]

Vegetables [20]

Categories:

Search Modifiers

Search behavior

Show category tree

Natural Foods

test1

udditype

unspec

geo

naics

other

unspsc7

Natural Foods

Locator

Type Key name

display name

The urn:x-ibm:customTaxonomy:displayName should be unique if only to avoid confusion when displayed

in user interfaces but this is not validated.

Chapter 8. Developing WebSphere applications 1033

To publish a new categorization tModel using SOAP, the message would be:

<save_tModel generic="3.0" xmlns="urn:uddi-org:api_v3">

 <authInfo></authInfo>>

 <tModel tModelKey="">

 <name>Natural Foods tModel</name>

 <categoryBag>

 <keyedReference tModelKey="uddi:uddi.org:categorization:types" keyName=

 "categorization" keyValue="categorization"/>

 <keyedReference tModelKey="uddi:uddi.org:categorization:types" keyName=

 "Checked value set" keyValue="checked"/>

 <keyedReference tModelKey="uddi:uddi.org:categorization:general_keywords"

 keyName="urn:x-ibm:uddi:customTaxonomy:displayName"

 keyValue="Natural Foods"/>

 </categoryBag>

 </tModel>

</save_tModel>

Note: to specify an unchecked categorization substitute the key name ’Checked value set’ with

’Unchecked value set’ and ’checked’ Key Value with ’unchecked’ or, more simply, omit the

keyedReference completely.

Loading User Defined Value Set Data

User Defined Value Set Data File Format

Value set data is identified by a unique code value, an optional description and a parent code that

specifies its relationship with other code values. Value set data must adhere to this format:

 Column name Maximum length Description of use

Code 765 Unique value within the value set used for validation

description 765 Typically used by UDDI user consoles and optionally in the

keyedReference as the keyName value

parentcode 765 Indicates which existing code is the logical parent of this one,

and is used in tree displays

Typically columns are delimited in the value set data file by ’#’ characters as in this example:

00#Food#00

10#Fruit#00

101#Apples#10

102#Oranges#10

103#Pears#10

1031#Anjou#103

1032#Conference#103

1033#Bosc#103

104#Pomegranates#10

20#Vegetables#00

201#Carrots#20

202#Potatoes#20

203#Peas#20

204#Sprouts#20

In the example, ’Food’ is the description for the root node with child nodes of ’Fruit’ and ’Vegetables’ (both

of these have parentcode values the same as the code value for ’Food’).

The value set data in the example file could then be rendered in a tree like this:

Food

 Fruit

 Apples

 Oranges

1034 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Pears

 Anjou

 Conference

 Bosc

 Pomegranates

 Vegetables

 Carrots

 Potatoes

 Peas

 Sprouts

The file must be saved in UTF-8 format.

Custom Taxonomy files used in UDDI Version 2 are also supported by the utility.

UDDIUserDefinedValueSet

A utility is provided to load value set data into the IBM WebSphere UDDI Registry, assign existing value

set data to another tModel and unload existing value set data. This utility uses the UDDI Registry’s JMX

interface and therefore requires a number of connection parameters.

Usage: UDDIUserDefinedValueSet[.sh|.bat] ’{’function’}’ [options]

function:

-load <path> <key> Load value set data from specified file

-newKey <oldKey> <newKey> Move value set to a new tModel

-unload <key> Unload existing value set

options:

-properties <path> Specify location of configuration file

-host <host name> Application Server or Deployment Manager host

-port <port> SOAP Lister port number

-node <node name> Node running a UDDI server

-server <server name> Server with UDDI deployed

-columnDelimiter <delim> Character delimiter to denote field end

-stringDelimiter <delim> Character delimiter to denote strings

Connector security parameters

-userName <name>

-password <password>

-trustStore <path>

-trustStorePassword <password>

-keyStore <name>

-keyStorePassword <password>

Note: Ensure that the command window from which the UDDIUserDefinedValueSet is run is using a

suitable codepage and font for displaying the characters contained in the value set name. Use of an

incorrect codepage/font may result in unclear messages on a successful load, and create difficulty

using the -unload and -newKey options.

The UDDIUserDefinedValueSet .bat (for Windows) or UDDIUserDefinedValueSet.sh (for Unix platforms) is

located in the WAS_HOME/bin directory.

If no connection parameters are supplied a connection is sought on the local host using firstly the

Deployment Managers default SOAP port number, and, if there is no Deployment Manager running, the

default Application Server SOAP port number.

Command arguments are case insensitive.

Usage examples

Chapter 8. Developing WebSphere applications 1035

Load a value set data for a tModel on the local UDDI Registry using the ’%’ sign as a column marker in

the valuesetdata.txt file:

UDDIUserDefinedValueSet.xxx -load valuesetdata.txt

 uddi:a708b8a7-35b5-451c-aafc-718ae071fcfe -columnDelimiter %

where .xxx is .bat for Windows or .sh for Unix platforms.

Move value set data from one checked tModel to another on a UDDI Registry in a Network Deployment:

UDDIUserDefinedValueSet.xxx –newKey uddi:a708b8a7-35b5-451c-aafc-718ae071fcfe

 uddi:b819c9b8-46c6-562d-bb0d-829bf1820d0f –host depmanagerhost.ibm.com –port

 8879 –node uddinode –server uddiserver -override

where .xxx is .bat for Windows or .sh for Unix platforms.

Unload a value set from a tModel from a server with security turned on supplying the connection and

security parameters in myproperties.properties file, but supplying the server and password arguments on

the command line (which augment or override those contained in the properties file):

UDDIUserDefinedValueSet.xxx –unload uddi:b819c9b8-46c6-562d-bb0d-829bf1820d0f

 –server uddiserver –properties myproperties.properties

 –password myrealpassword

where .xxx is .bat for Windows or .sh for Unix platforms.

The configuration file, if specified by the optional -properties parameter, determines a number of optional

parameters. These parameters can be specified on the command line and, if so, override the values in the

properties file. These parameters are largely JMX connection parameters and security parameters.

The string.delimiter is typically used where a description value contains the same character as the column

delimiter character. For example, if the column.delimiter was set to ’,’ (a comma), and there was a value

set description value of ’Fruits, citrus’, you could include this in the value set data file by setting the

string.delimiter to ″ (double quote) and enclosing the description in quotes: ’Fruits, citrus’. Note that the

quote character is escaped with a backslash (’\’) to indicate the literal character is to be used.

If an attempt is made to load a value set to a tModel that has existing value set data, a warning message

is given. To override this error provide the -override argument. This argument is also required if moving

value set data to a new tModel using -newKey where the tModel is checked, and also unloaded value set

data for a checked tModel.

 Command line arguments and

example data

Property and example data Comments

-columnDelimiter # column.delimiter=# Column delimiter used in value set

data files

-stringDelimiter \″ string.delimiter=\″ Field delimiter (must be different to

the column.delimiter value

-host ibm.com host=ibm.com Host name of the system running

Deployment Manager or Application

Server

-port 8880 port=8880 SOAP port number of Deployment

Manager or Application Server

-node ibmNode node=ibmNode Name of the Node running the

server with the UDDI Registry

-server server1 server=server1 Server running the UDDI Registry

-userName ibmuser security.username=ibmuser User name. Required if WebSphere

security is turned on

1036 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

-password mypassword security.password=mypassword Password

-trustStore /TrustStoreLocation security.truststore=/TrustStoreLocation Truststore file location

-keyStore ibmkeystore security.keystore=ibmkeystore Keystore name

-trustStorepassword trustpass security.truststore.password=trustpass Truststore password

-keyStorePassword keypass security.keystore.password=keypass Keystore password

Set the value set to supported

Use the Administration console to set the value set to supported by:

v Click UDDI Nodes > <node> and Value Sets (under Additional Properties on the right of the screen)

v Select the Value Set (by checking the box next to it)

v Click Enable Support above the list of Value Sets

Validation and Error Handling

The UDDI Registry user console performs validation while a save tModel request is being built, that is,

before the publish occurs. For example, if the user tries to add two customTaxonomy:displayName

keyedReferences the following message is displayed:

Advice: Only one ’urn:x-ibm:uddi:customTaxonomy:displayName’ key name is allowed

for the ’Other’ taxonomy.

If a keyedReference containing a keyName value that starts with ’urn:x-ibm:uddi:customTaxonomy:’ is

followed by anything other than ’displayName’, the following message is displayed:

Advice: Only key name values of ’urn:x-ibm:uddi:customTaxonomy:displayName’

are supported.

For requests where the save_tModel message may have multiple tModels, if any one of the tModels is a

categorization tModel and it fails validation, the request fails with a UDDIInvalidValueException (plus

additional information explaining the likely cause), and none of the tModels is published. For example:

E_invalidValue (20200) A value that was passed in a keyValue attribute did not

pass validation.

This applies to checked categorizations, identifiers and other validated code lists.

The error text will clearly indicate the key and value combination that failed validation.

Invalid ’customTaxonomy:dbKey’ keyValue [naics] in keyedReference.

KeyValue already in use by tModelKey[UUID:C0B9FE13-179F-413D-8A5B-5004DB8E5BB2]

UDDI Utility Tools:

The UDDI Utility Tools is a suite of functions that can be used to migrate/move/copy UDDI Version 2

entities, including child entities and their respective Version 2 entity keys, into a Version 3 UDDI Registry.

Note: The UDDI Version 3 publish API supports publisher assigned keys (the Version 2 API did not) and

promotion of entities between Version 3 registries can be achieved using normal API functions.

UDDI Utility Tools supplied in this release is functionally equivalent to the version supplied in

WebSphere Application Server 5.1. However, it is important to know that all UDDI Utility Tools

functions in this release are performed using the UDDI Version 2 API. You can export from Version

2 and 3 registries and import into the Version 3 registry, using Version 2 API types. Entities from a

Version 3 registry are exported as Version 2 entities and, as such, elements such as digital

signatures will not be present. See section Saving Version 3 entities with a supplied key for an

example on how to use the Version 3 API to assign your own keys to Version 3 entities.

Other uses of the tool include:

v Search and select entities from a source UDDI Registry by specifying keys or search criteria

Chapter 8. Developing WebSphere applications 1037

v Publishing canonical tModels in a UDDI Registry, including child entities

v Persist UDDI (Version 2) entities in an intermediate XML representation that can be used to customize

and copy those entities to multiple target UDDI Registries

v Update existing entities in a target UDDI Registry, including child entities

v Delete selected entities from a target UDDI Registry

UDDI Utility Tools can be used by running the UDDIUtilityTools.jar file. This file is located in the

WAS_HOME/UDDIReg/scripts directory. Alternatively, all of the functions of UDDI Utility Tools can be

invoked through the supplied public Java API.

There are five main functions in UDDI Utility Tools:

Export

Given an entity type and key, or a list of entity types and keys, UDDI Utility Tools gets the UDDI

entities from the specified registry and writes them to the UDDI Entity Definition File. The entity

type for each key can be one of business, service, bindingTemplate or tModel. The Entity

Definition File contains XML that exactly describes each of the specified entities, according to the

UDDI Utility Tools schema (which includes the UDDI Version 2 schema). The UDDI Entity

Definition File separates entities by type, and automatically detects and records tModels

referenced by the specified entities. You can use the ’referenced tModels’ section of the file to

ensure a target registry includes any referenced tModels before you try to import new entities to

that registry.

Import

Given a list of UDDI entities (which can be supplied using the UDDI Entity Definition File

generated by the export function, possibly with additional editing, or programmatically in a

container object), the import function detects if the entities already exist in the target registry and,

if they do not, creates a minimal entity (″stub″) with the specified key. The entities are then

published updating the stubs with the supplied data and overwriting, or ignoring, existing entities

as specified by the user. Note that the original key is maintained throughout.

Promote

Combines the export and import steps such that the specified entities are extracted (by key) from

the source registry and then imported into the target registry in a single logical step. The

generation of a UDDI Entity Definition File is optional for this function.

Delete Deletes the specified entities from the target UDDI Registry. The entities to delete are specified as

an entity type, or a list of entity types, and keys, in the same way as for the export function.

Find Matching Entities

Takes as input search criteria in the form of UDDI Inquiry API objects for each of the various entity

types. The set of entities that match the search criteria are used to generate a list of entity keys,

and this in turn can be used as input to the export, promote and delete functions.

Note: This function is available only through the programmatic API.

The relationship between the functions, their input and output, and the source and target UDDI

Registries is shown in this conceptual overview diagram:

1038 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Setting up the configuration file

Configuration data for UDDI Utility Tools resides in a configuration properties file, which describes the

runtime environment, UDDI and database locations and access information, logging information, security

configuration, entity definition file location, and other flags to control whether referenced entities are to be

imported and/or overwritten.

UDDI Utility Tools is distributed with a sample configuration properties file (UDDIUtilityTools.properties) and

this is searched for by default in the current directory if no properties path is specified. By default, this file

is located in the WAS_HOME/UDDIReg/scripts directory.

The most important property to set is the classpath, and this should include the current directory (.) and

the UDDIUtilityTools.jar itself, plus all the dependent jars, most of which are located in the WebSphere

AppServer lib directory. The classpath must include the database driver jar (for example db2java.zip). The

other properties are well commented in the example properties file.

Below is an example properties file as distributed:

Runtime environment #

(if invoking via java -jar...) #

"X Y" required around paths with spaces #

classpath=.;c:/Progra~1/WebSphere/utilitytools/UDDIUtilityTools.jar;

C:/WebSphere/AppServer/lib/soap.jar;C:/WebSphere/AppServer/java/jre/lib/ext/mail.jar;

C:/WebSphere/AppServer/java/jre/lib/ext/ibmjsse.jar;

C:/WebSphere/AppServer/java/jre/lib/ext/activation.jar;

C:/promoter/uddi4jv2.jar;C:/WebSphere/AppServer/lib/xerces.jar;

C:/WebSphere/AppServer/lib/j2ee.jar;"C:/Program Files/SQLLIB/java12/db2java.zip"

 (ALL the above is on ONE line - shown here as broken for clarity)

SOAP entry points for source UDDI #

fromInquiryURL=http://localhost:9080/uddisoap/inquiryapi

fromGetURL=http://localhost:9080/uddisoap/get

##

Chapter 8. Developing WebSphere applications 1039

SOAP entry points for target UDDI #

toInquiryURL=http://localhost:9080/uddisoap/inquiryapi

toPublishURL=http://localhost:9080/uddisoap/publishapi

UDDI Registry user information #

Note: this must match the user information #

that was used to publish the entities on #

the target UDDI registry. #

userID=UNAUTHENTICATED

password=NONE

Configuration for destination UDDI DB #

dbDriver=COM.ibm.db2.jdbc.app.DB2Driver

dbUrl=jdbc:db2:uddi30

dbUser=db2admin (Your dbUser id)

dbPasswd=db2admin (Your dbPassword)

Security provider configuration #

Indicates whether security is required on the target registry

secure.connection=true

The location of the truststore if security is required

trustStore.fileName=c:/websphere/appserver/etc/DummyClientTrustFile.jks

The password for the trust store

trustStore.password=WebAS

Trace and message logging configuration #

detail level of message output (all functions)

verbose=true

detail level of trace output.

1: severe

2: normal

3: detail

traceLevel=3

path to message log file (relative or absolute)

messageLogFileName=logs/messages.log

path to trace log file (relative or absolute)

traceLogFileName=logs/trace.log

Miscellaneous Options #

indicates if existing entities are overwritten (import/promote)

overwrite=false

indicates if referenced entities will be imported (import/promote)

importReferencedEntities=true

location of entity definition file, used for (export/import)

UddiEntityDefinitionFile=C:/definitions/entities01.xml

namespace prefix to use in definition file (export)

namespacePrefix=promote

1040 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Prerequisites

UDDI Utility Tools must have the following jar files available. Their locations should be specified in the

classpath property in the UDDI Utility Tools properties file:

UDDIUtilityTools.jar

This is the tools jar itself. It MUST appear on the classpath.

uddi4jv2.jar

This is the UDDI4J classes and can be found in <WAS_HOME>/lib.

j2ee.jar

This contains some required J2EE classes.

soap.jar

This is the Apache SOAP implementation.

xerces.jar

This is the xerces XML parser.

DbDriver

This is the default driver needed to allow UUT to connect to your target database. For example,

for DB2, it would be $DB2_HOME/DB2java.zip, for Oracle, it would be

$ORACLE_HOME/jdbc/lib/ojdbc14.jar and for Cloudscape you need two jars. These are

WAS_HOME/cloudscape/lib/otherJars/db2jcc.jar and

WAS_HOME/cloudscape/lib/db2jcc_license_c.jar. The respective dbURL’s and Drivers are: for

DB2 jdbc:db2:databasename and COM.ibm.db2.jdbc.app.DB2Driver, for Oracle thin client

jdbc:oracle:thin:@host:1521:databasename (the number specified is the default port number and

this may change depending on your Oracle setup) and Oracle.jdbc.driver.OracleDriver, for

Cloudscape jdbc:db2j:net://host:1527/databasename (databasename includes the path) and

com.ibm.db2.jcc.DB2Driver. Note that if your destination database is Cloudscape you will need to

make it network enabled so that it can handle multiple connections. See Configuring Cloudscape

Version 5.1.38 for details on how to do this. For information on how to set up Cloudscape for

multiple connections, see:

http://publib.boulder.ibm.com/infocenter/ws60help/index.jsp?topic=

 /com.ibm.websphere.base.doc/info/ae/ae/ tdat_cloudscape_setup.html

Apache SOAP, and therefore UDDI Utility Tools, has a requirement of having activation.jar and mail.jar

java extensions available. These should NOT be placed on the classpath but rather the ext folder of the

JRE that is used to run the tool. If SSL is needed then ibmjsse.jar must also be in the ext folder. If you are

using the JRE as supplied with IBM WebSphere Application Server then these extensions will already be

in place and no further action is necessary.

The Security provider configuration section in the above properties file shows the location of the default

DummyClientTrustFile.jks file. If you are using your own truststore, ensure that the location is placed here.

The UDDI Entity Definition File

You generate this file by the export and promote functions, or you can choose to create it (either by hand,

or by modifying a version of the file output by UDDI Utility Tools specifying the export function). It is the

input to the import function.

Note: The extension to the uddi:tModel type to add a ’deleted’ attribute is not currently used in UDDI

Utility Tools.

The file is validated for well formedness and that it complies with the UDDI Utility Tools schema, shown

here.

Chapter 8. Developing WebSphere applications 1041

<?xml version="1.0" encoding="UTF-8" ?>

<xsd:schema id="uddiPromote" attributeFormDefault="unqualified"

 elementFormDefault="qualified"

 targetNamespace="http://www.ibm.com/xmlns/prod/WebSphere/UDDIUtilityTools"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:uddi="urn:uddi-org:api_v2" xmlns=

 "http://www.ibm.com/xmlns/prod/WebSphere/UDDIUtilityTools"

xmlns:promote="http://www.ibm.com/xmlns/prod/WebSphere/UDDIUtilityTools">

 <xsd:import namespace="http://www.w3.org/XML/1998/namespace" schemaLocation="xml.xsd" />

 <xsd:import namespace="urn:uddi-org:api_v2" schemaLocation="uddi_v2.xsd" />

 <!-- define a type to represent state of a tModel -->

 <xsd:simpleType name="tModelDeleted">

 <xsd:restriction base="xsd:NMTOKEN">

 <xsd:enumeration value="true" />

 <xsd:enumeration value="false" />

 </xsd:restriction>

 </xsd:simpleType>

 <!-- extend tModel with additional attribute of type tModelDeleted -->

 <!-- This is restricted to values true or false -->

 <xsd:complexType name="tModel">

 <xsd:complexContent>

 <xsd:extension base="uddi:tModel">

 <xsd:attribute name="deleted" type="promote:tModelDeleted" use="optional" />

 </xsd:extension>

 </xsd:complexContent>

 </xsd:complexType>

 <!-- Top level element definitions -->

 <xsd:element name="uddiEntities" type="promote:uddiEntities" />

 <xsd:complexType name="uddiEntities">

 <xsd:sequence>

 <xsd:element ref="promote:tModels" minOccurs="0" maxOccurs="1" />

 <xsd:element ref="promote:businesses" minOccurs="0" maxOccurs="1" />

 <xsd:element ref="promote:services" minOccurs="0" maxOccurs="1" />

 <xsd:element ref="promote:bindings" minOccurs="0" maxOccurs="1" />

 <xsd:element ref="promote:referencedTModels" minOccurs="0" maxOccurs="1" />

 </xsd:sequence>

 </xsd:complexType>

 <xsd:element name="businesses" type="promote:businesses" />

 <xsd:complexType name="businesses">

 <xsd:sequence>

 <xsd:element ref="uddi:businessEntity" minOccurs="0" maxOccurs="unbounded" />

 </xsd:sequence>

 </xsd:complexType>

 <xsd:element name="tModels" type="promote:tModels" />

 <xsd:complexType name="tModels">

 <xsd:sequence>

 <xsd:element ref="uddi:tModel" minOccurs="0" maxOccurs="unbounded" />

 </xsd:sequence>

 </xsd:complexType>

 <xsd:element name="services" type="promote:services" />

 <xsd:complexType name="services">

 <xsd:sequence>

 <xsd:element ref="uddi:businessService" minOccurs="0" maxOccurs="unbounded" />

 </xsd:sequence>

 </xsd:complexType>

 <xsd:element name="bindings" type="promote:bindings" />

 <xsd:complexType name="bindings">

 <xsd:sequence>

1042 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

<xsd:element ref="uddi:bindingTemplate" minOccurs="0" maxOccurs="unbounded" />

 </xsd:sequence>

 </xsd:complexType>

 <xsd:element name="referencedTModels" type="promote:referencedTModels" />

 <xsd:complexType name="referencedTModels">

 <xsd:sequence>

 <xsd:element ref="uddi:tModel" minOccurs="0" maxOccurs="unbounded" />

 </xsd:sequence>

 </xsd:complexType>

</xsd:schema>

UDDI Entity Definition File example for canonical tModels

The example Entity Definition File following shows the five main sections for tModels, businesses,

services, bindings and referencedTModels:

UDDI Utility Tools can be used to create new UDDI entities in a target UDDI Registry. A typical example of

this is to introduce a new canonical tModel, which has a publicly known tModel key.

<?xml version="1.0" encoding="UTF-8"?>

<promote:uddiEntities xmlns="urn:uddi-org:api_v2" xmlns:promote="

 http://www.ibm.com/xmlns/prod/WebSphere/UDDIUtilityTools">

 <!-- tModels -->

 <promote:tModels>

 <tModel tModelKey="uuid:ee3966a8-faa5-416e-9772-128554343571" >

 <name>http://schemas.xmlsoap.org/ws/2002/07/policytmodel</name>

 <description>WS-PolicyAttachment policy expression</description>

 </tModel>

 <tModel tModelKey="uuid:ad61de98-4db8-31b2-a299-a2373dc97212" >

 <name>uddi-org:wsdl:address</name>

 <description xml:lang="en">

This tModel is used to specify the URL fact that the address must be obtained from

the WSDL deployment file.

 </description>

 <overviewDoc>

 <overviewURL>

http://www.oasis-open.org/committees/uddi-spec/doc/tn/

 uddi-spec-tc-tn-wsdl-v2.htm#Address

 </overviewURL>

 </overviewDoc>

 </tModel>

 </promote:tModels>

 <!-- businesses -->

 <promote:businesses>

 </promote:businesses>

 <!-- services -->

 <promote:services>

 </promote:services>

 <!-- bindings -->

 <promote:bindings>

 </promote:bindings>

 <!-- referenced tModels -->

 <promote:referencedTModels>

 </promote:referencedTModels>

</promote:uddiEntities>

Chapter 8. Developing WebSphere applications 1043

Starting UDDI Utility Tools at a command prompt

Ensure the correct level of java is appropriate by setting the PATH statement to the level of java supplied

with WebSphere. For example, from the command line, type:

On Windows:

set PATH=WAS_HOME\java\bin;%PATH%

On Unix and Linux platforms:

export PATH=WAS_HOME/java/bin:$PATH

If you are using DB2 on Unix and Linux platforms run the db2profile script before issuing the java

command to start UDDI Utility Tools. This script is located within the DB2 instance home directory under

sqllib and is invoked by typing:

. /$DB2_HOME/db2profile

Note: In the above example, notice that the ’.’ is followed by a single space character.

Note: On Unix and Linux platforms the DB2 user must have a db2profile at $HOME/sqllib/db2profile.

UDDI Utility Tools can be started using:

java - jar UDDIUtilityTools.jar <function> [options]

using a specified properties file that sets up classpath and other parameters, or it can be called

using:

java CommandLineProcessor

where CommandLineProcessor is the class which processes command line arguments for UDDI

Utility Tools, sets up configuration and invokes the appropriate function.

The usage is as follows:

Usage: java -jar UDDIUtilityTools.jar {function} [options]

function:

 -promote <entity source> Promote entites between registries

 -export <entity source> Extract entities from registry to XML

 -delete <entity source> Delete entities from registry

 -import Create entities from XML to registry

where <entity source> is one of:

 -tmodel|-business|-service|-binding <key> Specify single entity type and key

 -keysFile | -f <filename> Specify file containing entity types and keys

options:

 -properties <filename> Specify path to configuration file

 -overwrite | -o Overwrite an entity if it already exists

 -log | -v Output verbose messages

 -definitionFile <filename> Specify path to UDDI entity definition file

 -importReferenced Import entities referenced by source entities

The following options override property settings in configuration file:

 -overwrite

 -log

 -definitionFile

 -importReferenced

Example: java -jar UDDIUtilityTools.jar -promote -keysFile C:/uddikeys.txt

Below are a set of UDDI Utility Tools command line examples:

To export a single business to the EDF file specified in a properties file in the current directory.

1044 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

java -jar UDDIUtilityTools.jar -export -business 28B8B928-2B2E-4EC9-A647-1E40651E4752

As above but this time using a keys file to specify the entities to be exported

java -jar UDDIUtilityTools.jar -export -keysFile c:/myKeyFiles/keyFile01.txt

As above but also specifying verbose output to appear on the command line.

java -jar UDDIUtilityTools.jar -export -keysFile c:/myKeyFiles/keyFile02.txt -v

To import the contents of the default EDF specified in a UDDIUtilitiyTools.properties file in the current

directory.

java -jar UDDIUtilityTools.jar -import

As above but also specifying that referenced tModels should be imported into the target registry.

java -jar UDDIUtilityTools.jar -import -importReferenced

To import the entities from an EDF at the specified location. Note the use of forward slashes even though

this is an example on a Windows file system.

java -jar UDDIUtilityTools.jar -import -definitionFile c:/myEDFs/entities01.xml

To import the entities from the default EDF including referenced tModels. Overwrite specifies that any

entities excluding referenced tModels that are found in the target registry should be overwritten.

java -jar UDDIUtilityTools.jar -import -overwrite -importReferenced

To promote a single service from a source to a target registry using the properties file at a specified

location.

java -jar UDDIUtilityTools.jar -promote -service 67961D67-330F-4F14-8210-E74A58E710F3

-properties c:/UUT/myUUTProps.properties

To promote a set of entities specified in a keys file.

java -jar UDDIUtilityTools.jar -promote -keysFile c:/myKeyFiles/keyFile03.txt

As above but specifying that existing entities in the target registry get overwritten.

java -jar UDDIUtilityTools.jar -promote -keysFile c:/myKeyFiles/keyFile04.txt -overwrite

To promote a set of entities specified in a keys file including referenced tModels.

java -jar UDDIUtilityTools.jar -promote -keysFile c:/myKeyFiles/keyFile05.txt -importReferenced

To promote a set of entities specified in a keys file but also create an EDF containing the promoted

entities.

java -jar UDDIUtilityTools.jar -promote -keysFile c:/myKeyFiles/keyFile06.txt

-definitionFile c:/myEDFs/entities02.xml

To logically delete a single tModel. Note that it is not possible to physically delete tModels.

java -jar UDDIUtilityTools.jar -delete -tModel UUID:1E2B9D1E-E53D-4D36-9D46-6CCC176C466A

To delete all the entities specified in the keys file. Note that with the exception tModels all other entities will

be physically deleted from the target registry.

java -jar UDDIUtilityTools.jar -delete -keysFile c:/myKeyFiles/keyFile04.txt

A keys file example

Below is an example of the keys that are to be exported, promoted or deleted from the target registry:

Chapter 8. Developing WebSphere applications 1045

Keys of entities to be exported, promoted from source registry or deleted from

 target registry

Note: keys must be comma separated and on SAME line

Note: property names are case sensitive. (’tmodels=’ will be ignored)

businesses=97C77097-AC6C-4CA0-A6C4-452F7045C470, 4975E949-581F-4FCA-AD5F-E08280E05F9F

services=BB3864BB-1578-4833-8179-14391F14791F

bindings=

tModels=273F1727-7BFF-4FB5-A1FD-BA5C45BAFD9C

Note: If the importReferenced property is set to true, the list of tModels in the referencedTModels section

is imported to the target registry. Minimal entities are created if the referencedTModel is new. If the

referencedTModel already exists it is never overwritten, regardless of the overwrite property value.

This is so that commonly referenced tModels such as categorization tModels do not keep being

updated unnecessarily.

Should you need to update a referencedTModel, you must manually move the referencedTModel

definition to the tModels section in the entity definition file and set overwrite to true.

Content of the log files

Below shows examples of contents of two of the log files produced by running the tool. Note that some

comments have been added in square brackets and in italic to highlight important points within the log file.

The first is the messages.log which shows successful and unsuccessful operations for export, import and

delete functions:

[29/07/04 17:39:57:531 BST] CWUDU0002I: ***** Starting UDDI Utility Tools ****

****** [timestamp and eyecatcher indicate when tool is run]

[29/07/04 17:39:57:531 BST] CWUDU0009I: Exporting entities...

[29/07/04 17:39:57:531 BST] CWUDU0015I: Exported 14 entities.

[29/07/04 17:39:57:531 BST] CWUDU0029I: Serializing...

[29/07/04 17:39:57:531 BST] CWUDU0030I: Serialized entities.

[29/07/04 17:39:57:531 BST] CWUDU0016I: Importing entities...

[29/07/04 17:39:57:531 BST] CWUDU0124I: Created tModel minimal entity with tModelKey

 [uuid:667e2766-4781-4151-b3a0-809f7180a096].

[29/07/04 17:39:57:531 BST] CWUDU0121I: Created business minimal entity with

 businessKey [263f5526-8708-4834-9f5d-8f8c878f5d6e].

[29/07/04 17:39:57:531 BST] CWUDU0122I: Created service minimal entity with

 serviceKey [0af2a30a-be70-401f-a027-331a6c332712].

[29/07/04 17:39:57:531 BST] CWUDU0122I: Created service minimal entity with

 serviceKey [61012761-d02c-4c70-ae98-435ffd4398f9].

[29/07/04 17:39:57:531 BST] CWUDU0123I: Created binding template minimal entity with

 bindingKey [f97af9f9-7cb7-47bd-8b90-b55e4db590df].

[29/07/04 17:39:57:531 BST] CWUDU0123I: Created binding template minimal entity with

 bindingKey [17e4c017-d273-43ec-af4a-f9b841f94a30].

[29/07/04 17:39:57:531 BST] CWUDU0123I: Created binding template minimal entity with

 bindingKey [9e2c239e-3b30-40a9-9c25-ce64edce25b9].

[29/07/04 17:39:57:531 BST] CWUDU0121I: Created business minimal entity with

 businessKey [49bb6949-4b0e-4e81-88a7-e26bfbe2a7f1].

[29/07/04 17:39:57:531 BST] CWUDU0122I: Created service minimal entity with

 serviceKey [003d2b00-f6c0-4071-8b84-f235a2f28445].

[29/07/04 17:39:57:531 BST] CWUDU0123I: Created binding template minimal entity with

 bindingKey [df1019df-2d2f-4f32-bf18-4f21274f1835].

[29/07/04 17:39:57:531 BST] CWUDU0123I: Created binding template minimal entity with

 bindingKey [b229aeb2-f2b1-4115-a06f-536753536f10].

[29/07/04 17:39:57:531 BST] CWUDU0122I: Created service minimal entity with

 serviceKey [84d8e584-2510-4099-9b2a-6023f1602a0a].

[29/07/04 17:39:57:531 BST] CWUDU0123I: Created binding template minimal entity with

 bindingKey [62a9a762-7fff-4f7a-8463-af0c79af63ee].

[29/07/04 17:39:57:531 BST] CWUDU0123I: Created binding template minimal entity with

 bindingKey [e08654e0-b212-42c0-bcf3-655e9765f392].

[29/07/04 17:39:57:531 BST] CWUDU0115I: Imported 7 entities and 0 referenced entities.

[this kind of message indicates the operation worked!]

1046 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

[29/07/04 17:39:57:531 BST] CWUDU0002I: ********** Starting UDDI Utility Tools

[29/07/04 17:39:57:531 BST] CWUDU0023I: Deleting entities...

[29/07/04 17:39:57:531 BST] CWUDU0028I: Deleted 7 entities.

The second log file shows a typical trace log file entry for an export:

[29/07/04 17:39:57:531 BST] ********** Starting UDDI Utility Tools **********

 [eyecatcher and timestamp indicate when tool is run]

[29/07/04 17:39:57:531 BST] > com.ibm.uddi.promoter.PromoterAPI.setUddiEntities()

 [the ’>’ indicates entry to the constructor of this class]

[29/07/04 17:39:57:531 BST] > com.ibm.uddi.promoter.export.KeyFileReader()

[29/07/04 17:39:57:531 BST] com.ibm.uddi.promoter.export.KeyFileReader() loaded

 tModel keys

[29/07/04 17:39:57:531 BST] com.ibm.uddi.promoter.export.KeyFileReader() loaded

 business keys

TransformConfiguration:

 nameSpacePrefix=promote

 uddiEntityDefinitionFile=c:\temp/MigToolFiles/Results/Promote_api_EDF_1.xml

ExportConfiguration:

 fromGetURL=http://yottskry:9080/uddisoap/

 fromInquiryURL=http://yottskry:9080/uddisoap/inquiryAPI

ImportConfiguration:

 overwrite=true

 uddiEntityDefinitionFile=c:\temp/MigToolFiles/Results/Promote_api_EDF_1.xml

 importReferencedEntities=true

PublishConfiguration:

 toInquiryURL=http://davep:9080/uddisoap/inquiryAPI

 toPublishURL=http://yottskry:9080/uddisoap/publishAPI

 userID=Publisher1

 trustStoreFileName=c:/WebSphere600/AppServer//etc/DummyClientTrustFile.jks

 secureConnection=false

DatabaseConfiguration:

 dbDriver=COM.ibm.db2.jdbc.app.DB2Driver

 dbURL=jdbc:db2:UDDI30

 dbUser=db2admin

LoggerConfiguration:

 messageStream=null

 messageLogFileName=c:\temp/MigToolFiles/logs/message.log

 traceLogFileName=c:\temp/MigToolFiles/logs/trace.log

 traceLevel=3

 verbose=true

[29/07/04 17:39:57:531 BST] < com.ibm.uddi.promoter.PromoterAPI()

[29/07/04 17:39:57:531 BST] ********** Starting UDDI Utility Tools **********

[29/07/04 17:39:57:531 BST] > com.ibm.uddi.promoter.PromoterAPI.setUddiEntities()

[29/07/04 17:39:57:531 BST] > com.ibm.uddi.promoter.export.KeyFileReader()

[29/07/04 17:39:57:531 BST] com.ibm.uddi.promoter.export.KeyFileReader() loaded

 tModel keys [log entries without a ’>’ or ’<’ are status messages only]

[29/07/04 17:39:57:531 BST] com.ibm.uddi.promoter.export.KeyFileReader() loaded

 business keys

[29/07/04 17:39:57:531 BST] com.ibm.uddi.promoter.export.KeyFileReader() loaded

 service keys

[29/07/04 17:39:57:531 BST] com.ibm.uddi.promoter.export.KeyFileReader() loaded

 binding keys

[29/07/04 17:39:57:531 BST] > com.ibm.uddi.promoter.UddiEntityKeys()

[29/07/04 17:39:57:531 BST] < com.ibm.uddi.promoter.UddiEntityKeys() [the ’<’

 indicates exit from the constructor]

[29/07/04 17:39:57:531 BST] com.ibm.uddi.promoter.export.KeyFileReader() removed

 duplicate, empty and null keys

[29/07/04 17:39:57:531 BST] < com.ibm.uddi.promoter.export.KeyFileReader()

Chapter 8. Developing WebSphere applications 1047

[29/07/04 17:39:57:531 BST] < com.ibm.uddi.promoter.PromoterAPI.setUddiEntities()

[29/07/04 17:39:57:531 BST] > com.ibm.uddi.promoter.PromoterAPI.deleteEntities()

[29/07/04 17:39:57:531 BST] > com.ibm.uddi.promoter.publish.EntityDeleter()

[29/07/04 17:39:57:531 BST] < com.ibm.uddi.promoter.publish.EntityDeleter()

[29/07/04 17:39:57:531 BST] > com.ibm.uddi.promoter.UDDIClient()

[29/07/04 17:39:57:531 BST] com.ibm.uddi.promoter.UDDIClient() client type: 1

Starting UDDI Utility Tools through the API

UDDI Utility Tools provides a public API to functions for exporting, importing, promoting, finding and

deleting UDDI entities. All of these functions can be invoked by using the PromoterAPI class. Usage of this

class to perform these functions is typically to:

1. Create a Configuration object and populate it from a Properties object or from a configuration

properties file.

2. Create a PromoterAPI object passing the Configuration in the constructor.

3. For keys based functions (export, delete and promote), set the keys by supplying a UDDIEntityKeys

object, the location of the keys file, or, for one entity, by specifying an entity type and a key value.

4. Invoke the corresponding method for the function required: exportEntities, promoteEntities(boolean),

importEntities, deleteEntities or extractKeysFromInquiry(FindTModel, FindBusiness, FindService,

FindBinding, FindRelatedBusinesses).

There is some sample code for UDDI Utility Tools, demonstrating usage of the API classes, available from

Samples Central.

The ″low-level″ API classes and methods have been deprecated in this release. Refer to the Javadoc

welcome page for details.

Known limitations with UDDI Utility Tools and workarounds

There are some known limitations with UDDI Utility Tools and a workaround for each. See ″UDDI

troubleshooting tips″ in the information center.

Cloudscape Restriction

The ’export’ function when referencing a source registry with a Cloudscape database is supported.

However, the ’import’, ’promote’ and ’delete’ functions are not supported when referencing a target registry

because of a limitation with the UDDI Registry when working with a Cloudscape database.

Saving Version 3 entities with a supplied key

An example of saving a Version 3 business with a defined key is shown below.

<?xml version="1.0" encoding="UTF-8"?>

<Envelope xmlns="http://schemas.xmlsoap.org/soap/envelope/">

 <Body>

 <save_business xmlns="urn:uddi-org:api_v3">

 <authInfo>a399c4a3-6387-47cd-a1bd-91f7bb91bdd7</authInfo>

 <businessEntity businessKey="uddi:mycompany-p1.com:computers">

 <name xml:lang="en">WithKey</name>

 </businessEntity>

 </save_business>

 </Body>

</Envelope>

Known limitations with UDDI Utility Tools and workarounds

There are known limitations with the UDDI Utility Tools and a workaround for each:

v PublisherAssertions are not supported and will not be promoted.

1048 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

http://www.ibm.com/websphere/developer/library/samples/AppServer.html

Workaround: After the user has promoted the businesses that are related, he must recreate the

publisherAssertion relationship.

v Referenced businesses in service projections are not added automatically to the EDF in the same

manner as referenced tModels.

Workaround: Add the referenced business that will ’own’ the projected service to the EDF. If the

business is not present in the target registry, it should be placed before the service’s owning business in

the EDF.

v Cycle detection for service projections are not detected in the same manner as for referenced tModels.

Workaround: If a circular reference is present between two or more service projections, break the cycle

by removing one of the projections temporarily, perform the import and update the changed entity to

reestablish the cycle in the target registry.

v tModels that were deleted (in the logical sense) in the source registry are imported and promoted as

undeleted in the target registry. This is because, in the UDDI Version 2 specification, the deleted state

of tModels is not exposed as API calls.

Workaround: After importing the tModel, perform a delete. This is done using the UDDI Utility Tools

delete function, or any other UDDI Registry API access method.

v BindingTemplates referenced by hostingRedirectors are not added automatically to the EDF in the same

manner as referenced tModels.

Workaround: Add the referenced bindingTemplate to the EDF.

v Businesses referenced by an ’owningBusiness’ keyedReference are not automatically added to the EDF.

Workaround: Import the referenced business into the target registry before importing the tModel that

references it.

v The JSSE provider class, when security is enabled, is not configurable. It must be

com.ibm.jsse.IBMJSSEProvider.

v A few combinations of command line arguments are not validated and prevented, for example, it is

possible to specify -import with -keysFile <path to file> in the same command, although the

‑keysFile is ignored.

IBM Java API for XML Registries (JAXR) Provider for UDDI

Overview

The Java API for XML Registries (JAXR) is a Java client API for accessing both UDDI (Version 2 only) and

ebXML registries. It is part of the J2EE 1.4 specification.

The JAXR API comprises the J2EE packages javax.xml.registry and javax.xml.registry.infomodel. J2EE API

documentation can be found at http://java.sun.com/webservices/reference/api/index.html (this is a

download site). More information on JAXR, including the JAXR Version 1.0 specification, can be found at

http://java.sun.com/xml/jaxr/index.jsp.

Note that the preferred UDDI Java client APIs are UDDI4J Version 2 for UDDI Version 2, and the IBM

UDDI Client for Java for UDDI Version 3.

JAXR Provider

The current JAXR specification (Version 1.0) defines a JAXR Provider as an implementation of the JAXR

API. A JAXR Provider may be a JAXR Provider for UDDI, a JAXR Provider for ebXML, or a pluggable

provider which supports both UDDI and ebXML. The IBM JAXR Provider for UDDI is a provider for UDDI

only.

UDDI Versions

A JAXR Provider for UDDI accesses a UDDI Registry using the UDDI Version 2 SOAP APIs only. The IBM

WebSphere UDDI Registry for UDDI Version 3 in WebSphere Application Server Version 6.0 supports the

Chapter 8. Developing WebSphere applications 1049

http://java.sun.com/webservices/reference/api/index.html
http://java.sun.com/xml/jaxr/index.jsp

UDDI Version 1, 2 and 3 SOAP APIs, and so the IBM JAXR Provider for UDDI can be used to access this

registry. The IBM JAXR Provider can also be used to access the IBM WebSphere UDDI Registry for UDDI

Version 2 in WebSphere Application Server Version 5.x. Note that to use the UDDI Version 3 SOAP APIs,

JAXR cannot be used. The IBM UDDI Version 3 Client for Java is recommended for this.

Capability Level

The JAXR specification defines two Capability Profiles, Capability Level 0 and Capability Level 1. The

JAXR API documentation categorizes each JAXR method as either Level 0 or Level 1. A JAXR provider for

UDDI has Capability Level 0 and supports all Level 0 methods. A JAXR provider for ebXML has Capability

Level 1 and supports all Level 0 and Level 1 methods. The IBM JAXR Provider for UDDI is a Capability

Level 0 Provider, and supports only Level 0 methods.

JAXR for UDDI - getting started and advanced topics:

Getting started

A simple sample

The following sample program shows how to obtain the ConnectionFactory instance, create a Connection

to the registry and save an Organization in the registry.

import java.net.PasswordAuthentication;

import java.util.ArrayList;

import java.util.Collection;

import java.util.HashSet;

import java.util.Properties;

import java.util.Set;

import javax.xml.registry.BulkResponse;

import javax.xml.registry.BusinessLifeCycleManager;

import javax.xml.registry.Connection;

import javax.xml.registry.ConnectionFactory;

import javax.xml.registry.JAXRException;

import javax.xml.registry.RegistryService;

import javax.xml.registry.infomodel.Key;

import javax.xml.registry.infomodel.Organization;

public class JAXRSample

{

 public static void main(String[] args) throws JAXRException

 {

 //Tell the ConnectionFactory to use the IBM JAXR Provider for UDDI

 System.setProperty("javax.xml.registry.ConnectionFactoryClass",

 "com.ibm.xml.registry.uddi.ConnectionFactoryImpl");

 ConnectionFactory connectionFactory = ConnectionFactory.newInstance();

 //Set the URLs for the UDDI inquiry and publish APIs.

 //These must be the URLs of the UDDI version 2 APIs.

 Properties props = new Properties();

 props.setProperty("javax.xml.registry.queryManagerURL", "http://localhost:9080/uddisoap/inquiryapi");

 props.setProperty("javax.xml.registry.lifeCycleManagerURL", "http://localhost:9080/uddisoap/publishapi");

 connectionFactory.setProperties(props);

 //Create a Connection to the UDDI registry accessible at the above URLs.

 Connection connection = connectionFactory.createConnection();

 //Set the user ID and password used to access the UDDI registry.

 PasswordAuthentication pa = new PasswordAuthentication("Publisher1", new char[]

 { ’p’, ’a’, ’s’, ’s’, ’w’, ’o’, ’r’, ’d’ });

 Set credentials = new HashSet();

 credentials.add(pa);

 connection.setCredentials(credentials);

 //Get the javax.xml.registry.BusinessLifeCycleManager interface, which contains

1050 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

//methods corresponding to UDDI publish API calls.

 RegistryService registryService = connection.getRegistryService();

 BusinessLifeCycleManager lifeCycleManager = registryService.getBusinessLifeCycleManager();

 //Create an Organization (UDDI businessEntity) with name "Organization 1".

 Organization org = lifeCycleManager.createOrganization("Organization 1");

 //Add the Organization to a Collection, ready to be saved in the UDDI registry.

 Collection orgs = new ArrayList();

 orgs.add(org);

 //Save the Organization in the UDDI registry.

 BulkResponse bulkResponse = lifeCycleManager.saveOrganizations(orgs);

 //Obtain the Organization’s Key (the UDDI businessEntity’s businessKey) from the response.

 if (bulkResponse.getExceptions() == null)

 {

 //1 Organization was saved, so 1 key will be returned in the response collection

 Collection responses = bulkResponse.getCollection();

 Key organizationKey = (Key)responses.iterator().next();

 System.out.println("\nOrganization Key = " + organizationKey.getId());

 }

 }

}

Classpath

The class libraries of the IBM JAXR Provider for UDDI are contained within the archive jaxruddi.jar, located

in the WAS_HOME/lib directory. When using the JAXR API from within a J2EE application running under

WebSphere Application Server Version 6.0, all required classes will automatically be on the classpath.

When using the JAXR API from outside this environment, the following jars must be on the java classpath:

bootstrap.jar, jaxruddi.jar, j2ee.jar, soap.jar and uddi4jv2.jar, which are all located in the WAS_HOME/lib

directory.

javax.xml.registry.ConnectionFactory

To use the IBM JAXR Provider for UDDI, the name of the ConnectionFactory implementation class must

first be specified by setting the System Property “javax.xml.registry.ConnectionFactoryClass” to

“com.ibm.xml.registry.uddi.ConnectionFactoryImpl”. Failure to specify this will result in the value defaulting

to “com.sun.xml.registry,common.ConnectionFactoryImpl”, which will not be found. This will result in a

JAXRException when the ConnectionFactory.newInstance() method is called. The IBM JAXR Provider for

UDDI does not support lookup of the ConnectionFactory via JNDI.

javax.xml.registry.Connection Properties

Connection specific properties must be specified by setting a java.util.Properties object on the JAXR

ConnectionFactory before obtaining a Connection. The JAXR specification defines the full list of these

properties. The table below lists the three most important properties, and what values they should take in

order to use the IBM JAXR Provider for UDDI to access the IBM WebSphere UDDI Registry. The only

required Connection property is “javax.xml.registry.queryManagerURL”, however it is recommended that

“javax.xml.registry.lifeCycleManagerURL” is also set, and that the default value of

“javax.xml.registry.security.authenticationMethod” is understood. The rest of the Connection properties

defined in the JAXR specification are optional, and their values are not specific to the IBM WebSphere

UDDI Registry. The IBM JAXR Provider for UDDI does not define any additional provider-specific

properties.

 Property Description

Chapter 8. Developing WebSphere applications 1051

javax.xml.registry.queryManagerURL The URL of the IBM WebSphere UDDI Registry‘s inquiry API for

UDDI Version 2. Typically this will be of the form:

“http://<hostname>:<port>/uddisoap/inquiryapi”. This property is

required.

javax.registry.xml.lifeCycleManagerURL The URL of the IBM WebSphere UDDI Registry‘s publish API for

UDDI v2. Typically this will be of the form:

“http://<hostname>:<port>/uddisoap/publishapi”. If this property is

not specified, it defaults to the value of the

javax.xml.registry.queryManagerURL property, however the IBM

UDDI Registry will typically have different URLs for the inquiry

and publish APIs, and it is recommended to specifiy both

properties.

javax.xml.registry.authenticationMethod The method of authentication to use when authenticating with the

registry. This may take one of two values,

“UDDI_GET_AUTHTOKEN” and “HTTP_BASIC”. The default

value is “UDDI_GET_AUTHTOKEN” if none is specified. See

section Authentication and Security below for more information.

Authentication and security

Authentication

The javax.xml.registry.authenticationMethod Connection property tells the JAXR Provider which method to

use when authenticating with the UDDI registry. The two supported values of this property are

“UDDI_GET_AUTHTOKEN” and “HTTP_BASIC”. The IBM JAXR Provider for UDDI does not support the

“CLIENT_CERTIFICATE” or “MS_PASSPORT” methods of authentication. If this property is not set, the

default authentication method is “UDDI_GET_AUTHTOKEN”.

UDDI_GET_AUTHTOKEN

The JAXR Provider uses the UDDI V2 get_authToken API to authenticate with the registry. The

get_authToken call is made automatically by the JAXR Provider when the Connection credentials are set,

and the UDDI V2 authToken returned by the call is saved by the JAXR Provider for use on subsequent

UDDI publish API calls.

HTTP_BASIC

The JAXR Provider uses HTTP basic authentication to authenticate with the registry. This is supported by

WebSphere when WebSphere Global Security is on. No UDDI V2 get_authToken API call is made, instead

the username and password are sent in the HTTP headers using HTTP basic authentication every time a

UDDI API call is made (both inquiry and publish). If the UDDI Registry does not require HTTP basic

authentication, the credentials are ignored.

USING SSL (Secure Sockets Layer)

SSL can be used to encrypt HTTP traffic between the IBM JAXR Provider for UDDI and the IBM

WebSphere UDDI Registry. To use SSL, the JAXR client program should do the following:

1. When setting the “javax.xml.registry.queryManagerURL” and “javax.xml.registry.lifeCycleManagerURL”

Connection properties, specify a URL with the protocol “https” and the correct port for using SSL to

access the UDDI registry. The IBM WebSphere UDDI Registry‘s default port for https is 9443. Often

only the lifeCycleManager URL (the UDDI Publish API URL) will require SSL.

2. Add a new Security Provider to the java.security.Security object, according to the JSSE (Java Secure

Sockets Extension) implementation being used. If running under the IBM JVM in WAS 6.0, the IBM

JSSE will automatically be on the classpath. Add the IBM Security Provider as follows:

java.security.Security.addProvider(new com.ibm.jsse.JSSEProvider());

1052 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

3. Set the System property “javax.net.ssl.trustStore” to be the file name of the client trust store file. This is

a java key store (.jks) file and must contain the server certificate of the UDDI registry. Key store files

can be managed using WebSphere‘s ikeyman tool

4. Set the System property “javax.net.ssl.trustStorePassword”. This is the password used to open the

client trust store file.

5. If using an IBM JVM prior to that in WAS 6.0, it may be necessary to set the System property

“java.protocol.handler.pkgs” to “com.ibm.net.ssl.internal.www.protocol”. For more information on SSL

and the ikeyman tool refer to SSL and IKEYMAN in the Information Center.

Internal taxonomies

The IBM JAXR Provider for UDDI supplies the following internal taxonomies:

 Taxonomy ClassificationScheme name

(UDDI tModel name)

ClassificationScheme id (UDDI Version 2

tModelKey)

NAICS 1997 ntis-gov:naics:1997 UUID:C0B9FE13-179F-413D-8A5B-5004DB8E5BB2

NAICS 2002 ntis-gov:naics:2002 UUID:C0B9FE13-179F-413D-8A5B-5004DB8E5BB2

UNSPSC 3.1 unspsc-org:unspsc:3-1 UUID:DB77450D-9FA8-45D4-A7BC-04411D14E384

UNSPSC 7 unspsc-org:unspsc UUID:CD153257-086A-4237-B336-6BDCBDCC6634

ISO3166 2003 ubr-uddi-org:iso-ch:3166-2003 UUID:4E49A8D6-D5A2-4FC2-93A0-0411D8D19E88

The tModels corresponding to all of these taxonomies are available in the IBM UDDI Version 3 Registry. If

using the IBM JAXR Provider to access an IBM UDDI Version 2 Registry, only the tModels corresponding

to NAICS 1997, UNSPSC 3.1 and ISO3166 are available.

Custom internal taxonomies

A user may supply their own custom internal taxonomies. To create a new custom internal taxonomy and

make it available to the JAXR provider, follow these steps:

1. Create a text file containing the taxonomy element data. As an example, look at the file geo-data.txt on

the root of jaxruddi.jar. This is the taxonomy data file for the supplied ISO 3166 taxonomy. The first few

lines are:

geo#--#World#--

geo#AE#United Arab Emirates#--

geo#AF#Afghanistan#--

geo#AG#Antigua And Barbuda#--

geo#AI#Anguilla#--

geo#AL#Albania#--

geo#AM#Armenia#--

geo#AN#Netherlands Antilles#--

geo#AO#Angola#--

geo#AQ#Antarctica#--

geo#AR#Argentina#--

geo#AR-A#Salta#AR

geo#AR-B#Buenos Aires#AR

Each line represents one element of the taxonomy, or one Concept in the taxonomy Concept tree.

Each line has the form:

<taxonomy ID>#<element name>#<parent element value>

 Token Description

<taxonomy ID> The taxonomy ID is the same for every element of a taxonomy.

<element value> The taxonomy ID is the same for every element of a taxonomy.

<element name> The Concept name (UDDI keyName).

Chapter 8. Developing WebSphere applications 1053

<parent element value> This defines the element‘s parent element in the taxonomy tree. For every element

(except the root element) in the data file, there should be another line which defines the

element‘s parent element. The root element is denoted by defining itself as its own

parent. There should be only one root element, and no parentless elements.

The delimiter character. This does not have to be “#” and can be defined for each

taxonomy in the taxonomyConfig.properties file.

2. Save a ClassificationScheme (UDDI tModel) in the UDDI registry to represent the new internal

taxonomy. This can be done using the

javax.xml.registry.BusinessLifeCycleManager.saveClassificationSchemes() method.

3. Add the new taxonomy to the taxonomyConfig.properties file:

a. Copy the supplied taxonomyConfig.properties file from the root of jaxruddi.jar.

The content of the supplied taxonomyConfig.properties file is:

naics-1997 = UUID:C0B9FE13-179F-413D-8A5B-5004DB8E5BB2, naics-1997-data.txt, #

naics-2002 = UUID:1FF729F2-1948-46CF-B660-31EC107F1663, naics-2002-data.txt, #

unspsc = UUID:DB77450D-9FA8-45D4-A7BC-04411D14E384, unspsc-data.txt, #

unspsc7_data = UUID:CD153257-086A-4237-B336-6BDCBDCC6634, unspsc7-data.txt, #

iso3166-2003 = UUID:4E49A8D6-D5A2-4FC2-93A0-0411D8D19E88, iso3166-2003-data.txt,#

This file has one line per supplied internal taxonomy, which is of the form:

<taxonomy ID> = <tModelKey>,<data filename>,<data file delimiter>

 Token Description

<taxonomy ID> This is used internally by the JAXR provider to identify each taxonomy. It

does not have to be the same as the taxonomy ID in the corresponding

taxonomy data file.

<tModelKey> The tModelKey of the corresponding UDDI tModel. (The id of the

corresponding JAXR ClassificationScheme).

<data filename> The name of the corresponding taxonomy data file.

<data file delimiter> The delimiter character used in the taxonomy data file. All supplied internal

taxonomies use “#”, but user-supplied internal taxonomies may use different

delimiters.

b. Add a new line for the new taxonomy to the copy of the taxonomyConfig.properties file. Do not

remove any existing taxonomies from the file as this will make them unavailable to the JAXR

provider.

4. Add the copied taxonomyConfig.properties file to the java classpath ahead of jaxruddi.jar.

5. If any JAXR client programs are still running that were started before the new taxonomy was added to

the taxonomyConfig.properties file, a new Connection must be created in order to pick up the new

taxonomy.

Important notes on internal taxonomies

Each internal taxonomy is loaded into memory once per JAXR Connection. The taxonomy‘s

ClassificationScheme is created when the Connection is created. At this time the associated UDDI tModel

is obtained from the registry and used to populate the ClassificationScheme attributes. The taxonomy‘s

Concept object tree is not created until the first time the ClassificationScheme is requested by the user. All

subsequent requests for the same internal taxonomy using the same Connection will return the same

object tree.

Modification of the object tree

Because there is only one ClassificationScheme and Concept object tree per internal taxonomy per

Connection, a user should not attempt to modify programmatically any part of the Concept tree, because

all future requests for this taxonomy using the same Connection will return the modified (and now possibly

1054 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

invalid) objects. Programmatic modification of the Concept tree will not result in any changes to the

associated taxonomy data file. If a user wishes to make a change to the values in a user-defined internal

taxonomy, they must first make the changes in the taxonomy data file, and then create a new Connection

to pick up the changes in a new Concept tree.

Modification of the Concept tree

Because there is only one Concept object tree per internal taxonomy per Connection, a user should not

attempt to modify programmatically any part of the Concept tree, because all future requests for this

taxonomy using the same Connection will return the modified (and now possibly invalid) objects.

Programmatic modification of the Concept tree will not result in any changes to the associated taxonomy

data file. If a user wishes to make a change to the values in a user-defined internal taxonomy, they must

first make the changes in the taxonomy data file, and then create a new Connection to pick up the

changes in a new Concept tree.

Modification of the ClassificationScheme

Similarly, a user should not attempt to modify programmatically an internal ClassificationScheme, except in

the case where a user wishes to modify and then save a user-defined internal ClassificationScheme. A

new Connection is not required to pick up programmatic changes.

Logging and messages

UDDI4J Logging

The IBM JAXR Provider for UDDI uses UDDI4J Version 2 to communicate with the UDDI Registry. UDDI4J

has its own logging which can be switched on by setting the value of the System property

“org.uddi4j.logEnabled” to “true”. This outputs to the standard error log the XML request and response

bodies of every UDDI request.

Trace

Entry, exit, exception, warning and debug trace is provided using commons-logging. See

http://jakarta.apache.org/commons/logging/ for more information on commons-logging. Trace will only be

created if the JAXR client configures it. Entry, exit and debug trace uses the debug level of logging.

Exception and warning trace uses the info level of logging. Additionally, info level logging is provided

before each UDDI4J request is made.

Standard error log messages

The InternalTaxonomyManager, EnumerationManager and PostalSchemeManager send warning messages

to System.err if error conditions occur that do not warrant an exception, but that the user should be

informed of. Examples of these are if a taxonomy data file contains an invalid line, or if a tModel

corresponding to an internal taxonomy could not be found in the registry.

UDDI Registry Messages

The UDDI Registry issues messages to report events or errors. The messages are in the form CWUDxnnnns

where:

x is a character descriptor identifying which UDDI component is involved

nnnn is the error code

s is one of I (Information), E (Error) or W (Warning)

The prefix CWUDxnnnns: is followed by text that describes the event or error. For some messages, the

first word of the text is one of the form (MSN=SSSS). The SSSS provides a message sequence number

(or MSN), which identifies the unique circumstance in which the message was issued, and is of use where

the same message can be issued in more than one circumstance.

Chapter 8. Developing WebSphere applications 1055

http://jakarta.apache.org/commons/logging/

To help you diagnose problems and minimize the need to enable trace in any of the above components,

view the messages table. You can view the messages by prefix or component, whichever is easiest for

you to find in the table. All messages are documented with user/system action and explanation.

The text for the UDDI messages is contained in the following files:

v setupuddimessages.jar and UDDICLoudscapeCreate.jar for the CWUDD messages

v jaxruddi.jar for CWUDX messages

v UDDIValueSetTools.jar for CWUDV messages

v UDDIUtilityTools.jar for CWUDU messages

v uddiresourcebundles.jar for the remaining prefixes

which are placed, by the installation process, into the lib subdirectory of the WebSphere application server

into which the UDDI Registry was installed (with the exception of UDDIUtilityTools.jar, which is placed into

UDDIReg/scripts). If you will be running a console or log analyzer from another process; for example, to

analyze the activity log, you must place a copy of the above jar files into a directory that is within the

classpath of that process. Otherwise, the message lookup for the UDDI messages will fail.

 UDDI Components Message Prefix Table

Click on individual links for message documentation for the component

CWUDDnnnns UDDI Deploy and Removal

CWUDGnnnns UDDI User Console

CWUDMnnnns UDDI Management Interface

CWUDNnnnns UDDI Node Management

CWUDQnnnns UDDI Migration

CWUDRnnnns UDDI Logging and Tracing

CWUDSnnnns UDDI SOAP Interface

CWUDUnnnns UDDI Utility Tools

CWUDVnnnns UDDI Value Set Tools

CWUDXnnnns JAXR

CWUDDnnnns (Web Services UDDI Deployment and Removal) messages:

CWUDD0001I: Attempting to deploy UDDI Registry application.

Explanation: The UDDI deployment process is starting.

 User Response: None..

CWUDD0002W: Failed to discard unsaved changes caught exception Exc. Value is: <Exception

Message>

Explanation: This warning message indicates that changes in the wsadmin session previous to

running the uddiDeploy.jacl script cannot be discarded. The <Exception Message> describes the

error that occurred.

 User Response: None.

CWUDD0003I: Application Manager found.

Explanation: An active Application Manager can be used to stop and start UDDI on the

deployment server.

 User Response: None.

CWUDD0004I: Application Manager unavailable, application will not be started/stopped.

Explanation: No active Application Manager can be found so there is no need to stop and start

UDDI on the deployment server.

 User Response: None.

1056 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

CWUDD0005I: Application Manager not running, application will not be started/stopped.

Explanation: Application Manager has been found, but it is not running so there is no need to

stop and start UDDI on the deployment server.

 User Response: None.

CWUDD0006I: Checking for installed UDDI Registry application of name appname. Value is: <UDDI

Application Name>

Explanation: The deployment script is checking for deployed UDDI applications.

 User Response: None.

CWUDD0007I: Stopping application of name appname. Value is: <Application Name>

Explanation: Attempting to stop a deployed UDDI application.

 User Response: None.

CWUDD0008W: Stopping application appname caught exception Exc. Application might not have

been running on this server. Values are: <Application Name> <Exception Message>

Explanation: The UDDI application stop request failed.

 User Response: Attempt to stop the UDDI application via the Administration Console and rerun

the uddiDeploy.jacl script.

CWUDD0009I: Application appname stopped successfully. Value is: <Application Name>

Explanation: The UDDI application has stopped successfully.

 User Response: None.

CWUDD0010I: Removing application appname. Value is: <Application Name>

Explanation: The deployment script is attempting to remove an existing UDDI application.

 User Response: None.

CWUDD0011I: Application appname removed successfully. Value is: <Application Name>

Explanation: The UDDI application has been removed from the configuration.

 User Response: None.

CWUDD0012I: Attempting to create default UDDI datasource.

Explanation: A default UDDI deployment has been requested and therefore a Cloudscape

datasource will be created.

 User Response: None.

CWUDD0013I: Multiple Cloudscape JDBC Providers found. Using first in list.

Explanation: The deployment script has detected a number of suitable Cloudscape JDBC

providers and will use the first.

 User Response: None.

CWUDD0014I: UDDI Datasource name successfully created. Value is: <Datasource Name>

Explanation: A Cloudscape datasource has been created for the default UDDI deployment.

 User Response: None.

CWUDD0015I: Setting application classloader mode.

Explanation: The UDDI application requires PARENT_LAST class loading.

 User Response: None.

CWUDD0016I: Altered classloader mode of application appname from oldmode to newmode. Values

are: <Application Name> <Old Classloader Mode> <New Classloader Mode>

Explanation: The UDDI application class loader has been successfully changed.

 User Response: None.

CWUDD0017I: Setting classloader mode for application modules.

Explanation: The UDDI application web modules require PARENT_LAST class loading.

 User Response: None.

CWUDD0018I: Altered classloader mode of module modname in application appname from

oldmode to newmode. Values are: <Web Module Name> <Application Name> <Old Classloader

Chapter 8. Developing WebSphere applications 1057

Mode> <New Classloader Mode>

Explanation: The UDDI Web modules class loader mode has been successfully changed.

 User Response: None.

CWUDD0019I: UDDI successfully deployed.

Explanation: UDDI has been successfully deployed.

 User Response: None.

CWUDD0020I: Attempting to save new configuration.

Explanation: Attempting to save the configuration after removing any existing UDDI application.

 User Response: None.

CWUDD0021I: Changes saved successfully.

Explanation: The configuration changes have been successfully saved.

 User Response: None.

CWUDD0022I: Attempting to save new configuration.

Explanation: Attempting to save the configuration after installing the UDDI application ear.

 User Response: None.

CWUDD0023W: Changes saved successfully.

Explanation: The configuration changes have been successfully saved.

 User Response: None.

CWUDD0024I: Attempting to save new configuration.

Explanation: Attempting to save the configuration after changing the class loader modes.

 User Response: None.

CWUDD0025I: Changes saved successfully.

Explanation: The configuration changes have been successfully saved.

 User Response: None.

CWUDD1001W: Failed to discard unsaved changes caught exception Exc. Value is: <Exception

Message>

Explanation: This warning message indicates that changes in the wsadmin session previous to

running the uddiDeploy.jacl script cannot be discarded. The <Exception Message> describes the

error that occurred.

 User Response: None.

CWUDD1002I: Application Manager found.

Explanation: An active Application Manager can be used to stop and start UDDI on the

deployment server.

 User Response: None.

CWUDD1003I: Application Manager unavailable, application will not be started/stopped.

Explanation: No active Application Manager can be found so there is no need to stop and start

UDDI on the deployment server.

 User Response: None.

CWUDD1004I: Application Manager not running, application will not be started/stopped.

Explanation: Application Manager has been found, but is not running so there is no need to stop

and start UDDI on the deployment server.

 User Response: None.

CWUDD1005I: Stopping application of name appname. Value is: <Application Name>

Explanation: Attempting to stop a deployed UDDI application.

 User Response: None.

CWUDD1006W: Stopping application appname caught exception Exc. Application might not have

been running on this server. Values are: <Application Name> <Exception Message>

Explanation: The UDDI application stop request failed.

1058 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

User Response: Attempt to stop the UDDI application via the Administration Console and rerun

the uddiDeploy.jacl script.

CWUDD1007I: Application appname stopped successfully. Value is: <Application Name>

Explanation: The UDDI application has stopped executing.

 User Response: None.

CWUDD1008I: Removing application appname. Value is: <Application Name>

Explanation: The removal script is attempting to remove the UDDI application.

 User Response: None.

CWUDD1009I: Attempting to remove UDDI Registry application.

Explanation: The UDDI removal process is starting.

 User Response: None.

CWUDD1010I: Application appname removed successfully. Value is: <Application Name>

Explanation: The UDDI application has been removed from the configuration.

 User Response: None.

CWUDD1011I: Attempting to remove the default UDDI datasource.

Explanation: A default UDDI removal has been requested and therefore the Cloudscape

datasource used for UDDI will be removed.

 User Response: None.

CWUDD1012I: UDDI Datasource name successfully removed. Value is: <Datasource Name>

Explanation: The UDDI Cloudscape datasource has been removed from the configuration.

 User Response: None.

CWUDD1013I: UDDI Datasource name does not exist. No action required. Value is: <Datasource

Name>

Explanation: The default UDDI Cloudscape datasource does not exist in this configuration and

therefore does not need to be removed.

 User Response: None.

CWUDD1014I: UDDI Registry application and default UDDI datasource removed successfully.

Explanation: UDDI has been successfully removed from the configuration.

 User Response: None.

CWUDD1015I: Attempting to save new configuration.

Explanation: Attempting to save the configuration after removing the UDDI application.

 User Response: None.

CWUDD1016I: Changes saved successfully.

Explanation: The configuration changes have been successfully saved.

 User Response: None.

CWUDD1017I: UDDI Registry application removed successfully.

Explanation: UDDI has been successfully removed from the configuration.

 User Response: None.

CWUDD3001I: Commencing UDDI Cloudscape database creation

Explanation: This is an informational message. It indicates that creation of the UDDI Cloudscape

database is being started.

 User Response: None

CWUDD3002I: Path to scripts=’<DBscriptsLocation>’.

Explanation: This is an informational message. It indicates the location (path) of the scripts for

creating the UDDI database, in the <DBscriptsLocation> insert.

 User Response: None

CWUDD3003I: Path of database=’<DBlocation>’.

Explanation: This is an informational message. It indicates the location (path) to be used for the

UDDI Cloudscape database, in the <DBlocation> insert.

Chapter 8. Developing WebSphere applications 1059

User Response: None

CWUDD3004I: Database name=’<DBname>’.

Explanation: This is an informational message. It indicates the name to be used for the UDDI

Cloudscape database, in the <DBname> insert.

 User Response: None

CWUDD3005I: Default profile requested

Explanation: This is an informational message. It indicates that the UDDI Cloudscape database is

to be created as a default UDDI database, using the default UDDI profile.

 User Response: None

CWUDD3006I: Default profile not requested

Explanation: This is an informational message. It indicates that the UDDI Cloudscape database is

to be created as a non-default UDDI database.

 User Response: None

CWUDD3007I: Attempting to create or connect to UDDI Cloudscape database container

Explanation: This is an informational message. It indicates that an attempt is being made to

create, or connect to, the database container for the UDDI Cloudscape database.

 User Response: None

CWUDD3008I: UDDI Cloudscape database container successfully created or connected to

Explanation: This is an informational message. It indicates that the database container for the

UDDI Cloudscape database has been connected to successfully.

 User Response: None

CWUDD3009I: UDDI Cloudscape database creation completed normally

Explanation: This is an informational message. It indicates that the UDDI Cloudscape database

has been successfully created.

 User Response: None

CWUDD3010I: Attempting to open DDL File List file of name FileName. Value is:

FileName=’<DDLlistFilename>’

Explanation: This is an informational message. It indicates that the DDL File List file, which lists

the DDL Files (database scripts) to be used to create the UDDI Cloudscape database, has been

successfully opened. The name of the DDL File List file is given in the <DDLlistFilename> insert.

 User Response: None

CWUDD3011I: Reading the contents of the DDL File List file and verifying

Explanation: This is an informational message. It indicates that the contents of the DDL File List

file are being read and verified.

 User Response: None

CWUDD3012I: Comment from file: <DDLfileComment>

Explanation: This is an informational message. It indicates that a comment line has been read

from the DDL File List file, and shows the comment in the <DDLfileComment> insert.

 User Response: None

CWUDD3013I: Line from file: <DDLfileLine>

Explanation: This is an informational message. It indicates that a non-comment line has been

read from the DDL File List file, and shows the line in the <DDLfileLine> insert.

 User Response: None

CWUDD3014I: Extraneous attributes will be ignored

Explanation: This is an informational message. It indicates that more attributes have been

specified than are required, and that the extraneous attributes will be ignored.

 User Response: None

1060 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

CWUDD3015I: Skipping the Default Profile record because Default Profile was not requested

Explanation: This is an informational message. It indicates that the default UDDI profile was not

requested, and that therefore the record in the DDL File List file for setting up the default profile

will be skipped.

 User Response: None

CWUDD3016I: Attempting to populate the database container with schema structures.

Explanation: This is an informational message. It indicates that an attempt is being made to add

schemas to the UDDI Cloudscape database container.

 User Response: None

CWUDD3017I: Attempting to load the Cloudscape JDBC driver.

Explanation: This is an informational message. It indicates that an attempt is being made to load

the JDBC driver class for Cloudscape.

 User Response: None

CWUDD3018I: Cloudscape JDBC driver successfully loaded

Explanation: This is an informational message. It indicates that the JDBC driver for Cloudscape

has been successfully loaded.

 User Response: None

CWUDD3019I: Processing DDL file DDLFile using Term as the terminator. Values are:

DDLFile=<DDLfilename>, Term=<terminator>.

Explanation: This is an informational message. It indicates that the DDLFile whose name is in the

<DDLfilename> insert is being processed, with the character in the <terminator> insert being used

as terminator.

 User Response: None

CWUDD3020I: DDL file successfully processed. N statements processed. Value is:

N=<numStatements>.

Explanation: This is an informational message. It indicates that the current DDL file has been

successfully processed, and that the number of statements indicated by the <numStatements>

insert were processed.

 User Response: None

CWUDD3021I: End of file reached

Explanation: This is an informational message. It indicates that the end of the current DDL file

has been reached.

 User Response: None

CWUDD3022I: Converting SQL string Str to Cloudscape syntax. Value is: Str=<SQLstring>.

Explanation: This is an informational message. It indicates that the SQL string given in the

<SQLstring> insert is being converted into an SQL syntax that is recognized by Cloudscape.

 User Response:None

CWUDD3030I: UDDI Cloudscape database successfully completed

Explanation: This is an informational message. It indicates that creation of the UDDI Cloudscape

database has completed successfully.

 User Response: None

CWUDD4001E: An Exception Exc occurred during creation of UDDI Cloudscape database. Value is:

Explanation: An exception occurred during the attempt to create the UDDI Cloudscape database.

 User Response: The <exception> insert provides information that should help you diagnose the

cause of the problem.

CWUDD4002E: Abnormal exit from creation of UDDI Cloudscape database.

Explanation: The attempt to create the UDDI Cloudscape database is exiting abnormally.

 User Response: Examine the preceding messages to determine the reason for the abnormal exit.

Chapter 8. Developing WebSphere applications 1061

CWUDD4003E: Insufficient arguments supplied

Explanation: Insufficient arguments have been supplied for creating the UDDI Cloudscape

database.

 User Response: Retry the request, supplying the correct number of arguments.

CWUDD4004E: Usage is: java -jar <thisjar> <arg1> <arg2> <arg3> <arg4>

where:

v <thisjar> = name of jar file for creating UDDI Cloudscape Database

v <arg1> = path to DDL (SQL) files

v <arg2> = path to location for UDDI Cloudscape database

v <arg3> = name of UDDI Cloudscape Database

v <arg4> = (optional), if specified must be the string DEFAULT

Explanation: This message gives the correct usage syntax for creating the UDDI Cloudscape

Database. It is issued when the incorrect syntax has been used.

 User Response: Correct the syntax to match the usage indicated by the message. You might also

need to specify the Cloudscape class library on the classpath, by using the -cp parameter on the

java command. Refer to the Information Center documentation on setting up and deploying UDDI

for more details.

CWUDD4005E: Creation of UDDI Cloudscape database was unsuccessful

Explanation: The attempt to create the UDDI Cloudscape database has been unsuccessful.

 User Response: Examine the preceding messages to determine the reason for this failure.

CWUDD4006E: SQL Exception Exc encountered during database container creation. Value is:

Exc=<exception>.

Explanation: An SQL exception occurred when attempting to create the database container for

the UDDI Cloudscape database.

 User Response: The <exception> insert should contain information which will help you to

diagnose the problem.

CWUDD4007E: DDL File List file not found

Explanation: The DDL File List file, used to specify the DDL files to be used to create the UDDI

Cloudscape database, could not be found.

 User Response: The DDL File List file should be included in the UDDICloudscapeCreate.jar used

to create the UDDI Cloudscape database, so this error indicates a possible corruption of that jar

file. Check that you have a valid version of UDDICloudscapeCreate.jar.

CWUDD4008E: Invalid attribute Attr found in DDL File List file. Value should be true or false. Value

is: Attr=<attribute>.

Explanation: An invalid attribute was found in the DDL File List file. The expected attribute is one

of ’true’ or ’false’. The <attribute> insert indicates the value that was found.

 User Response: The DDL File List file is included in the UDDICloudscapeCreate.jar used to

create the UDDI Cloudscape database, so this error indicates a possible corruption of that jar file.

Check that you have a valid version of UDDICloudscapeCreate.jar.

CWUDD4009E: Insufficient attributes found in DDL File List file.

Explanation: Insufficient attributes were found in the DDL File List file.

 User Response: The DDL File List file should be included in the UDDICloudscapeCreate.jar used

to create the UDDI Cloudscape database, so this error indicates a possible corruption of that jar

file. Check that you have a valid version of UDDICloudscapeCreate.jar.

CWUDD4010E: SQL exception Exc encountered during database population. Value is:

Exc=<exception>.

Explanation: An SQL exception has occurred while populating the UDDI Cloudscape database.

 User Response: The <exception> insert contains the SQL exception which occurred. Use this to

diagnose the problem.

1062 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

CWUDD4011E: Delete existing UDDI Cloudscape database if it is to be overwritten with a new one.

Explanation: This message is issued when an exception has occurred while populating the UDDI

Cloudscape database. A common cause of this problem is that a UDDI Cloudscape database

already exists.

 User Response: You can ignore this message if you want to keep the existing data in your

existing UDDI Cloudscape Database. If you want to overwrite this with a new UDDI Cloudscape

database, then you should delete the existing database, then and rerun the request. Previous

messages will have shown the location and name of the UDDI Cloudscape database.

CWUDD4012E: Exception Exc occurred while trying to find the Cloudscape JDBC Provider. Value

is: Exc=<exception>.

Explanation: An exception occurred while trying to find the Cloudscape JDBC driver class.

 User Response: The <exception> insert contains the exception which occurred. Examine this to

diagnose the problem.

CWUDD4013E: Ensure that the Cloudscape libraries are on the classpath

Explanation: This message is issued when an exception has occurred when trying to find the

Cloudscape JDBC driver class. A common cause of this problem is that the classpath has not

been set up to include the path to the Cloudscape class library.

 User Response: Ensure that you have specified the Cloudscape class library on the request to

create the Cloudscape UDDI database. Depending on how you issued the request, this might

involve specifying the classpath on the wsadmin command used to invoke uddiDeploy.jacl, or on

the java -jar command used to invoke the UDDICloudscapeCreate.jar file. Refer to the Information

Center documentation on setting up and deploying UDDI for more details.

CWUDD4014E: Exception Exc occurred while processing SQL statement Str. Character positions

within Str shown by StrPos.

Values are:

v Exc=<exception>,

v <SQLstring>,

v StrPos=<charPositions>

Explanation: An exception occurred while processing an SQL statement used to create the UDDI

Cloudscape database. The message shows the SQL exception message in the <exception> insert,

the SQL string which was being processed in the <SQLstring> insert, and a string of character

positions in the <charPositions> insert.

 User Response: Examine the exception message to determine the cause of the problem. If the

exception message indicates the position at which the problem occurred, then use the

<charPositions> string to identify that position in the SQLstring.

CWUDD4015E: There were no SQL statements in the DDL file.

Explanation: No SQL statements have been found in the DDL file that is currently being

processed.

 User Response: Previous messages will tell you the path to the database scripts (DDL files), and

the DDL file which is currently being processed. Use this information to find the DDL file and check

that it is valid.

CWUDD4016E: Exception Exc occurred while processing DDL file. Value is: Exc=<exception>.

Explanation: An exception occurred while processing the current DDL file.

 User Response: Examine the exception message in the <exception> insert to diagnose the

problem.

CWUDD4017E: Location of database scripts not specified.

Explanation: The request issued to create the Cloudscape database has not specified a location

for the database scripts.

 User Response: Retry the request, providing a location for the database scripts. If this message

is issued when using the uddiDeploy.jacl script with the default option, then check that you are

using a valid version of uddiDeploy.jacl.

Chapter 8. Developing WebSphere applications 1063

CWUDD4018E: Location of database not specified.

Explanation: The request issued to create the Cloudscape database has not specified a location

for the UDDI Cloudscape database.

 User Response: Retry the request, providing a location for the UDDI Cloudscape database. If this

message is issued when using the uddiDeploy.jacl script with the default option, then check that

you are using a valid version of uddiDeploy.jacl.

CWUDD4019E: Name of database not specified.

Explanation: The request issued to create the Cloudscape database has not specified a name for

the UDDI Cloudscape database.

 User Response: Retry the request, providing a name for the UDDI Cloudscape database. If this

message is issued when using the uddiDeploy.jacl script with the default option, then check that

you are using a valid version of uddiDeploy.jacl.

CWUDD4020E: Invalid value specified for Default Profile parameter Parm, value should be

GoodParm. Values are: Parm=<suppliedparm>, GoodParm=<expectedparm>.

Explanation: The request issued to create the Cloudscape database has specified an invalid

value for the default profile parameter. The <suppliedparm> insert indicates the value that was

supplied, and the <expectedparm> indicates the value that was expected.

 User Response: Retry the request, specifying a valid value for the default profile parameter, or

omit this parameter altogether if you do not want to create the UDDI Cloudscape database with a

default profile. If this message is issued when using the uddiDeploy.jacl script with the default

option, then check that you are using a valid version of uddiDeploy.jacl.

CWUDD4021E: An error occurred while loading the Cloudscape JDBC driver.

Explanation: An error occurred while attempting to load the Cloudscape JDBC driver class.

 User Response:Examine the preceding messages for details of the error.

CWUDD6001E: Incorrect number of arguments passed to script.

Explanation: The wrong number of arguments were passed to the script. Arguments are Node

Name, Server Name, and optionally the default keyword.

 User Response:Retry with the correct arguments.

CWUDD6002E: Usage is: <Command format description>.

Explanation: The deployment script has not been called with the correct arguments.

 User Response:Retry with the correct arguments.

CWUDD6003E: Failed to determine server ID caught exception Exc. Value is: <Exception

Message>.

Explanation: An Exception occurred whilst trying to determine the Server ID.

 User Response: Retry the deployment of UDDI. If the error persists, examine the Exception

information on its cause. If the problem cannot be resolved, contact the IBM Customer Service

Center.

CWUDD6004E: Failed to determine server ID, possibly due to invalid nodename or servername

(check case).

Explanation: The Server ID could not be located for the given node name and server name.

 User Response: Check the node name and server name are correct and are in the correct case.

CWUDD6005E: Failed to determine the list of JDBC providers caught exception Exc. Value is:

<Exception Message>.

Explanation: The deployment script was unable to determine the list of JDBC providers.

 User Response: Retry the deployment of UDDI. If the error persists, examine the Exception

information on its cause. If the problem cannot be resolved, contact the IBM Customer Service

Center.

CWUDD6006E: Failed to get JDBC provider name from id caught exception Exc. Value is:

<Exception Message>.

Explanation: An Exception occurred whilst trying to determine the list of JDBC providers for the

server.

1064 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

User Response: Retry the deployment of UDDI. If the error persists, examine the Exception

information on its cause. If the problem cannot be resolved, contact the IBM Customer Service

Center.

CWUDD6007E: Attempt to create a Cloudscape JDBC provider caught exception Exc. Value is:

<Exception Message>.

Explanation: A Cloudscape JDBC provider is required for the default deployment of UDDI and an

Exception occurred whilst trying to create this JDBC provider.

 User Response: Retry the deployment of UDDI. If the error persists, examine the Exception

information on its cause. If the problem cannot be resolved, contact the IBM Customer Service

Center.

CWUDD6008E: Failed to create datasource caught exception Exc. Value is: <Exception Message>.

Explanation: An Exception occurred whilst trying to create the UDDI Cloudscape datasource.

 User Response: Retry the deployment of UDDI. If the error persists, examine the Exception

information on its cause. If the problem cannot be resolved, contact the IBM Customer Service

Center.

CWUDD6009E: Failed to create resource property set caught exception Exc. Value is: <Exception

Message>.

Explanation: An Exception occurred whilst trying to J2EEResourcePropertySet.

 User Response: Retry the deployment of UDDI. If the error persists, examine the Exception

information on its cause. If the problem cannot be resolved, contact the IBM Customer Service

Center.

CWUDD6010E: Failed to create ’databaseName’ resource property caught exception Exc. Value is:

<Exception Message>.

Explanation: An Exception occurred whilst trying to create the J2EE Resource Property

’databaseName’.

 User Response: Retry the deployment of UDDI. If the error persists, examine the Exception

information on its cause. If the problem cannot be resolved, contact the IBM Customer Service

Center.

CWUDD6011E: Failed to create ’shutdownDatabase’ resource property caught exception Exc. Value

is: <Exception Message>.

Explanation: An Exception occurred whilst trying to create the J2EE Resource Property

’shutdownDatabase’.

 User Response: Retry the deployment of UDDI. If the error persists, examine the Exception

information on its cause. If the problem cannot be resolved, contact the IBM Customer Service

Center.

CWUDD6012E: Failed to create ’datasourceName’ resource property caught exception Exc. Value

is: <Exception Message>.

Explanation: An Exception occurred whilst trying to create the J2EE Resource Property

’datasourceName’.

 User Response: Retry the deployment of UDDI. If the error persists, examine the Exception

information on its cause. If the problem cannot be resolved, contact the IBM Customer Service

Center.

CWUDD6013E: Failed to create ’description’ resource property caught exception Exc. Value is:

<Exception Message>.

Explanation: An Exception occurred whilst trying to create the J2EE Resource Property

’description’.

 User Response: Retry the deployment of UDDI. If the error persists, examine the Exception

information on its cause. If the problem cannot be resolved, contact the IBM Customer Service

Center.

Chapter 8. Developing WebSphere applications 1065

CWUDD6014E: Failed to create ’connectionAttributes’ resource property caught exception Exc.

Value is: <Exception Message>.

Explanation: An Exception occurred whilst trying to create the J2EE Resource Property

’connectionAttributes’.

 User Response: Retry the deployment of UDDI. If the error persists, examine the Exception

information on its cause. If the problem cannot be resolved, contact the IBM Customer Service

Center.

CWUDD6015E: Failed to create ’createDatabase’ resource property caught exception Exc. Value is:

<Exception Message>.

Explanation: An Exception occurred whilst trying to create the J2EE Resource Property

’createDatabase’.

 User Response: Retry the deployment of UDDI. If the error persists, examine the Exception

information on its cause. If the problem cannot be resolved, contact the IBM Customer Service

Center.

CWUDD6016E: Attempt to locate the WebSphere Installation Directory failed.

Explanation: The installation directory of WebSphere Application Server could not be determined.

 User Response: Verify that WebSphere Application Server has been correctly installed and that

the WAS_INSTALL_ROOT WebSphere environment variable exists in the configuration.

CWUDD6017E: Uninstall of application appname caught exception Exc. Values are: <Application

Name> <Exception Message>.

Explanation: An Exception occurred whilst trying to uninstall an existing UDDI application.

 User Response:This message is self-explanatory.

CWUDD6018E: Install of UDDI application caught exception Exc. Value is: <Exception Message>.

Explanation: An Exception occurred whilst trying to install the UDDI application.

 User Response: Retry the deployment of UDDI. If the error persists, examine the Exception

information on its cause. If the problem cannot be resolved, contact the IBM Customer Service

Center.

CWUDD6019E: Attempt to find application classloader failed with exception Exc. Value is:

<Exception Message>.

Explanation: An Exception occurred whilst trying to locate the classloader for the UDDI

application.

 User Response: Retry the deployment of UDDI. If the error persists, examine the Exception

information on its cause. If the problem cannot be resolved, contact the IBM Customer Service

Center.

CWUDD6020E: Attempt to read current classloader mode failed with exception Exc. Value is:

<Exception Message>.

Explanation: An Exception occurred whilst trying to determine the classloader mode of the UDDI

application.

 User Response: Retry the deployment of UDDI. If the error persists, examine the Exception

information on its cause. If the problem cannot be resolved, contact the IBM Customer Service

Center.

CWUDD6021E: Attempt to modify classloader mode to newmode failed with exception Exc. Values

are: <Classloader Mode> <Exception Message>.

Explanation: An Exception occurred whilst trying to change the classloader mode of the UDDI

application.

 User Response: Retry the deployment of UDDI. If the error persists, examine the Exception

information on its cause. If the problem cannot be resolved, contact the IBM Customer Service

Center.

CWUDD6022E: Attempt to read new classloader mode failed with exception Exc. Value is:

<Exception Message>.

Explanation: An Exception occurred whilst trying to verify the new classloader mode of the UDDI

application.

1066 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

User Response: Retry the deployment of UDDI. If the error persists, examine the Exception

information on its cause. If the problem cannot be resolved, contact the IBM Customer Service

Center.

CWUDD6023E: Attempt to read module list from application failed with exception Exc. Value is:

<Exception Message>.

Explanation: An Exception occurred whilst trying to determine the list of modules held in the

UDDI application.

 User Response: Retry the deployment of UDDI. If the error persists, examine the Exception

information on its cause. If the problem cannot be resolved, contact the IBM Customer Service

Center.

CWUDD6024E: Attempt to locate URI attribute on module failed with exception Exc. Value is:

<Exception Message>.

Explanation: An Exception occurred whilst trying to determine the URI attribute of the application

module.

 User Response: Retry the deployment of UDDI. If the error persists, examine the Exception

information on its cause. If the problem cannot be resolved, contact the IBM Customer Service

Center.

CWUDD6025E: Attempt to read current classloader mode from module failed with exception Exc.

Value is: <Exception Message>.

Explanation: An Exception occurred whilst trying to determine the classloader mode of a UDDI

module.

 User Response: Retry the deployment of UDDI. If the error persists, examine the Exception

information on its cause. If the problem cannot be resolved, contact the IBM Customer Service

Center.

CWUDD6026E: Attempt to modify module classloader mode to newmode failed with exception Exc.

Values are: <Classloader Mode> <Exception Message>.

Explanation: An Exception occurred whilst trying to change the classloader mode of a UDDI

module.

 User Response: Retry the deployment of UDDI. If the error persists, examine the Exception

information on its cause. If the problem cannot be resolved, contact the IBM Customer Service

Center.

CWUDD6027E: Attempt to read new module classloader mode failed with exception Exc. Value is:

<Exception Message>.

Explanation: An Exception occurred whilst trying to verify the new classloader mode of a UDDI

module.

 User Response: Retry the deployment of UDDI. If the error persists, examine the Exception

information on its cause. If the problem cannot be resolved, contact the IBM Customer Service

Center.

CWUDD6028E: Attempt to create default UDDI Registry Cloudscape database failed with exception

Exc. Value is: <Exception Message>.

Explanation: An Exception occurred whilst trying to create the default Cloudscape database.

 User Response: Refer to messages displayed during creation to determine cause. If the problem

cannot be resolved, contact the IBM Customer Service Center.

CWUDD6029E: Attempt to locate the Nodes Variable Map failed with exception Exc. Value is:

<Exception Message>.

Explanation: An Exception occurred whilst trying to locate the configurations Variable Map for the

given node.

 User Response: Retry the deployment of UDDI. If the error persists, examine the Exception

information on its cause. If the problem cannot be resolved, contact the IBM Customer Service

Center.

Chapter 8. Developing WebSphere applications 1067

CWUDD6030E: Error saving configuration, changes not saved due to exception Exc. Value is:

<Exception Message>.

Explanation: An Exception occurred whilst trying to save the configuration after creating default

datasource and removing an existing UDDI application.

 User Response: Retry the deployment of UDDI. If the error persists, examine the Exception

information on its cause. If the problem cannot be resolved, contact the IBM Customer Service

Center.

CWUDD6031E: Error saving configuration, changes not saved due to exception Exc. Value is:

<Exception Message>.

Explanation: An Exception occurred whilst trying to save the configuration after installing the

UDDI application.

 User Response: Retry the deployment of UDDI. If the error persists, examine the Exception

information on its cause. If the problem cannot be resolved, contact the IBM Customer Service

Center.

CWUDD6032E: Error saving configuration, changes not saved due to exception Exc. Value is:

<Exception Message>.

Explanation: An Exception occurred whilst trying to save the final configuration.

 User Response: Retry the deployment of UDDI. If the error persists, examine the Exception

information on its cause. If the problem cannot be resolved, contact the IBM Customer Service

Center.

CWUDD6033E: Incorrect argument passed to script.

Explanation: The wrong argument was passed to the script. Arguments are Node Name, Server

Name, and optionally the default keyword.

 User Response: Retry with the correct arguments.

CWUDD6034E: ’default’ keyword is not allowed in a WebSphere Application Server Network

Deployment configuration.

Explanation: A default Cloudscape UDDI Registry is not permitted in a WebSphere Application

Server Network Deployment configuration. Please follow the UDDI Installation instructions on how

to create a non default UDDI Registry database.

 User Response: Retry with the correct arguments.

CWUDD7001E: Incorrect number of arguments passed to script.

Explanation: The wrong number of arguments were passed to the script. Arguments are Node

Name, and optionally the default keyword.

 User Response: Retry with the correct arguments.

CWUDD7002E: Usage is: <Command format description>.

Explanation: The removal script has not been called with the correct arguments.

 User Response: Retry with the correct arguments.

CWUDD7003E: Failed to determine server ID caught exception Exc. Value is: <Exception

Message>.

Explanation: An Exception occurred whilst trying to determine the Server ID.

 User Response: Retry the removal of UDDI. If the error persists, examine the Exception

information on its cause. If the problem cannot be resolved, contact the IBM Customer Service

Center.

CWUDD7004E: Failed to determine server ID, possibly due to invalid nodename or servername

(check case).

Explanation: The Server ID could not be located for the given node name and server name.

 User Response: Check the node name and server name are correct and are in the correct case.

CWUDD7005E: Uninstall of application appname caught exception Exc. Values are: <Application

Name> <Exception Message>.

Explanation: An Exception occurred whilst trying to uninstall the UDDI application.

1068 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

User Response: Retry the removal of UDDI. If the error persists, examine the Exception

information on its cause. If the problem cannot be resolved, contact the IBM Customer Service

Center.

CWUDD7006E: Failed to remove default UDDI datasource caught exception Exc. Value is:

<Exception Message>.

Explanation: An Exception occurred whilst trying to remove the UDDI Cloudscape datasource.

 User Response: Retry the removal of UDDI. If the error persists, examine the Exception

information on its cause. If the problem cannot be resolved, contact the IBM Customer Service

Center.

CWUDD7007E: Error saving configuration, changes not saved due to exception Exc. Value is:

<Exception Message>.

Explanation: An Exception occurred whilst trying to save the final configuration.

 User Response: Retry the removal of UDDI. If the error persists, examine the Exception

information on its cause. If the problem cannot be resolved, contact the IBM Customer Service

Center.

CWUDD7008E: Incorrect argument passed to script.

Explanation: The wrong argument was passed to the script. Arguments are Node Name, Server

Name, and optionally the default keyword.

 User Response: Retry with the correct arguments.

CWUDD7009E: ’default’ keyword is not allowed in a WebSphere Application Server Network

Deployment configuration.

Explanation: A default Cloudscape UDDI Registry is not permitted in a WebSphere Application

Server Network Deployment configuration. Therefore there is no default Cloudscape UDDI

datasource to remove.

 User Response: Retry with the correct arguments.

CWUDMnnnns (Web Services UDDI Management Interface) messages:

CWUDM0001E: Unexpected error in MBean operation: <operation name>

Explanation: An internal error occurred processing the specified UddiNode MBean operation.

 User Response: Check database connectivity and UDDI application installation configuration. If

the problem cannot be resolved, contact your IBM Customer Service Center.

CWUDM0002E: MBean transaction failed. Commit flag was: <true|false>

Explanation: Failed to commit or rollback the current transaction.

 User Response:Check database connectivity and UDDI application installation configuration. If the

problem cannot be resolved, contact your IBM Customer Service Center.

CWUDM0003E: MBean transaction did not begin.

Explanation: Failed to invoke begin method on the UserTransaction.

 User Response: Check database connectivity and UDDI application installation configuration. If

the problem cannot be resolved, contact your IBM Customer Service Center.

CWUDM0004E: MBean transaction connection failed to release.

Explanation: Failed to release connection after transaction committed or rolled back.

 User Response: Check database connectivity and UDDI application installation configuration. If

the problem cannot be resolved, contact your IBM Customer Service Center.

CWUDM0005E: MBean could not establish control with persistence manager.

Explanation: Message is self-explanatory.

 User Response: Check database connectivity and UDDI application installation configuration. If

the problem cannot be resolved, contact your IBM Customer Service Center.

CWUDM0006E: MBean could not acquire connection for UDDI datasource.

Explanation: Message is self-explanatory.

 User Response: Check database connectivity and UDDI application installation configuration. If

the problem cannot be resolved, contact your IBM Customer Service Center.

Chapter 8. Developing WebSphere applications 1069

CWUDM0007E: UddiNode MBean with ObjectName <ObjectName value> could not be recognized.

Explanation: The UddiNode MBean for the UDDI application could not be unregistered from the

MBeanServer.

 User Response: Restart the UDDI application or the application server. If the problem cannot be

resolved, contact your IBM Customer Service Center, supplying the ObjectName value reported in

the message (if present).

CWUDM0008W: MBean notification for event <notification identifier> failed.

Explanation: Message is self-explanatory.

 User Response: Check database connectivity and UDDI application installation configuration. If

the problem cannot be resolved, contact your IBM Customer Service Center.

CWUDM0009W: A UddiNode MBean is already registered.

Explanation: There is a UddiNode MBean registered in the same cell, node and server.

 User Response: Ensure there is only one UDDI application deployed in the server. If the problem

cannot be resolved, contact your IBM Customer Service Center.

CWUDM0020E: Unable to retrieve UDDI node ID.

Explanation: A database error occurred.

 User Response: Check database connectivity and UDDI application installation configuration. If

the problem cannot be resolved, contact your IBM Customer Service Center.

CWUDM0021E: Unable to retrieve UDDI node state.

Explanation: A database error occurred.

 User Response: Check database connectivity and UDDI application installation configuration. If

the problem cannot be resolved, contact your IBM Customer Service Center.

CWUDM0022E: Unable to retrieve UDDI node application name.

Explanation: A database error occurred.

 User Response: Check database connectivity and UDDI application installation configuration. If

the problem cannot be resolved, contact your IBM Customer Service Center.

CWUDM0023E: Unable to retrieve UDDI node description.

Explanation: A database error occurred.

 User Response: Check database connectivity and UDDI application installation configuration. If

the problem cannot be resolved, contact your IBM Customer Service Center.

CWUDM0024E: Unable to activate UDDI node.

Explanation: An error occurred trying to activate the UDDI node.

 User Response: Check the running state of the UDDI application. Restart the application if

necessary. If the problem cannot be resolved, contact your IBM Customer Service Center.

CWUDM0025I: Unable to activate a UDDI node that is not initialized.

Explanation: The UDDI node must be initialized (and in deactivated state) before it can be

activated.

 User Response: If the UDDI node is ready to be initialized, invoke the initialization operation.

CWUDM0026E: Unable to deactivate UDDI node.

Explanation: An error occurred trying to deactivate the UDDI node.

 User Response:Check the running state of the UDDI application. Restart the application if

necessary. If the problem cannot be resolved, contact your IBM Customer Service Center.

CWUDM0027I: Unable to deactivate UDDI node that is not initialized.

Explanation: The UDDI node must be initialized (and activated) before it can be deactivated.

 User Response: If the UDDI node is ready to be initialized, invoke the initialization operation.

CWUDM0028E: Unable to initialize UDDI node.

Explanation: An error occurred during UDDI node initialization.

 User Response: Check the UDDI application installation and datasource settings. If the problem

cannot be resolved, contact your IBM Customer Service Center.

1070 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

CWUDM0029I: Unable to initialize UDDI node because a required property is missing or invalid:

<property name>.

Explanation: A configuration property that is required for UDDI node initialization has not been

populated.

 User Response: Supply a value for the required property.

CWUDM0030I: Initialize operation did not occur because the UDDI node is already initialized.

Explanation: A UDDI node can only be initialized once.

 User Response: None.

CWUDM0031I: Initialize operation did not occur because the UDDI node is in default configuration

and is already initialized.

Explanation: A UDDI node can only be initialized once.

 User Response: None.

CWUDM0032I: The initialize operation is already in progress.

Explanation: A UDDI node can only be initialized once.

 User Response: Wait until the current initialization operation completes.

CWUDM0050I: The UDDI publisher with user name <user ID> does not exist.

Explanation: An operation that requires a UDDI publisher ID could not find a publisher with that

ID.

 User Response: Check the UDDI publisher is registered with the UDDI node using the

administrative functions available.

CWUDM0051E: Unable to create UDDI publisher with user name <user ID>.

Explanation: An error occurred trying to register the UDDI publisher.

 User Response: Check UDDI application configuration and database connectivity. If the problem

cannot be resolved, contact your IBM Customer Service Center.

CWUDM0052I: Unable to create UDDI publisher for user name <user ID> because a UDDI publisher

with that name already exists.

Explanation: The UDDI publisher is already registered.

 User Response: None.

CWUDM0053E: Unable to delete UDDI publisher with user name <user ID>.

Explanation: An error occurred trying to register the UDDI publisher.

 User Response: Check UDDI application configuration and database connectivity. If the problem

cannot be resolved, contact your IBM Customer Service Center.

CWUDM0054I: Unable to delete UDDI publisher with user name <user ID> because that UDDI

publisher does not exist.

Explanation: The UDDI publisher is not registered so cannot be removed.

 User Response: None.

CWUDM0055E: Unable to create a UDDI publisher with user name <user ID> because one or more

entitlement identifiers are invalid.

Explanation: UddiUser objects must contain Entitlement objects with valid entitlement IDs.

 User Response: Use valid entitlement IDs for Entitlement objects. Valid IDs can be found in the

EntitlementConstants interface.

CWUDM0056E: Unable to update UDDI publisher with user name <user ID>.

Explanation: An error occurred trying to update the UDDI publisher.

 User Response: Check UDDI application configuration and database connectivity. If the problem

cannot be resolved, contact your IBM Customer Service Center.

CWUDM0057E: Unable to update UDDI publisher with user name <user ID> because one or more

entitlement identifiers are invalid.

Explanation: UddiUser objects must contain Entitlement objects with valid entitlement IDs.

 User Response: Use valid entitlement IDs for Entitlement objects. Valid IDs can be found in the

EntitlementConstants interface.

Chapter 8. Developing WebSphere applications 1071

CWUDM0058I: Unable to update the UDDI publisher with user name <user ID> because that UDDI

publisher does not exist.

Explanation: The UDDI publisher is not registered so cannot be updated.

 User Response: None.

CWUDM0059E: Unable to retrieve information for UDDI publisher with user name <user ID>.

Explanation: A database error occurred performing the operation.

 User Response: Check UDDI application configuration and database connectivity. If the problem

cannot be resolved, contact your IBM Customer Service Center.

CWUDM0060E: Unable to retrieve collection of UDDI publishers.

Explanation: A database error occurred performing the operation.

 User Response: Check UDDI application configuration and database connectivity. If the problem

cannot be resolved, contact your IBM Customer Service Center.

CWUDM0061E: Unable to get tier assigned to UDDI publisher with user name <user ID>.

Explanation: This may be because the UDDI publisher with the specified user name does not

exist, or because a database error occurred performing the operation.

 User Response: Check the UDDI publisher exists. If it does, check UDDI application configuration

and database connectivity. If the problem cannot be resolved, contact your IBM Customer Service

Center.

CWUDM0062E: Unable to create UDDI publishers with user names: <user IDs>.

Explanation: A database error occurred performing the operation.

 User Response: Check UDDI application configuration and database connectivity. If the problem

cannot be resolved, contact your IBM Customer Service Center.

CWUDM0070E: Unable to create tier with ID: <tier ID>.

Explanation: A database error occurred performing the operation.

 User Response: Check UDDI application configuration and database connectivity. If the problem

cannot be resolved, contact your IBM Customer Service Center.

CWUDM0071E: Unable to delete tier with ID: <tier ID>.

Explanation: This may because the tier with the specified ID does not exist, or because a

database error occurred performing the operation.

 User Response: Check the tier ID. If it does exist, check UDDI application configuration and

database connectivity. If the problem cannot be resolved, contact your IBM Customer Service

Center.

CWUDM0072E: Unable to retrieve information for tier with ID: <tier ID>.

Explanation: This may be because the supplied tier ID is not an integer, or the tier with the ID

does not exist, or because of a database error performing the operation.

 User Response: Check the tier ID is an integer and the tier exists. If it does exist, check UDDI

application configuration and database connectivity. If the problem cannot be resolved, contact

your IBM Customer Service Center.

CWUDM0073E: Unable to retrieve collection of tiers.

Explanation: A database error occurred performing the operation.

 User Response: Check UDDI application configuration and database connectivity. If the problem

cannot be resolved, contact your IBM Customer Service Center.

CWUDM0074E: Unable to set default tier to tier ID: <tier ID>.

Explanation: This may be because the tier with the specified ID does not exist, or because a

database error occurred performing the operation.

 User Response: Check the tier ID. If it does exist, check UDDI application configuration and

database connectivity. If the problem cannot be resolved, contact your IBM Customer Service

Center.

CWUDM0075E: Unable to update tier with ID: <tier ID>.

Explanation: This is most likely because the tier with the specified ID does not exist, or because

a database error occurred performing the operation.

1072 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

User Response: Check the tier ID. If it does exist, check UDDI application configuration and

database connectivity. If the problem cannot be resolved, contact your IBM Customer Service

Center.

CWUDM0076E: Unable to get count of UDDI publishers for tier ID: <tier ID>.

Explanation: This may be because the tier with the specified ID does not exist, or because a

database error occurred performing the operation.

 User Response: Check the tier ID. If it does exist, check UDDI application configuration and

database connectivity. If the problem cannot be resolved, contact your IBM Customer Service

Center.

CWUDM0077E: Unable to retrieve collection of entitlements.

Explanation: A database error occurred performing the operation.

 User Response: Check UDDI application configuration and database connectivity. If the problem

cannot be resolved, contact your IBM Customer Service Center.

CWUDM0078E: Unable to retrieve collection of limits.

Explanation: A database error occurred performing the operation.

 User Response: Check UDDI application configuration and database connectivity. If the problem

cannot be resolved, contact your IBM Customer Service Center.

CWUDM0079I: The default tier cannot be deleted.

Explanation: A tier must always exist that is designated as the tier assigned to UDDI publishers

when auto-registration of UDDI publishers is enabled.

 User Response: None.

CWUDM0080I: Unable to delete tier <tier ID> because it is currently assigned to a UDDI publisher.

Explanation: Tiers which have UDDI publishers assigned to them cannot be deleted.

 User Response: If you want to remove the tier, assign the UDDI publishers to a different tier first.

CWUDM0100E: Unable to get configuration property information for property with ID: <property

ID> Explanation: A database error occurred performing the operation.

 User Response: Check UDDI application configuration and database connectivity. If the problem

cannot be resolved, contact your IBM Customer Service Center.

CWUDM0101I: Unable to get configuration property information for property with ID: <property ID>

because it does not exist.

Explanation: The configuration property with the specified ID does not exist.

 User Response: None.

CWUDM0102E: Unable to retrieve collection of configuration properties.

Explanation: A database error occurred performing the operation.

 User Response: Check UDDI application configuration and database connectivity. If the problem

cannot be resolved, contact your IBM Customer Service Center.

CWUDM0103E: Unable to update configuration properties.

Explanation: This may occur if any of the updated property objects fails validation. Check any

cause exceptions for possible additional information. Alternatively database error may have

occurred performing the operation.

 User Response: Check UDDI application configuration and database connectivity. If the problem

cannot be resolved, contact your IBM Customer Service Center.

CWUDM0104E: Unable to update configuration property with ID: <property ID>

Explanation: This may occur if the updated property object fails validation. Check any cause

exceptions for possible additional information. Alternatively a database error may have occurred

performing the operation.

 User Response: Check UDDI application configuration and database connectivity. If the problem

cannot be resolved, contact your IBM Customer Service Center.

CWUDM0105I: Unable to update configuration property with ID: <property ID> because it does not

exist. Explanation: The configuration property with the specified ID does not exist.

Chapter 8. Developing WebSphere applications 1073

User Response: Use a valid configuration property ID. These can be found in PropertyConstants.

CWUDM0106I: Unable to update configuration properties because one or more properties do not

exist in the UDDI node.

Explanation: One or more supplied configuration properties do not exist in the UDDI registry.

 User Response: Use valid configuration property IDs. These can be found in PropertyConstants.

CWUDM0107E: Failed to retrieve required properties from database.

Explanation: This indicates a database error occurred when trying to initialize a UDDI node.

 User Response: Check UDDI application configuration and database connectivity. If the problem

cannot be resolved, contact your IBM Customer Service Center.

CWUDM0120E: Unable to get policy information for policy with ID: <policy ID>.

Explanation: A database error occurred performing the operation.

 User Response: Check UDDI application configuration and database connectivity. If the problem

cannot be resolved, contact your IBM Customer Service Center.

CWUDM0121I: Unable to get policy information for policy with ID: <policy ID> because it does not

exist. Explanation: The policy with the specified ID does not exist.

 User Response: None.

CWUDM0122E: Unable to get policy group with group ID: <policy group ID>.

Explanation: A database error occurred performing the operation.

 User Response: Check UDDI application configuration and database connectivity. If the problem

cannot be resolved, contact your IBM Customer Service Center.

CWUDM0123E: Unable to retrieve collection of policy groups.

Explanation: A database error occurred performing the operation.

 User Response: Check UDDI application configuration and database connectivity. If the problem

cannot be resolved, contact your IBM Customer Service Center.

CWUDM0124E: Unable to update policies.

Explanation: This may occur if any of the updated policy objects fails validation. Check any cause

exceptions for possible additional information. Alternatively a database error may have occurred

performing the operation.

 User Response: Ensure all policy IDs and values are valid. Check UDDI application configuration

and database connectivity. If the problem cannot be resolved, contact your IBM Customer Service

Center.

CWUDM0125E: Unable to update policy with ID: <policy ID>.

Explanation: This may occur if the updated policy object fails validation or the ID isn’t recognized.

Check any cause exceptions for possible additional information. Alternatively a database error may

have occurred performing the operation.

 User Response: Check the policy ID and value are valid. Check UDDI application configuration

and database connectivity. If the problem cannot be resolved, contact your IBM Customer Service

Center.

CWUDM0126I: Unable to get policy group information for policy group with ID: <policy group ID>

because itdoes not exist.

Explanation: The policy group with the specified ID does not exist.

 User Response: Use a valid policy group ID. These can be found in PolicyConstants.

CWUDM0127I: Unable to update policies because one or more policies do not exist in the UDDI

node. Explanation: One or more supplied policies do not exist in the UDDI registry.

 User Response: Use valid policy IDs. These can be found in PolicyConstants.

CWUDM0128I: Unable to update policy with ID: <policy ID> because it does not exist.

Explanation: The policy with the specified ID does not exist.

 User Response: Use a valid policy ID. These can be found in PolicyConstants.

1074 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

CWUDM0140E: Unable to change value set tModelKey from <original tModel key> to <new tModel

key>. Explanation: The original tModel key or new tModel key supplied could not be found in the UDDI

registry, or possibly there was a database error.

 User Response: Supply keys for tModels that exist in the UDDI registry. Check UDDI application

configuration and database connectivity. If the problem cannot be resolved, contact your IBM

Customer Service Center.

CWUDM0141E: Unable to retrieve value set details for tModel key: <tModel key>.

Explanation: A database error occurred getting the value set details.

 User Response: Check UDDI application configuration and database connectivity. If the problem

cannot be resolved, contact your IBM Customer Service Center.

CWUDM0142E: Unable to get value set property: <value set property ID> for value set with tModel

key: <tModel key>.

Explanation: The value set property ID or tModel key supplied was not recognized.

 User Response: Supply a valid value set property ID and tModel key. If the problem cannot be

resolved, contact your IBM Customer Service Center.

CWUDM0143E: Unable to retrieve value sets collection.

Explanation: A database error may have occurred.

 User Response: Check UDDI application configuration and database connectivity. If the problem

cannot be resolved, contact your IBM Customer Service Center.

CWUDM0144E: Unable to determine if value set with tModel key: <tModel key> exists.

Explanation: The tModel key supplied is not valid or a database error may have occurred.

 User Response: Ensure the tModel exists. Check UDDI application configuration and database

connectivity. If the problem cannot be resolved, contact your IBM Customer Service Center.

CWUDM0145E: Unable to load value set data for value set with tModel key: <tModel key> and file

name <1>.

Explanation: The original tModel key or new tModel key supplied could not be found in the UDDI

registry, or possibly there was a database error.

 User Response: Ensure the tModel exists and the value set data object is populated. Check

UDDI application configuration and database connectivity. If the problem cannot be resolved,

contact your IBM Customer Service Center.

CWUDM0146E: Unable to load value set data for value set with tModel key: <tModel key>.

Explanation: The tModel key is not recognized or a database error occurred.

 User Response: Ensure the tModel exists and the value set data object is populated. Check

UDDI application configuration and database connectivity. If the problem cannot be resolved,

contact your IBM Customer Service Center.

CWUDM0147E: Could not update value set status with tModel key: <tModel key>.

Explanation: The value set status object supplied is null or the tModel key is not known.

 User Response: Supply a valid value set status object with tModel key for a value set tModel that

exists. Check UDDI application configuration and database connectivity. If the problem cannot be

resolved, contact your IBM Customer Service Center.

CWUDM0148E: Could not update value set status with tModel key: <tModel key>, property: <value

set property ID>.

Explanation: A database error occurred updating the supported status of the value set status.

 User Response: Check UDDI application configuration and database connectivity. If the problem

cannot be resolved, contact your IBM Customer Service Center.

CWUDM0149E: Could not update value set status with tModel key: <tModel key>.

Explanation: One of the supplied value set status objects contained a tModel key which was not

recognized.

 User Response: Supply tModel keys for value set tModels that exist. Check UDDI application

configuration and database connectivity. If the problem cannot be resolved, contact your IBM

Customer Service Center.

Chapter 8. Developing WebSphere applications 1075

CWUDM0150E: Could not update value set status with tModel key: <tModel key>, property: <value

set property ID>.

Explanation: A database error occurred updating the supported status of one of the value set

status objects.

 User Response: Check UDDI application configuration and database connectivity. If the problem

cannot be resolved, contact your IBM Customer Service Center.

CWUDM0151E: Unable to unload value set data with tModel key: <tModel key>.

Explanation: The tModel key is not recognized or a database error occurred.

 User Response: Ensure the tModel exists. Check UDDI application configuration and database

connectivity. If the problem cannot be resolved, contact your IBM Customer Service Center.

CWUDM0170E: Loading of configuration file <configuration file URL> failed.

Explanation:

 User Response: Check UDDI application configuration. If the problem cannot be resolved, contact

your IBM Customer Service Center.

CWUDM0171E: Parsing of configuration file <configuration file URL> failed.

Explanation:

 User Response: Check UDDI application configuration. If the problem cannot be resolved, contact

your IBM Customer Service Center.

CWUDM0172W: An unexpected date format was found while parsing configuration file.

Explanation:

 User Response: Check UDDI application configuration. If the problem cannot be resolved, contact

your IBM Customer Service Center.

CWUDM0180I: UDDI node was activated.

Explanation: The UDDI node is ready to accept UDDI API requests.

 User Response: None.

CWUDM0181I: UDDI node was deactivated.

Explanation: The UDDI node is set to not accept UDDI API requests. This typically occurs when

configuration settings are being updated by administrative tasks.

 User Response: None.

CWUDM0182I: UDDI node initialized successfully.

Explanation: The UDDI node is ready to accept UDDI API requests.

 User Response: None.

CWUDM0183I: UDDI publisher <user ID> was created.

Explanation: This message indicates the administrative operation completed successfully.

 User Response: None.

CWUDM0184I: UDDI publisher <user ID> was updated.

Explanation: This message indicates the administrative operation completed successfully.

 User Response: None.

CWUDM0185I: UDDI publisher <user ID> was deleted.

Explanation: This message indicates the administrative operation completed successfully.

 User Response: None.

CWUDM0186I: Tier <tier ID> was created.

Explanation: This message indicates the administrative operation completed successfully.

 User Response: None.

CWUDM0187I: Tier <tier ID> was updated.

Explanation: This message indicates the administrative operation completed successfully.

 User Response: None.

CWUDM0188I: Tier <tier ID> was deleted.

Explanation: This message indicates the administrative operation completed successfully.

1076 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

User Response: None.

CWUDM0189I: Configuration property <property ID> was updated to value <property value>.

Explanation: This message indicates the administrative operation completed successfully.

 User Response: None.

CWUDM0190I: Policy <policy ID> was updated to value <policy value>.

Explanation: This message indicates the administrative operation completed successfully.

 User Response: None.

CWUDM0191I: Default tier was set to <tier ID>.

Explanation: This message indicates the administrative operation completed successfully.

 User Response: None.

CWUDM0192I: Loaded value set for tModel key <tModel key> from file <1>.

Explanation: This message indicates the administrative operation completed successfully.

 User Response: None.

CWUDM0193I: Loaded value set for tModel key <tModel key>.

Explanation: This message indicates the administrative operation completed successfully.

 User Response: None.

CWUDM0194I: Unloaded value set for tModel key <tModel key>.

Explanation: This message indicates the administrative operation completed successfully.

 User Response: None.

CWUDM0195I: Updated value set supported status for tModel key <tModel key> to <supported

status>.

Explanation: This message indicates the administrative operation completed successfully.

 User Response: None.

CWUDM0196I: Changed tModel key for value set from <original tModel key> to <new tModel key>.

Explanation: This message indicates the administrative operation completed successfully.

 User Response: None.

CWUDM0220W: <value or ID> is too short. The length must be in the range <minimum length> to

<maximum length> characters.

Explanation: A value or ID of type String is shorter than expected.

 User Response: Supply a value or ID that is in the expected range.

CWUDM0221W: <value or ID> is too long. The length must be in the range <minimum length> to

<maximum length> characters.

Explanation: A value or ID of type String is longer than expected.

 User Response: Supply a value or ID that is in the expected range.

CWUDM0222W: <value or ID> is read-only and cannot be updated.

Explanation: The configuration setting is marked as read only, which may be because the setting

is for information only, or because the setting is configured once during UDDI node initialization,

such as the UDDI node ID or root key generator.

 User Response: None.

CWUDM0223W: <value or ID> is required.

Explanation: The configuration setting expects a value to be entered.

 User Response: Supply a non-empty, valid value for the configuration setting.

CWUDM0224W: <value or ID> must be a valid URL value.

Explanation: The configuration property is expected to be a valid URL.

 User Response: Supply a valid URL.

CWUDM0225W: <value or ID> must be a valid xml:lang value.

Explanation: The configuration property supplied is not a valid xml:lang value.

 User Response: Supply a valid xml:lang value.

Chapter 8. Developing WebSphere applications 1077

CWUDM0226W: <value or ID> must be of type: <value type>.

Explanation: The value or ID is not of the expected type.

 User Response: Supply a value or ID of the correct type.

CWUDM0227W: <value or ID> cannot be a null value.

Explanation: A property ID was expected but a null value was supplied.

 User Response: Supply a valid, non-null ID.

CWUDM0228W: <value or ID> must be in the range <minimum value> to <maximum value>.

Explanation: The value is not in the expected range

 User Response: Supply a value in the expected range.

CWUDM0229W: The entitlement object with ID: <entitlement ID> is not valid.

Explanation: The UDDI application doesn’t recognize the entitlement with the supplied ID.

 User Response: Supply a valid entitlement ID, which can be found in EntitlementConstants.

CWUDM0230W: The limit object with ID: <limit ID> is not valid.

Explanation: The UDDI application doesn’t recognize the limit with the supplied ID.

 User Response: Supply a valid limit ID, which can be found in LimitConstants.

CWUDM0231W: <value> must be a valid UDDI key value.

Explanation: The value supplied was not a UDDI key.

 User Response: UDDI keys must start with the text ’uddi:’. See the UDDI specification for further

information about UDDI keys.

CWUDM0232W: <value> must be a valid UDDI key generator key.

Explanation: The value supplied was not a UDDI key generator.

 User Response: UDDI key generator values must be valid UDDI keys and end in the string

’keygenerator’. See the UDDI specification for further information about UDDI keys.

CWUDM0240W: The configuration property ID cannot be null or empty.

Explanation: The ID supplied was null or empty.

 User Response: Supply a non-null, non-empty ID, valid for the context in which it is used.

CWUDM0241W: The policy group ID cannot be null or empty.

Explanation: The ID supplied was null or empty.

 User Response: Supply a non-null, non-empty ID, valid for the context in which it is used.

CWUDM0242W: The policy ID cannot be null or empty.

Explanation: The ID supplied was null or empty.

 User Response: Supply a non-null, non-empty ID, valid for the context in which it is used.

CWUDM0243W: The entitlement ID cannot be null or empty.

Explanation: The ID supplied was null or empty.

 User Response: Supply a non-null, non-empty ID, valid for the context in which it is used.

CWUDM0244W: The limit ID cannot be null or empty.

Explanation: The ID supplied was null or empty.

 User Response: Supply a non-null, non-empty ID, valid for the context in which it is used.

CWUDM0245W: The user ID cannot be null or empty.

Explanation: The ID supplied was null or empty.

 User Response: Supply a non-null, non-empty ID, valid for the context in which it is used.

CWUDM0246W: The tier ID cannot be null or empty.

Explanation: The ID supplied was null or empty.

 User Response: Supply a non-null, non-empty ID, valid for the context in which it is used.

CWUDM0250W: The configuration property parameter cannot be null or empty.

Explanation: The parameter supplied was null or empty.

 User Response: Supply a non-null, non-empty configuration property parameter.

1078 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

CWUDM0251W: The policy group parameter cannot be null or empty.

Explanation: The parameter supplied was null or empty.

 User Response: Supply a non-null, non-empty policy group parameter.

CWUDM0252W: The policy parameter cannot be null or empty.

Explanation: The parameter supplied was null or empty.

 User Response: Supply a non-null, non-empty policy parameter.

CWUDM0253W: The entitlement parameter cannot be null or empty.

Explanation: The parameter supplied was null or empty.

 User Response: Supply a non-null, non-empty entitlement parameter.

CWUDM0254W: The limit parameter cannot be null or empty.

Explanation: The parameter supplied was null or empty.

 User Response: Supply a non-null, non-empty limit parameter.

CWUDM0255W: The user parameter cannot be null or empty.

Explanation: The parameter supplied was null or empty.

 User Response: Supply a non-null, non-empty user (UDDI publisher) parameter.

CWUDM0256W: The tier parameter cannot be null or empty.

Explanation: The parameter supplied was null or empty.

 User Response: Supply a non-null, non-empty tier parameter.

CWUDM0257I: The collection cannot be null.

Explanation: The collection (typically a list of properties, policies, tiers or users to update)

parameter supplied was null.

 User Response: Supply a non-null collection parameter.

CWUDNnnnns (Web Services UDDI Node Manager) messages:

CWUDN0001I: UDDI Node State change, new state:

Explanation: The UDDI has successfully changed to the identified new state.

 User Response: None.

CWUDN0002I: Error, invalid Node State requested:

Explanation: The UDDI Registry detected a request for invalid state changes.

 User Response: Contact the IBM Customer Service Center.

CWUDN0004E: Error, NodeManager, txnlnit, failed getting persister control

Explanation: NodeManager initialization failure.

 User Response: Contact the IBM Customer Service Center.

CWUDN0005E: Error, NodeManager, txnlInit, UDDIFatalErrorException during Init

Explanation: NodeManager initialization failure.

 User Response: Contact the IBM Customer Service Center.

CWUDN0006E: Error, NodeManager, txnlInit, UDDIException during initialization.

Explanation: NodeManager initialization failure.

 User Response: Contact the IBM Customer Service Center.

CWUDN0007E: Error, NodeManager, txnlInit, Exception during Init

Explanation: NodeManager initialization failure.

 User Response: Contact the IBM Customer Service Center.

CWUDN0008E: Error, NodeManager, txnlInit, Throwable during Init

Explanation: NodeManager initialization failure.

 User Response: Contact the IBM Customer Service Center.

CWUDN0009E: Error, NodeManager, txnlInit, rollback exception

Explanation: NodeManager initialization failure.

 User Response: Contact the IBM Customer Service Center.

Chapter 8. Developing WebSphere applications 1079

CWUDN0010E: Error, NodeManager, txnlInit, Throwable releasing connection

Explanation: NodeManager initialization failure.

 User Response: Contact the IBM Customer Service Center.

CWUDN0011E: Error, NodeManager, txnlDestroy, failed getting Persister control

Explanation: NodeManager application stop or removal error.

 User Response: Contact the IBM Customer Service Center.

CWUDN0012E: Error, NodeManager, txnlDestroy, UDDI Exception during destroy

Explanation: NodeManager application stop or removal error.

 User Response: Contact the IBM Customer Service Center.

CWUDN0013E: Error, NodeManager, txnlDestroy, rollback Exception

Explanation: NodeManager application stop or removal error.

 User Response: Contact the IBM Customer Service Center.

CWUDN0014E: Error, NodeManager, txnlDestroy, Exception releasing connection

Explanation: NodeManager application stop or removal error.

 User Response: Contact the IBM Customer Service Center.

CWUDQnnnns (Web Services UDDI Migration) messages:

CWUDQ0001I: UDDI registry migration datasource is present.

Explanation: The UDDI migration datasource is defined when UDDI is started.

 User Response: None.

CWUDQ0002I: UDDI registry migration has started.

Explanation: The UDDI database migration process has started. This may take some time to

complete dependent on the size of your database.

 User Response: None.

CWUDQ0003I: UDDI registry migration has completed.

Explanation: The UDDI database migration process has finished.

 User Response: None.

CWUDQ0004W: UDDI registry not started due to migration errors.

Explanation: The UDDI registry has not been activated because migration errors were

encountered.

 User Response: Examine the messages produced during the migration process. Determine if the

problem is user fixable, that is the Version 2 database is quiesced and so on. If the problem is

fixable recreate the Version 3 UDDI database and restart the UDDI application. If the problem

cannot be rectified contact your IBM Customer Service Center. It is still possible to use the UDDI

Administration Console to start the UDDI registry.

CWUDQ0005I: <rows> rows have been inserted into table <table>.

Explanation: An informational message showing the number of database rows converted for each

UDDI table.

 User Response: None.

CWUDQ10001E: Row not inserted into <table>.

Explanation: A row was unable to be inserted into a database table.

 User Response: See CWUDQ1003E for details of the SQL Exception details

CWUDQ1002E: Table <table> values are: <Key Values>.

Explanation: Contains the table in error and the significant key values of the row being migrated.

 User Response: None.

CWUDQ1003E: SQL Exception during migration: <SQL Exception Message>.

Explanation: An SQL Exception has occurred during the migration process. The SQL Exception

details are displayed in the message.

1080 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

User Response: Examine the SQL Exception information on its cause. Message CWUDQ1002E

contains table details and significant key values. If the problem cannot be resolved, contact your

IBM Customer Service Center.

CWUDQ1004E: <rows> rows have not been inserted into table <table>.

Explanation: A message showing the number of database rows not converted for a particular

UDDI table.

 User Response: None.

CWUDQ1005E: SQL Exception during key value extraction: <SQL Exception Message>.

Explanation: An SQL Exception occurred during the production of the CWUDQ1002E message.

 User Response: None.

CWUDQ1006E: Exception during migration: <Exception Message>.

Explanation: An Exception has occurred during the migration process. The Exception details are

displayed in the message.

 User Response: Examine the Exception information on its cause. Message CWUDQ1002E

contains table details and significant key values. If the problem cannot be resolved, contact your

IBM Customer Service Center.

CWUDRnnnns (Web Services UDDI Logging and Tracing) messages:

CWUDR0001E: Exception “<exception>” occurred while attempting to get UDDI Message Logger.

Explanation: This message is issued to stderr when an attempt to get the UDDI Message Logger

fails with the indicated exception. Since the attempt to get the message logger failed, the message

cannot be logged. No messages can be logged by this instance of the IBM WebSphere UDDI

Registry.

 User Response: Restart the UDDI registry. If the error persists, examine the WebSphere logs for

information on its cause. If the problem cannot be resolved, then contact the IBM Customer

Service Center.

CWUDR0002E: Exception “<exception>” occurred while attempting to get UDDI Trace Logger for

“<component>”.

Explanation: This message is logged when an attempt to get the UDDI Trace Logger for the

specified component (or package) fails with the indicated exception. No trace entries can be

logged for this component or package of the IBM WebSphere UDDI Registry.

 User Response: Restart the UDDI registry. If the error persists, examine the WebSphere logs for

information on its cause. If the problem cannot be resolved, then contact the IBM Customer

Service Center.

CWUDSnnnns (Web Services UDDI SOAP Interface) messages:

CWUDS0001E: ParserPool found empty whilst attempting to process request. Request unsatisfied

Explanation: A SOAP request was received, but was unable to be dealt with, as there were no

free Parsers within the ParserPool.

 User Response: Consider increasing the number of Parsers within the ParserPool by modifying

the Init Parameter on the SOAP servlets.

CWUDS0002E: Error locating schemas required for UDDI processing. SOAP Servlets unworkable.

Explanation: The SOAP servlet was unable to locate the schemas it requires in order to process

SOAP requests. Without these, the servlet cannot process SOAP requests.

 User Response: Check installation of UDDI was performed correctly. If the error persists, examine

the WebSphere logs for information on its cause. If the problem cannot be resolved, then contact

the IBM Customer Service Center.

CWUDS0003W: Servlet unable to locate init parameter ’defaultPoolSize’. Using internal defaults.

Explanation: The SOAP servlet was unable to locate the init parameter which sets the default

size of the ParserPool. It will fall back to an internal default.

Chapter 8. Developing WebSphere applications 1081

User Response: If this message occurred after attempting to make changes to the

defaultPoolSize init parameter, ensure the changes were correct. If this message has appeared

after installed, ensure installation was performed correctly.

CWUDS0004W: Servlet unable to understand init parameter ’defaultPoolSize’. Using internal

defaults.

Explanation: The SOAP servlet was unable to parse the init parameter which sets the default size

of the ParserPool. It will fall back to an internal default.

 User Response: If this message occurred after attempting to make changes to the

defaultPoolSize init parameter, ensure the changes were correct. If this message has appeared

after installed, ensure installation was performed correctly.

CWUDS0005E: Error occurred during parser creation.

Explanation: An unspecified error occurred during the creation of a SOAP parser

 User Response: Restart the UDDI registry. If the error persists, examine the WebSphere logs for

information on its cause. If the problem cannot be resolved, then contact the IBM Customer

Service Center.

CWUDS0006E: Internal configuration error.

Explanation: This error may occur if there was a failure creating a Parser, with accompanying

message CWUDS0005. It may also occur if there was a problem acquiring the Persistence layer.

 User Response: Restart the UDDI registry. If the error persists, examine the WebSphere logs for

information on its cause. If the problem cannot be resolved, then please contact the IBM Customer

Service Center.

CWUDS0007E: Error during servlet acquisition of persistence layer.

Explanation: The SOAP servlet was unable to acquire the persistence layer required for it to

communicate with the UDDI datasource

 User Response: Restart the UDDI registry. If the error persists, examine the WebSphere logs for

information on its cause. If the problem cannot be resolved, then contact the IBM Customer

Service Center.

CWUDS0008E: Error during servlet release of persistence layer.

Explanation: The persistence layer reported a problem when the SOAP servlet attempted to

release it.

 User Response: Restart the UDDI registry. If the error persists, examine the WebSphere logs for

information on its cause. If the problem cannot be resolved, then contact the IBM Customer

Service Center.

CWUDS0009E: Error during sending of response to client.

Explanation: An error occurred when sending a SOAP response message back to a client. The

client may not have received the response

 User Response: This error is recorded to enable logging of failed responses to clients. The error

may be the fault of the client disconnecting before the reply could be sent, or may indicate a

network problem. Examine the WebSphere logs for more information on its cause.

CWUDGnnnns (Web Services UDDI User Console) messages:

CWUDG0001I: IBM WebSphere UDDI Registry user console starting initialization.

Explanation: The user console control servlet is starting.

 User Response: None.

CWUDG0002I: IBM WebSphere UDDI Registry user console finished initialization.

Explanation: The user console control servlet has completed startup successfully.

 User Response: None.

CWUDG0003I: Reading init parameters.

Explanation: The user console control servlet has started reading external parameters in its init

method

 User Response: None.

1082 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

CWUDG0004I: Finished reading init parameters.

Explanation: The user console control servlet has finished reading external parameters in its init

method. This message indicates the user console is ready to accept client requests.

 User Response: None.

CWUDG0005E: A serious error has occurred. Error message: <Message> error: <Throwable>. More

information: <Additional information>.

Explanation: This error message indicates an unexpected error has occurred. The <Message>

describes the error that has occurred and the <Throwable> is the type of error that was caught.

<Additional information> may provide further information, if available.

 User Response: A trace of the gui component is recommended. Contact IBM support with this

information.

CWUDG0006E: A persistence error has occurred. Error message: <Message> error: <Throwable>.

More information: <Additional information>.

Explanation: An error occurred while performing a database operation. The <Message> describes

the error that occurred and the <Throwable> is the type of error that was caught. <Additional

information> may provide further information, if available.

 User Response: Check database connections and state. Provide IBM support with a trace,

including the gui and persistence components.

CWUDG0007E: A User mismatch error has occurred. Error message: <Message> error:

<Throwable>. More information: <Additional information>.

Explanation: The user id provided does not match the user id required or expected whilst

performing an operation that requires authentication. The <Message> describes the error that

occurred and the <Throwable> is the type of error that was caught. <Additional information> may

provide further information, if available.

 User Response: Check the user has authority for the operation being requested. If necessary,

contact IBM support detailing the actions taken to recreate the problem.

CWUDG0008E: An invalid key was passed. Error message: <Message> error: <Throwable>. More

information: <Additional information>.

Explanation: The requested operation is trying to retrieve information about an entity with a key

that is invalid. This may occur if the entity has been deleted by another session. The <Message>

describes the error that occurred and the <Throwable> is the type of error that was caught.

<Additional information> may provide further information, if available.

 User Response: Ask the client to close existing sessions and attempt the operation in a new

browser session. If the problem persists, contact IBM support with a trace of the gui and api

components.

CWUDG0009E: An invalid value was supplied. Error message: <Message> error: <Throwable>.

More information: <Additional information>

Explanation: An invalid value was passed to an API call. The <Message> describes the error that

occurred and the <Throwable> is the type of error that was caught. <Additional information> may

provide further information, if available.

 User Response: Contact IBM support with a trace of the gui and api components.

CWUDG0010E: Failed to introspect ActionForm properties. Exception: <Exception>.

Explanation: String properties of a form object could not be introspected which means that the

form contents cannot be checked for invalid characters.

 User Response: Contact IBM support with details of the Exception and a trace of the gui

component.

CWUDG0011E: Failed to invoke reflected methods in ActionForm. Exception: <Exception>.

Explanation: A form object’s declared public method for setting or getting a String value could not

be invoked. This method is required to check for invalid characters.

 User Response: Contact IBM support with details of the Exception and a trace of the gui

component.

Chapter 8. Developing WebSphere applications 1083

CWUDG0012E: User console initialization failed to connect to UDDI database. Exception:

<Exception>.

Explanation: During user console initialization, connection to the database failed, and threw the

exception specified.

 User Response: Check the connection to the UDDI database. The included exception message

may yield some clues to help you resolve the problem. If unresolved, contact IBM support with a

trace of the gui component during startup.

CWUDG0013E: User console initialization failed to initialize tModels. Exception: <Exception>.

Explanation: Indicates that an error has occurred during initialization of ActionServlet, specifically

when reading tModels (invoking init method in class TModelNames).

 User Response: Check the state of the UDDI database. Visually inspect the TMODEL table and

confirm it is populated with valid data. The included exception message may yield some clues to

help you resolve the problem. If unresolved, contact IBM support with a trace of the gui

component during startup.

CWUDG0014E: User console initialization failed to initialize taxonomies. Exception: <Exception>.

Explanation: Indicates that an error has occurred during initialization of ActionServlet, specifically

when reading taxonomy data (invoking init method of CategoryTaxonomyTree).

 User Response: Check the state of the UDDI database. The included exception message may

yield some clues to help you resolve the problem. If unresolved, contact IBM support with a trace

of the gui component during startup.

CWUDUnnnns (Web Services UDDI Utility Tools) messages:

CWUDU0001I: Usage: java -jar UDDIUtilityTools.jar ’{’function’}’ [options]

function:

 -promote entity source Promote entities between registries

 -export entity source Extract entities from registry to XML

 -delete entity source Delete entities from registry

 -import Create entities from XML to registry

where entity source is one of:

 -tmodel|-business|-service|-binding key Specify single entity type and key

 -keysFile | -f filename Specify file containing entity types and keys

options:

 -properties filename Specify path to configuration file

 -overwrite | -o Overwrite an entity if it already exists

 -log | -v Output verbose messages

 -definitionFile filename Specify path to UDDI entity definition file

 -importReferenced Import entities referenced by source entities

The following options override property settings in configuration file:

 -overwrite

 -log

 -definitionFile

 -importReferenced

Example: java -jar UDDIUtilityTools.jar -promote -keysFile C:/uddikeys.txt

Explanation: This is the usage message displayed at the command line when the user has

entered an invalid combination of arguments or options.

 User Response: Enter the command according to the usage message.

CWUDU0002I: ********** Starting UDDI Utility Tools **********

Explanation: This message is used as a marker in the message log file to indicate tool start

points.

 User Response: None.

1084 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

CWUDU0003I: Promoting entityType<entity type> key<entity key>...

Explanation: Indicates which entity type (business, tModel and so on) is being promoted, and it’s

key value.

 User Response: None.

CWUDU0004I: Bad entityType: received<incorrect entity type>, expected

<tModel|business|service|binding>

Explanation: The user entered an incorrect entity type.

 User Response: Use an entity type of tModel, business, service or binding.

CWUDU0005I: Promotion successful.

Explanation: Indicates the promote function completed successfully.

 User Response: None.

CWUDU0006I: Import successful.

Explanation: Indicates the import function completed successfully.

 User Response: None.

CWUDU0007I: Export successful.

Explanation: Indicates the export function completed successfully.

 User Response: None.

CWUDU0008I: Delete successful.

Explanation: Indicates the delete function completed successfully.

 User Response: None.

CWUDU0009I: Exporting entities ...

Explanation: Indicates the export function has started.

 User Response: None.

CWUDU0010I: Exporting business, businessKey[<business key].

Explanation: Indicates that the businessEntity with the specified key is being exported.

 User Response: None.

CWUDU0011I: Exporting service, serviceKey[<service key>].

Explanation: Indicates that the businessService with the specified key is being exported.

 User Response: None.

CWUDU0012I: Exporting binding, bindingKey[<binding key>].

Explanation: Indicates that the bindingTemplate with the specified key is being exported.

 User Response: None.

CWUDU0013I: Exporting tModel, tModelKey[<tModel key>].

Explanation: Indicates that the tModel with the specified key is being exported.

 User Response: None.

CWUDU0014I: Exporting referenced tModel, tModelKey[<tModel key>].

Explanation: Indicates that the referenced tModel with the specified key is being exported.

 User Response: None.

CWUDU0015I: Exported <entity count> entities.

Explanation: Indicates that the export function completed, and shows the number of entities

exported.

 User Response: None.

CWUDU0016I: Importing entities ...

Explanation: Indicates the import function has started.

 User Response: None.

CWUDU0017I: Importing business, businessKey[<business key>].

Explanation: Indicates that the businessEntity with the specified key is being imported.

 User Response: None.

Chapter 8. Developing WebSphere applications 1085

CWUDU0018I: Importing service, serviceKey[<service key>].

Explanation: Indicates that the businessService with the specified key is being imported.

 User Response: None.

CWUDU0019I: Importing binding, bindingKey[<binding key>]

Explanation: Indicates that the bindingTemplate with the specified key is being imported.

 User Response: None.

CWUDU0020I: Importing tModel, tModelKey[<tModel key>].

Explanation: Indicates that the tModel with the specified key is being imported.

 User Response: None.

CWUDU0021I: Importing referenced tModel, tModelKey[<tModel key>].

Explanation: Indicates that the referenced tModel with the specified key is being imported.

 User Response: None.

CWUDU0022I: Imported <entity count> entities.

Explanation: Indicates that the import function completed, and shows the number of entities

imported.

 User Response: None.

CWUDU0023I: Deleting entities ...

Explanation: Indicates the delete function has started.

 User Response: None.

CWUDU0024I: Deleting business, businessKey[<business key>].

Explanation: Indicates that the businessEntity with the specified key is being deleted.

 User Response: None.

CWUDU0025I: Deleting service, serviceKey[<service key>].

Explanation: Indicates that the businessService with the specified key is being deleted.

 User Response: None.

CWUDU0026I: Deleting binding, bindingKey[<binding key>].

Explanation: Indicates that the bindingTemplate with the specified key is being deleted.

 User Response: None.

CWUDU0027I: Deleting tModel, tModelKey[<tModel key>].

Explanation: Indicates that the tModel with the specified key is being deleted.

 User Response: None.

CWUDU0028I: Deleted <entity count> entities.

Explanation: Indicates that the delete function completed, and shows the number of entities

deleted.

 User Response: None.

CWUDU0029I: Serializing ...

Explanation: Indicates that generation of the Entity Definition File has started.

 User Response: None.

CWUDU0030I: Serialized entities.

Explanation: Indicates that generation of the Entity Definition File completed successfully.

 User Response: None.

CWUDU0031I: Deserializing ...

Explanation: Indicates that reading of the Entity Definition File and creation of UDDI entities has

started.

 User Response: None.

CWUDU0032I: Deserialized entities.

Explanation: Indicates that reading of the Entity Definition File and creation of UDDI entities

completed successfully.

1086 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

User Response: None.

CWUDU0033I: Function ’<function>’ completed successfully.

Explanation: Indicates the requested function completed successfully.

 User Response: None.

CWUDU0034W: Function ’<function>’ did not complete successfully. See messages log for further

information.

Explanation: Indicates the requested function did not complete successfully.

 User Response: The messages log may yield further information if the verbose option is on.

Check the configuration properties file setting are correct. If that does not identify the problem, try

running with trace logging enabled. If that does not yield a solution, contact your IBM support

center.

CWUDU0035W: Parser error: <warning description>

Explanation: The XML parser reports a warning about the content of the Entity Definition File.

 User Response: Based on the context of the warning message, check the validity of the Entity

Definition File.

CWUDU0036E: Parser error <error description>

Explanation: The XML parser reports an error about the content of the Entity Definition File.

 User Response: Based on the context of the error message, check the validity of the Entity

Definition File.

CWUDU0037E: Unrecognized parser feature: <feature description>

Explanation: A parser feature set by the UDDI Utility Tools is not recognized by the parser.

 User Response: Check you are using the correct type and level of XML parser. If correct, contact

your IBM support center.

CWUDU0038E: Unsupported parser feature: <feature description>

Explanation: A parser feature set by the UDDI Utility Tools is not supported by the parser.

 User Response: Check you are using the correct type and level of XML parser. If correct, contact

your IBM support center.

CWUDU0039E: Unrecognized parser property: <property description>, value: <value>

Explanation: A parser property set by the UDDI Utility Tools is not recognized by the parser.

 User Response: Check you are using the correct type and level of XML parser. If correct, contact

your IBM support center.

CWUDU0040E: Unsupported parser property: <property description>, value: <value>

Explanation: A parser property set by the UDDI Utility Tools is not supported by the parser.

 User Response: Check you are using the correct type and level of XML parser. If correct, contact

your IBM support center.

CWUDU0042E: Unable to find the configuration file: <filepath>

Explanation: UDDI Utility Tools cannot locate the specified configuration file.

 User Response: UDDI Utility Tools looks for a default configuration properties with the file name

’UDDIUtilityTools.properties’ in the current directory. Check that the configuration file has this

name, or that the argument value supplied with the ’-properties’ option is pointing at a file that

exists.

CWUDU0043E: An Exception occurred trying to read the configuration file.

Explanation: The configuration file could not be read.

 User Response: Check the file path points to a valid file and that the current user has permission

to read the file.

CWUDU0044W: Configuration file is missing the ’<property name>’ property.

Explanation: A required property is missing from the configuration file.

 User Response: Add the missing property name and value to the configuration file. Check that

the property name is not misspelled.

Chapter 8. Developing WebSphere applications 1087

CWUDU0045W: Property: ’<property name>’ has value ’<property value>’. It must be either ’true’ or

’false’.

Explanation: A value was given to a property other than ’true’ or ’false’.

 User Response: Set the property value to ’true’ or ’false’.

CWUDU0046W: Property: ’<property name>’ has value ’<property value>’. It must be an integer

value. Explanation: A value was given to a property other than an integer value.

 User Response: Set the property value to an integer value.

CWUDU0047E: Unable to find the keyFile file: <keys file path>

Explanation: The keys file could not be located at the specified path.

 User Response: Check the file name and path and correct and that the file exists.

CWUDU0048E: Unable to read the keyFile file: <keys file path>

Explanation: The keys file could not be read due to an IO error.

 User Response: Check that the current user has permission to read the file.

CWUDU0049E: Unable to write to entity definition file: <entity definition file path>

Explanation: During serialization, the Entity Definition File could not be written to.

 User Response: Check the file’s read only attribute is not set.

CWUDU0050E: Unable to find UDDI Entity definition file: <entity definition file path>

Explanation: The Entity Definition File could not be found at the specified file path.

 User Response: Check the file path is correct and that the file exists.

CWUDU0051E: Unable to read UDDI Entity definition file: <entity definition file path>

Explanation: The Entity Definition File could not be read due to an IO error.

 User Response: Check that the current user has permission to read the file.

CWUDU0052E: Unable to close the message file: <file path>

Explanation: The attempt to close the message log file failed.

 User Response: The disk might be full. If so, clear some space or direct log output to a different

disk.

CWUDU0053E: Unable to close the trace file: <file path>

Explanation: The attempt to close the trace log file failed.

 User Response: The disk might be full. If so, clear some space or direct log output to a different

disk.

CWUDU0054E: The logger was unable to find the file: <file path>

Explanation: The UDDI Utility Tools logger could not find the specified file.

 User Response: None.

CWUDU0055E: ERROR OCCURRED ...

Explanation: General purpose error message used in development only.

 User Response: None.

CWUDU0056E: Exception:

Explanation: General purpose message prefix used for reporting exceptions.

 User Response: None.

CWUDU0057W: Only one function may be specified on the command line.

Explanation: Multiple function commands were entered on the command line.

 User Response: Specify one function in accordance with the usage message.

CWUDU0058W: No function was specified.

Explanation: UDDI Utility Tools was invoked with no function specified.

 User Response: Specify one function in accordance with the usage message.

CWUDU0059W: The function: <function> was not recognized.

Explanation: The function value did not match any of the allowed functions.

 User Response: Specify one function in accordance with the usage message.

1088 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

CWUDU0060W: The argument ’<argument>’ was not recognized.

Explanation: The argument value does not match any of the allowed arguments.

 User Response: Specify arguments in accordance with the usage message.

CWUDU0061W: There was a missing value for <argument> argument.

Explanation: An expected value for the specified argument was not supplied.

 User Response: Specify a value for the argument in accordance with the usage message.

CWUDU0062W: Unexpected argument: <argument> (entity key file is already specified).

Explanation: The entity type argument cannot be specified if the keysFile argument has already

been specified.

 User Response: Specify arguments in accordance with the usage message.

CWUDU0063W: Unexpected argument: <argument> (entity key is already specified).

Explanation: The keysFile argument cannot be specified if an entity type argument and key value

has already been specified.

 User Response: Specify arguments in accordance with the usage message.

CWUDU0064W: Argument: <argument> cannot be specified more than once.

Explanation: An argument was specified twice in the same command.

 User Response: Specify arguments in accordance with the usage message.

CWUDU0065E: No entity keys were specified.

Explanation: A keys file or an entity type and key value must be specified for functions using

keys.

 User Response: Specify arguments in accordance with the usage message.

CWUDU0066E: Could not load Database driver: dbDriver<database driver>.

Explanation: The specified database driver could not be loaded.

 User Response: Check the database driver value in the configuration file is valid, and the driver’s

class is present in the classpath property.

CWUDU0067E: Could not create Database connection: dbUrl, dbUser, (dbPasswd not shown).

Explanation: A connection could not be established with the database at the specified URL with

the specified userid.

 User Response: Check the database URL, userid and password values are correct n the

configuration file, and that the database manager is running.

CWUDU0068E: Could not close the database connection.

Explanation: An attempt to close the database connection failed.

 User Response: If the problem persists, contact your IBM support center.

CWUDU0069E: Could not create minimal entity for tModel.

Explanation: The minimal data necessary for a valid tModel could not be inserted in the target

UDDI registry database.

 User Response: Check the database URL, userid and password values are correct in the

configuration file, and that the database manager is running.

CWUDU0070E: Could not create minimal entity for Service.

Explanation: The minimal data necessary for a valid businessService could not be inserted in the

target UDDI registry database.

 User Response: Check the database URL, userid and password values are correct in the

configuration file, and that the database manager is running.

CWUDU0071E: Could not create minimal entity for Business.

Explanation: The minimal data necessary for a valid businessEntity could not be inserted in the

target UDDI registry database.

 User Response: Check the database URL, userid and password values are correct in the

configuration file, and that the database manager is running.

Chapter 8. Developing WebSphere applications 1089

CWUDU0072E: Could not create minimal entity for Binding.

Explanation: The minimal data necessary for a valid bindingTemplate could not be inserted in the

target UDDI registry database.

 User Response: Check the database URL, userid and password values are correct in the

configuration file, and that the database manager is running.

CWUDU0073E: There was an error while trying to create an XML Document.

Explanation: An attempt to create the Entity Definition File failed.

 User Response: Check the file path specified in the configuration file for the Entity Definition File

is valid and is not set to be read only.

CWUDU0074E: There was an error parsing the entity definition file.

Explanation: An unspecified error occurred when parsing the Entity Definition File.

 User Response: Check the entity definition file content is valid according to the UDDI Utility Tools

schema file, promoter.xsd.

CWUDU0075E: One or more errors occurred while parsing the entity definition file. See message

log for details.

Explanation: Errors occurred when parsing the Entity Definition File.

 User Response: Check the entity definition file content is valid according to the UDDI Utility Tools

schema file, promoter.xsd.

CWUDU0076W: One or more warnings were raised while parsing the entity definition file. See

message log for details.

Explanation: Warnings occurred when parsing the Entity Definition File.

 User Response: Check the entity definition file content is valid according to the UDDI Utility Tools

schema file, promoter.xsd.

CWUDU0078E: Unable to obtain authinfo.

Explanation: AuthInfo could not be obtained from the UDDI registry with the given userid and

password.

 User Response: Check the userid and password property values are correct in the configuration

file.

CWUDU0079E: The inquiryURL is malformed: <inquiry URL>.

Explanation: The inquiry URL specified in the configuration file is not valid.

 User Response: Correct the value for the inquiry URLs (fromInquiryURL and toInquiryURL) in the

configuration file.

CWUDU0080E: The publishURL is malformed: <publish URL>

Explanation: The publish URL specified in the configuration file is not valid.

 User Response: Correct the value for the publish URL (toPublishURL) in the configuration file.

CWUDU0081E: Could not get tModel detail for tModelKey[<tModel key>].

Explanation: The get tModel operation failed on the source registry.

 User Response: Check the key exists in the source registry.

CWUDU0082E: Could not get service detail for serviceKey[<service key>].

Explanation: The get service operation failed on the source registry.

 User Response: Check the key exists in the source registry.

CWUDU0083E: Could not get business detail for businessKey[<business key>].

Explanation: The get business operation failed on the source registry.

 User Response: Check the key exists in the source registry.

CWUDU0084E: Could not get binding detail for bindingKey[<binding key>].

Explanation: The get binding operation failed on the source registry.

 User Response: check the key exists in the source registry.

CWUDU0085E: Could not save tModel for tModelKey[<tModel key>].

Explanation: The publish operation failed at the target registry.

1090 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

User Response: Check the tModel is not referencing another entity (such as a tModel) that is not

present in the target registry. This may occur if the ’importReferenced’ property is set to ’false’.

Specify referenced tModels in the referencedtModels section of the Entity Definition File and set

’importReferenced’ property in the configuration file to ’true’.

CWUDU0086E: Could not save business for businessKey[<business key>].

Explanation: The publish operation failed at the target registry.

 User Response: Check the businessEntity is not referencing another entity (such as a tModel)

that is not present in the target registry. This may occur if the ’importReferenced’ property is set to

’false’. Specify referenced tModels in the referencedtModels section of the Entity Definition File

and set ’importReferenced’ property in the configuration file to ’true’.

CWUDU0087E: Could not save service for parent businessKey[<business key>].

Explanation: The publish operation failed at the target registry.

 User Response: Check the businessEntity specified as the parent of the businessService exists in

the target registry.

CWUDU0088E: Could not save binding for parent serviceKey[<service key>].

Explanation: The publish operation failed at the target registry.

 User Response: Check the businessService specified as the parent of the bindingTemplate exists

in the target registry.

CWUDU0089W: Did not save service for serviceKey[<service key>] because parent business did

not exist.

Explanation: The parent business for the specified businessService does not exist.

 User Response: Check the key value for the parent entity is correct in the Entity Definition File,

and that the entity exists in the target registry.

CWUDU0090W: Did not save binding for bindingKey[<binding key>] because parent service did not

exist. Explanation: The parent service for the specified bindingTemplate does not exist.

 User Response: Check the key value for the parent entity is correct in the Entity Definition File,

and that the entity exists in the target registry.

CWUDU0091E: Could not delete business for businessKey[<businness key>].

Explanation: The UDDI4J operation to delete the businessEntity with the specified key failed.

 User Response: Check the userid and password property values in the configuration file and that

the entity exists in the target UDDI registry.

CWUDU00921E: Could not delete service for serviceKey[<tModel key>].

Explanation: The UDDI4J operation to delete the businessService with the specified key failed.

 User Response: Check the userid and password property values in the configuration file and that

the entity exists in the target UDDI registry.

CWUDU0093E: Could not delete binding for bindingKey[<binding key>].

Explanation: The UDDI4J operation to delete the bindingTemplate with the specified key failed.

 User Response: Check the userid and password property values in the configuration file and that

the entity exists in the target UDDI registry.

CWUDU0094E: Could not delete tModel for tModelKey[<tModel key>].

Explanation: The UDDI4J operation to delete the tModel with the specified key failed.

 User Response: Check the userid and password property values in the configuration file and that

the entity exists in the target UDDI registry.

CWUDU0096W: <entity type><key value> is not a valid UUID.

Explanation: The key value entered does not comply with the format specified for a UUID in the

UDDI specification.

 User Response: Enter a valid UUID key.

CWUDU0097W: Did not save tModel for tModelKey[<tModel key>] as it already exists. Use the

-overwrite argument to overwrite the tModel.

Explanation: The tModel was not saved because the overwrite property is false

Chapter 8. Developing WebSphere applications 1091

User Response: If the desired action is to overwrite existing entities, specify -overwrite on the

command line or set the overwrite property in the configuration file to true.

CWUDU0098W: Did not save business for businessKey[<business key>] as it already exists. Use

the -overwrite argument to overwrite the business.

Explanation: The businessEntity was not saved because the overwrite property is false

 User Response: If the desired action is to overwrite existing entities, specify -overwrite on the

command line or set the overwrite property in the configuration file to true.

CWUDU0099W: Did not save service for serviceKey[<service key key>] as it already exists. Use the

-overwrite argument to overwrite the service.

Explanation: The businessService was not saved because the overwrite property is false

 User Response: If the desired action is to overwrite existing entities, specify -overwrite on the

command line or set the overwrite property in the configuration file to true.

CWUDU0100W: Did not save binding for bindingKey[<binding key key>] as it already exists. Use

the -overwrite argument to overwrite the binding.

Explanation: The bindingTemplate was not saved because the overwrite property is false

 User Response: If the desired action is to overwrite existing entities, specify -overwrite on the

command line or set the overwrite property in the configuration file to true.

CWUDU0101W: Bad entity type: received<entity type>, expected

<tModel|business|service|binding>.

Explanation: The entered entity type was not recognized.

 User Response: Specify arguments in accordance with the usage message.

CWUDU0102E: Promotion failed.

Explanation: The promote function failed to complete.

 User Response: Check the configuration properties file has correct settings.

CWUDU0106E: Unable to commit transaction.

Explanation: The insertion of minimal entity data during the import function failed to commit to the

database.

 User Response: Check the database configuration. If necessary, turn on trace logging and look

for the SQLException that is recorded.

CWUDU0107E: Unable to set auto-commit off on the database connection.

Explanation: UDDI Utility Tools needs to control commits of data changes, however the attempt to

turn off auto-commit failed.

 User Response: Check the database configuration. If necessary, turn on trace logging and look

for the SQLExecption that is recorded.

CWUDU0109E: The import function requires a UDDI entity definition file to be specified.

Explanation: A required argument value was not supplied.

 User Response: Specify -definition <path to Entity Definition File> on the command line, or set

the value of the UDDIEntityDefinitionFile property in the configuration file to the path to the Entity

Definition File.

CWUDU0110E: A cyclic dependency exists in the referenced tModels. The reference from tModel

with key [<tModel key>] to the tModel with key [<tModel key>] completes the detected cycle.

Explanation: A cycle has been detected such that a tModel is being referenced by a tModel that it

directly or indirectly references. This would cause the UDDI Utility Tools to enter an infinite loop

trying to import referenced tModels, so the process is halted.

 User Response: Edit the Entity Definition File and temporarily remove the reference to the tModel

in the cycle, taking a note of the referenced details. After the import has successfully completed,

update the tModel in the target registry to reintroduce the reference you previously removed. This

can be done using the UDDI User Console, UDDI4J, or by creating a new Entity Definition File

with just the tModel to be updated, and running the UDDI Utility Tools with the import function.

CWUDU0112E: An unexpected exception has occurred: <Exception message>.

Explanation: An unexpected error occurred.

1092 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

User Response: Check configuration file settings and all registries and databases are active. If

necessary, contact your IBM support center.

CWUDU0113E: Could not get a response from UDDI registry at URL: <URL>.

Explanation: A TransPortException occurred while performing an UDDI4J operation on the UDDI

registry at the specified URL.

 User Response: Check configuration properties for the UDDI registry in question and ensure the

UDDI registry is active.

CWUDU0114E: An IOException occurred trying to invoke ’java’.

Explanation: When UDDI Utility Tools was invoked using the java -jar syntax, the invocation of the

second JVM failed.

 User Response: Check configuration property ’classpath’ value is correct, and that Java is

configured to run from the command line.

CWUDU0115I: Imported <entity count> entities and <referenced entity count> referenced entities.

Explanation: Indicate that the import step of the import or promote function has completed,

showing the number of entities imported.

 User Response: None.

CWUDU0116W: Not all minimal entities could be removed. The following remain in the database:

Explanation: A publish step was not successful which may have left one or more minimal entities

in the target registry database. UDDI Utility Tools attempts to remove these minimal entities but in

this case, the removal has failed. Following messages will indicate which minimal entities are left

in the target registry.

 User Response: You can attempt to remove the minimal entities using normal methods, such as

the user console, UDDI4J, or using the delete function of the UDDI Utility Tools.

CWUDU0117W: Business minimal entities with businessKey [<business key>] has not been

removed from the database.

Explanation: A business minimal entity was orphaned in the target registry database and attempts

to remove it failed.

 User Response: Identify the orphaned minimal entity in the target and attempt to remove using

normal UDDI delete methods, or by using the delete function of the UDDI Utility Tools.

CWUDU0118W: Service minimal entity with serviceKey [<service key>] has not been removed from

the database.

Explanation: A service minimal entity was orphaned in the target registry database and attempts

to remove it failed.

 User Response: Identify the orphaned minimal entity in the target registry and attempt to remove

using normal UDDI delete methods, or by using the delete function of the UDDI Utility Tools.

CWUDU0119W: Binding Template minimal entity with bindingKey [<binding key>] has not been

removed from the database.

Explanation: A binding minimal entity was orphaned in the target registry database and attempts

to remove it failed.

 User Response: Identify the orphaned minimal entity in the target registry and attempt to remove

using normal UDDI delete methods, or by using the delete function of the UDDI Utility Tools.

CWUDU0120W: TModel minimal entity with tModelKey [<tModel key>] has not been removed from

the database.

Explanation: A tModel minimal entity was orphaned in the target registry database and attempts

to remove it failed.

 User Response: Identify the orphaned minimal entity in the target registry and attempt to remove

using normal UDDI delete methods, or by using the delete function of the UDDI Utility Tools.

CWUDU0121I: Created business minimal entity with businessKey [<business key>].

Explanation: Indicates the minimal data required for a businessEntity has successfully been

inserted in the target UDDI registry database.

 User Response: None.

Chapter 8. Developing WebSphere applications 1093

CWUDU0122I: Created service minimal entity with serviceKey [<service key>].

Explanation: Indicates the minimal data required for a businessService has successfully been

inserted in the target UDDI registry database.

 User Response: None.

CWUDU0123I: Created binding template minimal entity with bindingKey [<binding key>].

Explanation: Indicates the minimal data required for a bindingTemplate has successfully been

inserted in the target UDDI registry database.

 User Response: None.

CWUDU0124I: Created tModel minimal entity with tModelKey [<tModel key>].

Explanation: Indicates the minimal data required for a tModel has successfully been inserted in

the target UDDI registry database.

 User Response: None.

CWUDU0125I: Deleted business minimal entity with businessKey [<business key>].

Explanation: Indicates the minimal data inserted for a businessEntity was successfully removed

from the target UDDI registry database. This would normally happen after a publish operation has

failed.

 User Response: None.

CWUDU0126I: Deleted service minimal entity with serviceKey [<service key>].

Explanation: Indicates the minimal data required for a businessService was successfully removed

from the target UDDI registry database. This would normally happen after a publish operation has

failed.

 User Response: None.

CWUDU0127I: Deleted binding template minimal entity with bindingKey [<binding key>].

Explanation: Indicates the minimal data required for a bindingTemplate was successfully removed

from the target UDDI registry database. This would normally happen after a publish operation has

failed.

 User Response: None.

CWUDU0128I: Deleted tModel minimal entity with tModelKey [<tModel key>].

Explanation: Indicates the minimal data required for a tModel was successfully removed from the

target UDDI registry database. This would normally happen after a publish operation has failed.

 User Response: None.

CWUDU0129E: Find related businesses failed.

Explanation: The UDDI4J find related businesses operation did not complete.

 User Response: Check the configuration properties for the source registry, such as

fromInquiryURL.

CWUDU0130E: Find businesses failed.

Explanation: The UDDI4J find businesses operation did not complete.

 User Response: Check the configuration properties for the source registry, such as

fromInquiryURL.

CWUDU0131E: Find services failed.

Explanation: The UDDI4J find services operation did not complete.

 User Response: Check the configuration properties for the source registry, such as

fromInquiryURL.

CWUDU0132E: Find tModels failed.

Explanation: The UDDI4J find tModels operation did not complete.

 User Response: Check the configuration properties for the source registry, such as

fromInquiryURL.

CWUDU0133E: Find bindings failed.

Explanation: The UDDI4J find bindings operation did not complete.

1094 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

User Response: Check the configuration properties for the source registry, such as

fromInquiryURL.

CWUDU0134I: Performing inquiry request ...

Explanation: Indicated the find operation for selecting keys has started.

 User Response: None.

CWUDU0135I: Extracted keys from inquiry results.

Explanation: Indicates the find operation to select keys has completed successfully.

 User Response: None

CWUDU0136E: node ID value could not be found in UDDI database.

Explanation: The UDDI registries Node ID could not be found in the UDDI database.

 User Response: Check that the UDDI application and database have initialized correctly.

CWUDU0137E: Unexpected database SQL exception: <SQL Exception Message>.

Explanation: An unexpected SQL Exception has been encountered.

 User Response: Examine the SQL Exception Message to determine the cause of the problem.

CWUDU0138E: Could not delete minimal entity for tModel with tModelKey[<tModel Key>].

Explanation: The entity with the supplied tModel key could not be located and therefore deleted.

 User Response: Ensure tModel key is correct.

CWUDU0139E: Could not delete minimal entity for Service with serviceKey[<Service Key>].

Explanation: The entity with the supplied Service key could not be located and therefore deleted.

 User Response: Ensure Service key is correct.

CWUDU0140E: Could not delete minimal entity for Business with businessKey[<Business Key>].

Explanation: The entity with the supplied Business Key could not be located and therefore

deleted.

 User Response: Ensure Business key is correct.

CWUDU0141E: Could not delete minimal entity for Binding with bindingKey[<Binding Key>].

Explanation: The entity with the supplied Binding key could not be located and therefore deleted.

 User Response:

CWUDU0142E: Invalid sequence number for service: <Sequence Number>.

Explanation: The ServiceStub has an invalid sequence number.

 User Response: Ensure the sequence number is greater than zero.

CWUDU0143E: Invalid sequence number for binding: <Sequence Number>.

Explanation: The BindingStub has an invalid sequence number.

 User Response: Ensure the sequence number is greater than zero.

CWUDVnnnns (Web Services UDDI Value Set Tools) messages:

CWUDV0001E: Unable to find the properties file: >Property File>.

Explanation: The named property file could not be located.

 User Response: Supply the correct location of the property file.

CWUDV0002E: The column and string delimiters must not be the same.

Explanation: The column and string delimiters cannot be the same.

 User Response: Supply different characters for the column and string delimiters.

CWUDV0003E: A tModel for key <tModel Key> can not be found.

Explanation: The tModel for the given key cannot be found.

 User Response: Supply a correct tModel key.

CWUDV0004E: Invalid command arguments.

Explanation: A command argument has been supplied that is unknown.

 User Response: Check your arguments with the Usage information given with this error message.

Chapter 8. Developing WebSphere applications 1095

CWUDV0005E: Different tModel keys are required when using -newKey.

Explanation: Two unique tModel keys are required to move a Value Set from one tModel to

another.

 User Response: Supply two unique tModel keys.

CWUDV0006E: Unable to find the value set data file: <Value Set File>.

Explanation: The named value set file could not be located.

 User Response: Supply the correct location of the value set file.

CWUDV0007E: There is an unterminated string on line <Line Number>:<Line>.

Explanation: The line at <Line Number> has a starting string delimiter, but not a finishing one.

 User Response: Correct the line, or consider using a different string delimiter (-stringDelimiter)

CWUDV0008E: There were fewer fields than expected on line <Line Number>:<Line>.

Explanation: The line at <Line Number> does not contain enough fields.

 User Response: Correct the line, of consider using a different column delimiter

(-columnDelimiter).

CWUDV0009E: There were more fields than expected on line <Line Number>:<Line>.

Explanation: The line at <Line Number> contains too many fields.

 User Response: Correct the line, or consider using a different column delimiter

(-columnDelimiter).

CWUDV0010E: There is a duplicate Key Code at the same level on line <Line Number>.

Explanation: The Value Set file contains two or more Key Codes of the sasme value for the same

parent key code.

 User Response: Correct the line.

CWUDV0011E: An invalid Parent Key Code has been detected on line <Line Number>.

Explanation: The Value Set file contains a parent key code that is invalid in its context.

 User Response: Correct the parent key code.

CWUDV0012E: The value set file contains a value <Column Contents> in column <Column

Number> at line <Line Number> that is too long for the database table.

Explanation: The Value Set file contains a value that is too large.

 User Response: Decrease the size of the value.

CWUDV0013E: An IO Exception has occurred: <IO Exception Message>.

Explanation: An IO Exception was received when trying to read the Value Set file.

 User Response: Ensure the Value Set file is readable and is in UTF-8 format.

CWUDV0014E: There was a problem reading from the properties file: <IO Exception Message>.

Explanation: An IO Exception was received when trying to read the Value Set file.

 User Response: Ensure the Value Set file is readable and is in UTF-8 format.

CWUDV0016E: Unable to find the UDDI JMX MBean. Verify UDDI is installed.

Explanation: The UDDI application could not be contacted.

 User Response: Ensure UDDI is installed and running on the Host you have targeted. See

arguments -host, -port, -node and -server.

CWUDV0017E: An unexpected Exception has occurred.

Explanation: An unexpected exception was received.

 User Response: Examine the Exception stack trace on its cause. If the problem cannot be

resolver, contact your IBM Customer Service Center.

CWUDV1001W: The tModel with key <tModel Key> is checked. To confirm this operation, enter the

command with the -override argument.

Explanation: The targeted tModel has a ″checked″ status and therefore should not have its value

set changed without care.

 User Response: To confirm this operation, enter the command with the -override argument.

1096 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

CWUDV1002W: The tModel with key <tModel Key> has existing value sets. To confirm this

operation, enter the command with the -override argument.

Explanation: The targeted to be loaded already has a value set.

 User Response: To confirm this operation and overwrite the existing value set, enter the

command with the -override argument.

CWUDV1003W: UDDI Registry Message: <Number of Lines> lines of data file for tModel key

<tModel Key>.

Explanation: UDDI Registry message was received.

 User Response: Examine the message on its cause. If the problem cannot be resolved, contact

your IBM Customer Service Center.

CWUDV2001I: Loaded <Number of Lines> line of data file for tModel key <tModelKey>.

Explanation: An informational message that confirms the number of value set lines loaded for the

tModel.

 User Response:

CWUDV2002I: Changed value set from tModel key <tModel Key> to tModel key <tModel Key>.

Explanation: An informational message that confirms the change of value set from one tModel to

another.

 User Response: None.

CWUDV2003I: Unloaded value set for tModel key <tModel Key>.

Explanation: An informational message that confirms the removal of the value set for the tModel.

 User Response: None.

CWUDXnnnns (Web Services JAXR) messages:

CWUDX0001E: Caught UDDIException on <UDDI API name>

Explanation: This is an Exception message. This message may be received in a

RegistryException thrown by any of the following methods:

v Any method which necessitates sending a request to the UDDI registry.

The JAXR provider caught a org.uddi4j.UDDIException while sending a request to the UDDI

registry.

User Response: The user should interrogate the cause UDDIException of the JAXRException for

more information.

CWUDX0002E: Caught TransportException sending request to registry

Explanation: This is an Exception message. This message may be received in a

RegistryException thrown by any of the following methods:

v Any method which necessitates sending a request to the UDDI registry.

The JAXR provider caught a org.uddi4j.TransportException while sending a request to the UDDI

registry.

User Response: The user should interrogate the cause TransportException of the JAXRException

for more information.

CWUDX0003E: AccessURI and TargetBinding are mutually exclusive

Explanation: This is an Exception message. This message may be received in an

InvalidRequestException thrown by any of the following methods:

v ServiceBinding.setAccessURI(String uri)

v ServiceBinding.setTargetBinding(ServiceBinding binding)

An attempt was made to set both the AccessURI and the TargetBinding of a ServiceBinding.

User Response: The user should set only one of AccessURI and TargetBinding.

CWUDX0004E: Source object of an Association must be an Organization

Explanation: This is an Exception message. This message may be received in an

UnexpectedObjectException thrown by the following method:

v Association.setSourceObject(RegistryObject srcObject)

Chapter 8. Developing WebSphere applications 1097

The object passed to the setSourceObject method was not an Organization.

User Response: The user should only pass Organization objects to the setSourceObject method.

CWUDX0005E: Source and target objects of an Association must be set in order to save

Explanation: This is an Exception message. This message may be received in an

InvalidRequestException thrown by any of the following methods:

v BusinessLifeCycleManager.confirmAssociation(Association assoc)

v BusinesslifeCycleManager.saveAssociations(Collection associations, boolean replace)

v LifeCycleManager.saveObjects(Collection objects) when objects are Associations

An attempt was made to save an Association that did not have both source and target objects set.

User Response: The user should only attempt to save Associations which have both source and

target objects set.

CWUDX0006E: Target object of an Association must be an Organization

Explanation: This is an Exception message. This message may be received in an

UnexpectedObjectException thrown by the following method:

v Association.setTargetObject(RegistryObject targetObject)

The object passed to the setTargetObject method was not an Organization.

User Response: The user should only pass Organization objects to the setTargetObject method.

CWUDX0007E: Format of associationKey is incorrect. Correct format is

<sourceObjectKey>:<targetObjectKey>:<associationType> : <associationKey>

Explanation: This is an Exception message. This message may be received in an

InvalidRequestException thrown by the following method:

v BusinessLifeCycleManager.deleteAssociations(Collection associationKeys)

The user passed an associationKey to the deleteAssociations method that did not have the correct

format.

User Response: The user should ensure that associationKeys passed to the deleteAssociations

method have the correct format.

CWUDX0008E: AssociationType Concept must come from the AssociationType enumberation, and

have value either HasChild , HasParent, RelatedTo or EquivalentTo

Explanation: This is an Exception message. This message may be received in an

InvalidRequestException thrown by any of the following methods:

v BusinessQueryManager.findAssociations(Collection findQualifiers, String sourceObjectId, String

targetObjectId, Collection associationTypes)

v BusinessQueryManager.findCallerAssociations(Collection findQualifiers, Boolean

confirmedByCaller, Boolean confirmedByOtherParty, Collection associationTypes)

v BusinessLifeCycleManager.confirmAssociation(Association assoc)

v BusinessLifeCycleManager.saveAssociations(Collection associations, boolean replace)

v LifeCycleManager.saveObjects(Collection objects) when objects are Associations

When finding Associations, the user passed a Concept in the associationTypes Collection that was

from the AssociationType enumeration, but did not have a value that is valid for UDDI. When

saving Associations, the user passed an Association whose associationType Concept was from the

AssociationType enumeration, but did not have a value that is valid for UDDI.

User Response: The user should only use Concepts for associationTypes that are from the

AssociationType enumeration and have value either HasChild, HasParent, RelatedTo or

EquivalentTo.

CWUDX0009E: AssocationType Concept must come from the AssociationType enumeration

Explanation: This is an Exception message. This message may be received in an

InvalidRequestException thrown by any of the following methods:

v BusinessQueryManager.findAssociations(Collection findQualifiers, String sourceObjectId, String

targetObjectId, Collection associationTypes)

v BusinessQueryManager.findCallerAssociations(Collection findQualifiers, Boolean

confirmedByCaller, Boolean confirmedByOtherParty, Collection associationTypes)

1098 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

v BusinessLifeCycleManager.confirmAssociation(Association assoc)

v BusinessLifeCycleManager.saveAssociations(Collection associations, boolean replace)

v LifeCycleManager.saveObjects(Collection objects) when objects are Associations

When finding Associations, the user passed a Concept that was not from the AssociationType

enumeration in the associationTypes Collection. When saving Associations, the user passed an

Association whose associationType Concept was not from the AssociationType enumeration.

User Response: The user should only use Concepts from the AssociationType enumeration for

associationTypes.

CWUDX0010E: Cannot create a ClassificationScheme from a taxonomy Concept

Explanation: This is an Exception message. This message may be received in an

InvalidRequestException thrown by the following method:

v LifeCycleManager.createClassificationScheme(Concept concept)

The user passed a taxonomy Concept to the createClassificationScheme method.

User Response: This method is provided to allow for Concepts returned by the

BusinessQueryManager.findConcepts call to be safely converted to ClassificationScheme. It is up

to the programmer to make sure that the Concept is indeed semantically a ClassificationScheme.

CWUDX0011E: Connection is closed

Explanation: This is an Exception message. This message may be received in an

InvalidRequestException thrown by any of the following methods:

v All methods of BusinessQueryManager and BusinessLifeCycleManager.

v The saveObjects and deleteObjects methods of LifeCycleManager.

v The saveObjects and deleteObjects methods of LifeCycleManager.

The user called a method that required a connection to the registry after they had closed the

Connection by calling the Connection.close() method.

User Response: The user should not call methods that require a connection to the registry after

the Connection has been closed.

CWUDX0012E: ConnectionFactory properties are not set

Explanation: This is an Exception message. This message may be received in an

InvalidRequestException thrown by the following method:

v ConnectionFactory.createConnection()

The createConnection() method was called before the properties had been set on the

ConnectionFactory.

User Response: Ensure that the ConnectionFactory properties have been set before attempting

to create a Connection.

CWUDX0013E: Could not create DocumentBuilder

Explanation: This is an Exception message. This message may be received in a JAXRException

thrown by the following method:

v RegistryService.makeRegistrySpecificRequest(String request)

The JAXR provider caught a javax.xml.parsers.ParserConfigurationException while attempting to

initialize the XML parser.

User Response: The user should interrogate the cause ParserConfigurationException of the

JAXRException for more information.

CWUDX0014E: Could not parse XML input stream

Explanation: This is an Exception message. This message may be received in a JAXRException

thrown by the following method:

v RegistryService.makeRegistrySpecificRequest(String request)

The JAXR provider caught a java.io.IOException while attempting to parse the XML request.

User Response: The user should interrogate the cause IOException of the JAXRException for

more information.

Chapter 8. Developing WebSphere applications 1099

CWUDX0015E: Could not serialize XML response

Explanation: This is an Exception message. This message may be received in a JAXRException

thrown by the following method:

v RegistryService.makeRegistrySpecificRequest(String request)

The JAXR provider caught a java.io.IOException while attempting to serialize the XML response.

User Response: The user should interrogate the cause IOException of the JAXRException for

more information.

CWUDX0016E: Interface name of object to create not specified

Explanation: This is an Exception message. This message may be received in an

InvalidRequestException thrown by the following method:

v LifeCycleManager.createObject(String interfaceName)

The user passed a null interfaceName to the createObject method.

User Response: The user should ensure they only pass a valid interfaceName to the

createObject method.

CWUDX0017W: Enumeration data file <filename> contains an invalid line: <line>

Explanation: This warning message will go to System.err if the JAXR provider encounters an

invalid line in an enumeration data file while the Connection is initialized. The JAXR provider will

ignore the invalid line. Otherwise the JAXR provider will be unaffected.

 User Response: The user should ensure that the enumeration data file is valid in order to use all

members of the enumeration. The correct format of each line is <enumeration name><separator

char><concept value>.

CWUDX0018E: Could not read enumeration data file: <filename>

Explanation: This is an Exception message. This message may be received in a JAXRException

thrown by the following method:

v ConnectionFactory.createConnection(

The JAXR provider caught a java.io.IOException while attempting to read an enumeration data file.

User Response: The user should interrogate the cause IOException of the JAXRException for

more information.

CWUDX0019W: enumerationConfig.properties file contains an invalid property value: <property

value>

Explanation: This warning message will go to System.err if the JAXR provider encounters an

invalid property value in the enumerationConfig.properties file while the Connection is initializsed.

The JAXR provider will ignore the invalid property, and hence ignore the corresponding

enumeration. Otherwise the JAXR provider will be unaffected.

 User Response: The user should ensure that the enumerationConfig.properties file is valid in

order to use all enumerations. The correct format of each line is <enumeration ID>=<enumeration

name>,<data filename>,<separator char>

CWUDX0020E: An IOException occurred while attempting to read the enumerationConfig.properties

file Explanation: This is an Exception message. This message may be received in a JAXRException

thrown by the following method:

v ConnectionFactory.createConnection()

The JAXR provider caught a java.io.IOException while attempting to read the

enumerationConfig.properties file.

User Response: The user should interrogate the cause IOException of the JAXRException for

more information.

CWUDX0021E: An IOException occurred while attempting to read the taxonomyConfig.properties

file Explanation: This is an Exception message. This message may be received in a JAXRException

thrown by the following method:

v ConnectionFactory.createConnection()

1100 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

The JAXR provider caught a java.io.IOException while attempting to read the

taxonomyConfig.properties file.

User Response: The user should interrogate the cause IOException of the JAXRException for

more information.

CWUDX0022E: External URI is malformed: <External URI>

Explanation: This is an Exception message. This message may be received in an

InvalidRequestException thrown by the following method:

v ExternalLink.setExternalURI(String uri)

A malformed URI was passed to the setExternalURI method when URI validation has set to true

by passing true to the ExternalLink.setValidateURI(boolean validate) method.

User Response: Either the user should ensure that the URI is well formed, or URI validation

should be set to false.

CWUDX0023E: External URI is not accessible: <External URI>

Explanation: This is an Exception message. This message may be received in an

InvalidRequestException thrown by the following method:

v ExternalLink.setExternalURI(String uri)

An inaccessible URI was passed to the setExternalURI method when URI validation has set to

true by passing true to the ExternalLink.setValidateURI(boolean validate) method.

User Response: Either the user should ensure that the URI is accessible, or URI validation

should be set to false.

CWUDX0024E: Invalid interface name: <interface name>

Explanation: This is an Exception message. This message may be received in an

InvalidRequestException thrown by the following method:

v LifeCycleManager.createObject(String interfaceName)

The user passed an invalid interface name to the createObject method.

User Response: The user should only pass valid interface names to the createObject method.

Valid interface names are public final static String fields of the LifeCycleManager class.

CWUDX0025E: Cannot change the ClassificationScheme of an internal Classification

Explanation: This is an Exception message. This message may be received in an

InvalidRequestException thrown by the following method:

v Classification.setClassificationScheme(ClassificationScheme classificationScheme)

The user called the setClassificationScheme method of an internal Classification.

User Response: The user should not attempt to modify the ClassificationScheme of an internal

Classification directly. The ClassificationScheme of an internal Classification is determined by the

Classification’s Concept and cannot be modified independently.

CWUDX0026E: Cannot change the name of an internal Classification

Explanation: This is an Exception message. This message may be received in an

InvalidRequestException thrown by the following method:

v Classification.setName(InternationalString name

The user called the setName method of an internal Classification.

User Response: The user should not attempt to modify the name of an internal Classification

directly. The name of an internal Classification is determined by the Classification’s Concept and

cannot be modified independently.

CWUDX0027E: Cannot change the value of an internal Classification

Explanation: This is an Exception message. This message may be received in an

InvalidRequestException thrown by the following method:

v Classification.setValue(String value)

The user called the setValue method of an internal Classification.

Chapter 8. Developing WebSphere applications 1101

User Response: The user should not attempt to modify the value of an internal Classification

directly. The value of an internal Classification is determined by the Classification’s Concept and

cannot be modified independently.

CWUDX0028E: The Concept of an internal Classification must have a parent ClassificationScheme

Explanation: This is an Exception message. This message may be received in an

InvalidRequestException thrown by the following method:

v Classification.setConcept(Concept concept)

The user passed a non-null Concept without a parent ClassificationScheme to the setConcept

method.

User Response: Setting a Classification’s Concept causes a Classification to become internal.

The Classification’s ClassificationScheme is then set to the parent ClassificationScheme of the

Concept. If the Concept has no parent ClassificationScheme (that is, it is not a taxonomy

Concept), that is invalid. The user should therefore only pass taxonomy Concepts to the

setConcept method.

CWUDX0029E: Taxonomy Concepts cannot be saved as UDDI tModels

Explanation: This is an Exception message. This message may be received in an

InvalidRequestException thrown by any of the following methods:

v BusinessLifeCycleManager.saveConcepts(Collection concepts)

v LifeCycleManager.saveObjects(Collection objects) when the objects are Concepts.

The user attempted to save a taxonomy Concept as a UDDI tModel in the registry.

User Response: Taxonomy Concepts cannot be saved as tModels in a UDDI registry. They are

used to classify objects saved in the registry but cannot be saved independently. The user should

not attempt to save taxonomy Concepts in the registry.

CWUDX0030E: The parent RegistryObject of a taxonomy Concept must be either a Concept or a

ClassificationScheme

Explanation: This is an Exception message. This message may be received in an

UnexpectedObjectException thrown by any of the following methods:

v LifeCycleManager.createConcept(RegistryObject parent, InternationalString name, String value)

v LifeCycleManager.createConcept(RegistryObject parent, String name, String value)

The user attempted to create a taxonomy Concept whose parent was not a Concept or a

ClassificationScheme.

User Response: The parent of a taxonomy Concept can only be another Concept or a

ClassificationScheme, so the user should only attempt to set one of these as the parent of a

taxonomy Concept.

CWUDX0031E: Concept does not have a parent, therefore does not have a path

Explanation: This is an Exception message. This message may be received in an

InvalidRequestException thrown by the following method:

v Concept.getPath()

The user called the getPath() method on a Concept that was not a taxonomy Concept. Only

taxonomy Concepts have parents.

User Response: Only taxonomy Concepts have parents, therefore only taxonomy Concepts have

paths. The user should not attempt to call the getPath() method on a Concept that is not a

taxonomy Concept.

CWUDX0032E: Concept does not have a value, therefore does not have a path

Explanation: This is an Exception message. This message may be received in an

InvalidRequestException thrown by the following method:

v Concept.getPath()

The user called the getPath() method on a Concept that did not have a value.

User Response: A Concept must have a value in order to have a path, so the user should not

attempt to call the getPath() method on Concepts that do not have a value.

1102 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

CWUDX0033E: Concept’s parent ClassificationScheme does not have an ID, therefore the Concept

does not have a path

Explanation: This is an Exception message. This message may be received in an

InvalidRequestException thrown by the following method:

v Concept.getPath()

The user called the getPath() method on a Concept whose ClassificationScheme did not have an

ID.

User Response: A Concept’s ClassificationScheme must have an ID in order for the Concept to

have a path. The user should not attempt to call the getPath() method on a Concept whose

ClassificationScheme does not have an ID.

CWUDX0034E: The ConnectionFactory property javax.xml.registry.uddi.maxRows does not contain

a parsable integer:<javax.xml.registry.uddi.maxrows property value>

Explanation: This is an Exception message. This message may be received in an

InvalidRequestException thrown by the following method:

v ConnectionFactory.createConnection()

The user called the createConnection method when the ConnectionFactory property

javax.xml.registry.uddi.maxRows did not contain a parsable integer.

User Response: The user should ensure that if the javax.xml.registry.uddi.maxRows

ConnectionFactory property is set that it contains a parsable integer.

CWUDX0035E: Invalid UDDI XML String

Explanation: This is an Exception message. This message may be received in a JAXRException

thrown by the following method:

v RegistryService.makeRegistrySpecificRequest(String xmlString)

The String passed to the makeRegistrySpecificRequest method was not valid XML.

User Response: The user should ensure that the String passed to the

makeRegistrySpecificRequest method is valid XML.

CWUDX0036E: The ConnectionFactory property javax.xml.registry.lifeCycleManagerURL specifies a

malformed URL

Explanation: This is an Exception message. This message may be received in an

InvalidRequestException thrown by the following method:

v ConnectionFactory.createConnection()

The user called the createConnection method when the ConnectionFactory property

javax.xml.registry.lifeCycleManagerURL contained a malformed URL.

User Response: The user should ensure that the javax.xml.registry.lifeCycleManagerURL

ConnectionFactory property contains a well formed URL.

CWUDX0037E: The ConnectionFactory property javax.xml.registry.queryManagerURL specifies a

malformed URL

Explanation: This is an Exception message. This message may be received in an

InvalidRequestException thrown by the following method:

v ConnectionFactory.createConnection()

The user called the createConnection method when the ConnectionFactory property

javax.xml.registry.queryManagerURL contained a malformed URL.

User Response: The user should ensure that the javax.xml.registry.queryManagerURL

ConnectionFactory property contains a well formed URL.

CWUDX0038E: Multiple matches on find ClassificationScheme by name

Explanation: This is an Exception message. This message may be received in an

InvalidRequestException thrown by the following method:

v BusinessQueryManager.findClassificationSchemeByName(Collection findQualifiers, String

namePattern)

More than one ClassificationScheme was found that matched the search criteria.

Chapter 8. Developing WebSphere applications 1103

User Response: The user should narrow their search criteria to find only one

ClassificationScheme.

CWUDX0039E: Invalid objectType: <object type>

Explanation: This is an Exception message. This message may be received in an

InvalidRequestException thrown by any of the following methods:

v LifeCycleManager.deleteObjects(Collection keys, String objectType)

v QueryManager.getRegistryObjects(String objectType)

v QueryManager.getRegistryObject(String id, String objectType)

v QueryManager.getRegistryObjects(Collection objectKeys, String objectType)

The user passed an invalid objectType to one of the above methods.

User Response: The user should ensure they pass a valid objectType to the above methods. The

valid objectTypes for these methods are:

 LifeCycleManager.CLASSIFICATION_SCHEME

 LifeCycleManager.CONCEPT

 LifeCycleManager.ORGANIZATION

 LifeCycleManager.SERVICE

 LifeCycleManager.SERVICE_BINDING

The deletObjects method also accepts an objectType of LifeCycleManager.ASSOCIATION.

CWUDX0040E: Cannot save objects of type: <object class>

Explanation: This is an Exception message. This message may be received in an

UnexpectedObjectException thrown by the following method:

v LifeCyclemanager.saveObjects(Collection objects)

An object was passed to the saveObjects method of a type that cannot be saved directly in the

registry.

User Response: The user should ensure that objects passed to the saveObjects method are of a

valid type. Valid types are Association, ClassificationScheme, Concept, Organization, Service and

ServiceBinding.

CWUDX0041E: RegistryObject is a ClassificationScheme not a Concept: <RegistryObject ID>

Explanation: This is an Exception message. This message may be received in a FindException

thrown by any of the following methods:

v QueryManager.getRegistryObject(String id, String objectType)

v QueryManager.getRegistryObjects(Collection objectKeys, String objectType)

An objectType of LifeCycleManager.CONCEPT was passed to one of the above methods, but the

id or one of the objectKeys was that of a ClassificationScheme.

User Response: The user should ensure that they specify the correct objectType corresponding

to the object keys.

CWUDX0042E: RegistryObject is a Concept not a ClassificationScheme: <RegistryObject ID>

Explanation: This is an Exception message. This message may be received in a FindException

thrown by any of the following methods:

v QueryManager.getRegistryObject(String id, String objectType)

v QueryManager.getRegistryObjects(Collection objectKeys, String objectType)

An objectType of LifeCycleManager.CLASSIFICATIONSCHEME was passed to one of the above

methods, but the id or one of the objectKeys was that of a Concept.

User Response: The user should ensure that they specify the correct objectType corresponding

to the object keys.

CWUDX0043E: RequestID not found: <RequestID>

Explanation: This is an Exception message. This message may be received in an

InvalidRequestException thrown by the following method:

v RegistryService.getBulkResponse(String requestId

The requestId specified was not found.

1104 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

User Response: The user should only pass valid requestIds to the getBulkResponse method.

Note that once the getBulkResponse method has been called once for a particular requestId, that

requestId is removed from the cache and subsequent calls to getBulkResponse passing that

requestId will result in an InvalidRequestException.

CWUDX0044E: <concept path> is not a valid path of a concept in a defined internal taxonomy

Explanation: This message will go to System.err when a Connection is created if the

javax.xml.registry.semanticEquivalences ConnectionFactory property defines a semantic

equivalence between a Concept in the PostalAddressAttributes enumeration and a Concept which

has not been defined in any internal taxonomy.

 User Response: The user should ensure that the Concept paths used in the

javax.xml.registry.semanticEquivalences ConnectionFactory property have been defined in a

internal taxonomy.

CWUDX0045W: Semantic equivalence pair does not have exactly 2 elements: <keyPair>

Explanation: This message will go to System.err when a Connection is created if the

javax.xml.registry.semanticEquivalences ConnectionFactory contains a keyPair which contains

more than two elements.

 User Response: The user should ensure that the javax.xml.registry.semanticEquivalences

ConnectionFactory property has the correct format, as defined in the JAXR specification.

CWUDX0046E: Semantic equivalence pair does not contain a key in the postalAddressAttributes

enumeration: <keyPair>

Explanation: This message will go to System.err when a Connection is created if the

javax.xml.registry.semanticEquivalences ConnectionFactory contains a keyPair which does not

contain the path of a Concept in the PostalAddressAttributes enumeration. Semantic equivalences

for a UDDI JAXR providers are only allowed for Concepts in the PostalAddressAttributes

enumeration.

 User Response: The user should only attempt to define semantic equivalences for Concepts in

the PostalAddressAttributes enumeration.

CWUDX0047E: Invalid Slot name: <Slot name>

Explanation: This is an Exception message. This message may be received in an

InvalidRequestException thrown by any of the following methods:

v All methods of the ExtensibleObject interface.

The user passed an invalid slot name to one of the methods of the ExtensibleObject interface.

User Response: The user should ensure that the slot name is valid for the particular instance of

ExtensibleObject.

CWUDX0048E: A Slot instance cannot have duplicate values

Explanation: This is an Exception message. This message may be received in an

InvalidRequestException thrown by the following method:

v Slot.setValues(Collection values)

The user passed a collection of values to the setValues method that contained duplicate values.

User Response: The user should pass only a collection of unique values to setValues method.

CWUDX0049E: A sortCode Slot must have only 1 value

Explanation: This is an Exception message. This message may be received in an

InvalidRequestException thrown by the following method:

v PostalAddress.addSlot(Slot slot)

The user passed a Slot with name Slot.SORT_CODE_SLOT and multiple values to the addSlot

method.

User Response: When adding a Slot with name Slot.SORT_CODE_SLOT to a PostalAddress, the

user should ensure that it only has 1 value.

CWUDX0050E: A specificationLink can only have one ExternalLink

Explanation: This is an Exception message. This message may be received in an

InvalidRequestException thrown by any of the following methods:

Chapter 8. Developing WebSphere applications 1105

v SpecificationLink.addExternalLink(ExternalLink externalLink)

v SpecificationLink.addExternalLinks(Collection externalLinks)

v SpecificationLink.setExternalLinks(Collection externalLinks)

The user attempted to give a SpecificationLink more than one ExternalLink. A SpecificationLink

may only have one ExternalLink.

User Response: The user should give a SpecificationLink a maximum of one ExternalLink.

CWUDX0051E: A SpecificationLink can only have one UsageParameter

Explanation: This is an Exception message. This message may be received in an

InvalidRequestException thrown by the following method:

v SpecificationLink.setUsageParameters(Collection usageParameters)

The user attempted to give the SpecificationLink more than one usage parameter. A

SpecificationLink can only have one usage parameter.

User Response: The user should give a SpecificationLink a maximum of one usage parameter.

CWUDX0052E: SpecificationObject must be a Concept with no parent

Explanation: This is an Exception message. This message may be received in an

InvalidRequestException thrown by any of the following methods:

v SpecificationLink.setSpecificationObject(RegistryObject obj)

The user attempted to set a Concept with a parent (that is, a taxonomy Concept) as the

specification object of the SpecificationLink.

User Response: The user must set a specification Concept as the specification object of a

SpecificationLink.

CWUDX0053E: SpecificationObject must be a Concept

Explanation: This is an Exception message. This message may be received in an

UnexpectedObjectException thrown by the following method:

v SpecificationLink.setSpecificationObject(RegistryObject obj)

The user attempted to set a RegistryObject that was not a Concept as the specification object of a

SpecificationLink.

User Response: The user must set a specification Concept as the specification object of a

SpecificationLink.

CWUDX0054E: Invalid escape sequence found during SQL-92 LIKE Processing: <escape

sequence>

Explanation: This is an Exception message. This message may be received in a JAXRException

thrown by any of the following methods:

v BusinessQueryManager.findClassificationSchemeByName(Collection findQualifiers, String

namePattern)

v BusinessQueryManager.findClassificationSchemes(Collection findQualifiers, Collection

namePatterns, Collection classifications, Collection externalLinks)

The user passed a namePattern to one of the above methods which contained an invalid escape

sequence.

User Response: The user should ensure that namePatterns do not contain invalid escape

sequences.

CWUDX0055E: Invalid escape sequence found terminating pattern during SQL-92 LIKE processing:

<escape sequence>

Explanation: This is an Exception message. This message may be received in a JAXRException

thrown by any of the following methods:

v BusinessQueryManager.findClassificationSchemeByName(Collection findQualifiers, String

namePattern)

v BusinessQueryManager.findClassificationSchemes(Collection findQualifiers, Collection

namePatterns, Collection classifications, Collection externalLinks)

1106 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

The user passed a namePattern to one of the above methods which contained an invalid escape

sequence terminating the pattern.

User Response: The user should ensure that namePatterns do not contain invalid escape

sequences.

CWUDX0056E: The System property http.proxyPort does not contain a parsable integer: <Value of

http.proxyPort property>

Explanation: This is an Exception message. This message may be received in a

java.lang.NumberFormatException thrown by the following method:

v ConnectionFactory.createConnection()

The user called the createConnection() method when the System property http.proxyPort

contained a String that was not parsable as an integer.

User Response: The user should ensure that if the System property http.proxyPort is set it

contains a parsable integer.

CWUDX0057W: Taxonomy data file <filename> contains an invalid line: <invalid line>

Explanation: This message will go to System.err when a Connection is created if a taxonomy

data file contains an invalid line.

 User Response: The format of each line is <taxonomy ID><Concept name><Concept

value><Concept parent>

CWUDX0058W: Warning: Unable to locate parentConcept named <parent Concept name> for

concept named <Concept name> in taxonomy datafile <filename>

Explanation: This message will go to System.err when a Connection is created if a taxonomy

data file contains an line for a Concept whose parent cannot be located in that file.

 User Response: The user should ensure that a parent exists for each Concept in the taxonomy

data file.

CWUDX0059E: Could not read taxonomy data file: <filename>

Explanation: This is an Exception message. This message may be received in a JAXRException

thrown by any of the following methods:

v ConnectionFactory.createConnection()

The JAXR provider caught a java.io.IOException while attempting to read the taxonomy data file.

User Response: The user should interrogate the cause IOException of the JAXRException for

more information.

CWUDX0060W: taxonomyConfig.properties file contains an invalid property value: <property

value>

Explanation: This warning message will go to System.err if the JAXR provider encounters an

invalid property value in the taxonomyConfig.properties file while the Connection is initialized. The

JAXR provider will ignore the invalid property, and hence ignore the corresponding taxonomy.

Otherwise the JAXR provider will be unaffected.

 User Response: The user should ensure that the taxonomyConfig.properties file is valid in order

to use all taxonomies. The correct format of each line is <taxonomy ID>=<tModelKey>,<data

filename>,<separator char>.

CWUDX0061E: Expecting object of type: <objectType String>. Got object of type: <object class>

Explanation: This is an Exception message. This message may be received in an

UnexpectedObjectException thrown by the following method:

v All methods which accept objects of ambiguous type.

The user passed an object to a method that was not expecting an object of that type.

User Response: The user should only pass objects of the appropriate type to JAXR methods.

CWUDX0062E: Expecting object of type String or LocalizedString. Got object of type: <object

class>

Explanation: This is an Exception message. This message may be received in an

UnexpectedObjectException thrown by any of the following methods:

v All query methods which accept a Collection of namePattern objects.

Chapter 8. Developing WebSphere applications 1107

The user passed an object which was not a String or a LocalizedString as a namePattern to a

query method.

User Response: The user should only use Strings of LocalizedStrings as namePattern objects.

CWUDX0063E: The ConnectionFactory property javax.xml.registry.queryManagerURL is not

specified

Explanation: This is an Exception message. This message may be received in an

InvalidRequestException thrown by the following method:

v ConnectionFactory.createConnection(

The user attempted to create a Connection without specifying the

javax.xml.registry.queryManagerURL ConnectionFactory property.

User Response: The user must specify the javax.xml.registry.queryManagerURL

ConnectionFactory property before attempting to create a Connection.

CWUDX0064E: Unsupported value for the ConnectionFactory property

Explanation: This is an Exception message. This message may be received in an

InvalidRequestException thrown bythe following method:

v ConnectionFactory.createConnection()

The user attempted to create a Connection with an invalid value of the

javax.xml.registry.security.authenticationMethod ConnectionFactory property.

User Response: The user should only use a valid vale for this property. Valid values are

UDDI_GET_AUTHTOKEN and HTTP_BASIC.

UDDI Registry samples

The UDDI samples, and documentation on how to use them, are available through the Web Services

UDDI samples link on the Samples Central page of the IBM WebSphere Developer Domain Web site.

Removing and reinstalling UDDI Registry

An IBM WebSphere UDDI Registry node consists of a WebSphere application, a store of data (using a

relational database management system - RDBMS) referred to as the UDDI database and a means to

connect the application to the data (a data source and related elements). All the data relating to UDDI is

stored within the UDDI database and therefore exits irrespective of the UDDI application.

With these facts in mind, consider the following options:

v v To remove a node from a WebSphere Application Server the database need not be deleted. Only the

UDDI application and any associated resources such as the data source used (and J2C Authentication

Data if used) need to be removed as the data in the UDDI database is separate from the UDDI

application.

v v It is not necessary to remove the UDDI application to start a new UDDI Registry node. Instead, a new,

replacement node can be created by changing the datasource which the UDDI application uses to

access new UDDI database.

Remove the UDDI application if you no longer want a UDDI facility on a particular WebSphere Application

Server (the UDDI Registry node may subsequently be move to a different WebSphere Application Server).

Reinstall the UDDI application if you wish to continue to provide the UDDI facility on a particular

WebSphere Application Server.

Reinstall the UDDI application if you wish to continue to provide the UDDI facility on a particular

WebSphere Application Server.

To reinstall a UDDI Registry node, see Reinstalling the UDDI application, or to remove a UDDI application

or to remove a UDDI Registry node, see ″Removing a UDDI Node″ in the information center.

1108 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

http://www.ibm.com/websphere/developer/library/samples/AppServer.html

Removing a UDDI Registry node

v Remove the UDDI Registry application from an application server.

You might want to do this in order to reinstall the application because it has become corrupted for some

reason, or to apply service. See also the topic on Reinstalling the UDDI Registry application.

v Delete the UDDI Registry database. You might want to do this in order to use a different database

product as the persistence store for your UDDI data, to delete all your UDDI Registry data in order to

publish fresh data (for example, if you have completed a test cycle), or to cause the UDDI Registry

node to re-initialize with new UDDI property settings (for example, to move from a default UDDI node to

a customized UDDI node). Note that deleting a UDDI Registry database will cause all UDDI data for

that UDDI Registry to be lost.

v Completely remove a UDDI Registry node from an application server. You might want to do this in order

to move the UDDI Registry to a different application server, or to remove a UDDI Registry that has been

used for testing.

Depending on what you wish to achieve, complete one of the following steps:

1. Removing a UDDI Registry application

To remove the UDDI application from an application server, run the wsadmin script uddiRemove.jacl,

which was installed into the WAS_HOME\bin directory when you installed WebSphere

At a command prompt enter:

wsadmin -f uddiRemove.jacl

 nodename

 servername

 [default]

 > removeuddi.log

where

v nodename and servername are the name of the WebSphere node and application server in which

the UDDI application is deployed (these are the names that you specified when you ran

uddiDeploy.jacl to install the UDDI application).

v [default] is optional. Specifying default will remove the UDDI Cloudscape datasource but not the

UDDI Cloudscape database. This is only applicable if default was used when the uddiDeploy.jacl

script was run to deploy the UDDI Registry, and is only applicable in a standalone application server

environment.

v by default output will go to the screen, but, optionally, you can specify ’> removeuddi.log’ to direct

the output to a log file (where removeuddi.log can be any log name of your choice).

For example:

wsadmin -f uddiRemove.jacl MyNode server1

will remove the UDDI application from server server1 running in node MyNode, and will send any

messages to the screen.

Note: If running in a Network Deployment configuration, the default option cannot be used, and the

command must be executed against the deployment manager profile.

2. Deleting a UDDI Registry database

Note that this will cause all UDDI data in that UDDI Registry to be destroyed.

v For DB2, use the database facilities to delete the UDDI database.

v For Oracle, delete the schemas IBMUDI30 and IBMUDS30.

v For Cloudscape, delete the directory tree containing the UDDI database. By default, this will be

located in WAS_HOME:/profiles/profile_name/databases/com.ibm.uddi/UDDI30.

3. Completely Remove a UDDI Registry node

To completely remove a UDDI Registry node from an application server, you need to remove the UDDI

registry application and database, and also the resources that were used to reference the UDDI

Registry database.

a. Run uddiRemove.jacl as described above, to remove the UDDI Registry application.

Chapter 8. Developing WebSphere applications 1109

b. Delete the UDDI Registry database, as described above.

c. This last step is only needed if you ran uddiRemove without the default option (use of the default

option will perform this step for you, but is only valid if the UDDI Registry was previously deployed

using uddiDeploy.jacl with the default option).

v Delete the UDDI datasource that references the UDDI Registry database (this will have been

created when the UDDI Registry was set up), any UDDI JDBC provider that was created (if you

did not reuse an existing JDBC provider), and any J2C Authentication Data Entry that was

created.

Reinstalling the UDDI Registry application

Perform this task if you want to continue providing UDDI services with your existing UDDI database but

require that the UDDI application code be changed.

If you wish to reinstall the UDDI application, follow the instructions below:

1. 1. Execute the following command

wsadmin [-conntype none] –f uddiDeploy.jacl <node> <server>

which will uninstall the UDDI application and install the uddi.ear located in

WAS_HOME/installableApps, resulting in a reinstalled UDDI application.

Note: No JDBC Providers, Data Sources or J2C Application data will be created, changed or deleted

during this process.

Configuring the UDDI Registry Application

The UDDI Registry is supplied as a J2EE application file, uddi.ear.

You can configure the following aspects of the UDDI Registry:

v Configuring security roles

v Multiple language encoding support in UDDI

v Customizing the UDDI User Console (GUI)

v Configuring SOAP API and GUI services

v Configuring WebSphere to use HTTPS and SSL

Configuring UDDI Security Roles

Each interface to the UDDI Registry (either through Version 1 and 2 SOAP, Version 3 SOAP, EJB or the

GUI) is supplied with two roles:

Publish role(s) and custody transfer

mapped to AllAuthenticatedUsers. By default, this is configured to use SSL (that is HTTPS), but

this only applies when WebSphere security is enabled.

Inquiry role

mapped to Everyone. By default, this is configured to use HTTP (that is not SSL).

In addition UDDI Version 3 SOAP has an additional role for version 3 SOAP Custody Transfer, which is

mapped in the same way as the Publish Role.

The security role mappings can be altered by users through the Administration Console.

Authentication uses the standard WebSphere facilities and there is no separate registration function for the

Registry. If WebSphere security is enabled, you will need to supply your WebSphere userid and password

for Publish functions (unless you have changed the supplied Publish role).

1110 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

You will need to set up WebSphere security configuration to be used by UDDI. It is expected that, for

development use, security will be disabled and security will be enabled for production environments.

The V3 SOAP services also support the use of the V3 Security API set get_authToken and

discard_authToken, but its use is optional, and defined by a combination of UDDI Policy and Security

Roles.

v If security is enabled, and the service’s Role is set to AllAuthenticated Users, WebSphere security takes

priority over UDDI authentication, but if the Publish (or Custody Transfer) Role is mapped to Everyone

and policy is set to require Authorization for publish (or Custody Transfer) (see WebSphere

Administration console (UDDI => UDDI Nodes => UDDI NodeID => Policy Groups => APIs => General

Properties)) then an authToken is required, and the user and password supplied in get_authToken will

be checked by WebSphere.

v If security is disabled, Role Mapping does not apply, and the use of the V3 Security API set is defined

by policy. If the ’Use authInfo if provided’ option is checked (see WebSphere Administrative console

(UDDI => UDDI Nodes => General Properties)) the userid supplied in get_authToken is used (but the

password will not be checked). If ’Use authInfo if provided’ is not checked the default user, set to

UNAUTHENTICATED by default (but configurable, see WebSphere Administrative console (UDDI =>

UDDI Nodes => General Properties => Default user ID)) is used.

The V1/2 SOAP interface also supports the UDDI API for get_authToken and discard_authToken API but

use of this is optional.

v If security is disabled and get_authToken is not called, the default user, UNAUTHENTICATED, is used.

v If security is disabled and get_authToken is called, the specified userid is used (but the password is not

checked).

v If WebSphere security is enabled, it takes priority over UDDI authentication, but if the Publish role is

mapped to Everyone, get_authToken must be used and the userid and password will be checked by

WebSphere.

The Security Roles provided with the UDDI Registry are as follows:

v GUI_Publish_User

v GUI_Inquiry_User

v SOAP_Publish_User

v SOAP_Inquiry_user

v EJB_Inquiry_Role

v EJB_Publish_Role

v V3 SOAP_Inquiry_User_Role

v V3 SOAP_Publish_User_Role

v V3 SOAP_CustodyTransfer_User_Role

v V3 SOAP_Security_User_Role

Multiple language encoding support in UDDI

UDDI API

UDDI Version 3 supports both UTF-8 and UTF-16 encoding. Internally UTF-16 characters are stored as

UTF-8. This is transparent to the user application.

UDDI User Console

The UDDI user console only supports UTF-8 encoding. To enable this, you must configure the application

server into which the UDDI Registry application is installed with UTF-8 encoding enabled. To do this, refer

to ″Configuring application servers for UTF-8 encoding″ elsewhere in the WebSphere Information Center.

Chapter 8. Developing WebSphere applications 1111

Customizing the UDDI User Console (GUI)

The look and feel of the UDDI console is determined by the styles defined in the .css files which are

located in the /v3gui.war/theme directory of the installed UDDI Registry application directory. The UDDI

Registry application directory will be one of the following, depending on where you have installed the UDDI

Registry:

v If you have installed the UDDI Registry into an application server within a deployment manager cell, the

directory is

WAS_HOME/profiles/installedApps/<currentcell>/UDDIRegistry.<nodename>.<servername>.ear/v3gui.war

v If you have installed the UDDI Registry into a single application server which is not part of a deployment

manager cell, the directory is <WAS_HOME>\profiles\<profile

name>\installedApps\<node_name>\UDDIRegistry.<nodename>.<servername>.ear\v3gui.war under the

installedApps directory of the WebSphere Application Server in which you have installed the UDDI

registry application as shown in the example below.

Style class definitions in these files can be edited to alter the overall theme of the user console, including

font attributes, layout and colors.

Configuring SOAP API and GUI service

Configuring V1/V2 SOAP API services

You can configure the following Version 1 and Version 2 SOAP interface properties:

v defaultPoolSize - the number of SOAP parsers with which to initialize the parser pool for the SOAP

interface. You can set this independently for the Publish (uddipublish) and Inquiry (uddi) APIs. For

example, if you expect more inquiries than publish requests through the SOAP interface, you can set a

larger pool size for the Inquiry API. The default initial size for both APIs is 10.

v Whether the API is to be secure (accessed using HTTPS) or insecure (accessed using HTTP). The

default for Publish is to use HTTPS and Inquiry to use HTTP.

To configure these properties after the UDDI application has been installed:

v Edit the active deployment descriptor (web.xml) for the V1/2 SOAP module (soap.war) . This file is

located in the soap.war\WEB-INF subdirectory of the saved configuration data for the deployed uddi.ear

application. For example:

 WAS_HOME\AppServer\profiles\<hostname>Profile01\config\cells\

 <hostname>Node01Cell\applications\UDDI V3 Registry\soap.war\WEB-INF\web.xml)

v To modify defaultPoolSize for V1/2 Publish modify the ’param-value‘ element in the servlet with

’servlet-name‘ = uddipublish

v To modify defaultPoolSize for V1/2 Inquiry modify the ’param-value‘ element in the ’servlet‘ with

’servlet-name‘ = uddi

v To modify the user data constraint transport guarantee for V1/2 publish which determines whether the

Publish service is to be confidential (accessed using HTTPS) or insecure (using HTTP) find the

’security-constraint‘ with id = ’UDDIPublishTransportConstraint‘ and set its ’user-data-constraint‘

’transport-guarantee‘ to CONFIDENTIAL or NONE

v Stop and restart the application server for the changes to take effect

Configuring V3 SOAP API services

You can configure the following Version 3 SOAP interface properties:

v Whether the Publish, Custody Transfer, Security and Inquiry API services are to be secure (accessed

using HTTPS) or insecure (accessed using HTTP). The default for Publish, CustodyTransfer and

Security APIs is to use HTTPS and Inquiry to use HTTP

To configure these properties after the UDDI application has been installed:

1112 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

v v Edit the active deployment descriptor (web.xml) for the v3 SOAP module (v3soap.war) . This file is

located in the v3soap.war\WEB-INF subdirectory of the saved configuration data for the deployed

uddi.ear application. For example:

 WAS_HOME\AppServer\profiles\<hostname>Profile01\config\cells\

 <hostname>Node01Cell\applications\UDDI V3 Registry\v3soap.war\WEB-INF\web.xml)

v To modify the user data constraint transport guarantee for V3 publish which determines whether the V3

Publish service is to be confidential (accessed using HTTPS) or insecure (using HTTP) find the

’security-constraint‘ with ’display-name‘ = ’AxisServlet Publish Resource Collection‘ and set its

’user-data-constraint‘ ’transport-guarantee‘ to CONFIDENTIAL or NONE

v To modify the user data constraint transport guarantee for V3 custody transfer which determines

whether the V3 Custody Transfer service is to be confidential (accessed using HTTPS) or insecure (via

HTTP) find the ’security-constraint‘ with ’display-name‘ = ’AxisServlet CustodyTransfer Resource

Collection‘ and set its ’user-data-constraint‘ ’transport-guarantee‘ to CONFIDENTIAL or NONE

v v To modify the user data constraint transport guarantee for V3 security which determines whether the

V3 Security service is to be confidential (accessed using HTTPS) or insecure (via HTTP) find the

’security-constraint‘ with ’display-name‘ = ’AxisServlet Security Resource Collection‘ and set its

’user-data-constraint‘ ’transport-guarantee‘ to CONFIDENTIAL or NONE

v To modify the user data constraint transport guarantee for V3 inquiry which determines whether the V3

Inquiry service is to be confidential (accessed using HTTPS) or insecure (via HTTP) find the

’security-constraint‘ with ’display-name‘ = ’AxisServlet Inquiry Resource Collection‘ and set its

’user-data-constraint‘ ’transport-guarantee‘ to CONFIDENTIAL or NONE

v Stop and restart the application server for the changes to take effect.

Configuring V3 GUI services

You can configure the following Version 3 GUI properties:

v Whether the Publish and Inquiry API services are to be secure (accessed using HTTPS) or insecure

(accessed using HTTP). The default for Publish, is to use HTTPS and Inquiry to use HTTP

To configure these properties after the UDDI application has been installed:

v Edit the active deployment descriptor (web.xml) for the V3 GUI module (v3gui.war) . This file is located

in the v3gui.war\WEB-INF subdirectory of the saved configuration data for the deployed uddi.ear

application. For example:

 WAS_HOME\AppServer\profiles\<hostname>Profile01\config\cells\

 <hostname>Node01Cell\applications\UDDI V3 Registry\v3gui.war\WEB-INF\web.xml)

v To modify the user data constraint transport guarantee for V3 publish which determines whether the V3

Publish service is to be confidential (accessed using HTTPS) or insecure (via HTTP) find the

’security-constraint id‘ = ’UDDIPublishSecurityContraint‘ and set its ’user-data-constraint‘

’transport-guarantee‘ to CONFIDENTIAL or NONE

v To modify the user data constraint transport guarantee for V3 inquiry which determines whether the V3

Inquiry service is to be confidential (accessed using HTTPS) or insecure (via HTTP) find the

’security-constraint id‘ =‘ ’UDDIInquireSecurityConstraint‘ and set its ’user-data-constraint‘

’transport-guarantee‘ to CONFIDENTIAL or NONE

v Stop and restart the application server for the changes to take effect

Configuring WebSphere to use HTTPS and SSL

To support the use of secure access with the IBM WebSphere UDDI Registry, you must configure

WebSphere to use HTTPS and SSL. Refer to Secure Sockets Layer settings for custom properties

elsewhere in this Information Center for configuring SSL in WebSphere Application Server. It is assumed

throughout the information for the UDDI Registry that, where SSL is used, it has been configured on port

9443.

Chapter 8. Developing WebSphere applications 1113

Managing the UDDI Registry

You can use either the WebSphere Application Server administrative console or the Java Management

Extensions (JMX) management interface to manage UDDI Registries.

In previous version of WebSphere Application Server and UDDI a properties file was used, but from

WebSphere Application Server Version 6, all policies and properties are managed through either the JMX

management interface or the administrative console.

JMX can be used to programmatically monitor and configure UDDI registries, and is explained in ″Using

administrative programs (JMX)″ in the information center. See IBM WebSphere Registry Administrative

Interface for full details on using the UDDI administrative interface. To manage UDDI registries using the

WebSphere Application Server administrative console, start from the UDDI link in the left navigation pane

as described below.

Using the UDDI management functions available in the WebSphere Application Server administrative

console, you can perform the following operations:

v view and manage the status of all UDDI nodes in a cell

v initialize UDDI nodes with required settings

v configure general properties that affect UDDI runtime behavior

v manage UDDI policy settings

v create, view and update UDDI publishers

v create, view and update publisher tiers which limit how many UDDI entries may be published

v view and manage the status of value sets

UDDI node collection

To configure node properties, policies, value set status and user entitlements, complete the following

steps:

From the administrative console, expand UDDI in the navigation pane then click UDDI Nodes. This

displays the collection of UDDI nodes in the cell.

Each UDDI node is represented by a UDDI Node ID, Description, UDDI Application Name and Status. The

Status can be either Initialization Pending, Activated or Deactivated. To activate UDDI nodes that are

Deactivated, select them by checking the corresponding check boxes in the Select column and click the

Activate button. Similarly to deactivate UDDI nodes, select them and click the Deactivate button.

To manage an individual UDDI node, click on its UDDI Node ID link. This takes you to the Configuration

page where you can manage its general properties, initialize it if the status is set to Initialization Pending,

and access pages for managing policies, UDDI publishers, tiers and value sets. Refer to UDDI node

settings for details on the next available topic.

Important: To be able to manage a UDDI node, the associated UDDI application must be running. If the

application is not running you will not see the UDDI node in the list of available choices.

UDDI node settings:

This topic contains details of the general properties that you can configure for a UDDI node.

 To view this administrative console page, click UDDI → UDDI Nodes > UDDI_node_id.

By clicking on a node in the UDDI node ID column the UDDI node detail page is displayed. The UDDI

node detail page displays a set of General Properties for the UDDI node, some of which may be editable

1114 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

depending on the state of the node. There are also links to Additional Properties (Value sets, Tiers and

UDDI Publishers) and links to Policy Groups where UDDI node policy may be viewed and changed.

Unless the UDDI node has been installed as a default UDDI node (as defined in ″UDDI Registry

terminology″ in the information center) there are some important general properties that need to be set

before the UDDI node can be initialized. These properties are all marked as being required (indicated by

the presence of a ’*’ next to the input field). You may set the values as many times as you wish before

initialization. However, once the UDDI node has been initialized, these properties will become read only for

the lifetime of that UDDI node. It is very important to set these properties correctly. Other general

properties of the UDDI node may be set before, and after, initialization.

Once the general properties have been set to appropriate values, you can click OK (which saves your

changes and exits the page), or Apply (which saves your changes and leaves you on the same page). At

this point the changes will have been stored.

If the UDDI node is in the Not Initialized state, indicated on the UDDI node detail page by the presence of

an Initialize button (above the General Properties section), the UDDI node can be initialized by clicking the

Initialize button. This operation may take a while to complete. It is important to remember to save any

changes you have made to the general properties by clicking Apply or OK before the Initialize button is

pressed.

The other UDDI settings that a UDDI administrator can manage are shown to the right of the screen and

are described in the following topics:

v Value set collection

This topic contains details of the value sets settings that you can configure for a UDDI node.

v Tier collection

This topic contains details of the UDDI publisher tiers that you can configure for a UDDI node.

v UDDI Publisher collection

This topic contains details of the publishers that have been registered with the UDDI node.

v Policy groups

This topic contains links to the detailed settings information for every policy group that you can

configure for a UDDI node.

UDDI Node ID:

The unique identifier given to a UDDI node in a UDDI registry. This must be a valid UDDI key.

 The value for the node ID will also be the domain key for this UDDI node.

 Required Yes

Data type String

Default A valid domain key for this UDDI node

UDDI node description:

The user supplied description of this UDDI node.

 Required Yes

Data type String

Root key generator:

Specifies the root key space of the registry.

Chapter 8. Developing WebSphere applications 1115

Registries intending to become affiliate registries may want to specify a root key space in a partition below

the root key generator of the parent root registry, for example, uddi:thisregistry.com:keygenerator.

 Required Yes

Data type String

Default uddi:default:keygenerator

Prefix for generated discoveryURLs:

The URL prefix for the GET servlet.

 The URL prefix applied to generated discoveryURLs in businessEntity elements so they can be returned

on HTTP GET requests. The format is ’http://hostname:port/uddisoap/’, where ’uddisoap’ is the UDDI

version 2 SOAP servlet’s context root. This property applies to UDDI version 2 API requests only.

 Required Yes

Data type String

Default http://localhost:9080/uddisoap

Maximum inquiry result set size:

The maximum size of result set which the registry will process for an inquiry API request. If the result set

exceeds this value, an E_resultSetTooLarge error is returned to the user. Setting the value higher allows

larger result sets but may cause increased response times.

 Note: If this value is set too low users will get an E_resultSetTooLarge error message, whereas setting to

too high might cause increased response times. If the value is set too low and users use imprecise

search criteria the likelihood of receiving the E_resultSetTooLarge is increased.

 Data type Integer

Default 500

Range 0 to 1024

Maximum inquiry response set size:

For inquiry API requests, this value controls the maximum number of results returned in each response. If

the number of results in the result set is greater than this value, the response will only include a subset of

results. The user can retrieve remaining results using the listDescription feature as described in the UDDI

specification. Setting this value too low will require the user to make more requests to retrieve the

remainder of the result set.

 Note: This value can not be higher than the value set for ″Maximum inquiry results″. Setting this value too

low increases the number of requests needed to achieve the full result set.

 Data type Integer

Default 500

Range 0 to 1024

Maximum search names:

The maximum number of names that can be supplied in an inquiry API request. Increasing this value can

significantly slow response times of the UDDI node.

1116 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

This can be used to control the complexity of requests that this UDDI node will allow. The recommendation

is to not set this value above 8.

 Data type Integer

Default 5

Range 1 to 64

Maximum search keys:

The maximum number of keys that can be supplied in an inquiry API request. This limits the number of

references that can be specified in categoryBag, identifierBag, tModelBag and discoveryURLs. Increasing

this value can significantly increase response times for the UDDI node.

 This can be used to control the complexity of requests that this UDDI node will allow. The recommended

setting for this is 5 or less.

In exceptional cases, the UDDI node may reject complex requests with excessive numbers of keys even if

the value of maxSearchKeys is not exceeded.

 Data type Integer

Default 5

Range 1 to 64

Key space requests require digital signature:

Specifies whether tModel:keyGenerator requests must be digitally signed.

Use tier limits:

Specifies whether an approval manager is used to check publication tier limits.

 If set to false, the number of UDDI entities that can be published is unlimited.

Use authInfo credentials if provided:

Specifies if authInfo contents in UDDI API requests are used to validate users when WebSphere global

security is off. If this setting is true, the UDDI node will use the request’s authInfo element, otherwise the

default user name is used.

 Data type Integer

Default True

Authentication token expiry period:

The period after which authentication tokens are invalidated (in minutes), and a new authToken is required.

 Note: The setting should be sufficient to ensure operational success. Longer settings can increase the

risk of illegal authToken use.

 Data type Integer

Default 30

Range 1 to 10080 (minutes - 1 week)

Automatically register UDDI publishers:

Chapter 8. Developing WebSphere applications 1117

Specifies if UDDI publishers are automatically registered, and assigned to the default tier.

 Automatically registered UDDI publishers are given default entitlements.

Default user name:

Specifies the user name used for publish operations when WebSphere security is disabled.

 Data type String

Default UNAUTHENTICATED

Default language code:

Applies only to UDDI Version 1 and Version 2 requests, the default language code to be used for xml:lang

when not otherwise specified.

 Data type String

Default en

Value set collection:

Use this page to view and configure the value sets that have been installed in a UDDI node.

 To view this administrative console page, click UDDI → UDDI Nodes > UDDI_node_id >Value Sets.

Value sets in a UDDI node are either supported or not supported by policy. Value sets in a UDDI node are

either supported or not supported by policy. By default, new value sets are not supported. When you have

published a value set tModel and loaded value set data, you can control whether other UDDI entities can

reference this value set tModel by setting the Supported policy.

To enable support for one or more value sets, select the value sets by clicking on the appropriate check

boxes in the Select column. Click the Enable Support button. The supported field for all the selected value

sets will be updated to reflect the new status.

To disable support for a value set, which may be necessary before it is removed from the UDDI node,

select the value sets in the same manner as for enabling support. Click the Disable Support button.

Clicking on a value set name in the list takes you to the general properties page for that value set as

described in Value set settings.

Name:

The name of the tModel that represents the value set.

tModelkey:

The key for the tModel that represents the value set.

Supported:

Indicates whether references to this value set are supported by policy in this UDDI node.

Value set settings:

Use this page to view the attributes of a value set in a UDDI node.

1118 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

To view this administrative console page, click UDDI → UDDI Nodes > UDDI_node_id >Value Sets >

value_set_name.

This page shows the values of keyedReferences in the tModel that represents this value set. It also shows

the Supported status of the value set as described on the Value set collection page. All properties are

read-only. The Supported status can be changed on the Value Set page.

Unvalidatable:

Specifies whether this value set is unvalidatable. This is set by the value set tModel publisher to indicate if

the value set is available or not for use by publish requests.

Checked:

Specifies whether this value set is checked. If set to true, UDDI entities that reference this value set will be

validated to ensure their values are present in this value set.

Cached:

Specifies whether this value set is cached in this UDDI node.

Externally cacheable:

Specifies whether this value set is externally cacheable.

Externally validated:

Specifies whether this value set is externally validated.

Supported:

Specifies whether this value set is supported by policy in this UDDI node.

Last cached:

Specifies the date when this value set was last cached in the UDDI node.

Tier collection:

This topic contains a list of the available tiers for the UDDI node. You can also create new tiers and delete

tiers from this page.

 To view this administrative console page, click UDDI → UDDI Nodes > UDDI_node_id >Tiers.

This page shows the available tiers for the UDDI node. Clicking a tier name will show the General

Properties for the specific tier as detailed in Tier settings. To delete a Tier from the list, select the relevant

name and click Delete. Clicking New will take you to the General Properties page with the same properties

as described in Tier settings.

One of the tiers in the collection will be marked as the default tier, indicated by (default) appearing next to

the tier’s name. The default tier will be assigned to UDDI publishers that are registered automatically when

automatic user registration is turned on. To set the default tier, select the appropriate tier in the collection

and press the Set default button. Note that it is not possible to delete a tier if it is currently marked as the

default tier, or it is currently assigned to a UDDI publisher.

Name:

Chapter 8. Developing WebSphere applications 1119

The name of the tier.

Description:

User supplied descriptive text about the tier.

UDDI Tier settings:

This topic contains details of the general properties that you can configure for a UDDI publisher tier.

 To view this administrative console page, click UDDI → UDDI Nodes > UDDI_node_id >Tiers > tier_name.

Name:

The name of the tier.

 Required Yes

Data type String

Range 1 to 255

Description:

The user supplied description of the tier.

 Data type String

Default Empty

Range 0 to 255

Maximum businesses:

The maximum number of businesses that UDDI publishers in this tier are allowed to publish in this tier.

Maximum services:

The maximum number of services UDDI publishers in this tier are allowed to publish.

Maximum bindings:

The maximum number of bindings UDDI publishers in this tier are allowed to publish.

Maximum tModels:

The maximum number of tModels UDDI publishers in this tier are allowed to publish.

Maximum publisher assertions:

The maximum number of publisher assertions UDDI publishers in this tier are allowed to add.

 For each of the maximum fields described above, the data is:

 Required Yes

Data type Integer

Default 0

Range 0 to 2147483647 (for all intents and purposes, unlimited)

1120 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

UDDI Publisher collection:

This page shows the WebSphere users that are currently registered as UDDI publishers.

 To view this administrative console page, click UDDI → UDDI Nodes > UDDI_node_id >UDDI Publishers.

To create a UDDI publisher click on the New button. This opens the UDDI publisher settings page where

details about the publisher can be entered.

It is possible to assign multiple publishers to a tier without having to edit each one individually. To do this

select the appropriate publishers in the collection table. From the selection box at the top of the collection

table choose from one of the tiers available on the UDDI node. Finally, click the Assign tier button to

update the selected publishers.

To delete publishers select them in the collection table and then press the Delete button.

After the users have been registered as UDDI publishers, their entitlements can be edited as described in

UDDI Publisher settings.

User name:

The name of the UDDI publisher.

Tier:

The publication limits tier to which the UDDI publisher has been assigned.

Create UDDI Publishers:

Use this page to register existing WebSphere Application Server users as UDDI publishers. Create each

UDDI publisher individually using the New button on the UDDI publisher collection page.

 To view this administrative console page, click UDDI → UDDI Nodes > UDDI_node_id >UDDI Publishers →

New.

Users known to the application server can be registered as UDDI publishers.

Assign entitlements and a tier to the selected group

UDDI publishers are given permission to perform specific actions with entitlements. Set the entitlements for

the selected UDDI publishers with the check-box next to each entitlement.

After the users have been registered as UDDI publishers, their entitlements can be edited as described in

UDDI Publisher settings.

User name:

The name of the UDDI publisher to be created. This should be a user known to the application server.

Allowed to publish keyGenerator:

The UDDI publisher has permission to publish tModel:keyGenerator.

 If false, UDDI publishers cannot publish keyGenerators of any kind. In this situation all the entitlement

settings are disregarded, irrespective of how they are set.

Chapter 8. Developing WebSphere applications 1121

Allowed to publish keyGenerator with a domain key:

The UDDI publisher has permission to publish tModel:keyGenerator with a domain key.

Allowed to publish keyGenerator with a derived key:

The UDDI publisher has permission to publish tModel:keyGenerator with a derived key.

 The tModel:keyGenerator is a request for key space. An example of a legal derived key is

uddi:tempuri.com:fish:buyingService where the key is based on the derivedKey ″uddi:tempuri.com:fish″. the

string ’buyingService’ is the key’s key specific string (KSS).

Allowed to publish keyGenerator with UUID keys:

The UDDI publisher user has permission to publish tModel:keyGenerator providing a UUID key.

Allowed to publish with UUID key:

The UDDI publisher has permission to publish elements providing a UUID key.

Allowed to subscribe:

The UDDI publisher can register requests to receive notifications of specific registry content changes.

Tier:

The tier to which the selected UDDI publishers are assigned.

UDDI Publisher settings:

Use this page to view and edit the properties of UDDI publishers.

 To view this administrative console page, click UDDI → UDDI Nodes > UDDI_node_id >UDDI Publishers >

user_name.

This page shows the entitlements and publication limits tier for a particular UDDI publisher.

Allowed to publish keyGenerator:

The UDDI publisher has permission to publish tModel:keyGenerator.

 If false, UDDI publishers cannot publish keyGenerators of any kind. In this situation the following

permissions (’Allowed to publish keyGenerator with a domain key’, ’Allowed to publish keyGenerator with a

derived key’, ’Allowed to publish keyGenerator with UUID keys’, ’Allowed to publish with UUID keys’ and

’Allowed to subscribe’) will be disregarded irrespective of how they are set.

Allowed to publish keyGenerator with a domain key:

The UDDI publisher has permission to publish tModel:keyGenerator with a domain key.

Allowed to publish keyGenerator with a derived key:

The UDDI publisher has permission to publish tModel:keyGenerator with a derived key.

 The tModel:keyGenerator is a request for key space. An example of a legal derived key is

uddi:tempuri.com:fish:buyingService where the key is based on the derivedKey ″uddi:tempuri.com:fish″. the

string ’buyingService’ is the key’s key specific string (KSS).

1122 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Allowed to publish keyGenerator with UUID keys:

The UDDI publisher user has permission to publish tModel:keyGenerator providing a UUID key.

Allowed to publish with UUID key:

The UDDI publisher has permission to publish elements providing a UUID key.

Allowed to subscribe:

The UDDI publisher can register requests to receive notifications of specific registry content changes.

Tier:

The tier to which the UDDI publisher is assigned.

Policy groups:

This topic contains links to the detailed settings information for every policy group that you can configure

for a UDDI Registry node.

 To view this administrative console page, click UDDI → UDDI Nodes > UDDI_node_id.

To the right of the page is a list of the Policy Groups that can be acted upon. Clicking on a specific group

will open the page for the group required.

The policy groups available to act upon are:

v “UDDI keying policy settings”

v “UDDI user policy settings”

v “UDDI node API policy settings” on page 1124

v “UDDI data custody policy settings” on page 1124

v “UDDI value set policy” on page 1125

v “UDDI node miscellaneous” on page 1125

UDDI keying policy settings:

This topic contains details of the UDDI keying settings that you can configure for a UDDI Registry.

 To view this administrative console page, click UDDI → UDDI Nodes > UDDI_node_id >UDDI Keying.

Registry key generation:

Allows publishers to publish key generator tModels.

 Defines whether a given UDDI node or publisher is allowed to register a key generator tModel. When true,

this allows the set of publishers to be managed using the facilities provided in the UDDI Publisher settings

Registry support of UUID keys:

Allow publisher supplied uuidKeys in publish requests.

 If true, this allows the set of publishers to be managed using the facilities provided in UDDI Publisher

settings

UDDI user policy settings:

Chapter 8. Developing WebSphere applications 1123

This topic contains details of the user policy settings that you can configure for a UDDI Registry node.

 To view this administrative console page, click UDDI → UDDI Nodes > UDDI_node_id >User policies.

Allow transfer of ownership:

When true, data ownership can be transferred between owners within the UDDI node.

UDDI node API policy settings:

This topic contains details of the API settings that you can configure for a UDDI Registry node.

 To view this administrative console page, click UDDI → UDDI Nodes > UDDI_node_id > APIs.

Authorization for inquiry:

Specifies if authorization using the authInfo element is required for inquiry API requests.

 Typically, UDDI registries are configured not to require authorization for registry API requests. This setting

is only relevant if the V3SOAP_Inquiry_User_Role is set to everyone and WebSphere Application Server

global security is on. If WebSphere Application Server global security is off, this setting is ignored. If

WebSphere Application Server global security is on and the V3SOAP_Inquiry_User_role is not set to

everyone, this setting is ignored.

Authorization for publish:

Specifies if authorization using the authInfo element is required for publish API requests.

 Typically, UDDI registries are configured not to require authorization for registry API requests. This setting

is only relevant if the V3SOAP_Publish_User_Role is set to everyone and WebSphere Application Server

global security is on. If WebSphere Application Server global security is off, this setting is ignored. If

WebSphere Application Server global security is on and the V3SOAP_Publish_User_role is not set to

everyone, this setting is ignored.

Authorization for custody transfer:

Specifies if authorization using the authInfo element is required for custody transfer API requests.

 Typically, UDDI registries are configured not to require authorization for registry API requests. This setting

is only relevant if the V3SOAP_CustodyTransfer_User_Role is set to everyone and WebSphere Application

Server global security is on. If WebSphere Application Server global security is off, this setting is ignored.

If WebSphere Application Server global security is on and the V3SOAP_CustodyTransfer_User_role is not

set to everyone, this setting is ignored.

UDDI data custody policy settings:

This topic contains details of the data custody settings that you can configure for a UDDI Registry node.

 To view this administrative console page, click UDDI → UDDI Nodes > UDDI_node_id >Data custody.

Transfer token expiration period:

The length of time (in minutes) after the issue of a transfer token before it expires.

1124 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Note: Setting too large a value might expose the UDDI registry to a risk of misuse.

 Data type Integer

Default 1440

Range 1 to 2147483647 (for all intents and purposes, unlimited)

UDDI value set policy:

This topic contains details of the value set policy settings that you can configure for a UDDI Registry node.

 To view this administrative console page, click UDDI → UDDI Nodes > UDDI_node_id >Value Set Policy.

Enable checked value sets:

Specifies if checked value sets are supported. When false, publish requests containing references to

checked value sets are be rejected.

UDDI node miscellaneous:

This topic contains details of the miscellaneous settings that you can configure for a UDDI node.

 To view this administrative console page, click UDDI → UDDI Nodes > UDDI_node_id > Miscellaneous.

Node generates discoveryURLs:

Defines whether the UDDI node generates discoveryURLs.

Node supports HTTP Get Service:

Specifies if the UDDI node supports an HTTP GET service for access to the XML representations of UDDI

data structures.

URL prefix for V3 GET servlet:

The URL prefix for the UDDI version 3 GET servlet

 The prefix for the URL to the GET servlet used to retrieve the XML representation of a published entity.

When a businessEntity is published, if the policy for Node Discovery URLs is set to true, the discoveryURL

value is generated based on the prefix value. Otherwise, the discoveryURL value will be empty.

The UDDI Version 3 specification recommends that discoveryURLs are not generated as they can affect

the use of digital signatures. If you do enable generation of discoveryURLs, it is recommended that the

URL prefix is not changed after the point at which the policy to enable generation of discoveryURLs is

enabled. Not doing so will mean discoveryURLs generated using the earlier URL prefix would no longer

work.

 Data type URL

Default http://localhost:9080/uddiv3soap/

UDDI Registry Administrative Interface Overview

The UDDI Registry Administrative Interface allows you to inspect and manage the runtime configuration of

a UDDI application. This includes managing the the information and the activation state about a UDDI

node, updating properties and policies, setting publish tier limits, registration of UDDI publishers, and

controlling value set support. The operations of the UDDI Registry Administrative Interface can be read

and invoked using standard JMX (Java Management Extensions) interfaces.

Chapter 8. Developing WebSphere applications 1125

The use of JMX is explained in ″Using administrative programs (JMX)″ in the information center. See the

IBM WebSphere UDDI Registry Administrative Interface for full details on using the UDDI administrative

interface.

Backing up and restoring the UDDI Registry database

If you want to protect the data in your UDDI Registry database, you can back up and restore the database

using the facilities of the database product your UDDI node is on.

Cloudscape

To back-up a Cloudscape based registry, ensure that the UDDI application is stopped (and hence, not

accessing the Cloudscape database), and ensure that no other application is using the Cloudscape

UDDI30 database, then make a copy of the UDDI30 directory using the file system that the directory

resides upon.

Non-Cloudscape

Use the appropriate import and export tools for the database being used to contain the UDDI Registry.

v Backup

Include elements in schemas named IBMUDI30 and IBMUDS30

v Restore

For restoration we recommend deleting the schemas IBMUDI30 and IBMUDS30, recreating database

structures using the original scripts - with slight modifications - and importing the previously saved data,

as described in the steps below:

1. Delete the schemas IBMUDI30 and IBMUDS30 this will result in any IBM UDDI structures being

destroyed.

2. Create database structures (for DB2 see Creating a DB2 database, for Oracle see Creating an

Oracle database or, for Cloudscape, see Creating a Cloudscape database for details) as per the

original creation except that the final step (xxxxxx_70xxxx.*) must not be run this will result in a

virgin, and almost empty, database into which your backed-up data may be imported.

3. Delete all rows in the table IBMUDS30.UDDIDBSCHEMAVER to avoid a clash between a row

inserted by the scripts and the row backed-up using the command:

delete from IBMUDS30.UDDIDBSCHEMAVER

4. Restore the previously backed-up data in schemas IBMUDI30 and IBMUDS30

Data access resources

Task overview: Accessing data from applications

Various enterprise information systems (EIS) use different methods for storing data. These backend data

stores might be relational databases, procedural transaction programs, or object-oriented databases. IBM

WebSphere Application Server provides several options for accessing an information system’s backend

data store:

v Programming directly to the database through the JDBC 2.0 optional package API or the JDBC 3.0 API.

v Programming to the procedural backend transaction through various J2EE Connector Architecture (JCA)

1.0 or 1.5 compliant connectors.

v Programming in the bean-managed persistence (BMP) bean or servlets indirectly accessing the

backend store through either the JDBC API or JCA compliant connectors.

v Using container-managed persistence (CMP) beans.

v Using embedded Structured Query Language in Java (SQLJ) support with applications that use DB2 as

a backend database.

1126 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

v Using the IBM data access beans, which also use the JDBC API, but give you a rich set of features and

function that hide much of the complexity associated with accessing relational databases.

For all of these options, except for using the JCA 1.0 or 1.5 compliant connectors, the prerequisite Web

site details which databases and drivers are currently supported. See ″Hardware and software

requirements″ in the information center for more information.

1. Develop data access applications. Develop your application to access data using the various ways

available through the WebSphere Application Server. You can access data through APIs,

container-managed persistence beans, bean-managed persistence beans, session beans, or Web

components.

2. Assemble data access applications using the assembly tool. Assemble your application by creating and

mapping resource references.

3. Prepare for deployment: Ensure that the appropriate database objects are available. Create or

configure any databases or tables required, set necessary configuration parameters to handle

expected load, and configure any necessary JDBC providers and data source objects for servlets,

enterprise beans, and client applications to use.

4. Install the application on your application server.

Resource adapter

A resource adapter is a system-level software driver that a Java application uses to connect to an

enterprise information system (EIS).

A resource adapter plugs into an application server and provides connectivity between the EIS, the

application server, and the enterprise application.

An application server vendor extends its system once to support the J2EE Connector Architecture (JCA)

and is then assured of seamless connectivity to multiple EISs. Likewise, an EIS vendor provides one

standard resource adapter with the capability to plug into any application server that supports the

connector architecture.

WebSphere Application Server provides the WebSphere Relational Resource Adapter (RRA)

implementation. This resource adapter provides data access through JDBC calls to access the database

dynamically. The connection management is based on the JCA connection management architecture. It

provides connection pooling, transaction, and security support. WebSphere Application Server version 6.0

supports JCA versions 1.0 and 1.5.

Data access for container-managed persistence (CMP) beans is managed by the WebSphere Persistence

Manager indirectly. The JCA specification supports persistence manager delegation of the data access to

the JCA resource adapter without knowing the specific backend store. For the relational database access,

the persistence manager uses the relational resource adapter to access the data from the database. You

can find the supported database platforms for the JDBC API at the WebSphere Application Server

prerequisite Web site.

J2EE Connector Architecture resource adapters:

A J2EE Connector Architecture (JCA) resource adapter is any resource adapter conforming to the JCA

Specification.

 The product supports any resource adapter that implements version 1.0 or 1.5 of this specification. IBM

supplies resource adapters for many enterprise systems separately from the WebSphere Application

Server package, including (but not limited to): the Customer Information Control System (CICS), Host

On-Demand (HOD), Information Management System (IMS), and Systems, Applications, and Products

(SAP) R/3 .

Chapter 8. Developing WebSphere applications 1127

The general approach to writing an application that uses a JCA resource adapter is to develop EJB

session beans or services with tools such as Rational Application Developer. The session bean uses the

javax.resource.cci interfaces to communicate with an enterprise information system through the resource

adapter.

WebSphere relational resource adapter settings:

Use this page to view the default WebSphere relational resource adapter settings.

 This is the WebSphere-provided relational resource adapter for handling data access to any relational data

base. This adapter is preinstalled by WebSphere Application Server. Although the default relational

resource adapter settings are viewable, you cannot make changes to them.

To view this administrative console page, click Resources > Resource Adapters > WebSphere

Relational Resource Adapter.

Name:

Specifies the name of the resource provider.

 Data type String

Description:

Specifies a description of the relational resource adapter.

 Data type String

Archive path:

Specifies the path to the Resource Adapter Archive (RAR) file containing the module for this resource

adapter.

 Data type String

Class path:

Specifies a list of paths or Java Archive (JAR) file names, which together form the location for the resource

provider classes.

 Data type String

Native path:

Specifies a list of paths that forms the location for the resource provider native libraries.

 Data type String

WebSphere Relational Resource Adapter:

The WebSphere Relational Resource Adapter (RRA) provides enterprise applications deployed on

WebSphere Application Server access to relational databases.

1128 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

The WebSphere RRA is installed and runs as part of WebSphere Application Server, and needs no further

administration.

The RRA supports both the configuration and use of JDBC data sources and J2EE Connection

Architecture (JCA) connection factories. The RRA supports the configuration and use of data sources

implemented as either JDBC data sources or J2EE Connector Architecture connection factories. Data

sources can be used directly by applications, or they can be configured for use by container-managed

persistence (CMP) entity beans.

For more information about the WebSphere Relational Resource Adapter, see the following topics:

v For information about resource adapters, see “Resource adapter” on page 1127

v For information about resource adapters and data access, see “Data access portability features”

v For RRA settings, see “WebSphere relational resource adapter settings” on page 1128

v For information about CMP connection factories, see “Connection factory” on page 1133

v For information about enterprise beans, see ″Introduction: EJB applications″ in the information center

Data access portability features: The WebSphere Application Server relational resource adapter (RRA)

provides a portability feature that enables applications to access data from different databases without

changing the application. In addition, WebSphere Application Server enables you to plug in a data source

that is not supported by WebSphere persistence. However, the data source must be implemented as either

the XADataSource type or the ConnectionPoolDataSource type, and it must be in compliance with the

JDBC 2.x specification.

You can achieve application portability through the following:

DataStoreHelper interface

With this interface, each data store platform can plug in its own private data store specific

functions that the relational resource adapter run time uses. WebSphere Application Server

provides an implementation for each supported JDBC provider.

 In addition, the interface also provides a GenericDataStoreHelper class for unsupported data

sources to use. You can subclass the GenericDataStoreHelper class or other WebSphere provided

helpers to support any new data source.

Note: If you are configuring data access through a user-defined JDBC provider, do not implement

the DataStoreHelper interface directly. Either subclass the GenericDataStoreHelper class or

subclass one of the DataStoreHelper implementation classes provided by IBM (if your

database behavior or SQL syntax is similar to one of these provided classes).

For more information, see the API documentation DataStoreHelper topic (as listed in the API

documentation index).

 The following code segment shows how a new data store helper is created to add new error

mappings for an unsupported data source.

public class NewDSHelper extends GenericDataStoreHelper

{

 public NewDSHelper(java.util.Properties dataStoreHelperProperties)

 {

 super(dataStoreHelperProperties);

 java.util.Hashtable myErrorMap = null;

 myErrorMap = new java.util.Hashtable();

 myErrorMap.put(new Integer(-803), myDuplicateKeyException.class);

 myErrorMap.put(new Integer(-1015), myStaleConnectionException.class);

 myErrorMap.put("S1000", MyTableNotFoundException.class);

 setUserDefinedMap(myErrorMap);

 ...

 }

}

Chapter 8. Developing WebSphere applications 1129

WSCallHelper class

This class provides two methods that enable you to use vendor-specific methods and classes that

do not conform to the standard JDBC APIs (and are not part of WebSphere Application Server

extension packages).

v jdbcCall() method

By using the static jdbcCall() method, you can invoke vendor-specific, nonstandard JDBC

methods on your JDBC objects. (For more information, see the API documentation

WSCallHelper topic.) The following code segment illustrates using this method with a DB2 data

source:

Connection conn = ds.getConnection();

// get connection attribute

String connectionAttribute =(String) WSCallHelper.jdbcCall(DataSource.class, ds,

 "getConnectionAttribute", null, null);

// setAutoClose to false

WSCallHelper.jdbcCall(java.sql.Connection.class,

conn, "setAutoClose",

new Object[] { new Boolean(false)},

new Class[] { boolean.class });

// get data store helper

DataStoreHelper dshelper = WSCallHelper.getDataStoreHelper(ds);

v jdbcPass() method

Use this method to exploit the nonstandard JDBC classes that some database vendors provide.

These classes contain methods that require vendors’ proprietary JDBC objects to be passed as

parameters.

In particular, implementations of Oracle can involve use of nonstandard classes furnished by the

vendor. Methods contained within these classes include:

oracle.sql.ArrayDescriptor ArrayDescriptor.createDescriptor(java.lang.String,

 java.sql.Connection)

oracle.sql.ARRAY new ARRAY(oracle.sql.ArrayDescriptor, java.sql.Connection,

 java.lang.Object)

oracle.xml.sql.query.OracleXMLQuery(java.sql.Connection, java.lang.String)

oracle.sql.BLOB.createTemporary(java.sql.Connection, boolean, int)

oracle.sql.CLOB.createTemporary(java.sql.Connection, boolean, int)

oracle.xdb.XMLType.createXML(java.sql.Connection, java.lang.String)

The following code examples demonstrate the difference between a call to the

XMLType.createXML() method over a direct connection to Oracle, and a call to the same

method within WebSphere Application Server.

1. Over a direct connection:

XMLType poXML = XMLType.createXML(conn, poString);

2. Within Application Server, using the jdbcPass() method:

XMLType poXML (XMLType)(WSCallHelper.jdbcPass(XMLType.class,

"createXML", new Object[]{conn,poString},

 new Class[]{java.sql.Connection.class, java.lang.String.class},

 new int[]{WSCallHelper.CONNECTION,WSCallHelper.IGNORE}));

There are two different jdbcPass() methods available, one for use in invoking static methods,

another for use when invoking non-static methods. See the API documentation WSCallHelper

topic.

Note: Because of the possible problems that can occur by passing an underlying object to a

method, WebSphere Application Server strictly controls which methods are allowed to be

invoked using the jdbcPass() method support. If you require support for a method that is

not listed previously in this document, please contact WebSphere Application Server

support with information on the method you require.

WARNING: Use of the jdbcPass() method causes the JDBC object to be used outside of

WebSphere’s protective mechanisms. Performing certain operations (such as setting

autoCommit, or transaction isolation settings, etc.) outside of these protective mechanisms will

1130 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

cause problems with the future use of these pooled connections. IBM does not guarantee

stability of the object after invocation of this method; it is the user’s responsibility to ensure that

invocation of this method does not perform operations that harm the object. Use at your own

risk.

Example: Developing your own DataStoreHelper class: The DataStoreHelper interface supports each

data store platform plugging in its own private data store specific functions that are used by the Relational

Resource Adapter run time.

package com.ibm.websphere.examples.adapter;

import java.sql.SQLException;

import javax.resource.ResourceException;

import com.ibm.websphere.appprofile.accessintent.AccessIntent;

import com.ibm.websphere.ce.cm.*;

import com.ibm.websphere.rsadapter.WSInteractionSpec;

/**

* Example DataStoreHelper class, demonstrating how to create a user-defined DataStoreHelper.

* Implementation for each method is provided only as an example. More detail would likely be

* required for any custom DataStoreHelper created for use by a real application.

*/

public class ExampleDataStoreHelper extends com.ibm.websphere.rsadapter.GenericDataStoreHelper

{

 static final long serialVersionUID = 8788931090149908285L;

 public ExampleDataStoreHelper(java.util.Properties props)

 {

 super(props);

 // Update the DataStoreHelperMetaData values for this helper.

 getMetaData().setGetTypeMapSupport(false);

 // Update the exception mappings for this helper.

 java.util.Map xMap = new java.util.HashMap();

 // Add an Error Code mapping to StaleConnectionException.

 xMap.put(new Integer(2310), StaleConnectionException.class);

 // Add an Error Code mapping to DuplicateKeyException.

 xMap.put(new Integer(1062), DuplicateKeyException.class);

 // Add a SQL State mapping to the user-defined ColumnNotFoundException

 xMap.put("S0022", ColumnNotFoundException.class);

 // Undo an inherited StaleConnection SQL State mapping.

 xMap.put("S1000", Void.class);

 setUserDefinedMap(xMap);

 // Note: If you are extending a helper class, it is

 // normally not necessary to issue ’getMetaData().setHelperType(...)’

 // because your custom helper will inherit the helper type from its

 // parent class. However, certain applications may need to differentiate

 // between a custom helper and an existing helper of the same type,

 // so WebSpehere has provided the value ’DataStoreHelper.CUSTOM_HELPER’

 // for this purpose. If this functionality is needed by your application

 // insert the following line into your code:

 // getMetaData().setHelperType(DataStoreHelper.CUSTOM_HELPER);

 }

 public void doStatementCleanup(java.sql.PreparedStatement stmt) throws SQLException

 {

 // Clean up the statement so it may be cached and reused.

Chapter 8. Developing WebSphere applications 1131

stmt.setCursorName("");

 stmt.setEscapeProcessing(true);

 stmt.setFetchDirection(java.sql.ResultSet.FETCH_FORWARD);

 stmt.setMaxFieldSize(0);

 stmt.setMaxRows(0);

 stmt.setQueryTimeout(0);

 }

 public int getIsolationLevel(AccessIntent intent) throws ResourceException

 {

 // Determine an isolation level based on the AccessIntent.

 if (intent == null) return java.sql.Connection.TRANSACTION_SERIALIZABLE;

 return intent.getConcurrencyControl() == AccessIntent.CONCURRENCY_CONTROL_OPTIMISTIC ?

 java.sql.Connection.TRANSACTION_READ_COMMITTED :

 java.sql.Connection.TRANSACTION_REPEATABLE_READ;

 }

 public int getLockType(AccessIntent intent) {

 if (intent.getConcurrencyControl() == AccessIntent.CONCURRENCY_CONTROL_PESSIMISTIC) {

 if (intent.getAccessType() == AccessIntent.ACCESS_TYPE_READ) {

 return WSInteractionSpec.LOCKTYPE_SELECT;

 }

 else {

 return WSInteractionSpec.LOCKTYPE_SELECT_FOR_UPDATE;

 }

 }

 return WSInteractionSpec.LOCKTYPE_SELECT;

 }

 public int getResultSetConcurrency(AccessIntent intent) throws ResourceException

 {

 // Determine a ResultSet concurrency based on the AccessIntent.

 return intent == null || intent.getAccessType() == AccessIntent.ACCESS_TYPE_READ ?

 java.sql.ResultSet.CONCUR_READ_ONLY :

 java.sql.ResultSet.CONCUR_UPDATABLE;

 }

 public int getResultSetType(AccessIntent intent) throws ResourceException

 {

 // Determine a ResultSet type based on the AccessIntent.

 if (intent == null) return java.sql.ResultSet.TYPE_SCROLL_INSENSITIVE;

 return intent.getCollectionAccess() == AccessIntent.COLLECTION_ACCESS_SERIAL ?

 java.sql.ResultSet.TYPE_FORWARD_ONLY :

 java.sql.ResultSet.TYPE_SCROLL_SENSITIVE;

 }

}

ColumnNotFoundException

package com.ibm.websphere.examples.adapter;

import java.sql.SQLException;

import com.ibm.websphere.ce.cm.PortableSQLException;

/**

* Example PortableSQLException subclass, which demonstrates how to create a user-defined

* exception for exception mapping.

*/

public class ColumnNotFoundException extends PortableSQLException

1132 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

{

 public ColumnNotFoundException(SQLException sqlX)

 {

 super(sqlX);

 }

}

Connection factory

An application component uses a connection factory to access a connection instance, which the

component then uses to connect to the underlying enterprise information system (EIS).

Examples of connections include database connections, Java Message Service connections, and SAP R/3

connections.

CMP Connection Factories collection:

Use this page to view existing CMP connection factories settings.

 These are the connection factories used by a container-managed persistence (CMP) bean to access any

backend data store. A CMP Connection Factory is used by EJB model 2.x Entities with CMP version 2.x.

Connection factories listed on this page are created automatically under the WebSphere Relational

Resource Adapter when you check the box Use this DataSource in container managed persistence (CMP)

in the General Properties area on the Data Source page. You cannot modify the settings for a CMP

Connection Factory, and you can not delete CMP Connection Factories from this collection. To remove the

CMP Connection Factory object, you must navigate to the data source associated with the CMP

Connection Factory and uncheck the Use this DataSource for CMP checkbox.

To view this administrative console page, click Resources >Resource Adapters >WebSphere Relational

Resource Adapter > CMP Connection Factories.

Name:

Specifies a list of the display names for the resources.

 Data type String

JNDI Name:

Specifies the JNDI name of the resource.

 Data type String

Description:

Specifies a description for the resource.

 Data type String

Category:

Specifies a category string which can be used to classify or group the resource.

 Data type String

CMP connection factory settings:

Chapter 8. Developing WebSphere applications 1133

Use this page to view the settings of a connection factory that is used by a CMP bean to access any

backend data store. This connection factory is only in ″read″ mode. It cannot be modified or deleted.

 To view this administrative console page, click Resources >Resource Adapters > WebSphere Relational

Resource Adapter> CMP Connection Factories > connection_factory

Name:

Specifies the display name for the resource.

 Data type String

JNDI name:

Specifies the JNDI name of the resource.

 Data type String

Description:

Specifies a description for the resource.

 Data type String

Category:

Specifies a category string which can be used to classify or group the resource.

 Data type String

Authentication Preference:

Specifies which of the authentication mechanisms that are defined for the corresponding resource adapter

applies to this connection factory. This property is deprecated starting with version 6.0.

 For example, if two authentication mechanism entries are defined for a resource adapter (KerbV5 and

Basic Password), this specifies one of those two types. If the authentication mechanism preference

specified is not an authentication mechanism available on the corresponding resource adapter, it is

ignored.

 Data type String

Component-managed authentication alias:

References authentication data for component-managed signon to the resource.

 Data type Drop-down list

Container-managed authentication alias:

References authentication data for container-managed signon to the resource. This property is deprecated

starting with version 6.0.

1134 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Data type Drop-down list

JDBC providers

Installed applications use JDBC providers to access data from databases.

For applications that need access to relational databases, the JDBC provider and data source together are

functionally equivalent to the J2EE Connector Architecture (JCA) connection factory. The WebSphere

Application Server prerequisite Web site has a current list of supported providers. See ″Hardware and

software requirements″ in the information center for more information.

Data sources

Installed applications uses a data source to access the data from the database.

A data source is associated with a JDBC provider that supplies the specific JDBC driver implementation

class. The data source represents the J2EE Connector Architecture (JCA) connection factory for the

relational resource adapter. Application components use the data source to access connection instances to

a specific database; a connection pool is associated with each data source.

You can create multiple data sources with different settings, and associate them with the same JDBC

provider. (One reason to do this is to provide access to different databases.) JDBC providers that are

supported by WebSphere Application Server are required to implement one or both of the following data

source interfaces, which are defined by Sun Microsystems. These interfaces enable the application to run

in a single-phase or two-phase transaction protocol.

v ConnectionPoolDataSource - a data source that supports application participation in local and global

transactions, excepting two-phase commit transactions. When a connection pool data source is involved

in a global transaction, transaction recovery is not provided by the transaction manager. The application

is responsible for providing the backup recovery process if multiple resource managers are involved.

v XADataSource - a data source that supports application participation in any single-phase or two-phase

transaction environment. When this data source is involved in a global transaction, the WebSphere

Application Server transaction manager provides transaction recovery.

In WebSphere Application Server releases prior to version 5.0, the function of data access was provided

by a single connection manager (CM) architecture. This connection manager architecture remains

available to support J2EE 1.2 applications, but another connection manager architecture is provided,

based on the JCA architecture supporting the new J2EE 1.3 application style (also for J2EE 1.4

applications).

These two separate architectures are represented by two types of data sources. To choose the right data

source, administrators must understand the nature of their applications, EJB modules, and enterprise

beans.

v Data source (Version 4.0) - This data source runs under the original CM architecture. Applications using

this data source behave as if they were running in Version 4.0.

v Data source - This data source uses the JCA standard architecture to provide support for J2EE version

1.3 applications and beyond. It runs under the JCA connection manager and the relational resource

adapter.

Choice of data source

v J2EE 1.2 application - all EJB 1.1 enterprise beans, JDBC applications, or Servlet 2.2 components must

use the 4.0 data source.

v J2EE 1.3 (and subsequent releases) application -

– EJB 1.1 Module - all EJB 1.x beans must use the 4.0 data source.

– EJB 2.0 (and subsequent releases) Module - enterprise beans that include container-managed

persistence (CMP) Version 1.x, 2.0, and beyond must use the new data source.

– JDBC applications and Servlet 2.3+ components - must use the new data source.

Chapter 8. Developing WebSphere applications 1135

Data access beans

Data access beans provide a rich set of features and function, while hiding much of the complexity

associated with accessing relational databases.

They are Java classes written to the Enterprise JavaBeans specification.

You can use the data access beans in JavaBeans-compliant tools, such as the IBM Rational Application

Developer. Because the data access beans are also Java classes, you can use them like ordinary classes.

The data access beans (in the package com.ibm.db) offer the following capabilities:

Feature

Details

Caching query results

You can retrieve SQL query results all at once and place them in a cache. Programs using the

result set can move forward and backward through the cache or jump directly to any result row in

the cache.

 For large result sets, the data access beans provide ways to retrieve and manage packets,

subsets of the complete result set.

Updating through result cache

Programs can use standard Java statements (rather than SQL statements) to change, add, or

delete rows in the result cache. You can propagate changes to the cache in the underlying

relational table.

Querying parameter support

The base SQL query is defined as a Java String, with parameters replacing some of the actual

values. When the query runs, the data access beans provide a way to replace the parameters with

values made available at run time. Default mappings for common data types are provided, but you

can specify whatever your Java program and database require.

Supporting metadata

A StatementMetaData object contains the base SQL query. Information about the query (metadata)

enables the object to pass parameters into the query as Java data types.

 Metadata in the object maps Java data types to SQL data types (as well as the reverse). When

the query runs, the Java-datatyped parameters are automatically converted to SQL data types as

specified in the metadata mapping.

 When results return, the metadata object automatically converts SQL data types back into the

Java data types specified in the metadata mapping.

Connection management architecture

The connection management architecture for both relational and procedural access to enterprise

information systems (EIS) is based on the J2EE Connector Architecture (JCA) specification. The

Connection Manager (CM), which pools and manages connections within an application server, is capable

of managing connections obtained through both resource adapters (RAs) defined by the JCA specification,

and data sources defined by the JDBC 2.0 (and later) Extensions specification.

To make data source connections manageable by the CM, the WebSphere Application Server provides a

resource adapter (the WebSphere Relational Resource Adapter) that enables JDBC data sources to be

managed by the same CM that manages JCA connections. From the CM point of view, JDBC data

sources and JCA connection factories look the same. Users of data sources do not experience any

programmatic or behavioral differences in their applications because of the underlying JCA architecture.

JDBC users still configure and use data sources according to the JDBC programming model.

Applications migrating from previous versions of WebSphere Application Server might experience some

behavioral differences because of the specification changes from various J2EE requirements levels. These

differences are not related to the adoption of the JCA architecture.

1136 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

If you have J2EE 1.2 applications using the JDBC API that you wish to run in WebSphere Application

Server 6.0, the JDBC CM from Application Server version 4.0 is still provided as a configuration option.

Using this configuration option enables J2EE 1.2 applications to run unaltered. If you migrate a Version 4.0

application to Version 6.0, using the Version 6.0 migration tools, the application automatically uses the

Version 4.0 connection manager after migration. However, EJB 2.x modules in J2EE 1.3 (or later versions)

applications cannot use the JDBC CM from WebSphere Application Server Version 4.0.

Connection pooling:

When accessing any database, establishing connections is an expensive operation. Connection pooling

enables administrators to establish a pool of database connections that applications can share on an

application server. When connection pooling capabilities are used, performance improvements up to 20

times the normal results are realized.

 Each time a resource attempts to access a backend store (such as a database), the resource must

connect to that data store. A connection requires resources to create, maintain, and then release the

connection when it is no longer required.

The total data store overhead for an application is particularly high for Web-based applications because

Web users connect and disconnect more frequently. In addition, user interactions are typically shorter.

Often, more effort is spent connecting and disconnecting than is spent during the interactions. Also,

because Internet requests can arrive from virtually anywhere, you can find usage volumes large and

difficult to predict.

To help lessen these overhead problems, the WebSphere Application Server enables administrators to

establish a pool of backend connections that applications can share on an application server. Connection

pooling spreads the connection overhead across several user requests, thereby conserving resources for

future requests.

WebSphere Application Server supports JDBC 3.0 APIs to provide support for connection pooling and

connection reuse. The connection pool is used to direct JDBC calls within the application, as well as for

enterprise beans using the database.

Each entity bean transaction requires an additional connection to the database specifically to handle the

transaction. Take this into account when calculating the number of data source connections.

On UNIX platforms, a separate DB2 process is created for each connection and these processes quickly

affect performance on systems with low memory and cause errors.

If clones are used, one data pool exists for each clone. This is important when configuring the database

maximum connections.

Benefits of connection pooling: Connection pooling can improve the response time of any application that

requires connections, especially Web-based applications. When a user makes a request over the Web to a

resource, the resource accesses a data source. With connection pooling, most user requests do not incur

the overhead of creating a new connection because the data source can locate and use an existing

connection from the pool of connections. When the request is satisfied and the response is returned to the

user, the resource returns the connection to the connection pool for reuse. The overhead of a

disconnection is avoided. Each user request incurs a fraction of the cost for connecting or disconnecting.

After the initial resources are used to produce the connections in the pool, additional overhead is

insignificant because the existing connections are reused.

When to use connection pooling: Use WebSphere connection pooling in an application that meets any of

the following criteria:

v It cannot tolerate the overhead of obtaining and releasing connections whenever a connection is used.

v It requires Java Transaction API (JTA) transactions within WebSphere Application Server.

Chapter 8. Developing WebSphere applications 1137

v It needs to share connections among multiple users within the same transaction.

v It needs to take advantage of product features for managing local transactions within the application

server.

v It does not manage the pooling of its own connections.

v It does not manage the specifics of creating a connection, such as the database name, user name, or

password

How connections are pooled together: Whenever you configure a unique data source or connection

factory, you are required to give it a unique Java Naming and Directory Interface (JNDI) name. This JNDI

name, along with its configuration information, is used to create a connection pool. A separate connection

pool exists for each configured data source or connection factory.

A separate instance of a given configured connection pool is created on each application server that uses

that data source or connection factory. For example, if you run a three server cluster in which all of the

servers use myDataSource, and myDataSource has a maximum connections setting of 10, then you can

generate up to 30 connections (three servers times 10 connections). Be sure to consider this fact when

determining how many connections to your backend resource you can support.

It is also important to note that when using connection sharing, it is only possible to share connections

obtained from the same connection pool.

Avoiding a deadlock: Deadlock can occur if the application requires more than one concurrent connection

per thread, and the database connection pool is not large enough for the number of threads. Suppose

each of the application threads requires two concurrent database connections and the number of threads

is equal to the maximum connection pool size. Deadlock can occur when both of the following are true:

v Each thread has its first database connection, and all are in use.

v Each thread is waiting for a second database connection, and none would become available since all

threads are blocked.

To prevent the deadlock in this case, the Maximum Connections value for the database connection pool

should be increased by at least one. Doing this allows for at least one of the waiting threads to obtain its

second database connection and to avoid a deadlock.

To avoid deadlock, code the application to use, at most, one connection per thread. If the application is

coded to require C concurrent database connections per thread, the connection pool must support at least

the following number of connections, where T is the maximum number of threads.

 T * (C - 1) + 1

The connection pool settings are directly related to the number of connections that the database server is

configured to support. If the maximum number of connections in the pool is raised, and the corresponding

settings in the database are not raised, the application fails and SQL exception errors are displayed in the

stderr.log file.

Deferred Enlistment: In the WebSphere Application Server environment, deferred enlistment is a term

used to refer to the technique of waiting until a connection is first used to enlist it in its unit of work (UOW)

scope.

In one example, the technique works like this: a component calls getConnection() from within a global

transaction, and at some point later in time, the component uses the connection. The call that uses the

connection is intercepted, and the XA resource for that connection is enlisted with the transaction service

(which in turn calls XAResource.start()). Next, the actual call is sent to the resource manager.

In contrast, if a component gets a connection within a global transaction without deferred enlistment, then

the connection is enlisted in the transaction and has all the overhead associated with that transaction. For

XA connections, this includes the two phase commit (2PC) protocol to the resource manager. Deferred

1138 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

enlistment offers better performance in the case where a connection is obtained, but not used within the

UOW scope. This saves all the overhead of participating in the UOW when it is not needed.

The WebSphere Application Server relational resource adapter automatically supports deferred enlistment

without any additional configuration needed.

Lazy Transaction Enlistment Optimization: The J2EE Connector Architecture (JCA) Version 1.5

specification calls the deferred enlistment technique lazy transaction enlistment optimization. This support

comes through a marker interface (LazyEnlistableManagedConnection) and a new method on the

connection manager (LazyEnlistableConnectionManager()):

package javax.resource.spi;

import javax.resource.ResourceException;

import javax.transaction.xa.Xid;

interface LazyEnlistableConnectionManager { // application server

 void lazyEnlist(ManagedConnection) throws ResourceException;

}

interface LazyEnlistableManagedConnection { // resource adapter

}

A resource adapter is not required to support this functionality. Check with the resource adapter provider if

you need to know if the resource adapter provides this functionality.

Connection and connection pool statistics: Performance Monitoring Infrastructure (PMI) method calls that

are supported in the two existing Connection Managers (JDBC and J2C) are still supported in this version

of WebSphere Application Server. The calls include:

v ManagedConnectionsCreated

v ManagedConnectionsAllocated

v ManagedConnectionFreed

v ManagedConnectionDestroyed

v BeginWaitForConnection

v EndWaitForConnection

v ConnectionFaults

v Average number of ManagedConnections in the pool

v Percentage of the time that the connection pool is using the maximum number of ManagedConnections

v Average number of threads waiting for a ManagedConnection

v Average percent of the pool that is in use

v Average time spent waiting on a request

v Number of ManagedConnections that are in use

v Number of Connection Handles

v FreePoolSize

v UseTime

Java Specification Request (JSR) 77 requires statistical data to be accessed through managed beans

(Mbeans) to facilitate this. The Connection Manager passes the ObjectNames of the Mbeans created for

this pool. In the case of Java Message Service (JMS) null is passed in. The interface used is :

PmiFactory.createJ2CPerf(

 String pmiName, // a unique Identifier for JCA /JDBC. This is the

 // ConnectionFactory name.

 ObjectName providerName,// the ObjectName of the J2CResourceAdapter

 // or JDBCProvider Mbean

 ObjectName factoryName // the ObjectName of the J2CConnectionFactory

 // or DataSourceMbean.

)

Chapter 8. Developing WebSphere applications 1139

The following Unified Modeling Language (UML) diagram shows how JSR 77 requires statistics to be

reported :

<<JavaInterface>>

<<JavaInterface>>

<<JavaInterface>>

<<JavaInterface>>

+ getConnections ()

+ getConnectionFactory ()

+ getCloseCount ()

+ getWaitTime ()

+ getFreePoolSize ()

+ getUseTime ()

+ getPoolSize ()

+ getWaitingThreadCount ()

+ getConnections ()

+ getConnectionPools ()

+ getManageConnectionFactory ()

+ getCreateCount ()

+ getConnectionPools ()

JCAStats

JCAConnectionStats

JCAConnectionPoolStats

JDBCStats

JDBCDataSource

<<JavaInterface>>

<<JavaInterface>>

+ getJdbcDataSource ()

+ getCreateCount ()

+ getWaitTime ()

+ getCloseCount ()

+ getUseTime ()

+ getPoolSize ()

+ Operation1 ()

+ getFreePoolSize ()

+ getWaitingThreadCount ()

JDBCConnectionStats

JDBCConnectionPoolStats

1

 In WebSphere Application Server Version 5.x, the JCAStats interface was implemented by the

J2CResourceAdapter Mbean, and the JDBCStats interface was implemented by the JDBCProvider Mbean.

The JCAConnectionStats and JDBCConnectionStats interfaces are not implemented because they collect

statistics for non pooled connections - which are not present in the JCA 1.0 Specification.

JCAConnectionPoolStats, and JDBCConnectionPoolStats do not have a direct implementing Mbean; those

statistics are gathered through a call to PMI. A J2C resource adapter, and JDBC provider each contain a

list of ConnectionFactory or DataSource ObjectNames, respectively. The ObjectNames are used by PMI to

find the appropriate connection pool in the list of PMI modules.

The JCA 1.5 Specification allows an exception from the matchManagedConnection() method that indicates

that the resource adapter requests that the connection not be pooled. In that case, statistics for that

connection are provided separately from the statistics for the connection pool.

Connection life cycle:

A ManagedConnection object is always in one of three states: DoesNotExist, InFreePool, or InUse.

 Before a connection is created, it must be in the DoesNotExist state. After a connection is created, it can

be in either the InUse or the InFreePool state, depending on whether it is allocated to an application.

Between these three states are transitions. These transitions are controlled by guarding conditions. A

guarding condition is one in which true indicates when you can take the transition into another legal state.

For example, you can make the transition from the InFreePool state to InUse state only if:

v the application has called the data source or connection factory getConnection() method (the

getConnection condition)

v a free connection is available in the pool with matching properties (the freeConnectionAvailable

condition)

v and one of the two following conditions are true:

– the getConnection() request is on behalf of a resource reference that is marked unsharable

1140 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

– the getConnection() request is on behalf of a resource reference that is marked shareable but no

shareable connection in use has the same properties.

This transition description follows:

InFreePool > InUse:

getConnection AND

freeConnectionAvailable AND

NOT(shareableConnectionAvailable)

Here is a list of guarding conditions and descriptions.

 Condition Description

ageTimeoutExpired Connection is older then its ageTimeout value.

close Application calls close method on the Connection object.

fatalErrorNotification A connection has just experienced a fatal error.

freeConnectionAvailable A connection with matching properties is available in the

free pool.

getConnection Application calls getConnection method on a data source

or connection factory object.

markedStale Connection is marked as stale, typically in response to a

fatal error notification.

noOtherReferences There is only one connection handle to the managed

connection, and the Transaction Service is not holding a

reference to the managed connection.

noTx No transaction is in force.

poolSizeGTMin Connection pool size is greater than the minimum pool

size (minimum number of connections)

poolSizeLTMax Pool size is less than the maximum pool size (maximum

number of connections)

shareableConnectionAvailable The getConnection() request is for a shareable

connection, and one with matching properties is in use

and available to share.

TxEnds The transaction has ended.

unshareableConnectionRequest The getConnection() request is for an unshareable

connection.

unusedTimeoutExpired Connection is in the free pool and not in use past its

unused timeout value.

Getting connections: The first set of transitions covered are those in which the application requests a

connection from either a data source or a connection factory. In some of these scenarios, a new

connection to the database results. In others, the connection might be retrieved from the connection pool

or shared with another request for a connection.

DoesNotExist

Every connection begins its life cycle in the DoesNotExist state. When an application server starts, the

connection pool does not exist. Therefore, there are no connections. The first connection is not created

until an application requests its first connection. Additional connections are created as needed, according

to the guarding condition.

Chapter 8. Developing WebSphere applications 1141

getConnection AND

NOT(freeConnectionAvailable) AND

poolSizeLTMax AND

(NOT(shareableConnectionAvailable) OR

unshareableConnectionRequest)

This transition specifies that a connection object is not created unless the following conditions occur:

v The application calls the getConnection() method on the data source or connection factory

v No connections are available in the free pool (NOT(freeConnectionAvailable))

v The pool size is less than the maximum pool size (poolSizeLTMax)

v If the request is for a sharable connection and there is no sharable connection already in use with the

same sharing properties (NOT(shareableConnectionAvailable)) OR the request is for an unsharable

connection (unshareableConnectionRequest)

All connections begin in the DoesNotExist state and are only created when the application requests a

connection. The pool grows from 0 to the maximum number of connections as applications request new

connections. The pool is not created with the minimum number of connections when the server starts.

If the request is for a sharable connection and a connection with the same sharing properties is already in

use by the application, the connection is shared by two or more requests for a connection. In this case, a

new connection is not created. For users of the JDBC API these sharing properties are most often

userid/password and transaction context; for users of the Resource Adapter Common Client Interface

(CCI) they are typically ConnectionSpec, Subject, and transaction context.

InFreePool

The transition from the InFreePool state to the InUse state is the most common transition when the

application requests a connection from the pool.

InFreePool>InUse:

getConnection AND

freeConnectionAvailable AND

(unshareableConnectionRequest OR

NOT(shareableConnectionAvailable))

This transition states that a connection is placed in use from the free pool if:

v the application has issued a getConnection() call

v a connection is available for use in the connection pool (freeConnectionAvailable),

v and one of the following is true:

– the request is for an unsharable connection (unsharableConnectionRequest)

– no connection with the same sharing properties is already in use in the transaction.

(NOT(sharableConnectionAvailable)).

Any connection request that a connection from the free pool can fulfill does not result in a new connection

to the database. Therefore, if there is never more than one connection used at a time from the pool by any

number of applications, the pool never grows beyond a size of one. This number can be less than the

minimum number of connections specified for the pool. One way that a pool grows to the minimum

number of connections is if the application has multiple concurrent requests for connections that must

result in a newly created connection.

InUse

The idea of connection sharing is seen in the transition on the InUse state.

InUse>InUse:

getConnection AND

ShareableConnectionAvailable

1142 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

This transition indicates that if an application requests a shareable connection (getConnection) with the

same sharing properties as a connection that is already in use (ShareableConnectionAvailable), the

existing connection is shared.

The same user (user name and password, or subject, depending on authentication choice) can share

connections but only within the same transaction and only when all of the sharing properties match. For

JDBC connections, these properties include the isolation level, which is configurable on the

resource-reference (IBM WebSphere extension) to data source default. For a resource adapter factory

connection, these properties include those specified on the ConnectionSpec object. Because a transaction

is normally associated with a single thread, you should never share connections across threads.

Note: It is possible to see the same connection on multiple threads at the same time, but this situation is

an error state usually caused by an application programming error.

Returning connections: All of the transitions discussed previously involve getting a connection for

application use. With that goal, the transitions result in a connection closing, and either returning to the

free pool or being destroyed. Applications should explicitly close connections (note: the connection that the

user gets back is really a connection handle) by calling close() on the connection object. In most cases,

this action results in the following transition:

InUse>InFreePool:

(close AND

noOtherReferences AND

NoTx AND

UnshareableConnection)

OR

(ShareableConnection AND

TxEnds)

Conditions that cause the transition from the InUse state are:

v If the application or the container calls close() (producing the close condition) and there are no

references (the noOtherReferences condition) either by the application (in the application sharing

condition) or by the transaction manager (in the NoTx condition, meaning that the transaction manager

holds a reference when the connection is enlisted in a transaction), the connection object returns to the

free pool.

v If the connection was enlisted in a transaction but the transaction manager ends the transaction (the

txEnds condition), and the connection was a shareable connection (the ShareableConnection condition),

the connection closes and returns to the pool.

When the application calls close() on a connection, it is returning the connection to the pool of free

connections; it is not closing the connection to the data store. When the application calls close() on a

currently shared connection, the connection is not returned to the free pool. Only after the application

drops the last reference to the connection, and the transaction is over, is the connection returned to the

pool. Applications using unsharable connections must take care to close connections in a timely manner.

Failure to do so can starve out the connection pool, making it impossible for any application running on the

server to get a connection.

When the application calls close() on a connection enlisted in a transaction, the connection is not returned

to the free pool. Because the transaction manager must also hold a reference to the connection object, the

connection cannot return to the free pool until the transaction ends. Once a connection is enlisted in a

transaction, you cannot use it in any other transaction by any other application until after the transaction is

complete.

There is a case where an application calling close() can result in the connection to the data store closing

and bypassing the connection return to the pool. This situation happens if one of the connections in the

pool is considered stale. A connection is considered stale if you can no longer use it to contact the data

store. For example, a connection is marked stale if the data store server is shut down. When a connection

is marked as stale, the entire pool is cleaned out by default because it is very likely that all of the

Chapter 8. Developing WebSphere applications 1143

connections are stale for the same reason (or you can set your configuration to clean just the failing

connection). This cleansing includes marking all of the currently InUse connections as stale so they are

destroyed upon closing. The following transition states the behavior on a call to close() when the

connection is marked as stale:

InUse>DoesNotExist:

close AND

markedStale AND

NoTx AND

noOtherReferences

This transition states that if the application calls close() on the connection and the connection is marked as

stale during the pool cleansing step (markedStale), the connection object closes to the data store and is

not returned to the pool.

Finally, you can close connections to the data store and remove them from the pool.

This transition states that there are three cases in which a connection is removed from the free pool and

destroyed.

1. If a fatal error notification is received from the resource adapter (or data source). A fatal error

notification (FatalErrorNotification) is received from the resource adaptor when something happens to

the connection to make it unusable. All connections currently in the free pool are destroyed.

2. If the connection is in the free pool for longer than the unused timeout period (UnusedTimeoutExpired)

and the pool size is greater than the minimum number of connections (poolSizeGTMin), the connection

is removed from the free pool and destroyed. This mechanism enables the pool to shrink back to its

minimum size when the demand for connections decreases.

3. If an age timeout is configured and a given connection is older than the timeout. This mechanism

provides a way to recycle connections based on age.

Unshareable and shareable connections:

 WebSphere Application Server supports both unshareable and shareable connections. An unshareable

connection is not shared with other components in the application. The component using this connection

has full control of this connection.

You can share a shareable connection with other components within the same transaction as long as each

getConnection() request has the same connection properties. To enable connection sharing for data

sources, the following connection properties must be the same:

v Java Naming and Directory Interface (JNDI) name. While not actually a connection property, this

requirement simply means that you can only share connections from the same data source in the same

server.

v Resource authentication

v In relational databases:

– Isolation level (corresponds to access intent policies applied to CMP beans)

– Readonly

– Catalog

– TypeMap

To enable connection sharing for resource adapters within the same transaction, the following connection

properties must be the same:

v JNDI name. While not actually a connection property, this requirement simply means that you can only

share connections from the same resource adapter in the same server.

v Resource authentication

In addition, the ConnectionSpec object used to get the connection must also be the same. For more

information on sharing a connection with a CMP bean, see Sharing a connection with a CMP bean.

Java Message Service (JMS) connections cannot be shared with non-JMS connections.

1144 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Access to a resource marked as unshareable means that there is a one-to-one relationship between the

connection handle a component is using and the physical connection with which the handle is associated.

This access implies that every call to the getConnection() method returns a connection handle solely for

the requesting user. Typically, you must choose unshareable if you might do things to the connection that

could result in unexpected behavior occurring in another application that is sharing the connection (for

example, unexpectedly changing the isolation level).

Marking a resource as shareable allows for greater scalability. Instead of creating new physical

connections on every getConnection() invocation, the physical connection (that is, managed connection) is

shared through multiple connection handles, as long as each getConnection request has the same

connection properties. However, sharing a connection means that each user must not do anything to the

connection that could change its behavior and disrupt a sharing partner (for example, changing the

isolation level). The user also cannot code an application that assumes sharing to take place because it is

up to the run time to decide whether or not to share a particular connection.

For WebSphere Application Server, all sharing of connections is relative to the current Unit of Work (UOW)

boundary. Anyone within a specific transaction, when getting a connection from a specific connection pool,

gets a handle to the same physical connection (if the sharing properties are the same).

Factors that determine sharing: The listing here is not an exhaustive one. The product might or might not

share connections under different circumstances.

v Only connections acquired with the same resource reference (resource-ref) that specifies the

res-sharing-scope as shareable are candidates for sharing. The resource reference properties of

res-sharing-scope and res-auth and the IBM extension isolationLevel help determine if it is possible to

share a connection. IBM extension isolationLevel is stored in IBM deployment descriptor extension file;

for example: ibm-ejb-jar-ext.xmi.

v You can only share connections that are requested with the same properties.

v Connection Sharing only occurs between different component instances if they are within a transaction

(container- or user-initiated transaction).

v Connection Sharing only occurs within a sharing boundary. Current sharing boundaries include

Transactions and LocalTransactionContainment (LTC) boundaries.

v Connection Sharing rules within an LTC Scope:

– For shareable connections, only Connection Reuse is allowed within a single component instance.

Connection reuse occurs when the following actions are taken with a connection: get, use,

commit/rollback, close; get, use, commit/rollback, close. Note that if you use the LTC

resolution-control of ContainerAtBoundary then no start/commit is needed because that action is

handled by the container.

The connection returned on the second get is the same connection as that returned on the first get

(if the same properties are used). Because the connection use is serial, only one connection handle

to the underlying physical connection is used at a time, so true connection sharing does not take

place. The term ″reuse″ is more accurate.

More importantly, the LocalTransactionContainment boundary enclosing both get actions is not

complete; no cleanUp() method is invoked on the ManagedConnection object. Therefore the second

get action inherits all of the connection properties set during the first getConnection() call.
v Shareable connections between transactions (either container-managed transactions (CMT),

bean-managed transactions (BMT), or LTC transactions) follow these caching rules:

– In general, setting properties on shareable connections is not allowed because a user of one

connection handle might not anticipate a change made by another connection handle. This limitation

is part of the J2EE 1.3 standard.

– General users of resource adapters can set the connection properties on the connection factory

getConnection() call by passing them in a ConnectionSpec.

However, the properties set on the connection during one transaction are not guaranteed to be the

same when used in the next transaction. Because it is not valid to share connections outside of a

sharing scope, connection handles are moved off of the physical connection with which they are

currently associated when a transaction ends. That physical connection is returned to the free

Chapter 8. Developing WebSphere applications 1145

connection pool. Connections are cleaned before going in the free pool. The next time the handle is

used, it is automatically associated with an appropriate connection. The appropriateness is based on

the security login information, connection properties, and (for the JDBC API) the isolation level

specified in the extended resource reference, passed in on the original request that returned the

current handle. Any properties set on the connection after it was retrieved are lost.

– For JDBC users, WebSphere Application Server provides an extension to enable passing the

connection properties through the ConnectionSpec.

Use caution when setting properties and sharing connections in a local transaction scope. Ensure

that other components with which the connection is shared are expecting the behavior resulting from

your settings.
v You cannot set the isolation level on a shareable connection for the JDBC API using a relational

resource adapter in a global transaction. The product provides an extension to the resource reference to

enable you to specify the isolation level. If your application requires the use of multiple isolation levels,

create multiple resource references and map them to the same data source or connection factory.

Sharing a connection with a CMP bean: WebSphere Application Server allows you to share a physical

connection between a CMP bean, a BMP bean, and a JDBC application to reduce the resource allocation

or deadlock scenarios. There are several ways to ensure that all of these entity beans and the JDBC

applications are sharing the same physical connection.

v Sharing a connection between CMP beans or methods

When all CMP bean methods use the same access intent, they all share the same physical connection.

A different access intent policy triggers the allocation of a different physical connection. For example, a

CMP bean has two methods; method 1 is associated with wsPessimisticUpdate intent, whereas method

2 has wsOptimisticUpdate access intent. Method 1 and method 2 cannot share the same physical

connection within a transaction. In other words, an XA data source is required to run in a global

transaction.

You can experience some deadlocks from a database if both methods try to access the same table.

Therefore, sharing a connection is determined by the access intents that are defined in the CMP

methods.

v Sharing a connection between CMP and BMP beans

There are two options to ensure that both CMP and BMP beans share the same physical connection:

– Define the same access intent on both CMP and BMP bean methods. Because both use the same

access intent, they share the same physical connection. The advantage to using this option is that

the backend is transparent to a BMP bean; however, this BMP is not portable because it uses the

WebSphere extended API to handle the isolation level. For more information, refer to the code

example in Example: Accessing data using IBM extended APIs to share connections between

container-managed and bean-managed persistence beans.

– Determine the isolation level that the access intent uses on a CMP bean method, then use the

corresponding isolation level that is specified on the resource reference to look up a data source and

a connection. This option is more of a manual process, and the isolation level might be different from

database to database. For more information refer to the isolation level and access intent mapping

table: Access intent isolation levels and update locks and the Isolation level and resource reference

section.

v Sharing a connection between CMP and a JDBC application that is used by a servlet or a

session bean

Determine the isolation level that the access intent uses on a CMP bean method, then use the

corresponding isolation level specified on the resource reference to look up a data source and a

connection. For more information refer to Access intent isolation levels and update locks and Isolation

level and resource reference.

Connection sharing violations: There is a new exception, the SharingViolation exception, that the

resource adapter can issue whenever an operation violates sharing requirements. Possible violations

1146 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

include changing connection attributes, security settings, or isolation levels, among others. When such a

mutable operation is performed against a managed connection, the SharingViolation exception can occur

when both of the following conditions are true:

v The number of connection handles associated with the managed connection is more than one.

v The managed connection is associated with a transaction, either local or XA.

Both the component and the J2C run time might need to detect this SharingViolation exception,

depending on when and how the managed connection becomes unshareable. If the managed connection

becomes unshareable because of an operation through the connection handle (for example, you change

the isolation level), then the component needs to process the exception. If the managed connection

becomes unshareable without being recognized by the application server (due to some component

interaction with the connection handle), then the resource adapter can reject the creation of a connection

handle by issuing the SharingViolation exception.

Connection handles:

A connection handle is a representation of a physical connection.

 To use a backend resource (such as a relational database) in WebSphere Application Server you must get

a connection to that resource. When you call the getConnection() method, you get a connection handle

returned. The handle is not the physical connection. The physical connection is managed by the

connection manager.

There are two significant configurations that affect how connection handles are used and how they

behave. The first is the res-sharing-scope, which is defined by the resource-reference used to look up the

DataSource or Connection Factory. This property tells the connection manager whether or not you can

share this connection.

The second factor that affects connection handle behavior is the usage pattern. There are essentially two

usage patterns. The first is called the get/use/close pattern. It is used within a single method and without

calling another method that might get a connection from the same data source or connection factory. An

application using this pattern does the following:

1. gets a connection

2. does its work

3. commits (if appropriate)

4. closes the connection.

The second usage pattern is called the cached handle pattern. This is where an application:

1. gets a connection

2. begins a global transaction

3. does work on the connection

4. commits a global transaction

5. does work on the connection again

A cached handle is a connection handle that is held across transaction and method boundaries by an

application. Keep in mind the following considerations for using cached handles:

v Cached handle support requires some additional connection handle management across these

boundaries, which can impact performance. For example, in a JDBC application, Statements,

PreparedStatements, and ResultSets are closed implicitly after a transaction ends, but the connection

remains valid.

v You are encouraged not to cache the connection across the transaction boundary for shareable

connections; the get/use/close pattern is preferred.

v Caching of connection handles across servlet methods is limited to JDBC and Java Message Service

(JMS) resources. Other non-relational resources, such as Customer Information Control System (CICS)

or IMS objects, currently cannot have their connection handles cached in a servlet; you need to get,

Chapter 8. Developing WebSphere applications 1147

use, and close the connection handle within each method invocation. (This limitation only applies to

single-threaded servlets because multithreaded servlets do not allow caching of connection handles.)

The following code segment shows the cached connection pattern.

Connection conn = ds.getConnection();

ut.begin();

conn.prepareStatement("....."); --> Connection runs in global transaction mode

...

ut.commit();

conn.prepareStatement("....."); ---> Connection still valid but runs in autoCommit(True);

...

Unshareable connections: Some characteristics of connection handles retrieved with a res-sharing-scope

of unshareable are described in the following sections.

The possible benefits of unshared connections

v Your application always maintains a direct link with a physical connection (managed connection).

v The connection always has a one-to-one relationship between the connection handle and the managed

connection.

v In most cases, the connection does not close until the application closes it.

v You can use a cached unshared connection handle across multiple transactions.

v The connection can have a performance advantage in some cached handle situations. Because

unshared connections do not have the overhead of moving connection handles off managed

connections at the end of the transaction, there is less overhead in using a cached unshared

connection.

The possible drawbacks of unshared connections

v Inefficient use of your connection resources. For example, if within a single transaction you get more

than one connection (with the same properties) using the same data source or connection factory (same

resource-ref) then you use multiple physical connections when you use unshareable connections.

v Wasted connections. It is important not to keep the connection handle open (that is, your application

does not call the close() method) any longer then it is needed. As long as an unshareable connection is

open, the physical connection is unavailable to any other component, even if your application is not

currently using that connection. Unlike a shareable connection, an ushareable connection is not closed

at the end of a transaction or servlet call.

v Deadlock considerations. Depending on how your components interact with the database within a

transaction, using unshared connections can lead to deadlock in the database. For example, within a

transaction, component A gets a connection to data source X and updates table 1, and then calls

component B. Component B gets another connection to data source X, and updates/reads table 1 (or

even worse the same row as component A). In some circumstances, depending on the particular

database, its locking scheme, and the transaction isolation level, a deadlock can occur.

In the same scenario, but with a shared connection, deadlock does not occur because all the work is

done on the same connection. It is worth noting that when writing code that uses shared connections,

you use a strategy that calls for multiple work items to be performed on the same connection, possibly

within the same transaction. If you decide to use an unshareable connection, you must set the

maximum connections property on the connection factory or data source correctly. An exception might

occur for waiting connection requests if you exceed the maximum connections value, and unshareable

connections are not being closed before the connection wait time-out is exceeded.

Shareable connections: Some characteristics of connection handles that are retrieved with a

res-sharing-scope of shareable are described in the following sections.

The possible benefits of shared connections

v Within an instance of connection sharing, application components can share a managed connection with

one or more connection handles, depending on how the handle is retrieved and which connection

properties are used.

1148 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

v They can more efficiently use resources. Shareable connections are not valid outside of their sharing

boundary. For this reason, at the end of a sharing boundary (such as a transaction) the connection

handle is no longer associated with the managed connection it was using within the sharing boundary

(this applies only when using the cached handle pattern). The managed connection is returned to the

free connection pool for reuse. Connection resources are not held longer than the end of the current

sharing scope.

If the cached handle pattern is used, then the next time the handle is used within a new sharing scope,

the application server run time ensures that the handle is reassociated with a managed connection that

is appropriate for the current sharing scope, and has the same properties with which the handle was

originally retrieved. Remember that it is not appropriate to change properties on a shareable connection.

If properties are changed, other components that share the same connection might experience

unexpected behavior. Futhermore, when using cached handles, the value of the changed property might

not be remembered across sharing scopes.

The possible drawbacks of shared connections

v Sharing within a single component (such as an enterprise bean and its related Java objects) is not

always supported. The current specification allows resource adapters the choice of only allowing one

active connection handle at a time.

If a resource adapter chooses to implement this option then the following scenario results in an invalid

handle exception: A component using shareable connections gets a connection and uses it. Without

closing the connection, the component calls a utility class (Java object) that gets a connection handle to

the same managed connection and uses it. Because the resource adapter only supports one active

handle, the first connection handle is no longer valid. If the utility object returns without closing its

handle, the first handle is not valid and triggers an exception at any attempt to use it.

Note: This exception occurs only when calling a utility object (a Java object).

Not all resource adapters have this limitation; it occurs only in certain implementations. The WebSphere

Relational Resource Adapter (RRA) does not have this limitation. Any data source used through the

RRA does not have this limitation. If you encounter a resource adapter with this limitation you can work

around it by serializing your access to the managed connection. If you always close your connection

handle before getting another (or close your handle before calling code that gets another handle), and

before returning from a method, you can allow two pieces of code to share the same managed

connection. You simply cannot use the connection for both events at the same time.

v Trying to change the isolation level on a shareable JDBC-based connection in a global transaction (that

is supported by the RRA) causes an exception. The correct way to get connections with different

transaction isolation levels is by configuring the IBM extended resource-reference.

v Closing connection handles for shareable connections by an application is NOT supported and causes

errors. However, you can avoid this limitation by using the Relational Resource Adapter.

Lazy connection association optimization: In WebSphere Application Server Version 5.0, the Java 2

Platform, Enterprise Edition (J2EE) Connector (J2C) connection manager implemented smart handle

support. This technology enables allocation of a connection handle to an application while the managed

connection associated with that connection handle is used by other applications (assuming that the

connection is not being used by the original application). This concept is part of the J2EE Connector

Architecture (JCA) 1.5 specification. (You can find it in the JCA 1.5 specification document in the section

entitled ″Lazy Connection Association Optimization.″) Smart handle support introduces use a method on

the ConnectionManager object, the LazyAssociatableConnectionManager() method , and a new marker

interface, the DissociatableManagedConnection class. You must configure the provider of the resource

adapter to make this functionality available in your environment. (In the case of the RRA, WebSphere

Application Server itself is the provider.) The following code snippet shows how to include smart handle

support:

package javax.resource.spi;

import javax.resource.ResourceException;

interface LazyAssociatableConnectionManager { // application server

 void associateConnection(

Chapter 8. Developing WebSphere applications 1149

Object connection, ManagedConnectionFactory mcf,

 ConnectionRequestInfo info) throws ResourceException;

}

interface DissociatableManagedConnection { // resource adapter

 void dissociateConnections() throws ResourceException;

}

This DissociatableManagedConnection interface introduces another state to the Connection object:

inactive. A Connection can now be active, closed, and inactive. The connection object enters the inactive

state when a corresponding ManagedConnection object is cleaned up. The connection stays inactive until

an application component attempts to re-use it. Then the resource adapter calls back to the connection

manager to re-associate the connection with an active ManagedConnection object.

Connections and transactions:

 All connection usage occurs within the scope of either a global transaction or a local transaction

containment (LTC) boundary.

Connection behavior depends on your current operating scope. This article discusses some of the

common characteristics you see when using connections in one of the transaction scopes.

You can only share connections within a global transaction scope (assuming other sharing rules are met).

However, you can serially reuse connections within an LTC scope. A get/use/close connection pattern

followed by another instance of get/use/close (to the same data source or connection factory) enables you

to reuse the same connection. See the “Unshareable and shareable connections” on page 1144 topic for

more details.

JDBC AutoCommit behavior

All JDBC connections, when first obtained through a getConnection() call, contain the setting AutoCommit

= TRUE by default.

v If you operate within an LTC and have its resolution-control set to Application, then AutoCommit remains

TRUE unless changed by the application.

v If you operate within an LTC and have its resolution-control set to ContainerAtBoundary, then the

application should not touch the AutoCommit setting. The WebSphere Application Server run time sets

the AutoCommit value to FALSE before work begins, then commits or rolls back the work as appropriate

at the end of the LTC scope.

v If you use a connection within a global transaction, the database ignores the AutoCommit setting so that

the transaction service that controls the commit and rollback processing can manage the transaction.

This action takes place upon first use of the connection to do work, regardless of the user changing the

AutoCommit setting. After the transaction completes, the AutoCommit value returns to the value it had

before the first use of the connection. So even if the AutoCommit value is set to TRUE before the

connection is used in a global transaction, you need not set the value to FALSE since the value is

ignored by the database. In this example, after the transaction completes, the AutoCommit value of the

connection returns to TRUE.

v If you use multiple distinct connections within a global transaction, all work is guaranteed to commit or

roll back together. This is not the case for a local transaction containment (LTC scope). Within an LTC,

work done on one connection commits or rolls back independently from work done on any other

connection within the LTC.

One-phase commit and two-phase commit resources: One-phase commit resources are such that work

being done on a one phase connection cannot mix with other connections and ensure that the work done

on all of the connections completes or fails atomically . The product does not allow more than one

one-phase commit connection in a global transaction. Futhermore, it does not allow a one-phase commit

connection in a global transaction with one or more two-phase commit connections. You can coordinate

only multiple two-phase commit connections within a global transaction.

1150 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

WebSphere Application Server provides last participant support that enables a single one-phase commit

resource to participate in a global transaction with one or more two-phase commit resources.

Note that any time you do multiple getConnection() calls using a resource reference that specifies

res-sharing-scope=Unshareable , then you get multiple physical connections. This situation also occurs

when res-sharing-scope=Shareable, but the sharing rules are broken. In either case, if you run in a global

transaction, ensure the resources involved are enabled for two-phase commit (also sometimes referred to

as JTA Enabled). Failure to do so results in an XA exception that logs the following message: WTRN0063E:

An illegal attempt to enlist a one phase capable resource with existing two phase capable

resources has occurred.

Passing client information to a database: Some databases enable you to set client information on the

database connections using a backend-specific proprietary connection API. For some databases (such as

DB2) you can also set the client information as a data source property. WebSphere Application Server

before Version 6.0 only enables setting the client information as a data source property. This capability is

somewhat limited, however, because the client information cannot be dynamically changed on the data

source or the connections obtained from that data source. Also, setting the client information on the data

source causes all connections created from that data source to have the same information. For example, if

you set the ApplicationName as part of the data source clientInformation, all connections from that data

source have the same application name. Because many different applications can access the same data

source, this might not be desired.

With WebSphere Application Server Version 6.0, you can set the client information on some connections

and not others, and you can set different client information on different database connections from the

same data source. You can pass client information in one of two ways:

v Explicitly, by calling a proprietary API, setClientInformation(Properties) on the

com.ibm.websphere.rsadapter.WSConnection.

v Implicitly, using the WAS.clientinfo trace string. You can enable this dynamically from the administrative

console just like a normal trace. For more information about passing client information implicitly, see

“Setting client information implicitly” on page 1152.

The API is defined on the WSConnection class which is part of the com.ibm.websphere.rsadapter

package. You must cast your database connection in your applications to

com.ibm.websphere.rsadapter.WSConnection before calling the API, as this is a WebSphere Application

Server proprietary API. The API takes a properties object as an input parameter that provides the flexibility

of adding new client information if and when it is introduced by the backend database, without any

changes to this API itself.

public void setClientInformation (Properties props)throws SQLException;

For an example of using this API, see “Example: setClientInformation(Properties) API.”

Example: setClientInformation(Properties) API:

Usage Scenario

This API enables you to set client information on the WebSphere Application Server connection. Some of

the client information is passed on to the backend database if that database supports such functionality.

Example

import com.ibm.websphere.rsadapter.WSConnection;

.....

try {

 InitialContext ctx = new InitialContext();

 //Perform a naming service lookup to get the DataSource object.

 DataSource ds = (javax.sql.DataSource)ctx.lookup("java:comp/jdbc/myDS");

 }catch (Exception e) {System.out.println("got an exception during lookup: " + e);}

 WSConnection conn = (WSConnection) ds.getConnection();

Chapter 8. Developing WebSphere applications 1151

Properties props = new properties();

 props.setProperty(WSConnection.CLIENT_ID, "user123");

 props.setProperty(WSConnection.CLIENT_LOCATION, "127.0.0.1");

 props.setProperty(WSConnection.CLIENT_ACCOUNTING_INFO, "accounting");

 props.setProperty(WSConnection.CLIENT_APPLICATION_NAME, "appname");

 props.setProperty(WSConnection.CLIENT_OTHER_INFO, "cool stuff");

 conn.setClientInformation(props);

 conn.close()

Parameters

props contains the client information to be passed. Possible values are:

v WSConnection.CLIENT_ACCOUNTING_INFO

v WSConnection.CLIENT_LOCATION

v WSConnection.CLIENT_ID

v WSConnection.CLIENT_APPLICATION_NAME

v WSConnection.CLIENT_OTHER_INFO

v WSConnection.OTHER_CLIENT_TYPE

Refer to the WSConnection documentation for more details on which client information is passed to the

backend database. To reset the client information, call the method with a null parameter.

Exceptions

This API creates an SQL exception if the database issues an exception when setting the data.

Setting client information implicitly: You can choose to explicitly pass client information of application

requests to database connections by calling an IBM proprietary API, setClientInformation(Properties), on

the com.ibm.websphere.rsadapter.WSConnection object within your application code. In some cases,

however, you might want WebSphere Application Server to handle the passing of client information to

database connections. This method of setting the client information is referred to as implicit. You might

choose the implicit method because:

v You want to keep your application free of proprietary APIs, or

v Your application uses container-managed persistence (CMP), in which case you cannot use the

proprietary API to set client information on database connections.

The WebSphere Application Server trace facility provides the capability for setting client information

implicitly. You can designate one of two special trace groups to enable or disable client information

passing: WAS.clientinfo trace or WAS.clientinfopluslogging trace .

Note:

Connection sharing:

In the case of connection sharing, setting the client information implicitly is done only on the

first acquired connection handle. If connection sharing is enabled and two or more

getConnection() methods are called (resulting in two handles on the same connection), then

only the first getConnection() call causes the client information to be implicitly passed to the

back-end database. This is not true for the explicit case; every setClientinformation()

method is driven down to the database regardless of connection sharing.

Implicit/explicit co-existence:

When both explicit and implicit are used, some combination of the explicitly set data and

implicitly set data is combined, but for the most part the explicit takes precedence. For

example, if the application sets the client accounting information to ″myAccountingInfo″, the

final accountingInfo string that is passed to the backend database looks something like:

1152 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

000325_WSRdbManagedConnectionImpl@1234_myAccountingInfo: where 000325 is the

 thread id, WSRdbManagedConnectionImpl@1234 is the websphere connection instance.

Client information reset:

In the implicit case, client information is reset when the connection is put back in the pool

and only if the WAS.clientinfo and WAS.clientinfopluslogging are disabled (that is,

WAS.clientinfo=all=disabled:WAS.clientinfopluslogging=all=disabled).

 In the explicit case however, the reset is done only when the application issues

setClientInformation(null) on the WSConnection.

WAS.clientinfo trace

By default, the implicit mechanism is disabled. You can turn on this mechanism dynamically (without

stopping and starting your application server) or statically by setting the WebSphere Application Server

trace group WAS.clientinfo=all=enabled.

The information implicitly collected and set on the database connection consists of the user name, user

location and application name.

Note: User name and user location can only be implicitly collected and set on the database connection if

you enable WebSphere global security.

username

Name of the user that initiated the application request. This option is collected and passed to the

backend database (when supported) only if WebSphere global security is enabled. Information

here is collected by calling WSSecurityHelper.getFirstCaller().

user location

In the form of cell:node:server. This option is collected and passed to the backend database (when

appropriate) only when WebSphere global security is enabled. Information here is collected by

calling WSSecurityHelper.getFirstServer().

application name

Name of the application running. This value is the output of getApplication() from the J2EEName

object. This value is collected regardless of the Global Security setting.

WAS.clientinfopluslogging trace

When debugging database problems, such as deadlocks, there is a set of information that is needed to

help with the debugging effort. This information is typically obtained by enabling RRA trace, and EJB

container trace. However, there are some cases where timing is an issue when reproducing a given

problem. Having too much tracing information can alter the behavior of the application (such as change

the timing), and the problem might no longer occur.

Because of this, a new trace group is provided where only a minimum set of information is collected. This

trace group is WAS.clientinfopluslogging. This function sets the client information implicitly on the

connection (just like the WAS.clientinfo trace), as well as logs and traces important application activities.

Those activities are:

v SQL Strings that were run (such as, select userId from tabl1 where id=? for update).

v Start, commit, and rollback of transactions.

v EJB calls (such as, Create, Remove, findByPrimaryKey, and so on).

Cache instances

An application uses a cache instance to store, retrieve, and share data objects within the dynamic cache.

Each cache instance can be configured independently for Java Naming and Directory Interface (JNDI)

name, cache size, priority, and disk offload. Objects that are stored in a particular cache instance are not

Chapter 8. Developing WebSphere applications 1153

affected by other cache instances. This means that if you store an object named object_1 with a value of

object_data in cache_instance_x, you can also store an object with the same name, but different value in

cache_instance_y.

Objects that are stored in a particular cache instance are available to applications on other servers by

accessing a cache instance of the same name. The two servers must be within the same replication

domain to share data.

There are two types of cache instances, object cache instances and servlet cache instances.

An object cache instance is a location in addition to the default shared dynamic cache where Java 2

Platform, Enterprise Edition (J2EE) applications can store, distribute, and share objects. After configuring

object cache instances, you can use the DistributedMap or DistributedObjectCache interfaces in the

com.ibm.websphere.cache package to programmatically access your cache instances. See the for more

information about the DistributedMap or DistributedObjectCache interfaces.

Servlet cache instances are locations in addition to the default dynamic cache where dynamic cache can

store, distribute, and share the output and the side effects of an invoked servlet. By configuring a servlet

cache instance, your applications have greater flexibility and better tuning of cache resources. The Java

Naming and Directory Interface (JNDI) name that is specified for the cache instance in the administrative

console maps to the <cache-instance> element in the cachespec.xml configuration file. Any <cache-entry>

elements that are specified within a <cache-instance> element are created in that specific cache instance.

Any <cache-entry> elements that are specified outside of a <cache-instance> element are stored in the

default dynamic cache instance. See ″Using servlet cache instances″ in the information center for more

information.

Resource adapter archive file

A Resource Adapter Archive (RAR) file is a Java archive (JAR) file used to package a resource adapter for

the Java 2 Connector (J2C) Architecture for WebSphere Application Server.

A RAR file can contain the following:

v Enterprise information system (EIS) supplied resource adapter implementation code in the form of JAR

files or other runnable components, such as dynamic link lists.

v Utility classes.

v Static documents, such as HTML files, images, and sound files.

The standard file extension of a RAR file is .rar.

Data access : Resources for learning

Use the following links to find relevant supplemental information about data access. The information

resides on IBM and non-IBM Internet sites, whose sponsors control the technical accuracy of the

information.

These links are provided for convenience. Often, the information is not specific to this product but is useful

all or in part for understanding the product. When possible, links are provided to technical papers and

Redbooks that supplement the broad coverage of the release documentation with in-depth examinations of

particular product areas.

View links to additional information about:

v Programming Specifications

v CMP persistence functions

v Container-managed relationships

v Resource references

v Resource adapters

v Miscellaneous articles from the Sun Developer Network and IBM developerWorks Web sites

v Rational Application Developer

1154 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

v WebSphere Version 5.x Information Center

v IBM Cloudscape

v Oracle

v DB2 database software

v Supported hardware, software, and APIs

Programming Specifications

v Enterprise JavaBeans Technology (Source for download of the Enterprise Javabeans 2.1 specification)

v JavaTM 2 Platform, Enterprise Edition (J2EETM)

v JavaTM Management Extensions (JMX)

v JDBCTM 3.0 API Documentation

v J2EE Connector Architecture Version 1.5 specification

v What’s New in the J2EE Connector Architecture 1.5

v What’s New in the J2EE Connector Architecture 1.5 (Part 2)

CMP persistence functions

Though this article addresses the EJB 2.0 specification, you still might find parts of it pertinent to your

environment.

v Enterprise JavaBeansTM 2.0 Container-Managed Persistence Example

Container-managed relationships

Though this article addresses the EJB 2.0 specification, you still might find parts of it pertinent to your

environment.

v Enterprise JavaBeansTM 2.0 Container-Managed Persistence Example

Resource references

Though this article addresses the EJB 2.0 specification, you still might find parts of it pertinent to your

environment.

v Accessing Databases from Web Applications

Resource adapters

v The J2EE Connector Architecture Resource Adapter

Miscellaneous articles from the Sun Developer Network and IBM developerWorks Web sites

v Developer Technical Articles & Tips -- Articles: Database Access (Sun Developer Network)

v Sharing connections in WebSphere Application Server V5 (Still pertinent to WebSphere Application

Server Version 6.0)

v Database authentication in WebSphere Application Server V5 (Still pertinent to WebSphere Application

Server Version 6.0)

v Understanding WebSphere Application Server EJB access intents

Rational Application Developer

v Rational Application Developer for WebSphere Software

WebSphere Version 5.x Information Center

v IBM WebSphereTM Version 5.x Information Center

IBM Cloudscape

v IBM Cloudscape

v developerWorks article: Cloudscape Network Server with WebSphere Application Server

Oracle

v Oracle

Chapter 8. Developing WebSphere applications 1155

http://java.sun.com/products/ejb/
http://java.sun.com/j2ee/
http://java.sun.com/products/JavaManagement/
http://java.sun.com/j2se/1.3/docs/guide/jdbc/
http://java.sun.com/j2ee/connector/download.html
http://java.sun.com/developer/technicalArticles/J2EE/connectorarch1_5
http://java.sun.com/developer/technicalArticles/J2EE/connectorarch1_5/part2.html
http://developer.java.sun.com/developer/technicalArticles/ebeans/EJB20CMP/
http://developer.java.sun.com/developer/technicalArticles/ebeans/EJB20CMP/
http://java.sun.com/webservices/docs/1.0/tutorial/doc/WebApp13.html
http://java.sun.com/developer/technicalArticles/J2EE/connectorclient/resourceadapter.html
http://java.sun.com/developer/technicalArticles/Database/
http://www-106.ibm.com/developerworks/websphere/library/techarticles/0404_tang/0404_tang.html
http://www-106.ibm.com/developerworks/websphere/techjournal/0402_tang/0402_tang.html
http://www-106.ibm.com/developerworks/websphere/techjournal/0406_persson/0406_persson.html
http://www-3.ibm.com/software/ad/studiointegration/
http://www-3.ibm.com/software/webservers/appserv/infocenter.html
http://www-3.ibm.com/software/data/cloudscape/pubs/collateral.html
http://www-106.ibm.com/developerworks/websphere/library/techarticles/0406_gerboth/0406_gerboth.html
http://technet.oracle.com/

DB2 database software

v DB2

Supported hardware, software, and APIs

v Supported hardware, software, and APIs

Deploying data access applications

Before installing a data access application into the WebSphere Application Server environment, you must

first ensure that the appropriate database objects are available. This action includes creating and

configuring any databases or tables required, setting necessary configuration parameters to handle

expected load, and configuring any necessary JDBC providers and data source objects for servlets,

enterprise beans, and client applications to use.

1. If your database configuration does not already exist:

a. Create a database to hold the data.

b. Create tables required by your application.

If your application uses entity enterprise beans to access the data

You can create the tables using the data definition language (DDL) generated from the

enterprise bean configuration. For more information, see Recreating database tables from

the exported table data definition language.

If your application does not use entity beans

You must use your database server interfaces to create the tables.

c. See Minimum required properties for vendor-specific data sources for certain vendors’ databases

requirements.

2. Migrate Version 4.0 data access applications

3. If your enterprise application contains a Web application or an EJB application that uses connection

pooling to access a relational database, see “Creating and configuring a JDBC provider and data

source” on page 1164.

4. If your application requires access to a non-relational database, you need to configure a resource

adapter and a connection factory rather than a JDBC provider and a data source.

5. If your enterprise application contains an application client that accesses a relational database, see

Configuring data access for application clients.

6. Consider the security of lookups with component managed authentication. See Security of lookups with

component managed authentication for more information.

Relationship of assembly and administrative console data access settings

This article provides miscellaneous tips for using supported databases. See also the related links.

Always consult the product documentation for a list of the database brands and versions that are

supported by your particular WebSphere Application Server version, edition, and FixPak.

Notes about various databases

v When using local DB2 databases for data access by session clients on AIX Version 4.3.3 or later

versions, in some cases you cannot establish multiple connections for session clients. This is because

AIX , by default, does not permit 32-bit applications to attach to more than 11 shared memory segments

per process. Of these 11 shared segments, a maximum of 10 can be used for local DB2 connections.

To use EXTSHM with DB2 and avoid stale connections when there are large numbers of session

clients, do the following:

– In DB2 client environment (that is the WebSphere Application Server run time environment in this

case):

export EXTSHM=ON

– In DB2 UDB Server environment:

1156 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

http://www-3.ibm.com/software/data/db2/
http://www-3.ibm.com/software/webservers/appserv/doc/latest/prereq.html

export EXTSHM=ON

 db2set DB2ENVLIST=EXTSHM

v When using Sybase 11.x, you might encounter the following error when HttpSession persistence is

enabled:

DBPortability W Could not create database table: "sessions"

com.sybase.jdbc2.jdbc.SybSQLException: The ’CREATE TABLE’ command is not

allowed within a multi-statement transaction in the ’database_name’ database

where database_name is the name of the database for holding sessions.

If you encounter the error, issue the following commands at the Sybase command line:

use database_name

go

sp_dboption db,"ddl in tran ",true

go

v Sybase 12.0 does not support local transaction modes with a JTA enabled data source. To use a

connection from a JTA enabled data source in a local transaction, install Sybase patch EBF9422.

Additional administrative tasks for specific databases

For your convenience, this article provides instructions for enabling some popular database drivers, and

performing other administrative tasks often required to provide data access to applications running on

WebSphere Application Server. These tasks are performed outside of the WebSphere Application Server

administrative tools, often using the database product tools. Always refer to the documentation

accompanying your database driver as the authoritative and complete source of driver information.

See the Supported hardware, software, and APIs for the latest information about supported databases,

drivers, and operating systems.

Enabling JDBC 2.0

Ensure that your operating system environment is set up to support JDBC 2.0. This action is

required to use data sources created through WebSphere Application Server.

 The following steps make it possible to find the appropriate JDBC 2.0 driver for use with

WebSphere Application Server administration:

Enabling JDBC 2.0 with DB2 on Windows NT systems

To enable JDBC 2.0 use on Windows NT systems:

v For DB2 Version 7.2

1. Stop the DB2 JDBC Applet Server service.

2. Run the following batch file:

SQLLIB\java12\usejdbc2.bat

3. Stop WebSphere Application Server (if it is running) and start it again.
v For DB2 Version 8.1

– JDBC 2.0 is supported by default, there are no additional steps for you to perform.

Perform the steps once for each system.

Determining the level of the JDBC API in use for DB2 on Windows NT systems

To determine the JDBC level in use on your system:

v For DB2 Version 7.2

– If JDBC 2.0 is in use, this file exists:

SQLLIB\java12\inuse

– If JDBC 1.0 is in use, this file exists:

SQLLIB\java11\inuse

or no java11 directory exists.
v For DB2 Version 8.1

– Go to directory SQLLIB\samples\java, compile and run the class db2JDBCVersion.java.

Chapter 8. Developing WebSphere applications 1157

http://www-3.ibm.com/software/webservers/appserv/doc/latest/prereq.html

Enabling JDBC 2.0 with DB2 on UNIX systems

v For DB2 Version 7.2

– Before starting WebSphere Application Server, call $INSTHOME/sqllib/java12/usejdbc2 to

use JDBC 2.0. For convenience, you might want to put this in your root user’s startup script.

For example, on AIX, add the following to the root user’s .profile:

if [-f /usr/lpp/db2_07_01/java12/usejdbc2] ; then

 . /usr/lpp/db2_07_01/java12/usejdbc2

fi

v For DB2 Version 8.1

– JDBC 2.0 is supported by default, there are no additional steps for you to perform.

Determining the level of the JDBC API in use for DB2 on UNIX systems

v For DB2 Version 7.2

– To determine if you are using JDBC 2.0, you can echo $CLASSPATH. If it contains

$INSTHOME/sqllib/java12/db2java.zip

then JDBC 2.0 is in use.

If it contains

$INSTHOME/sqllib/java/db2java.zip

then JDBC 1.0 is in use.
v For DB2 Version 8.1

– Go to directory sqllib/samples/java, compile and run the class db2JDBCVersion.java.

Sourcing the db2profile script on UNIX systems

Before starting WebSphere Application Server to host applications requiring data access, source

the db2profile:

. ~db2inst1/sqllib/db2profile

where db2inst1 is the user created during DB2 installation.

Using Java Transaction API drivers

Instructions are available for using Java Transaction API (JTA) drivers on particular operating

systems. See your operating system documentation for more information.

 The goal of this section is to provide information about the steps that make DB2 work well with

applications utilizing XA classes -- that is, those whose dataSourceClasses implement

javax.sql.XADataSource.

Using Java Transaction API drivers for DB2 on Windows NT systems

To enable JTA drivers for DB2 on Windows NT systems, follow these steps:

1. Bind the necessary packages to the database. From the DB2 Command Line Processor

window, issue the following commands:

db2=> connect to mydb2jta

db2=> bind db2home\bnd\@db2cli.lst

db2=> bind db2home\bnd\@db2ubind.lst

db2=> disconnect mydb2jta

where mydb2jta is the name of the database to enable for the JTA, and db2home is the DB2

root installation directory path (for example, D:\ProgramFiles\SQLLIB\bnd\@db2cli.lst).

2. Specify the following settings when you use an IBM WebSphere Application Server

administrative client (such as the administrative console) to configure a JDBC driver:

v Server class path = %DB2_ROOT%/Sqllib/java/db2java.zip

v Implementation class name = COM.ibm.db2.jdbc.DB2XADataSource

Using Java Transaction API drivers for DB2 on UNIX systems

To enable JTA drivers on UNIX systems, follow these steps:

1. Stop all DB2 services.

2. Stop the IBM WebSphere Application Server administrative service.

3. Stop any other processes that use the db2java.zip file.

4. Make sure that you already enabled JDBC 2.0.

1158 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

5. Start the DB2 services.

6. Bind the necessary packages to the database. From the DB2 command-line process or

window, issue the following commands:

db2=> connect to mydb2jta

db2=> bind db2home\bnd\@db2cli.lst

db2=> bind db2home\bnd\@db2ubind.lst

db2=> disconnect mydb2jta

7. Specify the following settings when you use an IBM WebSphere Application Server

administrative client (such as the administrative console) to configure a JDBC driver:

v Server class path = $INSTHOME/sqllib/java12/db2java.zip

For example, if $INSTHOME is /home/test, the path will be

/home/test/sqllib/java12/db2java.zip

v Implementation class name = COM.ibm.db2.jdbc.DB2XADataSource

For Oracle 8.1.7 two phase commit support

You can use the Oracle 8.1.7 thin driver for JTA two-phase support with the following restrictions:

v The thin driver that comes shipped with 8.1.7 might or might not work. Future patches from

Oracle might work as well, but are not tested. The driver that was available from the Oracle

Technology Network Web site as of February 20, 2001 does work and is the recommended

driver. Later versions on this Web site are expected to work, but are not tested.

To obtain the driver from the Oracle support Web site, visit:

http://technet.oracle.com/

You need to be a registered user for the Oracle Technology Network to get the driver from this

site. Contact Oracle for access. After you have access download the 8.1.7 driver for the

platforms you use and follow the instructions for installing the new driver.

v You must use the 8.1.7 driver with 8.1.7 databases, 8.1.6 databases do not support the

recover() and forget() methods and other problems are encountered running with 8.1.6. Oracle

does not support JTA with 8.1.6.

v For Oracle, you can only use JTA with container-managed persistence (CMP) beans.

v For the bean to create the table, you must start the bean with the JTA set to false. After the

bean creates the table, you can set the JTA back to true.

v Configure an entity bean that accesses Oracle with JTA set to true as follows:

– Click deployment descriptor properties > Transactions > Remote tab. Set the Transaction

Attribute to TX_REQUIRED.

– Click Isolation > Remote tab. Set the Isolation Level to

TRANSACTION_READ_COMMITTED.
v Configure a session bean that is used with an entity bean that accesses Oracle with JTA set to

true as follows:

– Click deployment descriptor properties > Transactions > Remote tab. Set the Transaction

Attribute to TX_BEAN_MANAGED.

– Click Isolation > Remote tab. Set the Isolation Level to

TRANSACTION_READ_COMMITTED.

Using Java Transaction API drivers for Sybase products on AIX systems

To enable Java Transaction API (JTA) drivers for use with Sybase products on the AIX operating

system, follow these steps:

1. Enable the Data Transaction Manager (DTM) by issuing these commands (one per line) at a

command prompt:

 isql -Usa -Ppassword -Sservername

 sp_configure "enable DTM", 1

 go

2. Stop the Sybase Adaptive Server database and start it again.

3. Grant the appropriate role authorization to the enterprise bean user at a command prompt:

 isql -Usa -Ppassword -Sservername

 grant role dtm_tm_role to EJB

 go

Chapter 8. Developing WebSphere applications 1159

Notes about Sybase Java Transaction API drivers

Do not use a Sybase Java Transaction API (JTA) connection in an enterprise bean method with an

unspecified transaction context. A Sybase JTA connection does not support the local transaction

mode. The implication is that you must use the Sybase JTA connection in a global transaction

context.

Recreating database tables from the exported table data definition language:

When the WebSphere Application Server deployment tooling deploys an EJB jar file containing

container-managed persistence (CMP) enterprise beans, it selects the target database and creates a

corresponding Table.ddl file. This file contains the SQL statement necessary to generate the database

table for your CMP beans. You must then run the ddl file on your database server to create the tables.

Following is an example of how to use such a Table.ddl file for DB2, on Windows and z/OS:

1. The container-managed bean (CMP) enterprise bean JAR file has a Table.ddl file that the assembly

tool generates. Extract the Table.ddl file to a working directory such as C:\temp.

2. Run this command -- C:\temp>db2cmd A new command window appears in which you enter the

following commands.

3. Run this command -- C:\temp>db2 connect to dbname

4. Run this command -- C:\temp>db2 -tf Table.ddl The command runs and creates tables for your CMP

enterprise bean.

5. Run this command -- C:\temp>db2 disconnect all

Note: If you use DB2 on Unix, use these same commands. Simply run them from a user with

permissions for DB2, rather than from a DB2 command window.

Installing J2EE Connector resource adapters

1. Click Resources.

2. Click Resource Adapters.

3. Select the scope at which you want to define this resource adapter. (This scope becomes the scope of

your connection factory.) You can choose cell, node, cluster, or server. For more information, see

″Administrative console scope settings″ in the information center.

4. Click Install RAR. The Install RAR button opens a dialog that enables you to install a J2EE Connector

Architecture (JCA) connector and create a resource adapter for it. You can also use the New button,

but the New button creates only a new resource adapter (the JCA connector must already be installed

on the system).

Note: When installing a RAR file using this dialog, the scope you define on the Resource Adapters

page has no effect on where the RAR file is installed. You can install RAR files only at the node

level. The node on which the file is installed is determined by the scope on the Install RAR

page. (The scope you set on the Resource Adapters page determines the scope of the new

resource adapters, which you can install at the server, node, or cell level.)

5. Browse to find the appropriate RAR file.

v If your RAR file is located on your local workstation, select Local path and browse to find the file.

v If your RAR file is located on your server, select Server path and specify the fully qualified path to

the file.

6. Click Next.

7. Enter the resource adapter name and any other properties needed under General Properties. If you

install a J2C Resource Adapter that includes Native path elements, consider the following: If you have

more than one native path element, and one of the native libraries (native library A) is dependent on

another library (native library B), then you must copy native library B to a system directory. Because of

limitations on Windows NT and most Unix platforms, an attempt to load a native library does not look

in the current directory.

1160 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

8. Click OK.

Installing resource adapters within applications:

1. Assemble an application with resource adapter archive (RAR) modules in it. See ″Assembling

applications″ in the information center.

2. Install the application following the steps in Installing a new application. In the Map modules to

servers step, specify target servers or clusters for each RAR file. Be sure to map all other modules

that use the resource adapters defined in the RAR modules to the same targets. Also, specify the Web

servers as targets that serve as routers for requests to this application. The plug-in configuration file

(plugin-cfg.xml) for each Web server is generated based on the applications that are routed through

it.

Note: When installing a RAR file onto a server, WebSphere Application Server looks for the manifest

(MANIFEST.MF) for the connector module. It looks first in the connectorModule.jar file for the

RAR file and loads the manifest from the _connectorModule.jar file. If the class path entry is in

the manifest from the connectorModule.jar file, then the RAR uses that class path.

To ensure that the installed connector module finds the classes and resources that it needs,

check the Class path setting for the RAR using the console. For more information, see

“Resource Adapter settings” on page 1162 and “WebSphere relational resource adapter

settings” on page 1128.

3. Click Finish > Save to save the changes.

4. Create connection factories for the newly installed application.

a. Open the administrative console.

b. Click Applications > Enterprise Applications > application name.

c. Click Connector Modules in the Related Items section of the page.

d. Click filename.rar.

e. Click Resource adapter in the Additional Properties section of the page.

f. Click J2C Connection Factories in the Additional Properties section of the page.

g. Click on an existing connection factory to update it, or New to create a new one.

If you install a J2C Resource Adapter that includes Native path elements, consider the following: If

you have more than one native path element, and one of the native libraries (native library A) is

dependent on another library (native library B), then you must copy native library B to a system

directory. Because of limitations on Windows NT and most Unix platforms, an attempt to load a

native library does not look in the current directory.

After you create and save the connection factories, you can modify the resource references defined

in various modules of the application and specify the Java Naming and Directory Interface (JNDI)

names of the connection factories wherever appropriate.

Note: A given native library can only be loaded one time for each instance of the Java virtual machine

(JVM). Because each application has its own classloader, separate applications with embedded

RAR files cannot both use the same native library. The second application receives an

exception when it tries to load the library.

If any application deployed on the application server uses an embedded RAR file that includes

native path elements, then you must always ensure that you shut down the application server

cleanly, with no outstanding transactions. If the application server does not shut down cleanly it

performs recovery upon server restart and loads any required RAR files and native libraries. On

completion of recovery, do not attempt any application-related work. Shut down the server and

restart it. No further recovery is attempted by the application server on this restart, and normal

application processing can proceed.

Resource Adapters collection:

Chapter 8. Developing WebSphere applications 1161

This page contains the list of installed and configured resource adapters and is used to install new

resource adapters, create additional configurations of installed resource adapters or delete resource

adapter configurations.

 A resource adapter is an implementation of the J2EE Connector Architecture (JCA) Specification that

provides access for applications to resources outside of the server or provides access for an enterprise

information system (EIS) to applications on the server. It can provide application access to resources such

as DB2, CICS, SAP and PeopleSoft. It can provide an EIS with the ability to communicate with

message-driven beans that are configured on the server. Some resource adapters are provided by IBM;

however, third party vendors can provide their own resource adapters. A resource adapter implementation

is provided in a resource adapter archive file; this file has an extension of .rar. A resource adapter can be

provided as a standalone adapter or as part of an application, in which case it is referred to as an

embedded adapter. Use this panel to install a standalone resource adapter archive file. Embedded

adapters are installed as part of the application installation. This panel can be used to work with either

kind of adapter.

To view this administrative console page, click Resources >Resource Adapters.

Scope:

Specifies the level to which this resource adapter is visible. For general information, see Administrative

console scope settings in the Related Reference section.

 Some considerations that you should keep in mind for this particular panel are:

v Changing the scope enables you to see which resource adapter definitions exist at that level.

v Changing the scope does not have any effect on installation. Installations are always done under a

scope of node, no matter what you set the scope to.

v When you create a new resource adapter from this panel, you must change the scope to what you want

it to be before clicking New.

Name:

Specifies the name of the resource adapter.

 A string with no spaces meant to be a meaningful text identifier for the resource adapter.

 Data type String

Resource Adapter settings:

Use this page to specify settings for a Resource Adapter.

 A resource adapter is an implementation of the J2EE Connector Architecture (JCA) Specification that

provides access for applications to resources outside of the server or provides access for an enterprise

information system (EIS) to applications on the server. It can provide application access to resources such

as DB2, CICS, SAP and PeopleSoft. It can provide an EIS with the ability to communicate with message

driven beans that are configured on the server. Some resource adapters are provided by IBM; however,

third party vendors can provide their own resource adapters. A resource adapter implementation is

provided in a resource adapter archive file; this file has an extension of .rar. A resource adapter can be

provided as a standalone adapter or as part of an application, in which case it is referred to as an

embedded adapter. Use this panel to install a standalone resource adapter archive file. Embedded

adapters are installed as part of the application installation.

To view this administrative console page, click Resources >Resource Adapters > resource_adapter.

1162 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Scope:

Specifies the level to which this resource definition is visible. For general information, see Administrative

console scope settings in the Related Reference section.

 The Scope field is a read only string field that shows where the particular definition for a resource adapter

is located. This is set either when the resource adapter is installed (which can only be at the node level) or

when a new resource adapter definition is added.

Name:

Specifies the name of the resource adapter definition.

 This property is required.

A string with no spaces meant to be a meaningful text identifier for the resource adapter.

 Data type String

Description:

Specifies a text description of the resource adapter.

 A free-form text string to describe the resource adapter and its purpose.

 Data type String

Archive path:

Specifies the path to the RAR file containing the module for this resource adapter.

 This property is required.

 Data type String

Class path:

Specifies a list of paths or JAR file names which together form the location for the resource adapter

classes.

 This includes any additional libraries needed by the resource adapter. The resource adapter code base

itself is automatically added to the class path, but if anything outside the RAR is needed it can be

specified here.

 Data type String

Native path:

Specifies a list of paths which forms the location for the resource adapter native libraries.

 The resource adapter code base itself is automatically added to the class path, but if anything outside the

RAR is needed it can be specified here.

 Data type String

Chapter 8. Developing WebSphere applications 1163

ThreadPool Alias:

Specifies the name of a thread pool that is configured in the server that is used by the resource adapter’s

Work Manager.

 If there is no thread pool configured in the server with this name, the default configured thread pool

instance, named Default, is used. This property is only necessary if this resource adapter uses Work

Manager.

 Data type String

Pretesting pooled connections to ensure validity

When a database fails, pooled connections that are not valid might exist in the free pool. This scenario is

likely to occur when you have a failingConnectionOnly purge policy, which mandates that only failing

connections be removed from the pool. Whether the remaining connections in the pool are valid varies

with the cause of the failure. Connection pretesting is a way to test connections from the free pool before

giving them to the client.

If your application uses pooled connections, you can enable the PreTest Connections feature in the

administrative console to help prevent your application from obtaining connections that are no longer valid.

The feature is particularly useful for routine database outages. Because these outages are usually

scheduled for periods of low use, connections to the database are likely to be in the free pool rather than

in active use. Active connections are not pretested; pretesting impedes performance during normal

operation. Pretesting ensures that users do not waste time trying to resume connections that became bad

before the outage.

1. In the administrative console, click Resources > JDBC providers.

2. Select a provider and click Data Sources under Additional properties.

3. Select a data source and click WebSphere Application Server data source properties under

Additional properties.

4. Select the PreTest Connections check box.

5. Type a value for the PreTest Connection Retry Interval, which is measured in seconds. This property

determines the frequency with which a new connection request is made after a pretest operation fails.

6. Type a valid SQL statement for the PreTest SQL String. Use a reliable SQL command, with minimal

performance impact; this statement is processed each time a connection is obtained from the free

pool.

For example, you might specify SELECT COUNT(*) from TESTTABLE. (For an Oracle database, use

SELECT USER FROM DUAL.)

Creating and configuring a JDBC provider and data source

Determine which version of data source you need. If you are using the Enterprise JavaBean (EJB) 1.0

specification or the Java Servlet 2.2 specification, you need the version 4.0 data source; see the topic

Data Sources (Version 4). If you are using more advanced releases of these specifications, see the topic

Data Source collection .

1. Create a JDBC provider.

From the administrative console, see Creating a JDBC provider using the administrative console.

OR

Using the wsadmin scripting client, see ″Configuring a JDBC provider using scripting″ in the

information center.

1164 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

OR

Using the Java Management Extensions (JMX) API, see Creating a JDBC provider and data source

using the Java Management Extensions API.

2. Create a data source.

From the administrative console, see Creating a data source using the administrative console.

OR

Using the wsadmin scripting client, see ″Configuring new data sources using scripting″ in the

information center. (For V4 data sources, see ″Configuring new WAS40 data sources using scripting.″)

OR

Using the JMX API, see Creating a JDBC provider and data source using the Java Management

Extensions API.

3. Bind the resource reference. See ″Binding to a data source″ in the information center.

4. Test the connection (for non-container-managed persistence usage). See Test connection.

Note: When you save the data source configuration, it is saved in the resource.xml file. You should

not need to modify the jdbc-resource-provider-templates.xml. However, special consideration

should be taken if you need to update the jdbc-resource-provider-templates.xml file. For

details, consult J2EE Connector Architecture migration tips.

Verifying a connection:

Many connection problems can be easily fixed by verifying some configuration parameters. This article

provides a checklist of steps that you must complete to enable a successful connection. Click on the link

for more information on a specific step.

If your connection is still not successful after completing these steps and reviewing the applicable

information, check the SystemOut.log for warning or exception messages. Then use the technical support

search function to find known problems.

1. Create the authentication data alias.

2. Create the JDBC provider.

3. Create a data source.

4. Save the data source.

5. If you created a new authentication alias, restart the server for which you need to verify connectivity.

6. Test the connection

You can test your connection from the data source collection view or the data source details view.

Access either view in the administrative console, and then select a connection from the list. Click the

Test Connection button on the connection.

Creating and configuring a JDBC provider using the administrative console:

An application installed on WebSphere Application Server accesses a relational database through a JDBC

provider, which is essentially a system-level software driver. For at-a-glance information on which provider

type is appropriate for your database configuration and application requirements, see the JDBC provider

table.

You can easily establish a JDBC provider from the administrative console.

 1. Open the administrative console.

 2. Click Resources > JDBC Providers.

 3. Select the scope of your definition. (This scope becomes the scope of your data source.) You can

choose cell, node, cluster, or server. For more information, see ″Administrative console scope

settings″ in the information center.

Chapter 8. Developing WebSphere applications 1165

http://www.ibm.com/support/search/index.html
http://www.ibm.com/support/search/index.html

4. Click New.

Note: If Java script is disabled for your browser, you do not see the three drop-down lists that are

described in the next three steps (for database type, provider type, and implementation type) .

Instead, you see a single drop-down box that lists all JDBC provider choices simultaneously

(inclusive of every database, provider, and implementation type).

 5. Use the first drop-down list to select the database type of the JDBC provider you need to create. If

the list of supported JDBC provider types does not include the JDBC provider that you want to use,

select the User-Defined JDBC Provider. Then consult the JDBC provider vendor’s documentation

for information on specific properties required for data sources associated with this provider, and skip

to step eight of this list.

 6. From the second drop-down list, select your JDBC provider type.

 7. From the third drop-down list, select the implementation type necessary for your application. If your

application does not require that connections support two-phase commit transactions, choose

Connection Pool Data Source. Choose XA Data Source, however, if your application requires

connections that support two-phase commit transactions. Applications using this data source

configuration have the benefit of container-managed transaction recovery.

 8. Click Next to view the general property settings page for your JDBC provider.

 9. Ensure that all required properties have valid values. For more information, see JDBC Provider

settings.

10. Click Apply to view the page with your new JDBC provider settings. Note that two active data source

links now appear under the Additional Properties heading on this page. To set up a data source,

click the link that corresponds to the type required by your application, the Version 4 data source or

the later version data source. (For more information, refer to the section entitled ″Choice of data

source″ in the “Data sources” on page 1135 topic.)

11. Click OK to return to the JDBC providers page, where your new JDBC provider appears in the list.

For more information about creating a data source for association with your JDBC provider, see “Creating

and configuring a data source using the administrative console” on page 1171.

JDBC Provider collection:

Use this page to view a JDBC provider.

 To view this administrative console page, click Resources > JDBC Providers in the console navigation

tree.

Notice the Scope of your JDBC provider. If you pick anything other than the default of Node the provider

might not be available in other scope contexts. New items created in this view are created within the

selected scope.

Name:

Specifies a text identifier for this provider.

 For example, this field can be DB2 JDBC Provider (XA).

 Data type String

Description:

Specifies a text string describing this provider.

 Data type String

1166 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

JDBC provider settings:

Use this page to create or modify JDBC provider settings.

 To view this administrative console page, click Resources > JDBC Providers > JDBC_provider.

Name:

Specifies the name of the resource provider.

 Data type String

Description:

Specifies a text description for the resource provider.

 Data type String

Class path:

Specifies a list of paths or JAR file names which together form the location for the resource provider

classes.

 For example, D:/SQLLIB/java/db2java.zip.

Class path entries are separated by using the ENTER key and must not contain path separator characters

(such as ’;’ or ’:’). Class paths contain variable (symbolic) names which you can substitute using a variable

map. Check the driver installation notes for the specific required JAR file names.

 Data type String

Native Library Path:

Specifies a list of paths that forms the location for the resource provider native libraries.

 Native path entries are separated by using the ENTER key and must not contain path separator

characters (such as ’;’ or ’:’). Native paths can contain variable (symbolic) names which you can substitute

using a variable map.

 Data type String

Implementation class name:

Specifies the Java class name of the JDBC driver implementation.

 This class is available in the driver file mentioned in the class path description above. For example,

COM.ibm.db2.jdbc.DB2XADataSource.

Note: If you modify the implementation class name of the JDBC provider after you have created the

provider, you might disconnect the provider from the template used to create it. As a result, data

sources created from this JDBC provider do not have an associated template; you must manually

configure a working data source through setting custom properties.

Chapter 8. Developing WebSphere applications 1167

Data type String

New JDBC Provider:

Use this page to create a new JDBC provider.

 To view this administrative console page, click Resources >JDBC Providers > New.

Step 1: Select the database type:

Choose a supported database type.

 If the list of supported database types does not include the type that you want to use, select

User-Defined. You might need to consult the documentation for the database for more information on

specific properties that database requires.

 Data type Drop-down list

Step 2: Select the JDBC provider type:

Choose a supported JDBC Provider type.

 Only JDBC provider types that are appropriate for the database type you selected in step 1 will appear in

the list. For at-a-glance information on which provider type is appropriate for your database configuration

and application requirements, see the JDBC provider table.

 Data type Drop-down list

Step 3: Select the implementation type:

Choose a supported implementation type.

 Only the implementation types supported by the JDBC provider you selected in step 2 will appear in the

list.

Note: If two choices appear on the implementation type list, select Connection Pool DataSource if your

application runs in a single phase or local transaction. Otherwise, choose XA DataSource to run in

a global transaction.

 Data type Drop-down list

1168 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

JDBC provider summary:

Database type JDBC Provider Transaction support

Version and other

considerations

DB2 on Windows, UNIX,

or workstation-based

LINUX

DB2 Universal JDBC

Provider

One phase only

DB2 Universal JDBC

Provider (XA)

One and two phase

DB2 legacy CLI-based Type

2 JDBC Provider

One phase only

DB2 legacy CLI-based Type

2 JDBC Provider (XA)

One and two phase

DB2 UDB for iSeries

DB2 UDB for iSeries

(Native)

One phase only Recommended for use with

WebSphere Application

Server run on iSeries

DB2 UDB for iSeries

(Native XA)

One and two phase Recommended for use with

WebSphere Application

Server run on iSeries

DB2 UDB for iSeries

(Toolbox)

One phase only Recommended for use with

WebSphere Application

Server run on Windows,

UNIX, or workstation-based

LINUX

DB2 UDB for iSeries

(Toolbox XA)

One and two phase Recommended for use with

WebSphere Application

Server run on Windows,

UNIX, or workstation-based

LINUX

DB2 legacy CLI-based Type

2 JDBC Provider

One phase only -Only for use with

WebSphere Application

Server run on Windows,

UNIX, or workstation-based

LINUX

- Requires the DB2

Connect driver (available

from DB2)

DB2 legacy CLI-based Type

2 JDBC Provider (XA)

One and two phase -Only for use with

WebSphere Application

Server run on Windows,

UNIX, or workstation-based

LINUX

- Requires the DB2

Connect driver (available

from DB2)

Chapter 8. Developing WebSphere applications 1169

Database type JDBC Provider Transaction support

Version and other

considerations

DB2 on z/OS

DB2 for z/OS Local JDBC

Provider (RRS)

One and two phase Only for use with

WebSphere Application

Server run on z/OS

DB2 Universal JDBC

Provider

One phase only Only for use with

WebSphere Application

Server run on Windows,

UNIX, or workstation-based

LINUX

DB2 Universal JDBC

Provider (XA)

One and two phase Only for use with

WebSphere Application

Server run on Windows,

UNIX, or workstation-based

LINUX

DB2 legacy CLI-based Type

2 JDBC Provider

One phase only -Only for use with

WebSphere Application

Server run on Windows,

UNIX, or workstation-based

LINUX

- Requires the DB2

Connect program (available

from DB2)

DB2 legacy CLI-based Type

2 JDBC Provider (XA)

One and two phase -Only for use with

WebSphere Application

Server run on Windows,

UNIX, or workstation-based

LINUX

- Requires the DB2

Connect program (available

from DB2)

Cloudscape

Cloudscape JDBC Provider One phase only - Not for use in clustering

environment: Cloudscape is

accessible from a single

JVM only

- Does not support Version

4 data sources

Cloudscape JDBC Provider

(XA)

One and two phase - Not for use in clustering

environment: Cloudscape is

accessible from a single

JVM only

- Does not support Version

4 data sources

Cloudscape Network Server

using Universal JDBC driver

One phase only Does not support Version 4

data sources

Informix

Informix JDBC Driver One phase only

Informix JDBC Driver (XA) One and two phase

Sybase

Sybase JDBC Driver One phase only

Sybase JDBC Driver (XA) One and two phase

Oracle

Oracle JDBC Driver One phase only

Oracle JDBC Driver (XA) One and two phase

1170 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Database type JDBC Provider Transaction support

Version and other

considerations

MS SQL Server

DataDirect ConnectJDBC

type 4 driver for MS SQL

Server

One phase only Only for use with the

corresponding driver from

DataDirect Technologies

DataDirect ConnectJDBC

type 4 driver for MS SQL

Server (XA)

One and two phase Only for use with the

corresponding driver from

DataDirect Technologies

WebSphere embedded

ConnectJDBC driver for MS

SQL Server

One phase only - Not available for

Application Server on z/OS

- Cannot be used outside of

WebSphere Application

Server environment

WebSphere embedded

ConnectJDBC driver for MS

SQL Server (XA)

One and two phase - Not available for

Application Server on z/OS

- Cannot be used outside of

WebSphere Application

Server environment

Creating and configuring a data source using the administrative console:

 After you create a JDBC provider, you must create a data source to access the backend data store.

Application components use the data source to access connection instances to your database; a

connection pool is associated with each data source. The product supports two different versions of data

source:

v Version 4.0, for use with the Enterprise JavaBeans (EJB) 1.0 specification and the Java Servlet 2.2

specification

v The latest standard version for use with more advanced releases of these specifications

1. Open the administrative console.

2. Click Resources > JDBC Providers.

3. Choose the JDBC resource provider under which you want to create your data source. The detail page

for this provider is displayed.

4. Under Additional Properties, click the Data Sources link that is appropriate for your application. The

Data sources or Data sources (Version 4) page is displayed.

5. Click New to display the Data source settings page.

6. Verify that all the required properties have valid values.

For data sources of the latest standard version:

a. Select a DataStoreHelper class name from the list entitled DataStoreHelpers provided by

WebSphere Application Server, or leave the default selection as is. If you want to use a data store

helper other than those available in the drop-down list, click Specify a user-defined

DataStoreHelper. Type a fully qualified class name in the field that is provided.

b. The next section of properties varies according to the database selection, provider type, and

implementation that you chose for your JDBC provider. These properties are either required or

highly recommended for your data source. Provide valid values for these settings if you do not

want to accept the default values.

c. Click Component-managed Authentication Alias if your database requires a user ID and

password for a connection. This alias is used only when the application resource reference is using

res-auth = Application.

Important:(For components with res-auth=Container) Both the Container-managed Authentication

Alias and Mapping-Configuration Alias settings are deprecated. They are superseded by the

Chapter 8. Developing WebSphere applications 1171

specification of a login configuration on the resource-reference mapping at deployment time. You

must now use this login setting to define the aliases at deployment.

d. If you chose XA Data Source as the implementation type of your JDBC provider, you need to

specify the alias used during transaction recovery processing. An additional section entitled

Authentication Alias for XA Recovery is available. Select either Use Application Authentication

Alias to use the same value that you chose for component-managed authentication, or select

Specify: to choose a different alias from the drop-down list.

7. Click Apply to view a page with your new data source settings. Additional properties and Related

items sections are now available on this page. Additional properties contains the Connection pool,

Custom properties, and WebSphere Application Server data source properties choices. (If you are

using a Version 4 data source, however, you see only the first two choices.)

a. Click on the first link to define settings that affect the behavior of the Java 2 Connector (J2C)

connection pool manager.

a. Go to the Custom properties page to view and modify additional properties that the database

vendor might require for the connection of its product to an application server.

b. Use the WebSphere Application Server data source properties page to input settings that

exclusively affect the WebSphere Application Server connection to the database.

c. The Related items section (applicable only to later version data sources, not Version 4 data

sources) contains the J2C Authentication data entries choice. Here, you can specify a list of user

IDs and passwords for J2C security to use.

8. Click Save.

9. Return to the data source page to confirm that your new data source is displayed in the list.

You are now ready to install the application for which you configured the data sources. During installation,

you can bind resource references to these data sources.

Data source collection:

Use this page to create or modify a data source.

 To view this administrative console page, click Resources > JDBC Providers > JDBC_provider > Data

sources.

Note: If you are using the Enterprise JavaBean (EJB) 1.0 specification and the Java Servlet 2.2

specification, you must use the Data sources (Version 4) console page.

Name:

Specifies the display name of this data source.

 Data type String

JNDI name:

Specifies the Java Naming and Directory Interface (JNDI) name for this data source.

 Data type String

Description:

Specifies a text description of the data source.

 Data type String

1172 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Category:

Specifies a string that you can use to classify or group a data source.

 Data type String

Data source settings:

Use this page to create a data source for association with your JDBC provider. Think of the data source as

a pooled set of connections necessary for conducting transactions between your application and database.

 To view this administrative console page, click Resources > JDBC Providers > JDBC_provider > Data

sources > New (if you are creating a new data source) or > data_source (if you are viewing an

established data source).

Note: If your application uses an Enterprise JavaBean (EJB) 1.1 or a Java Servlet 2.2 module, you must

use the Data sources (Version 4) > data_source console page.

Name:

Specifies the display name for the data source.

 Valid characters for this name include letters and numbers, but NOT most of the special characters. For

example you can set this field to Test Data Source. But any name starting with a period (v) or containing

special characters (\ / , : ; ″ * ? < > | = + & % ’ `) is not a valid name.

 Data type String

JNDI name:

Specifies the Java Naming and Directory Interface (JNDI) name.

 Distributed computing environments often employ naming and directory services to obtain shared

components and resources. Naming and directory services associate names with locations, services,

information, and resources.

Naming services provide name-to-object mappings. Directory services provide information on objects and

the search tools required to locate those objects.

There are many naming and directory service implementations, and the interfaces to them vary. JNDI

provides a common interface that is used to access the various naming and directory services.

For example, you can use the name jdbc/markSection.

If you leave this field blank a JNDI name is generated from the name of the data source. For example, a

data source name of markSection generates a JNDI name of jdbc/markSection.

After you set this value, save it, and restart the server, you can see this string when you run the dump

name space tool.

 Data type String

Container-managed persistence:

Specifies if this data source is used for container-managed persistence of enterprise beans.

Chapter 8. Developing WebSphere applications 1173

If this field is checked, a CMP Connector Factory that corresponds to this data source is created for the

relational resource adapter.

 Data type Checkbox

Default Enabled (The field is checked.)

Description:

Specifies a text description for the resource.

 Data type String

Category:

Specifies a category string you can use to classify or group the resource.

 Data type String

Data store helper class name:

Specifies the name of the DataStoreHelper implementation class that extends the capabilities of your

selected JDBC driver implementation class to perform database-specific functions.

 WebSphere Application Server provides a set of DataStoreHelper implementation classes for each of the

JDBC provider drivers it supports. These implementation classes are in the package

com.ibm.websphere.rsadapter. For example, if your JDBC provider is DB2, then your default

DataStoreHelper class is com.ibm.websphere.rsadapter.DB2DataStoreHelper. The administrative console

page you are viewing, however, might make multiple DataStoreHelper class names available to you in a

drop-down list; be sure to select the one required by your database configuration. Otherwise, your

application might not work correctly. If you want to use a DataStoreHelper other than those displayed in

the drop-down list, select Specify a user-defined DataStoreHelper and type a fully qualified class name.

Refer to the Information Center topic ″Example: Developing your own DataStoreHelper class.″

 Data type Drop-down list or string (if user-defined DataStoreHelper

is selected)

Important data source properties: These properties are specific to the data source that corresponds to

your selected JDBC provider. They are either required by the data source, or are especially useful for the

data source. You can find a complete list of the properties required for all supported JDBC providers in the

topic ″Vendor-specific data sources minimum required settings″ in the Information Center.

Component-managed Authentication Alias:

This alias is used for database authentication at run time.

 The Component-managed Authentication Alias is only used when the application resource reference is

using res-auth = Application.

If your database (for example, Cloudscape) does not support user ID and password, then do not set the

alias in the component-managed authentication alias or container-managed authentication alias fields.

Otherwise, you see the warning message in the system log to indicate that the user and password are not

valid properties. (This message is only a warning message; the data source is still created successfully.)

1174 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

If you do not set an alias (component-managed or otherwise), and your database requires the user ID and

password to get a connection, then you receive an exception during run time.

 Data type Drop-down list

Container-managed Authentication Alias (deprecated):

Specifies authentication data (a string path converted to userid and password) for container-managed

sign-on to the resource.

Note: Beginning with WebSphere Application Server Version 6.0, the container-managed authentication

alias is superseded by the specification of a login configuration on the resource-reference mapping

at deployment time, for components with res-auth=Container.

Choose from aliases defined under Security>JAAS Configuration> J2C Authentication Data.

To define a new alias not already appearing in the pick list:

v Click Apply to expose Related Items.

v Click J2C Authentication Data Entries.

v Define an alias.

v Click the connection factory name at the top of the J2C Authentication Data Entries page to return to

the connection factory page.

v Select the alias.

 Data type Drop-down list

Mapping-Configuration Alias (deprecated):

Allows users to select from the Security > JAAS Configuration > Application Logins Configuration list.

Note: Beginning with WebSphere Application Server Version 6.0, the Mapping-Configuration Alias is

superseded by the specification of a login configuration on the resource-reference mapping at

deployment time, for components with res-auth=Container.

The DefaultPrincipalMapping JAAS configuration maps the authentication alias to the userid and

password. You may define and use other mapping configurations.

 Data type Drop-down list

Authentication Alias for XA Recovery:

This optional field is used to specify the authentication alias that should be used during XA recovery

processing.

 If the resource adapter does not support XA transactions, then this field will not be displayed. The default

value will come from the selected alias for application authentication (if specified).

Use Component-managed Authentication Alias

Selecting this radio button specifies that the alias set for Component-managed Authentication is

used at XA recovery time.

 Data type Radio button

Specify:

Selecting this radio button enables you to choose an authentication alias from a drop-down list of

Chapter 8. Developing WebSphere applications 1175

configured aliases.

 Data type Radio button

WebSphere Application Server data source properties collection:

Use this page to view the WebSphere Application Server data source properties. These properties apply to

the WebSphere Application Server connection, rather than to the database connection.

 To view this administrative console page, click Resources >JDBC Providers > JDBC_provider > Data

sources > data_source > WebSphere Application Server connection properties.

Statement Cache Size:

Specifies the number of free statements that are cached per connection.

 The WebSphere Application Server data source optimizes the processing of prepared statements. A

prepared statement is a precompiled SQL statement that is stored in a prepared statement object. This

object is used to efficiently execute the given SQL statement multiple times.

If the cache is not large enough, useful entries are discarded to make room for new entries. To determine

the largest value for your cache size to avoid any cache discards, add the number of uniquely prepared

statements and callable statements (as determined by the sql string, concurrency, and the scroll type) for

each application that uses this data source on a particular server. This value is the maximum number of

possible prepared statements that are cached on a given connection over the life of the server. Setting the

cache size to this value means you never have cache discards. In general, the more statements your

application has, the larger the cache should be. For example, if the application has 5 SQL statements, set

the statement cache size to 5, so that each connection has 5 statements.

You can also use the Tivoli Performance Viewer to minimize cache discards. Use a standard workload that

represents a typical number of incoming client requests, use a fixed number of iterations, and use a

standard set of configuration settings. Note: The higher the statement cache, the more system resources

are delayed. Therefore, if you set the number too high, you could lack resources because your system is

not able to open that many prepared statements.

In test applications, tuning the statement cache improved throughput by 10-20%. However, because of

potential resource limitations, this might not always be possible.

 Data type Integer

Default Depends on the database. Most are 10. Informix Version 7.3, 9.2, or 9.3

without latest fix must be 0. A default of 0 means there is no cache statement.

Enable Multithreaded Access Detection: If checked, the application server detects the existence of

access by multiple threads.

Enable WebSphere Connection Pooling: If checked, the application server sets up connect pools for this

datasource.

Enable Database Reauthentication: If checked, there is not be an exact match on connections retrieved

out of the WebSphere Application Server connection pool (that is, connection pool search criteria do not

include user name and password). Instead, the reauthentication of connection is done in the

doConnectionSetupPerTransaction() of the DataStoreHelper class. Note that WebSphere Application

Server runtime does NOT provide connection reauthentication implementation. Therefore, when this box is

checked you MUST extend the DataStoreHelper class to provide implementation of the

doConnectionSetupPerTransaction() method where the reauthentication takes place. Failure to do that

1176 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

results in wrong connections being handed out to users. For more information, refer to the Javadoc API

documentation for com.ibm.websphere.rsadapter.DataStoreHelper#doConnectionSetupPerTransaction(...).

Connection reauthentication can help improve performance by reducing the overhead of opening and

closing connections, particularly for applications that always request connections with different user names

and passwords.

Enable JMS One Phase Optimization Support: If checked, the application server allows JMS to get

optimized connections from this data source. This property prevents JDBC applications from sharing

connections with CMP applications.

PreTest Connections: If checked, the application server tries to connect to this data source before it

attempts to send data to or receive data from this data source. If you select this property, you can specify

how often, in seconds, the application server retries to make a connection if the initial attempt fails.

PreTest Connection Retry Interval: When PreTest Connection is checked, use this property to specify

how long, in seconds, the application server waits before retrying to make a connection if the initial attempt

fails.

PreTest SQL String:

Specifies the string of data that the application server sends to the database to test the connection.

 Data type Integer

Data sources (Version 4):

Use this page to view the settings of a Version 4.0 style data source.

 These Version 4.0 data sources use the WebSphere Application Server Version 4.0 Connection Manager

architecture. All EJB 1.1 modules must use a Version 4.0 data source.

To view this administrative console page, click Resources > JDBC Providers > JDBC_provider > Data

sources (Version 4).

Name:

Specifies a text identifier of the data source.

 Data type String

JNDI Name:

Specifies the Java Naming and Directory Interface (JNDI) name of the data source.

 Data type String

Description:

Specifies a text description of the data source.

 Data type String

Category:

Chapter 8. Developing WebSphere applications 1177

Specifies a text string that you can use to classify or group the data source.

 Data type String

Data source (Version 4) settings:

Use this page to create a Version 4.0 style data source. This data source uses the WebSphere Application

Server Version 4.0 connection manager architecture. All of your EJB1.x modules must use this data

source.

 To view this administrative console page, click Resources > JDBC Providers > JDBC_provider > Data

Sources (Version 4) > data_source.

Scope:

Specifies the level to which this resource definition is visible -- the cell, node, or server level.

 Resources such as JDBC providers, namespace bindings, or shared libraries can be defined at multiple

scopes, with resources defined at more specific scopes overriding duplicates which are defined at more

general scopes.

Note that no matter what the scope of a defined resource, the resource’s properties only apply at an

individual server level. For example, if you define the scope of a data source at the cell level, all users in

that cell can look up and use that data source, which is unique within that cell. However, resource property

settings are local to each server in the cell. For example, if you define max connections to 10, then each

server in that cell can have 10 connections.

Cell The most general scope. Resources defined at the cell scope are visible from all nodes and

servers, unless they are overridden. To view resources defined in the cell scope, do not specify a

server or a node name in the scope selection form.

Node The default scope for most resource types. Resources defined at the node scope override any

duplicates defined at the cell scope and are visible to all servers on the same node, unless they

are overridden at a server scope on that node. To view resources defined in a node scope, do not

specify a server, but select a node name in the scope selection form.

Server

The most specific scope for defining resources. Resources defined at the server scope override

any duplicate resource definitions defined at the cell scope or parent node scope and are visible

only to a specific server. To view resources defined in a server scope, specify a server name as

well as a node name in the scope selection form.

When resources are created, they are always created into the current scope selected in the panel. To view

resources in other scopes, specify a different node or server in the scope selection form.

 Data type String

Name:

Specifies the display name for the resource.

 For example, you can set this field to Test Data Source.

 Data type String

JNDI Name:

Specifies the Java Naming and Directory Interface (JNDI) name.

1178 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Distributed computing environments often employ naming and directory services to obtain shared

components and resources. Naming and directory services associate names with locations, services,

information, and resources.

Naming services provide name-to-object mappings. Directory services provide information on objects and

the search tools required to locate those objects.

There are many naming and directory service implementations, and the interfaces to them vary. JNDI

provides a common interface that is used to access the various naming and directory services.

For example, you can use the name jdbc/markSection.

If you leave this field blank a JNDI name is generated from the name of the data source. For example, a

data source name of markSection generates a JNDI name of jdbc/markSection.

After you set this value, save it, and restart the server, you can see this string when you run the dump

name space tool.

 Data type String

Description:

Specifies a text description for the resource.

 Data type String

Category:

Specifies a category string that you can use to classify or group the resource.

 Data type String

Database Name:

Specifies the name of the database that this data source accesses.

 For example, you can call the database SAMPLE.

 Data type String

Default User ID:

Specifies the user name to use for connecting to the database.

 For example, you can use the ID db2admin.

 Data type String

Default Password:

Specifies the password used for connecting to the database.

Chapter 8. Developing WebSphere applications 1179

For example, you can use the password db2admin.

 Data type String

Custom properties collection:

Use this page to view and configure the custom properties of a J2EE resource provider.

 You can configure custom property collections for numerous resource types. According to the resource

type with which a collection is associated, your ability to add, delete, and modify individual properties and

settings varies. Begin the configuration process by clicking on the Required field to sort those column

values in descending order. All of the required (true) values are then sorted at the beginning of the page.

Be sure to set all required properties.

Name:

Specifies the property name.

 You must ensure that the resource provider has the setting for this name.

 Data type String

Value:

Specifies the property value.

 Data type Variable; see “Custom property settings” for more

information.

Description:

Specifies text to describe any bounds or well-defined values for this property.

 Data type String

Required:

Specifies whether this property is required for the resource provider.

 Data type Boolean or Check box

Custom property settings:

Use this page to view and set custom properties that might be required for resource providers and

resource factories.

 According to the resource type with which a property collection is associated, your ability to modify

individual property settings varies. Therefore, consider the following descriptions as a general reference for

custom property settings. (The administrative console page that you are using to configure your custom

property may only allow you to modify a subset of the following settings.)

Required:

Specifies properties that are required for this resource.

1180 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Data type Check box

Name:

Specifies the name associated with this property (PortNumber, ConnectionURL, etc).

 Data type String

Value:

Specifies the value associated with this property in this property set.

 Data type Determined by the Type setting, which you select from a

drop-down list. If the type is java.lang.String then the

value is of type String; if the type is java.lang.Integer,

then the value is of type Integer; and so on.

Description:

Specifies text to describe any bounds or well-defined values for this property.

 Data type String

Type:

Specifies the fully qualified Java data type of this property .

 There are specific types that are valid:

v java.lang.Boolean

v java.lang.String

v java.lang.Integer

v java.lang.Double

v java.lang.Byte

v java.lang.Short

v java.lang.Long

v java.lang.Float

v java.lang.Character

 Data type Drop-down list

Custom Properties (Version 4) collection:

Use this page to view properties for a Version 4.0 data source.

 To view this administrative console page, click Resources > JDBC Providers > JDBC_provider > Data

Sources (Version 4) > data_source > Custom Properties

Name:

Specifies the name of the custom property

 Data type String

Chapter 8. Developing WebSphere applications 1181

Value:

Specifies the value of the custom property.

 Data type Integer

Description:

Specifies text to describe any bounds or well-defined values for this property.

 Data type String

Required:

Specifies properties that are required for this resource.

 Data type String

Custom property (Version 4) settings:

Use this page to add properties for a Version 4.0 data source.

 To view this administrative console page, click Resources >JDBC Providers> JDBC_provider > Data

Sources (Version 4) > data_source > Custom Properties > custom_property.

Scope:

Specifies the level to which this resource definition is visible -- the cell, node, or server level.

 Resources such as JDBC providers, namespace bindings, or shared libraries can be defined at multiple

scopes, with resources defined at more specific scopes overriding duplicates which are defined at more

general scopes.

Note that no matter what the scope of a defined resource, the resource’s properties only apply at an

individual server level. For example, if you define the scope of a data source at the cell level, all users in

that cell can look up and use that data source, which is unique within that cell. However, resource property

settings are local to each server in the cell. For example, if you define max connections to 10, then each

server in that cell can have 10 connections.

Cell The most general scope. Resources defined at the cell scope are visible from all nodes and

servers, unless they are overridden. To view resources defined in the cell scope, do not specify a

server or a node name in the scope selection form.

Node The default scope for most resource types. Resources defined at the node scope override any

duplicates defined at the cell scope and are visible to all servers on the same node, unless they

are overridden at a server scope on that node. To view resources defined in a node scope, do not

specify a server, but select a node name in the scope selection form.

Server

The most specific scope for defining resources. Resources defined at the server scope override

any duplicate resource definitions defined at the cell scope or parent node scope and are visible

only to a specific server. To view resources defined in a server scope, specify a server name as

well as a node name in the scope selection form.

When resources are created, they are always created into the current scope selected in the panel. To view

resources in other scopes, specify a different node or server in the scope selection form.

1182 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Data type String

Required:

Specifies properties that are required for this resource.

 Data type Check box

Name:

Specifies the name associated with this property (PortNumber, ConnectionURL, etc).

 Data type String

Value:

Specifies the value associated with this property in this property set.

 Data type Integer

Description:

Specifies text to describe any bounds or well-defined values for this property.

 Data type String

Type:

Specifies the fully qualified Java type of this property (java.lang.Integer, java.lang.Byte).

 Data type String

Creating and configuring a JDBC provider and data source using the Java Management Extensions

API:

If your application requires access to a JDBC connection pool from a J2EE 1.3 or 1.4 level WebSphere

Application Server component, you can create the necessary JDBC provider and data source objects

using the Java Management Extensions (JMX) API exclusively. Alternatively, you can use the JMX API in

combination with the WSadmin - scripting tool.

Note: Use the JMX API to create only data sources for which the product does not provide a template.

For every JDBC provider WebSphere Application Server supports, the product provides a

corresponding data source template. You can create supported providers and associated data

sources through the administrative console, or by using the WSadmin - scripting tool. For a

complete list of supported JDBC providers (and therefore a complete list of data sources that must

be created using a template), refer to the topic “Vendor-specific data sources minimum required

settings” on page 1220.

These steps outline the general procedure for using the JMX API to create a JDBC provider and data

source, on WebSphere Application Server running on Windows platforms:

1. Set your classpath.

Chapter 8. Developing WebSphere applications 1183

You need two JAR files in your classpath -- wsexception.jar and wasjmx.jar. The following command is

an example for setting your classpath (shown on 2 lines for publication):

set classpath=%classpath%;D:\WebSphere\AppServer\lib\wsexception.jar;

 D:\WebSphere\AppServer\lib\wasjmx.jar

2. Look up the host and get an administration client handle.

3. Get a configuration service handle.

4. Update the resource.xml file using the configuration service as desired.

a. Add a JDBC provider.

b. Add the data source.

c. Add the connection factory. (This step is necessary only for data sources that must support

container-managed persistence.)

5. Reload the resource.xml file to bind the newly created data source into the JNDI namespace. Perform

this step if you want to use the newly created data source right away without restarting the application

server.

a. Locate the DataSourceConfigHelper MBean using the name.

b. Put together the signature and parameters for the call.

c. Invoke the reload() call.

Example: Using the Java Management Extensions API to create a JDBC driver and data source for

container-managed persistence:

//

// "This program may be used, executed, copied, modified and distributed without royalty for the

// purpose of developing, using, marketing, or distributing."

//

// Product 5630-A36, (C) COPYRIGHT International Business Machines Corp., 2001, 2002

// All Rights Reserved * Licensed Materials - Property of IBM

//

import java.util.*;

import javax.sql.*;

import javax.transaction.*;

import javax.management.*;

import com.ibm.websphere.management.*;

import com.ibm.websphere.management.configservice.*;

import com.ibm.ws.exception.WsException;

/**

 * Creates a node scoped resource.xml entry for a DB2 XA datasource.

 * The datasource created is for CMP use.

 *

 * We need following to run (shown on multiple lines for publication):

 * set classpath=%classpath%;D:\WebSphere\AppServer\lib\wsexception.jar;

 D:\WebSphere\AppServer\lib\wasjmx.jar;D:\$WAS_HOME\lib\wasx.jar

 */

public class CreateDataSourceCMP {

 String dsName = "markSection"; // ds display name , also jndi name and CF name

 String dbName = "SECTION"; // database name

 String authDataAlias = "db2admin"; // an authentication data alias

 String uid = "db2admin"; // userid

 String pw = "db2admin"; // password

 String dbclasspath = "D:/SQLLIB/java/db2java.zip"; // path to the db driver

 /**

 * Main method.

 */

 public static void main(String[] args) {

 CreateDataSourceCMP cds = new CreateDataSourceCMP();

1184 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

try {

 cds.run(args);

 } catch (com.ibm.ws.exception.WsException ex) {

 System.out.println("Caught this " + ex);

 ex.printStackTrace();

 //ex.getCause().printStackTrace();

 } catch (Exception ex) {

 System.out.println("Caught this " + ex);

 ex.printStackTrace();

 }

 }

 /**

 * This method creates the datasource using JMX.

* The datasource created here is only written into resources.xml.

 * It is not bound into namespace until the server is restarted, or an application started

 */

 public void run(String[] args) throws Exception {

 try {

 // Initialize the AdminClient.

 Properties adminProps = new Properties();

 adminProps.setProperty(AdminClient.CONNECTOR_TYPE, AdminClient.CONNECTOR_TYPE_SOAP);

 adminProps.setProperty(AdminClient.CONNECTOR_HOST, "localhost");

 adminProps.setProperty(AdminClient.CONNECTOR_PORT, "8880");

 AdminClient adminClient = AdminClientFactory.createAdminClient(adminProps);

 // Get the ConfigService implementation.

 com.ibm.websphere.management.configservice.ConfigServiceProxy configService =

 new com.ibm.websphere.management.configservice.ConfigServiceProxy(adminClient);

 Session session = new Session();

 // Use this group to add to the node scoped resource.xml.

 ObjectName node1 = ConfigServiceHelper.createObjectName(null, "Node", null);

 ObjectName[] matches = configService.queryConfigObjects(session, null, node1, null);

 node1 = matches[0]; // use the first node found

 // Use this group to add to the server1 scoped resource.xml.

 ObjectName server1 = ConfigServiceHelper.createObjectName(null, "Server", "server1");

 matches = configService.queryConfigObjects(session, null, server1, null);

 server1 = matches[0]; // use the first server found

 // Create the JDBCProvider

 String providerName = "DB2 JDBC Provider (XA)";

 System.out.println("Creating JDBCProvider " + providerName);

 // Prepare the attribute list

 AttributeList provAttrs = new AttributeList();

 provAttrs.add(new Attribute("name", providerName));

 provAttrs.add(new Attribute("implementationClassName",

 "COM.ibm.db2.jdbc.DB2XADataSource"));

 provAttrs.add(new Attribute("description","DB2 JDBC2-compliant XA Driver"));

 //create it

 ObjectName jdbcProv =

 configService.createConfigData(session,node1,"JDBCProvider",

 "resources.jdbc:JDBCProvider",provAttrs);

 // now plug in the classpath

configService.addElement(session,jdbcProv,"classpath",dbclasspath,-1);

// Search for RRA so we can link it to the datasource

 ObjectName rra =

 ConfigServiceHelper.createObjectName(null, "J2CResourceAdapter", null);

Chapter 8. Developing WebSphere applications 1185

matches = configService.queryConfigObjects(session, node1, rra, null);

 rra = matches[0]; // use the first J2CResourceAdapter segment for builtin_rra

 // Prepare the attribute list

 AttributeList dsAttrs = new AttributeList();

 dsAttrs.add(new Attribute("name", dsName));

 dsAttrs.add(new Attribute("jndiName", "jdbc/" + dsName));

 dsAttrs.add(new Attribute("datasourceHelperClassname",

 "com.ibm.websphere.rsadapter.DB2DataStoreHelper"));

 dsAttrs.add(new Attribute("statementCacheSize", new Integer(10)));

 dsAttrs.add(new Attribute("relationalResourceAdapter",

 rra)); // this is where we make the link to "builtin_rra"

 dsAttrs.add(new Attribute("description", "JDBC Datasource for mark section CMP 2.0 test"));

 dsAttrs.add(new Attribute("authDataAlias",authDataAlias));

 // Create the datasource

 System.out.println(" ** Creating datasource");

 ObjectName dataSource =

 configService.createConfigData(session,jdbcProv,"DataSource",

 "resources.jdbc:DataSource",dsAttrs);

 // Add a propertySet.

 AttributeList propSetAttrs = new AttributeList();

 ObjectName resourcePropertySet =

 configService.createConfigData(session,dataSource,"propertySet","",propSetAttrs);

 // Add resourceProperty databaseName

 AttributeList propAttrs1 = new AttributeList();

 propAttrs1.add(new Attribute("name", "databaseName"));

 propAttrs1.add(new Attribute("type", "java.lang.String"));

 propAttrs1.add(new Attribute("value", dbName));

 configService.addElement(session,resourcePropertySet,"resourceProperties",propAttrs1,-1);

// Now Create the corresponding J2CResourceAdapter Connection Factory object.

 ObjectName jra = ConfigServiceHelper.createObjectName(null,"J2CResourceAdapter",null);

 // Get all the J2CResourceAdapter, and I want to add my datasource

 System.out.println(" ** Get all J2CResourceAdapter’s");

 ObjectName[] jras = configService.queryConfigObjects(session, node1, jra, null);

 int i=0;

 for (;i< jras.length;i++) {

 System.out.println(ConfigServiceHelper.getConfigDataType(jras[i])+ " " + i + " = "

 + jras[i].getKeyProperty(SystemAttributes._WEBSPHERE_CONFIG_DATA_DISPLAY_NAME)

 + "\nFrom scope ="

 + jras[i].getKeyProperty(SystemAttributes._WEBSPHERE_CONFIG_DATA_ID));

 // quit on the first builtin_rra

 if (jras[i].getKeyProperty(SystemAttributes._WEBSPHERE_CONFIG_DATA_DISPLAY_NAME)

 .equals("WebSphere Relational Resource Adapter")) {

 break;

 }

 }

 if (i >= jras.length) {

 System.out.println(

 "Did not find builtin_rra J2CResourceAdapter object creating CF anyways");

 } else {

 System.out.println(

 "Found builtin_rra J2CResourceAdapter object at index " + i + " creating CF");

 }

 // Prepare the attribute list

 AttributeList cfAttrs = new AttributeList();

 cfAttrs.add(new Attribute("name", dsName + "_CF"));

1186 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

cfAttrs.add(new Attribute("authMechanismPreference","BASIC_PASSWORD"));

 cfAttrs.add(new Attribute("authDataAlias",authDataAlias));

 cfAttrs.add(new Attribute("cmpDatasource",

 dataSource)); // this is where we make the link to DataSource’s xmi:id

 ObjectName cf =

 configService.createConfigData(session,jras[i],"CMPConnectorFactory",

 "resources.jdbc:CMPConnectorFactory",cfAttrs);

 // ===== start Security section

 System.out.println("Creating an authorization data alias " + authDataAlias);

 // Find the parent security object

 ObjectName security = ConfigServiceHelper.createObjectName(null, "Security", null);

 ObjectName[] securityName =

 configService.queryConfigObjects(session, null, security, null);

 security=securityName[0];

 // Prepare the attribute list

 AttributeList authDataAttrs = new AttributeList();

 authDataAttrs.add(new Attribute("alias", authDataAlias));

 authDataAttrs.add(new Attribute("userId", uid));

 authDataAttrs.add(new Attribute("password", pw));

 authDataAttrs.add(new Attribute("description","Auto created alias for datasource"));

 //create it

 ObjectName authDataEntry =

 configService.createConfigData(session,security,"authDataEntries",

 "JAASAuthData",authDataAttrs);

 // ===== end Security section

 // Save the session

 System.out.println("Saving session");

 configService.save(session, false);

 // reload resources.xml to bind the new datasource into the name space

 reload(adminClient,true);

 } catch (Exception ex) {

 ex.printStackTrace(System.out);

 throw ex;

 }

 }

 /**

 * Get the DataSourceConfigHelperMbean and call reload() on it

 *

 * @param adminClient

 * @param verbose true - print messages to stdout

 */

 public void reload(AdminClient adminClient,boolean verbose) {

 if (verbose) {

 System.out.println("Finding the Mbean to call reload()");

 }

 // First get the Mbean

 ObjectName handle = null;

 try {

 ObjectName queryName = new ObjectName("WebSphere:type=DataSourceCfgHelper,*");

 Set s = adminClient.queryNames(queryName, null);

 Iterator iter = s.iterator();

 if (iter.hasNext()) handle = (ObjectName)iter.next();

 } catch (MalformedObjectNameException mone) {

 System.out.println("Check the program variable queryName" + mone);

 } catch (com.ibm.websphere.management.exception.ConnectorException ce) {

 System.out.println("Cannot connect to the application server" + ce);

 }

Chapter 8. Developing WebSphere applications 1187

if (verbose) {

 System.out.println("Calling reload()");

 }

 Object result = null;

 try {

 result = adminClient.invoke(handle, "reload", new Object[] {}, new String[] {});

 } catch (MBeanException mbe) {

 if (verbose) {

 System.out.println("\tMbean Exception calling reload" + mbe);

 }

 } catch (InstanceNotFoundException infe) {

 System.out.println("Cannot find reload ");

 } catch (Exception ex) {

 System.out.println("Exception occurred calling reload()" + ex);

 }

 if (result==null && verbose) {

 System.out.println("OK reload()");

 }

 }

}

Example: Using the Java Management Extensions API to create a JDBC driver and data source for

bean-managed persistence, session beans, or servlets:

//

// "This program may be used, executed, copied, modified and distributed without royalty for the

// purpose of developing, using, marketing, or distributing."

//

// Product 5630-A36, (C) COPYRIGHT International Business Machines Corp., 2001, 2002

// All Rights Reserved * Licensed Materials - Property of IBM

//

import java.util.*;

import javax.sql.*;

import javax.transaction.*;

import javax.management.*;

import com.ibm.websphere.management.*;

import com.ibm.websphere.management.configservice.*;

import com.ibm.ws.exception.WsException;

/**

 * Creates a node scoped resource.xml entry for a DB2 XA datasource.

 * The datasource created is for BMP use.

 *

 * We need following to run (shown on 2 lines for publication):

 * set classpath=%classpath%;D:\WebSphere\AppServer\lib\wsexception.jar;

 D:\WebSphere\AppServer\lib\wasjmx.jar;D:\$WAS_HOME\lib\wasx.jar

 */

public class CreateDataSourceBMP {

 String dsName = "markSection"; // ds display name , also jndi name and CF name

 String dbName = "SECTION"; // database name

 String authDataAlias = "db2admin"; // an authentication data alias

 String uid = "db2admin"; // userid

 String pw = "db2admin"; // password

 String dbclasspath = "D:/SQLLIB/java/db2java.zip"; // path to the db driver

 /**

 * Main method.

 */

 public static void main(String[] args) {

1188 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

CreateDataSourceBMP cds = new CreateDataSourceBMP();

 try {

 cds.run(args);

 } catch (com.ibm.ws.exception.WsException ex) {

 System.out.println("Caught this " + ex);

 ex.printStackTrace();

 //ex.getCause().printStackTrace();

 } catch (Exception ex) {

 System.out.println("Caught this " + ex);

 ex.printStackTrace();

 }

 }

 /**

 * This method creates the datasource using JMX.

 *

 * The datasource created here is only written into resources.xml.

 * It is not bound into namespace until the server is restarted, or an application started

 */

 public void run(String[] args) throws Exception {

 try {

 // Initialize the AdminClient.

 Properties adminProps = new Properties();

 adminProps.setProperty(AdminClient.CONNECTOR_TYPE, AdminClient.CONNECTOR_TYPE_SOAP);

 adminProps.setProperty(AdminClient.CONNECTOR_HOST, "localhost");

 adminProps.setProperty(AdminClient.CONNECTOR_PORT, "8880");

 AdminClient adminClient = AdminClientFactory.createAdminClient(adminProps);

 // Get the ConfigService implementation.

 com.ibm.websphere.management.configservice.ConfigServiceProxy configService =

 new com.ibm.websphere.management.configservice.ConfigServiceProxy(adminClient);

 Session session = new Session();

 // Use this group to add to the node scoped resource.xml.

 ObjectName node1 = ConfigServiceHelper.createObjectName(null, "Node", null);

 ObjectName[] matches = configService.queryConfigObjects(session, null, node1, null);

 node1 = matches[0]; // use the first node found

 // Use this group to add to the server1 scoped resource.xml.

 ObjectName server1 = ConfigServiceHelper.createObjectName(null, "Server", "server1");

 matches = configService.queryConfigObjects(session, null, server1, null);

 server1 = matches[0]; // use the first server found

 // Create the JDBCProvider

 String providerName = "DB2 JDBC Provider (XA)";

 System.out.println("Creating JDBCProvider " + providerName);

 // Prepare the attribute list

 AttributeList provAttrs = new AttributeList();

 provAttrs.add(new Attribute("name", providerName));

 provAttrs.add(

 new Attribute("implementationClassName", "COM.ibm.db2.jdbc.DB2XADataSource"));

 provAttrs.add(new Attribute("description","DB2 JDBC2-compliant XA Driver"));

 //create it

 ObjectName jdbcProv =

 configService.createConfigData(session,node1,"JDBCProvider",

 "resources.jdbc:JDBCProvider",provAttrs);

 // now plug in the classpath

 configService.addElement(session,jdbcProv,"classpath",dbclasspath,-1);

Chapter 8. Developing WebSphere applications 1189

// Search for RRA so we can link it to the datasource

 ObjectName rra = ConfigServiceHelper.createObjectName(null, "J2CResourceAdapter", null);

 matches = configService.queryConfigObjects(session, node1, rra, null);

 rra = matches[0]; // use the first J2CResourceAdapter segment for builtin_rra

 // Prepare the attribute list

 AttributeList dsAttrs = new AttributeList();

 dsAttrs.add(new Attribute("name", dsName));

 dsAttrs.add(new Attribute("jndiName", "jdbc/" + dsName));

 dsAttrs.add(new Attribute("datasourceHelperClassname",

 "com.ibm.websphere.rsadapter.DB2DataStoreHelper"));

 dsAttrs.add(new Attribute("statementCacheSize", new Integer(10)));

 dsAttrs.add(new Attribute(

 "relationalResourceAdapter", rra)); // this is where we make the link to "builtin_rra"

 dsAttrs.add(new Attribute("description", "JDBC Datasource for mark section CMP 2.0 test"));

 dsAttrs.add(new Attribute("authDataAlias",authDataAlias));

 // Create the datasource

 System.out.println(" ** Creating datasource");

 ObjectName dataSource =

 configService.createConfigData(session,jdbcProv,"DataSource",

 "resources.jdbc:DataSource",dsAttrs);

 // Add a propertySet.

 AttributeList propSetAttrs = new AttributeList();

 ObjectName resourcePropertySet =

 configService.createConfigData(session,dataSource,"propertySet","",propSetAttrs);

 // Add resourceProperty databaseName

 AttributeList propAttrs1 = new AttributeList();

 propAttrs1.add(new Attribute("name", "databaseName"));

 propAttrs1.add(new Attribute("type", "java.lang.String"));

 propAttrs1.add(new Attribute("value", dbName));

 configService.addElement(session,resourcePropertySet,"resourceProperties",propAttrs1,-1);

 // ===== start Security section

 System.out.println("Creating an authorization data alias " + authDataAlias);

 // Find the parent security object

 ObjectName security = ConfigServiceHelper.createObjectName(null, "Security", null);

 ObjectName[] securityName =

 configService.queryConfigObjects(session, null, security, null);

 security=securityName[0];

 // Prepare the attribute list

 AttributeList authDataAttrs = new AttributeList();

 authDataAttrs.add(new Attribute("alias", authDataAlias));

 authDataAttrs.add(new Attribute("userId", uid));

 authDataAttrs.add(new Attribute("password", pw));

 authDataAttrs.add(new Attribute("description","Auto created alias for datasource"));

 //create it

 ObjectName authDataEntry =

 configService.createConfigData(session,security,"authDataEntries",

 "JAASAuthData",authDataAttrs);

 // ===== end Security section

 // Save the session

 System.out.println("Saving session");

 configService.save(session, false);

 // reload resources.xml

 reload(adminClient,true);

1190 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

} catch (Exception ex) {

 ex.printStackTrace(System.out);

 throw ex;

 }

 }

 /**

 * Get the DataSourceConfigHelperMbean and call reload() on it

 *

 * @param adminClient

 * @param verbose true - print messages to stdout

 */

 public void reload(AdminClient adminClient,boolean verbose) {

 if (verbose) {

 System.out.println("Finding the Mbean to call reload()");

 }

 // First get the Mbean

 ObjectName handle = null;

 try {

 ObjectName queryName = new ObjectName("WebSphere:type=DataSourceCfgHelper,*");

 Set s = adminClient.queryNames(queryName, null);

 Iterator iter = s.iterator();

 if (iter.hasNext()) handle = (ObjectName)iter.next();

 } catch (MalformedObjectNameException mone) {

 System.out.println("Check the program variable queryName" + mone);

 } catch (com.ibm.websphere.management.exception.ConnectorException ce) {

 System.out.println("Cannot connect to the application server" + ce);

 }

 if (verbose) {

 System.out.println("Calling reload()");

 }

 Object result = null;

 try {

 result = adminClient.invoke(handle, "reload", new Object[] {}, new String[] {});

 } catch (MBeanException mbe) {

 if (verbose) {

 System.out.println("\tMbean Exception calling reload" + mbe);

 }

 } catch (InstanceNotFoundException infe) {

 System.out.println("Cannot find reload ");

 } catch (Exception ex) {

 System.out.println("Exception occurred calling reload()" + ex);

 }

 if (result==null && verbose) {

 System.out.println("OK reload()");

 }

 }

}

Example: Creating a JDBC provider and data source using Java Management Extensions API and the

scripting tool: The following code is a JACL (WSadmin - scripting tool) script used to create a data

source.

Note: Use this script to create only data sources for which the product does not provide a template. For

every JDBC provider WebSphere Application Server supports, the product provides a corresponding

data source template. See the topic ″Creating configuration objects using the wsadmin tool″ in the

information center for instructions on how to use the createUsingTemplate command to establish

these data sources. For a complete list of supported JDBC providers (and therefore a complete list

of data sources that must be created using a template), refer to the topic “Vendor-specific data

sources minimum required settings” on page 1220.

Chapter 8. Developing WebSphere applications 1191

This script:

v Creates a data source fvtDS_1

v Creates a 4.0 data source fvtDS_3

v Creates a container-managed persistence (CMP) data source linked to fvtDS_1
#AWE -- Set up XA DB2 data sources, both Version 4.0 and J2EE Connector

 architecture (JCA)-compliant data sources

#UPDATE THESE VALUES:

#The classpath that will be used by your database driver

set driverClassPath "c:/sqllib/java/db2java.zip"

set server "server1"

set fvtbase "c:/wssb/fvtbase"

#Users and passwords..

set defaultUser1 "dbuser1"

set defaultPassword1 "dbpwd1"

set aliasName "alias1"

set databaseName1 "jtest1"

set databaseName2 "jtest2"

#END OF UPDATES

puts "Add an alias alias1"

set cell [$AdminControl getCell]

set sec [$AdminConfig getid /Cell:$cell/Security:/]

#---

Create a JAASAuthData object for component-managed authentication

#---

puts "create JAASAuthData object for alias1"

set alias_attr [list alias $aliasName]

set desc_attr [list description "Alias 1"]

set userid_attr [list userId $defaultUser1]

set password_attr [list password $defaultPassword1]

set attrs [list $alias_attr $desc_attr $userid_attr $password_attr]

set authdata [$AdminConfig create JAASAuthData $sec $attrs]

$AdminConfig save

puts "Installing DB2 datasource for XA"

puts "Finding the old JDBCProvider.."

#Remove the old jdbc provider...

set jps [$AdminConfig list JDBCProvider]

foreach jp $jps {

 set jpname [lindex [lindex [$AdminConfig show $jp {name}] 0] 1]

 if {($jpname == "FVTProvider")} {

 puts "Removing old JDBC Provider"

 $AdminConfig remove $jp

 $AdminConfig save

 }

}

#Get the server name...

puts "Finding the server $server"

set servlist [$AdminConfig list Server]

set servsize [llength $servlist]

foreach srvr $servlist {

 set sname [lindex [lindex [$AdminConfig show $srvr {name}] 0] 1]

 if {($sname == $server)} {

 puts "Found server $srvr"

1192 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

set serv $srvr

 }

}

puts "Finding the Resource Adapter"

set rsadapter [$AdminConfig list J2CResourceAdapter $serv]

#Now create a JDBC Provider for the data sources

puts "Creating the provider for COM.ibm.db2.jdbc.DB2XADataSource"

set attrs1 [subst {{classpath $driverClassPath} {

 implementationClassName COM.ibm.db2.jdbc.DB2XADataSource} {

 name "FVTProvider2"} {description "DB2 JDBC Provider"}}]

set provider1 [$AdminConfig create JDBCProvider $serv $attrs1]

#Create the first data source

puts "Creating the datasource fvtDS_1"

set attrs2 [subst {{name fvtDS_1} {description "FVT DataSource 1"}}]

set ds1 [$AdminConfig create DataSource $provider1 $attrs2]

#Set the properties for the data source.

set propSet1 [$AdminConfig create J2EEResourcePropertySet $ds1 {}]

set attrs3 [subst {{name databaseName} {type java.lang.String} {value $databaseName1}}]

$AdminConfig create J2EEResourceProperty $propSet1 $attrs3

set attrs10 [subst {{jndiName jdbc/fvtDS_1} {statementCacheSize 10} {

 datasourceHelperClassname com.ibm.websphere.rsadapter.DB2DataStoreHelper} {

 relationalResourceAdapter $rsadapter} {authMechanismPreference "BASIC_PASSWORD"} {

 authDataAlias $aliasName}}]

$AdminConfig modify $ds1 $attrs10

#Create the connection pool object...

$AdminConfig create ConnectionPool $ds1 {{connectionTimeout 1000} {maxConnections 30} {

 minConnections 1} {agedTimeout 1000} {reapTime 2000} {unusedTimeout 3000} }

#Now create the 4.0 data sources..

puts "Creating the 4.0 datasource fvtDS_3"

set ds3 [$AdminConfig create WAS40DataSource $provider1 {{name fvtDS_3} {

 description "FVT 4.0 DataSource"}}]

#Set the properties on the data source

set propSet3 [$AdminConfig create J2EEResourcePropertySet $ds3 {}]

#These attributes should be the same as fvtDS_1

set attrs4 [subst {{name user} {type java.lang.String} {value $defaultUser1}}]

set attrs5 [subst {{name password} {type java.lang.String} {value $defaultPassword1}}]

$AdminConfig create J2EEResourceProperty $propSet3 $attrs3

$AdminConfig create J2EEResourceProperty $propSet3 $attrs4

$AdminConfig create J2EEResourceProperty $propSet3 $attrs5

set attrs10 [subst {{jndiName jdbc/fvtDS_3} {databaseName $databaseName1}}]

$AdminConfig modify $ds3 $attrs10

$AdminConfig create WAS40ConnectionPool $ds3 {{orphanTimeout 3000} {connectionTimeout 1000} {

 minimumPoolSize 1} {maximumPoolSize 10} {idleTimeout 2000}}

#Now add a CMP connection factory for the JCA-compliant data source. This step is not

#necessary for Version 4 data sources, as they contain built-in CMP connection factories.

puts "Creating the CMP Connector Factory for fvtDS_1"

set attrs12 [subst {{name "FVT DS 1_CF"} {authMechanismPreference BASIC_PASSWORD} {

 cmpDatasource $ds1} {authDataAlias $aliasName}}]

set cf1 [$AdminConfig create CMPConnectorFactory $rsadapter $attrs12]

#Set the properties for the data source.

Chapter 8. Developing WebSphere applications 1193

$AdminConfig create MappingModule $cf1 {{mappingConfigAlias "DefaultPrincipalMapping"} {

 authDataAlias "alias1"}}

$AdminConfig save

Test connection service:

WebSphere Application Server provides a test connection service for testing connections to the data

sources that you configure for database access.

 If the definition of your data source includes WebSphere variables, see the ″Configuring WebSphere

variables″ topic to verify that you define them correctly. A variable cannot be found exception results

from attempted use of a data source that is configured with undefined variables.

Activating the test connection service

There are three ways to activate the test connection service: through the administrative console, the

wsadmin tool, or a Java stand-alone program. Each process invokes the same methods on the same

MBean.

Administrative console

WebSphere Application Server allows you to test a connection from the administrative console by simply

pushing a button: the Data source collection, Data source settings, Version 4 data source collection, and

Version 4 data source settings pages all have Test Connection buttons. After you define and save a data

source, you can click this button to ensure that the parameters in the data source definition are correct. On

the collection page, you can select several data sources and test them all at once. Note that there are

certain conditions that must be met first. For more information, see Testing a connection with the

administrative console.

WsAdmin tool

The wsadmin tool provides a scripting interface to a full range of WebSphere Application Server

administration activities. Because the Test Connection functionality is implemented as a method on an

MBean, and wsadmin can invoke MBean methods, wsadmin can be utilized to test connections to data

sources. You have two options for testing a data source connection through wsadmin:

The AdminControl object of wsadmin has a testConnection operation that tests the configuration properties

of a data source object. For information, see Testing a connection using wsadmin.

You can also test a connection by invoking the MBean operation. Use ″Example: Testing data source

connection using wsadmin″ in the information center as a guide for this technique.

Java stand-alone program

Finally, you can test a connection by executing the testConnection() method on the DataSourceCfgHelper

MBean. This method allows you to pass the configuration ID of the configured data source. The Java

program connects to a running Java Management Extensions (JMX) server to access the MBean. In a

base installation of Application Server, you connect to the JMX server running in the application server,

usually on port 8880.

The return value from this invocation is either 0, a positive number, or an exception. 0 indicates that the

operation completed successfully, with no warnings. A positive number indicates that the operation

completed successfully, with the number of warnings. An exception indicates that the test of the connection

failed.

You can find an example of this code in Example: Test a connection using testConnection(ConfigID).

1194 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Testing a connection with the administrative console:

After you have defined and saved a data source, you can click the Test Connection button to ensure that

the parameters in the data source definition are correct. On the collection panel, you can select multiple

data sources and test them all at once. Be sure that the following conditions are met before using the Test

Connection button.

1. Depending on your specific needs, a valid Authentication Data alias might need to exist and be

supplied on the data source panels.

2. If you are testing a connection using a WebSphere Application Server Version 4.0 type of data source,

ensure that the user and password information is filled in.

3. If you used a WebSphere Environment entry for the class path or other fields, such as

${DB2_JDBC_DRIVER_PATH}/db2java.zip, make sure that you assign it a value in the WebSphere

Variables page. Note that if you add a new WebSphere environment variable, or modify it , the process

(application server) might need restarting.

4. Click Test Connection.

A Test Connection operation can have three different outcomes, each resulting in a different message

being displayed in the messages panel of the page on which you press the Test Connection button.

a. The test can complete successfully, meaning that a connection is successfully obtained to the

database using the configured data source parameters. The resulting message states: Test

Connection for data source DataSourceName on process ProcessName at node NodeName was

successful.

b. The test can complete successfully with warnings. This means that while a connection is

successfully obtained to the database, warnings were issued. The resulting message states: Test

Connection for data source DataSourceName on process ProcessName at node NodeName was

successful with warning(s). View the JVM Logs for more details.

The View the JVM Logs text is a hyperlink that takes you to the JVM Logs console screen for the

process.

c. The test can fail. A connection to the database with the configured parameters is not obtained. The

resulting message states: Test Connection failed for data source DataSourceName on process

ProcessName at node NodeName with the following exception: ExceptionText. View the JVM Logs

for more details.

Again, the text for View the JVM Logs is a hyperlink to the appropriate logs screen.

Testing a connection using wsadmin:

The AdminControl object of wsadmin has a testConnection operation that tests the configuration properties

of a data source object. It takes a configuration ID as an argument.

Note: There is no way to pass a user ID and password to this invocation. This invocation can only be

used for databases that do not require a user ID and password to make a connection (such as DB2

on a Windows machine), or for data sources that have a component-managed or

container-managed authentication alias set on the data source object.

1. Invoke the getid() method for your data source.

2. Set the value of the configuration id to a variable.

set myds [$AdminConfig getid /JDBCProvider:mydriver/DataSource:mydatasrc/]

where /JDBCProvider:mydriver/DataSource:mydatasrc/ is the data source you want to test. After you

have the configuration ID of the data source, you can test the connection to the database.

3. Test the connection to the database.

$AdminControl testConnection $myds

Example: Test a connection using testConnection(ConfigID): This program uses JMX to connect to a

running server and invoke the testConnection method on the DataSourceCfgHelper MBean.

Chapter 8. Developing WebSphere applications 1195

/**

 * Description

 * Resource adapter test program to make sure that the MBean interfaces work.

 * Following interfaces are tested

 *

 * --- testConnection()

 *

 *

 * We need following to run

 * C:\src>java -Djava.ext.dirs=

 C:\WebSphere\AppServer\lib;C:\WebSphere\AppServer\java\jre\lib\ext testDSGUI

 * must include jre for log.jar and mail.jar, else get class not found exception

 *

 *

 */

import java.util.Iterator;

import java.util.Locale;

import java.util.Properties;

import java.util.Set;

import javax.management.InstanceNotFoundException;

import javax.management.MBeanException;

import javax.management.MalformedObjectNameException;

import javax.management.ObjectName;

import javax.management.RuntimeMBeanException;

import javax.management.RuntimeOperationsException;

import com.ibm.websphere.management.AdminClient;

import com.ibm.websphere.management.AdminClientFactory;

import com.ibm.ws.rsadapter.exceptions.DataStoreAdapterException;

public class testDSGUI {

//Use port 8880 for base installation or port 8879 for ND installation

String port = "8880";

// String port = "8879";

String host = "localhost";

final static boolean verbose = true;

// eg a configuration ID for DataSource declared at the node level for base

private static final String resURI = "cells/cat/nodes/cat:resources.xml#DataSource_1";

// eg a 4.0 DataSource declared at the node level for base

// private static final String resURI =

// "cells/cat/nodes/cat:resources.xml#WAS40DataSource_1";

// eg Cloudscape DataSource declared at the server level for base

//private static final String resURI =

// "cells/cat/nodes/cat/servers/server1/resources.xml#DataSource_6";

// eg node level DataSource for ND

//private static final String resURI =

// "cells/catNetwork/nodes/cat:resources.xml#DataSource_1";

// eg server level DataSource for ND

//private static final String resURI =

// "cells/catNetwork/nodes/cat/servers/server1:resources.xml#DataSource_4";

// eg cell level DataSource for ND

//private static final String resURI = "cells/catNetwork:resources.xml#DataSource_1";

 public static void main(String[] args) {

 testDSGUI cds = new testDSGUI();

 cds.run(args);

 }

1196 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

/**

 * This method tests the ResourceMbean.

 *

 * @param args

 * @exception Exception

 */

 public void run(String[] args) {

 try {

 System.out.println("Connecting to the application server.......");

 /***/

 /** Initialize the AdminClient */

 /***/

 Properties adminProps = new Properties();

 adminProps.setProperty(AdminClient.CONNECTOR_TYPE, AdminClient.CONNECTOR_TYPE_SOAP);

 adminProps.setProperty(AdminClient.CONNECTOR_HOST, host);

 adminProps.setProperty(AdminClient.CONNECTOR_PORT, port);

 AdminClient adminClient = null;

 try {

 adminClient = AdminClientFactory.createAdminClient(adminProps);

 } catch (com.ibm.websphere.management.exception.ConnectorException ce) {

 System.out.println("NLS: Cannot make a connection to the application server\n");

 ce.printStackTrace();

 System.exit(1);

 }

 /***/

 /** Locate the Mbean */

 /***/

 ObjectName handle = null;

 try {

 // Send in a locator string

 // eg for a Baseinstallation this is enough

 ObjectName queryName = new ObjectName("WebSphere:type=DataSourceCfgHelper,*");

 // for ND you need to specify which node/process you would like to test from

 // eg run in the server

 //ObjectName queryName = new OjectName(

 // "WebSphere:cell=catNetwork,node=cat,process=server1,type=DataSourceCfgHelper,*");

 // eg run in the node agent

 //ObjectName queryName =

 // new ObjectName(

 // "WebSphere:cell=catNetwork,node=cat,process=nodeagent,type=DataSourceCfgHelper,*");

 // eg run in the Deployment Manager

 //ObjectName queryName =

 // new ObjectName(

 // "WebSphere:cell=catNetwork,node=catManager,process=dmgr,type=DataSourceCfgHelper,*");

 Set s = adminClient.queryNames(queryName, null);

 Iterator iter = s.iterator();

 while (iter.hasNext()) {

 // use the first MBean that is found

 handle = (ObjectName) iter.next();

 System.out.println("Found this ->" + handle);

 }

 if (handle == null) {

 System.out.println("NLS: Did not find this MBean>>" + queryName);

 System.exit(1);

 }

 } catch (MalformedObjectNameException mone) {

 System.out.println("Check the program variable queryName" + mone);

 } catch (com.ibm.websphere.management.exception.ConnectorException ce) {

 System.out.println("Cannot connect to the application server" + ce);

 }

 /***/

Chapter 8. Developing WebSphere applications 1197

/** Build parameters to pass to Mbean */

 /***/

 String[] signature = { "java.lang.String" };

 Object[] params = { resURI };

 Object result = null;

 if (verbose) {

 System.out.println("\nTesting connection to the database using " + handle);

 }

 try {

 /***/

 /** Start to test the connection to the database */

 /***/

 result = adminClient.invoke(handle, "testConnection", params, signature);

 } catch (MBeanException mbe) {

 // ****** all user exceptions come in here

 if (verbose) {

 Exception ex = mbe.getTargetException(); // this is the real exception from the Mbean

 System.out.println("\nNLS:Mbean Exception was received contains " + ex);

 ex.printStackTrace();

 System.exit(1);

 }

 } catch (InstanceNotFoundException infe) {

 System.out.println("Cannot find " + infe);

 } catch (RuntimeMBeanException rme) {

 Exception ex = rme.getTargetException();

 ex.printStackTrace(System.out);

 throw ex;

 } catch (Exception ex) {

 System.out.println("\nUnexpected Exception occurred: " + ex);

 ex.printStackTrace();

 }

 /***/

 /** Process the result. The result will be the number of warnings */

 /** issued. A result of 0 indicates a successful connection with */

 /** no warnings. */

 /***/

 //A result of 0 indicates a successful connection with no warnings.

 System.out.println("Result= " + result);

 } catch (RuntimeOperationsException roe) {

 Exception ex = roe.getTargetException();

 ex.printStackTrace(System.out);

 } catch (Exception ex) {

 System.out.println("General exception occurred");

 ex.printStackTrace(System.out);

 }

 }

}

Configuring J2EE Connector connection factories in the administrative console

 1. Click Resources.

 2. Click Resource Adapters.

 3. Select a resource adapter under Resource Adapters.

 4. Click J2C Connection Factories under Additional Properties .

 5. Click New.

 6. Specify General Properties .

 7. Select the authentication preference.

1198 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

8. Select aliases for component-managed authentication, container-managed authentication, or

both. If none are available, or you want to define a different one, click Apply > J2C Authentication

Data Entries under Related Items.

a. Click J2C Auth Data Entries under Related Items.

b. Click New.

c. Specify General Properties.

d. Click OK.

 9. Click OK.

10. Click the J2C connection factory you just created.

11. Under Additional Properties click Connection Pool.

12. Change any values desired by clicking the property name.

13. Click OK.

14. Click Custom Properties under Additional Properties.

15. Click any property name to change its value. Note that UserName and Password if present, are

overridden by the component-managed authentication alias you specified in a previous step.

16. Click Save.

Connection pool settings:

Use this page to configure connection pool settings.

 This administrative console page is common to a range of resource types; for example, JDBC data

sources and JMS queue connection factories. To view this page, the path depends on the type of

resource, but generally you select an instance of the resource provider, then an instance of the resource

type, then click Connection Pool. For example: click Resources > JDBC Providers > JDBC_provider >

Data Sources > data_source > Connection Pool.

Connection Timeout:

Specifies the interval, in seconds, after which a connection request times out and a

ConnectionWaitTimeoutException is thrown.

 This value indicates the number of seconds a request for a connection waits when there are no

connections available in the free pool and no new connections can be created, usually because the

maximum value of connections in the particular connection pool has been reached. For example, if

Connection Timeout is set to 300, and the maximum number of connections are all in use, the pool

manager waits for 300 seconds for a physical connection to become available. If a physical connection is

not available within this time, the pool manager initiates a ConnectionWaitTimeout exception. It usually

does not make sense to retry the getConnection() method; if a longer wait time is required you should

increase the Connection Timeout setting value. If a ConnectionWaitTimeout exception is caught by the

application, the administrator should review the expected connection pool usage of the application and

tune the connection pool and database accordingly.

If the Connection Timeout is set to 0, the pool manager waits as long as necessary until a connection

becomes available. This happens when the application completes a transaction and returns a connection

to the pool, or when the number of connections falls below the value of Maximum Connections, allowing a

new physical connection to be created.

If Maximum Connections is set to 0, which enables an infinite number of physical connections, then the

Connection Timeout value is ignored.

 Data type Integer

Units Seconds

Chapter 8. Developing WebSphere applications 1199

Default 180

Range 0 to max int

Maximum Connections:

Specifies the maximum number of physical connections that you can create in this pool.

 These are the physical connections to the backend resource. Once this number is reached, no new

physical connections are created and the requester waits until a physical connection that is currently in

use returns to the pool, or a ConnectionWaitTimeout exception is issued.

For example, if the Maximum Connections value is set to 5, and there are five physical connections in use,

the pool manager waits for the amount of time specified in Connection Timeout for a physical connection

to become free.

If Maximum Connections is set to 0, the connection pool is allowed to grow infinitely. This also has the

side effect of causing the Connection Timeout value to be ignored.

If multiple standalone application servers use the same data source, there is one pool for each application

server. If clones are used, one data pool exists for each clone. Knowing the number of data pools is

important when configuring the database maximum connections.

You can use the Tivoli Performance Viewer to find the optimal number of connections in a pool. If the

number of concurrent waiters is greater than 0, but the CPU load is not close to 100%, consider increasing

the connection pool size. If the Percent Used value is consistently low under normal workload, consider

decreasing the number of connections in the pool.

 Data type Integer

Default 10

Range 0 to max int

Minimum Connections:

Specifies the minimum number of physical connections to maintain.

 If the size of the connection pool is at or below the minimum connection pool size, the Unused Timeout

thread does not discard physical connections. However, the pool does not create connections solely to

ensure that the minimum connection pool size is maintained. Also, if you set a value for Aged Timeout,

connections with an expired age are discarded, regardless of the minimum pool size setting.

For example if the Minimum Connections value is set to 3, and one physical connection is created, the

Unused Timeout thread does not discard that connection. By the same token, the thread does not

automatically create two additional physical connections to reach the Minimum Connections setting.

 Data type Integer

Default 1

Range 0 to max int

Reap Time:

Specifies the interval, in seconds, between runs of the pool maintenance thread.

 For example, if Reap Time is set to 60, the pool maintenance thread runs every 60 seconds. The Reap

Time interval affects the accuracy of the Unused Timeout and Aged Timeout settings. The smaller the

1200 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

interval, the greater the accuracy. If the pool maintenance thread is enabled, set the Reap Time value less

than the values of Unused Timeout and Aged Timeout. When the pool maintenance thread runs, it

discards any connections remaining unused for longer than the time value specified in Unused Timeout,

until it reaches the number of connections specified in Minimum Connections. The pool maintenance

thread also discards any connections that remain active longer than the time value specified in Aged

Timeout.

The Reap Time interval also affects performance. Smaller intervals mean that the pool maintenance thread

runs more often and degrades performance.

To disable the pool maintenance thread set Reap Time to 0, or set both Unused Timeout and Aged

Timeout to 0. The recommended way to disable the pool maintenance thread is to set Reap Time to 0, in

which case Unused Timeout and Aged Timeout are ignored. However, if Unused Timeout and Aged

Timeout are set to 0, the pool maintenance thread runs, but only physical connections which timeout due

to non-zero timeout values are discarded.

 Data type Integer

Units Seconds

Default 180

Range 0 to max int

Unused Timeout:

Specifies the interval in seconds after which an unused or idle connection is discarded.

 Set the Unused Timeout value higher than the Reap Timeout value for optimal performance. Unused

physical connections are only discarded if the current number of connections exceeds the Minimum

Connections setting. For example, if the unused timeout value is set to 120, and the pool maintenance

thread is enabled (Reap Time is not 0), any physical connection that remains unused for two minutes is

discarded. Note that accuracy of this timeout, as well as performance, is affected by the Reap Time value.

See Reap Time for more information.

 Data type Integer

Units Seconds

Default 1800

Range 0 to max int

Aged Timeout:

Specifies the interval in seconds before a physical connection is discarded.

 Setting Aged Timeout to 0 supports active physical connections remaining in the pool indefinitely. Set the

Aged Timeout value higher than the Reap Timeout value for optimal performance. For example, if the

Aged Timeout value is set to 1200, and the Reap Time value is not 0, any physical connection that

remains in existence for 1200 seconds (20 minutes) is discarded from the pool. Note that accuracy of this

timeout, as well as performance, are affected by the Reap Time value. See Reap Time for more

information.

 Data type Integer

Units Seconds

Default 0

Range 0 to max int

Purge Policy:

Chapter 8. Developing WebSphere applications 1201

Specifies how to purge connections when a stale connection or fatal connection error is detected.

 Valid values are EntirePool and FailingConnectionOnly. JCA data sources can have either option.

WebSphere Version 4.0 data sources always have a purge policy of EntirePool.

 Data type String

Default EntirePool

Range

EntirePool

All connections in the pool are marked stale. Any

connection not in use is immediately closed. A

connection in use is closed and issues a stale

connection Exception during the next operation

on that connection. Subsequent getConnection()

requests from the application result in new

connections to the database opening. When

using this purge policy, there is a slight possibility

that some connections in the pool are closed

unnecessarily when they are not stale. However,

this is a rare occurrence. In most cases, a purge

policy of EntirePool is the best choice.

FailingConnectionOnly

Only the connection that caused the stale

connection exception is closed. Although this

setting eliminates the possibility that valid

connections are closed unnecessarily, it makes

recovery from an application perspective more

complicated. Because only the currently failing

connection is closed, there is a good possibility

that the next getConnection() request from the

application can return a connection from the pool

that is also stale, resulting in more stale

connection exceptions.

 The connection pretest function attempts to

insulate an application from pooled connections

that are not valid. When a backend resource,

such as a database, goes down, pooled

connections that are not valid might exist in the

free pool. This is especially true when the purge

policy is failingConnectionOnly; in this case, the

failing connection is removed from the pool.

Depending on the failure, the remaining

connections in the pool might not be valid.

Connection pool advanced settings:

Use this page to specify connection pooling related settings.

 Properties-shared partitions, free pool partitions, and free pool distribution table size are properties related

to reducing the time a thread needs to wait for a synchronization lock.

Partition support is always enabled. The default values of 0 should be used enabling the connection pool

to pick the best values for performance. In some cases where large multiprocessor systems are used,

adjusting the partition support properties might help performance.

To view this administrative console page, click Resources > Resource Adapters > resource_adapter >

J2C Connection Factories > connection_factory > Connection Pool > Advanced Connection Pool.

1202 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Number of shared partitions:

Specifies the number of partitions that are created in each of the shared pools.

 Data type integer

Default value 0

Range 0 to max int

Number of free pool partitions:

Specifies the number of partitions that are created in each of the free pools.

 Data type integer

Default value 0

Range 0 to max int

Free pool distribution table size:

The free pool distribution table size is used for better distribution of the Subject and CRI hash values

within a hash table to minimize collisions for faster retrieval of a matching free connection.

 If there are many incoming requests with varying credentials, this value can help with the distribution of

finding a free pool for a connection for that user. Larger values are more common for installations that

have many different credentials accessing the resource. Smaller values (1) should be used if the same

credentials apply to all incoming requests for the resource.

 Data type integer

Default value 0

Range 0 to max int

Surge threshold:

Specifies the number of connections created before surge protection is activated.

 Surge protection is designed to prevent overloading of a data source when too many connections are

created at the same time. Surge protection is controlled by two properties, surge threshold and surge

creation interval.

The surge threshold property specifies the number of connections created before surge protection is

activated. After you reach the specified number of connections, you enter surge mode.

The surge creation interval property specifies the amount of time, in seconds, between the creation of

connections when in surge mode.

For example, assume the follow settings:

v maxConnections = 50

v surgeThreshold = 10

v surgeCreationInterval = 30 seconds

If the connection pool receives 15 connection requests, 10 connections are created at about the same

time. The 11th connection is created 30 seconds after the first 10 connections. The 12th connection is

created 30 seconds after the 11th connection. Connections continue to be created every 30 seconds until

there are no more new connections needed or you reach the maxConnections value.

Chapter 8. Developing WebSphere applications 1203

Surge connection support starts if the surge threshold is > -1 and the surge creation interval is > 0. The

surge threshold property has a default value of -1, which indicates that it is turned off.

wsadmin examples

$AdminControl getAttribute $objectname surgeCreationInterval

$AdminControl setAttribute $objectname surgeCreationInterval 30

$AdminControl getAttribute $objectname surgeThreshold

$AdminControl setAttribute $objectname surgeThreshold 15

 Data type integer

Default value -1

Range -1 to max int

Surge creation interval:

Specifies the amount of time between connection creates when you are in surge protection mode.

 If the number of connections specified in the surge threshold property have been made, each request for a

new connection must wait to be created on the surge creation interval. This property has a default value of

20, which indicates that at least 20 seconds should pass between connections being created. Valid values

for this property are any positive integer.

 Data type integer

Default value 20

Range 0 to max int

Stuck timer time:

A stuck connection is an active connection that is not responding or returning to the connection pool. If the

pool appears to be stuck (you have reached the stuck threshold), a resource exception is given to all new

connection requests until the pool is unstuck. The stuck timer time property is the interval for the timer.

This is how often the connection pool checks for stuck connections. The default value is 5 seconds.

 If an attempt to change the stuck time, stuck timer time, or stuck threshold properties using the wsadmin

scripting tool fails, an IllegalState exception occurs. The pool cannot have any active requests or active

connections during this request. For the stuck connection support to start, all three stuck property values

must be greater than 0 and maximum connections must be greater than 0.

Also, the stuck timer time, if it is set, must be less than the stuck time value. In fact, it is suggested that

the stuck timer time should be one-quarter to one-sixth the value of stuck time so that the connection pool

checks for stuck connections 4 to 6 times before a connection is declared stuck. This reduces the

likelihood of false positives

wsadmin examples

$AdminControl getAttribute $objectname stuckTime

$AdminControl setAttribute $objectname stuckTime 30

$AdminControl getAttribute $objectname stuckTimerTime

$AdminControl setAttribute $objectname stuckTimerTime 15

$AdminControl getAttribute $objectname stuckThreshold

$AdminControl setAttribute $objectname stuckThreshold 10

 Data type integer

Default value 5

Range 0 to max int

1204 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Stuck time:

A stuck connection is an active connection that is not responding or returning to the connection pool. If the

pool appears to be stuck (you have reached the stuck threshold), a resource exception is given to all new

connection requests until the pool is unstuck. The stuck time property is the interval, in seconds, allowed

for a single active connection to be in use to the backend resource before it is considered to be stuck.

 Data type integer

Default value 0

Range 0 to max int

Stuck threshold:

A stuck connection is an active connection that is not responding or returning to the connection pool. If the

pool appears to be stuck (you have reached the stuck threshold), a resource exception is given to all new

connection requests until the pool is unstuck. An application can explicitly catch this exception and

continue processing. The pool will continue to periodically check for stuck connections when the number of

stuck connections is past the threshold. If the number of stuck connections drops below the stuck

threshold, the pool will detect this during its periodic checks and enable the pool to begin servicing

requests again. The stuck threshold is the number of connections that need to be considered stuck for the

pool to be in stuck mode.

 Data type integer

Default value 0

Range 0 to max int

Connection pool (Version 4) settings:

Use this page to create a connection pool for a Version 4.0 data source.

 To view this administrative console page, click Resources > JDBC Providers > JDBC_provider > Data

Sources (Version 4) > data_source > Connection Pool.

Scope:

Specifies the level to which this resource definition is visible -- the cell, node, or server level.

 Resources such as JDBC providers, namespace bindings, or shared libraries can be defined at multiple

scopes, with resources defined at more specific scopes overriding duplicates which are defined at more

general scopes.

Note that no matter what the scope of a defined resource, the resource’s properties only apply at an

individual server level. For example, if you define the scope of a data source at the cell level, all users in

that cell can look up and use that data source, which is unique within that cell. However, resource property

settings are local to each server in the cell. For example, if you define max connections to 10, then each

server in that cell can have 10 connections.

Cell The most general scope. Resources defined at the cell scope are visible from all nodes and

servers, unless they are overridden. To view resources defined in the cell scope, do not specify a

server or a node name in the scope selection form.

Node The default scope for most resource types. Resources defined at the node scope override any

duplicates defined at the cell scope and are visible to all servers on the same node, unless they

are overridden at a server scope on that node. To view resources defined in a node scope, do not

specify a server, but select a node name in the scope selection form.

Server

The most specific scope for defining resources. Resources defined at the server scope override

Chapter 8. Developing WebSphere applications 1205

any duplicate resource definitions defined at the cell scope or parent node scope and are visible

only to a specific server. To view resources defined in a server scope, specify a server name as

well as a node name in the scope selection form.

When resources are created, they are always created into the current scope selected in the panel. To view

resources in other scopes, specify a different node or server in the scope selection form.

 Data type String

Minimum Pool Size:

Specifies the minimum number of connections to maintain in the pool.

 The minimum pool size can affect the performance of an application. Smaller pools require less overhead

when the demand is low because fewer connections are held open to the database. When the demand is

high, the first applications experience a slow response because new connections are created if all others

in the pool are in use.

 Data type Integer

Default 1

Range Any non-negative integer.

Maximum Pool Size:

Specifies the maximum number of connections to maintain in the pool.

 If the maximum number of connections is reached and all connections are in use, additional requests for a

connection wait up to the number of seconds specified as the connection timeout. The maximum pool size

can affect the performance of an application. Larger pools require more overhead when demand is high

because there are more connections open to the database at peak demand. These connections persist

until idled out of the pool. If the maximum value is smaller, longer wait times or possible connection

timeout errors during peak times can occur. Ensure that the database can support the maximum number

of connections in the application server, in addition to any load that it has outside of the application server.

 Data type Integer

Default 10

Range Any positive integer

Connection Timeout:

Specifies the maximum number of seconds an application waits for a connection from the pool before

timing out and issuing a ConnectionWaitTimeout exception to the application.

 Setting this value to 0 disables the connection timeout.

 Data type Integer

Units Seconds

Default 180

Range Any non-negative integer

Idle Timeout:

Specifies the maximum number of seconds that an idle (unallocated) connection can remain in the pool

before being removed to free resources.

1206 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Connections need to idle out of the pool because keeping connections open to the database can cause

database memory problems. However, not all connections are idled out of the pool, even if they are older

than the Idle Timeout setting. A connection is not idled if removing the connection would cause the pool to

shrink below its minimum size. Setting this value to 0 disables the idle timeout.

 Data type Integer

Units Seconds

Default 1800

Range Any non-negative integer

Orphan Timeout:

Specifies the maximum number of seconds that an application can hold a connection without using it

before the connection returns to the pool

 If there is no activity on an allocated connection for longer than the Orphan Timeout setting, the

connection is marked for orphaning. After another Orphan Timeout number of seconds, if the connection

still has no activity, the connection returns to the pool. If the application tries to use the connection again, it

is issued a stale connection exception. Connections that are enlisted in a transaction are not orphaned.

Setting this value to 0 disables the orphan timeout.

 Data type Integer

Units Seconds

Default 1800

Range Any non-negative integer

Statement Cache Size:

Specifies the number of cached prepared statements to keep per connection.

 The largest value you would need to set your cache size to if you do not want any cache discards is

determined as follows: for each application that uses this data source on a particular server, add up the

number of unique prepared statements (as determined by the sql string, concurrency, and the scroll type).

This is the maximum number of possible prepared statements that can be cached on a given connection

over the life of the server. Setting the cache size to this value means you never have cache discards. This

provides better performance. However, because of potential resource limitations, this might not always be

possible.

 Data type Integer

Default 10

Range Any non-negative integer

Auto Connection Cleanup:

Specifies whether or not the connection pooling software automatically closes connections from this data

source at the end of a transaction.

 The default is false, which indicates that when a transaction completes, WebSphere Application Server

closes the connection and returns it to the pool. Any use of the connection after the transaction has ended

results in a stale connection exception because the connection is closed and has returned to the pool.

This mechanism ensures that connections are not held indefinitely by the application. If the value is set to

true, the connection is not returned to the pool at the end of a transaction. In this case, the application

must return the connection to the pool by calling close(). If the application does not close the connection,

the pool can run out of connections for other applications to use.

Chapter 8. Developing WebSphere applications 1207

Data type Check box

Default False (clear)

Configuring connection factories for resource adapters within applications:

 1. Click Applications.

 2. Click Install New Application.

 3. Browse to find the appropriate EAR file, which contains an RAR file.

 4. Click Next.

 5. Select resource ref mapping to a J2C Connection Factory, then click Next.

 6. After the application installs, click Applications.

 7. Select the application just installed.

 8. Click Connector Modules under Related Items.

 9. Select an RAR file name on the Connector Modules page.

10. Click Resource Adapter under Additional Properties.

11. Click J2C Connection Factories under Additional Properties.

12. Click New.

13. Specify General Properties.

14. Select a Component-managed authentication alias if any application components with Application

or Per connection factory authentication specified in the resource reference are going to be getting

connections from this connection factory using the empty-argument getConnection() method. For

resources supporting XA, you can optionally specify an Authentication alias for XA recovery. If a

desired alias is not available, or you want to define a different one, click Apply > J2C Authentication

Data Entries under Related Items.

a. Click J2C Auth Data Entries under Related Items.

b. Click New.

c. Specify General Properties.

d. Click OK.

15. Click OK.

16. Click the J2C connection factory you just created.

17. Click Connection Pool under Additional Properties .

18. Change any values desired by clicking on the property name.

19. Click OK.

20. Click Custom Properties under Additional Properties.

21. Click any property name to change its value. Note that UserName and Password if present, are

overridden by the component-managed authentication alias you specified in a previous step.

22. Click Save.

J2C Connection Factories collection:

Use this page to select a connection factory, which represents one set of connection configuration values.

 Application components such as enterprise beans have resource reference descriptors that refer to the

connection factory, not the resource adapter. The connection factory is really a configuration properties list

holder. In addition to the arbitrary set of configuration properties defined by the vendor of the resource

adapter, there are several standard configuration properties that apply to the connection factory. These

standard properties are used by the Java 2 Connectors connection pool manager in the application server

run time and are not known by the vendor-supplied resource adapter code.

1208 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

To view this administrative console page, click Resources > Resource Adapters > resource_adapter >

J2C Connection Factories.

Name:

Specifies a list of the connection factory display names.

 Data type String

JNDI name:

Specifies the Java Naming and Directory Interface (JNDI) name of this connection factory.

 Data type String

Description:

Specifies a text description of this connection factory.

 Data type String

Category:

Specifies a string that you can use to classify or group this connection factory.

 Data type String

J2C Connection Factories settings:

Use this page to specify settings for a connection factory.

 To view this administrative console page, click Resources > Resource Adapters > resource_adapter >

J2C Connection Factories > connection_factory.

Name:

Specifies a list of connection factory display names.

 This is a required property.

 Data type String

JNDI Name:

Specifies the JNDI name of this connection factory.

 For example, the name could be eis/myECIConnection.

After you set this value, save it and restart the server. You can see this string when you run the

dumpNameSpace tool. This is a required property. If you do not specify a JNDI name, it is filled in by

default using the Name field.

 Data type String

Default eis/display name

Chapter 8. Developing WebSphere applications 1209

Description:

Specifies a text description of this connection factory.

 Data type String

Connection Factory Interface:

Specifies the fully qualified name of the Connection Factory Interfaces supported by the resource adapter.

 This is a required property. For new objects, the list of available classes is provided by the resource

adapter in a drop-down list. After you create the connection factory, the field is a read only text field.

 Data type Drop-down list or text

Category:

Specifies a string that you can use to classify or group this connection factory.

 Data type String

Authentication Alias for XA Recovery:

This optional field is used to specify the authentication alias that should be used during XA recovery

processing.

 If the resource adapter does not support XA transactions, then this field will not be displayed. The default

value will come from the selected alias for application authentication (if specified).

Use Component-managed Authentication Alias

Selecting this radio button specifies that the alias set for component-managed authentication is

used at XA recovery time.

 Data type Radio button

Specify:

Selecting this radio button enables you to choose an authentication alias from a drop-down list of

configured aliases.

 Data type Radio button

Component-managed Authentication Alias:

Specifies authentication data for component-managed signon to the resource.

 Choose from aliases defined under Security>JAAS Configuration> J2C Authentication Data.

To define a new alias not already appearing in the pick list:

v Click Apply to expose Related Items.

v Click J2C Authentication Data Entries.

v Define an alias.

v Click the connection factory name at the top of the J2C Authentication Data Entries page to return to

the connection factory page.

1210 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

v Select the alias.

 Data type Pick-list

Container-managed Authentication Alias (deprecated):

Specifies authentication data (a string path converted to userid and password) for container-managed

signon to the resource.

Note: Beginning with WebSphere Application Server Version 6.0, the container-managed authentication

alias is superseded by the specification of a login configuration on the resource-reference mapping

at deployment time, for components with res-auth=Container.

Choose from aliases defined under Security>JAAS Configuration> J2C Authentication Data.

To define a new alias not already appearing in the pick list:

v Click Apply to expose Related Items.

v Click J2C Authentication Data Entries.

v Define an alias.

v Click the connection factory name at the top of the J2C Authentication Data Entries page to return to

the connection factory page.

v Select the alias.

 Data type Pick-list

Authentication Preference (deprecated):

Specifies the authentication mechanisms defined for this connection factory.

Note: Beginning with WebSphere Application Server Version 6.0, the authentication preference is

superseded by the combination of the <res-auth> application component deployment descriptor

setting and the specification of a login configuration on the resource-reference mapping at

deployment time.

This setting specifies which of the authentication mechanisms defined for the corresponding resource

adapter applies to this connection factory. Common values, depending on the capabilities of the resource

adapter, are: KERBEROS, BASIC_PASSWORD, and None.

If None is chosen, the application component is expected to manage authentication (<res-
auth>Application</res-auth>). In this case, the user ID and password are taken from one of the following:

v The component-managed authentication alias

v UserName, Password Custom Properties

v Strings passed on the getConnection method

For example, if two authentication mechanism entries are defined for a resource adapter in the ra.xml

document:

v <authentication-mechanism-type>BasicPassword</authentication-mechanism-type>

v <authentication-mechanism-type>Kerbv5</authentication-mechanism-type>

the authentication preference specifies the mechanism to use for container-managed authentication. An

exception is issued during server startup if a mechanism that is not supported by the resource adapter is

selected.

 Data type Pick-list

Default BASIC_PASSWORD

Chapter 8. Developing WebSphere applications 1211

Mapping-Configuration Alias (deprecated):

Allows users to select from the Security > JAAS Configuration > Application Logins Configuration list.

Note: Beginning with WebSphere Application Server Version 6.0, the Mapping-Configuration Alias is

superseded by the specification of a login configuration on the resource-reference mapping at

deployment time, for components with res-auth=Container.

The DefaultPrincipalMapping JAAS configuration maps the authentication alias to the userid and

password. You may define and use other mapping configurations.

 Data type Pick-list

J2C Connection Factory advanced settings:

Use this page to specify settings for a connection factory.

 To view this administrative console page, click Resources > Resource Adapters > resource_adapter >

J2C Connection Factories > connection_factory > Advanced Connection Factory Properties.

Manage cached handles:

Specifies whether cached handles (handles held in inst vars in a bean) should be tracked by the

container.

 Data type Checkbox

Log missing transaction contexts:

Specifies whether or not the container logs that there is a missing transaction context when a connection

is obtained.

 Data type Checkbox

Connection factory JNDI name tips: Distributed computing environments often employ naming and

directory services to obtain shared components and resources. Naming and directory services associate

names with locations, services, information, and resources.

Naming services provide name-to-object mappings. Directory services provide information on objects and

the search tools required to locate those objects. There are many naming and directory service

implementations, and the interfaces to them vary.

Java Naming and Directory Interface (JNDI) provides a common interface that is used to access the

various naming and directory services. After you have set this value, saved it, and restarted the server,

you should be able to see this string when you invoke name space dump tool.

For WebSphere Application Server specifically, when you create a data source the default JNDI name is

set to jdbc/data_source_name. When you create a connection factory, its default name is

eis/j2c_connection_factory_name. You can, of course, override these values by specifying your own.

In addition, if you click the checkbox for the Use this data source for container managed persistence

(CMP) option when you create the data source, another reference is created with the name of

eis/jndi_name_of_datasource_CMP. For example, if a data source has a JNDI name of

1212 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

jdbc/myDatasource, the CMP JNDI name is eis/jdbc/myDatasource_CMP. This name is used internally by

CMP and is provided simply for informational purposes.

When creating a connection factory or data source, a JNDI name is given by which the connection factory

or data source can be looked up by a component. Preferably an ″indirect″ name with the java:comp/env

prefix should be used and must be used in future releases. An ″indirect″ name makes any

resource-reference data associated with the application available to the connection management runtime,

to better manage resources based on the res-auth, res-isolation-level, res-sharing-scope, and

res-resolution-control settings.

Though you can use a direct JNDI name, this naming method is deprecated in Version 6 of WebSphere

Application Server. Application Server assigns default values to the resource-reference data when you use

this method. An informational message, resembling the following, is logged to document the defaults:

J2CA0294W: Deprecated usage of direct JNDI lookup of resource jdbc/IOPEntity.

 The following default values are used: [Resource-ref settings]

 res-auth: 1 (APPLICATION)

 res-isolation-level: 0 (TRANSACTION_NONE)

 res-sharing-scope: true (SHAREABLE)

 loginConfigurationName: null

 loginConfigProperties: null

[Other attributes]

 res-resolution-control: 999 (undefined)

isCMP1_x: false (not CMP1.x)

isJMS: false (not JMS)

These default values can lead to unexpected behavior in your resources. For example, an application

component (such as a JAAS login module) that accesses a resource with container-managed

authentication data might fail to authenticate with the backend resource. Because the res-auth setting is

assigned the default level of Application, rather than Container, the application server cannot find it.

This message can occur when you try using the fully qualified names of resources when looking up

resources through Java Naming Directory Interface (JNDI). The J2EE programming model recommends

the use of resource references and the local JNDI java:comp/env context. To correct this problem, modify

the application to use the preferred J2EE programming model with resource references and the local JNDI

java:comp/env context.

Security of lookups with component managed authentication

External Java clients (stand alone clients or servers from other cells) with Java Naming and Directory

Interface (JNDI) access can look up a Java 2 Connector (J2C) resource such as a data source or Java

Message Service (JMS) queue. However, they are not permitted to take advantage of the component

managed authentication alias defined on the resource. This alias is a default value used when the user

and password are not supplied on the getConnection() call. Therefore, if an external client needs to get a

connection, it must assume responsibility for the authentication by passing it through arguments on the

getConnection() call.

Any client running in the WebSphere Application Server process (such as a Servlet or an enterprise bean)

within the same cell that can look up a resource in the JNDI namespace can obtain connections without

explicitly providing authentication data on the getConnection() call. In this case, if the component‘s

res-auth setting is Application, authentication is taken from the component-managed authentication alias

defined on the connection factory. With res-auth set to Container, authentication is taken from the login

configuration defined on the component‘s resource-reference. It is important to note that J2C

authentication alias is per cell. An enterprise bean or Servlet in one application server cannot look up a

resource in another server process which is in a different cell, because the alias would not be resolved.

Chapter 8. Developing WebSphere applications 1213

Configuring data access for the Application Client

Configuring data access for the Application Client involves specifying the resource reference and

associated database information required for data access. This specification is done as part of the

assembly and deployment steps for the Application Client.

There are two tools needed to configure data sources used by J2EE application clients:

v An assembly tool such as the Application Server Toolkit (AST) or Rational Web Developer for defining

the resource reference in the deployment descriptor; and

v The Application Client Resource Configuration Tool (ACRCT) for defining the connection to the database

in the client deployment environment.

Data access from an application client uses the JDBC driver connection functions directly from the client

side. It does not take advantage of the additional pooling support available in the WebSphere Application

Server run time. Configuring data access for an application client does not require configuration of a JDBC

provider and data source on the WebSphere Application Server server machine.

If you want to take advantage of the pooling and additional database functions provided by WebSphere

Application Server, it is recommended that your client application utilize an enterprise bean running on the

server side to perform data access.

Defining an application client resource reference using an assembly tool

1. Assemble your application client module as described in Assembling application clients.

2. Create a new resource reference:

a. In a Project Explorer view, right-click your application client module and click Open With >

Deployment Descriptor Editor.

b. On the References tab, click Add > Resource reference > Next.

c. On the Resource Reference page, enter the Name of this resource reference. The Application

Client for WebSphere Application Server run time uses this name for two purposes: to bind the

object into the java:comp/env portion of the JNDI namespace, and to find client specific

configuration information. If the code for the Application Client performs a lookup for

java:comp/env/jdbc/myDB, the name of the resource reference should be jdbc/myDB.

d. For Type, select javax.sql.DataSource for JDBC connections.

e. For Authentication, select Application if your client application intends to provide authentication

information. If the Application Client for WebSphere Application Server run time provides the

authentication information (as configured by the Application Client Resource Configuration tool),

select Container.

f. Ignore the Sharing scope setting; it is unused in an application client resource reference. All

Application Client resources are not shared.

g. Click Finish.

h. Close the deployment descriptor and save your changes.

The JNDI name field appears under WebSphere Bindings after your add the reference.

Client configuration with the ACRCT:

There are two client resources for you to configure in the Application Client Resource Configuration Tool

(ACRCT) to enable data access from an application client: a data source provider and a data source.

Notes

Note: The following WebSphere objects, which can be bound into the server name space, are not

supported on the client:

v Java 2 Connector (J2C) objects

1214 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

v Connection manager objects

The WebSphere Application Server Client does not provide client database drivers. If your client

application uses a database directly, rather than using an enterprise bean, you must provide the

database drivers on the client machine. This action can involve contacting your database vendor to

acquire client database driver code and licenses.

Instead of accessing the database directly, it is recommended that your client application use an

enterprise bean. Accessing a database through an enterprise bean eliminates the need to have

database drivers on the client machine because the database access is handled by the enterprise

bean running on the WebSphere Application Server. Enterprise beans can also take advantage of

the additional database functions provided by the WebSphere Application Server run time.

1. Configure a new data source provider as described in Configuring new data source providers. This

provider describes the JDBC database implementation for your client application.

2. Enter the following information on the General tab:

a. A name for this data source provider.

b. Optional: A description.

c. The classpath to the data source provider implementation classes or JAR files. This is optional if

the implementation classes or JAR files are already in the class path configuration of the client.

d. The name of the implementation class. For example, for DB2 this value is

COM.ibm.db2.jdbc.DB2DataSource. Remember this class must implement the

javax.sql.DataSource class. The ACRCT does not verify this class and you receive an error when

you run your client application if the class does not implement javax.sql.DataSource.

Use the Custom tab to configure non-standard properties of the data source provider. This panel

enables you to enter property-value pairs. During run time the implementation class name is created

and any custom properties added on this panel are set on the newly created data source object using

reflection. Any properties configured on this panel must have an appropriate set method on the data

source class. For example, assume there is a property called use2Phase and its value should be 1.

On the custom panel you enter the value use2Phase into the name column and the value 1 into the

value column. The Application Client for WebSphere Application Server run time then uses reflection to

find a property on the data source class called, typically setUse2Phase and call that method passing

the value of 1. See your database product documentation for valid properties on your data source

implementation.

3. Click OK.

4. Configure a new data source as described in Configuring new data sources for application clients. This

describes the client properties of the database your client application uses.

5. Enter the following information on the General tab:

a. A Name. This field is required and identifies a name for the Application Client Resource

Configuration Tool to use. This name is not used by your client application program.

b. Optional: A description.

c. The JNDI name. This field is required and must match the value entered in the Name field on the

Add Resource Reference page of the assembly tool. In the example above, set this value to

jdbc/myDB.

d. Optional: The Database Name.

e. Optional: Your userid in the User field.

f. Optional: Your password in the Password field. This password does not display.

g. Your password again to confirm in the Re-Enter password field. Note: The User and Password

fields are used only when the Authentication field on the Add Resource Reference page of the

assembly tool is set to Container.

Chapter 8. Developing WebSphere applications 1215

Configuring Cloudscape Version 5.1.60x

Cloudscape provides the following two separate frameworks for running Cloudscape with WebSphere

Application Server:

v Embedded: This framework is the same as the one for Cloudscape Version 5.0. To use this framework,

define a Cloudscape JDBC provider. See the Cloudscape section in the minimum required settings

article for more information.

You must use the embedded framework if you are running XA. Cloudscape does not support XA on

Network Server.

v Network Server: This framework was a new feature in Cloudscape Version 5.1, and removes these

limitations that existed in earlier versions of Cloudscape:

– inability to access a remote Cloudscape instance

– only one JVM can boot up the same database instance

The following steps describe how to configure and run the Network Server framework.

1. Start the Network Server on the machine that hosts the database instance.

To start the Network Server, run the startNetworkServer.bat file, which is located in the

WAS_HOME/cloudscape/bin/networkserver directory. On UNIX platforms, the file is

startNetwokServer.sh.

2. Update the db2j.properties file, which is located in the WAS_HOME/cloudscape directory, if necessary.

Cloudscape should work without any modifications to this file.

Use the entries in the db2j.properties file to turn on trace, change the port number on which Network

Server listens, and enable other functions of the Network Server framework. The default port number

on which the Network Server listens is port 1527.

For more information on this file, see the Cloudscape documentation at

www.ibm.com/software/data/cloudscape/pubs/collateral.html.

3. Define a Cloudscape Network Server using Universal JDBC driver to connect Cloudscape with

WebSphere Application Server using the Network Server framework.

4. Stop the Network Server by invoking the stopNetworkServer.bat file.

You can find this file in the WAS_HOME/cloudscape/bin/networkserver directory. On UNIX platforms, the

file is stopNetworkServer.sh.

5. Review additional tools available in the Network Server framework.

Find these tools in the WAS_HOME/cloudscape/bin/networkserver directory. These tools are:

v sysinfo

v cview

v ij

v dropSYSIBM Use this tool to drop the SYSIBM schema and its contents.

6. Create a SYSIBM schema.

If you do not create the SYSIBM schema, you cannot see the datatypes when you create tables using

the cview graphical user interface. The db2j.drda.loadSYSIBM property in the db2j.properties file

controls whether the schema is created on the first connection to the database. The

db2j.drda.loadSYSIBM property default value is true.

Note: When you run ij, surround the dbname by double quotation marks (″ ″) if it includes the full path

name; for example: ij> connect ’″c:temp;create=true″’

This is ’ ″ ″ ’ without spaces.

Cloudscape Version 5.1.60x post installation instructions:

After installing Cloudscape Version 5.1.60x, you must complete the following steps before you can access

the database.

1. Upgrade or migrate any existing database instances.

a. Backup an existing database.

1216 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

http://www.ibm.com/software/data/cloudscape/pubs/collateral.html

You must complete a backup in case you have to access the previous version of Cloudscape. After

you migrate a database, you cannot access your old database unless you perform a backup.

b. Migrate an existing database by doing the following:

v Set the connectionAttributes custom property to upgrade=true.

The data source is located in the WebSphere Application Server administrative console under

the JDBC providers.

v If you are using the cview interface, located in the WAS_HOME/cloudscape51/bin/embedded

directory, click yes when you see the upgrade database prompt.

Note: Ensure you migrate defaultDB, which is located in the WAS_HOME/bin/DefaultDB directory.

2. Set or change the class path definitions in any existing JDBC providers, which are defined to use

Cloudscape. Cloudscape JAR files will not load when WebSphere Application Server is active.

Use the WebSphere Application Server environment variable

${CLOUDSCAPE_JDBC_DRIVER_PATH}\db2j.jar to point to the new version of Cloudscape.

The CLOUDSCAPE_JDBC_DRIVER_PATH environment variable is defined in WebSphere Application Server

with a value of WAS_HOME/cloudscape/lib.

3. If the application server is running Cloudscape as a persistent store for UDDI in previous versions,

additional steps are necessary.

The server SystemOut log might issue this message:

The data source class name com.ibm.db2j.jdbc.db2jConnectionPoolDataSource could not be found.

This is because the Cloudscape JAR file has moved to from its location in version 5.x to a new

location in version 5.1x.

To correct this situation, do the following:

a. Upgrade the database to Cloudscape 5.1.60x.

b. Rerun the install script, or edit the class path field in the data source.

DB2 tuning parameters

DB2 has many parameters that you can configure to optimize database performance. For complete DB2

tuning information, refer to the DB2 UDB Administration Guide: Performance.

DB2 logging

v Description: DB2 has corresponding log files for each database that provides services to

administrators, including viewing database access and the number of connections. For systems with

multiple hard disk drives, you can gain large performance improvements by setting the log files for each

database on a different hard drive from the database files.

v How to view or set: At a DB2 command prompt, issue the command: db2 update db cfg for

[database_name] using newlogpath [fully_qualified_path].

v Default value: Logs reside on the same disk as the database.

v Recommended value: Use a separate high-speed drive, preferably performance enhanced through

RAID.

For more information about using AIX with DB2 see ″Tuning operating systems″ in the information center.

DB2 configuration advisor

Located in the DB2 Control Center, this advisor calculates and displays recommended values for the DB2

buffer pool size, the database, and the database manager configuration parameters, with the option of

applying these values. See more information about the advisor in the online help facility within the Control

Center.

Use TCP/IP sockets for DB2 on Linux

v Description: On Linux platforms, whether the DB2 server resides on a local machine with WebSphere

Application Server or on a remote machine, configure the DB2 application databases to use TCP/IP

sockets for communications with the database.

Chapter 8. Developing WebSphere applications 1217

v How to view or set: Locate the directions for configuring DB2 on Linux in the Installing your application

serving environment PDF. This document specifies setting DB2COMM for TCP/IP and corresponding

changes required in the etc/service file.

v Default value: Shared memory for local databases

v Recommended value: On Linux, change the specification for the DB2 application databases and any

session databases from shared memory to TCP/IP sockets.

Number of connections to DB2 - MaxAppls and MaxAgents

When configuring the data source settings for the databases, confirm the DB2 MaxAppls setting is greater

than the maximum number of connections for the data source. If you are planning to establish clones, set

the MaxAppls value as the maximum number of connections multiplied by the number of clones. The

same relationship applies to the session manager number of connections. The MaxAppls setting must be

equal to or greater than the number of connections. If you are using the same database for session and

data sources, set the MaxAppls value as the sum of the number of connection settings for the session

manager and the data sources.

For example, MaxAppls = (# of connections set for data source + # of connections in session manager) x

of clones.

After calculating the MaxAppls settings for the WebSphere database and each of the application

databases, verify that the MaxAgents setting for DB2 is equal to or greater than the sum of all of the

MaxAppls values, for example, MaxAgents = sum of MaxAppls for all databases.

DB2 buffpage

v Description: Improves database system performance. Buffpage is a database configuration parameter.

A buffer pool is a memory storage area where database pages containing table rows or index entries

are temporarily read and changed. Data is accessed much faster from memory than from disk.

v How to view or set: To view the current value of buffpage for database x, issue the DB2 command get

db cfg for x and look for the value BUFFPAGE. To set BUFFPAGE to a value of n, issue the DB2

command update db cfg for x using BUFFPAGE n and set NPAGES to -1 as follows:

db2 <-- go to DB2 command mode, otherwise the following "select" does not work as is

 connect to x <-- (where x is the particular DB2 database name)

 select * from syscat.bufferpools

 (and note the name of the default, perhaps: IBMDEFAULTBP)

 (if NPAGES is already -1, there is no need to issue following command)

 alter bufferpool IBMDEFAULTBP size -1

 (re-issue the above "select" and NPAGES now equals -1)

You can collect a snapshot of the database while the application is running and calculate the buffer pool

hit ratio as follows:

1. Collect the snapshot:

a. Issue the update monitor switches using bufferpool on command.

b. Make sure that bufferpool monitoring is on by issuing the get monitor switches command.

c. Clear the monitor counters with the reset monitor all command.
2. Run the application.

3. Issue the get snapshot for all databases command before all applications disconnect from the

database, otherwise statistics are lost.

4. Issue the update monitor switches using bufferpool off command.

5. Calculate the hit ratio by looking at the following database snapshot statistics:

– Buffer pool data logical reads

– Buffer pool data physical reads

– Buffer pool index logical reads

– Buffer pool index physical reads
v Default value: 250

v Recommended value: Continue increasing the value until the snapshot shows a satisfactory hit rate.

1218 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

The buffer pool hit ratio indicates the percentage of time that the database manager did not need to load a

page from disk to service a page request. That is, the page was already in the buffer pool. The greater the

buffer pool hit ratio, the lower the frequency of disk input and output. Calculate the buffer pool hit ratio as

follows:

v P = buffer pool data physical reads + buffer pool index physical reads

v L = buffer pool data logical reads + buffer pool index logical reads

v Hit ratio = (1-(P/L)) * 100%

DB2 query optimization level

v Description: Sets the amount of work and resources that DB2 puts into optimizing the access plan.

When a database query is executed in DB2, various methods are used to calculate the most efficient

access plan. The range is from zero to 9. An optimization level of 9 causes DB2 to devote a lot of time

and all of its available statistics to optimizing the access plan.

v How to view or set: The optimization level is set on individual databases and can be set with either the

command line or with the DB2 Control Center. Static SQL statements use the optimization level

specified on the prep and bind commands. If the optimization level is not specified, DB2 uses the

default optimization as specified by the dft_queryopt setting. Dynamic SQL statements use the

optimization class specified by the current query optimization special register, which is set using the

SQL Set statement. For example, the following statement sets the optimization class to 1:

Set current query optimization = 1

If the current query optimization register is not set, dynamic statements are bound using the default

query optimization class.

v Default value: 5

v Recommended value: Set the optimization level for the needs of the application. Use high levels only

when there are very complicated queries.

DB2 reorgchk

v Description: Obtains the current statistics for data and rebinding. Use this parameter because SQL

statement performance can deteriorate after many updates, deletes or inserts.

v How to view or set: Use the DB2 reorgchk update statistics on table all command to issue runstats

on all user and system tables for the database to which you are currently connected. Rebind packages

using the bind command. If runstats exists, issue the db2 -v ″select tbname, nleaf, nlevels,

stats_time from sysibm.sysindexes″ command on DB2 CLP. If no runstats exist, nleaf and nlevels are

-1, and stats_time has an empty entry , for example ″-″. If runstats was previously done, the real-time

stamp from completion of the runstats also displays under stats_time. If you think the time shown for the

previous runstats is too old, execute runstats again.

v Default value: None

v Recommended value: None

DB2 MinCommit

v Description: Delays the writing of log records to a disk until a minimum number of commits is

performed, reducing the database manager overhead associated with writing log records. For example,

if MinCommit is set to 2, a second commit causes output to the transaction log for the first and second

commits. The exception occurs when a one-second timeout forces the first commit to be output if a

second commit does not occur within one second.

In test applications, up to 90% of the disk input and output was related to the DB2 transaction log.

Changing MinCommit from 1 to 2 reduced the results to 45%.

Adjust this parameter if the disk input and output wait is more than 5% and there is DB2 transaction log

activity from multiple sources. When a lot of activity occurs from multiple sources, it is less likely that a

single commit has to wait for another commit, or the one second timeout. Do not adjust this parameter if

you have an application with a single thread performing a series of commits because each commit can

hit the one second delay.

v How to view or set:

Chapter 8. Developing WebSphere applications 1219

1. Issue the DB2 get db cfg for xxxxxxcommand, where xxxxxx is the name of the application

database, to list database configuration parameters.

2. Look for ″Group commit count (MINCOMMIT)″.

3. Set a new value by issuing the DB2 update db cfg for xxxxxx using mincommit n command,

where xxxxxx is the name of the application database and n is a value between 1 and 25 inclusive.

The new setting takes effect immediately.

The following are several metrics that are related to DB2 MinCommit:

– The disk input and output wait can be observed on AIX with the command vmstat 5. This shows

statistics every 5 seconds. Look for the wa column under the CPU area.

– The percentage of time a disk is active can be observed on AIX with the command iostat 5. This

shows statistics every 5 seconds. Look for the %tm_act column.

– The DB2 get snapshot for db on xxxxxx command , where xxxxxx is the name of the application

database, shows counters for log pages read and log pages written.
v Default value: 1.

v Recommended value: 1 or 2, if the circumstance permits.

DB2 Deadlock Event Monitor

v Description:For DB2 V8 or later, deadlock event monitor is turned on by default when a database is

created. This event monitor captures critical information about all connections involved in deadlock

when the particular event occurs. Although there is not much overhead on faster SMP systems, it can

be turned off.

v How to view or set: In DB2 command window, issue following commands:

db2 connect to [db name]

db2 set event monitor db2detaildeadlock state 0

db2 drop event monitor db2detaildeadlock

db2 connect reset

db2 terminate

.

v Default value: Event monitor is ON by default.

v Recommended value: Turn OFF event monitor, if it is not required.

For more information about using AIX with DB2 see ″Tuning operating systems.″.

Vendor-specific data sources minimum required settings

Use this table as an at-a-glance reference of JDBC providers that can be defined for use with WebSphere

Application Server Version 6.x. A list that contains detailed descriptions for all of these providers follows

the table.

Database type JDBC Provider Transaction support

Version and other

considerations

DB2 on Windows, UNIX,

or workstation-based

LINUX

DB2 Universal JDBC

Provider

One phase only

DB2 Universal JDBC

Provider (XA)

One and two phase

DB2 legacy CLI-based Type

2 JDBC Provider

One phase only

DB2 legacy CLI-based Type

2 JDBC Provider (XA)

One and two phase

1220 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Database type JDBC Provider Transaction support

Version and other

considerations

DB2 UDB for iSeries

DB2 UDB for iSeries

(Native)

One phase only Recommended for use with

WebSphere Application

Server run on iSeries

DB2 UDB for iSeries

(Native XA)

One and two phase Recommended for use with

WebSphere Application

Server run on iSeries

DB2 UDB for iSeries

(Toolbox)

One phase only Recommended for use with

WebSphere Application

Server run on Windows,

UNIX, or workstation-based

LINUX

DB2 UDB for iSeries

(Toolbox XA)

One and two phase Recommended for use with

WebSphere Application

Server run on Windows,

UNIX, or workstation-based

LINUX

DB2 legacy CLI-based Type

2 JDBC Provider

One phase only -Only for use with

WebSphere Application

Server run on Windows,

UNIX, or workstation-based

LINUX

- Requires the DB2

Connect driver (available

from DB2)

DB2 legacy CLI-based Type

2 JDBC Provider (XA)

One and two phase -Only for use with

WebSphere Application

Server run on Windows,

UNIX, or workstation-based

LINUX

- Requires the DB2

Connect driver (available

from DB2)

Chapter 8. Developing WebSphere applications 1221

Database type JDBC Provider Transaction support

Version and other

considerations

DB2 on z/OS

DB2 for z/OS Local JDBC

Provider (RRS)

One and two phase Only for use with

WebSphere Application

Server run on z/OS

DB2 Universal JDBC

Provider

One phase only Only for use with

WebSphere Application

Server run on Windows,

UNIX, or workstation-based

LINUX

DB2 Universal JDBC

Provider (XA)

One and two phase Only for use with

WebSphere Application

Server run on Windows,

UNIX, or workstation-based

LINUX

DB2 legacy CLI-based Type

2 JDBC Provider

One phase only -Only for use with

WebSphere Application

Server run on Windows,

UNIX, or workstation-based

LINUX

- Requires the DB2

Connect program (available

from DB2)

DB2 legacy CLI-based Type

2 JDBC Provider (XA)

One and two phase -Only for use with

WebSphere Application

Server run on Windows,

UNIX, or workstation-based

LINUX

- Requires the DB2

Connect program (available

from DB2)

Cloudscape

Cloudscape JDBC Provider One phase only - Not for use in clustering

environment: Cloudscape is

accessible from a single

JVM only

- Does not support Version

4 data sources

Cloudscape JDBC Provider

(XA)

One and two phase - Not for use in clustering

environment: Cloudscape is

accessible from a single

JVM only

- Does not support Version

4 data sources

Cloudscape Network Server

using Universal JDBC driver

One phase only Does not support Version 4

data sources

Informix

Informix JDBC Driver One phase only

Informix JDBC Driver (XA) One and two phase

Sybase

Sybase JDBC Driver One phase only

Sybase JDBC Driver (XA) One and two phase

Oracle

Oracle JDBC Driver One phase only

Oracle JDBC Driver (XA) One and two phase

1222 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Database type JDBC Provider Transaction support

Version and other

considerations

MS SQL Server

DataDirect ConnectJDBC

type 4 driver for MS SQL

Server

One phase only Only for use with the

corresponding driver from

DataDirect Technologies

DataDirect ConnectJDBC

type 4 driver for MS SQL

Server (XA)

One and two phase Only for use with the

corresponding driver from

DataDirect Technologies

WebSphere embedded

ConnectJDBC driver for MS

SQL Server

One phase only - Not available for

Application Server on z/OS

- Cannot be used outside of

WebSphere Application

Server environment

WebSphere embedded

ConnectJDBC driver for MS

SQL Server (XA)

One and two phase - Not available for

Application Server on z/OS

- Cannot be used outside of

WebSphere Application

Server environment

Detailed JDBC provider list

The following list contains a description of every JDBC provider that can be defined for use with

WebSphere Application Server Version 6.x. It also shows the supported data source classes and their

required properties. Specific fields are designated for the user and password properties. Inclusion of a

property in the list does not imply that you should add it to the data source properties list. Rather, inclusion

in the list means that a value is typically required for that field.

Use these links to find your provider information:

v DB2 on Windows, UNIX, or workstation-based LINUX

v DB2 UDB for iSeries

v DB2 on z/OS, connecting to Application Server on Windows, UNIX, or workstation-based LINUX

v Cloudscape

v Informix

v Sybase

v Oracle

v MS SQL Server

DB2 on Windows, UNIX, or workstation-based LINUX

1. DB2 Universal JDBC Provider

The DB2 Universal JDBC Driver is an architecture-neutral JDBC driver for distributed and local DB2

access. Because the Universal Driver architecture is independent of any particular JDBC driver

connectivity or target platform, it allows both Java connectivity (Type 4) or Java Native Interface (JNI)

based connectivity (Type 2) in a single driver instance to DB2.

This JDBC driver allows applications to use both JDBC and Structured Query Language in Java

(SQLJ) access.

The DB2 Universal JDBC Driver Provider supports one phase data source:

com.ibm.db2.jcc.DB2ConnectionPoolDataSource

Requires JDBC driver files:

v db2jcc.jar After you install DB2, you can find this jar file in the DB2 java directory. For Type 4

JDBC driver support from a client machine where DB2 is not installed, copy this file to the local

machine. If you install any fixes or upgrades to DB2, you must update this file as well. You must

Chapter 8. Developing WebSphere applications 1223

also set the DB2UNIVERSAL_JDBC_DRIVER_PATH path variable to point to the db2jcc.jar file.

See the Cloudscape section for more information on the DB2UNIVERSAL_JDBC_DRIVER_PATH

path variable.

Note: To find out the version of the universal driver you are using, issue this DB2 command:

java com.ibm.db2.jcc.DB2Jcc -version

The output for the above example is:

IBM DB2 JDBC Universal Driver Architecture 2.2.xx

v db2jcc_license_cu.jar This is the DB2 Universal JDBC driver license file that allows access to the

DB2 Universal database. Use this jar file or the next one to gain access to the database. This jar file

ships with WebSphere Application Server in a directory defined by

${UNIVERSAL_JDBC_DRIVER_PATH}environment variable.

v db2jcc_license_cisuz.jar This is the DB2 Universal JDBC driver license file that allows access to

the following databases:

– DB2 Universal

– DB2 for iSeries

– DB2 for z/OS

– SQLDS

The db2jcc_license_cisuz.jar does not ship with Websphere Application Server and should be

located in the same directory as the db2jcc.jar file, so that the

DB2UNIVERSAL_JDBC_DRIVER_PATH points to both.
 The classpath for this provider is set as follows:

 <classpath>${DB2UNIVERSAL_JDBC_DRIVER_PATH}/db2jcc.jar </classpath>

 <classpath>${UNIVERSAL_JDBC_DRIVER_PATH}/db2jcc_license_cu.jar</classpath>

 <classpath>${DB2UNIVERSAL_JDBC_DRIVER_PATH}/db2jcc_license_cisuz.jar</classpath>

Note: The license jar files are independent of each other; therefore, order does not matter.

Requires DataStoreHelper class:

com.ibm.websphere.rsadapter.DB2UniversalDataStoreHelper

Requires a valid authentication alias.

Requires properties:

v databaseName This is an actual database name if the driverType is set to 4, or a locally cataloged

database name if the driverType is set to 2.

v driverType The JDBC connectivity type of a data source. There are two permitted values: 2 and 4.

If you want to use Universal JDBC Type 2 driver, set this value to 2. If you want to use Universal

JDBC Type 4 driver, set this value to 4.

v serverName The TCP/IP address or host name for the Distributed Relational Database Architecture

(DRDA) server. Provide a value for this property only if your driverType is set to 4. This property is

not required if your driverType is set to 2.

v portNumber The TCP/IP port number where the DRDA server resides. Provide a value for this

property only if your driverType is set to 4. This property is not required if your driverType is set to

2.
2. DB2 Universal JDBC Provider (XA)

The DB2 Universal JDBC Provider (XA) is an architecture-neutral JDBC provider for distributed and

local DB2 access. Whether you use this provider for Java connectivity or Java Native Interface (JNI)

based connectivity depends on the version of DB2 you are running. Application Server Version 6.0

minimally requires DB2 8.1 Fix Pack 6. This version of DB2 only supports XA connectivity over the

Java Native Interface (JNI) based connectivity (Type 2) driver. In order to use XA connectivity with the

Type 4 driver, DB2 8.1 Fix Pack 7 or higher is required.

The DB2 Universal JDBC Driver (XA) supports two phase transactions and the more advanced data

source option offered by Application Server (as opposed to the other option, Version 4 data sources).

This driver also allows applications to use both JDBC and SQLJ access.

1224 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

The DB2 Universal JDBC Driver Provider supports the two phase data source:

com.ibm.db2.jcc.DB2XADataSource

Requires JDBC driver files:

v db2jcc.jar After you install DB2, you can find this .jar file in the DB2 java directory. For Type 4

JDBC driver support from a client machine where DB2 is not installed, copy this file to the local

machine. If you install any fixes or upgrades to DB2, you must update this file as well. You must

also set the DB2UNIVERSAL_JDBC_DRIVER_PATH environment variable to point to the

db2jcc.jar file. See the Cloudscape section for more information on the

DB2UNIVERSAL_JDBC_DRIVER_PATH environment variable.

Note: To find the level of universal driver you are using, issue the following DB2 command:

java com.ibm.db2.jcc.DB2Jcc -version

example output of the above:

 IBM DB2 JDBC Universal Driver Architecture 2.2.xx

v db2jcc_license_cu.jar This is the DB2 Universal JDBC driver license file that allows access to the

DB2 Universal database. Use this jar file or the next one to gain access to the database. This jar file

ships with WebSphere Application Server in the WAS_HOME/universalDriver/lib directory.

v db2jcc_license_cisuz.jar This is the DB2 Universal JDBC driver license file that allows access to

the following databases:

– DB2 Universal

– DB2 for iSeries

– DB2 for z/OS

– SQLDS

You must use the right license jar file to access a specific database backend.

Requires DataStoreHelper class:

com.ibm.websphere.rsadapter.DB2UniversalDataStoreHelper

Requires a valid authentication alias.

Requires properties:

v databaseName This is an actual database name if the driverType is set to 4, or a locally cataloged

database name if the driverType is set to 2.

v driverType The JDBC connectivity type of a data source. There are two permitted values: 2 and 4.

If you want to use Universal JDBC Type 2 XA driver, set this value to 2. If you want to use Universal

JDBC Type 4 XA driver (which requires DB2 8.1 Fix Pack 7 or higher), set this value to 4.

v serverName The TCP/IP address or host name for the Distributed Relational Database Architecture

(DRDA) server. Provide a value for this property only if your driverType is set to 4. This property is

not required if your driverType is set to 2.

v portNumber The TCP/IP port number where the DRDA server resides. Provide a value for this

property only if your driverType is set to 4. This property is not required if your driverType is set to

2.
3. DB2 legacy CLI-based Type 2 JDBC Driver

The DB2 legacy CLI-based Type 2 JDBC Driver Provider is built on top of DB2 CLI (Call Level

Interface). It uses the DB2 CLI interface to communicate with DB2 UDB servers.

DB2 legacy CLI-based Type 2 JDBC Driver supports one phase data source:

COM.ibm.db2.jdbc.DB2ConnectionPoolDataSource

Requires JDBC driver files: db2java.zip (Note: If you run SQLJ in DB2 Version 8, db2jcc.jar is also

required.)

Requires DataStoreHelper class:

com.ibm.websphere.rsadapter.DB2DataStoreHelper

Does not require a valid authentication alias if Application Server is running on the same machine as

the database. Otherwise, connectivity through this driver does require an alias.

Requires properties:

Chapter 8. Developing WebSphere applications 1225

v databaseName The name of the database from which the data source obtains connections.

Example: Sample.
4. DB2 legacy CLI-based Type 2 JDBC Driver (XA)

The DB2 legacy CLI-based Type 2 JDBC Driver (XA) is built on top of DB2 CLI (Call Level Interface).

It uses the DB2 CLI interface to communicate with DB2 UDB servers.

DB2 legacy CLI-based Type 2 JDBC Driver (XA) supports two phase data source:

COM.ibm.db2.jdbc.DB2XADataSource

Requires JDBC driver files: db2java.zip (Note: If you run SQLJ in DB2 Version 8, db2jcc.jar is also

required.)

Requires DataStoreHelper class:

com.ibm.websphere.rsadapter.DB2DataStoreHelper

Does not require a valid authentication alias if Application Server is running on the same machine as

the database. Otherwise, connectivity through this driver does require an alias.

Requires properties:

v databaseName The name of the database from which the data source obtains connections.

Example: Sample.

For more information on DB2, visit the DB2 Web site at: http://www.ibm.com/software/data/db2/.

For information on configuring WebSphere Application Server for DB2 access, see the ″Configuring DB2″

article in the information center.

DB2 UDB for iSeries

1. DB2 UDB for iSeries (Native)

The iSeries Developer Kit for Java contains this Type 2 JDBC driver that is built on top of the iSeries

DB2 Call Level Interface (CLI) native libraries. Only use this driver for local DB2 connections on

iSeries. It is not recommended for remote access. Use this driver for iSeries V5R2, or later releases.

DB2 UDB for iSeries (Native V5R2 and later) supports one phase data source:

com.ibm.db2.jdbc.app.UDBConnectionPoolDataSource

Requires JDBC driver files: db2_classes.jar

Requires DataStoreHelper class:

com.ibm.websphere.rsadapter.DB2AS400DataStoreHelper

Does not require an authentication alias.

Requires properties:

v databaseName The name of the relational database to which the data source connections are

established. This name must appear in the iSeries Relational Database Directory. The default is

*LOCAL.
2. DB2 UDB for iSeries (Native XA)

The iSeries Developer Kit for Java contains this XA-compliant Type 2 JDBC driver built on top of the

iSeries DB2 Call Level Interface (CLI) native libraries. Only use this driver for local DB2 connections on

iSeries. It is not recommended for remote access. Use this driver for iSeries V5R2 or later releases.

DB2 UDB for iSeries (Native XA - V5R2 and later) supports two phase data source:

com.ibm.db2.jdbc.app.UDBXADataSource

Requires JDBC driver files: db2_classes.jar

Requires DataStoreHelper class:

com.ibm.websphere.rsadapter.DB2AS400DataStoreHelper

Does not require an authentication alias.

Requires properties:

1226 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

http://www-3.ibm.com/software/data/db2/

v databaseName The name of the relational database to which the data source connections are

established. This name must appear in the iSeries Relational Database Directory. The default is

*LOCAL.
3. DB2 UDB for iSeries (Toolbox)

This JDBC driver, also known as iSeries Toolbox driver for Java, is provided in the DB2 for iSeries

database server. Use this driver for remote DB2 connections on iSeries. We recommend you use this

driver instead of the IBM Developer Kit for Java JDBC Driver to access remote DB2 UDB for iSeries

systems.

DB2 UDB for iSeries (Toolbox) supports one phase data source:

com.ibm.as400.access.AS400JDBCConnectionPoolDataSource

Requires JDBC driver files: jt400.jar

Requires DataStoreHelper class:

com.ibm.websphere.rsadapter.DB2AS400DataStoreHelper

Does not require an authentication alias if WebSphere Application Server and DB2 UDB for iSeries are

installed in the same server. If they are installed in different servers, the user ID and password are

required.

Requires properties:

v serverName The name of the server from which the data source obtains connections. Example:

myserver.mydomain.com.
4. DB2 UDB for iSeries (Toolbox XA)

This XA compliant JDBC driver, also known as iSeries Toolbox XA compliant driver for Java, is

provided in the DB2 for iSeries database server. Use this driver for remote DB2 connections on

iSeries. We recommend you use this driver instead of the IBM Developer Kit for Java JDBC Driver to

access remote DB2 UDB for iSeries systems.

DB2 UDB for iSeries (Toolbox XA) supports two phase data source:

com.ibm.as400.access.AS400JDBCXADataSource

Requires JDBC driver files: jt400.jar

Requires DataStoreHelper class:

com.ibm.websphere.rsadapter.DB2AS400DataStoreHelper

Does not require an authentication alias if WebSphere Application Server and DB2 UDB for iSeries are

installed in the same server. If they are installed in different servers, the user ID and password are

required.

Requires properties:

v serverName The name of the server from which the data source obtains connections. Example:

myserver.mydomain.com.
5. DB2 legacy CLI-based Type 2 JDBC Driver

The DB2 legacy CLI-based Type 2 JDBC Driver Provider is built on top of DB2 CLI (Call Level

Interface). It uses the DB2 CLI interface to communicate with DB2 UDB servers. This provider is

intended for remote connections to DB2 running on iSeries; for use with Application Server on

Windows, UNIX, or workstation-based LINUX, it therefore requires the DB2 Connect Driver (which is

available from DB2).

DB2 legacy CLI-based Type 2 JDBC Driver supports one phase data source:

COM.ibm.db2.jdbc.DB2ConnectionPoolDataSource

Requires JDBC driver files: db2java.zip (Note: If you run SQLJ in DB2 Version 8, db2jcc.jar is also

required.)

Requires DataStoreHelper class:

com.ibm.websphere.rsadapter.DB2DataStoreHelper

Does not require a valid authentication alias.

Requires properties:

Chapter 8. Developing WebSphere applications 1227

v databaseName The name of the database from which the data source obtains connections.

Example: Sample.
6. DB2 legacy CLI-based Type 2 JDBC Driver (XA)

The DB2 legacy CLI-based Type 2 JDBC Driver (XA) is built on top of DB2 CLI (Call Level Interface).

It uses the DB2 CLI interface to communicate with DB2 UDB servers. This provider is intended for

remote connections to DB2 running on iSeries; for use with Application Server on Windows, UNIX, or

workstation-based LINUX, it therefore requires the DB2 Connect Driver (which is available from DB2).

DB2 legacy CLI-based Type 2 JDBC Driver (XA) supports two phase data source:

COM.ibm.db2.jdbc.DB2XADataSource

Requires JDBC driver files: db2java.zip (Note: If you run SQLJ in DB2 Version 8, db2jcc.jar is also

required.)

Requires DataStoreHelper class:

com.ibm.websphere.rsadapter.DB2DataStoreHelper

Does not require a valid authentication alias.

Requires properties:

v databaseName The name of the database from which the data source obtains connections.

Example: Sample.
7. DB2 UDB for iSeries (Native - Version 5 Release 1 and earlier) -- Deprecated

This JDBC provider is deprecated because it corresponds to a version of the iSeries operating system

that WebSphere Application Server Version 6.x does not support. You must now use iSeries V5R2 or a

later release of the iSeries operating system, for which the WebSphere Application Server

administrative console lists one native iSeries DB2 non-XA provider: DB2 UDB for iSeries (Native).

The iSeries Developer Kit for Java contains this Type 2 JDBC driver that is built on top of the iSeries

DB2 Call Level Interface (CLI) native libraries. Only use this driver for local DB2 connections on

iSeries. It is not recommended for remote access. Use this driver for iSeries V5R1, or earlier releases.

DB2 UDB for iSeries (Native V5R1 and earlier) supports one phase data source:

com.ibm.db2.jdbc.app.DB2StdConnectionPoolDataSource

Requires JDBC driver files: db2_classes.jar

Requires DataStoreHelper class:

com.ibm.websphere.rsadapter.DB2AS400DataStoreHelper

Does not require an authentication alias.

Requires properties:

v databaseName The name of the relational database to which the data source connections are

established. This name must appear in the iSeries Relational Database Directory. The default is

*LOCAL.
8. DB2 UDB for iSeries (Native XA - Version 5 Release 1 and earlier) -- Deprecated

This JDBC provider is deprecated because it corresponds to a version of the iSeries operating system

that WebSphere Application Server Version 6.x does not support. You must now use iSeries V5R2 or a

later release of the iSeries operating system, for which the administrative console lists one native

iSeries DB2 XA provider: DB2 UDB for iSeries (Native XA).

The iSeries Developer Kit for Java contains this XA-compliant Type 2 JDBC driver built on top of the

iSeries DB2 Call Level Interface (CLI) native libraries. Only use this driver for local DB2 connections on

iSeries. It is not recommended for remote access. Use this driver for iSeries V5R1, or earlier releases.

DB2 UDB for iSeries (Native XA - V5R1 and earlier) supports two phase data source:

com.ibm.db2.jdbc.app.DB2StdXADataSource

Requires JDBC driver files: db2_classes.jar

Requires DataStoreHelper class:

com.ibm.websphere.rsadapter.DB2AS400DataStoreHelper

Does not require an authentication alias.

Requires properties:

1228 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

v databaseName The name of the relational database to which the data source connections are

established. This name must appear in the iSeries Relational Database Directory. The default is

*LOCAL.

For more information on DB2 UDB for iSeries, visit the DB2 Web site at:

http://www.ibm.com/software/data/db2/

DB2 on z/OS, connecting to Application Server on Windows, UNIX, or workstation-based LINUX

1. DB2 Universal JDBC Provider

The DB2 Universal JDBC Driver is an architecture-neutral JDBC driver for distributed and local DB2

access. Because the Universal Driver architecture is independent of any particular JDBC driver

connectivity or target platform, it allows both Java connectivity (Type 4) or Java Native Interface (JNI)

based connectivity (Type 2) in a single driver instance to DB2. Starting with WebSphere Application

Server Version 5.0.2, the product now supports both Type 2 and Type 4 JDBC drivers. To use the Type

4 driver, you must install DB2 Version 8.1 or a later version. To use the Type 2 driver, you must install

DB2 Version 8.1 Fix Pack 2 or a later version.

This JDBC driver allows applications to use both JDBC and Structured Query Language in Java

(SQLJ) access.

The DB2 Universal JDBC Driver Provider supports one phase data source:

com.ibm.db2.jcc.DB2ConnectionPoolDataSource

Requires JDBC driver files:

v db2jcc.jar After you install DB2, you can find this jar file in the DB2 java directory. For Type 4

JDBC driver support from a client machine where DB2 is not installed, copy this file to the local

machine. If you install any fixes or upgrades to DB2, you must update this file as well. You must

also set the DB2UNIVERSAL_JDBC_DRIVER_PATH path variable to point to the db2jcc.jar file.

See the Cloudscape section for more information on the DB2UNIVERSAL_JDBC_DRIVER_PATH

path variable.

Note: To find out the version of the universal driver you are using, issue this DB2 command:

java com.ibm.db2.jcc.DB2Jcc -version

The output for the above example is:

IBM DB2 JDBC Universal Driver Architecture 2.2.xx

v db2jcc_license_cu.jar This is the DB2 Universal JDBC driver license file that allows access to the

DB2 Universal database. Use this jar file or the next one to gain access to the database. This jar file

ships with WebSphere Application Server in a directory defined by

${UNIVERSAL_JDBC_DRIVER_PATH}environment variable.

v db2jcc_license_cisuz.jar This is the DB2 Universal JDBC driver license file that allows access to

the following databases:

– DB2 Universal

– DB2 for iSeries

– DB2 for z/OS

– SQLDS

The db2jcc_license_cisuz.jar does not ship with Websphere Application Server and should be

located in the same directory as the db2jcc.jar file, so that the

DB2UNIVERSAL_JDBC_DRIVER_PATH points to both.
 The classpath for this provider is set as follows:

 <classpath>${DB2UNIVERSAL_JDBC_DRIVER_PATH}/db2jcc.jar </classpath>

 <classpath>${DB2UNIVERSAL_JDBC_DRIVER_PATH}/db2jcc_license_cu.jar</classpath>

 <classpath>${DB2UNIVERSAL_JDBC_DRIVER_PATH}/db2jcc_license_cisuz.jar</classpath>

Note: The license jar files are independent of each other; therefore, order does not matter.

Requires DataStoreHelper class:

Chapter 8. Developing WebSphere applications 1229

http://www-3.ibm.com/software/data/db2/

com.ibm.websphere.rsadapter.DB2UniversalDataStoreHelper

Requires a valid authentication alias.

Requires properties:

v databaseName This is an actual database name if the driverType is set to 4, or a locally cataloged

database name if the driverType is set to 2.

v driverType The JDBC connectivity type of a data source. There are two permitted values: 2 and 4.

If you want to use Universal JDBC Type 2 driver, set this value to 2. If you want to use Universal

JDBC Type 4 driver, set this value to 4.

v serverName The TCP/IP address or host name for the Distributed Relational Database Architecture

(DRDA) server. Provide a value for this property only if your driverType is set to 4. This property is

not required if your driverType is set to 2.

v portNumber The TCP/IP port number where the DRDA server resides. Provide a value for this

property only if your driverType is set to 4. This property is not required if your driverType is set to

2.
2. DB2 Universal JDBC Provider (XA)

The DB2 Universal JDBC Driver (XA) is an architecture-neutral JDBC driver for distributed and local

DB2 access. In WebSphere Application Server Version 5.0.2, this driver only supports Java Native

Interface (JNI) based connectivity (Type 2) in a single driver instance to DB2. To use this driver, you

must install DB2 Version 8.1 Fix Pack 2 or a later version. This driver supports two phase transactions

and the WebSphere Application Server Version 5.0 data source. This driver allows applications to use

both JDBC and SQLJ access.

The DB2 Universal JDBC Driver Provider supports the two phase data source:

com.ibm.db2.jcc.DB2XADataSource

Requires JDBC driver files:

v db2jcc.jar After you install DB2, you can find this .jar file in the DB2 java directory. For Type 4

JDBC driver support from a client machine where DB2 is not installed, copy this file to the local

machine. If you install any fixes or upgrades to DB2, you must update this file as well. You must

also set the DB2UNIVERSAL_JDBC_DRIVER_PATH environment variable to point to the

db2jcc.jar file. See the Cloudscape section for more information on the

DB2UNIVERSAL_JDBC_DRIVER_PATH environment variable.

Note: To find the level of universal driver you are using, issue the following DB2 command:

java com.ibm.db2.jcc.DB2Jcc -version

example output of the above:

 IBM DB2 JDBC Universal Driver Architecture 2.2.xx

v db2jcc_license_cu.jar This is the DB2 Universal JDBC driver license file that allows access to the

DB2 Universal database. Use this jar file or the next one to gain access to the database. This jar file

ships with WebSphere Application Server in the WAS_HOME/universalDriver/lib directory.

v db2jcc_license_cisuz.jar This is the DB2 Universal JDBC driver license file that allows access to

the following databases:

– DB2 Universal

– DB2 for iSeries

– DB2 for z/OS

– SQLDS

You must use the right license jar file to access a specific database backend.

Requires DataStoreHelper class:

com.ibm.websphere.rsadapter.DB2UniversalDataStoreHelper

Requires a valid authentication alias.

Requires properties:

v databaseName This is a locally cataloged database name.

v driverType This is the JDBC connectivity type of a data source. If you are running a version of DB2

prior to DB2 V8.1 FP6, you are restricted to using only the type 2 driver.

1230 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

v serverName The TCP/IP address or host name for the Distributed Relational Database Architecture

(DRDA) server. Provide a value for this property only if your driverType is set to 4. This property is

not required if your driverType is set to 2.

v portNumber The TCP/IP port number where the DRDA server resides. Provide a value for this

property only if your driverType is set to 4. This property is not required if your driverType is set to

2.
3. DB2 legacy CLI-based Type 2 JDBC Driver

The DB2 legacy CLI-based Type 2 JDBC Driver Provider is built on top of DB2 CLI (Call Level

Interface). It uses the DB2 CLI interface to communicate with DB2 UDB servers. For use with

Application Server on Windows, UNIX, or workstation-based LINUX, this provider requires DB2

Connect (which is available from DB2).

DB2 legacy CLI-based Type 2 JDBC Driver supports one phase data source:

COM.ibm.db2.jdbc.DB2ConnectionPoolDataSource

Requires JDBC driver files: db2java.zip (Note: If you run SQLJ in DB2 Version 8, db2jcc.jar is also

required.)

Requires DataStoreHelper class:

com.ibm.websphere.rsadapter.DB2DataStoreHelper

Does not require a valid authentication alias.

Requires properties:

v databaseName The name of the database from which the data source obtains connections.

Example: Sample.
4. DB2 legacy CLI-based Type 2 JDBC Driver (XA)

The DB2 legacy CLI-based Type 2 JDBC Driver (XA) is built on top of DB2 CLI (Call Level Interface).

It uses the DB2 CLI interface to communicate with DB2 UDB servers. For use with Application Server

on Windows, UNIX, or workstation-based LINUX, this provider requires DB2 Connect (which is

available from DB2).

DB2 legacy CLI-based Type 2 JDBC Driver (XA) supports two phase data source:

COM.ibm.db2.jdbc.DB2XADataSource

Requires JDBC driver files: db2java.zip (Note: If you run SQLJ in DB2 Version 8, db2jcc.jar is also

required.)

Requires DataStoreHelper class:

com.ibm.websphere.rsadapter.DB2DataStoreHelper

Does not require a valid authentication alias.

Requires properties:

v databaseName The name of the database from which the data source obtains connections.

Example: Sample.

For more information on DB2 for z/OS, visit the DB2 Web site at: http://www.ibm.com/software/data/db2/.

Cloudscape

1. Cloudscape JDBC Provider

The Cloudscape JDBC Provider provides the JDBC access to the Cloudscape database. This

Cloudscape JDBC driver used the embedded framework. You cannot use any Version 4.0 data sources

with Cloudscape.

Cloudscape JDBC Provider supports one phase data source:

com.ibm.db2j.jdbc.DB2jConnectionPoolDataSource

Requires JDBC driver files: db2j.jar.

Requires DataStoreHelper class:

com.ibm.websphere.rsadapter.CloudscapeDataStoreHelper

Does not require a valid authentication alias.

Chapter 8. Developing WebSphere applications 1231

http://www-3.ibm.com/software/data/db2/

Requires properties:

v databaseName The name of the database from which the data source obtains connections. If you

do not specify a fully qualified path name, Application Server uses the default location of

WAS_HOME./cloudscape (or the equivalent default for a UNIX or LINUX environment).

– Example database path name for Windows: c:\temp\sampleDB

– Example database path name for UNIX or LINUX: /tmp/sampleDB

If no database currently exists for the path name you want to specify, simply append ;create=true

to the path name to create a database dynamically. (For example: c:\temp\sampleDB;create=true)
2. Cloudscape JDBC Provider (XA)

The Cloudscape JDBC Provider (XA) provides the XA-compliant JDBC access to the Cloudscape

database. This Cloudscape JDBC driver uses the embedded framework. You cannot use any Version

4.0 data sources with Cloudscape.

Cloudscape JDBC Provider (XA) supports two phase data source:

com.ibm.db2j.jdbc.DB2jXADataSource

Requires JDBC driver files: db2j.jar

Requires DataStoreHelper class:

com.ibm.websphere.rsadapter.CloudscapeDataStoreHelper

Does not require a valid authentication alias.

Requires properties:

v databaseName The name of the database from which the data source obtains connections. If you

do not specify a fully qualified path name, Application Server uses the default location of

WAS_HOME./cloudscape (or the equivalent default for a UNIX or LINUX environment).

– Example database path name for Windows: c:\temp\sampleDB

– Example database path name for UNIX or LINUX: /tmp/sampleDB

If no database currently exists for the path name you want to specify, simply append ;create=true

to the path name to create a database dynamically. (For example: c:\temp\sampleDB;create=true)
3. Cloudscape Network Server using Universal JDBC driver

This Cloudscape driver takes advantage of the Network Server support that the DB2 universal Type 4

JDBC driver provides. You cannot use any Version 4.0 data sources with Cloudscape.

Cloudscape uses the DB2 Universal Driver when using the Network Server. It supports one phase data

source:

 com.ibm.db2.jcc.DB2ConnectionPoolDataSource

Requires JDBC driver files:

v db2jcc.jar If you install and run DB2, you must use the db2jcc.jar file that comes with DB2. To do

that, the classpath in the JDBC template for Cloudscape network server is set to be:

<classpath>${DB2UNIVERSAL_JDBC_DRIVER_PATH}/db2jcc.jar</classpath>

<classpath>${CLOUDSCAPE_JDBC_DRIVER_PATH}/db2j.jar</classpath>

<classpath>${CLOUDSCAPE51_JDBC_DRIVER_PATH}/db2j.jar</classpath>

<classpath>${UNIVERSAL_JDBC_DRIVER_PATH}/db2jcc.jar</classpath>

which means that the db2jcc.jar from DB2 always takes precedence. Note that this also means that

you must set the DB2 environment variable DB2UNIVERSAL_JDBC_DRIVER_PATH in WebSphere

when you set up your DB2 datasource. This is instead of hard coding the path of the db2jcc.jar for

DB2 datasources.

v db2jcc_license_cu.jar This file is the DB2 Universal JDBC license file that provides access to the

Cloudscape databases using the Network Server framework. Use this file to gain access to the

database. This file ships with WebSphere and is located in ${UNIVERSAL_JDBC_DRIVER_PATH}.

Note: UNIVERSAL_JDBC_DRIVER_PATHis a WebSphere environment variable that is already

defined to the location in Websphere Application Server where the license jar file above is

1232 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

located, and will only be used if the DB2UNIVERSAL_JDBC_DRIVER_PATH is not set. DB2

users should ensure that DB2UNIVERSAL_JDBC_DRIVER_PATH is set to avoid loading

multiple vesions of the db2jcc.jar file.

Note: DB2UNIVERSAL_JDBC_DRIVER_PATH is a WebSphere environment variable that you

must set to point to the location of db2jcc.jar file (that comes with DB2). This variable is set

only if you create a db2 provider. See the DB2 section for more information on the

DB2UNIVERSAL_JDBC_DRIVER_PATH path variable.

Note: Cloudscape requires only db2jcc_license_c.jar; however, WebSphere Application Server uses

db2jcc_license_cu.jar because this works for both DB2 UDB and Cloudscape.

Requires DataStoreHelper class:

com.ibm.websphere.rsadapter.CloudscapeNetworkServerDataStoreHelper

Note: The administrative console incorrectly lists the DB2UniversalDataStoreHelper as the default

value for the DataStoreHelper class. You must change the default value to

com.ibm.websphere.rsadapter.CloudscapeNetworkServerDataStoreHelper. Also change the custom

properties, using the instructions in the customer property section.

Requires a valid authentication alias.

Requires properties:

v databaseName The name of the database from which the data source obtains connections. If you

do not specify a fully qualified path name, Application Server uses the default location of

WAS_HOME./cloudscape (or the equivalent default for a UNIX or LINUX environment).

– Example database path name for Windows: c:\temp\sampleDB

– Example database path name for UNIX or LINUX: /tmp/sampleDB

If no database currently exists for the path name you want to specify, simply append ;create=true

to the path name to create a database dynamically. (For example: c:\temp\sampleDB;create=true)

v driverType Only the Type 4 driver is allowed.

v serverName The TCP/IP address or the host name for the Distributed Relational Database

Architecture (DRDA) server.

v portNumber The TCP/IP port number where the DRDA server resides. The default value is port

1527.

v retrieveMessagesfromServerOnGetMessage This property is required by WebSphere Application

Server, not the database. The default value is false. You must set the value of this property to true,

to enable text retrieval using the SQLException.getMessage() method.

See the Cloudscape setup instructions for more information on configuring the Cloudscape Network

Server.

For more information on IBM Cloudscape, visit the Cloudscape Web site at:

http://www.ibm.com/software/data/cloudscape/

Informix

1. Informix JDBC Driver

The Informix JDBC Driver is a Type 4 JDBC driver that provides JDBC access to the Informix

database.

Informix JDBC Driver supports one phase data source:

 com.informix.jdbcx.IfxConnectionPoolDataSource

Requires JDBC driver files:

 ifxjdbc.jar

 ifxjdbcx.jar

Requires DataStoreHelper class:

com.ibm.websphere.rsadapter.InformixDataStoreHelper

Requires a valid authentication alias.

Chapter 8. Developing WebSphere applications 1233

http://www-3.ibm.com/software/data/cloudscape/

Requires properties:

v serverName The name of the Informix instance on the server. Example: ol_myserver.

v portNumber The port on which the instances listen. Example: 1526.

v ifxIFXHOST Either the IP address or the host name of the machine that is running the Informix

database to which you want to connect. Example: myserver.mydomain.com.

v databaseName The name of the database from which the data source obtains connections.

Example: Sample.

v informixLockModeWait Although not required, this property enables you to set the number of

seconds that Informix software waits for a lock. By default, Informix code throws an exception if it

cannot immediately acquire a lock. Example: 2.
2. Informix JDBC Driver (XA)

The Informix JDBC Driver (XA) is a Type 4 JDBC driver that provides XA-compliant JDBC access to

the Informix database.

Informix JDBC Driver (XA) supports two phase data source:

com.informix.jdbcx.IfxXADataSource

Requires JDBC driver files:

 ifxjdbc.jar

 ifxjdbcx.jar

Requires DataStoreHelper class:

com.ibm.websphere.rsadapter.InformixDataStoreHelper

Requires a valid authentication alias.

Requires properties:

v serverName The name of the Informix instance on the server. Example: ol_myserver.

v portNumber The port on which the instances listen. Example: 1526.

v ifxIFXHOST Either the IP address or the host name of the machine that is running the Informix

database to which you want to connect. Example: myserver.mydomain.com.

v databaseName The name of the database from which the data source obtains connections.

Example: Sample.

v informixLockModeWait Although not required, this property enables you to set the number of

seconds that Informix software waits for a lock. By default, Informix code throws an exception if it

cannot immediately acquire a lock. Example: 2.

For more information on Informix, visit the Informix Web site at: http://www.ibm.com/software/data/informix/

Sybase

1. Sybase JDBC Driver

The Sybase JDBC Driver is a Type 4 JDBC driver that provides JDBC access to the Sybase database.

Sybase JDBC Driver supports one phase data source:

com.sybase.jdbc2.jdbc.SybConnectionPoolDataSource

Requires JDBC driver files: jconn2.jar.

Requires DataStoreHelper class:

com.ibm.websphere.rsadapter.SybaseDataStoreHelper

Requires a valid authentication alias.

Requires properties:

v serverName The name of the database server. Example: myserver.mydomain.com.

v databaseName The name of the database from which the data source obtains connections.

Example: Sample.

v portNumber The TCP/IP port number through which all communications to the server take place.

Example: 4100.

v connectionProperties A custom property required for applications containing EJB 2.0 enterprise

beans. Value: SELECT_OPENS_CURSOR=true(Type: java.lang.String)
2. Sybase JDBC Driver (XA)

1234 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

http://www-3.ibm.com/software/data/informix/

The Sybase JDBC Driver (XA) is a Type 4 JDBC driver that provides XA-compliant JDBC access to

the Sybase database.

Sybase JDBC Driver (XA) supports two phase data source:

com.sybase.jdbc2.jdbc.SybXADataSource

Requires JDBC driver files: jconn2.jar.

Requires DataStoreHelper class:

com.ibm.websphere.rsadapter.SybaseDataStoreHelper

Requires a valid authentication alias.

Requires properties:

v serverName The name of the database server. Example: myserver.mydomain.com

v databaseName The name of the database from which the data source obtains connections.

Example: Sample.

v portNumber The TCP/IP port number through which all communications to the server take place.

Example: 4100.

v connectionProperties A custom property required for applications containing EJB 2.0 enterprise

beans. Value: SELECT_OPENS_CURSOR=true(Type: java.lang.String)

For more information on Sybase, visit the Sybase Web site at: http://www.sybase.com/

Oracle

1. Oracle JDBC Driver

The Oracle JDBC Driver provides JDBC access to the Oracle database. This JDBC driver supports

both Type 2 JDBC access and Type 4 JDBC access.

Oracle JDBC Driver supports one phase data source:

 oracle.jdbc.pool.OracleConnectionPoolDataSource

Requires JDBC driver files: ojdbc14.jar. (Note: If you require Oracle trace, use ojdbc14_g.jar.)

Requires DataStoreHelper class:

com.ibm.websphere.rsadapter.OracleDataStoreHelper

(Note: If you are running Oracle10g, use com.ibm.websphere.rsadapter.Oracle10gDataStoreHelper.

Requires a valid authentication alias.

Requires properties:

v URL The URL that indicates the database from which the data source obtains connections.

Example: jdbc:oracle:thin:@myServer:1521:myDatabase, where myServer is the server name, 1521

is the port it is using for communication, and myDatabase is the database name.
2. Oracle JDBC Driver (XA)

The Oracle JDBC Driver (XA) provides XA-compliant JDBC access to the Oracle database. This JDBC

driver supports both Type 2 JDBC access and Type 4 JDBC access.

Oracle JDBC Driver (XA) supports two phase data source:

oracle.jdbc.xa.client.OracleXADataSource

Requires JDBC driver files: ojdbc14.jar. (Note: If you require Oracle trace, use ojdbc14_g.jar.)

Requires DataStoreHelper class:

com.ibm.websphere.rsadapter.OracleDataStoreHelper

Requires a valid authentication alias.

Requires properties:

v URL The URL that indicates the database from which the data source obtains connections.

Example: jdbc:oracle:thin:@myServer:1521:myDatabase, where myServer is the server name, 1521

is the port it is using for communication, and myDatabase is the database name.

For more information on Oracle, visit the Oracle Web site at: http://www.oracle.com/

Chapter 8. Developing WebSphere applications 1235

http://www.sybase.com/
http://www.oracle.com/

MS SQL Server

1. DataDirect ConnectJDBC type 4 driver for MS SQL Server

DataDirect ConnectJDBC type 4 driver for MS SQL Server is a Type 4 JDBC driver that provides

JDBC access to the MS SQL Server database. This provider is for use only with the Connect JDBC

driver purchased from DataDirect Technologies.

This JDBC provider supports this data source:

 com.ddtek.jdbcx.sqlserver.SQLServerDataSource

Requires JDBC driver files:

sqlserver.jar,

base.jar and util.jar

(The spy.jar file is optional. You need this file to enable spy logging. The spy.jar file is not in the

same directory as the other three jar files. Instead, it is located in the ../spy/ directory.)

Requires DataStoreHelper class:

com.ibm.websphere.rsadapter.ConnectJDBCDataStoreHelper

Requires a valid authentication alias.

Requires properties:

v serverName The name of the server in which MS SQL Server resides. Example:

myserver.mydomain.com

v portNumber The TCP/IP port that MS SQL Server uses for communication. Port 1433 is the default.

v databaseName The name of the database from which the data source obtains connections.

Example: Sample.
2. DataDirect ConnectJDBC type 4 driver for MS SQL Server (XA)

DataDirect ConnectJDBC type 4 driver for MS SQL Server (XA) is a Type 4 JDBC driver which

provides XA-compliant JDBC access to the MS SQL Server database. This provider is for use only

with the Connect JDBC driver purchased from DataDirect Technologies.

This JDBC provider supports this data source:

com.ddtek.jdbcx.sqlserver.SQLServerDataSource.

Requires JDBC driver files:

sqlserver.jar,

base.jar and util.jar.

(The spy.jar file is optional. You need this file to enable spy logging. The spy.jar file is not in the

same directory as the other three jar files. Instead, it is located in the ../spy/ directory.)

Requires DataStoreHelper class:

com.ibm.websphere.rsadapter.ConnectJDBCDataStoreHelper

Requires a valid authentication alias.

Requires properties:

v serverName The name of the server in which MS SQL Server resides. Example:

myserver.mydomain.com

v portNumber The TCP/IP port that MS SQL Server uses for communication. Port 1433 is the default.

v databaseName The name of the database from which the data source obtains connections.

Example: Sample.

For more information on the DataDirect ConnectJDBC driver, visit the DataDirect Web site at:

http://www.datadirect-technologies.com/

3. WebSphere embedded ConnectJDBC driver for MS SQL Server

WebSphere embedded ConnectJDBC driver for MS SQL Server is a Type 4 JDBC driver that provides

JDBC access to the MS SQL Server database. This JDBC driver ships with WebSphere Application

Server. Only use this provider with the Connect JDBC driver embedded in WebSphere; it cannot be

used with a Connect JDBC driver purchased separately from DataDirect Technologies.

This JDBC provider supports this data source:

com.ibm.websphere.jdbcx.sqlserver.SQLServerDataSource.

Requires JDBC driver files:

1236 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

http://www.datadirect-technologies.com/

sqlserver.jar

base.jar and

util.jar.

(The spy.jar file is optional. You need this file to enable spy logging. The spy.jar file for the

WebSphere embedded Connect JDBC driver ships with WebSphere Application Server. All the files are

located in the WAS_HOME/lib/ directory.)

Requires DataStoreHelper class:

com.ibm.websphere.rsadapter.WSConnectJDBCDataStoreHelper

Requires a valid authentication alias.

Requires properties:

v serverName The name of the server in which MS SQL Server resides. Example:

myserver.mydomain.com

v portNumber The TCP/IP port that MS SQL Server uses for communication. Port 1433 is the default.

v databaseName The name of the database from which the data source obtains connections.

Example: Sample.
4. WebSphere embedded ConnectJDBC driver for MS SQL Server (XA)

WebSphere embedded ConnectJDBC driver for MS SQL Server (XA) is a Type 4 JDBC driver which

provides XA-compliant JDBC access to the MS SQL Server database. This JDBC driver ships with

WebSphere Application Server. Use this provider with the Connect JDBC driver embedded in

WebSphere. Do not use it with a Connect JDBC driver purchased separately from DataDirect

Technologies.

This JDBC provider supports this data source:

 com.ibm.websphere.jdbcx.sqlserver.SQLServerDataSource.

Requires JDBC driver files:

sqlserver.jar

base.jar and

util.jar.

(The spy.jar file is optional. You need this file to enable spy logging. The spy.jar file for the

WebSphere embedded Connect JDBC driver ships with WebSphere Application Server. All the files are

located in the WAS_HOME/lib/ directory.)

Requires DataStoreHelper class:

com.ibm.websphere.rsadapter.WSConnectJDBCDataStoreHelper

Requires a valid authentication alias.

Requires properties:

v serverName The name of the server in which MS SQL Server resides. Example:

myserver.mydomain.com

v portNumber The TCP/IP port that MS SQL Server uses for communication. Port 1433 is the default.

v databaseName The name of the database from which the data source obtains connections.

Example: Sample.

Whether you need to support one or two phase transactions with the WebSphere embedded Connect

JDBC XA driver, you must install Stored Procedures for the Java Transaction API (JTA) on your

machine that runs Microsoft SQL. The WebSphere Application Server installation disks provide a base

level of Stored Procedures for JTA. (You can find the most current version of the software on the

WebSphere Application Server-embedded DataDirect Technologies product update Web page.) Install

Stored Procedures for JTA by performing the following steps:

a. Determine whether you are running the 32-bit or 64-bit MS SQL Server and select the appropriate

sqljbc.dll and instjdbc.sql files.

b. Stop your MS SQL Server service.

c. Copy the sqljdbc.dll file into your %SQL_SERVER_INSTALL%\Binn\ directory.

d. Restart the MS SQL Server service.

e. Run theinstjdbc.sql script. (The script can be run by the MS SQL Server Query Analyzer or the

ISQL utility).

Chapter 8. Developing WebSphere applications 1237

You can download the latest patches and upgrades to the WebSphere embedded Connect JDBC

driver from the following FTP site:

ftp://ftp.software.ibm.com/software/websphere/info/tools/DataDirect/datadirect.htm

5. DataDirect SequeLink type 3 JDBC driver for MS SQL Server -- Deprecated

Because this JDBC provider is deprecated in WebSphere Application Server Version 6.0, it is no longer

an available option in the administrative console. In its place, use one of the Connect JDBC providers,

which are described previously in this section.

DataDirect SequeLink type 3 JDBC driver for MS SQL Server is a type 3 JDBC driver that provides

JDBC access to MS SQL Server via SequeLink server.

This JDBC provider supports this data source:

 com.ddtek.jdbcx.sequelink.SequeLinkDataSource

Requires JDBC driver files:

 sljc.jar and

 spy-sl.jar

(The JDBC driver shipped with WebSphere Application Server requires the sljc.jar and the

spy-sl.jar files. The JDBC driver purchased from DataDirect requires the sljc.jar and the spy.jar

files. The spy.jar and spy-sl.jar files are optional. You need these files to enable spy logging.)

Requires DataStoreHelper class:

com.ibm.websphere.rsadapter.SequeLinkDataStoreHelper

Requires a valid authentication alias.

Requires properties:

v serverName The name of the server in which SequeLink Server resides. Example:

myserver.mydomain.com

v portNumber The TCP/IP port that SequeLink Server uses for communication. By default, SequeLink

Server uses port 19996.

v databaseName The name of the database from which the data source obtains connections.

Example: Sample.
6. DataDirect SequeLink type 3 JDBC driver for MS SQL Server (XA) -- Deprecated

Because this JDBC provider is deprecated in WebSphere Application Server Version 6.0, it is no longer

an available option in the administrative console. In its place, use one of the Connect JDBC providers,

which are described previously in this section.

DataDirect SequeLink type 3 JDBC driver for MS SQL Server (XA) is a type 3 JDBC driver that

provides XA-compliant JDBC access to MS SQL Server via the SequeLink server.

This JDBC provider supports this data source:

com.ddtek.jdbcx.sequelink.SequeLinkDataSource

Requires JDBC driver files:

 sljc.jar and

spy-sl.jar

(The JDBC driver shipped with WebSphere Application Server requires the sljc.jar and the

spy-sl.jar files. The JDBC driver purchased from DataDirect requires the sljc.jar and the spy.jar

files. The spy.jar and spy-sl.jar files are optional. You need these files to enable spy logging.)

Requires DataStoreHelper class:

com.ibm.websphere.rsadapter.SequeLinkDataStoreHelper

Requires a valid authentication alias.

Requires properties:

v serverName The name of the server in which SequeLink Server resides. Example:

myserver.mydomain.com

v portNumber The TCP/IP port that SequeLink Server uses for communication. By default, SequeLink

Server uses port 19996.

v databaseName The name of the database from which the data source obtains connections.

Example: Sample.

1238 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

ftp://ftp.software.ibm.com/software/websphere/info/tools/DataDirect/datadirect.htm

Both of the WebSphere-embedded SequeLink JDBC drivers require installation of SequeLink Server

on all machines running MS SQL Server. See the readme.html file found in the DataDirect folder on

the WebSphere Application Server CD for instructions on how to install SequeLink Server. (Only install

SequeLink Server from the WebSphere Application Server CD if you are using the SequeLink JDBC

driver embedded in WebSphere. Otherwise, install a copy of SequeLink Server purchased from

DataDirect Technologies.)

From the following FTP site, you can download the latest patches and upgrades for the version of

SequeLink Server that is used with the WebSphere-embedded SequeLink JDBC driver:

ftp://ftp.software.ibm.com/software/websphere/info/tools/DataDirect/datadirect.htm

For more information on the DataDirect SequeLink type 3 JDBC driver, visit the DataDirect Web site at:

http://www.datadirect-technologies.com/

7. Microsoft JDBC driver for MSSQLServer 2000 -- Deprecated

Because this JDBC provider is deprecated in WebSphere Application Server Version 6.0, it is no longer

an available option in the administrative console. In its place, use one of the Connect JDBC providers,

which are described previously in this section.

Microsoft JDBC driver for MSSQLServer 2000 is a type 4 JDBC driver that provides JDBC access to

the MS SQL Server database.

This JDBC provider supports this data source:

com.microsoft.jdbcx.sqlserver.SQLServerDataSource

Requires JDBC driver files:

mssqlserver.jar,

msbase.jar and msutil.jar

(The spy.jar file is optional. You need it to enable spy logging. However, Microsoft does not ship the

spy.jar file. Contact Microsoft about this issue.)

Requires DataStoreHelper class:

com.ibm.websphere.rsadapter.ConnectJDBCDataStoreHelper

Requires a valid authentication alias.

Requires properties:

v serverName The name of the server in which MS SQL Server resides. Example:

myserver.mydomain.com

v portNumber The TCP/IP port that MS SQL Server uses for communication. Port 1433 is the default.

v databaseName The name of the database from which the data source obtains connections.

Example: Sample.
8. Microsoft JDBC driver for MSSQLServer 2000 (XA) -- Deprecated

Because this JDBC provider is deprecated in WebSphere Application Server Version 6.0, it is no longer

an available option in the administrative console. In its place, use one of the Connect JDBC providers,

which are described previously in this section.

Microsoft JDBC driver for MSSQLServer 2000 (XA) is a type 4 JDBC driver that provides XA-compliant

JDBC access to the MS SQL Server database.

This JDBC provider supports this data source:

com.microsoft.jdbcx.sqlserver.SQLServerDataSource

Requires JDBC driver files:

mssqlserver.jar,

msbase.jar and msutil.jar

(The spy.jar file is optional. You need it to enable spy logging. However, Microsoft does not ship the

spy.jar file. Contact Microsoft about this issue.)

Requires DataStoreHelper class:

com.ibm.websphere.rsadapter.ConnectJDBCDataStoreHelper

Requires a valid authentication alias.

Requires properties:

Chapter 8. Developing WebSphere applications 1239

ftp://ftp.software.ibm.com/software/websphere/info/tools/DataDirect/datadirect.htm
http://www.datadirect-technologies.com/

v serverName The name of the server in which MS SQL Server resides. Example:

myserver.mydomain.com

v portNumber The TCP/IP port that MS SQL Server uses for communication. Port 1433 is the default.

v databaseName The name of the database from which the data source obtains connections.

Example: Sample.

For more information on the Microsoft JDBC driver, visit the Microsoft Web site at:

http://www.microsoft.com/sql

Connector modules collection

Use this page to view established connector modules, which are resource adaptor (RAR) files that have

been packaged into deployable components compliant with the J2EE Connector Architecture (JCA).

To view this administrative console page, click Applications >Enterprise Applications > application >

Connector Modules.

You must generate a connector module for every resource adapter (RAR file) in the application. You do

this through an assembly tool, which creates an instance of the connector module object for the RAR file.

To learn more about the process, see the topic ″Assembling resource adapter (connector) modules″ in the

Information Center.

Remove: Removes a module from the deployed application. The module is deleted from the application

in the WebSphere Application Server configuration repository and also from all the nodes where the

application is installed and running (or expected to run). If the application is running on a node when the

module file is deleted from the node as a result of configuration synchronization then the application is

stopped, the module file is deleted from the node’s file system, and then the application is restarted.

Update: Opens a wizard that helps you update module in an application. If a module has the same URI

as a module already existing in the application, the new module replaces the existing module. If the new

module does not exist in the application, it is added to the deployed application. If the application is

running on a node when the module file is updated on the node as a result of configuration

synchronization then the application is stopped, the module file is updated on the node’s file system, and

then the application is restarted.

Remove File: Deletes a file from a module of a deployed application. The file is also deleted from all the

nodes where the module is installed after configuration is synchronized with nodes. If the application is

running on a node when the module file is updated on the node as a result of configuration

synchronization then the application is stopped, the module file is updated on the node’s file system, and

then the application is restarted.

URI:

Specifies the logical path to the resource that will be serviced by the product.

Name:

Specifies the display name of the connector module.

Connector module settings:

Use this page to view the settings of connector modules, which are resource adapter (RAR) files that have

been packaged into deployable components compliant with the J2EE Connector Architecture (JCA).

 To view this administrative console page, click Applications > Enterprise Applications > application >

Connector Modules > connector_module.

1240 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

http://www.microsoft.com/sql

The following field descriptions refer to properties that are set when you create connector modules using

an assembly tool. To learn more about the process, see the topic ″Assembling resource adapter

(connector) modules″ in the Information Center.

Remove: Removes a module from the deployed application. The module is deleted from the application

in the WebSphere Application Server configuration repository and also from all the nodes where the

application is installed and running (or expected to run). If the application is running on a node when the

module file is deleted from the node as a result of configuration synchronization then the application is

stopped, the module file is deleted from the node’s file system, and then the application is restarted.

Update: Opens a wizard that helps you update module in an application. If a module has the same URI

as a module already existing in the application, the new module replaces the existing module. If the new

module does not exist in the application, it is added to the deployed application. If the application is

running on a node when the module file is updated on the node as a result of configuration

synchronization then the application is stopped, the module file is updated on the node’s file system, and

then the application is restarted.

Remove File: Deletes a file from a module of a deployed application. The file is also deleted from all the

nodes where the module is installed after configuration is synchronized with nodes. If the application is

running on a node when the module file is updated on the node as a result of configuration

synchronization then the application is stopped, the module file is updated on the node’s file system, and

then the application is restarted.

Uri:

Specifies the logical path to the resource that is serviced by WebSphere Application Server.

 Data type String

Name:

Specifies the display name of the connector module.

 Data type String

altDD:

Specifies the alternate DD of the connector module.

 The alternate DD URI for a given module.

 Data type String

Starting weight:

Specifies the startup priority of the connector module over others.

 When your application contains multiple modules, the starting weight you specify determines this module’s

startup priority over other modules during server startup. Modules with lower startup order are started first.

 Data type String

Chapter 8. Developing WebSphere applications 1241

Messaging resources

Learning about messaging with WebSphere Application Server

Use this topic to learn about the use of asynchronous messaging for enterprise applications with

WebSphere Application Server.

WebSphere Application Server supports asynchronous messaging as a method of communication based

on the Java Message Service (JMS) and Java Connector Architecture (JCA) programming interfaces.

These interfaces provide a common way for Java programs (clients and J2EE applications) to create,

send, receive, and read asynchronous requests, as messages.

Besides using the programming interfaces directly to explicitly poll for messages, WebSphere Application

Server also supports the use of message-driven beans as asynchronous message consumers. A

message-driven bean is invoked by the EJB container when a message arrives at the destination that it is

configured to listen on, without an application having to explicitly poll the destination.

To handle non-JMS requests inbound to WebSphere Application Server from enterprise information

systems, message-driven beans use a Java Connector Architecture (JCA) 1.5 resource adapter written for

that purpose. In the JCA 1.5 specification, such message-driven beans are commonly called message

endpoints or simply endpoints.

Message-driven beans that implement the javax.jms.MessageListener interface can be used for JMS

messaging. For JMS messaging, message-driven beans can use a JMS provider that has a JCA 1.5

resource adapter, such as the default messaging provider that is part of WebSphere Application Server

version 6.

With a JCA 1.5 resource adapter, you deploy EJB 2.1 message-driven beans as JCA resources to use a

J2C activation specification. If a JMS provider does not have a JCA 1.5 resource adapter, such as the V5

Default Messaging and WebSphere MQ, you must configure JMS message-driven beans against a listener

port (as in WebSphere Application Server version 5).

You can use the WebSphere administrative console to administer the WebSphere Application Server

support for asynchronous messaging. For example, you can configure JCA resource adapters, J2C

activation specifications, JMS providers, and JMS resources, and can control the activity of messaging

services.

To learn more about WebSphere messaging support, see the following topics:

v JMS providers

v Styles of messaging in applications

v Using JMS interfaces to explicitly poll for messages

v Using message-driven beans to automatically retrieve messages

v ″Components of JMS support″ in the information center.

v Components of message-driven bean support

v Security considerations for asynchronous messaging

JMS providers

This topic provides an overview of the support for JMS providers by WebSphere Application Server.

IBM WebSphere Application Server supports asynchronous messaging through the use of a JMS provider

and its related messaging system. JMS providers must conform to the JMS specification version 1.1. To

use message-driven beans the JMS provider must support the optional Application Server Facility (ASF)

function defined within that specification, or support an inbound resource adapter as defined in the JCA

specification version 1.5.

1242 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

The service integration technologies of IBM WebSphere Application Server can act as a messaging

system when you have configured a service integration bus that is accessed through the default

messaging provider. This support is installed as part of WebSphere Application Server, administered

through the administrative console, and is fully integrated with the WebSphere Application Server runtime.

WebSphere Application Server also includes support for the following JMS providers:

WebSphere MQ

Provided for use with supported versions of WebSphere MQ.

Generic

Provided for use with any 3rd party messaging system. If you want to use message-driven beans,

the messaging system must support ASF.

For backwards compatibility with earlier releases, WebSphere Application Server also includes support for

the V5 default messaging provider which enables you to configure resources for use with the WebSphere

Application Server version 5 Embedded Messaging system. The V5 default messaging provider can also

be used with a service integration bus.

WebSphere applications can use messaging resources provided by any of these JMS providers. However

the choice of provider is most often dictated by requirements to use or integrate with an existing

messaging system. For example, you may already have a messaging infrastructure based on WebSphere

MQ. In this case you may either connect directly using the included support for WebSphere MQ as a JMS

provider, or configure a service integration bus with links to a WebSphere MQ network and then access

the bus through the default messaging provider.

Styles of messaging in applications

This topic describes the ways that applications can use point-to-point and publish/subscribe messaging.

Applications can use the following styles of asynchronous messaging:

Point-to-Point

Point-to-point applications use queues to pass messages between each other. The applications

are called point-to-point, because a client sends a message to a specific queue and the message

is picked up and processed by a server listening to that queue. It is common for a client to have

all its messages delivered to one queue. Like any generic mailbox, a queue can contain a mixture

of messages of different types.

Publish/subscribe

Publish/subscribe systems provide named collection points for messages, called topics. To send

messages, applications publish messages to topics. To receive messages, applications subscribe

to topics; when a message is published to a topic, it is automatically sent to all the applications

that are subscribers of that topic. By using a topic as an intermediary, message publishers are

kept independent of subscribers.

Both styles of messaging can be used in the same application.

Applications can use asynchronous messaging in the following ways:

One-way

An application sends a message, and does not want a response. This pattern of use is often

referred to as a datagram.

Request / response

An application sends a request to another application and expects to receive a response in return.

One-way and forward

An application sends a request to another application, which sends a message to yet another

application.

These messaging techniques can be combined to produce a variety of asynchronous messaging

scenarios.

Chapter 8. Developing WebSphere applications 1243

For more information about how such messaging scenarios are used by WebSphere enterprise

applications, see the following topics:

v An overview of asynchronous messaging with JMS

v An overview of asynchronous messaging with message-driven beans

For more information about these messaging techniques and the Java Message Service (JMS), see Sun’s

Java Message Service (JMS) specification documentation

(http://developer.java.sun.com/developer/technicalArticles/Networking/messaging/).

For more information about message-driven bean and inbound messaging support, see Sun’s Enterprise

JavaBeans specification (http://java.sun.com/products/ejb/docs.html).

For information about JCA inbound messaging processing, see Sun’s J2EE Connector Architecture

specification (http://java.sun.com/j2ee/connector/download.html).

Using JMS interfaces to explicitly poll for messages

This topic provides an overview of applications that use JMS interfaces to explicitly poll for messages on a

destination then retrieve messages for processing by business logic beans (enterprise beans).

WebSphere Application Server supports asynchronous messaging as a method of communication based

on the Java Message Service (JMS) programming interfaces. JMS provides a common way for Java

programs (clients and J2EE applications) to create, send, receive, and read asynchronous requests, as

JMS messages.

The base support for asynchronous messaging using JMS, shown in the following figure, provides the

common set of JMS interfaces and associated semantics that define how a JMS client can access the

facilities of a JMS provider. This enables WebSphere J2EE applications, as JMS clients, to exchange

messages asynchronously with other JMS clients by using JMS destinations (queues or topics).

Applications can use both point-to-point and publish/subscribe messaging (referred to as “messaging

domains” in the JMS specification), while supporting the different semantics of each domain.

WebSphere Application Server supports applications that use JMS 1.1 domain-independent interfaces

(referred to as the “common interfaces” in the JMS specification). With JMS 1.1, the preferred approach for

implementing applications is to use the common interfaces. The JMS 1.1 common interfaces provide a

simpler programming model than domain-specific interfaces. Also, applications can create both queues

and topics in the same session and coordinate their use in the same transaction.

The common interfaces are also parents of domain-specific interfaces. These domain-specific interfaces

(provided for JMS 1.0.2 in WebSphere Application Server version 5) are supported only to provide

inter-operation and backward compatibility with applications that have already been implemented to use

those interfaces.

A WebSphere application can use the JMS interfaces to explicitly poll a JMS destination to retrieve an

incoming message, then pass the message to a business logic bean. The business logic bean uses

standard JMS calls to process the message; for example, to extract data or to send the message on to

another JMS destination.

1244 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

http://developer.java.sun.com/developer/technicalArticles/Networking/messaging/
http://developer.java.sun.com/developer/technicalArticles/Networking/messaging/
http://developer.java.sun.com/developer/technicalArticles/Networking/messaging/
http://java.sun.com/products/ejb/docs.html
http://java.sun.com/products/ejb/docs.html
http://java.sun.com/j2ee/connector/download.html
http://java.sun.com/j2ee/connector/download.html

WebSphere applications can use standard JMS calls to process messages, including any responses or

outbound messaging. Responses can be handled by an enterprise bean acting as a sender bean, or

handled in the enterprise bean that receives the incoming messages. Optionally, this process can use

two-phase commit within the scope of a transaction. This level of functionality for asynchronous messaging

is called bean-managed messaging, and gives an enterprise bean complete control over the messaging

infrastructure; for example, for connection and session pool management. The application server has no

role in bean-managed messaging.

WebSphere applications can also use message-driven beans, as described in related topics.

For more details about JMS, see Sun’s Java Message Service (JMS) specification documentation.

Using message-driven beans to automatically retrieve messages

WebSphere Application Server supports the use of message-driven beans as asynchronous message

consumers.

Messaging with message-driven beans is shown in the figure Messaging with message-driven beans.

A client sends messages to the destination (or endpoint) for which the message-driven bean is deployed

as the message listener. When a message arrives at the destination, the EJB container invokes the

message-driven bean automatically without an application having to explicitly poll the destination. The

message-driven bean implements some business logic to process incoming messages on the destination.

Message-driven beans can be configured as listeners on a Java Connector Architecture (JCA) 1.5

resource adapter or against a listener port (as in WebSphere Application Server version 5). With a JCA 1.5

resource adapter, message-driven beans can handle generic message types, not just JMS messages. This

makes message-driven beans suitable for handling generic requests inbound to WebSphere Application

Server from enterprise information systems through the resource adapter. In the JCA 1.5 specification,

such message-driven beans are commonly called message endpoints or simply endpoints.

Figure 3. Asynchronous messaging using JMS. This figure shows an enterprise application polling a JMS destination

to retrieve an incoming message, which it processes with a business logic bean. The business logic bean uses

standard JMS calls to process the message; for example, to extract data or to send the message on to another JMS

destination. For more information, see the text that accompanies this figure.

Chapter 8. Developing WebSphere applications 1245

http://developer.java.sun.com/developer/technicalArticles/Networking/messaging/

All message-driven beans must implement the MessageDrivenBean interface. For JMS messaging, a

message-driven bean must also implement the message listener interface, javax.jms.MessageListener.

A message driven bean can be registered with the EJB timer service for time-based event notifications if it

implements the javax.ejb.TimedObject interface in addition to the message listener interface.

You are recommended to develop a message-driven bean to delegate the business processing of

incoming messages to another enterprise bean, to provide clear separation of message handling and

business processing. This also enables the business processing to be invoked by either the arrival of

incoming messages or, for example, from a WebSphere J2EE client.

Messages arriving at a destination being processed by a message-driven bean have no client credentials

associated with them; the messages are anonymous. Security depends on the role specified by the RunAs

Identity for the message-driven bean as an EJB component. For more information about EJB security, see

EJB component security.

For JMS messaging, message-driven beans can use a JMS provider that has a JCA 1.5 resource adapter,

such as the default messaging provider that is part of WebSphere Application Server version 6. With a

JCA 1.5 resource adapter, you deploy EJB 2.1 message-driven beans as JCA 1.5-compliant resources, to

use a J2C activation specification. If the JMS provider does not have a JCA 1.5 resource adapter, such as

the V5 Default Messaging and WebSphere MQ, you must configure JMS message-driven beans against a

listener port (as in WebSphere Application Server version 5).

Message-driven beans - JCA components:

This topic provides an overview of the administrative components that you configure for message-driven

beans as listeners on a Java Connector Architecture (JCA) 1.5 resource adapter.

 Components for a JCA resource adapter

To handle non-JMS requests inbound to WebSphere Application Server from enterprise information

systems, message-driven beans use a Java Connector Architecture (JCA) 1.5 resource adapter written for

that purpose.

With a Java Connector Architecture (JCA) 1.5 resource adapter, a message-driven bean acts as a listener

on a specific endpoint. In the JCA 1.5 specification, such message-driven beans are commonly called

message endpoints or simply endpoints.

Each application configuring one or more endpoints must specify the resource adapter that sends

messages to the endpoint.

1246 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

The administrator creates a J2C activation specification to provide information to the deployer about the

configuration properties of an endpoint instance (message-driven bean) related to the processing of the

inbound messages. Properties specified on an activation specification can be overridden by appropriately

named activation-configuration properties in the deployment descriptor of an associated EJB 2.1

message-driven bean.

When a deployed message-driven bean is installed, it is associated with an activation specification for an

endpoint. When a message arrives on the endpoint, the message is passed to a new instance of a

message-driven bean for processing.

Administered object definitions and classes are provided by a resource adapter when you install it. Using

this information, the administrator can create and configure J2C administered objects with JNDI names

that are then available for applications to use. Some messaging styles may need applications to use

special administered objects for sending and synchronously receiving messages (through connection

objects using programming interfaces specific to a messaging style). Administered objects can also be

used to perform transformations on an asynchronously-received message in a way that is specific to a

message provider. Administered objects can be accessed by a component by using either a message

destination reference (preferred) or a resource environment reference.

Components for a JCA messaging provider

Message-driven beans that implement the javax.jms.MessageListener interface can be used for JMS

messaging. For JMS messaging, message-driven beans can use a JCA-based messaging provider such

as the default messaging provider that is part of WebSphere Application Server and configure

message-driven beans to use a JCA activation specification.

Figure 4. Message-driven bean components for a JCA resource adapter. This figure shows the main components of

WebSphere support for message-driven beans for use with an external JCA resource adapter.

Chapter 8. Developing WebSphere applications 1247

With the default messaging provider, a message-driven bean acts as a listener on a specific JMS

destination.

The administrator creates a JMS activation specification to provide information to the deployer about the

configuration properties of a message-driven bean related to the processing of the inbound messages. For

example, a JMS activation specification specifies the name of the service integration bus to connect to,

and includes information about the message acknowledgement modes, message selectors, destination

types, and whether or not durable subscriptions are shared across connections with members of a server

cluster. Properties specified on an activation specification can be overridden by appropriately named

activation-configuration properties in the deployment descriptor of an associated EJB 2.1 message-driven

bean.

The administrator also creates other administered objects that configure the JMS destination and the

associated resources of a service integration bus that are used to implement messaging with that JMS

destination. For more information about JMS resources and service integration, see ″Learning about the

default messaging provider″ in the information center.

J2C activation specification configuration and use:

This topic provides an overview about the configuration and use of J2C activation specifications, used in

the deployment of message-driven beans for JCA 1.5 resources.

 J2C activation specifications are part of the configuration of inbound messaging support that can be part of

a JCA 1.5 resource adapter. Each JCA 1.5 resource adapter that supports inbound messaging defines one

or more messagelistener types in its deployment descriptor (ra.xml). The messagelistener type is the

interface that the resource adapter uses to communicate inbound messages to the message endpoint. A

message-driven bean (MDB) is a message endpoint and implements one of the messagelistener-type

interfaces provided by the resource adapter. By allowing multiple message listener types, a resource

adapter can support a variety of different protocols. For example, the interface javax.jms.MessageListener,

is a type of message listener that supports JMS messaging. For each messagelistener-type that a

resource adapter implements, the resource adapter defines an associated activation specification

(activationspec in the ra.xml). The activation specification is used to set configuration properties for a

particular use of the inbound support for the receiving endpoint.

Figure 5. Message-driven bean components for the default messaging provider. This figure shows the main

components of WebSphere support for message-driven beans for use with the default messaging provider.

1248 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

When an application containing a message-driven bean is deployed, the deployer must select a resource

adapter that supports the same messagelistener type that the message-driven bean implements. As part of

the message-driven bean deployment, the deployer needs to specify the properties to set on the J2C

activation specification. Later, during application startup, a J2C activation specification instance is created,

and these properties are set and used to activate the endpoint (that is, to configure the resource adapter‘s

inbound support for the specific message-driven bean).

J2C activation specification configuration options and precedence:

Resource adapter scoped configuration

A J2C activation specification configuration instance can be created and modified under an installed

resource adapter at the cell, node, or server scope. This activation specification configuration is created

based on a particular message listener type for the given resource adapter. Valid properties available for

configuration are determined by introspection of the ActivationSpec class instance provided with the

resource adapter. When created, an ActivationSpec class instance is referenced by its JNDI name. This

activation specification configuration is needed during the deployment of a message-driven bean for the

resource adapter.

Configuring a J2C activation specification instance at the cell, node, or server level offers two distinct

advantages:

v The activation specification configuration information can be share among multiple message-driven

beans across multiple applications.

v Updates to the configuration properties can be made without the need to redeploy the application.

Application-based configuration

Applications with message-driven beans have the option of specifying all, some, or none of the properties

needed by the ActivationSpec class. These properties, specified as activation-config properties in the

application‘s deployment descriptor, are configured when the application is assembled. To change any of

these properties requires redeploying the application. These properties are unique to this applications use

and are not shared with other message-driven beans. Any properties defined in the application’s

deployment descriptor take precedence over those defined by the resource adapter-scoped definition. This

allows application developers to choose the best defaults for their applications.

To deploy and activate a message-driven bean with respect to application specification configuration

properties would be as follows:

1. Use JNDI to look up a J2C activation specification configuration instance, which is based on its

resource adapter-scoped definition.

2. Set the properties needed by the ActivationSpec class to the values defined by the cell, node, or

server definition. If any of the properties are also defined as activation-config properties of the

application, use the value defined by the activation-config property.

3. During application startup, the server activates the MDB endpoint by calling the resource adapter and

passing a configured instance of the ActivationSpec.

4. Note that a resource adapter can specify in its deployment descriptor if a given ActivationSpec property

is required. If it is required, and it is not supplied either by the cell, node or server definition, or an

activation-config property from the applications deployment descriptor, then an exception is raised as

part of the sequence to activate the message-driven bean.

WebSphere activation specification optional binding properties:

J2C authentication alias

If you provide values for user name and password as custom properties on an activation

specification, you may not want to have those values exposed in clear text for security reasons.

WebSphere security allows you to securely define an authentication alias for such cases.

Chapter 8. Developing WebSphere applications 1249

Configuration of activation specifications, both as an administrative object and during application

deployment enable you to use the authentication alias instead of providing the user name and

password.

 If you set the authentication alias field, then you should not set the user name and password

custom properties fields. Also, authentication alias properties set as part of application deployment

take precedence over properties set on an activation specification administrative object.

 Only the authentication alias is ever written to file in an unencrypted form, even for purposes of

transaction recovery logging. The security service is used to protect the real user name and

password.

 During application startup, when the activation specification is being initialized as part of endpoint

activation, the server uses the authentication alias to retrieve the real user name and password

from security then set it on the activation specification instance.

Destination JNDI name

For resource adapters that support JMS you need to associate javax.jms.Destinations with an

activation specification, such that the resource adapter can service messages from the JMS

destination. In this case, the administrator configures a J2C Administered Object which implements

the javax.jms.Destination interface and binds it into JNDI.

 You can configure a J2C Administered Object to use an ActivationSpec class that implements a

setDestination(javax.jms.Destination) method. In this case, you can specify the destination JNDI

name (that is, the JNDI name for the J2C Administered object that implements the

javax.jms.Destination).

 A destination JNDI name set as part of application deployment take precedence over properties

set on an activation specification administrative object.

 During application startup, when the activation specification is being initialized as part of endpoint

activation, the server uses the destination JNDI name to look up the destination administered

object then set it on the activation specification instance.

Message-driven beans - transaction support: Message-driven beans can handle messages read from

destinations (or endpoints) within the scope of a transaction. If transaction handling is specified for a

destination, the message-driven bean starts a global transaction before it reads any incoming message

from that destination. When the message-driven bean processing has finished, it commits or rolls back the

transaction (using JTA transaction control).

All messages retrieved from a specific destination have the same transactional behavior.

If messages are queued to be sent within a global transaction they are sent when the transaction is

committed. If the processing of a message causes the transaction to be rolled back, then the message

that caused the bean instance to be invoked is left on the JMS destination.

Asynchronous messaging - security considerations

This topic describes considerations that you should be aware of if you want to use security for

asynchronous messaging with WebSphere Application Server.

Security for messaging operates as a part of the WebSphere Application Server global security, and is

enabled only when global security is enabled.

When global security is enabled, JMS connections made to the JMS provider are authenticated, and

access to JMS resources owned by the JMS provider are controlled by access authorizations. Also, all

requests to create new connections to the JMS provider must provide a user ID and password for

authentication. The user ID and password do not need to be provided by the application. If authentication

is successful, then the JMS connection is created; if the authentication fails then the connection request is

ended.

1250 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Standard J2C authentication is used for a request to create a new connection to the JMS provider. If your

resource authentication (res-auth) is set to Application, set the alias in the Component-managed

Authentication Alias. If the application that tries to create a connection to the JMS provider specifies a user

ID and password, those values are used to authenticate the creation request. If the application does not

specify a user ID and password, the values defined by the Component-managed Authentication Alias are

used. If the connection factory is not configured with a Component-managed Authentication Alias, then you

receive a runtime JMS exception when an attempt is made to connect to the JMS provider.

Restriction:

1. User IDs longer than 12 characters cannot be used for authentication with the version 5

default messaging provider or WebSphere MQ. For example, the default Windows NT

user ID, Administrator, is not valid for use, because it contains 13 characters.

Therefore, an authentication alias for a WebSphere JMS provider or WebSphere MQ

connection factory must specify a user ID no longer than 12 characters.

2. If you want to use Bindings transport mode for JMS connections to WebSphere MQ, you

set the property Transport type=BINDINGS on the WebSphere MQ Queue Connection

Factory. You must also choose one of the following options:

v To use security credentials, ensure that the user specified is the currently logged on

user for the WebSphere Application Server process. If the user specified is not the

current logged on user for the WebSphere Application Server process, then the

WebSphere MQ JMS Bindings authentication throws the error MQJMS2013 invalid

security authentication supplied for MQQueueManager error.

v Do not specify security credentials. On the WebSphere MQ Connection Factory,

ensure that both the Component-managed Authentication Alias and the

Container-managed Authentication Alias properties are not set.

Authorization to access messages stored by the default messaging provider is controlled by authorization

to access the service integration bus destinations on which the messages are stored. For information

about authorizing permissions for individual bus destinations, see ″Administering destination permissions″

in the information center.

Messaging: Resources for learning

v Sun’s Java Message Service (JMS) specification documentation.

Provides details about the Java Message Service (JMS).

v Sun’s J2EE Connector Architecture specification (http://java.sun.com/j2ee/connector/download.html).

Provides details about inbound messaging processing using the J2EE Connector architecture.

v J2EE specification

Provides details about the J2EE specification, including messaging considerations.

v WebSphere MQ Using Java.

Provides information about using JMS with WebSphere MQ as a messaging provider.

v http://www-3.ibm.com/software/ts/mqseries/library/manualsa/manuals/platspecific.html

Provides WebSphere MQ messaging platform-specific books.

v WebSphere MQ Event Broker Web site at http://www-4.ibm.com/software/ts/mqseries/platforms/#eventb

Provides books about WebSphere MQ Event Broker as a publish/subscribe messaging broker.

v WebSphere MQ Integrator Web site at http://www-4.ibm.com/software/ts/mqseries/platforms/#integrator

Provides books about WebSphere MQ Integrator as a publish/subscribe messaging broker.

v IBM Publications Center

This Web site provides a wide range of IBM publications, including publications about messaging

products.

Chapter 8. Developing WebSphere applications 1251

http://developer.java.sun.com/developer/technicalArticles/Networking/messaging/
http://java.sun.com/j2ee/connector/download.html
http://java.sun.com/j2ee/j2ee-1_3-fr-spec.pdf
http://publibfp.boulder.ibm.com/epubs/html/csqzaw11/csqzaw11tfrm.htm
http://www-3.ibm.com/software/ts/mqseries/library/manualsa/manuals/platspecific.html
http://www-4.ibm.com/software/ts/mqseries/platforms/#eventb
http://www-4.ibm.com/software/ts/mqseries/platforms/#integrator
http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi

Installing and configuring a JMS provider

This topic describes the different ways that you can use JMS providers with WebSphere Application

Server. A JMS provider enables use of the Java Message Service (JMS) and other message resources in

WebSphere Application Server.

IBM WebSphere Application Server supports asynchronous messaging through the use of a JMS provider

and its related messaging system. JMS providers must conform to the JMS specification version 1.1. To

use message-driven beans the JMS provider must support the optional Application Server Facility (ASF)

function defined within that specification, or support an inbound resource adapter as defined in the JCA

specification version 1.5.

The service integration technologies of IBM WebSphere Application Server can act as a messaging

system when you have configured a service integration bus that is accessed through the default

messaging provider. This support is installed as part of WebSphere Application Server, administered

through the administrative console, and is fully integrated with the WebSphere Application Server runtime.

WebSphere Application Server also includes support for the following JMS providers:

WebSphere MQ

Provided for use with supported versions of WebSphere MQ.

Generic

Provided for use with any 3rd party messaging system. If you want to use message-driven beans,

the messaging system must support ASF.

For more information about the support for JMS providers, see “JMS providers” on page 1242.

For more information about installing and using JMS providers, see the following topics:

v Installing the default messaging provider

v Using WebSphere MQ as a JMS provider. ″Installing WebSphere MQ as a JMS provider.″

Note:

– You can install WebSphere MQ in addition to the default messaging provider. The preferred

solution for publish/subscribe messaging with WebSphere MQ as a JMS provider is a full

message broker such as WebSphere MQ Event Broker.

– If you install WebSphere MQ as a JMS provider, you can use the WebSphere administrative

console to administer the JMS resources provided by WebSphere MQ, such as queue

connection factories. However, you cannot administer MQ security, which is administered

through WebSphere MQ.

For more information about scenarios and considerations for using WebSphere MQ with IBM

WebSphere Application Server, see the White Papers and Red books provided by WebSphere MQ; for

example, through the WebSphere MQ library Web page at http://www-
3.ibm.com/software/ts/mqseries/library/

v Installing another JMS provider, which must conform to the JMS specification and, to use

message-driven beans, support the ASF function. If you want to use a JMS provider other than the

default messaging provider or WebSphere MQ, you should complete the following steps:

1. Installing and configuring the JMS provider and its resources by using the tools and information

provided with the product.

2. Define the JMS provider to WebSphere Application Server as a generic messaging provider.

Note: You can use the WebSphere administrative console to administer JMS connection factories and

destinations (within WebSphere Application Server) for a generic provider, but cannot administer

the JMS provider or its resources outside of WebSphere Application Server.

Installing the default messaging provider

Use this task to install the default messaging provider of IBM WebSphere Application Server.

1252 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

http://www-3.ibm.com/software/ts/mqseries/library/
http://www-3.ibm.com/software/ts/mqseries/library/

The default messaging provider is installed as a fully-integrated component of WebSphere Application

Server, and needs no separate installation steps.

However, ensure that there is enough space in the file systems where you want to store messaging data.

You can use the WebSphere administrative console to define JMS resources for the default messaging

provider.

For more information about the default messaging provider, see ″Using the default messaging provider″ in

the information center.

Using asynchronous messaging

These topics describe how to use asynchronous messaging with WebSphere Application Server, to enable

enterprise applications to use JMS resources and message-driven beans.

WebSphere Application Server supports asynchronous messaging as a method of communication based

on the Java Message Service (JMS) programming interface. This JMS support is provided by one or more

JMS providers, and associated services and resources, that you configure for use by enterprise

applications. You can deploy EJB 2.1 applications that use the JMS 1.1 interfaces and EJB 2.0

applications that use the JMS 1.0.2 interfaces.

You can use the WebSphere administrative console to administer the WebSphere Application Server

support for asynchronous messaging. For example, you can configure messaging providers and their

resources, and can control the activity of messaging services.

For more information about implementing WebSphere enterprise applications that use asynchronous

messaging, see the following topics:

v Learning about messaging with WebSphere

v Installing a messaging provider

v Using the default messaging provider

v “Maintaining Version 5 default messaging resources”

v “Using JMS resources of WebSphere MQ” on page 1286

v “Using JMS resources of a generic provider” on page 1353

v “Administering support for message-driven beans” on page 1361

v Programming to use asynchronous messaging

v Troubleshooting WebSphere messaging

Maintaining Version 5 default messaging resources

This topic is the entry-point into a set of topics about maintaining messaging resources provided for

WebSphere Application Server version 5 applications by the default messaging provider.

WebSphere application server version 5 applications can use JMS resources provided by the default

messaging provider of WebSphere application server version 6. You can use the WebSphere

administrative console to manage the JMS connection factories and destinations for WebSphere

Application Server version 5 applications. Such JMS resources are maintained as V5 Default Messaging

resources.

V5 Default Messaging provides a JMS transport to a messaging engine of a service integration bus that

supports the default messaging provider of WebSphere Application Server version 6. The messaging

engine emulates the service of a version 5 JMS server.

You can also use the administrative console to manage a JMS server on a Version 5 node.

For more information about maintaining Version 5 default messaging resources, see the following topics:

v “Listing version 5 default messaging resources” on page 1254

Chapter 8. Developing WebSphere applications 1253

v “Configuring Version 5 default JMS resources” on page 1277

v “Managing Version 5 JMS servers in a deployment manager cell” on page 1280

v “Configuring authorization security for a Version 5 default messaging provider” on page 1281

Listing version 5 default messaging resources

Complete this task to display administrative lists of JMS resources for use by WebSphere application

server version 5 applications.

You can use the WebSphere administrative console to display lists of the following types of JMS resources

for use by WebSphere application server version 5 applications. You can use the panels displayed to

select JMS resources to configure, administer, create, or delete (where appropriate).

To display administrative lists of Version 5 default JMS resources, complete the following general steps:

1. Start the WebSphere administrative console.

2. Display the version 5 default messaging provider. In the navigation pane, expand Resources → JMS

Providers → V5 Default Messaging.

3. Optional: Change the Scope setting to the level at which the JMS queue connection factory is visible

to applications. If you define a Version 5 JMS resource at the Cell scope level, all users in the cell can

look up and use that JMS resource. However, the JMS resource has only the subset of properties that

apply to WebSphere Application Server Version 5. If you want to define a JMS resource at Cell level

for use on non-Version 5 nodes, you should define the JMS resource for the Version 6 default

messaging provider.

4. In the content pane, under Additional Resources, click the link for the type of JMS resource. This

displays a list of any existing resources of the selected type. For more information about the settings

panels displayed for resources, see the related reference topics.

JMS provider settings:

Use this panel to view the configuration properties of the selected JMS provider. You cannot change these

properties.

 To view this page, use the administrative console to complete one of the following steps:

v In the navigation pane, click Resources → JMS Providers → WebSphere MQ.

v In the navigation pane, click Resources → JMS Providers → V5 Default Messaging.

v In the navigation pane, click Resources → JMS Providers → Generic → provider_name.

If you want to browse or change JMS resources of the JMS provider, complete the following steps:

1. (Optional) In the content pane, change the Scope setting to the level at which JMS resources are

visible to applications.

2. Under Additional Properties, click the link for the type of resource . For more information about the

administrative console panels for the types of JMS resources, see the related topics.

Scope:

The level to which this resource definition is visible; the cell, node, or server level.

 Resources such as messaging providers, namespace bindings, or shared libraries can be defined at

multiple scopes, with resources defined at more specific scopes overriding duplicates which are defined at

more general scopes.

When JMS resources are created for this messaging provider, they are always created into the provider

scope selected in this panel. To browse or change resources in other scopes, select the required level

option, then click Apply, before clicking the link for the type of resource.

1254 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Note that no matter what the scope of a defined resource, the resource’s properties only apply at an

individual server level. For example, if you define the scope of a data source at the Cell level, all users in

that Cell can look up and use that data source, which is unique within that Cell. However, resource

property settings are local to each server in the Cell.

Cell The most general scope. Resources defined at the Cell scope are visible from all Nodes and

servers, unless they are overridden. To view resources defined in the cell scope, do not specify a

server or a node name in the scope selection form.

Node The default scope for most resource types. Resources defined at the Node scope override any

duplicates defined at the Cell scope and are visible to all servers on the same node, unless they

are overridden at a server scope on that node. To view resources defined in a node scope, do not

specify a server, but select a node name in the scope selection form.

Server

The most specific scope for defining resources. Resources defined at the Server scope override

any duplicate resource definitions defined at the Cell scope or parent Node scope and are visible

only to a specific server. To view resources defined in a server scope, specify a server name as

well as a node name in the scope selection form.

 Data type String

Name:

The name by which the JMS provider is known for administrative purposes.

 Data type String

Default WebSphereJMSProvider

Description:

A description of the JMS provider, for administrative purposes within IBM WebSphere Application Server.

 Data type String

Classpath:

The Java classpath for WebSphere MQ as a JMS provider. The list of paths or JAR file names that

together form the location for the JMS provider classes.

 [JMS Providers > WebSphere MQ and JMS Providers > Generic only]

 Data type String

Default [WebSphere MQ] $MQJMS_LIB_ROOT

Native Library Path:

The native library path for WebSphere MQ as a JMS provider. An optional path to any native libraries

needed by the JMS provider.

 [JMS Providers > WebSphere MQ and JMS Providers > Generic only]

 Data type String

Default [WebSphere MQ] $MQJMS_LIB_ROOT

The Native Library Path property is set to the directory where the WebSphere MQ Java feature is installed.

Chapter 8. Developing WebSphere applications 1255

External initial context factory:

The Java classname of the initial context factory for the JMS provider.

 [JMS Providers > Generic only]

For example, for an LDAP service provider the value has the form: com.sun.jndi.ldap.LdapCtxFactory.

 Data type String

Default Null

External provider URL:

The JMS provider URL for external JNDI lookups.

 [JMS Providers > Generic only]

For example, an LDAP URL for a messaging provider has the form:

ldap://hostname.company.com/contextName.

 Data type String

Default Null

Version 5 JMS server collection:

On a WebSphere Application Server Version 5 node, a JMS server provides the functions of the JMS

provider. Use this panel to list JMS servers on WebSphere Application Server Version 5 nodes within the

administration domain, or to select a JMS server to view or change its configuration properties.

 There can be at most one JMS server on each Version 5 node in the administration domain, and any

application server within the domain can access JMS resources served by any JMS server on any node in

the domain.

To view this page, use the administrative console to complete the following step:

1. In the navigation pane, select Servers → Version 5 JMS Servers.

To browse or change the properties of a JMS server, select its name in the list displayed.

To act on one or more of the JMS servers listed, click the check box next to the server name, then use the

buttons provided.

version 5 JMS server settings:

The JMS functions on a version 5 node within a deployment manager cell are served by a JMS server.

Use this panel to view or change the configuration properties of the selected JMS server.

 JMS servers are supported only to aid migration of WebSphere Application Server version 5 nodes to

WebSphere Application Server version 6.

You can use this panel to configure a general set of JMS server properties, which add to the default

values of properties configured automatically for the version 5 default messaging provider.

Note: JMS servers make use of WebSphere MQ properties and, in general, the default values of those

properties are adequate. However, if you are running high messaging loads, you may need to

change some WebSphere MQ properties; for example, properties for log file locations, file pages,

1256 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

and buffer pages. For more information about configuring WebSphere MQ properties, see the

WebSphere MQ System Administration book, SC33-1873, which is available from the IBM

Publications Center or from the WebSphere MQ collection kit, SK2T-0730.

Name:

The name by which the JMS server is known for administrative purposes within IBM WebSphere

Application Server.

 This name should not be changed.

 Data type String

Units Not applicable

Default WebSphere Internal JMS Server

Range Not applicable

Description:

A description of the JMS server, for administrative purposes within IBM WebSphere Application Server.

 This string should not be changed.

 Data type String

Default WebSphere Internal JMS Server

Number of threads:

The number of concurrent threads to be used by the publish/subscribe matching engine

 The number of concurrent threads should only be set to a small number.

 Data type Integer

Units Threads

Default 1

Range Greater than or equal to 1.

Queue Names:

The names of the queues hosted by this JMS server. Each queue name must be added on a separate

line.

 Each queue listed in this field must have a separate queue administrative object with the same

administrative name. To make a queue available to applications, define a WebSphere queue and add its

name to this field on the JMS Server panel for the host on which you want the queue to be hosted.

 Data type String

Units Queue name

Range Each entry in this field is a queue name of up to 45

characters, which must match exactly (including use of

upper- and lowercase characters) the WebSphere queue

administrative object defined for the queue.

Initial State:

Chapter 8. Developing WebSphere applications 1257

http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi
http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi

The state that you want the JMS server to have when it is next restarted.

 Data type Enum

Default Started

Range Started

The JMS server is started automatically.

Stopped

The JMS server is not started automatically. If

any deployed enterprise applications are to use

JMS server functions provided by the JMS

server, the system administrator must start the

JMS server manually or select the Started value

of this property then restart the JMS server.

To restart a JMS server on a version 5 node, stop then

restart that JMS server.

Version 5 WebSphere Queue connection factory collection:

Use this panel to list JMS queue connection factories for point-to-point messaging, for use by WebSphere

Application Server version 5 applications. These configuration properties control how connections are

created between the JMS provider and the default messaging system that it uses.

 This panel shows a list of the JMS queue connection factories with a summary of their configuration

properties.

To view this page, use the administrative console to complete the following steps:

1. In the navigation pane, click Resources → JMS Providers → V5 Default Messaging.

2. (Optional) In the content pane, change the Scope setting to the level at which JMS resources are

visible to applications. If you define a Version 5 JMS resource at the Cell scope level, all users in the

cell can look up and use that JMS resource. However, the JMS resource has only the subset of

properties that apply to WebSphere Application Server Version 5. If you want to define a JMS resource

at Cell level for use on non-Version 5 nodes, you should define the JMS resource for the Version 6

default messaging provider.

3. Under Additional Resources, click WebSphere queue connection factories. This displays a list of any

existing JMS queue connection factories.

To define a new JMS queue connection factory, click New.

To browse or change the properties of a connection factory, select its name in the list displayed.

To act on one or more of the connection factories listed, click the check box next to the name of the

connection factory, then use the buttons provided.

Version 5 WebSphere queue connection factory settings:

Use this panel to browse or change the configuration properties of the selected JMS queue connection

factory for point-to-point messaging for use by WebSphere Application Server version 5 applications.

 A WebSphere queue connection factory is used to create JMS connections to the default messaging

provider for use by WebSphere Application Server version 5 applications.

To view this page, use the administrative console to complete the following steps:

1. In the navigation pane, click Resources → JMS Providers → V5 Default Messaging.

2. (Optional) In the content pane, change the Scope setting to the level at which JMS resources are

visible to applications. If you define a Version 5 JMS resource at the Cell scope level, all users in the

cell can look up and use that JMS resource.

1258 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

3. Under Additional Resources, click WebSphere queue connection factories. This displays a list of any

existing JMS queue connection factories.

4. Click the name of the JMS queue connection factory that you want to work with.

A queue connection factory for the embedded WebSphere JMS provider has the following properties:

Scope:

Specifies the level to which this resource definition is visible to applications.

 Resources such as messaging providers, namespace bindings, or shared libraries can be defined at

multiple scopes, with resources defined at more specific scopes overriding duplicates which are defined at

more general scopes.

The scope displayed is for information only, and cannot be changed on this panel. If you want to browse

or change this resource (or other resources) at a different scope, change the scope on the messaging

provider settings panel, then click Apply, before clicking the link for the type of resource.

 Data type String

Name:

The name by which this JMS queue connection factory is known for administrative purposes within IBM

WebSphere Application Server. The name must be unique within the JMS connection factories across the

WebSphere administrative domain.

 Data type String

Default Null

JNDI name:

The JNDI name that is used to bind the JMS connection factory into the name space.

 As a convention, use the fully qualified JNDI name; for example, in the form jms/Name, where Name is the

logical name of the resource.

This name is used to link the platform binding information. The binding associates the resources defined

by the deployment descriptor of the module to the actual (physical) resources bound into JNDI by the

platform.

 Data type String

Description:

A description of this connection factory for administrative purposes within IBM WebSphere Application

Server.

 Data type String

Default Null

Category:

A category used to classify or group this connection factory, for your IBM WebSphere Application Server

administrative records.

Chapter 8. Developing WebSphere applications 1259

Data type String

Node:

The WebSphere node name of the administrative node where the JMS server runs for this connection

factory. Connections created by this factory connect to that JMS server.

 Data type Enum

Default Null

Range Pull-down list of Version 5 nodes in the WebSphere

administrative domain.

Component-managed Authentication Alias:

This alias specifies a user ID and password to be used to authenticate connection to the messaging

provider for application-managed authentication.

 This property provides a list of the J2C authentication data entry aliases that have been defined to

WebSphere Application Server. You can select a data entry alias to be used to authenticate the creation of

a new connection to the JMS provider.

If you have enabled global security for WebSphere Application Server, select the alias that specifies the

user ID and password used to authenticate the creation of a new connection to the messaging provider.

The use of this alias depends on the resource authentication (res-auth) setting declared in the connection

factory resource reference of an application component’s deployment descriptors.

Note: User IDs longer than 12 characters cannot be used for authentication with the Version 5 default

messaging provider. For example, the default Windows NT user ID, Administrator, is not valid

because it contains 13 characters. Therefore, an authentication alias for a WebSphere queue

connection factory must specify a user ID no longer than 12 characters.

Container-managed Authentication Alias:

This alias specifies a user ID and password to be used to authenticate connection to the messaging

provider for container-managed authentication.

 This field is deprecated in 6.0. The specification of a login configuration and associated properties on the

component resource reference determines the container-managed authentication strategy when the

res-auth value is Container. If the ’DefaultPrincipalMapping’ login configuration is used, the associated

property is a container-managed authentication alias. This field is used only in the absence of a

loginConfiguration on the component resource reference. To define a new alias, see the related item J2EE

Connector Architecture (J2C) authentication data entries.

This property provides a list of the J2C authentication data entry aliases that have been defined to

WebSphere Application Server. You can select a data entry alias to be used to authenticate the creation of

a new connection to the JMS provider.

If you have enabled global security for WebSphere Application Server, select the alias that specifies the

user ID and password used to authenticate the creation of a new connection to the messaging provider.

The use of this alias depends on the resource authentication (res-auth) setting declared in the connection

factory resource reference of an application component’s deployment descriptors.

Note: User IDs longer than 12 characters cannot be used for authentication with the Version 5 default

messaging provider. For example, the default Windows NT user ID, Administrator, is not valid

1260 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

because it contains 13 characters. Therefore, an authentication alias for a WebSphere topic

connection factory must specify a user ID no longer than 12 characters.

Mapping-Configuration Alias:

The module used to map authentication aliases.

 This field is deprecated in 6.0. The specification of a login configuration and associated properties on the

component resource reference determines the container-managed authentication strategy when the

res-auth value is Container. This field is used only in the absence of a loginConfiguration on the

component resource reference.

This field provides a list of the modules that have been configured on the Security → JAAS Configuration

→ Application Logins Configuration property. For more information about the mapping configurations,

see Java Authentication and Authorization service configuration entry settings.

 Data type Enum

Default Null

Range ClientContainer

The client container maps authentication aliases.

WSLogin

The WSLogin module maps authentication

aliases.

DefaultPrincipalMapping

The JAAS configuration maps an authentication

alias to its userid and password.

XA Enabled:

Specifies whether the connection factory is for XA or non-XA coordination of messages and controls if the

application server uses XA QCF/TCF. Enable XA if multiple resources are not used in the same

transaction.

 If you clear this checkbox property (for non-XA coordination), the JMS session is still enlisted in a

transaction, but uses the resource manager local transaction calls (session.commit and session.rollback)

instead of XA calls. This can lead to an improvement in performance. However, this means that only a

single resource can be enlisted in a transaction in WebSphere Application Server.

Last participant support enables you to enlist one non-XA resource with other XA-capable resources.

For a WebSphere Topic Connection Factory with the Port property set to DIRECT this property does not

apply, and always adopts non-XA coordination.

 Data type Checkbox

Default Selected (enabled for XA coordination)

Range Selected

The connection factory is enabled for

XA-coordination of messages

Cleared

The connection factory is not enabled for XA

coordination of messages

Recommended Do not enable XA coordination when the message queue

or topic received is the only resource in the transaction.

Enable XA coordination when other resources, including

other queues or topics, are involved.

Chapter 8. Developing WebSphere applications 1261

Connection pool:

Specifies an optional set of connection pool settings.

 Connection pool properties are common to all J2C connectors.

The application server pools connections and sessions with the messaging provider to improve

performance. You need to configure the connection and session pool properties appropriately for your

applications, otherwise you may not get the connection and session behavior that you want.

Change the size of the connection pool if concurrent server-side access to the JMS resource exceeds the

default value. The size of the connection pool is set on a per queue or topic basis.

Session pool:

An optional set of session pool settings.

 This link provides a panel of optional connection pool properties, common to all J2C connectors.

The application server pools connections and sessions with the messaging provider to improve

performance. You need to configure the connection and session pool properties appropriately for your

applications, otherwise you may not get the connection and session behavior that you want.

Session pool settings:

Use this page to configure session pool settings.

 This administrative console page is common to a range of resource types; for example, JMS queue

connection factories. To view this page, the path depends on the type of resource, but generally you select

an instance of the resource provider, then an instance of the resource type, then click Session pools. For

example: click Resources → JMS Providers → V5 Default Messaging → WebSphere queue connection

factories → connection_factory → Session pools.

Connection Timeout:

Specifies the interval, in seconds, after which a connection request times out and a

ConnectionWaitTimeoutException is thrown.

 The wait is necessary when the maximum value of connections (Max Connections) to a particular

connection pool is reached . For example, if Connection Timeout is set to 300 and the maximum number

of connections is reached, the Pool Manager waits for 300 seconds for an available physical connection. If

a physical connection is not available within this time, the Pool Manager throws a

ConnectionWaitTimeoutException. It usually does not make sense to retry the getConnection() method,

because if a longer wait time is required, you should set the Connection Timeout setting to a higher

value. Therefore, if this exception is caught by the application, the administrator should review the

expected usage of the application and tune the connection pool and the database accordingly.

If Connection Timeout is set to 0, the Pool Manager waits as long as necessary until a connection is

allocated (which happens when the number of connections falls below the value of Max Connections).

If Max Connections is set to 0, which enables an infinite number of physical connections, then the

Connection Timeout value is ignored.

 Data type Integer

Units Seconds

Default 180

1262 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Range 0 to max int

Max Connections:

Specifies the maximum number of physical connections that you can create in this pool.

 These are the physical connections to the backend resource. Once this number is reached, no new

physical connections are created and the requester waits until a physical connection that is currently in

use returns to the pool, or a ConnectionWaitTimeoutException is thrown.

For example, if the Max Connections value is set to 5, and there are five physical connections in use, the

pool manager waits for the amount of time specified in Connection Timeout for a physical connection to

become free.

If Max Connections is set to 0, the Connection Timeout value is ignored.

For better performance, set the value for the connection pool lower than the value for the Max

Connections option in the Web container. Lower settings, such as 10-30 connections, perform better than

higher settings, such as 100.

If clones are used, one data pool exists for each clone. Knowing the number of data pools is important

when configuring the database maximum connections.

You can use the Tivoli Performance Viewer to find the optimal number of connections in a pool. If the

number of concurrent waiters is greater than 0, but the CPU load is not close to 100%, consider increasing

the connection pool size. If the Percent Used value is consistently low under normal workload, consider

decreasing the number of connections in the pool.

 Data type Integer

Default 10

Range 0 to max int

Min Connections:

Specifies the minimum number of physical connections to maintain.

 Until this number is reached, the pool maintenance thread does not discard physical connections.

However, no attempt is made to bring the number of connections up to this number. If you set a value for

Aged Timeout, the minimum is not maintained. All connections with an expired age are discarded.

For example if the Min Connections value is set to 3, and one physical connection is created, the Unused

Timeout thread does not discard that connection. By the same token, the thread does not automatically

create two additional physical connections to reach the Min Connections setting.

 Data type Integer

Default 1

Range 0 to max int

Reap Time:

Specifies the interval, in seconds, between runs of the pool maintenance thread.

 For example, if Reap Time is set to 60, the pool maintenance thread runs every 60 seconds. The Reap

Time interval affects the accuracy of the Unused Timeout and Aged Timeout settings. The smaller the

Chapter 8. Developing WebSphere applications 1263

interval, the greater the accuracy. If the pool maintenance thread is enabled, set the Reap Time value less

than the values of Unused Timeout and Aged Timeout. When the pool maintenance thread runs, it

discards any connections remaining unused for longer than the time value specified in Unused Timeout,

until it reaches the number of connections specified in Min Connections. The pool maintenance thread

also discards any connections that remain active longer than the time value specified in Aged Timeout.

The Reap Time interval also affects performance. Smaller intervals mean that the pool maintenance thread

runs more often and degrades performance.

To disable the pool maintenance thread set Reap Time to 0, or set both Unused Timeout and Aged

Timeout to 0. The recommended way to disable the pool maintenance thread is to set Reap Time to 0, in

which case Unused Timeout and Aged Timeout are ignored. However, if Unused Timeout and Aged

Timeout are set to 0, the pool maintenance thread runs, but only physical connections which timeout due

to non-zero timeout values are discarded.

 Data type Integer

Units Seconds

Default 180

Range 0 to max int

Unused Timeout:

Specifies the interval in seconds after which an unused or idle connection is discarded.

 Set the Unused Timeout value higher than the Reap Timeout value for optimal performance. Unused

physical connections are only discarded if the current number of connections not in use exceeds the Min

Connections setting. For example, if the unused timeout value is set to 120, and the pool maintenance

thread is enabled (Reap Time is not 0), any physical connection that remains unused for two minutes is

discarded. Note that accuracy of this timeout, as well as performance, is affected by the Reap Time value.

For more information, see Reap Time.

 Data type Integer

Units Seconds

Default 1800

Range 0 to max int

Aged Timeout:

Specifies the interval in seconds before a physical connection is discarded.

 Setting Aged Timeout to 0 supports active physical connections remaining in the pool indefinitely. Set the

Aged Timeout value higher than the Reap Timeout value for optimal performance. For example, if the

Aged Timeout value is set to 1200, and the Reap Time value is not 0, any physical connection that

remains in existence for 1200 seconds (20 minutes) is discarded from the pool. Note that accuracy of this

timeout, as well as performance, are affected by the Reap Time value. For more information, see Reap

Time.

 Data type Integer

Units Seconds

Default 0

Range 0 to max int

Purge Policy:

1264 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Specifies how to purge connections when a stale connection or fatal connection error is detected.

 Valid values are EntirePool and FailingConnectionOnly. JCA data sources can have either option.

WebSphere Version 4.0 data sources always have a purge policy of EntirePool.

 Data type String

Default FailingConnectionOnly

Range

EntirePool

All connections in the pool are marked stale. Any

connection not in use is immediately closed. A

connection in use is closed and throws a

StaleConnectionException during the next

operation on that connection. Subsequent

getConnection requests from the application

result in new connections to the database

opening. When using this purge policy, there is a

slight possibility that some connections in the

pool are closed unnecessarily when they are not

stale. However, this is a rare occurrence. In most

cases, a purge policy of EntirePool is the best

choice.

FailingConnectionOnly

Only the connection that caused the

StaleConnectionException is closed. Although

this setting eliminates the possibility that valid

connections are closed unnecessarily, it makes

recovery from an application perspective more

complicated. Because only the currently failing

connection is closed, there is a good possibility

that the next getConnection request from the

application can return a connection from the pool

that is also stale, resulting in more stale

connection exceptions.

Version 5 WebSphere topic connection factory collection:

Use this panel to list JMS topic connection factories for publish/subscribe messaging, for use by

WebSphere Application Server version 5 applications. These configuration properties control how

connections are created between the JMS provider and the default messaging system that it uses.

 This panel shows a list of JMS topic connection factories with a summary of their configuration properties.

To view this page, use the administrative console to complete the following steps:

1. In the navigation pane, click Resources → JMS Providers → V5 Default Messaging.

2. (Optional) In the content pane, change the Scope setting to the level at which JMS resources are

visible to applications. If you define a Version 5 JMS resource at the Cell scope level, all users in the

cell can look up and use that JMS resource. However, the JMS resource has only the subset of

properties that apply to WebSphere Application Server Version 5. If you want to define a JMS resource

at Cell level for use on non-Version 5 nodes, you should define the JMS resource for the Version 6

default messaging provider.

3. Under Additional Resources, click WebSphere topic connection factories. This displays a list of any

existing JMS topic connection factories.

To define a new JMS topic connection factory, click New.

To view or change the properties of a connection factory, select its name in the list displayed.

Chapter 8. Developing WebSphere applications 1265

To act on one or more of the connection factories listed, click the check box next to the name of the

connection factory, then use the buttons provided.

WebSphere topic connection factory settings:

Use this panel to browse or change the configuration properties of the selected JMS topic connection

factory for publish/subscribe messaging by WebSphere Application Server version 5 applications.

 A WebSphere topic connection factory is used to create JMS connections to the default messaging

provider for use by WebSphere Application Server version 5 applications.

To view this page, use the administrative console to complete the following steps:

1. In the navigation pane, click Resources → JMS Providers → V5 Default Messaging.

2. (Optional) In the content pane, change the Scope setting to the level at which JMS resources are

visible to applications. If you define a Version 5 JMS resource at the Cell scope level, all users in the

cell can look up and use that JMS resource.

3. Under Additional Resources, click WebSphere topic connection factories. This displays a list of any

existing JMS topic connection factories.

4. Click the name of the JMS topic connection factory that you want to work with.

A JMS topic connection factory for use with the Version 5 default messaging provider has the following

properties.

Scope:

Specifies the level to which this resource definition is visible to applications.

 Resources such as messaging providers, namespace bindings, or shared libraries can be defined at

multiple scopes, with resources defined at more specific scopes overriding duplicates which are defined at

more general scopes.

The scope displayed is for information only, and cannot be changed on this panel. If you want to browse

or change this resource (or other resources) at a different scope, change the scope on the messaging

provider settings panel, then click Apply, before clicking the link for the type of resource.

 Data type String

Name:

The name by which this JMS topic connection factory is known for administrative purposes within IBM

WebSphere Application Server. The name must be unique within the JMS connection factories across the

WebSphere administrative domain.

 Data type String

Default Null

JNDI name:

The JNDI name that is used to bind the topic connection factory into the name space.

 As a convention, use the fully qualified JNDI name; for example, in the form jms/Name, where Name is the

logical name of the resource.

This name is used to link the platform binding information. The binding associates the resources defined

by the deployment descriptor of the module to the actual (physical) resources bound into JNDI by the

1266 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

platform.

 Data type String

Description:

A description of this topic connection factory for administrative purposes within IBM WebSphere Application

Server.

 Data type String

Default Null

Category:

A category used to classify or group this topic connection factory, for your IBM WebSphere Application

Server administrative records.

 Data type String

Node:

The WebSphere node name of the administrative node where the JMS server runs for this connection

factory. Connections created by this factory connect to that JMS server.

 Data type Enum

Default Null

Range Pull-down list of nodes in the WebSphere administrative

domain.

Port:

Which of the two ports that connections use to connect to the JMS server. The QUEUED port is for

full-function JMS publish/subscribe support, the DIRECT port is for non-persistent, non-transactional,

non-durable subscriptions only.

Note: Message-driven beans cannot use the direct listener port for publish/subscribe support. Therefore,

any topic connection factory configured with Port set to Direct cannot be used with

message-driven beans.

 Data type Enum

Units Not applicable

Default QUEUED

Range QUEUED

The listener port used for full-function

JMS-compliant, publish/subscribe support.

DIRECT

The listener port used for direct TCP/IP

connection (non-transactional, non-persistent,

and non-durable subscriptions only) for

publish/subscribe support.

Component-managed Authentication Alias:

Chapter 8. Developing WebSphere applications 1267

This alias specifies a user ID and password to be used to authenticate connection to the messaging

provider for application-managed authentication.

 This property provides a list of the J2C authentication data entry aliases that have been defined to

WebSphere Application Server. You can select a data entry alias to be used to authenticate the creation of

a new connection to the JMS provider.

If you have enabled global security for WebSphere Application Server, select the alias that specifies the

user ID and password used to authenticate the creation of a new connection to the messaging provider.

The use of this alias depends on the resource authentication (res-auth) setting declared in the connection

factory resource reference of an application component’s deployment descriptors.

Note: User IDs longer than 12 characters cannot be used for authentication with the Version 5 default

messaging provider. For example, the default Windows NT user ID, Administrator, is not valid

because it contains 13 characters. Therefore, an authentication alias for a WebSphere topic

connection factory must specify a user ID no longer than 12 characters.

Container-managed Authentication Alias:

This alias specifies a user ID and password to be used to authenticate connection to the messaging

provider for container-managed authentication.

 This field is deprecated in 6.0. The specification of a login configuration and associated properties on the

component resource reference determines the container-managed authentication strategy when the

res-auth value is Container. If the ’DefaultPrincipalMapping’ login configuration is used, the associated

property is a container-managed authentication alias. This field is used only in the absence of a

loginConfiguration on the component resource reference. To define a new alias, see the related item J2EE

Connector Architecture (J2C) authentication data entries.

This property provides a list of the J2C authentication data entry aliases that have been defined to

WebSphere Application Server. You can select a data entry alias to be used to authenticate the creation of

a new connection to the JMS provider.

If you have enabled global security for WebSphere Application Server, select the alias that specifies the

user ID and password used to authenticate the creation of a new connection to the JMS provider. The use

of this alias depends on the resource authentication (res-auth) setting declared in the connection factory

resource reference of an application component’s deployment descriptors.

Note: User IDs longer than 12 characters cannot be used for authentication with the embedded

WebSphere JMS provider. For example, the default Windows NT user ID, Administrator, is not

valid for use with embedded WebSphere messaging, because it contains 13 characters. Therefore,

an authentication alias for a WebSphere JMS provider connection factory must specify a user ID no

longer than 12 characters.

Mapping-Configuration Alias:

The module used to map authentication aliases.

 This field is deprecated in 6.0. The specification of a login configuration and associated properties on the

component resource reference determines the container-managed authentication strategy when the

res-auth value is Container. This field is used only in the absence of a loginConfiguration on the

component resource reference.

This field provides a list of the modules that have been configured on the Security → JAAS Configuration

→ Application Logins Configuration property. For more information about the mapping configurations,

see Java Authentication and Authorization service configuration entry settings.

1268 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Data type Enum

Default Null

Range ClientContainer

The client container maps authentication aliases.

WSLogin

The WSLogin module maps authentication

aliases.

DefaultPrincipalMapping

The JAAS configuration maps an authentication

alias to its userid and password.

Clone Support:

Select this checkbox to enable clone support to allow the same durable subscription across topic clones.

 Data type Enum

Default Cleared

Range Selected

Clone support is enabled.

Cleared

Clone support is disabled.

If you select this property, you must also specify a value for the Client ID property.

Client ID:

The JMS client identifier used for connections to the queue manager.

 Data type String

Range A valid JMS client ID

XA Enabled:

Specifies whether the connection factory is for XA or non-XA coordination of messages and controls if the

application server uses XA QCF/TCF. Enable XA if multiple resources are not used in the same

transaction.

 If you clear this checkbox property (for non-XA coordination), the JMS session is still enlisted in a

transaction, but uses the resource manager local transaction calls (session.commit and session.rollback)

instead of XA calls. This can lead to an improvement in performance. However, this means that only a

single resource can be enlisted in a transaction in WebSphere Application Server.

Last participant support enables you to enlist one non-XA resource with other XA-capable resources.

For a WebSphere Topic Connection Factory with the Port property set to DIRECT this property does not

apply, and always adopts non-XA coordination.

 Data type Checkbox

Default Selected (enabled for XA coordination)

Range Selected

The connection factory is enabled for

XA-coordination of messages

Cleared

The connection factory is not enabled for XA

coordination of messages

Chapter 8. Developing WebSphere applications 1269

Recommended Do not enable XA coordination when the message queue

or topic received is the only resource in the transaction.

Enable XA coordination when other resources, including

other queues or topics, are involved.

Connection pool:

Specifies an optional set of connection pool settings.

 Connection pool properties are common to all J2C connectors.

The application server pools connections and sessions with the messaging provider to improve

performance. You need to configure the connection and session pool properties appropriately for your

applications, otherwise you may not get the connection and session behavior that you want.

Change the size of the connection pool if concurrent server-side access to the JMS resource exceeds the

default value. The size of the connection pool is set on a per queue or topic basis.

Session pool:

An optional set of session pool settings.

 This link provides a panel of optional connection pool properties, common to all J2C connectors.

The application server pools connections and sessions with the JMS provider to improve performance. You

need to configure the connection and session pool properties appropriately for your applications, otherwise

you may not get the connection and session behavior that you want.

Version 5 WebSphere queue destination collection:

Use this panel to list JMS queue for point-to-point messaging for use by WebSphere Application Server

version 5 applications.

 This panel shows a list of the JMS queue destinations with a summary of their configuration properties.

To view this page, use the administrative console to complete the following steps:

1. In the navigation pane, click Resources → JMS Providers → V5 Default Messaging.

2. (Optional) In the content pane, change the Scope setting to the level at which JMS resources are

visible to applications. If you define a Version 5 JMS resource at the Cell scope level, all users in the

cell can look up and use that JMS resource. However, the JMS resource has only the subset of

properties that apply to WebSphere Application Server Version 5. If you want to define a JMS resource

at Cell level for use on non-Version 5 nodes, you should define the JMS resource for the Version 6

default messaging provider.

3. Under Additional Resources, click WebSphere queue destinations. This displays a list of any existing

JMS queue destinations.

To define a new JMS queue destination, click New.

To view or change the properties of a queue destination, select its name in the list displayed.

To act on one or more of the queue destinations listed, click the check box next to the name of the queue,

then use the buttons provided.

Version 5 WebSphere queue destination settings:

1270 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Use this panel to view or change the configuration properties of the selected JMS queue destination for

point-to-point messaging by WebSphere Application Server version 5 applications.

 A queue destination is used to configure a JMS queue of the default messaging provider for use by

WebSphere Application Server version 5 applications. Connections to the queue are created by the

associated V5 Default Messaging WebSphere queue connection factory.

To view this page, use the administrative console to complete the following steps:

1. In the navigation pane, click Resources → JMS Providers → V5 Default Messaging.

2. (Optional) In the content pane, change the Scope setting to the level at which JMS resources are

visible to applications. If you define a Version 5 JMS resource at the Cell scope level, all users in the

cell can look up and use that JMS resource. However, the JMS resource has only the subset of

properties that apply to WebSphere Application Server Version 5. If you want to define a JMS resource

at Cell level for use on non-Version 5 nodes, you should define the JMS resource for the Version 6

default messaging provider.

3. Under Additional Resources, click WebSphere queue destinations. This displays a list of any existing

JMS queue destinations.

4. Click the name of the JMS queue destination that you want to work with.

A JMS queue for use with the internal WebSphere JMS provider has the following properties.

Scope:

Specifies the level to which this resource definition is visible to applications.

 Resources such as messaging providers, namespace bindings, or shared libraries can be defined at

multiple scopes, with resources defined at more specific scopes overriding duplicates which are defined at

more general scopes.

The scope displayed is for information only, and cannot be changed on this panel. If you want to browse

or change this resource (or other resources) at a different scope, change the scope on the messaging

provider settings panel, then click Apply, before clicking the link for the type of resource.

 Data type String

Name:

The name by which the queue is known for administrative purposes within IBM WebSphere Application

Server.

 To enable applications to use this queue, you must add the queue name to the Queue Names field on the

panel for the JMS server that hosts the queue.

 Data type String

JNDI name:

The JNDI name that is used to bind the queue into the application server’s name space.

 As a convention, use the fully qualified JNDI name; for example, in the form jms/Name, where Name is the

logical name of the resource.

This name is used to link the platform binding information. The binding associates the resources defined

by the deployment descriptor of the module to the actual (physical) resources bound into JNDI by the

platform.

Chapter 8. Developing WebSphere applications 1271

Data type String

Description:

A description of the queue, for administrative purposes

 Data type String

Default Null

Category:

A category used to classify or group this queue, for your IBM WebSphere Application Server administrative

records.

 Data type String

Persistence:

Whether all messages sent to the destination are persistent, non-persistent, or have their persistence

defined by the application

 Data type Enum

Default APPLICATION DEFINED

Range APPLICATION DEFINED

Messages on the destination have their

persistence defined by the application that put

them onto the queue.

NON PERSISTENT

Messages on the destination are not persistent.

PERSISTENT

Messages on the destination are persistent.

When a persistent message is put to a queue, all

of the message data is written to the messaging

log (under the embedded_messaging_install\log

directory) to make recovery of the message

possible.

Priority:

Whether the message priority for this destination is defined by the application or the Specified priority

property

 Data type Enum

Default APPLICATION DEFINED

1272 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Range APPLICATION DEFINED

The priority of messages on this destination is

defined by the application that put them onto the

destination.

QUEUE DEFINED

[WebSphere MQ destination only] Messages on

the destination have their persistence defined by

the WebSphere MQ queue definition properties.

SPECIFIED

The priority of messages on this destination is

defined by the Specified priority property.If you

select this option, you must define a priority on

the Specified priority property.

Specified priority:

If the Priority property is set to Specified, type here the message priority for this queue, in the range 0

(lowest) through 9 (highest)

 If the Priority property is set to Specified, messages sent to this queue have the priority value specified

by this property.

 Data type Integer

Units Message priority level

Default 0

Range 0 (lowest priority) through 9 (highest priority)

Expiry:

Whether the expiry timeout for this queue is defined by the application or the Specified expiry property, or

messages on the queue never expire (have an unlimited expiry timeout)

 Data type Enum

Default APPLICATION DEFINED

Range APPLICATION DEFINED

The expiry timeout for messages on this queue is

defined by the application that put them onto the

queue.

UNLIMITED

Messages on this queue have no expiry timeout,

so those messages never expire.

SPECIFIED

The expiry timeout for messages on this queue is

defined by the Specified expiry property.If you

select this option, you must define a timeout on

the Specified expiry property.

Specified expiry:

If the Expiry timeout property is set to Specified, type here the number of milliseconds (greater than 0)

after which messages on this queue expire

 Data type Integer

Units Milliseconds

Default 0

Chapter 8. Developing WebSphere applications 1273

Range Greater than or equal to 0

v 0 indicates that messages never timeout

v Other values are an integer number of milliseconds

Version 5 WebSphere topic destination collection:

Use this panel to list JMS topic destinations for publish/subscribe messaging with the default messaging

provider on a Version 5 node in the deployment manager cell.

 This panel shows a list of JMS topic destinations with a summary of their configuration properties.

To view this page, use the administrative console to complete the following steps:

1. In the navigation pane, click Resources → JMS Providers → V5 Default Messaging.

2. (Optional) In the content pane, change the Scope setting to the level at which JMS resources are

visible to applications. If you define a Version 5 JMS resource at the Cell scope level, all users in the

cell can look up and use that JMS resource. However, the JMS resource has only the subset of

properties that apply to WebSphere Application Server Version 5. If you want to define a JMS resource

at Cell level for use on non-Version 5 nodes, you should define the JMS resource for the Version 6

default messaging provider.

3. Under Additional Resources, click WebSphere topic destinations. This displays a list of any existing

JMS topic destinations.

To define a new JMS topic connection factory, click New.

To browse or change the properties of a topic destination, select its name in the list displayed.

To act on one or more of the topic destinations listed, click the check box next to the name of the topic,

then use the buttons provided.

Version 5 WebSphere topic destination settings:

Use this panel to browse or change the configuration properties of the selected JMS topic destination for

publish/subscribe messaging by WebSphere application server version 5 applications.

 A WebSphere topic destination is used to configure the properties of a JMS topic for the default

messaging provider on a Version 5 node in the deployment manager cell. Connections to the topic are

created by the associated topic connection factory.

To view this page, use the administrative console to complete the following steps:

1. In the navigation pane, click Resources → JMS Providers → V5 Default Messaging.

2. (Optional) In the content pane, change the Scope setting to the level at which JMS resources are

visible to applications. If you define a Version 5 JMS resource at the Cell scope level, all users in the

cell can look up and use that JMS resource. However, the JMS resource has only the subset of

properties that apply to WebSphere Application Server Version 5. If you want to define a JMS resource

at Cell level for use on non-Version 5 nodes, you should define the JMS resource for the Version 6

default messaging provider.

3. Under Additional Resources, click WebSphere topic destinations. This displays a list of any existing

JMS topic destinations.

4. Click the name of the JMS topic destination that you want to work with.

A JMS topic destination for use with the Version 5 default messaging provider has the following properties.

Scope:

Specifies the level to which this resource definition is visible to applications.

1274 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Resources such as messaging providers, namespace bindings, or shared libraries can be defined at

multiple scopes, with resources defined at more specific scopes overriding duplicates which are defined at

more general scopes.

The scope displayed is for information only, and cannot be changed on this panel. If you want to browse

or change this resource (or other resources) at a different scope, change the scope on the messaging

provider settings panel, then click Apply, before clicking the link for the type of resource.

 Data type String

Name:

The name by which the topic is known for administrative purposes within IBM WebSphere Application

Server.

 Data type String

JNDI name:

The JNDI name that is used to bind the topic into the application server’s name space.

 As a convention, use the fully qualified JNDI name; for example, in the form jms/Name, where Name is the

logical name of the resource.

This name is used to link the platform binding information. The binding associates the resources defined

by the deployment descriptor of the module to the actual (physical) resources bound into JNDI by the

platform.

 Data type String

Description:

A description of the topic, for administrative purposes within IBM WebSphere Application Server.

 Data type String

Default Null

Category:

A category used to classify or group this topic, for your IBM WebSphere Application Server administrative

records.

 Data type String

Topic:

The name of the topic as defined to the JMS provider.

 Data type String

Default Null

Range The topic value can be dot notation and include wildcard

characters.

Chapter 8. Developing WebSphere applications 1275

Persistence:

Whether all messages sent to the destination are persistent, non-persistent, or have their persistence

defined by the application

 Data type Enum

Default APPLICATION DEFINED

Range APPLICATION DEFINED

Messages on the destination have their

persistence defined by the application that put

them onto the queue.

NON-PERSISTENT

Messages on the destination are not persistent.

PERSISTENT

Messages on the destination are persistent.

Priority:

Whether the message priority for this destination is defined by the application or the Specified priority

property

 Data type Enum

Units Not applicable

Default APPLICATION DEFINED

Range APPLICATION DEFINED

The priority of messages on this destination is

defined by the application that put them onto the

destination.

QUEUE DEFINED

[WebSphere MQ destination only] Messages on

the destination have their persistence defined by

the WebSphere MQ queue definition properties.

SPECIFIED

The priority of messages on this destination is

defined by the Specified priority property. If you

select this option, you must define a priority on

the Specified priority property.

Specified priority:

If the Priority property is set to Specified, type here the message priority for this queue, in the range 0

(lowest) through 9 (highest)

 If the Priority property is set to Specified, messages sent to this queue have the priority value specified

by this property.

 Data type Integer

Units Message priority level

Default 0

Range 0 (lowest priority) through 9 (highest priority)

Expiry:

Whether the expiry timeout for this queue is defined by the application or the Specified expiry property, or

messages on the queue never expire (have an unlimited expiry timeout)

1276 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Data type Enum

Units Not applicable

Default APPLICATION DEFINED

Range APPLICATION DEFINED

The expiry timeout for messages on this queue is

defined by the application that put them onto the

queue.

UNLIMITED

Messages on this queue have no expiry timeout,

so those messages never expire.

SPECIFIED

The expiry timeout for messages on this queue is

defined by the Specified expiry property. If you

select this option, you must define a timeout on

the Specified expiry property.

Specified expiry:

If the Expiry timeout property is set to Specified, type here the number of milliseconds (greater than 0)

after which messages on this queue expire

 Data type Integer

Units Milliseconds

Default 0

Range Greater than or equal to 0

v 0 indicates that messages never timeout

v Other values are an integer number of milliseconds

Configuring Version 5 default JMS resources

Use the following tasks to configure the JMS connection factories and destinations WebSphere application

server version 5 applications.

You only need to complete these tasks if you have WebSphere application server version 5 applications

that need to use JMS resources provided by the default messaging provider. Such JMS resources are

maintained as V5 Default Messaging resources.

v Configuring a Version 5 default JMS queue connection factory

v Configuring a Version 5 default JMS topic connection factory

v Configuring a Version 5 default JMS queue destination

v Configuring a Version 5 default JMS topic destination

Configuring a Version 5 queue connection factory:

Use this task to browse or change the properties of a JMS queue connection factory for point-to-point

messaging with the default messaging provider on a Version 5 node in the deployment manager cell. This

task contains an optional step for you to create a new JMS queue connection factory.

 To configure a JMS queue connection factory for use by WebSphere application server version 5

applications, use the administrative console to complete the following steps:

1. Display the version 5 default messaging provider. In the navigation pane, expand Resources → JMS

Providers → V5 Default Messaging.

2. Optional: Change the Scope setting to the level at which the JMS queue connection factory is visible

to applications. If you define a Version 5 JMS resource at the Cell scope level, all users in the cell can

look up and use that JMS resource.

Chapter 8. Developing WebSphere applications 1277

3. In the content pane, under Additional Properties, click WebSphere queue connection factories This

displays any existing JMS queue connection factories for the Version 5 messaging provider in the

content pane.

4. To browse or change an existing JMS queue connection factory, click its name in the list. Otherwise, to

create a new connection factory, complete the following steps:

a. Click New in the content pane.

b. Specify the following required properties. You can specify other properties, as described in a later

step.

Name The name by which this JMS queue connection factory is known for administrative

purposes within IBM WebSphere Application Server.

JNDI Name

The JNDI name that is used to bind the JMS queue connection factory into the name

space.

c. Click Apply. This defines the JMS queue connection factory to WebSphere Application Server, and

enables you to browse or change additional properties.

5. Optional: Change properties for the queue connection factory, according to your needs.

6. Click OK.

7. Save any changes to the master configuration.

8. To have the changed configuration take effect, stop then restart the application server.

Configuring a Version 5 JMS topic connection factory:

Use this task to browse or change a JMS topic connection factory for publish/subscribe messaging by

WebSphere application server version 5 applications.

 To configure a JMS topic connection factory for use by WebSphere application server version 5

applications, use the administrative console to complete the following steps:

1. Display the version 5 default messaging provider. In the navigation pane, expand Resources → JMS

Providers → V5 Default Messaging.

2. Optional: Change the Scope setting to the level at which the JMS topic connection factory is visible to

applications. If you define a Version 5 JMS resource at the Cell scope level, all users in the cell can

look up and use that JMS resource.

3. In the content pane, under Additional Properties, click WebSphere topic connection factories This

displays any existing JMS topic connection factories for the Version 5 messaging provider in the

content pane.

4. To browse or change an existing JMS topic connection factory, click its name in the list. Otherwise, to

create a new connection factory, complete the following steps:

a. Click New in the content pane.

b. Specify the following required properties. You can specify other properties, as described in a later

step.

Name The name by which this JMS topic connection factory is known for administrative purposes

within IBM WebSphere Application Server.

JNDI Name

The JNDI name that is used to bind the JMS topic connection factory into the name space.

c. Click Apply. This defines the JMS topic connection factory to WebSphere Application Server, and

enables you to browse or change additional properties.

5. Optional: Change properties for the topic connection factory, according to your needs.

6. Click OK.

7. Save any changes to the master configuration.

1278 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

8. To have the changed configuration take effect, stop then restart the application server.

Configuring a Version 5 WebSphere queue destination:

Use this task to browse or change the properties of a JMS queue destination for point-to-point messaging

by WebSphere Application Server version 5 applications. This task contains an optional step for you to

create a new topic destination.

 To configure a JMS queue destination for use by WebSphere application server version 5 applications, use

the administrative console to complete the following steps:

1. Display the version 5 default messaging provider. In the navigation pane, expand Resources → JMS

Providers → V5 Default Messaging.

2. Optional: Change the Scope setting to the level at which the JMS destination is visible to applications.

If you define a Version 5 JMS resource at the Cell scope level, all users in the cell can look up and

use that JMS resource.

3. In the content pane, under Additional Properties, click WebSphere queue destinations This displays

any existing queue destinations for the Version 5 default messaging provider in the content pane.

4. To browse or change an existing JMS queue destination, click its name in the list. Otherwise, to create

a new queue destination, complete the following steps:

a. Click New in the content pane.

b. Specify the following required properties. You can specify other properties, as described in a later

step.

Name The name by which this queue destination is known for administrative purposes within IBM

WebSphere Application Server.

JNDI Name

The JNDI name that is used to bind the queue destination into the name space.

c. Click Apply. This defines the queue destination to WebSphere Application Server, and enables you

to browse or change additional properties.

5. Optional: Change properties for the queue destination, according to your needs.

6. Click OK.

7. Save any changes to the master configuration.

8. To make a queue destination available to applications, you need to host the queue on a JMS server.

To add a new queue to a JMS server or to change an existing queue on a JMS server, you define the

administrative name of the queue to the JMS server, as described in Managing Version 5 JMS servers

in a deployment manager cell.

9. To have the changed configuration take effect, stop then restart the application server.

Configuring a version 5 WebSphere topic destination:

Use this task to browse or change the properties of a JMS topic destination for publish/subscribe

messaging by WebSphere application server version 5 applications.. This task contains an optional step

for you to create a new topic destination.

 To configure a JMS topic destination for use WebSphere application server version 5 applications, use the

administrative console to complete the following steps:

1. Display the version 5 default messaging provider. In the navigation pane, expand Resources → JMS

Providers → V5 Default Messaging.

2. Optional: Change the Scope setting to the level at which the JMS destination is visible to applications.

If you define a Version 5 JMS resource at the Cell scope level, all users in the cell can look up and

use that JMS resource.

Chapter 8. Developing WebSphere applications 1279

3. In the content pane, under Additional Properties, click WebSphere topic destinations This displays

any existing JMS topic destinations for the Version 5 default messaging provider in the content pane.

4. To browse or change an existing JMS topic destination, click its name in the list. Otherwise, to create a

new topic destination, complete the following steps:

a. Click New in the content pane.

b. Specify the following required properties. You can specify other properties, as described in a later

step.

Name The name by which this topic destination is known for administrative purposes within IBM

WebSphere Application Server.

JNDI Name

The JNDI name that is used to bind the topic destination into the name space.

Topic The name of the topic in the default messaging provider, to which messages are sent.

c. Click Apply. This defines the topic destination to WebSphere Application Server, and enables you

to browse or change additional properties.

5. Optional: Change properties for the topic destination, according to your needs.

6. Click OK.

7. Save any changes to the master configuration.

8. To have the changed configuration take effect, stop then restart the application server.

Managing Version 5 JMS servers in a deployment manager cell

Use this task to manage JMS servers on WebSphere Application Server version 5 nodes in a deployment

manager cell.

The use of JMS servers is only intended to support migration from WebSphere Application Server version

5 nodes to WebSphere Application Server version 6.

In a WebSphere Application Server deployment manager cell, each Version 5 node can have at most one

JMS server, and any Version 5 application server within the cell can use JMS resources served by any of

those JMS servers. Applications on WebSphere Application Server version 6 can also use JMS resources

served by any of those JMS servers.

You can use the WebSphere administrative console to display a list of all version 5 JMS servers, to show

and control their runtime status. You can also configure a general set of JMS server properties, which add

to the default values of properties configured automatically for the version 5 default messaging provider.

Note: In general, the default values of properties for the version 5 default messaging provider are

adequate for JMS servers. However, if you are running high messaging loads, you may need to

change some WebSphere MQ properties; for example, WebSphere MQ properties for log file

locations, file pages, and buffer pages. For more information about configuring WebSphere MQ

properties, see the WebSphere MQ System Administration book, SC33-1873, which is available

from the IBM Publications Center or from the WebSphere MQ collection kit, SK2T-0730.

To manage a version 5 JMS server, use the administrative console to complete the following steps:

1. In the navigation pane, select Servers → JMS Servers This displays a table of the JMS servers,

showing their runtime status.

2. Optional: If you want to change the runtime status of a JMS server, complete the following steps:

a. In the table of JMS servers, select the JMS servers that you want to act on.

v To act on one or more specific JMS servers, select the check box next to the JMS server name.

v To act on all JMS servers, select the check box next to the JMS servers title of the table.

b. Click one of the actions displayed to change the status of the JMS servers; for example, click Stop

to stop a JMS server.

1280 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi

The status of the JMS servers that you have acted on is updated to show the result of your actions.

3. Optional: If you want to change the properties of a JMS server, complete the following steps:

a. Click the name of the server

b. Set one or more of the following configuration properties:

Initial state

If you want the JMS server to be started automatically when the application server is next

started, set this property to Started.

Number of threads

Set the number of concurrent threads to be used by the publish/subscribe matching

engine. The number of concurrent threads should only be set to a small number.

4. Optional: If you want the JMS server to host a new JMS queue, add the queue name to the Queue

Names field.

The name must match the name of a JMS Queue administrative object, including the use of upper-

and lowercase.

5. Optional: If you want to stop the JMS server hosting a JMS queue, remove the queue name from the

Queue Names field.

6. Click OK.

7. Save your changes to the master configuration.

8. To have the changed configuration take effect, stop then restart the JMS server.

Configuring authorization security for a Version 5 default messaging provider

Use this task to configure authorization security for the default messaging provider on a WebSphere

Application Server version 5 node in a deployment manager cell.

To configure authorization security for the version 5 default messaging provider complete the following

steps.

Note: Security for the version 5 default messaging provider is enabled when you enable global security

for WebSphere Application Server on the version 5 node. For more information about enabling

global security, see Managing secured applications.

1. Configure authorization settings to access JMS resources owned by the embedded WebSphere JMS

provider. Authorization to access JMS resources owned by the embedded WebSphere JMS provider is

controlled by settings in the WAS_install_root\config\cells\your_cell_name\integral-jms-
authorizations.xml file.

The settings grant or deny authenticated userids access to internal JMS provider resources (queues or

topics). As supplied, the integral-jms-authorisations.xml file grants the following permissions:

v Read and write permissions to all queues.

v Pub, sub, and persist to all topics.

To configure authorization settings, edit the integral-jms-authorisations.xml file according to the

information in this topic and in that file. Please note the file is in Unicode, which requires a binary FTP

to the host from a workstation.

2. Edit the queue-admin-userids element to create a list of userids with administrative access to all

queues. Administrative access is needed to create queues and perform other administrative activities

on queues. For example, consider the following queue-admin-userids section:

<queue-admin-userids>

 <userid>adminid1</userid>

 <userid>adminid2</userid>

</queue-admin-userids>

In this example the userids adminid1 and adminid2 are defined to have administrative access to all

queues.

Chapter 8. Developing WebSphere applications 1281

3. Edit the queue-default-permissions element to define the default queue access permissions. These

permissions are used for queues for which you do not define specific permissions (in queue sections).

If this section is not specified, then access permissions exist only for those queues for which you have

specifically created queue elements.

For example, consider the following queue-default-permissions element:

 <queue-default-permissions>

 <permission>write</permission>

 </queue-default-permissions>

In this example the default access permission for all queues is write. This can be overridden for a

specific queue by creating a queue element that sets its access permission to read.

4. If you want to define specific access permissions for a queue, create a queue element, then define the

following elements:

For example, consider the following queue element:

 <queue>

 <name>q1</name>

 <public>

 </public>

 <authorize>

 <userid>useridr</userid>

 <permission>read</permission>

 </authorize>

 <authorize>

 <userid>useridw</userid>

 <permission>write</permission>

 </authorize>

 <authorize>

 <userid>useridrw</userid>

 <permission>read</permission>

 <permission>write</permission>

 </authorize>

 </queue>

In this example for the queue q1, the userid useridr has read permission, the userid useridw has write

permission, the userid useridrw has both read and write permissions, and all other userids have no

access permissions (<public></public>).

5. Edit topic elements to define the access permissions for publish/subscribe topic destinations.

For topics, you can grant and deny access permissions. Full permission inheritance is supported on

topics. If you do not define specific access permissions for a userid on a specific topic then

permissions are inherited first from the public permissions on that topic then from the parent topic. The

inheritance of access permissions continues until the root topic from which the root permissions are

assumed.

a. If you want to define default access permissions for the root topic, edit a topic element with an

empty name element. If you omit such a topic section, topics have no default topic permissions

other than those defined by specific topic elements. For example, consider the following topic

element for the root topic:

 <topic>

 <name></name>

 <public>

 <permission>+pub</permission>

 </public>

 </topic>

In this example, the default access permission for all topics is set to publish. This can be

overridden by other topic elements for specific topic names.

b. If you want to define access permissions for a specific topic, create a topic element with the name

for the topic then define the access permissions in the public and authorize elements of the topic

element. For example, consider the following topic section:

1282 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

<topic>

 <name>a/b/c</name>

 <public>

 <permission>+sub</permission>

 </public>

 <authorize>

 <userid>useridpub</userid>

 <permission>+pub</permission>

 </authorize>

 </topic>

In this example, the subscribe permission is granted to anyone accessing any topic whose name

starts with a/b/c. Also, the userid useridpub is granted publish permission for any topic whose

name starts with a/b/c.

6. Save the integral-jms-authorizations.xml file.

If the dynamic update setting is selected, changes to the integral-jms-authorizations.xml file become active

when the changed file is saved, so there is no need to stop and restarted the JMS server. If the dynamic

update setting is not selected, you need to stop and restart the JMS server to make changes active.

Authorization settings for Version 5 default JMS resources:

Use the integral-jms-authorisations.xml file to view or change the authorization settings for JMS resources

owned by the default messaging provider on WebSphere Application Server version 5 nodes.

 Authorization to access default JMS resources owned by the default messaging provider on WebSphere

Application Server nodes is controlled by the following settings in the

was_install\config\cells\your_cell_name\integral-jms-authorisations.xml file.

This structure of the settings in integral-jms-authorisations.xml is shown in the following example.

Descriptions of these settings are provided after the example. To configure authorization settings, follow

the instructions provided in Configuring authorization security for the Version 5 JMS providers

<integral-jms-authorizations>

 <dynamic-update>true</dynamic-update>

 <queue-admin-userids>

 <userid>adminid1</userid>

 <userid>adminid2</userid>

 </queue-admin-userids>

 <queue-default-permissions>

 <permission>write</permission>

 </queue-default-permissions>

 <queue>

 <name>q1</name>

 <public>

 </public>

 <authorize>

 <userid>useridr</userid>

 <permission>read</permission>

 </authorize>

 <authorize>

 <userid>useridw</userid>

 <permission>write</permission>

 </authorize>

 </queue>

 <queue>

 <name>q2</name>

 <public>

 <permission>write</permission>

Chapter 8. Developing WebSphere applications 1283

</public>

 <authorize>

 <userid>useridr</userid>

 <permission>read</permission>

 </authorize>

 </queue>

 <topic>

 <name></name>

 <public>

 <permission>+pub</permission>

 </public>

 </topic>

 <topic>

 <name>a/b/c</name>

 <public>

 <permission>+sub</permission>

 </public>

 <authorize>

 <userid>useridpub</userid>

 <permission>+pub</permission>

 </authorize>

 </topic>

</integral-jms-authorizations>

dynamic-update: Controls whether or not the JMS Server checks dynamically for updates to this file.

true (Default) Enables dynamic update support.

false Disables dynamic update checking and improves authorization performance.

queue-admin-userids: This element lists those userids with administrative access to all Version 5 default

queue destinations. Administrative access is needed to create queues and perform other administrative

activities on queues. You define each userid within a separate userid sub element:

<userid>adminid</userid>

Where adminid is a user ID that can be authenticated by IBM WebSphere Application Server.

queue-default-permissions: This element defines the default queue access permissions that are assumed

if no permissions are specified for a specific queue name. These permissions are used for queues for

which you do not define specific permissions (in queue elements). If this element is not specified, then no

access permissions exist unless explicitly authorized for individual queues.

You define the default permission within a separate permission sub element:

<permission>read-write</permission>

Where read-write is one of the following keywords:

read By default, userids have read access to Version 5 default queue destinations.

write By default, userids have write access to Version 5 default queue destinations.

queue: This element contains the following authorization settings for a single queue destination:

name The name of the queue.

public The default public access permissions for the queue. This is used only for those userids that have

no specific authorize element. If you leave this element empty, or do not define it at all, only those

userids with authorize elements can access the queue.

 You define each default permission within a separate permission element.

authorize

The access permissions for a specific userid. Within each authorize element, you define the

following elements:

userid The userid that you want to assign a specific access permission.

permission

An access permission for the associated userid.

1284 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

You define each permission within a separate permission element. Each permission

element can contain the keyword read or write to define the access permission.

 For example, consider the following queue element:

 <queue>

 <name>q1</name>

 <public>

 </public>

 <authorize>

 <userid>useridr</userid>

 <permission>read</permission>

 </authorize>

 <authorize>

 <userid>useridw</userid>

 <permission>write</permission>

 </authorize>

 <authorize>

 <userid>useridrw</userid>

 <permission>read</permission>

 <permission>write</permission>

 </authorize>

 </queue>

topic: This element contains the following authorization settings for a single topic destination:

Each topic element has the following sub elements:

name The name of the topic, without wildcards or other substitution characters.

public The default public access permissions for the topic. This is used only for those userids that have

no specific authorize element. If you leave this element empty, or do not define it at all, only those

userids with authorize elements can access the topic.

 You define each default permission within a separate permission element.

authorize

The access permissions for a specific userid. Within each authorize element, you define the

following elements:

userid The userid that you want to assign a specific access permission.

permission

An access permission for the associated userid.

 You define each permission within a separate permission element. Each permission

element can contain one of the following keywords to define the access permission:

+pub Grant publish permission

+sub Grant subscribe permission

+persist

Grant persist permission

-pub Deny publish permission

-sub Deny subscribe permission

-persist

Deny persist permission

JMS components on version 5 nodes

To provide messaging support on a WebSphere Application Server version 5 node, there is at most one

JMS server and some number of JMS resources configured for the default messaging JMS provider on

that node.

A JMS server on a version 5 node serves the JMS resources (connection factories and destinations) for

that node. The JMS server is managed as a separate process to application servers on the same node.

Any application server within the domain can access JMS resources served by any JMS server on any

node in the domain.

Chapter 8. Developing WebSphere applications 1285

A connection factory encapsulates the configuration properties used to create connections with the JMS

provider, to enable applications to access JMS destinations.

Using JMS resources of WebSphere MQ

This topic is the entry-point into a set of topics about enabling WebSphere applications to use JMS

resources provided by WebSphere MQ.

You can install WebSphere MQ as a JMS provider to WebSphere Application Server. WebSphere

applications can use the JMS 1.1 interfaces or JMS 1.0.2 interfaces to access JMS resources provided by

WebSphere MQ, in addition to JMS resources provided by the default messaging provider (or a generic

messaging provider).

You can use the WebSphere administrative console to administer the JMS connection factories and

destinations provided by WebSphere MQ.

In a mixed-version WebSphere Application Server deployment manager cell, you can administer

WebSphere MQ resources on both Version 6 and Version 5 nodes. For Version 5 nodes, the

administrative console presents the subset of resources and properties that are applicable to WebSphere

Application Server Version 5.

For more information about using WebSphere MQ as a messaging provider to WebSphere Application

Server, see the following topics:

v “Installing WebSphere MQ as a JMS provider”

v “Listing JMS resources for WebSphere MQ” on page 1288

v “Configuring JMS resources for the WebSphere MQ messaging provider” on page 1346

Installing WebSphere MQ as a JMS provider

Use this task to install and configure WebSphere MQ with support for the Java Message Service (JMS),

for use as a JMS provider to WebSphere Application Server.

If you have a messaging infrastructure based on WebSphere MQ, you may either connect directly using

the included support for WebSphere MQ as a JMS provider, or configure a service integration bus with

links to a WebSphere MQ network and then access the bus through the default messaging provider.

v (UNIX platforms only) Before you install WebSphere MQ on a UNIX platform, create and mount a

journalized file system called /var/mqm for your messaging working data. Use a partition strategy with a

separate volume for the WebSphere MQ data. This means that other system activity is not affected if a

large amount of messaging work builds up in /var/mqm. You can also create separate file systems for

your log data (var/mqm/log) and error files (var/mqm/errors). You should store log files on a different

physical volume from the messaging queues (var/mqm). This ensures data integrity in the case of a

hardware failure. If you are creating separate file systems, allow a minimum of 30 MB of storage for

/var/mqm, 20 MB of storage for /var/mqm/log, and 4 MB of storage for /var/mqm/errors.

– The /var file system is used to store all the security logging information for the system, and is used

to store the temporary files for email and printing. Therefore, it is critical that you maintain free space

in /var for these operations. If you do not create a separate file system for messaging data, and /var

fills up, all security logging will be stopped on the system until some free space is available in /var.

Also, email and printing will no longer be possible until some free space is available in /var.

– It is not recommended to install Rational Application Developer and WebSphere Application Server

on the same machine when using WebSphere MQ.

– For more information a security logging issue, see ″Security and WebSphere MQ″ in the information

center.

– For more information about creating file systems for WebSphere MQ, and WebSphere MQ space

requirements for /var file systems, see the section “Preparing for Installation: Creating WebSphere

MQ file systems” in the appropriate WebSphere MQ Quick Beginnings book.

– For other installation prerequisites, see the appropriate WebSphere MQ Quick Beginnings book, as

follows:

1286 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

- WebSphere MQ for Windows, Quick Beginnings, GC34-6073

- WebSphere MQ for AIX, Quick Beginnings, GC34-6076

- WebSphere MQ for Solaris, Quick Beginnings, GC34-6075

- WebSphere MQ for HP-UX, Quick Beginnings, GC34-6077

- WebSphere MQ for Linux for Intel and Linux for zSeries, Quick Beginnings, GC34-6078

You can get these books from the WebSphere MQ messaging platform-specific books Web page at

http://www-3.ibm.com/software/ts/mqseries/library/manualsa/manuals/platspecific.html

To install and configure WebSphere MQ for use as a JMS provider to IBM WebSphere Application Server,

complete the following steps:

1. Install a supported version of WebSphere MQ, with the required MQ features, as described in the

installation instructions provided with WebSphere MQ.

To identify the a supported version of WebSphere MQ, see the Supported hardware and software Web

page at http://www.ibm.com/software/webservers/appserv/doc/latest/prereq.html.

For information about installing WebSphere MQ, or migrating to a supported version of WebSphere

MQ from an earlier version, see the appropriate WebSphere MQ Quick Beginnings book, as listed

above.

(RHEL 3.0 and SLES 8) After you install WebSphere MQ on any of the following platforms, but before

you try to accept the license, apply the fix located at: http://l3.hursley.ibm.com/cgi-
bin/ViewPRB.pl?1812. Otherwise, you may see a segmentation fault error when attempting to run the

mqlicense.sh -accept command to accept the WebSphere MQ license agreement. Also, export the

following variable: LD_ASSUME_KERNEL=2.4.19

v Red Hat Enterprise Linux (RHEL) 3.0 on Intel or s390

v SUSE Linux Enterprise Server (SLES) 8 on Intel

2. If you want to use WebSphere MQ - Publish/Subscribe support, you need to provide a

Publish/Subscribe broker.

For example, you can do this by using either WebSphere MQ Event Broker or WebSphere MQ

Integrator (formerly MQSeries Integrator). For more information about these products, see the following

Web sites:

v WebSphere MQ Event Broker Web site at http://www-
4.ibm.com/software/ts/mqseries/platforms/#eventb

v WebSphere MQ Integrator Web site at http://www-
4.ibm.com/software/ts/mqseries/platforms/#integrator

3. Follow the WebSphere MQ instructions for verifying your installation setup.

4.

For AIX, see the WebSphere MQ readme.txt for additional steps.

5. If you want to install IBM WebSphere Application Server on the same host as WebSphere MQ, and

have not yet done so, install IBM WebSphere Application Server.

6. Set the MQJMS_LIB_ROOT environment variable to the directory where WebSphereMQ\Java\lib is

installed. IBM WebSphere Application Server uses the MQJMS_LIB_ROOT to locate the WebSphere

MQ libraries for the WebSphere MQ JMS Provider.

This task has installed WebSphere MQ for use as a JMS provider for WebSphere Application Server.

You can configure JMS resources to be provided by WebSphere MQ, by using the WebSphere

administrative console to define WebSphere MQ resources.

(UNIX platforms only) Restrict access to the messaging errors directories and logging files, by using the

following commands. This is part of the procedure to secure the directories and log files needed for

WebSphere MQ, as described in Securing messaging directories and log files.

1. For the /var/mqm/errors directory:

Chapter 8. Developing WebSphere applications 1287

http://www-3.ibm.com/software/ts/mqseries/library/manualsa/manuals/platspecific.html
http://www.ibm.com/software/webservers/appserv/doc/latest/prereq.html
http://l3.hursley.ibm.com/cgi-bin/ViewPRB.pl?1812
http://l3.hursley.ibm.com/cgi-bin/ViewPRB.pl?1812
http://www-4.ibm.com/software/ts/mqseries/platforms/#eventb
http://www-4.ibm.com/software/ts/mqseries/platforms/#eventb
http://www-4.ibm.com/software/ts/mqseries/platforms/#integrator
http://www-4.ibm.com/software/ts/mqseries/platforms/#integrator

chmod 3777 /var/mqm/errors

chown mqm:mqm /var/mqm/errors

touch /var/mqm/errors/AMQERR01.LOG

chown mqm:mqm /var/mqm/errors/AMQERR01.LOG

chmod 666 /var/mqm/errors/AMQERR01.LOG

touch /var/mqm/errors/AMQERR02.LOG

chown mqm:mqm /var/mqm/errors/AMQERR02.LOG

chmod 666 /var/mqm/errors/AMQERR02.LOG

touch /var/mqm/errors/AMQERR03.LOG

chown mqm:mqm /var/mqm/errors/AMQERR03.LOG

chmod 666 /var/mqm/errors/AMQERR03.LOG

2. For the /var/mqm/qmgrs/@SYSTEM/errors directory:

chmod 3777 /var/mqm/qmgrs/@SYSTEM/errors

chown mqm:mqm /var/mqm/qmgrs/@SYSTEM/errors

touch /var/mqm/qmgrs/@SYSTEM/errors/AMQERR01.LOG

chown mqm:mqm /var/mqm/qmgrs/@SYSTEM/errors/AMQERR01.LOG

chmod 666 /var/mqm/qmgrs/@SYSTEM/errors/AMQERR01.LOG

touch /var/mqm/qmgrs/@SYSTEM/errors/AMQERR02.LOG

chown mqm:mqm /var/mqm/qmgrs/@SYSTEM/errors/AMQERR02.LOG

chmod 666 /var/mqm/qmgrs/@SYSTEM/errors/AMQERR02.LOG

touch /var/mqm/qmgrs/@SYSTEM/errors/AMQERR03.LOG

chown mqm:mqm /var/mqm/qmgrs/@SYSTEM/errors/AMQERR03.LOG

chmod 666 /var/mqm/qmgrs/@SYSTEM/errors/AMQERR03.LOG

Listing JMS resources for WebSphere MQ

Use this task with the WebSphere administrative console to list the JMS resources provided by

WebSphere MQ as a messaging provider.

You can use the WebSphere administrative console to display lists of the following types of JMS resources

provided by WebSphere MQ. You can use the panels displayed to select JMS resources to administer, or

to create or delete JMS resources (where appropriate).

To display administrative lists of JMS resources for WebSphere MQ, complete the following general steps:

1. Start the WebSphere administrative console.

2. In the navigation pane, click Resources → JMS Providers → WebSphere MQ

3. If appropriate, in the content pane, change the scope of the WebSphere MQ messaging provider. If the

scope is set to node or server scope for a Version 5 node, the administrative console presents the

subset of resources and properties that are applicable to WebSphere Application Server Version 5.

4. In the content pane, under Additional Resources, click the link for the type of JMS resource. This

displays a list of any existing resources of the selected type. For more information about the settings

panels displayed for resources, see the related reference topics.

WebSphere MQ connection factory collection:

The unified JMS connection factories configured in the WebSphere MQ messaging provider, for both

point-to-point and publish/subscribe messaging.

 This panel shows a list of the WebSphere MQ unified JMS connection factories with a summary of their

configuration properties. In a deployment manager cell, these connection factories are not available for

Version 5 nodes.

This type of connection factory is sometimes called a “unified” or “domain-independent” JMS connection

factory, and supports the JMS 1.1 domain-independent interfaces (referred to as the ″common interfaces″

1288 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

in the JMS specification). This enables applications to use the same, common, interfaces for both

point-to-point and publish/subscribe messaging. A unified JMS connection factory also supports the

domain-specific (queue and topic) interfaces, as used in JMS 1.0.2, so applications can still use those

interfaces.

To view this page, use the administrative console to complete the following steps:

1. In the navigation pane, expand Resources → JMS Providers → WebSphere MQ.

2. In the content pane, ensure that the scope is set to cell scope or to node or server scope for a Version

6 node.

3. In the content pane, under Additional Resources, click WebSphere MQ connection factories. This

displays a list of any existing JMS queue connection factories.

To define a new connection factory, click New.

To view or change the properties of a queue connection factory, click its name in the list displayed.

To act on one or more of the connection factories listed, select the check boxes next to the names of the

objects that you want to act on, then use the buttons provided.

WebSphere MQ connection factory settings:

Use this panel to view or change the configuration properties of the selected JMS connection factory for

use with WebSphere MQ as a JMS provider. These configuration properties control how connections are

created to associated JMS queues and topics.

 This type of connection factory is sometimes called a “unified” or “domain-independent” JMS connection

factory, and supports the JMS 1.1 domain-independent interfaces (referred to as the ″common interfaces″

in the JMS specification). This enables applications to use the same, common, interfaces for both

point-to-point and publish/subscribe messaging. A unified JMS connection factory also supports the

domain-specific (queue and topic) interfaces, as used in JMS 1.0.2, so applications can still use those

interfaces.

To view this page, use the administrative console to complete the following steps:

1. In the navigation pane, expand Resources → JMS Providers → WebSphere MQ.

2. In the content pane, ensure that the scope is set to cell scope, or to node or server scope for a

Version 6 node.

3. In the content pane, under Additional Resources, click WebSphere MQ connection factories.

4. Click the name of the JMS connection factory that you want to work with.

A unified JMS connection factory for the WebSphere MQ JMS provider has the following properties.

Note:

v The property values that you specify must match the values that you specified when configuring

WebSphere MQ for JMS resources. For more information about configuring WebSphere MQ JMS

resources, see the WebSphere MQ Using Java book. and the WebSphere MQ System

Administration book, SC33-1873, which are available from the WebSphere MQ messaging

platform-specific books Web page at http://www-
3.ibm.com/software/ts/mqseries/library/manualsa/manuals/platspecific.html, the IBM Publications

Center, or from the WebSphere MQ collection kit, SK2T-0730.

v In WebSphere MQ, names can have a maximum of 48 characters, with the exception of

channels which have a maximum of 20 characters.

v For more information about setting SSL properties for WebSphere MQ, see the section SSL

properties in the WebSphere MQ Using Java book.

Scope:

Chapter 8. Developing WebSphere applications 1289

http://www-3.ibm.com/software/ts/mqseries/library/manualsa/manuals/platspecific.html
http://www-3.ibm.com/software/ts/mqseries/library/manualsa/manuals/platspecific.html
http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi
http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi
http://publibfp.boulder.ibm.com/epubs/html/csqzaw11/csqzaw1116.htm#HDRJSSLPR
http://publibfp.boulder.ibm.com/epubs/html/csqzaw11/csqzaw1116.htm#HDRJSSLPR

Specifies the level to which this resource definition is visible to applications.

 Resources such as messaging providers, namespace bindings, or shared libraries can be defined at

multiple scopes, with resources defined at more specific scopes overriding duplicates which are defined at

more general scopes.

The scope displayed is for information only, and cannot be changed on this panel. If you want to browse

or change this resource (or other resources) at a different scope, change the scope on the messaging

provider settings panel, then click Apply, before clicking the link for the type of resource.

 Data type String

Name:

The name by which this JMS connection factory is known for administrative purposes within IBM

WebSphere Application Server. The name must be unique within the JMS connection factories across the

WebSphere administrative domain.

 Data type String

JNDI name:

The JNDI name that is used to bind the connection factory into the name space.

 As a convention, use the fully qualified JNDI name; for example, in the form jms/Name, where Name is the

logical name of the resource.

This name is used to link the platform binding information. The binding associates the resources defined

by the deployment descriptor of the module to the actual (physical) resources bound into JNDI by the

platform.

 Data type String

Description:

A description of this connection factory for administrative purposes within IBM WebSphere Application

Server.

 Data type String

Default Null

Category:

A category used to classify or group this connection factory, for your IBM WebSphere Application Server

administrative records.

 Data type String

Authentication mechanism preference:

The authentication mechanism to be used for connections to WebSphere MQ created by this connection

factory.

1290 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

If WebSphere MQ is not configured to support the authentication mechanism preference, it is ignored.

 Data type Enum

Default BASIC PASSWORD

Range

BASIC PASSWORD

Authentication is performed based on a user ID

and password provided by an authentication

alias. The authentication alias used is obtained

from one of the following properties:

v Component-managed Authentication Alias, for

application-managed authentication.

v Container-managed Authentication Alias, for

container-managed authentication.

KerbV5

Authentication is performed based on SSL

certificates.

Component-managed authentication alias:

This alias specifies a user ID and password to be used to authenticate connection to a JMS provider for

application-managed authentication.

 This property provides a list of the J2C authentication data entry aliases that have been defined to

WebSphere Application Server. You can select a data entry alias to be used to authenticate the creation of

a new connection to the JMS provider.

If you have enabled global security for WebSphere Application Server, select the alias that specifies the

user ID and password used to authenticate the creation of a new connection to the JMS provider. The use

of this alias depends on the resource authentication (res-auth) setting declared in the connection factory

resource reference of an application component’s deployment descriptors.

Restriction:

1. User IDs longer than 12 characters cannot be used for authentication with WebSphere

MQ. For example, the default Windows user ID, Administrator, is not valid because it

contains 13 characters. Therefore, an authentication alias for a WebSphere MQ queue

connection factory must specify a user ID no longer than 12 characters.

2. If you want to use Bindings transport mode on JMS queue connections to WebSphere

MQ, you set the Transport type property to BINDINGS on the WebSphere MQ Queue

Connection Factory. You must also choose one of the following options:

v To use security credentials, ensure that the user specified is the currently logged on

user for the WebSphere Application Server process. If the user specified is not the

current logged on user for the WebSphere Application Server process, then the

WebSphere MQ JMS Bindings authentication throws the error MQJMS2013 invalid

security authentication supplied for MQQueueManager.

v Do not specify security credentials. On the WebSphere MQ Connection Factory,

ensure that both the Component-managed Authentication Alias and the

Container-managed Authentication Alias properties are not set.

Container-managed authentication alias:

This alias specifies a user ID and password to be used to authenticate connection to a JMS provider for

container-managed authentication.

Chapter 8. Developing WebSphere applications 1291

This property provides a list of the J2C authentication data entry aliases that have been defined to

WebSphere Application Server. You can select a data entry alias to be used to authenticate the creation of

a new connection to the JMS provider.

If you have enabled global security for WebSphere Application Server, select the alias that specifies the

user ID and password used to authenticate the creation of a new connection to the JMS provider. The use

of this alias depends on the resource authentication (res-auth) setting declared in the connection factory

resource reference of an application component’s deployment descriptors.

Restriction:

1. User IDs longer than 12 characters cannot be used for authentication with WebSphere

MQ. For example, the default Windows user ID, Administrator, is not valid because it

contains 13 characters. Therefore, an authentication alias for a WebSphere MQ queue

connection factory must specify a user ID no longer than 12 characters.

2. If you want to use Bindings transport mode on JMS queue connections to WebSphere

MQ, you set the Transport type property to BINDINGS on the WebSphere MQ Queue

Connection Factory. You must also choose one of the following options:

v To use security credentials, ensure that the user specified is the currently logged on

user for the WebSphere Application Server process. If the user specified is not the

current logged on user for the WebSphere Application Server process, then the

WebSphere MQ JMS Bindings authentication throws the error MQJMS2013 invalid

security authentication supplied for MQQueueManager.

v Do not specify security credentials. On the WebSphere MQ Connection Factory,

ensure that both the Component-managed Authentication Alias and the

Container-managed Authentication Alias properties are not set.

Mapping-configuration alias:

The module used to map authentication aliases.

 This field provides a list of the modules that have been configured on the Security → JAAS Configuration

→ Application Logins Configuration property. For more information about the mapping configurations,

see Java Authentication and Authorization service configuration entry settings.

 Data type Enum

Default Null

Range ClientContainer

The client container maps authentication aliases.

WSLogin

The WSLogin module maps authentication

aliases.

DefaultPrincipalMapping

The JAAS configuration maps an authentication

alias to its userid and password.

Manage cached handles:

Whether or not cached handles (held in inst vars in a bean) should be tracked by the container.

 Tracking handles can cause a large performance overhead if used at runtime; however, for debugging

purposes it can be useful to enable handle management.

 Data type Check box

Default Cleared

1292 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Range

Cleared

Cached handles are not tracked by the container.

Selected

Cached handles are tracked by the container.

You should select this option only for debugging

purposes, because this can cause a large

performance overhead.

Log missing transaction contexts:

Whether or not the container logs when there is a missing transaction context at the time that a connection

is created.

 Data type Check box

Default Selected

Range

Selected

When a connection is created, any missing

transaction contexts are logged in the activity log.

Cleared

Missing transaction contexts are not logged.

Queue manager:

The name of the WebSphere MQ queue manager for this connection factory. Connections created by this

factory connect to that queue manager.

 Data type String

Default Null

Range A valid WebSphere MQ queue manager name, as 1

through 48 ASCII characters

Host:

The name of the host on which the WebSphere MQ queue manager runs, for client connection only.

 Data type String

Default Null

Range A valid TCP/IP hostname

Port:

The TCP/IP port number used for connection to the WebSphere MQ queue manager, for client connection

only.

 This port must be configured on the WebSphere MQ queue manager.

 Data type Integer

Default Null

Range A valid TCP/IP port number, configured on the WebSphere

MQ queue manager.

Channel:

Chapter 8. Developing WebSphere applications 1293

The name of the channel used for connection to the WebSphere MQ queue manager, for client connection

only.

 Data type String

Default Null

Range 1 through 20 ASCII characters

Transport type:

Specifies whether to use the WebSphere MQ client connection or JNI bindings for connection to the

WebSphere MQ queue manager. WebSphere MQ as the JMS provider controls the communication

protocols between JMS clients and JMS servers. Tune the transport type when you are using non-ASF

nonpersistent, non-durable, non-transactional messaging or when you want to satisfy security issues and

the client is local to the queue manager node.

 Data type Enum

Units Not applicable

Default BINDINGS

Range BINDINGS

JNI bindings are used to connect to the queue

manager. BINDINGS is a shared memory

protocol and can only be used when the queue

manager is on the same node as the JMS client

and comes at some security risks that should be

addressed through the use of EJB roles.

CLIENT

WebSphere MQ client connection is used to

connect to the queue manager. CLIENT is a

typical TCP-based protocol.

Recommended BINDINGS is faster by 30% or more, but it lacks security.

When you have security concerns, CLIENT is more

desirable than BINDINGS.

Model queue definition:

The name of the model queue definition that can be used by the queue manager to create temporary

queues if a queue requested does not already exist.

 Data type String

Default Null

Range 1 through 48 ASCII characters

Client ID:

The JMS client identifier used for connections to the WebSphere MQ queue manager.

 Data type String

Default Null

CCSID:

The coded character set identifier for use with the WebSphere MQ queue manager.

1294 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

This coded character set identifier (CCSID) must be one of the CCSIDs supported by WebSphere MQ.

 Data type String

Units Integer

Default Null

Range 1 through 65535

For more information about supported CCSIDs, and about converting between message data from one

coded character set to another, see the WebSphere MQ System Administration and the WebSphere MQ

Application Programming Reference books. These are available from the WebSphere MQ messaging

multiplatform and platform-specific books Web pages; for example, at http://www-
3.ibm.com/software/ts/mqseries/library/manualsa/manuals/platspecific.html, the IBM Publications Center, or

from the WebSphere MQ collection kit, SK2T-0730.

Enable message retention:

Whether or not unwanted messages are left on the queue. If this option is not enabled, unwanted

messages are dealt with according to their disposition options.

 Data type Check box

Default Cleared

Range Selected

Unwanted messages are left on the queue.

Cleared

Unwanted messages are dealt with according to

their disposition options.

XA enabled:

Specifies whether the connection factory is for XA or non-XA coordination of messages and controls if the

application server uses XA QCF/TCF. Enable XA if multiple resources are not used in the same

transaction.

 If you clear this property, the JMS session is still enlisted in a transaction, but uses the resource manager

local transaction calls (session.commit and session.rollback) instead of XA calls. This can lead to an

improvement in performance. However, this means that only a single resource can be enlisted in a

transaction in WebSphere Application Server.

Last participant support enables you to enlist one non-XA resource with other XA-capable resources.

 Data type Check box

Units Not applicable

Default Selected (XA enabled)

Range Selected

The connection factory is for XA-coordination of

messages

Cleared

The connection factory is for non-XA coordination

of messages

Recommended Do not enable XA when the message queue received is

the only resource in the transaction. Enable XA when

other resources, including other queues or topics, are

involved.

Enable return methods during shutdown:

Chapter 8. Developing WebSphere applications 1295

http://www-3.ibm.com/software/ts/mqseries/library/manualsa/manuals/crosslatest.html.html
http://www-3.ibm.com/software/ts/mqseries/library/manualsa/manuals/crosslatest.html.html
http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi

Whether or not applications return from a method call if the queue manager has entered a controlled

shutdown.

 Data type Checkbox

Default Selected

Range Selected

Applications return from a method call if the

queue manager has entered a controlled

shutdown.

Cleared

Applications do not return from a method call if

the queue manager has entered a controlled

shutdown.

Local server address:

The range of local ports to be used when making a connection to a WebSphere MQ queue manager

 If a JMS application attempts to connect to a WebSphere MQ queue manager in client mode, a firewall

might allow only those connections that originate from specified ports or a range of ports. In this situation,

you can use this property to specify a port, or a range of points, that the application can bind to.

 Data type String

Default Null

Range A string in the format:

[ip-addr][(low-port[,high-port])]

For example:

v 9.20.4.98

The channel binds to address 9.20.4.98 locally

v 9.20.4.98(1000)

The channel binds to address 9.20.4.98 locally and

uses port 1000

v 9.20.4.98(1000,2000)

The channel binds to address 9.20.4.98 locally and

uses a port in the range 1000 to 2000

v (1000)

The channel binds to port 1000 locally

v (1000,2000)

The channel binds to a port in the range 1000 to 2000

locally

You can specify a host name instead of an IP address.

For direct connections, this property applies only when

multicast is used and the value of the property must not

contain a port number. If it does contain a port number,

the connection is rejected. Therefore, the only valid values

of the property are null, an IP address, or a host name.

Polling interval:

The interval, in milliseconds, between scans of all receivers during asynchronous message delivery

 Data type Integer

1296 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Units milliseconds

Default 5000

Range 1 through 2147483647

Rescan interval:

The interval in milliseconds between which a topic is scanned to look for messages that have been added

to a topic out of order.

 This interval controls the scanning for messages that have been added to a topic out of order with respect

to a WebSphere MQ browse cursor.

 Data type Integer

Units milliseconds

Default 5000

Range 1 through 2147483647

SSL cipher suite:

The cipher suite to use for SSL connection to WebSphere MQ.

 Set this property to a valid cipher suite provided by your JSSE provider; it must match the CipherSpec

named on the SVRCONN channel named by the Channel property.

You must set this property if the SSL Peer Name property is to be set.

SSL CRL:

A list of zero or more Certificate Revocation List (CRL) servers used to check for SSL certificate

revocation. (Use of this property requires a WebSphere MQ JVM at Java 2 version 1.4.)

 The value is a space-delimited list of entries of the form:

ldap://hostname:[port]

optionally followed by a single / (forward slash). If port is omitted, the default LDAP port of 389 is

assumed. At connect-time, the SSL certificate presented by the server is checked against the specified

CRL servers. For more information about CRL security, see the section “Working with Certificate

Revocation Lists” in the WebSphere MQ Security book; for example at:

http://publibfp.boulder.ibm.com/epubs/html/csqzas01/csqzas012w.htm#IDX2254.

SSL peer name:

For SSL, a distinguished name skeleton that must match the name provided by the WebSphere MQ queue

manager. The distinguished name is used to check the identifying certificate presented by the server at

connect-time.

 The SSL Peer Name property is ignored if SSL cipher suite property is not specified.

This property is a list of attribute name and value pairs separated by commas or semicolons. For example:

CN=QMGR.*, OU=IBM, OU=WEBSPHERE

Chapter 8. Developing WebSphere applications 1297

http://publibfp.boulder.ibm.com/epubs/html/csqzas01/csqzas012w.htm#IDX2254

The example given checks the identifying certificate presented by the server at connect-time. For the

connection to succeed, the certificate must have a Common Name beginning QMGR., and must have at

least two Organizational Unit names, the first of which is IBM and the second WEBSPHERE. Checking is

not case-sensitive.

For more details about distinguished names and their use with WebSphere MQ, see the WebSphere MQ

Security book; for example, the section “Distinguished Names” at

http://publibfp.boulder.ibm.com/epubs/html/csqzas01/csqzas010p.htm#HDRDCDN.

Temporary queue prefix:

The prefix that is used for names of temporary JMS queues created by applications that use this

connection factory.

 Data type String

Default Null

Enable MQ connection pooling:

Whether or not to use WebSphere MQ connection pooling.

 Data type Checkbox

Default Selected

Range

Selected

The connection factory uses

WebSphere MQ connection

pooling. When a connection

is no longer required, instead

of destroying it, it can be

pooled, and later reused.

This can provide a

substantial performance

enhancement for repeated

connections to the same

queue manager.

Cleared

The connection factory does

not use WebSphere MQ

connection pooling. When a

connection is no longer

required, it is destroyed. To

use the same queue

manager a new connection is

created.

Broker control queue:

The name of the publish/subscribe broker’s control queue, to which publisher and subscriber applications

send all command messages (except publications and requests to delete publications).

 Data type String

Default Null

Range 1 through 48 ASCII characters

Broker queue manager:

The name of the WebSphere MQ queue manager that provides the publish/subscribe message broker.

 Data type String

Default Null

Range 1 through 48 ASCII characters

Broker publication queue:

1298 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

http://publibfp.boulder.ibm.com/epubs/html/csqzas01/csqzas010p.htm#HDRDCDN

The name of the broker’s input queue (stream queue) that receives all publication messages for the

default stream. Applications can also send requests to delete publications on the default stream to this

queue.

 Data type String

Units En_US ASCII characters

Default Null

Range 1 through 48 ASCII characters

Broker subscription queue:

The name of the broker’s queue from which non-durable subscription messages are retrieved. The

subscriber specifies the name of the queue when it registers a subscription.

 Data type String

Default Null

Range 1 through 48 ASCII characters

Broker CC subscription queue:

The name of the broker’s queue from which non-durable subscription messages are retrieved for a

ConnectionConsumer. This property applies only for use of the Web container.

 Data type String

Default Null

Range 1 through 48 ASCII characters

Broker version:

Whether the message broker is provided by the WebSphere MQ MA0C Supportpac or newer versions of

WebSphere message broker products.

 Data type Enum

Default Advanced

Range Advanced

The message broker is provided by newer

versions of WebSphere message broker

products, such as WebsSphere MQ Integrator

and Event Broker.

Basic The message broker is provided by the

WebSphere MQ MA0C SupportPac (MQSeries -

Publish/Subscribe) or MQSI working in MA0C

compatibility mode.

Publish/subscribe cleanup level:

The level of cleanup provided by the Publish/subscribe cleanup utility

 To avoid the problems associated with non-graceful closure of subscriber objects, WebSphere MQ as a

JMS provider provides a Publish/Subscribe cleanup utility that attempts to detect any earlier JMS

publish/subscribe problems. If a large number of problems are detected, some performance degradation

may be observed while resources are cleaned up. This utility runs transparently on a background thread

and should not affect other WebSphere MQ operations.

 Data type Enum

Chapter 8. Developing WebSphere applications 1299

Default SAFE

Range

SAFE The Cleanup thread attempts to remove

unconsumed subscription messages, or

temporary queues, for failed subscriptions. This

mode of cleanup does not interfere with the

operation of other JMS applications.

ASPROP

The style of cleanup to use is determined by the

system property com.ibm.mq.jms.cleanup, which

is queried at JVM startup. This property can be

set on the java command-line using the -D

option, and should be set to NONE, SAFE or

STRONG. Any other value causes an exception.

If not set, the property defaults to SAFE. This

allows easy JVM-wide change to the Cleanup

level without needing to update every topic

connection factory used by the system.

NONE In this special mode, no cleanup is performed;

and no cleanup thread exists. Additionally, if the

application is using the single-queue approach,

unconsumed messages can be left on the queue.

 This option can be useful if the application is

distant from the queue manager, and especially if

it only publishes rather than subscribes. However,

some application should perform cleanup on the

queue manager to deal with any unconsumed

messages - this could be a JMS application with

CLEANUP(SAFE) or CLEANUP(STRONG), or

the WebSphere MQ manual cleanup utility.

STRONG

The cleanup thread performs as

CLEANUP(SAFE), but also clears the

SYSTEM.JMS.REPORT.QUEUE of any

unrecognized messages.

Publish/subscribe cleanup interval:

The interval, in milliseconds, between background executions of the publish/subscribe cleanup utility.

 Data type Integer

Default 60000

Range 1 through 2147483647

Message selection:

Whether message selection is done at the broker or client.

 Data type Enum

Default BROKER

Range

BROKER

Message selection is done at the broker.

CLIENT

Message selection is done at the client.

1300 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Publish acknowledgement interval:

The interval, in number of messages, between publish requests that require acknowledgement from the

broker.

 Data type Integer

Default 25

Range 1 through 2147483647

Enable sparse subscriptions:

Select this option to support subscriptions that receive infrequent matching messages.

 Data type Checkbox

Default Cleared

Range

Selected

Subscriptions can receive infrequent matching

messages. This value requires that the

subscription queue can be opened for browse.

Cleared

Sparse subscriptions are not supported.

Subscriptions receive frequent matching

messages.

Publish/subscribe status interval:

The interval, in milliseconds, between transactions to refresh publish/subscribe status.

 Data type Integer

Default 60000

Range 1 through 2147483647

Persistent subscriptions store:

Where WebSphere MQ stores persistent data relating to active JMS subscriptions.

 Data type Enum

Default MIGRATE

Chapter 8. Developing WebSphere applications 1301

Range

MIGRATE

This option dynamically selects the queue-based

or broker-based subscription store based on the

levels of queue manager and publish/subscribe

broker installed. If both queue manager and

broker are capable of supporting

SUBSTORE(BROKER), this behaves as

SUBSTORE(BROKER); otherwise it behaves as

SUBSTORE(QUEUE). Additionally,

SUBSTORE(MIGRATE) transfers durable

subscription information from the queue-based

subscription store to the broker-based store.

QUEUE

Subscription information is stored on

SYSTEM.JMS.ADMIN.QUEUE and

SYSTEM.JMS.PS.STATUS.QUEUE on the local

queue manager.

BROKER

Subscription information is stored by the

publish/subscribe broker used by the application.

This option requires recent levels of queue

manager and publish/subscribe broker. This

subscription store requires recent levels of both

queue manager and publish/subscribe broker. It

is designed to provide improved resilience.

Enable multicast transport:

Whether or not this connection factory uses multicast transport.

 With multicast, messages are delivered to all consumers. This is useful in environments where there are a

large number of clients that all want to receive the same messages, because with multicast only one copy

of each message is sent. Multicast reduces the total amount of network traffic. Reliable multicast is

standard multicast with a reliability layer added.

 Data type Enum

Default NOTUSED

Range

NOTUSED

This connection factory does not use multicast

transport.

ENABLED

This connection factory uses multicast transport,

but does not provide a reliable multicast

connection.

ENABLED_IF_AVAILABLE

This connection factory uses multicast transport if

the message broker supports it.

ENABLED_RELIABLE

This connection factory uses reliable multicast

transport

ENABLED_RELIABLE_IF_AVAILABLE

This connection factory uses reliable multicast

transport if the message broker supports it.

1302 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Enable clone support:

Select this check box to enable clone support to allow the same durable subscription across topic clones.

 Data type check box

Default Cleared

Range Selected

Clone support is enabled.

Cleared

Clone support is disabled.

If you select this property, you must also specify a value for the Client ID property.

Direct broker authentication:

Whether the broker uses basic or certificate-based authentication for direct connections.

 This property selects the authentication on a direct connections (if the TRANSPORT property is set to

DIRECT).

 Data type Enum

Default NONE

Range

NONE Direct broker authentication is not used.

PASSWORD

Password-based authentication is used for direct

connections. Authentication is performed based

on a user ID and password provided by an

authentication alias. The authentication alias

used is obtained from one of the following

properties:

v Component-managed Authentication Alias, for

application-managed authentication.

v Container-managed Authentication Alias, for

container-managed authentication.

CERTIFICATE

Certificate-based authentication is used for direct

connections. The SSLPEERNAME and SSLCRL

properties are used to perform the authentication

checks.

 You can use certificate-based authentication

when connecting directly to a WebSphere

Business Integration Event Broker or WebSphere

Business Integration Message Broker broker.

Proxy host name:

Host name of the Web Scale proxy host.

 A direct connection is made to the proxy server, which forwards the connection request to the message

broker.

If the TRANSPORT property is set to DIRECT, the type of connection to the message broker depends on

the value of this property, according to the following rules:

Chapter 8. Developing WebSphere applications 1303

v If this property is set to the empty string, a direct connection is made to the broker identified by the

HOSTNAME and PORT.

v If this property is set to a value other than the empty string, a direct connection is made to the broker

through the proxy server identified by this property and the PROXYPORT property.

 Data type String

Default Null

Proxy port:

Port number of the Web Scale proxy port.

 A direct connection is made to this port on the proxy server identified by the PROXYHOSTNAME property,

which forwards the connection request to the message broker. For more information, see the description of

the PROXYHOSTNAME property.

 Data type Integer

Default 0

Connection pool:

Specifies an optional set of connection pool settings.

 Connection pool properties are common to all J2C connectors.

The application server pools connections and sessions with the JMS provider to improve performance.

This is independent from any WebSphere MQ connection pooling. You need to configure the connection

and session pool properties appropriately for your applications, otherwise you may not get the connection

and session behavior that you want.

Change the size of the connection pool if concurrent server-side access to the JMS resource exceeds the

default value. The size of the connection pool is set on a per queue or topic basis.

Session pools:

An optional set of session pool settings.

 This link provides a panel of optional connection pool properties, common to all J2C connectors.

The application server pools connections and sessions with the JMS provider to improve performance.

This is independent from any WebSphere MQ connection pooling. You need to configure the connection

and session pool properties appropriately for your applications, otherwise you may not get the connection

and session behavior that you want.

Custom properties:

An optional set of name and value pairs for custom properties passed to WebSphere MQ.

WebSphere MQ queue connection factory collection:

The queue connection factories configured in the WebSphere MQ messaging provider, for point-to-point

messaging with JMS queues.

 This panel shows a list of the WebSphere MQ queue connection factories with a summary of their

configuration properties.

1304 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

To view this page, use the administrative console to complete the following steps:

1. In the navigation pane, expand Resources → JMS Providers → WebSphere MQ.

2. If appropriate, in the content pane, change the scope of the WebSphere MQ messaging provider. If the

scope is set to node or server scope for a Version 5 node, the administrative console presents the

subset of resources and properties that are applicable to WebSphere Application Server Version 5.

3. In the content pane, under Additional Resources, click WebSphere MQ Queue Connection Factory.

This displays a list of any existing JMS queue connection factories.

To view or change the properties of a queue connection factory, click its name in the list displayed.

To act on one or more of the connection factories listed, select the check boxes next to the names of the

objects that you want to act on, then use the buttons provided.

WebSphere MQ queue connection factory settings:

Use this panel to view or change the configuration properties of the selected queue connection factory for

use with the WebSphere MQ JMS provider. These configuration properties control how connections are

created to the associated JMS queue destination.

 A WebSphere MQ queue connection factory is used to create JMS connections to queues provided by

WebSphere MQ for point-to-point messaging.

To view this page, use the administrative console to complete the following steps:

1. In the navigation pane, expand Resources → JMS Providers → WebSphere MQ.

2. If appropriate, in the content pane, change the scope of the WebSphere MQ messaging provider. If the

scope is set to node or server scope for a Version 5 node, the administrative console presents the

subset of resources and properties that are applicable to WebSphere Application Server Version 5.

3. In the content pane, under Additional Resources, click WebSphere MQ Queue Connection Factories.

This displays a list of any existing JMS queue connection factories.

4. Click the name of the JMS connection factory that you want to work with.

A queue connection factory for the WebSphere MQ JMS provider has the following properties.

Note:

v The property values that you specify must match the values that you specified when configuring

WebSphere MQ for JMS resources. For more information about configuring WebSphere MQ for

JMS resources, see the WebSphere MQ Using Java book. and the WebSphere MQ System

Administration book, SC33-1873, which are available from the WebSphere MQ messaging

platform-specific books Web page at http://www-
3.ibm.com/software/ts/mqseries/library/manualsa/manuals/platspecific.html, the IBM Publications

Center, or from the WebSphere MQ collection kit, SK2T-0730.

v In WebSphere MQ, names can have a maximum of 48 characters, with the exception of

channels which have a maximum of 20 characters.

Scope:

Specifies the level to which this resource definition is visible to applications.

 Resources such as messaging providers, namespace bindings, or shared libraries can be defined at

multiple scopes, with resources defined at more specific scopes overriding duplicates which are defined at

more general scopes.

The scope displayed is for information only, and cannot be changed on this panel. If you want to browse

or change this resource (or other resources) at a different scope, change the scope on the messaging

provider settings panel, then click Apply, before clicking the link for the type of resource.

Chapter 8. Developing WebSphere applications 1305

http://www-3.ibm.com/software/ts/mqseries/library/manualsa/manuals/platspecific.html
http://www-3.ibm.com/software/ts/mqseries/library/manualsa/manuals/platspecific.html
http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi
http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi

Data type String

Name:

The name by which this queue connection factory is known for administrative purposes within IBM

WebSphere Application Server.

 Data type String

JNDI name:

The JNDI name that is used to bind the connection factory into the name space.

 As a convention, use the fully qualified JNDI name; for example, in the form jms/Name, where Name is the

logical name of the resource.

This name is used to link the platform binding information. The binding associates the resources defined

by the deployment descriptor of the module to the actual (physical) resources bound into JNDI by the

platform.

 Data type String

Description:

A description of this connection factory for administrative purposes within IBM WebSphere Application

Server.

 Data type String

Default Null

Category:

A category used to classify or group this connection factory, for your IBM WebSphere Application Server

administrative records.

 Data type String

Component-managed authentication alias:

This alias specifies a user ID and password to be used to authenticate connection to a JMS provider for

application-managed authentication.

 This property provides a list of the J2C authentication data entry aliases that have been defined to

WebSphere Application Server. You can select a data entry alias to be used to authenticate the creation of

a new connection to the JMS provider.

If you have enabled global security for WebSphere Application Server, select the alias that specifies the

user ID and password used to authenticate the creation of a new connection to the JMS provider. The use

of this alias depends on the resource authentication (res-auth) setting declared in the connection factory

resource reference of an application component’s deployment descriptors.

Restriction:

1306 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

1. User IDs longer than 12 characters cannot be used for authentication with WebSphere

MQ. For example, the default Windows user ID, Administrator, is not valid because it

contains 13 characters. Therefore, an authentication alias for a WebSphere MQ queue

connection factory must specify a user ID no longer than 12 characters.

2. If you want to use Bindings transport mode on JMS queue connections to WebSphere

MQ, you set the Transport type property to BINDINGS on the WebSphere MQ Queue

Connection Factory. You must also choose one of the following options:

v To use security credentials, ensure that the user specified is the currently logged on

user for the WebSphere Application Server process. If the user specified is not the

current logged on user for the WebSphere Application Server process, then the

WebSphere MQ JMS Bindings authentication throws the error MQJMS2013 invalid

security authentication supplied for MQQueueManager.

v Do not specify security credentials. On the WebSphere MQ Connection Factory,

ensure that both the Component-managed Authentication Alias and the

Container-managed Authentication Alias properties are not set.

Container-managed authentication alias:

This alias specifies a user ID and password to be used to authenticate connection to a JMS provider for

container-managed authentication.

 This property provides a list of the J2C authentication data entry aliases that have been defined to

WebSphere Application Server. You can select a data entry alias to be used to authenticate the creation of

a new connection to the JMS provider.

If you have enabled global security for WebSphere Application Server, select the alias that specifies the

user ID and password used to authenticate the creation of a new connection to the JMS provider. The use

of this alias depends on the resource authentication (res-auth) setting declared in the connection factory

resource reference of an application component’s deployment descriptors.

Restriction:

1. User IDs longer than 12 characters cannot be used for authentication with WebSphere

MQ. For example, the default Windows user ID, Administrator, is not valid because it

contains 13 characters. Therefore, an authentication alias for a WebSphere MQ queue

connection factory must specify a user ID no longer than 12 characters.

2. If you want to use Bindings transport mode on JMS queue connections to WebSphere

MQ, you set the Transport type property to BINDINGS on the WebSphere MQ Queue

Connection Factory. You must also choose one of the following options:

v To use security credentials, ensure that the user specified is the currently logged on

user for the WebSphere Application Server process. If the user specified is not the

current logged on user for the WebSphere Application Server process, then the

WebSphere MQ JMS Bindings authentication throws the error MQJMS2013 invalid

security authentication supplied for MQQueueManager.

v Do not specify security credentials. On the WebSphere MQ Connection Factory,

ensure that both the Component-managed Authentication Alias and the

Container-managed Authentication Alias properties are not set.

Mapping-configuration alias:

The module used to map authentication aliases.

 This field provides a list of the modules that have been configured on the Security → JAAS Configuration

→ Application Logins Configuration property. For more information about the mapping configurations,

see Java Authentication and Authorization service configuration entry settings.

Chapter 8. Developing WebSphere applications 1307

Data type Enum

Default Null

Range ClientContainer

The client container maps authentication aliases.

WSLogin

The WSLogin module maps authentication

aliases.

DefaultPrincipalMapping

The JAAS configuration maps an authentication

alias to its userid and password.

Host:

The name of the host on which the WebSphere MQ queue manager runs, for client connection only.

 Data type String

Default Null

Range A valid TCP/IP hostname

Port:

The TCP/IP port number used for connection to the WebSphere MQ queue manager, for client connection

only.

 This port must be configured on the WebSphere MQ queue manager.

 Data type Integer

Default 0

Range A valid TCP/IP port number, configured on the WebSphere

MQ queue manager.

Transport type:

Whether the WebSphere MQ client connection or JNI bindings are used for connection to the WebSphere

MQ queue manager.

 WebSphere MQ, as the messaging provider, controls the communication protocols between JMS clients

and JMS servers. Tune the transport type when you are using non-ASF non-persistent, non-durable,

non-transactional messaging or when you want to satisfy security issues and the client is local to the

queue manager node.

 Data type Enum

Units Not applicable

Default BINDINGS

Range BINDINGS

JNI bindings are used to connect to the queue

manager. BINDINGS is a shared memory

protocol and can only be used when the queue

manager is on the same node as the JMS client

and comes at some security risks that should be

addressed through the use of EJB roles.

CLIENT

WebSphere MQ client connection is used to

connect to the queue manager. CLIENT is a

typical TCP-based protocol.

1308 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Recommended BINDINGS is faster by 30% or more, but it lacks security.

When you have security concerns, BINDINGS is more

desirable than CLIENT.

Channel:

The name of the channel used for connection to the WebSphere MQ queue manager, for client connection

only.

 Data type String

Default Null

Range 1 through 20 ASCII characters

Queue manager:

The name of the WebSphere MQ queue manager for this connection factory. Connections created by this

factory connect to that queue manager.

 Data type String

Default Null

Range A valid WebSphere MQ queue manager name, as 1

through 48 ASCII characters

Model queue definition:

The name of the model queue definition that can be used by the queue manager to create temporary

queues if a queue requested does not already exist.

 Data type String

Default Null

Range 1 through 48 ASCII characters

Client ID:

The JMS client identifier used for connections to WebSphere MQ.

 Data type String

Range A valid JMS client ID, as ASCII characters

CCSID:

The coded character set identifier for use with the WebSphere MQ queue manager.

 This coded character set identifier (CCSID) must be one of the CCSIDs supported by WebSphere MQ.

 Data type String

Units Integer

Default Null

Range 1 through 65535

For more information about supported CCSIDs, and about converting between message data from one

coded character set to another, see the WebSphere MQ System Administration and the WebSphere MQ

Application Programming Reference books. These are available from the WebSphere MQ messaging

Chapter 8. Developing WebSphere applications 1309

multi-platform and platform-specific books Web pages; for example, at http://www-
3.ibm.com/software/ts/mqseries/library/manualsa/manuals/platspecific.html, the IBM Publications Center, or

from the WebSphere MQ collection kit, SK2T-0730.

Enable message retention:

Whether or not unwanted messages are left on the queue. If this option is not enabled, unwanted

messages are dealt with according to their disposition options.

 Data type Enum

Default Selected

Range Selected

Unwanted messages are left on the queue.

Cleared

Unwanted messages are dealt with according to

their disposition options.

XA enabled:

Specifies whether the connection factory is for XA or non-XA coordination of messages and controls if the

application server uses XA. Enable XA if multiple resources are not used in the same transaction.

 If you clear this property (non-XA), the JMS session is still enlisted in a transaction, but uses the resource

manager local transaction calls (session.commit and session.rollback) instead of XA calls. This can lead to

an improvement in performance. However, this means that only a single resource can be enlisted in a

transaction in WebSphere Application Server.

Last participant support enables you to enlist one non-XA resource with other XA-capable resources.

 Data type Checkbox

Default Selected

Range Selected

The connection factory is for XA-coordination of

messages

Cleared

The connection factory is for non-XA coordination

of messages

Recommended Do not select to enable XA when the message queue

received is the only resource in the transaction. Enable

XA if transactions involve other resources, including other

queues or topics.

Enable return methods during shutdown:

Whether or not applications return from a method call if the queue manager has entered a controlled

shutdown.

 Data type Checkbox

Default Selected

Range Selected

Applications return from a method call if the

queue manager has entered a controlled

shutdown.

Cleared

Applications do not return from a method call if

the queue manager has entered a controlled

shutdown.

1310 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

http://www-3.ibm.com/software/ts/mqseries/library/manualsa/manuals/crosslatest.html.html
http://www-3.ibm.com/software/ts/mqseries/library/manualsa/manuals/crosslatest.html.html
http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi

Local server address:

The local server address

 If a JMS application attempts to connect to a WebSphere MQ queue manager in client mode, a firewall

might allow only those connections that originate from specified ports or a range of ports. In this situation,

you can use this property to specify a port, or a range of points, that the application can bind to.

 Data type String

Default Null

Range A string in the format:

[ip-addr][(low-port[,high-port])]

For example:

v 9.20.4.98

The channel binds to address 9.20.4.98 locally

v 9.20.4.98(1000)

The channel binds to address 9.20.4.98 locally and

uses port 1000

v 9.20.4.98(1000,2000)

The channel binds to address 9.20.4.98 locally and

uses a port in the range 1000 to 2000

v (1000)

The channel binds to port 1000 locally

v (1000,2000)

The channel binds to a port in the range 1000 to 2000

locally

You can specify a host name instead of an IP address.

For direct connections, this property applies only when

multicast is used and the value of the property must not

contain a port number. If it does contain a port number,

the connection is rejected. Therefore, the only valid values

of the property are null, an IP address, or a host name.

Polling interval:

The interval, in milliseconds, between scans of all receivers during asynchronous message delivery

 Data type Integer

Units milliseconds

Default 5000

Range 1 through 2147483647

Rescan interval:

The interval in milliseconds between which a queue is scanned to look for messages that have been

added to a queue out of order.

 This interval controls the scanning for messages that have been added to a queue out of order with

respect to a WebSphere WebSphere MQ browse cursor.

Chapter 8. Developing WebSphere applications 1311

Data type Integer

Units milliseconds

Default 5000

Range 1 through 2147483647

SSL Cipher Suite:

The cipher suite to use for SSL connection to WebSphere MQ.

 Set this property to a valid cipher suite provided by your JSSE provider; it must match the CipherSpec

named on the SVRCONN channel named by the Channel property.

You must set this property if the SSL Peer Name property is to be set.

SSL CRL:

A list of zero or more Certificate Revocation List (CRL) servers used to check for SSL certificate

revocation. (Use of this property requires a WebSphere MQ JVM at Java 2 version 1.4.)

 The value is a space-delimited list of entries of the form:

ldap://hostname:[port]

optionally followed by a single / (forward slash). If port is omitted, the default LDAP port of 389 is

assumed. At connect-time, the SSL certificate presented by the server is checked against the specified

CRL servers. For more information about CRL security, see the section “Working with Certificate

Revocation Lists” in the WebSphere MQ Security book; for example at:

http://publibfp.boulder.ibm.com/epubs/html/csqzas01/csqzas012w.htm#IDX2254.

SSL Peer Name:

For SSL, a distinguished name skeleton that must match the name provided by the WebSphere MQ queue

manager. The distinguished name is used to check the identifying certificate presented by the server at

connect-time.

 The SSL Peer Name property is ignored if SSL Cipher Suite property is not specified.

This property is a list of attribute name and value pairs separated by commas or semicolons. For example:

CN=QMGR.*, OU=IBM, OU=WEBSPHERE

The example given checks the identifying certificate presented by the server at connect-time. For the

connection to succeed, the certificate must have a Common Name beginning QMGR., and must have at

least two Organizational Unit names, the first of which is IBM and the second WEBSPHERE. Checking is

not case-sensitive.

For more details about distinguished names and their use with WebSphere MQ, see the WebSphere MQ

Security book; for example, the section “Distinguished Names” at

http://publibfp.boulder.ibm.com/epubs/html/csqzas01/csqzas010p.htm#HDRDCDN.

Temporary queue prefix:

The prefix that is used for names of temporary JMS queues created by applications that use this

connection factory.

 Data type String

Default Null

1312 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

http://publibfp.boulder.ibm.com/epubs/html/csqzas01/csqzas012w.htm#IDX2254
http://publibfp.boulder.ibm.com/epubs/html/csqzas01/csqzas010p.htm#HDRDCDN

Use connection pooling:

Whether or not to use WebSphere MQ connection pooling.

 Data type Checkbox

Default Selected

Range

Selected

The connection factory uses

WebSphere MQ connection

pooling. When a connection

is no longer required, instead

of destroying it, it can be

pooled, and later reused.

This can provide a

substantial performance

enhancement for repeated

connections to the same

queue manager.

Cleared

The connection factory does

not use WebSphere MQ

connection pooling. When a

connection is no longer

required, it is destroyed. To

use the same queue

manager a new connection is

created.

Connection pool:

An optional set of connection pool settings.

 Connection pool properties are common to all J2C connectors.

The application server pools connections and sessions with the JMS provider to improve performance.

This is independent from any WebSphere MQ connection pooling. You need to configure the connection

and session pool properties appropriately for your applications, otherwise you may not get the connection

and session behavior that you want.

Change the size of the connection pool if concurrent server-side access to the JMS resource exceeds the

default value. The size of the connection pool is set on a per queue or topic basis.

Session pool:

An optional set of session pool settings.

 This link provides a panel of optional connection pool properties, common to all J2C connectors.

The application server pools connections and sessions with the JMS provider to improve performance.

This is independent from any WebSphere MQ connection pooling. You need to configure the connection

and session pool properties appropriately for your applications, otherwise you may not get the connection

and session behavior that you want.

WebSphere MQ topic connection factory collection:

The topic connection factories configured in the WebSphere MQ messaging provider for publish/subscribe

messaging with JMS topics.

 This panel shows a list of the WebSphere MQ topic connection factories with a summary of their

configuration properties.

To view this administrative console page, use the administrative console to complete the following steps:

1. In the navigation pane, expand Resources → JMS Providers → WebSphere MQ.

Chapter 8. Developing WebSphere applications 1313

2. If appropriate, in the content pane, change the scope of the WebSphere MQ messaging provider. If the

scope is set to node or server scope for a Version 5 node, the administrative console presents the

subset of resources and properties that are applicable to WebSphere Application Server Version 5.

3. In the content pane, under Additional Resources, click WebSphere MQ Topic Connection Factory.

This displays a list of any existing queue connection factories.

To view or change the properties of a connection factory, click its name in the list displayed.

To act on one or more of the connection factories listed, select the check boxes next to the names of the

objects that you want to act on, then use the buttons provided.

WebSphere MQ topic connection factory settings:

Use this panel to view or change the configuration properties of the selected topic connection factory for

use with the WebSphere MQ as a JMS provider. These configuration properties control how connections

are created to the associated JMS topic destination.

 A WebSphere MQ topic connection factory is used to create JMS connections to topic destinations

provided by WebSphere MQ for publish/subscribe messaging.

To view this page, use the administrative console to complete the following steps:

1. In the navigation pane, expand Resources → JMS Providers → WebSphere MQ.

2. If appropriate, in the content pane, change the scope of the WebSphere MQ messaging provider. If the

scope is set to node or server scope for a Version 5 node, the administrative console presents the

subset of resources and properties that are applicable to WebSphere Application Server Version 5.

3. In the content pane, under Additional Resources, click WebSphere MQ Topic Connection Factories.

This displays a list of any existing JMS topic connection factories.

4. Click the name of the JMS connection factory that you want to work with.

A WebSphere MQ topic connection factory has the following properties.

Note:

v The property values that you specify must match the values that you specified when configuring

WebSphere MQ for JMS resources. For more information about configuring WebSphere MQ for

JMS resources, see the WebSphere MQ Using Java book.

v In WebSphere MQ, names can have a maximum of 48 characters, with the exception of

channels which have a maximum of 20 characters.

v For more information about setting the SSL properties for WebSphere MQ, see the section SSL

properties in the WebSphere MQ Using Java book.

Scope:

Specifies the level to which this resource definition is visible to applications.

 Resources such as messaging providers, namespace bindings, or shared libraries can be defined at

multiple scopes, with resources defined at more specific scopes overriding duplicates which are defined at

more general scopes.

The scope displayed is for information only, and cannot be changed on this panel. If you want to browse

or change this resource (or other resources) at a different scope, change the scope on the messaging

provider settings panel, then click Apply, before clicking the link for the type of resource.

 Data type String

Name:

1314 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

http://publibfp.boulder.ibm.com/epubs/html/csqzaw11/csqzaw1116.htm#HDRJSSLPR
http://publibfp.boulder.ibm.com/epubs/html/csqzaw11/csqzaw1116.htm#HDRJSSLPR

The name by which this topic connection factory is known for administrative purposes within IBM

WebSphere Application Server.

 Data type String

JNDI name:

The JNDI name that is used to bind the topic connection factory into the name space.

 As a convention, use the fully qualified JNDI name; for example, in the form jms/Name, where Name is the

logical name of the resource.

This name is used to link the platform binding information. The binding associates the resources defined

by the deployment descriptor of the module to the actual (physical) resources bound into JNDI by the

platform.

 Data type String

Description:

A description of this topic connection factory for administrative purposes within IBM WebSphere Application

Server.

 Data type String

Default Null

Category:

A category used to classify or group this topic connection factory, for your IBM WebSphere Application

Server administrative records.

 Data type String

Component-managed authentication alias:

This alias specifies a user ID and password to be used to authenticate connection to a JMS provider for

application-managed authentication.

 This property provides a list of the J2C authentication data entry aliases that have been defined to

WebSphere Application Server. You can select a data entry alias to be used to authenticate the creation of

a new connection to the JMS provider.

If you have enabled global security for WebSphere Application Server, select the alias that specifies the

user ID and password used to authenticate the creation of a new connection to the JMS provider. The use

of this alias depends on the resource authentication (res-auth) setting declared in the connection factory

resource reference of an application component’s deployment descriptors.

Restriction:

1. User IDs longer than 12 characters cannot be used for authentication with WebSphere

MQ. For example, the default Windows user ID, Administrator, is not valid because it

contains 13 characters. Therefore, an authentication alias for a WebSphere MQ queue

connection factory must specify a user ID no longer than 12 characters.

Chapter 8. Developing WebSphere applications 1315

2. If you want to use Bindings transport mode on JMS queue connections to WebSphere

MQ, you set the Transport type property to BINDINGS on the WebSphere MQ Queue

Connection Factory. You must also choose one of the following options:

v To use security credentials, ensure that the user specified is the currently logged on

user for the WebSphere Application Server process. If the user specified is not the

current logged on user for the WebSphere Application Server process, then the

WebSphere MQ JMS Bindings authentication throws the error MQJMS2013 invalid

security authentication supplied for MQQueueManager.

v Do not specify security credentials. On the WebSphere MQ Connection Factory,

ensure that both the Component-managed Authentication Alias and the

Container-managed Authentication Alias properties are not set.

Container-managed authentication alias:

This alias specifies a user ID and password to be used to authenticate connection to a JMS provider for

container-managed authentication.

 This property provides a list of the J2C authentication data entry aliases that have been defined to

WebSphere Application Server. You can select a data entry alias to be used to authenticate the creation of

a new connection to the JMS provider.

If you have enabled global security for WebSphere Application Server, select the alias that specifies the

user ID and password used to authenticate the creation of a new connection to the JMS provider. The use

of this alias depends on the resource authentication (res-auth) setting declared in the connection factory

resource reference of an application component’s deployment descriptors.

Restriction:

1. User IDs longer than 12 characters cannot be used for authentication with WebSphere

MQ. For example, the default Windows user ID, Administrator, is not valid because it

contains 13 characters. Therefore, an authentication alias for a WebSphere MQ queue

connection factory must specify a user ID no longer than 12 characters.

2. If you want to use Bindings transport mode on JMS queue connections to WebSphere

MQ, you set the Transport type property to BINDINGS on the WebSphere MQ Queue

Connection Factory. You must also choose one of the following options:

v To use security credentials, ensure that the user specified is the currently logged on

user for the WebSphere Application Server process. If the user specified is not the

current logged on user for the WebSphere Application Server process, then the

WebSphere MQ JMS Bindings authentication throws the error MQJMS2013 invalid

security authentication supplied for MQQueueManager.

v Do not specify security credentials. On the WebSphere MQ Connection Factory,

ensure that both the Component-managed Authentication Alias and the

Container-managed Authentication Alias properties are not set.

Mapping-configuration alias:

The module used to map authentication aliases.

 This field provides a list of the modules that have been configured on the Security → JAAS Configuration

→ Application Logins Configuration property. For more information about the mapping configurations,

see Java Authentication and Authorization service configuration entry settings.

 Data type Enum

Default Null

1316 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Range ClientContainer

The client container maps authentication aliases.

WSLogin

The WSLogin module maps authentication aliases.

DefaultPrincipalMapping

The JAAS configuration maps an authentication alias to its userid

and password.

Host:

The name of the host on which the WebSphere MQ queue manager runs, for client connection only.

 Data type String

Default Null

Range A valid TCP/IP hostname

Port:

The TCP/IP port number used for connection to the WebSphere MQ queue manager, for client connection

only.

 This port must be configured on the WebSphere MQ queue manager.

 Data type Integer

Default Null

Range A valid TCP/IP port number, configured on the WebSphere MQ queue

manager.

Transport type:

Specifies whether to use the WebSphere MQ client connection or JNI bindings for connection to the

WebSphere MQ queue manager. WebSphere MQ as the JMS provider controls the communication

protocols between JMS clients and JMS servers. Tune the transport type when you are using non-ASF

nonpersistent, non-durable, non-transactional messaging or when you want to satisfy security issues and

the client is local to the queue manager node.

 Data type Enum

Units Not applicable

Default BINDINGS

Chapter 8. Developing WebSphere applications 1317

Range BINDINGS

JNI bindings are used to connect to the queue manager. BINDINGS

is a shared memory protocol and can only be used when the queue

manager is on the same node as the JMS client and comes at some

security risks that should be addressed through the use of EJB roles.

CLIENT

WebSphere MQ client connection is used to connect to the queue

manager. CLIENT is a typical TCP-based protocol.

DIRECT

For a WebSphere MQ message broker using DIRECT mode.

DIRECT is a lightweight sockets protocol used in non-transactional,

non-durable and non-persistent Publish/Subscribe messaging.

DIRECT works only for clients and message-driven beans using the

non-ASF protocol.

 The type of connection to the message broker depends on the value

of the PROXYHOSTNAME property, according to the following rules:

v If the PROXYHOSTNAME property is set to the empty string, a

direct connection is made to the broker identified by the

HOSTNAME and PORT.

v If the PROXYHOSTNAME property is set to a value other than the

empty string, a direct connection is made to the broker through

the proxy server identified by this property and the PROXYPORT

property.

Recommended DIRECT is the fastest transport type and should be used where possible. Use

BINDINGS when you want to satisfy additional security tasks and the queue

manager is local to the JMS client. QUEUED is fallback for all other cases.

Note: WebSphere MQ 5.3 before CSD2 with the DIRECT setting can lose

messages when used with message-driven beans and under load. This also

happens with client-side based applications unless the broker’s

maxClientQueueSize is set to 0. You can set this to 0 with the command

#wempschangeproperties WAS_nodeName_server1 -e default -o

DynamicSubscriptionEngine -n maxClientQueueSize -v 0 -x

executionGroupUUID, where executionGroupUUID can be found by starting the

broker and looking in the Event Log/Applications for event 2201. This value is

usually ffffffff-0000-0000-000000000000.

Channel:

The name of the channel used for connection to the WebSphere MQ queue manager, for client connection

only.

 Data type String

Default Null

Range 1 through 20 ASCII characters

Queue manager:

The name of the WebSphere MQ queue manager for this connection factory. Connections created by this

factory connect to that queue manager.

 Data type String

Default Null

Range A valid WebSphere MQ queue manager name, as 1 through 48 ASCII

characters

1318 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Broker control queue:

The name of the publish/subscribe broker’s control queue, to which publisher and subscriber applications

send all command messages (except publications and requests to delete publications).

 Data type String

Default Null

Range 1 through 48 ASCII characters

Broker queue manager:

The name of the WebSphere MQ queue manager that provides the publish/subscribe message broker.

 Data type String

Default Null

Range 1 through 48 ASCII characters

Broker publication queue:

The name of the broker’s input queue (stream queue) that receives all publication messages for the

default stream. Applications can also send requests to delete publications on the default stream to this

queue.

 Data type String

Units En_US ASCII characters

Default Null

Range 1 through 48 ASCII characters

Broker subscription queue:

The name of the broker’s queue from which non-durable subscription messages are retrieved. The

subscriber specifies the name of the queue when it registers a subscription.

 Data type String

Default Null

Range 1 through 48 ASCII characters

Broker CC subscription queue:

The name of the broker’s queue from which non-durable subscription messages are retrieved for a

ConnectionConsumer. This property applies only for use of the Web container.

 Data type String

Default Null

Range 1 through 48 ASCII characters

Broker version:

Whether the message broker is provided by the WebSphere MQ MA0C Supportpac or newer versions of

WebSphere message broker products.

 Data type Enum

Default Advanced

Chapter 8. Developing WebSphere applications 1319

Range Advanced

The message broker is provided by newer versions of WebSphere

message broker products, such as WebSphere Business Integration

Message Broker and Event Broker.

Basic The message broker is provided by the WebSphere MQ MA0C

SupportPac (MQSeries - Publish/Subscribe) or MQSI working in

MA0C compatibility mode.

Model queue definition:

The name of the model queue definition that the broker can use to create dynamic queues for non-default

streams if the stream queue does not already exist

 The name of the model queue definition that the broker can use to create dynamic queues to receive

publications for streams other than the default stream. This is only used if the stream queue does not

already exist. If this model queue definition does not exist, all stream queues must be defined by the

administrator.

 Data type String

Default Null

Range 1 through 48 ASCII characters

Enable clone support:

Select this check box to enable clone support to allow the same durable subscription across topic clones.

 Data type Check box

Default Cleared

Range Selected

Clone support is enabled.

Cleared

Clone support is disabled.

If you select this property, you must also specify a value for the Client ID property.

Client ID:

The JMS client identifier used for connections to WebSphere MQ.

 Data type String

Range A valid JMS client ID, as ASCII characters

CCSID:

The coded character set identifier for use with the WebSphere MQ queue manager.

 This coded character set identifier (CCSID) must be one of the CCSIDs supported by WebSphere MQ.

 Data type String

Units Integer

Default Null

Range 1 through 65535

1320 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

For more information about supported CCSIDs, and about converting between message data from one

coded character set to another, see the WebSphere MQ System Administration and the WebSphere MQ

Application Programming Reference books. These are available from the WebSphere MQ messaging

multiplatform and platform-specific books Web pages; for example, at http://www-
3.ibm.com/software/ts/mqseries/library/manualsa/manuals/platspecific.html, the IBM Publications Center, or

from the WebSphere MQ collection kit, SK2T-0730.

XA Enabled:

Specifies whether the connection factory is for XA or non-XA coordination of messages and controls if the

application server uses XA. Enable XA if multiple resources are not used in the same transaction.

 If you clear this property (non-XA), the JMS session is still enlisted in a transaction, but uses the resource

manager local transaction calls (session.commit and session.rollback) instead of XA calls. This can lead to

an improvement in performance. However, this means that only a single resource can be enlisted in a

transaction in WebSphere Application Server.

Last participant support enables you to enlist one non-XA resource with other XA-capable resources.

 Data type Checkbox

Default Selected

Range Selected

The connection factory is for XA-coordination of messages

Cleared

The connection factory is for non-XA coordination of messages

Recommended Do not select to enable XA when the message queue received is the only

resource in the transaction. Enable XA if transactions involve other resources,

including other queues or topics.

Publish/subscribe cleanup level:

The level of cleanup provided by the Publish/subscribe cleanup utility

 To avoid the problems associated with non-graceful closure of subscriber objects, WebSphere MQ as a

JMS provider provides a Publish/Subscribe cleanup utility that attempts to detect any earlier JMS

publish/subscribe problems. If a large number of problems are detected, some performance degradation

may be observed while resources are cleaned up. This utility runs transparently on a background thread

and should not affect other WebSphere MQ operations.

 Data type Enum

Default SAFE

Chapter 8. Developing WebSphere applications 1321

http://www-3.ibm.com/software/ts/mqseries/library/manualsa/manuals/crosslatest.html.html
http://www-3.ibm.com/software/ts/mqseries/library/manualsa/manuals/crosslatest.html.html
http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi

Range

SAFE The Cleanup thread attempts to remove unconsumed subscription

messages, or temporary queues, for failed subscriptions. This mode

of cleanup does not interfere with the operation of other JMS

applications.

ASPROP

The style of cleanup to use is determined by the system property

com.ibm.mq.jms.cleanup, which is queried at JVM startup. This

property can be set on the java command-line using the -D option,

and should be set to NONE, SAFE or STRONG. Any other value

causes an exception. If not set, the property defaults to SAFE. This

allows easy JVM-wide change to the Cleanup level without needing

to update every topic connection factory used by the system.

NONE In this special mode, no cleanup is performed; and no cleanup

thread exists. Additionally, if the application is using the single-queue

approach, unconsumed messages can be left on the queue.

 This option can be useful if the application is distant from the queue

manager, and especially if it only publishes rather than subscribes.

However, some application should perform cleanup on the queue

manager to deal with any unconsumed messages - this could be a

JMS application with CLEANUP(SAFE) or CLEANUP(STRONG), or

the WebSphere MQ manual cleanup utility.

STRONG

The cleanup thread performs as CLEANUP(SAFE), but also clears

the SYSTEM.JMS.REPORT.QUEUE of any unrecognized messages.

Publish/subscribe cleanup interval:

The interval, in milliseconds, between background executions of the publish/subscribe cleanup utility.

 Data type Integer

Default 60000

Range 1 through 2147483647

Message selection:

Whether message selection is done at the broker or client.

 Data type Enum

Default BROKER

Range

BROKER

Message selection is done at the broker.

CLIENT

Message selection is done at the client.

Publish acknowledgement interval:

The interval, in number of messages, between publish requests that require acknowledgement from the

broker.

 Data type Integer

Default 25

Range 1 through 2147483647

1322 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Enable sparse subscriptions:

Select this option to support subscriptions that receive infrequent matching messages.

 Data type Checkbox

Default Cleared

Range

Selected

Subscriptions can receive infrequent matching messages. This value

requires that the subscription queue can be opened for browse.

Cleared

Sparse subscriptions are not supported. Subscriptions receive

frequent matching messages.

Publish/subscribe status interval:

The interval, in milliseconds, between transactions to refresh publish/subscribe status.

 Data type Integer

Default 60000

Range 1 through 2147483647

Persistent subscriptions store:

Where WebSphere MQ stores persistent data relating to active JMS subscriptions.

 Data type Enum

Default MIGRATE

Range

MIGRATE

This option dynamically selects the queue-based or broker-based

subscription store based on the levels of queue manager and

publish/subscribe broker installed. If both queue manager and broker

are capable of supporting SUBSTORE(BROKER), this behaves as

SUBSTORE(BROKER); otherwise it behaves as

SUBSTORE(QUEUE). Additionally, SUBSTORE(MIGRATE) transfers

durable subscription information from the queue-based subscription

store to the broker-based store.

QUEUE

Subscription information is stored on SYSTEM.JMS.ADMIN.QUEUE

and SYSTEM.JMS.PS.STATUS.QUEUE on the local queue manager.

BROKER

Subscription information is stored by the publish/subscribe broker

used by the application. This option requires recent levels of queue

manager and publish/subscribe broker. This subscription store

requires recent levels of both queue manager and publish/subscribe

broker. It is designed to provide improved resilience.

Enable multicast transport:

Whether or not this connection factory uses multicast transport.

 With multicast, messages are delivered to all consumers. This is useful in environments where there are a

large number of clients that all want to receive the same messages, because with multicast only one copy

of each message is sent. Multicast reduces the total amount of network traffic. Reliable multicast is

standard multicast with a reliability layer added.

Chapter 8. Developing WebSphere applications 1323

Data type Enum

Default NOTUSED

Range

NOTUSED

This connection factory does not use multicast transport.

ENABLED

This connection factory uses multicast transport, but does not

provide a reliable multicast connection.

ENABLED_IF_AVAILABLE

This connection factory uses multicast transport if the message

broker supports it.

ENABLED_RELIABLE

This connection factory uses reliable multicast transport

ENABLED_RELIABLE_IF_AVAILABLE

This connection factory uses reliable multicast transport if the

message broker supports it.

Direct broker authentication:

Whether the broker uses basic or certificate-based authentication for direct connections.

 This property selects the authentication on a direct connections (if the TRANSPORT property is set to

DIRECT).

 Data type Enum

Default NONE

Range

NONE Direct broker authentication is not used.

PASSWORD

Password-based authentication is used for direct connections.

Authentication is performed based on a user ID and password

provided by an authentication alias. The authentication alias used is

obtained from one of the following properties:

v Component-managed Authentication Alias, for

application-managed authentication.

v Container-managed Authentication Alias, for container-managed

authentication.

CERTIFICATE

Certificate-based authentication is used for direct connections. The

SSLPEERNAME and SSLCRL properties are used to perform the

authentication checks.

 You can use certificate-based authentication when connecting

directly to a WebSphere Business Integration Event Broker or

WebSphere Business Integration Message Broker broker.

Proxy host name:

Host name of the Web Scale proxy host.

 A direct connection is made to the proxy server, which forwards the connection request to the message

broker.

If the TRANSPORT property is set to DIRECT, the type of connection to the message broker depends on

the value of this property, according to the following rules:

1324 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

v If this property is set to the empty string, a direct connection is made to the broker identified by the

HOSTNAME and PORT.

v If this property is set to a value other than the empty string, a direct connection is made to the broker

through the proxy server identified by this property and the PROXYPORT property.

 Data type String

Default Null

Proxy port:

Port number of the Web Scale proxy port.

 A direct connection is made to this port on the proxy server identified by the PROXYHOSTNAME property,

which forwards the connection request to the message broker. For more information, see the description of

the PROXYHOSTNAME property.

 Data type Integer

Default 0

Enable return methods during shutdown:

Whether or not applications return from a method call if the queue manager has entered a controlled

shutdown.

 Data type Checkbox

Default Selected

Range Selected

Applications return from a method call if the

queue manager has entered a controlled

shutdown.

Cleared

Applications do not return from a method call if

the queue manager has entered a controlled

shutdown.

Local server address:

The range of local ports to be used when making a connection to a WebSphere MQ queue manager

 If a JMS application attempts to connect to a WebSphere MQ queue manager in client mode, a firewall

might allow only those connections that originate from specified ports or a range of ports. In this situation,

you can use this property to specify a port, or a range of points, that the application can bind to.

 Data type String

Default Null

Chapter 8. Developing WebSphere applications 1325

Range A string in the format:

[ip-addr][(low-port[,high-port])]

For example:

v 9.20.4.98

The channel binds to address 9.20.4.98 locally

v 9.20.4.98(1000)

The channel binds to address 9.20.4.98 locally and uses port 1000

v 9.20.4.98(1000,2000)

The channel binds to address 9.20.4.98 locally and uses a port in the

range 1000 to 2000

v (1000)

The channel binds to port 1000 locally

v (1000,2000)

The channel binds to a port in the range 1000 to 2000 locally

You can specify a host name instead of an IP address.

For direct connections, this property applies only when multicast is used and

the value of the property must not contain a port number. If it does contain a

port number, the connection is rejected. Therefore, the only valid values of the

property are null, an IP address, or a host name.

Polling interval:

The interval, in milliseconds, between scans of all receivers during asynchronous message delivery

 Data type Integer

Units milliseconds

Default 5000

Range 1 through 2147483647

Rescan interval:

The interval in milliseconds between which a topic is scanned to look for messages that have been added

to a topic out of order.

 This interval controls the scanning for messages that have been added to a topic out of order with respect

to a WebSphere MQ browse cursor.

 Data type Integer

Units milliseconds

Default 5000

Range 1 through 2147483647

SSL cipher suite:

The cipher suite to use for SSL connection to WebSphere MQ.

 Set this property to a valid cipher suite provided by your JSSE provider; it must match the CipherSpec

named on the SVRCONN channel named by the Channel property.

You must set this property if the SSL Peer Name property is to be set.

1326 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

SSL CRL:

A list of zero or more Certificate Revocation List (CRL) servers used to check for SSL certificate

revocation. (Use of this property requires a WebSphere MQ JVM at Java 2 version 1.4.)

 The value is a space-delimited list of entries of the form:

ldap://hostname:[port]

optionally followed by a single / (forward slash). If port is omitted, the default LDAP port of 389 is

assumed. At connect-time, the SSL certificate presented by the server is checked against the specified

CRL servers. For more information about CRL security, see the section “Working with Certificate

Revocation Lists” in the WebSphere MQ Security book; for example at:

http://publibfp.boulder.ibm.com/epubs/html/csqzas01/csqzas012w.htm#IDX2254.

SSL peer name:

For SSL, a distinguished name skeleton that must match the name provided by the WebSphere MQ queue

manager. The distinguished name is used to check the identifying certificate presented by the server at

connect-time.

 The SSL Peer Name property is ignored if SSL Cipher Suite property is not specified.

This property is a list of attribute name and value pairs separated by commas or semicolons. For example:

CN=QMGR.*, OU=IBM, OU=WEBSPHERE

The example given checks the identifying certificate presented by the server at connect-time. For the

connection to succeed, the certificate must have a Common Name beginning QMGR., and must have at

least two Organizational Unit names, the first of which is IBM and the second WEBSPHERE. Checking is

not case-sensitive.

For more details about distinguished names and their use with WebSphere MQ, see the WebSphere MQ

Security book; for example, the section “Distinguished Names” at

http://publibfp.boulder.ibm.com/epubs/html/csqzas01/csqzas010p.htm#HDRDCDN.

Enable MQ Connection Pooling:

Whether or not to use WebSphere MQ connection pooling.

 Data type Checkbox

Default Selected

Range

Selected

The connection factory uses WebSphere MQ

connection pooling. When a connection is no

longer required, instead of destroying it, it can

be pooled, and later reused. This can provide a

substantial performance enhancement for

repeated connections to the same queue

manager.

Cleared

The connection

factory does not

use WebSphere

MQ connection

pooling. When a

connection is no

longer required, it is

destroyed. To use

the same queue

manager a new

connection is

created.

Connection pool:

Chapter 8. Developing WebSphere applications 1327

http://publibfp.boulder.ibm.com/epubs/html/csqzas01/csqzas012w.htm#IDX2254
http://publibfp.boulder.ibm.com/epubs/html/csqzas01/csqzas010p.htm#HDRDCDN

Specifies an optional set of connection pool settings.

 Connection pool properties are common to all J2C connectors.

The application server pools connections and sessions with the JMS provider to improve performance.

This is independent from any WebSphere MQ connection pooling. You need to configure the connection

and session pool properties appropriately for your applications, otherwise you may not get the connection

and session behavior that you want.

Change the size of the connection pool if concurrent server-side access to the JMS resource exceeds the

default value. The size of the connection pool is set on a per queue or topic basis.

Session pools:

An optional set of session pool settings.

 This link provides a panel of optional connection pool properties, common to all J2C connectors.

The application server pools connections and sessions with the JMS provider to improve performance.

This is independent from any WebSphere MQ connection pooling. You need to configure the connection

and session pool properties appropriately for your applications, otherwise you may not get the connection

and session behavior that you want.

WebSphere MQ queue destination collection:

The queue destinations configured in the WebSphere MQ messaging provider for point-to-point messaging

with JMS queues.

 This panel shows a list of the WebSphere MQ queue destinations with a summary of their configuration

properties.

To view this administrative console page, use the administrative console to complete the following steps:

1. In the navigation pane, expand Resources → JMS Providers → WebSphere MQ.

2. If appropriate, in the content pane, change the scope of the WebSphere MQ messaging provider. If the

scope is set to node or server scope for a Version 5 node, the administrative console presents the

subset of resources and properties that are applicable to WebSphere Application Server Version 5.

3. In the content pane, under Additional Resources, click WebSphere MQ Queue Destinations. This

displays a list of any existing JMS queue destinations.

To create a new queue destination, click New.

To browse or change the properties of a queue destination, select its name in the list displayed.

To act on one or more of the queue destinations listed, click the check box next to the name of the queue,

then use the buttons provided.

WebSphere MQ queue settings:

Use this panel to browse or change the configuration properties of the selected JMS queue destination for

point-to-point messaging with WebSphere MQ as a messaging provider.

 A WebSphere MQ queue destination is used to configure the properties of a JMS queue. Connections to

the queue are created by the associated JMS queue connection factory for WebSphere MQ as a

messaging provider.

To view this page, use the administrative console to complete the following steps:

1328 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

1. In the navigation pane, expand Resources → Messaging Providers → WebSphere MQ.

2. If appropriate, in the content pane, change the scope of the WebSphere MQ messaging provider. If the

scope is set to node or server scope for a Version 5 node, the administrative console presents the

subset of resources and properties that are applicable to WebSphere Application Server Version 5.

3. In the content pane, under Additional Resources, click WebSphere MQ Queue Destinations. This

displays a list of any existing JMS queue destinations.

4. Click the name of the JMS queue destination that you want to work with.

A queue for use with the WebSphere MQ JMS provider has the following properties.

Note:

v The property values that you specify must match the values that you specified when configuring

WebSphere MQ for JMS resources. For more information about configuring WebSphere MQ for

JMS resources, see the WebSphere MQ Using Java book.

v In WebSphere MQ, names can have a maximum of 48 characters, with the exception of

channels which have a maximum of 20 characters.

Scope:

Specifies the level to which this resource definition is visible to applications.

 Resources such as messaging providers, namespace bindings, or shared libraries can be defined at

multiple scopes, with resources defined at more specific scopes overriding duplicates which are defined at

more general scopes.

The scope displayed is for information only, and cannot be changed on this panel. If you want to browse

or change this resource (or other resources) at a different scope, change the scope on the messaging

provider settings panel, then click Apply, before clicking the link for the type of resource.

 Data type String

Name:

The name by which the queue is known for administrative purposes within IBM WebSphere Application

Server.

 Data type String

JNDI name:

The JNDI name that is used to bind the queue into the name space.

 As a convention, use the fully qualified JNDI name; for example, in the form jms/Name, where Name is the

logical name of the resource.

This name is used to link the platform binding information. The binding associates the resources defined

by the deployment descriptor of the module to the actual (physical) resources bound into JNDI by the

platform.

 Data type String

Description:

A description of the queue, for administrative purposes

Chapter 8. Developing WebSphere applications 1329

Data type String

Default Null

Category:

A category used to classify or group this queue, for your IBM WebSphere Application Server administrative

records.

 Data type String

Persistence:

Whether all messages sent to the destination are persistent, non-persistent, or have their persistence

defined by the application

 Data type Enum

Default Application defined

Range Application defined

Messages on the destination have their

persistence defined by the application that put

them onto the queue.

Queue defined

Messages on the destination have their

persistence defined by the WebSphere MQ

queue definition properties.

Persistent

Messages on the destination are persistent.

Non persistent

Messages on the destination are not persistent.

Priority:

Whether the message priority for this destination is defined by the application or the Specified priority

property

 Data type Enum

Default Application defined

Range Application defined

The priority of messages on this destination is

defined by the application that put them onto the

destination.

Queue defined

Messages on the destination have their

persistence defined by the WebSphere MQ

destination definition properties.

Specified

The priority of messages on this destination is

defined by the Specified priority property.If you

select this option, you must define a priority you

must define a priority on the Specified Priority

property.

Specified priority:

1330 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

If the Priority property is set to Specified, type here the message priority for this destination, in the range

0 (lowest) through 9 (highest)

 Data type Integer

Units Message priority level

Default 0

Range 0 (lowest priority) through 9 (highest priority)

Expiry:

Whether the expiry timeout for this destination is defined by the application or the Specified Expiry

property, or messages on the destination never expire (have an unlimited expiry timeout)

 Data type Enum

Default APPLICATION DEFINED

Range APPLICATION DEFINED

The expiry timeout for messages on this

destination is defined by the application that put

them onto the destination.

SPECIFIED

The expiry timeout for messages on this

destination is defined by the Specified Expiry

property.If you select this option, you must define

a timeout on the Specified Expiry property.

UNLIMITED

Messages on this destination have no expiry

timeout, so those messages never expire.

Specified expiry:

If the Expiry Timeout property is set to Specified, type here the number of milliseconds (greater than 0)

after which messages on this destination expire.

 Data type Integer

Units Milliseconds

Default 0

Range Greater than or equal to 0

v 0 indicates that messages never timeout

v Other values are an integer number of milliseconds

Base queue name:

The name of the queue to which messages are sent, on the queue manager specified by the Base Queue

Manager Name property.

 Data type String

Default Null

Range 1 through 48 ASCII characters

Base queue manager name:

The name of the WebSphere MQ queue manager to which messages are sent

Chapter 8. Developing WebSphere applications 1331

This queue manager provides the queue specified by the Base Queue Name property.

 Data type String

Units En_US ASCII characters

Default Null

Range A valid WebSphere MQ Queue Manager name, as 1

through 48 ASCII characters

CCSID:

The coded character set identifier for use with the WebSphere MQ queue manager.

 This coded character set identifier (CCSID) must be one of the CCSIDs supported by WebSphere MQ.

 Data type String

Units Integer

Default Null

Range 1 through 65535

For more information about supported CCSIDs, and about converting between message data from one

coded character set to another, see the WebSphere MQ System Administration and the WebSphere MQ

Application Programming Reference books. These are available from the WebSphere MQ messaging

multiplatform and platform-specific books Web pages; for example, at

http://www.ibm.com/software/ts/mqseries/library/ manualsa/manuals/platspecific.html, the IBM Publications

Center, or from the WebSphere MQ collection kit, SK2T-0730.

Use native encoding:

Whether or not the destination should use native encoding (appropriate encoding values for the Java

platform).

 Data type Check box

Default Cleared

Range Cleared

Native encoding is not used, so specify the

properties below for integer, decimal, and floating

point encoding.

Selected

Native encoding is used (to provide appropriate

encoding values for the Java platform).

For more information about encoding properties, see the

WebSphere MQ Using Java document.

Integer encoding:

If native encoding is not enabled, select whether integer encoding is normal or reversed.

 Data type Enum

Default NORMAL

1332 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

http://www-3.ibm.com/software/ts/mqseries/library/manualsa/manuals/crosslatest.html.html
http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi
http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi

Range NORMAL

Normal integer encoding is used.

REVERSED

Reversed integer encoding is used.

For more information about encoding properties, see the

WebSphere MQ Using Java document.

Decimal encoding:

If native encoding is not enabled, select whether decimal encoding is normal or reversed.

 Data type Enum

Units Not applicable

Default NORMAL

Range NORMAL

Normal decimal encoding is used.

REVERSED

Reversed decimal encoding is used.

For more information about encoding properties, see the

WebSphere MQ Using Java document.

Floating point encoding:

If native encoding is not enabled, select the type of floating point encoding.

 Data type Enum

Default IEEENORMAL

Range IEEENORMAL

IEEE normal floating point encoding is used.

IEEEREVERSED

IEEE reversed floating point encoding is used.

S390 S390 floating point encoding is used.

For more information about encoding properties, see the

WebSphere MQ Using Java document.

Target client:

Whether the receiving application is JMS-compliant or is a traditional WebSphere MQ application

 Data type Enum

Default JMS

Range JMS The target is a JMS-compliant application.

MQ The target is a non-JMS, traditional WebSphere

MQ application.

Queue manager host:

The name of host for the queue manager on which the queue destination is created.

 Data type String

Default Null

Range A valid TCP/IP hostname

Chapter 8. Developing WebSphere applications 1333

Queue manager port:

The number of the port used by the queue manager on which this queue is defined.

 Data type String

Units A valid TCP/IP port number.

Default Null

Range A valid TCP/IP port number. This port must be configured

on the WebSphere MQ queue manager.

Server connection channel name:

The name of the channel used for connection to the WebSphere MQ queue manager.

 Data type String

Default Null

Range 1 through 20 ASCII characters

User name:

The user ID used, with the Password property, for authentication when connecting to the queue manager

to define the queue destination.

 If you specify a value for the User name property, you must also specify a value for the Password

property.

 Data type String

Default Null

Password:

The password, used with the User name property, for authentication when connecting to the queue

manager to define the queue destination.

 If you specify a value for the User name property, you must also specify a value for the Password

property.

 Data type String

Default Null

WebSphere MQ queue settings (MQ Config):

Use this panel to browse or change the configuration properties defined to WebSphere MQ for the

selected queue destination.

 To view this page, use the administrative console to complete the following steps:

1. In the navigation pane, expand Resources → JMS Providers → WebSphere MQ.

2. If appropriate, in the content pane, change the scope of the WebSphere MQ messaging provider. If the

scope is set to node or server scope for a Version 5 node, the administrative console presents the

subset of resources and properties that are applicable to WebSphere Application Server Version 5.

3. In the content pane, under Additional Resources, click WebSphere MQ Queue Destinations. This

displays a list of any existing JMS queue destinations.

4. Click the name of the JMS queue destination that you want to work with.

5. Under Additional Resources, click MQ Config.

1334 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

A WebSphere MQ queue destination is used to configure the properties of a JMS queue. A queue for use

with the WebSphere MQ JMS provider has the following extra properties defined to WebSphere MQ.

Notes

Note:

v To be able to browse or change these MQ Config properties, the WebSphere MQ Queue

Manager on which the queue resides must be configured for remote administration and be

running. You must also have installed the WebSphere MQ client. If you have not done this, the

administrative console displays messages like the following:

The WMQQueueDefiner MBean has encountered an error.

WMSG0331E: The MQ Client is required for this functionality, but it is not installed.

v These MQ Config properties can be used only to view or change the properties of local queues.

You cannot use MQ Config to administer alias or remote queues.

v Some properties displayed are read-only and cannot be changed.

v The property values that you specify must match the values that you specified when configuring

WebSphere MQ JMS resources. For more information about configuring WebSphere MQ JMS

resources, see the WebSphere MQ: Using Java book; for example from the WebSphere MQ

multiplatform library Web page at

http://www.ibm.com/software/ts/mqseries/library/manualsa/manuals/crosslatest.html.

v In WebSphere MQ, names can have a maximum of 48 characters, with the exception of

channels which have a maximum of 20 characters.

Base Queue Name:

The name of the local queue to which messages are sent, on the queue manager specified by the Base

Queue Manager Name property.

 Data type String

Base Queue Manager Name:

The name of the WebSphere MQ queue manager to which messages are sent.

 This queue manager provides the queue specified by the Base Queue Name property.

 Data type String

Queue Manager Host:

The name of host for the queue manager on which the queue destination is created.

 Data type String

Queue Manager Port:

The number of the port used by the queue manager on which this queue is defined.

 Data type Integer

Range A valid TCP/IP port number. This port must be configured

on the WebSphere MQ queue manager.

Server Connection Channel Name:

Chapter 8. Developing WebSphere applications 1335

http://www.ibm.com/software/ts/mqseries/library/manualsa/manuals/crosslatest.html

The name of the channel used for connection to the WebSphere MQ queue manager.

 Data type String

Range 1 through 20 ASCII characters

User ID:

The user ID used, with the Password property, for authentication when connecting to the queue manager

to define the queue destination.

 If you specify a value for the User ID property, you must also specify a value for the Password property.

 Data type String

Password:

The password, used with the User ID property, for authentication when connecting to the queue manager

to define the queue destination.

 If you specify a value for the User ID property, you must also specify a value for the Password property.

 Data type String

Description:

The WebSphere MQ queue description, for administrative purposes within WebSphere MQ.

 Data type String

Default Null

Range 1 through 64 ASCII characters.

Inhibit Put:

Whether or not put operations are allowed for this queue.

 Data type Enum

Default Put Inhibited

Range Put Allowed

Put operations are allowed for this queue.

Put Inhibited

Put operations are not allowed for this queue.

Persistence:

Whether messages on the queue are persistent or non-persistent.

 Data type Enum

Default Persistent

Range Persistent

Messages on the queue are persistent.

Non persistent

Messages on the queue are not persistent.

1336 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Cluster Name:

The name of the cluster to which the WebSphere MQ queue manager belongs.

 If you specify a value for Cluster Name, you should not specify a value for Cluster Name List. Cluster

names must conform to the rules described in the WebSphere MQ MQSC Command Reference book.

 Data type String

Default Null

Range A valid WebSphere MQ name for a queue manager

cluster, as 1 through 48 ASCII characters

Cluster Name List:

The name of the cluster namelist to which the WebSphere MQ queue manager belongs.

 If you specify a value for Cluster Name, you should not specify a value for Cluster Name List. Cluster

names must conform to the rules described in the WebSphere MQ MQSC Command Reference book.

 Data type String

Default Null

Range A valid WebSphere MQ name for a list of queue manager

clusters, as 1 through 48 ASCII characters

Default Binding:

The default binding to be used when the queue is defined as a cluster queue.

 Data type Enum

Default On Open

Range On Open

The queue handle is bound to a specific instance

of the cluster queue when the queue is opened.

Not Fixed

The queue handle is not bound to any particular

instance of the cluster queue. This allows the

queue manager to select a specific queue

instance when the message is put, and to

change that selection subsequently should the

need arise.

Inhibit Get:

Whether or not get operations are allowed for this queue.

 Data type Enum

Default Get Inhibited

Range Get Inhibited

Get operations are not allowed for this queue.

Get Allowed

Get operations are allowed for this queue.

Maximum Queue Depth:

The maximum number of messages allowed on the queue.

Chapter 8. Developing WebSphere applications 1337

Data type Integer

Units Number of messages

Default 0

Range A value greater than or equal to zero, and less than or

equal to 640 000.

For more information about the maximum value allowed,

see the WebSphere MQ MQSC Command Reference.

If this value is reduced, any messages that are already on

the queue are not affected, even if the number of

messages exceeds the new maximum.

Maximum Message Length:

The maximum length, in bytes, of messages on this queue.

 Data type Integer

Units Number of bytes

Default 0

Range A value greater than or equal to zero, and less than or

equal to the maximum message length for the queue

manager and WebSphere MQ platform. For more

information about the maximum value allowed, see the

WebSphere MQ MQSC Command Reference.

If this value is reduced, any message that is already on

the queue are not affected, even if the message length

exceeds the new maximum.

Shareability:

Whether multiple applications can get messages from this queue.

 Data type Enum

Default Shareable

Range Shareable

More than one application instance can get

messages from the queue.

Not Shareable

Only one application instance can get messages

from the queue.

Input Open Option:

The default share option for applications opening this queue for input

 Data type Enum

Default Exclusive

Range Exclusive

The open request is for exclusive input from the

queue.

Shared

The open request is for shared input from the

queue.

1338 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Message Delivery Sequence:

The order in which messages are delivered from the queue in response to get requests.

 Data type Enum

Default FIFO

Range FIFO Messages are delivered in first in first out (FIFO)

order. Priority is ignored for messages on this

queue.

Priority

Messages are delivered in first-in-first-out (FIFO)

order within priority. This is the default supplied

with WebSphere MQ, but your installation might

have changed it.

Backout Threshold:

The maximum number of times that a message can be backed out. If this threshold is reached, the

message is requeued on the backout queue specified by the Backout Requeue Name property.

 The WebSphere MQ queue manager keeps a record of the number of times that each message has been

backed out. When this number reaches a configurable threshold, the connection consumer requeues the

message on a named backout queue. If this requeue fails for any reason, the message is removed from

the queue and either requeued to the dead-letter queue, or discarded.

 Data type Integer

Default 0

Range 0 Never requeue messages

1 or more

The number of times that a message has been

backed, at which the message is requeued on a

named backout queue.

Backout Requeue Name:

The name of the backout queue to which messages are requeued if they have been backed out more than

the backout threshold.

 The WebSphere MQ queue manager keeps a record of the number of times that each message has been

backed out. When this number reaches a configurable threshold, the connection consumer requeues the

message on a named backout queue. If this requeue fails for any reason, the message is removed from

the queue and either requeued to the dead-letter queue, or discarded.

 Data type String

Default Null

Range 1 through 48 characters.

Harden Get Backout:

Whether hardening should be used to ensure that the count of the number of times that a message has

been backed out is accurate.

 Data type Enum

Default Hardened

Chapter 8. Developing WebSphere applications 1339

Range Hardened

The count is hardened.

Not Hardened

The count is not hardened. This is the default

supplied with WebSphere MQ, but your

installation might have changed it.

Default Priority:

The default message priority for this destination, used if no priority is provided with a message.

 Data type Integer

Default 0

Range 0 (lowest priority) through 9 (highest priority)

WebSphere MQ topic destination collection:

The JMS topic destinations configured in the WebSphere MQ messaging provider for point-to-point

messaging with JMS topics. Use this panel to create or delete topic destinations, or to select a topic

destination to view or change its configuration properties.

 This panel shows a list of JMS topic destinations with a summary of their configuration properties.

To view this administrative console page, use the administrative console to complete the following steps:

1. In the navigation pane, expand Resources → JMS Providers → WebSphere MQ.

2. If appropriate, in the content pane, change the scope of the WebSphere MQ messaging provider. If the

scope is set to node or server scope for a Version 5 node, the administrative console presents the

subset of resources and properties that are applicable to WebSphere Application Server Version 5.

3. In the content pane, under Additional Resources, click WebSphere MQ Topic Destinations. This

displays a list of any existing JMS topic destinations.

To create a new topic destination, click New.

To view or change the properties of a topic destination, select its name in the list displayed.

To act on one or more of the topic destinations listed, click the check box next to the name of the topic,

then use the buttons provided.

WebSphere MQ topic settings:

Use this panel to browse or change the configuration properties of the selected JMS topic destination for

publish/subscribe messaging with WebSphere MQ as a messaging provider.

 A WebSphere MQ topic destination is used to configure the properties of a JMS topic for WebSphere MQ

as a messaging provider. Connections to the topic are created by the associated topic connection factory.

To view this page, use the administrative console to complete the following steps:

1. In the navigation pane, expand Resources → JMS Providers → WebSphere MQ.

2. If appropriate, in the content pane, change the scope of the WebSphere MQ messaging provider. If the

scope is set to node or server scope for a Version 5 node, the administrative console presents the

subset of resources and properties that are applicable to WebSphere Application Server Version 5.

3. In the content pane, under Additional Resources, click WebSphere MQ Topic Destinations. This

displays a list of any existing JMS topic destinations.

4. Click the name of the JMS topic destination that you want to work with.

1340 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

A WebSphere MQ topic has the following properties.

Note:

v The property values that you specify must match the values that you specified when configuring

WebSphere MQ for JMS resources. For more information about configuring WebSphere MQ for

JMS resources, see the WebSphere MQ Using Java book.

v In WebSphere MQ, names can have a maximum of 48 characters, with the exception of

channels which have a maximum of 20 characters.

Scope:

Specifies the level to which this resource definition is visible to applications.

 Resources such as messaging providers, namespace bindings, or shared libraries can be defined at

multiple scopes, with resources defined at more specific scopes overriding duplicates which are defined at

more general scopes.

The scope displayed is for information only, and cannot be changed on this panel. If you want to browse

or change this resource (or other resources) at a different scope, change the scope on the messaging

provider settings panel, then click Apply, before clicking the link for the type of resource.

 Data type String

Name:

The name by which the topic is known for administrative purposes within IBM WebSphere Application

Server.

 Data type String

JNDI name:

The JNDI name that is used to bind the topic into the name space.

 As a convention, use the fully qualified JNDI name; for example, in the form jms/Name, where Name is the

logical name of the resource.

This name is used to link the platform binding information. The binding associates the resources defined

by the deployment descriptor of the module to the actual (physical) resources bound into JNDI by the

platform.

 Data type String

Description:

A description of the topic, for administrative purposes within IBM WebSphere Application Server.

 Data type String

Default Null

Category:

A category used to classify or group this topic, for your IBM WebSphere Application Server administrative

records.

Chapter 8. Developing WebSphere applications 1341

Data type String

Persistence:

Whether all messages sent to the destination are persistent, non-persistent, or have their persistence

defined by the application

 Data type Enum

Default APPLICATION DEFINED

Range APPLICATION DEFINED

Messages on the destination have their

persistence defined by the application that put

them onto the destination.

QUEUE DEFINED

Messages on the destination have their

persistence defined by the WebSphere MQ

destination definition properties.

PERSISTENT

Messages on the destination are persistent.

NON PERSISTENT

Messages on the destination are not persistent.

Priority:

Whether the message priority for this destination is defined by the application or the Specified Priority

property

 Data type Enum

Default APPLICATION DEFINED

Range APPLICATION DEFINED

The priority of messages on this destination is

defined by the application that put them onto the

destination.

QUEUE DEFINED

Messages on the destination have their

persistence defined by the WebSphere MQ

queue definition properties.

SPECIFIED

The priority of messages on this destination is

defined by the Specified Priority property. If you

select this option, you must define a priority on

the Specified Priority property.

Specified priority:

If the Priority property is set to Specified, type here the message priority for this destination, in the range

0 (lowest) through 9 (highest)

 Data type Integer

Units Message priority level

Default 0

Range 0 (lowest priority) through 9 (highest priority)

Expiry:

1342 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Whether the expiry timeout for this destination is defined by the application or the Specified Expiry

property, or messages on the queue never expire (have an unlimited expiry timeout)

 Data type Enum

Default APPLICATION DEFINED

Range APPLICATION DEFINED

The expiry timeout for messages on this

destination is defined by the application that put

them onto the destination.

SPECIFIED

The expiry timeout for messages on this

destination is defined by the Specified Expiry

property. If you select this option, you must

define a timeout on the Specified Expiry

property.

UNLIMITED

Messages on this destination have no expiry

timeout, so those messages never expire.

Specified expiry:

If the Expiry Timeout property is set to Specified, type here the number of milliseconds (greater than 0)

after which messages on this destination expire.

 Data type Integer

Units Milliseconds

Default 0

Range Greater than or equal to 0

v 0 indicates that messages never timeout

v Other values are an integer number of milliseconds

Base topic name:

The name of the WebSphere MQ topic to which messages are sent.

 Data type String

Range Depends on the broker used. For details, see the

documentation for your broker; for example the

WebSphere MQ Event Broker library at

http://www-
3.ibm.com/software/ts/mqseries/library/manualsa/manuals/wsmqebv21.htm

CCSID:

The coded character set identifier for use with WebSphere MQ.

 This coded character set identifier (CCSID) must be one of the CCSIDs supported by WebSphere MQ.

 Data type String

Units Integer

Default Null

Range 1 through 65535

For more information about supported CCSIDs, and about converting between message data from one

coded character set to another, see the WebSphere MQ System Administration and the WebSphere MQ

Chapter 8. Developing WebSphere applications 1343

http://www-3.ibm.com/software/ts/mqseries/library/manualsa/manuals/wsmqebv21.html
http://www-3.ibm.com/software/ts/mqseries/library/manualsa/manuals/wsmqebv21.html

Application Programming Reference books. These are available from the WebSphere MQ messaging

multiplatform and platform-specific books Web pages; for example, at http://www-
3.ibm.com/software/ts/mqseries/library/manualsa/manuals/platspecific.html, the IBM Publications Center, or

from the WebSphere MQ collection kit, SK2T-0730.

Use native encoding:

Whether or not the destination should use native encoding (appropriate encoding values for the Java

platform).

 Data type Check box

Units Not applicable

Default Cleared

Range Cleared

Native encoding is not used, so specify the

properties below for integer, decimal, and floating

point encoding.

Selected

Native encoding is used (to provide appropriate

encoding values for the Java platform).

For more information about encoding properties, see the

WebSphere MQ Using Java document.

Integer encoding:

If native encoding is not enabled, select whether integer encoding is normal or reversed.

 Data type Enum

Default NORMAL

Range NORMAL

Normal integer encoding is used.

REVERSED

Reversed integer encoding is used.

For more information about encoding properties, see the

WebSphere MQ Using Java document.

Decimal encoding:

If native encoding is not enabled, select whether decimal encoding is normal or reversed.

 Data type Enum

Default NORMAL

Range NORMAL

Normal decimal encoding is used.

REVERSED

Reversed decimal encoding is used.

For more information about encoding properties, see the

WebSphere MQ Using Java document.

Floating point encoding:

If native encoding is not enabled, select the type of floating point encoding.

 Data type Enum

1344 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

http://www-3.ibm.com/software/ts/mqseries/library/manualsa/manuals/crosslatest.html.html
http://www-3.ibm.com/software/ts/mqseries/library/manualsa/manuals/crosslatest.html.html
http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi

Default IEEENORMAL

Range IEEENORMAL

IEEE normal floating point encoding is used.

IEEEREVERSED

IEEE reversed floating point encoding is used.

S390 S390 floating point encoding is used.

For more information about encoding properties, see the

WebSphere MQ Using Java document.

Target client:

Whether the receiving application is JMS-compliant or is a traditional WebSphere MQ application

 Data type Enum

Default JMS

Range JMS The target is a JMS-compliant application.

MQ The target is a non-JMS, traditional WebSphere

MQ application.

Broker durable subscription queue:

The name of the broker’s queue from which durable subscription messages are retrieved

 The subscriber specifies the name of the queue when it registers a subscription.

 Data type String

Default Null

Range 1 through 48 ASCII characters

Broker CC durable subscription queue:

The name of the broker’s queue from which durable subscription messages are retrieved for a

ConnectionConsumer. This property applies only for use of the Web container.

 Data type String

Default Null

Range 1 through 48 ASCII characters

Enable multicast:

Whether or not this topic destination uses multicast transport.

 With multicast, messages are delivered to all consumers. This is useful in environments where there are a

large number of clients that all want to receive the same messages, because with multicast only one copy

of each message is sent. Multicast reduces the total amount of network traffic. Reliable multicast is

standard multicast with a reliability layer added.

 Data type Enum

Default NOTUSED

Chapter 8. Developing WebSphere applications 1345

Range

NOTUSED

This destination does not use multicast transport.

ENABLED

This destination uses multicast transport, but

does not provide a reliable multicast connection.

ENABLED_IF_AVAILABLE

This destination uses multicast transport if the

message broker supports it.

ENABLED_RELIABLE

This destination uses reliable multicast transport

ENABLED_RELIABLE_IF_AVAILABLE

This destination uses reliable multicast transport

if the message broker supports it.

Configuring JMS resources for the WebSphere MQ messaging provider

Use the following tasks to configure the connection factories and destinations for the WebSphere MQ JMS

provider.

You only need to complete these tasks if WebSphere Application Server supports enterprise applications

that use JMS resources provided by WebSphere MQ. To enable use of resources provider by WebSphere

MQ, you must have installed and configured WebSphere MQ JMS support, as described in ″Installing and

configuring WebSphere MQ as the JMS provider″ in the information center.

You can use the WebSphere administrative console to configure JMS connections factories, JMS queues,

and JMS topics for WebSphere MQ as the messaging provider.

Using the administrative console, if you set the scope of the WebSphere MQ messaging provider to cell

scope or to node scope for a WebSphere Application Server version 6 node, you can configure JMS 1.1

resources and properties. This includes unified JMS connection factories for use by both point-to-point and

publish/subscribe JMS 1.1 applications. With JMS 1.1, this approach is preferred to the domain-specific

queue connection factory and topic connection factory. If you set the scope to a WebSphere Application

Server Version 5 node, you can only configure domain-specific JMS resources, and the subset of

properties that apply to WebSphere Application Server Version 5.

For more information about configuring JMS resources for the WebSphere MQ messaging provider, see

the following topics. These topics include optional steps for you to create a new JMS resource.

Configuring resources for WebSphere Application Server version 6:

v Configuring a unified JMS connection factory

v Configuring a JMS queue connection factory

v Configuring a JMS topic connection factory

v Configuring a JMS queue

v Configuring a JMS topic

v Enabling WebSphere MQ JMS connection pooling

Configuring a unified JMS connection factory, for WebSphere MQ:

Use this task to browse or configure a unified JMS connection factory for use with WebSphere MQ as a

messaging provider. This task contains an optional step for you to create a new unified JMS connection

factory.

 This topic describes how to configure a unified JMS connection factory for WebSphere MQ as a

messaging provider on an Application Server version 6 node. With JMS 1.1, this approach is preferred to

the domain-specific JMS queue connection factory and JMS topic connection factory.

1346 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

If you want to configure a JMS queue connection factory or topic factory, see the related tasks.

To browse or configure a unified JMS connection factory for use with WebSphere MQ as a messaging

provider, use the administrative console to complete the following steps:

1. Display the WebSphere MQ messaging provider. In the navigation pane, expand Resources → JMS

Providers → WebSphere MQ.

2. Optional: Change the Scope setting to the level at which the connection factory is visible to

applications.

3. In the contents pane, under Additional Properties, click WebSphere MQ Connection Factories This

displays a table listing any existing unified JMS connection factories, with a summary of their

properties.

4. To browse or change the properties of an existing unified JMS connection factory, click its name in the

list. Otherwise, to create a new connection factory, complete the following steps:

a. Click New in the content pane.

b. Specify the following required properties. You can specify other properties, as described in a later

step.

Name The name by which this connection factory is known for administrative purposes within IBM

WebSphere Application Server.

JNDI name

The JNDI name that is used to bind the connection factory into the name space.

CCSID

The coded character set identifier for use with the WebSphere MQ queue manager; for

example: 850.

c. Click Apply. This defines the JMS connection factory to WebSphere Application Server, and

enables you to browse or change additional properties.

5. Optional: Change properties for the unified JMS connection factory, according to your needs.

6. Optional: Change connection pool properties and session pool properties, according to your needs.

7. Click OK.

8. Save any changes to the master configuration.

9. To have the changed configuration take effect, stop then restart the application server.

Configuring a JMS queue connection factory, for WebSphere MQ:

Use this task to browse or change a JMS queue connection factory for use with WebSphere MQ as a

messaging provider. This task contains an optional step for you to create a new JMS queue connection

factory.

 With JMS 1.1, the preferred approach is to use unified JMS connection factories instead of the

domain-specific JMS queue connection factory and JMS topic connection factory. If you want to configure

a unified JMS connection factory, see “Configuring a unified JMS connection factory, for WebSphere MQ”

on page 1346.

To browse or configure a JMS queue connection factory for use with WebSphere MQ as a messaging

provider, use the administrative console to complete the following steps:

1. Display the WebSphere MQ messaging provider. In the navigation pane, expand Resources → JMS

Providers → WebSphere MQ.

2. Optional: Change the Scope setting to the level at which the connection factory is visible to

applications.

3. In the contents pane, under Additional Properties, click WebSphere MQ Queue Connection Factories

This displays a table listing any existing JMS queue connection factories, with a summary of their

properties.

Chapter 8. Developing WebSphere applications 1347

4. To browse or change an existing JMS queue connection factory, click its name in the list. Otherwise, to

create a new connection factory, complete the following steps:

a. Click New in the content pane.

b. Specify the following required properties. You can specify other properties, as described in a later

step.

Name The name by which this connection factory is known for administrative purposes within IBM

WebSphere Application Server.

JNDI name

The JNDI name that is used to bind the connection factory into the name space.

CCSID

The coded character set identifier for use with the WebSphere MQ queue manager; for

example: 850.

c. Click Apply. This defines the connection factory to WebSphere Application Server, and enables

you to browse or change additional properties.

5. Optional: Change properties for the queue connection factory, according to your needs.

6. Optional: Change connection pool properties and session pool properties, according to your needs.

7. Click OK.

8. Save any changes to the master configuration.

9. To have the changed configuration take effect, stop then restart the application server.

Configuring a JMS topic connection factory, for WebSphere MQ:

Use this task to browse or configure a JMS topic connection factory for publish/subscribe messaging with

WebSphere MQ as a messaging provider. This task contains an optional step for you to create a new JMS

topic connection factory.

 With JMS 1.1, the preferred approach is to use unified JMS connection factories instead of the

domain-specific JMS queue connection factory and JMS topic connection factory. If you want to configure

a unified JMS connection factory, see “Configuring a unified JMS connection factory, for WebSphere MQ”

on page 1346.

To configure a topic connection factory for use with the WebSphere MQ as a messaging provider, use the

administrative console to complete the following steps:

1. Display the WebSphere MQ messaging provider. In the navigation pane, expand Resources → JMS

Providers → WebSphere MQ.

2. Optional: Change the Scope setting to the level at which the connection factory is visible to

applications.

3. In the contents pane, under Additional Properties, click WebSphere MQ Topic Connection Factories

This displays a table listing any existing JMS topic connection factories, with a summary of their

properties.

4. To browse or change an existing JMS topic connection factory, click its name in the list. Otherwise, to

create a new connection factory, complete the following steps:

a. Click New in the content pane.

b. Specify the following required properties. You can specify other properties, as described in a later

step.

Name The name by which this destination is known for administrative purposes within IBM

WebSphere Application Server.

JNDI Name

The JNDI name that is used to bind the destination into the name space.

1348 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

CCSID

The coded character set identifier for use with the WebSphere MQ queue manager; for

example: 850.

c. Click Apply. This defines the destination to WebSphere Application Server, and enables you to

browse or change additional properties.

5. Optional: Change properties for the topic connection factory, according to your needs.

6. Optional: Change connection pool properties and session pool properties, according to your needs.

7. Click OK.

8. Save any changes to the master configuration.

9. To have the changed configuration take effect, stop then restart the application server.

Configuring a JMS queue destination, for WebSphere MQ:

Use this task to browse or change a JMS queue destination for point-to-point messaging with WebSphere

MQ as a messaging provider. This task contains an optional step for you to create a new JMS queue

destination.

 To browse or configure a JMS queue destination for use with WebSphere MQ as a messaging provider,

use the administrative console to complete the following steps:

1. Display the WebSphere MQ messaging provider. In the navigation pane, expand Resources → JMS

Providers → WebSphere MQ.

2. Optional: Change the Scope setting to the level at which the JMS destination is visible to applications.

3. In the contents pane, under Additional Properties, click WebSphere MQ queue destinations This

displays a table listing any existing JMS queue destinations, with a summary of their properties.

4. To browse or change the properties of an existing JMS queue destination, click its name in the list.

Otherwise, to create a new queue, complete the following steps:

a. Click New in the content pane.

b. Specify the following required properties. You can specify other properties, as described in a later

step.

Name The name by which this queue destination is known for administrative purposes within IBM

WebSphere Application Server.

JNDI name

The JNDI name that is used to bind the queue destination into the name space.

Base Queue Name

The name of the queue to which messages are sent, on the queue manager specified by

the Base Queue Manager Name property.

CCSID

The coded character set identifier for use with the WebSphere MQ queue manager; for

example: 850.

c. Click Apply. This defines the queue destination to WebSphere Application Server, and enables you

to browse or change additional properties.

5. Optional: Change properties for the queue destination, according to your needs.

6. Optional: If you want WebSphere Application Server to try to use the WebSphere MQ queue

manager’s remote administration utilities to create the queue, configure the WebSphere MQ Queue

Connection properties.

If you have already created your underlying queue in WebSphere MQ using its administration tools

(such as runmqsc or MQ Explorer), you do not need to configure any of the WebSphere MQ Queue

Connection properties. You only need to configure these properties if you want WebSphere Application

Server to try to use the WebSphere MQ queue manager’s remote administration utilities to create the

queue.

Chapter 8. Developing WebSphere applications 1349

To be able to browse or change these MQ Config properties, you must have installed the WebSphere

MQ client. If you have not done this, the administrative console displays messages like the following:

The WMQQueueDefiner MBean has encountered an error.

WMSG0331E: The MQ Client is required for this functionality, but it is not installed.

Note: For any changes to these properties to take effect on the queue manager, the WebSphere MQ

Queue Manager on which the queue resides (or will reside) must be configured for remote

administration and be running.

For more details about these properties, see WebSphere MQ config properties for the queue

destination.

7. Click OK.

8. Save any changes to the master configuration.

9. To have the changed configuration take effect, stop then restart the application server.

Configuring a JMS topic destination, for WebSphere MQ:

Use this task to browse or change a JMS topic destination for publish/subscribe messaging with

WebSphere MQ as a messaging provider. This task contains an optional step for you to create a new JMS

topic destination.

 To configure a JMS topic destination for use with WebSphere MQ as a messaging provider, use the

administrative console to complete the following steps:

1. Display the WebSphere MQ messaging provider. In the navigation pane, expand Resources → JMS

Providers → WebSphere MQ.

2. Optional: Change the Scope setting to the level at which the JMS destination is visible to applications.

3. In the contents pane, under Additional Properties, click WebSphere MQ topic destinations This

displays a table listing any existing JMS topic destinations, with a summary of their properties.

4. To browse or change an existing JMS topic destination, click its name in the list. Otherwise, to create a

new topic destination, complete the following steps:

a. Click New in the content pane.

b. Specify the following required properties. You can specify other properties, as described in a later

step.

Name The name by which this connection factory is known for administrative purposes within IBM

WebSphere Application Server.

JNDI Name

The JNDI name that is used to bind the connection factory into the name space.

Base Topic Name

The name of the WebSphere MQ topic to which messages are sent.

CCSID

The coded character set identifier for use with the WebSphere MQ queue manager; for

example: 850.

c. Click Apply. This defines the topic destination to WebSphere Application Server, and enables you

to browse or change additional properties.

5. Optional: Change properties for the topic destination, according to your needs.

6. Click OK.

7. Save any changes to the master configuration.

8. To have the changed configuration take effect, stop then restart the application server.

Configuring WebSphere MQ connection pooling:

1350 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Use this task to browse or change properties of WebSphere MQ connection pooling for JMS connections

from an application server to WebSphere MQ as a JMS provider.

 To enable WebSphere MQ connection pooling for an application server, use the administrative console to

complete the following steps:

1. Display the Message Listener Service properties for the application server

a. In the navigation pane, click Servers → Application Servers

b. In the content pane, click the name of the application server.

c. Under Additional Properties, click Message Listener Service properties.

2. Select Custom Properties, to enable WebSphere MQ connection pooling, add the following custom

properties:

mqjms.pooling.threshold

The maximum number of unused connections in the pool.

mqjms.pooling.timeout

The timeout in milliseconds for unused connections in the pool.

3. Click OK.

4. Save any changes to the master configuration.

5. To have the changed configuration take effect, stop then restart the application server.

WebSphere MQ JMS connection pooling: To improve the overall performance of JMS within the system,

the message listener service enables the connection pooling facility provided by the WebSphere MQ JMS

implementation. This support does not affect the performance of a message listener, because it retains its

connections while listening on a destination, but does affect the overall JMS system performance. When a

connection is no longer required, WebSphere MQ can pool the connection then reuse it later instead of

destroying it.

Note: This support is only available for use with WebSphere MQ as a JMS provider.

To enable WebSphere MQ connection pooling and configure the characteristics of the WebSphere MQ

connection pool, see Enabling WebSphere MQ JMS connection pooling.

Securing WebSphere MQ messaging directories and log files

Use this task to restrict access to the /var/mqm directories and log files needed for WebSphere MQ as a

JMS provider.

You need to set the permissions described in this topic, to reduce the risk of severe security exposures.

Note: The /var file system is used to store all the security logging information for the system, and is used

to store the temporary files for email and printing. Therefore, it is critical that you maintain free

space in /var for these operations and prevent unauthorized access to the file system. If you do not

create a separate file system for messaging data, and /var fills up, all security logging will be

stopped on the system until some free space is available in /var. Also, email and printing will no

longer be possible until some free space is available in /var.

This procedure involves steps that you complete at different stages of installing and using IBM WebSphere

Application Server, as described below. The steps are also described at appropriate points in other tasks,

but are collected here for completeness.

This procedure applies only to the ordinary UNIX file system. If your site uses access-control lists,

secure the files by using that mechanism. Any site-specific requirements can affect the desired owner,

group and corresponding privileges. For example, on AIX, complete the following steps:

1. Before installing WebSphere MQ, create and mount a journalized file system called /var/mqm. Use a

partition strategy with a separate volume for the messaging data. This means that other system activity

is not affected if a large amount of messaging work builds up in /var/mqm.

Chapter 8. Developing WebSphere applications 1351

2. Install WebSphere MQ as a messaging provider.

As part of this stage, the installation program creates the /var/mqm/errors and

/var/mqm/qmgrs/@SYSTEM/errors directories used to hold messaging logging files.

3. Restrict access to the /var/mqm/errors directory and the logging files, by using the following

commands:

chmod 3777 /var/mqm/errors

chown mqm:mqm /var/mqm/errors

touch /var/mqm/errors/AMQERR01.LOG

chown mqm:mqm /var/mqm/errors/AMQERR01.LOG

chmod 666 /var/mqm/errors/AMQERR01.LOG

touch /var/mqm/errors/AMQERR02.LOG

chown mqm:mqm /var/mqm/errors/AMQERR02.LOG

chmod 666 /var/mqm/errors/AMQERR02.LOG

touch /var/mqm/errors/AMQERR03.LOG

chown mqm:mqm /var/mqm/errors/AMQERR03.LOG

chmod 666 /var/mqm/errors/AMQERR03.LOG

4. Restrict access to the /var/mqm/qmgrs/@SYSTEM/errors directory and the logging files, by using the

following commands:

chmod 3777 /var/mqm/qmgrs/@SYSTEM/errors

chown mqm:mqm /var/mqm/qmgrs/@SYSTEM/errors

touch /var/mqm/qmgrs/@SYSTEM/errors/AMQERR01.LOG

chown mqm:mqm /var/mqm/qmgrs/@SYSTEM/errors/AMQERR01.LOG

chmod 666 /var/mqm/qmgrs/@SYSTEM/errors/AMQERR01.LOG

touch /var/mqm/qmgrs/@SYSTEM/errors/AMQERR02.LOG

chown mqm:mqm /var/mqm/qmgrs/@SYSTEM/errors/AMQERR02.LOG

chmod 666 /var/mqm/qmgrs/@SYSTEM/errors/AMQERR02.LOG

touch /var/mqm/qmgrs/@SYSTEM/errors/AMQERR03.LOG

chown mqm:mqm /var/mqm/qmgrs/@SYSTEM/errors/AMQERR03.LOG

chmod 666 /var/mqm/qmgrs/@SYSTEM/errors/AMQERR03.LOG

5. For each application server that uses JMS resources provided by WebSphere MQ, restrict access to

the server’s /var/mqm/qmgrs/long_server_name/errors directory and its messaging logging files. You

should restrict access to the server’s directory and logging files, as soon after creating the application

server as possible.

To restrict access to the server’s directory and logging files, use the following commands:

chmod 3775 /var/mqm/qmgrs/long_server_name/errors

chown mqm:mqm /var/mqm/qmgrs/long_server_name/errors

touch /var/mqm/qmgrs/long_server_name/errors/AMQERR01.LOG

chown mqm:mqm /var/mqm/qmgrs/long_server_name/errors/AMQERR01.LOG

chmod 666 /var/mqm/qmgrs/long_server_name/errors/AMQERR01.LOG

touch /var/mqm/qmgrs/long_server_name/errors/AMQERR02.LOG

chown mqm:mqm /var/mqm/qmgrs/long_server_name/errors/AMQERR02.LOG

chmod 666 /var/mqm/qmgrs/long_server_name/errors/AMQERR02.LOG

touch /var/mqm/qmgrs/long_server_name/errors/AMQERR03.LOG

chown mqm:mqm /var/mqm/qmgrs/long_server_name/errors/AMQERR03.LOG

chmod 666 /var/mqm/qmgrs/long_server_name/errors/AMQERR03.LOG

Where long_server_name is the long name assigned to the server, in the following form:

WAS_nodename_server_name. For example, if you created an application server called server1 to run on

the node called appnode1, the long server name would be: WAS_appnode1_server1.

This task has restricted access to the /var/mqm directories and log files needed for WebSphere MQ as a

JMS provider, such that only the user ID mqm or members of the mqm user group have write access.

1352 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Using JMS resources of a generic provider

This topic is the entry-point into a set of topics about enabling WebSphere applications to use JMS

resources provided by a generic messaging provider (other than a WebSphere default messaging provider

or WebSphere MQ).

You can install a messaging provider other than the default messaging provider or WebSphere MQ.

WebSphere applications can use the JMS 1.1 interfaces or JMS 1.0.2 interfaces to access JMS resources

provided by the generic messaging provider, in addition to JMS resources provided by the default

messaging provider or WebSphere MQ (if installed).

You can use the WebSphere administrative console to administer the JMS connection factories and

destinations provided by generic messaging providers.

In a mixed-version WebSphere Application Server deployment manager cell, you can administer generic

messaging resources on both Version 6 and Version 5 nodes. For Version 5 nodes, the administrative

console presents the subset of resources and properties that are applicable to WebSphere Application

Server Version 5.

For more information about using a generic messaging provider to WebSphere Application Server, see the

following topics:

v Defining a generic messaging provider

v “Displaying administrative lists of generic messaging resources” on page 1354

v “Configuring JMS resources for a generic messaging provider” on page 1360

Defining a generic messaging provider

Use this task to define a new messaging provider to WebSphere Application Server, for use instead of the

default messaging provider or a WebSphere MQ as a messaging provider.

Before starting this task, you should have installed and configured the messaging provider and its

resources by using the tools and information provided with the messaging provider.

To define a new generic messaging provider to WebSphere Application Server, use the administrative

console to complete the following steps:

1. In the navigation pane, click JMS Providers → Generic. This displays the existing generic messaging

providers in the content pane.

2. To define a new generic messaging provider, click New in the content pane. Otherwise, to change the

definition of an existing messaging provider, click the name of the provider. This displays the properties

used to define the messaging provider in the content pane.

3. Specify the following required properties. You can specify other properties, as described in a later step.

Name The name by which this messaging provider is known for administrative purposes within IBM

WebSphere Application Server.

External initial context factory

The Java classname of the initial context factory for the JMS provider.

External provider URL

The JMS provider URL for external JNDI lookups.

4. Optional: Click Apply. This enables you to specify additional properties.

5. Optional: Specify other properties for the messaging provider.

Under Additional Properties, you can use the Custom Properties link to specify custom properties for

your initial context factory, in the form of standard javax.naming properties.

6. Click OK.

7. Save the changes to the master configuration.

8. To have the changed configuration take effect, stop then restart the application server.

Chapter 8. Developing WebSphere applications 1353

You can now configure JMS resources for the generic messaging provider, as described in “Configuring

JMS resources for a generic messaging provider” on page 1360.

Displaying administrative lists of generic messaging resources

Use this task with the WebSphere administrative console to display administrative lists of JMS resources

provided by a messaging provider other than the default messaging provider or WebSphere MQ.

You can use the WebSphere administrative console to display lists of the following types of JMS resources

provided by a generic messaging provider. You can use the panels displayed to select JMS resources to

administer, or to create or delete JMS resources (where appropriate).

To display administrative lists of JMS resources for a generic messaging provider, complete the following

general steps:

1. Start the WebSphere administrative console.

2. In the navigation pane, click Resources → JMS Providers → Generic

3. If appropriate, in the content pane, change the scope of the generic messaging provider. If the scope is

set to node or server scope for a Version 5 node, the administrative console presents the subset of

resources and properties that are applicable to WebSphere Application Server Version 5.

4. In the content pane, under Additional Resources, click the link for the type of JMS resource. This

displays a list of any existing resources of the selected type. For more information about the settings

panels displayed for resources, see the related reference topics.

JMS provider collection:

Use this panel to list JMS providers, or to select a JMS provider to view or change its configuration

properties.

 To view this administrative console page, click Resources → JMS providers → Generic

To view or change the properties of a JMS provider or its resources, select its name in the list displayed.

To define a new generic JMS provider, click New.

To act on one or more of the JMS providers listed, click the check boxes next to the names of the objects

that you want to act on, then use the buttons provided.

Name The name by which this JMS provider is known for administrative purposes.

Description

A description of this JMS provider for administrative purposes.

Generic JMS connection factory collection:

The JMS connection factories configured in the associated generic messaging provider for both

point-to-point and publish/subscribe messaging. Use this panel to create or delete JMS connection

factories, or to select a connection factory to browse or change its configuration properties.

 This panel shows a list of the generic JMS connection factories with a summary of their configuration

properties.

To view this administrative console page, use the administrative console to complete the following steps:

1. In the navigation pane, expand Resources → JMS Providers → Generic.

2. In the content pane, click the name of the generic messaging provider that you want to support the

JMS connection factory.

3. Under Additional Properties, click JMS connection factories.

To define a new JMS connection factory, click New.

1354 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

To view or change the properties of a JMS connection factory, select its name in the list displayed.

To act on one or more of the JMS connection factories listed, click the check boxes next to the names of

the objects that you want to act on, then use the buttons provided.

Generic JMS connection factory settings:

Use this panel to browse or change the configuration properties of the selected JMS connection factory for

use with the associated generic JMS provider. These configuration properties control how connections are

created to the JMS destinations on the provider.

 A JMS connection factory is used to create connections to JMS destinations. The JMS connection factory

is created by the associated JMS provider.

To view this page, use the administrative console to complete the following steps:

1. In the navigation pane, expand Resources → JMS Providers → Generic.

2. In the content pane, click the name of the messaging provider that you want to support the JMS

connection factory.

3. If appropriate, in the content pane, change the scope of the generic messaging provider.

4. Under Additional Properties, click JMS connection factories.

5. Click the name of the JMS connection factory that you want to work with.

A JMS connection factory for a generic JMS provider (other than the default messaging provider or

WebSphere MQ as a JMS provider) has the following properties:

Scope:

Specifies the level to which this resource definition is visible to applications.

 Resources such as messaging providers, namespace bindings, or shared libraries can be defined at

multiple scopes, with resources defined at more specific scopes overriding duplicates which are defined at

more general scopes.

The scope displayed is for information only, and cannot be changed on this panel. If you want to browse

or change this resource (or other resources) at a different scope, change the scope on the messaging

provider settings panel, then click Apply, before clicking the link for the type of resource.

 Data type String

Name:

The name by which this JMS connection factory is known for administrative purposes within IBM

WebSphere Application Server. The name must be unique within the associated messaging provider.

 Data type String

Type:

Whether this connection factory is for creating JMS queue destinations or JMS topic destinations.

 Select one of the following options:

QUEUE

A JMS queue connection factory for point-to-point messaging.

TOPIC

A JMS topic connection factory for publish/subscribe messaging.

Chapter 8. Developing WebSphere applications 1355

JNDI name:

The JNDI name that is used to bind the connection factory into the WebSphere Application Server name

space.

 As a convention, use the fully qualified JNDI name; for example, in the form jms/Name, where Name is the

logical name of the resource.

This name is used to link the platform binding information. The binding associates the resources defined

by the deployment descriptor of the module to the actual (physical) resources bound into JNDI by the

platform.

 Data type String

Description:

A description of this connection factory for administrative purposes within IBM WebSphere Application

Server.

 Data type String

Default Null

Category:

A category used to classify or group this connection factory, for your IBM WebSphere Application Server

administrative records.

 Data type String

External JNDI name:

The JNDI name that is used to bind the connection factory into the name space of the generic messaging

provider.

 As a convention, use the fully qualified JNDI name; for example, in the form jms/Name, where Name is the

logical name of the resource.

This name is used to link the platform binding information. The binding associates the resources defined

by the deployment descriptor of the module to the actual (physical) resources bound into JNDI by the

platform.

 Data type String

Component-managed Authentication Alias:

This alias specifies a user ID and password to be used to authenticate connection to a JMS provider for

application-managed authentication.

 This property provides a list of the J2C authentication data entry aliases that have been defined to

WebSphere Application Server. You can select a data entry alias to be used to authenticate the creation of

a new connection to the JMS provider.

If you have enabled global security for WebSphere Application Server, select the alias that specifies the

user ID and password used to authenticate the creation of a new connection to the JMS provider. The use

1356 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

of this alias depends on the resource authentication (res-auth) setting declared in the connection factory

resource reference of an application component’s deployment descriptors.

Container-managed Authentication Alias:

This alias specifies a user ID and password to be used to authenticate connection to a JMS provider for

container-managed authentication.

 This property provides a list of the J2C authentication data entry aliases that have been defined to

WebSphere Application Server. You can select a data entry alias to be used to authenticate the creation of

a new connection to the JMS provider.

If you have enabled global security for WebSphere Application Server, select the alias that specifies the

user ID and password used to authenticate the creation of a new connection to the JMS provider. The use

of this alias depends on the resource authentication (res-auth) setting declared in the connection factory

resource reference of an application component’s deployment descriptors.

Mapping-Configuration Alias:

The module used to map authentication aliases.

 This field provides a list of the modules that have been configured on the Global Security → JAAS

Configuration → Application Logins Configuration property. For more information about the mapping

configurations, see Java Authentication and Authorization service configuration entry settings.

 Data type Enum

Default Null

Range ClientContainer

The client container maps authentication aliases.

WSLogin

The WSLogin module maps authentication

aliases.

DefaultPrincipalMapping

The JAAS configuration maps an authentication

alias to its userid and password.

Connection pool:

Specifies an optional set of connection pool settings.

 Connection pool properties are common to all J2C connectors.

The application server pools connections and sessions with the messaging provider to improve

performance. You need to configure the connection and session pool properties appropriately for your

applications, otherwise you may not get the connection and session behavior that you want.

Change the size of the connection pool if concurrent server-side access to the JMS resource exceeds the

default value. The size of the connection pool is set on a per queue or topic basis.

Session pool:

An optional set of session pool settings.

 This link provides a panel of optional connection pool properties, common to all J2C connectors.

Chapter 8. Developing WebSphere applications 1357

The application server pools connections and sessions with the messaging provider to improve

performance. You need to configure the connection and session pool properties appropriately for your

applications, otherwise you may not get the connection and session behavior that you want.

Custom properties:

An optional set of name and value pairs for custom properties passed to the messaging provider.

Generic JMS destination collection:

The JMS destinations configured in the associated messaging provider for point-to-point and

publish/subscribe messaging. Use this panel to create or delete JMS destinations, or to select a JMS

destination to browse or change its configuration properties.

 To view this page, use the administrative console to complete the following steps:

1. In the navigation pane, click Resources → JMS Providers → Generic.

2. In the content pane, click the name of the messaging provider that you want to support the JMS

destination.

3. Under Additional Properties, click JMS destinations.

To define a new JMS destination, click New.

To view or change the properties of a JMS destination, select its name in the list displayed.

To act on one or more of the JMS destinations listed, click the check boxes next to the names of the

objects that you want to act on, then use the buttons provided.

Generic JMS destination settings:

Use this panel to browse or change the configuration properties of the selected JMS destination for use

with the associated JMS provider.

 A JMS destination is used to configure the properties of a JMS destination for the associated generic

messaging provider (not the default messaging provider or WebSphere MQ). Connections to the JMS

destination are created by the associated JMS connection factory.

To view this page, use the administrative console to complete the following steps:

1. In the navigation pane, click Resources → JMS Providers → Generic.

2. In the content pane, click the name of the messaging provider that you want to support the JMS

destination.

3. Under Additional Properties, click JMS destinations.

4. Click the name of the JMS destination that you want to work with.

A JMS destination for use with a generic messaging provider has the following properties.

Scope:

Specifies the level to which this resource definition is visible to applications.

 Resources such as messaging providers, namespace bindings, or shared libraries can be defined at

multiple scopes, with resources defined at more specific scopes overriding duplicates which are defined at

more general scopes.

The scope displayed is for information only, and cannot be changed on this panel. If you want to browse

or change this resource (or other resources) at a different scope, change the scope on the messaging

provider settings panel, then click Apply, before clicking the link for the type of resource.

1358 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Data type String

Name:

The name by which the queue is known for administrative purposes within IBM WebSphere Application

Server.

 Data type String

Type:

Whether this JMS destination is a queue (for point-to-point) or topic (for publish/subscribe).

 Select one of the following options:

Queue

A JMS queue destination for point-to-point messaging.

Topic A JMS topic destination for publish/subscribe messaging.

JNDI name:

The JNDI name that is used to bind the queue into the application server’s name space.

 As a convention, use the fully qualified JNDI name; for example, in the form jms/Name, where Name is the

logical name of the resource.

This name is used to link the platform binding information. The binding associates the resources defined

by the deployment descriptor of the module to the actual (physical) resources bound into JNDI by the

platform.

 Data type String

Description:

A description of the queue, for administrative purposes

 Data type String

Category:

A category used to classify or group this queue, for your IBM WebSphere Application Server administrative

records.

 Data type String

External JNDI name:

The JNDI name that is used to bind the queue into the application server’s name space.

 As a convention, use the fully qualified JNDI name; for example, in the form jms/Name, where Name is the

logical name of the resource.

This name is used to link the platform binding information. The binding associates the resources defined

by the deployment descriptor of the module to the actual (physical) resources bound into JNDI by the

Chapter 8. Developing WebSphere applications 1359

platform.

 Data type String

Configuring JMS resources for a generic messaging provider

Use the following tasks to configure the JMS connection factories and destinations for a generic

messaging provider (not the default messaging provider or WebSphere MQ).

You only need to complete these tasks if your WebSphere Application Server environment uses a

messaging provider other than the default messaging provider or WebSphere MQ to support enterprise

applications that use JMS. To enable use of such a generic messaging provider, you must have installed

and configured the messaging provider, as described in ″Defining a new JMS provider to WebSphere

Application Server″ in the information center.

To configure JMS resources for a generic messaging provider, complete the following tasks:

v Configuring a JMS connection factory

v Configuring a JMS destination

Configuring a JMS connection factory, generic JMS provider:

Use this task to browse or change the properties of a JMS connection factory for use with a generic JMS

provider (other than the default messaging provider or WebSphere MQ).

 To configure a JMS connection factory for use with a generic JMS provider, use the administrative console

to complete the following steps:

1. Display the generic messaging provider. In the navigation pane, expand Resources → JMS Providers

→ Generic.

2. Optional: Change the Scope setting to the level at which the connection factory is visible to

applications.

3. In the content pane, under Additional Properties, click JMS connection factories This displays a table

listing any existing JMS connection factories, with a summary of their properties.

4. To browse or change an existing JMS connection factory, click its name in the list. Otherwise, to create

a new connection factory, complete the following steps:

a. Click New in the content pane.

b. Specify the following required properties. You can specify other properties, as described in a later

step.

Name The name by which this JMS connection factory is known for administrative purposes

within IBM WebSphere Application Server.

Type Select whether the connection factory is for JMS queues (QUEUE) or JMS topics (TOPIC).

JNDI Name

The JNDI name that is used to bind the JMS connection factory into the WebSphere

Application Server name space.

External JNDI Name

The JNDI name that is used to bind the JMS connection factory into the name space of the

messaging provider.

c. Click Apply. This defines the JMS connection factory to WebSphere Application Server, and

enables you to browse or change additional properties.

5. Optional: Change properties for the JMS connection factory, according to your needs.

6. Click OK.

7. Save any changes to the master configuration.

8. To have the changed configuration take effect, stop then restart the application server.

1360 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Configuring a JMS destination, a generic JMS provider:

Use this task to browse or change the properties of a JMS destination for use with a generic JMS provider

(other than the default messaging provider or WebSphere MQ).

 To configure a JMS destination for use with a generic JMS provider, use the administrative console to

complete the following steps:

1. Display the generic messaging provider. In the navigation pane, expand Resources → JMS Providers

→ Generic.

2. Optional: Change the Scope setting to the level at which the connection factory is visible to

applications.

3. In the content pane, under Additional Properties, click JMS destinations This displays a table listing

any existing JMS destinations, with a summary of their properties.

4. To browse or change an existing JMS destination, click its name in the list. Otherwise, to create a new

destination, complete the following steps:

a. Click New in the content pane.

b. Specify the following required properties. You can specify other properties, as described in a later

step.

Name The name by which this JMS destination is known for administrative purposes within IBM

WebSphere Application Server.

Type Select whether the destination is for JMS queues (QUEUE) or JMS topics (TOPIC).

JNDI Name

The JNDI name that is used to bind the JMS destination into the WebSphere Application

Server name space.

External JNDI Name

The JNDI name that is used to bind the JMS destination into the name space of the

messaging provider.

c. Click Apply. This defines the JMS destination to WebSphere Application Server, and enables you

to browse or change additional properties.

5. Optional: Change properties for the JMS destination, according to your needs.

6. Click OK.

7. Save any changes to the master configuration.

8. To have the changed configuration take effect, stop then restart the application server.

Administering support for message-driven beans

Use these tasks to manage resources used to support message-driven beans. These tasks are in addition

to the tasks for administering resource adapters, JMS providers and the resources they provide.

You can use the WebSphere administrative console to configure the following resources for

message-driven beans:

v J2C activation specifications for JCA 1.5-compliant message-driven beans. Activation specifications

must be provided when the application’s resources are configured using the default messaging provider

or any generic J2C Resource Adapter that supports inbound messaging.

v The message listener service, listener ports, and listeners for EJB 2.0 message-driven beans deployed

against listener ports. Listener ports must be provided when using the JMS providers: V5 Default

Messaging, WebSphere MQ, or Generic.

You can update the configuration data at any time, but some updates only take effect when the

appropriate server is next started.

Chapter 8. Developing WebSphere applications 1361

For information about administering support for message-driven beans, see the following topics:

v Configuring JMS activation specifications, default messaging provider

v “Configuring a J2C activation specification”

v “Configuring a J2C administered object” on page 1364

v Configuring message listener resources for EJB 2.0 message-driven beans

For other information about administering JMS providers and the messaging resources they provide, see

the list of related topics.

Configuring a J2C activation specification

Use this task to configure a J2C activation specification used to deploy message-driven beans with an

external resource adapter.

Use this task if you want to use a message-driven bean as a listener on a Java Connector Architecture

(JCA) 1.5 resource adapter other than the default messaging JMS provider.

To configure a J2C activation specification for an external resource adapter, use the administrative console

to complete the following steps. This task contains an optional step for you to create a new activation

specification.

1. Display the external resource adapter. In the navigation pane, click Resources → Resource Adapters

→ adapter_name. This displays in the content pane a table of properties for the external resource

adapter, including links to the types of J2C resources that it provides.

2. Optional: Change the Scope setting to the scope level at which the activation specification is to be

visible to applications, according to your needs.

3. In the content pane, under the Activation specifications heading, click J2C Activation Specifications.

This lists any existing J2C activation specifications for the external resource adapter in the content

pane.

4. Display the properties of the J2C activation specification. If you want to display an existing J2C

activation specification, click one of the names listed.

Alternatively, if you want to create a new J2C activation specification, click New, then specify the

following required properties:

Name Type the name by which the activation specification is known for administrative purposes. The

JNDI name is automatically generated based on the value for the Name property.

Message listener type

Select the message listener type that this activation specification instance should support. This

list is based on the deployment descriptor of the external resource adapter.

Depending on the external resource adapter, there can be additional required properties that need to

be supplied. To provide values for these properties, click Custom properties. When creating a new

activation specification, you may need to click Apply before this custom property selection is available.

5. Specify properties for the activation specification, according to your needs .

6. Click OK.

7. Save your changes to the master configuration.

J2C Activation Specifications collection:

This page contains a list of J2C activation specifications for a resource adapter configuration and is used

to create new J2C activation specifications, to select J2C activation specifications for configuration

changes, or to delete J2C activation specifications.

 Activation specification definitions and classes are provided by a resource adapter when it is installed.

Using this information, the administrator can create and configure J2C activation specifications with JNDI

names that are then available for applications to use. The resource adapter uses a J2C activation

specification to configure a specific endpoint instance. Each application configuring one or more endpoints

1362 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

must specify the resource adapter that sends messages to the endpoint. The application must use the

activation specification to provide the configuration properties related to the processing of the inbound

messages.

To view this administrative console page, click Resources >Resource Adapters > resource_adapter >

J2C Activation Specifications.

Name:

Specifies the display name of the J2C activation specification instance.

 A string with no spaces meant to be a meaningful text identifier for the J2C activation specification.

 Data type String

JNDI name:

Specifies the Java Naming and Directory Interface (JNDI) name for the J2C activation specification

instance.

 Data type String

Description:

A free-form text string to describe the J2C activation specification instance.

 Data type String

Message Listener Type:

The Message Listener Type that is used by this activation specification.

 The list of available classes is provided by the resource adapter.

 Data type String

J2C Activation Specifications settings:

Use this page to specify the settings for a J2C activation specification.

 The resource adapter uses a J2C activation specification to configure a specific endpoint instance. Each

application configuring one or more endpoints must specify the resource adapter that sends messages to

the endpoint. The application must use the activation specification to provide the configuration properties

related to the processing of the inbound messages.

To view this administrative console page, click Resources >Resource Adapters > resource_adapter >

J2C Activation Specifications > activation_specification.

Name:

Specifies the display name of the J2C activation specification instance.

 A string with no spaces meant to be a meaningful text identifier for the J2C activation specification. Name

is required

Chapter 8. Developing WebSphere applications 1363

Data type String

JNDI name:

Specifies the Java Naming and Directory Interface (JNDI) name for the J2C activation specification

instance.

 The JNDI name is required. If you do not specify one, it is created from the Name field. If not specified,

the JNDI name defaults to eis/[name]

 Data type String

Description:

A free-form text string to describe the J2C activation specification instance.

 Data type String

Authentication alias:

This optional field is used to bind the J2C activation specification to an authentication alias (configured

through the security JAAS screens).

 This alias is used to access a user name and password that are set on the configured J2C activation

specification. This field is only meaningful if the J2C activation specification you are configuring has a

UserName and Password field.

 Data type Text

Message Listener Type:

The Message Listener Type used by this activation specification.

 For new objects, the list of available classes is provided by the resource adapter in a drop-down list. After

you create the activation specification, the field is a read only text field.

 Data type Drop-down list or text

Destination JNDIName:

The destination JNDIName field only appears when a message of type javax.jms.Destination with name

Destination is received.

Configuring a J2C administered object

Use this task to configure a J2C administered object used to configure objects with an external resource

adapter.

Use this task if you want to use a message-driven bean as a listener on a Java Connector Architecture

(JCA) 1.5 resource adapter other than the default messaging JMS provider.

To configure a J2C administered object for an external resource adapter, use the administrative console to

complete the following steps. This task contains an optional step for you to create a new administered

object.

1364 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

1. Display the external resource adapter. In the navigation pane, click Resources → Resource Adapters

→ adapter_name. This displays in the content pane a table of properties for the external resource

adapter, including links to the types of J2C resources that it provides.

2. Optional: Change the Scope setting to the scope level at which the activation specification is to be

visible to applications, according to your needs.

3. In the content pane, under the Activation specifications heading, click J2C Administered Objects. This

lists any existing J2C administered objects for the external resource adapter in the content pane.

4. Display the properties of the J2C administered object. If you want to display an existing J2C

administered object, click one of the names listed.

Alternatively, if you want to create a new J2C administered object, click New, then specify the following

required properties:

Name Type the name by which the J2C administered object is known for administrative purposes.

The JNDI name is automatically generated based on the value for the Name property.

Administered object class

Select the administered object class that this instance should support. This list is based on the

deployment descriptor of the external resource adapter.

Depending on the external resource adapter, there can be additional required properties that need to

be supplied. To provide values for these properties, click Custom properties. When creating a new

administered object, you may need to click Apply before this custom property selection is available.

5. Specify properties for the activation specification, according to your needs .

6. Click OK.

7. Save your changes to the master configuration.

J2C Administered Objects collection:

Use this page to specify administered object settings for a Resource Adapter.

 Administered object definitions and classes are provided by a resource adapter when you install it. Using

this information, the administrator can create and configure J2C administered objects with JNDI names

that are then available for applications to use. Some messaging styles may need applications to use

special administered objects for sending and synchronously receiving messages (through connection

objects using messaging style specific APIs). It is also possible that administered objects may be used to

perform transformations on an asynchronously received message in a message provider-specific way.

Administered objects can be accessed by a component by using either a resource environment reference

or a message destination reference (preferred).

To view this administered console page, click Resources >Resource Adapters > resource_adapter > J2C

Administered Objects.

JNDI Name:

Specifies the JNDI name of the administered object.

 Data type String

Name:

Specifies display name assigned to this administered object.

 Data type String

Description:

Chapter 8. Developing WebSphere applications 1365

Specifies a description for the administered object.

 Data type String

Administered Object Class:

Specifies the Administered Object class that is associated with this administered object. This class must be

one that is provided by the resource adapter.

 Data type String

J2C Administered Object settings:

Use this page to specify the settings for an administered object.

 Administered object definitions and classes are provided by a resource adapter when you install it. Using

this information, the administrator can create and configure J2C administered objects with JNDI names

that are then available for applications to use. Some messaging styles may need applications to use

special administered objects for sending and synchronously receiving messages (through connection

objects using messaging style specific APIs). It is also possible that administered objects may be used to

perform transformations on an asynchronously received message in a message provider-specific way.

Administered objects can be accessed by a component by using either a resource environment reference

or a message destination reference (preferred).

To view this administrative console page, click Resources >Resource Adapters > resource_adapter >

J2C Administered Objects > administered_object.

Name:

Specifies the name of the J2C administered object instance.

 A string with no spaces meant to be a meaningful text identifier for the administered object. This name is

required.

 Data type String

JNDI name:

Specifies the Java Naming and Directory Interface (JNDI) name that this administered object is bound

under.

 The JNDI name is required. If you do not specify one, it is created from the Name field. If not specified,

the JNDI name defaults to eis/[name]

 Data type String

Description:

Specifies a text description of the J2C administered object instance.

 Data type String

Administered Object Class:

1366 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

For new objects, the list of available classes is provided by the resource adapter in a drop-down list. You

can only select classes from this list.

 After you create the administered object, you cannot modify the Administered Object Class; it is read only.

 Data type Drop-down list or Text

Configuring message listener resources for message-driven beans

Use the following tasks to configure resources needed by the message listener service to support

message-driven beans for use with a JMS provider that does not have a JCA 1.5 resource adapter.

For JMS messaging, message-driven beans can use a JMS provider that has a JCA 1.5 resource adapter,

such as the default messaging provider that is part of WebSphere Application Server version 6. With a

JCA 1.5 resource adapter, you deploy EJB 2.1 message-driven beans as JCA resources to use a J2C

activation specification. If the JMS provider does not have a JCA 1.5 resource adapter, such as the V5

Default Messaging and WebSphere MQ, you must configure JMS message-driven beans against a listener

port (as in WebSphere Application Server version 5).

If you want to deploy an enterprise application to use JMS message-driven beans with a JMS provider that

does not have a JCA 1.5 resource adapter, use the following task descriptions:

v Configuring the message listener service

v Adding a new listener port

v Configuring a listener port

v Deleting a listener port

v Configuring security for EJB 2.0 message-driven beans

v Administering listener ports

Configuring the message listener service:

Use this task to configure the properties of the message listener service for an application server, to

support message-driven beans deployed against listener ports.

 If the JMS provider does not have a JCA 1.5 resource adapter, such as the V5 Default Messaging and

WebSphere MQ, you must configure JMS message-driven beans against a listener port (as in WebSphere

Application Server version 5).

If you want to deploy an enterprise application to use message-driven beans with listener ports, you can

use this task to browse or change the configuration of the message listener service for an application

server.

To configure the message listener service for an application server, use the administrative console to

complete the following steps:

1. Display the listener service settings page:

a. In the navigation pane, select Servers → Application Servers

b. In the content pane, click the name of the application server.

c. Under Communications, click Messaging → Message Listener Service

2. Optional: Browse or change the value of properties for the message-driven bean thread pool.

a. Click Thread Pool

b. Change the following properties, to suit your needs:

Minimum size

The minimum number of threads to allow in the pool.

Maximum size

The maximum number of threads to allow in the pool.

Chapter 8. Developing WebSphere applications 1367

Thread inactivity timeout

The number of milliseconds of inactivity that should elapse before a thread is reclaimed. A

value of 0 indicates not to wait and a negative value (less than 0) means to wait forever.

Note: The administrative console does not allow you to set the inactivity timeout to a

negative number. To do this you must modify the value directly in the config.xml file.

Allow thread allocation beyond maximum thread size

Select this check box to enable the number of threads to increase beyond the maximum

size configured for the thread pool.

c. Click OK.

3. Optional: Specify any of the following optional properties that you need, as Custom properties of the

message listener service:

NON.ASF.RECEIVE.TIMEOUT, MQJMS.POOLING.TIMEOUT, MQJMS.POOLING.THRESHOLD,

MAX.RECOVERY.RETRIES, and RECOVERY.RETRY.INTERVAL.

For more information about these custom properties, see Custom Properties.

To browse or change the properties, complete the following steps:

a. Click Custom properties

b. For each custom property, specify a value to suit your needs.

If you have not specified a property before:

1) Click New.

2) Type the name of the property.

3) Type the value of the property.

4) Click OK.

4. Save your changes to the master configuration.

5. To have the changed configuration take effect, stop then restart the Application Server.

Message listener service:

The message listener service is an extension to the JMS functions of the JMS provider. It provides a

listener manager that controls and monitors one or more JMS listeners, which each monitor a JMS

destination on behalf of a deployed message-driven bean.

 This panel displays links to the Additional Properties pages for Listener Ports, Thread Pool, and Custom

Properties for the message listener service.

To view this administrative console page, click Servers → Application Servers → application_server →

[Communications] Messaging → Message Listener Service

Custom Properties:

An optional set of name and value pairs for custom properties of the message listener service.

 You can use the Custom properties page to define the following properties for use by the message listener

service.

v NON.ASF.RECEIVE.TIMEOUT

v MQJMS.POOLING.TIMEOUT

v MQJMS.POOLING.THRESHOLD

v MAX.RECOVERY.RETRIES

v RECOVERY.RETRY.INTERVAL

Message listener port collection:

1368 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

The message listener ports configured in the administrative domain

 This panel displays a list of the message listener ports configured in the administrative domain. Each

listener port is used with a message-driven bean to automatically receive messages from an associated

JMS destination. You can use this panel to add new listener ports or to change the properties of existing

listener ports. For more information about the property fields for listener ports, see Listener port properties.

To view this administrative console page, click Servers → Application Servers → application_server →

[Messaging] Message Listener Service → Listener Ports

Listener port settings:

A listener port is used to simplify administration of the association between a connection factory,

destination, and deployed message-driven bean.

 Use this panel to view or change the configuration properties of the selected listener port.

To view this administrative console page, click Servers → Application Servers → application_server →

[Communications] Messaging → Message Listener Service → Listener Ports → listener_port

Name:

The name by which the listener port is known for administrative purposes.

 Data type String

Default Null

Initial state:

The state that you want the listener port to have when the application server is next restarted

 Data type Enum

Units Not applicable

Default Started

Range Started

When the application server is next started, the

listener port is started automatically.

Stopped

When the application server is next started, the

listener port is not started automatically. If

message-driven beans are to use this listener

port on the application server, the system

administrator must start the port manually or

select the Started value of this property then

restart the application server.

Description:

A description of the listener port, for administrative purposes within IBM WebSphere Application Server.

 Data type String

Default Null

Connection factory JNDI name:

Chapter 8. Developing WebSphere applications 1369

The JNDI name for the JMS connection factory to be used by the listener port; for example,

jms/connFactory1.

 Data type String

Default Null

Destination JNDI name:

The JNDI name for the destination to be used by the listener port; for example, jms/destn1.

 You cannot use a temporary destination for late responses.

 Data type String

Default Null

Maximum sessions:

Specifies the maximum number of concurrent sessions that a listener can have with the JMS server to

process messages.

 Each session corresponds to a separate listener thread and therefore controls the number of concurrently

processed messages. Adjust this parameter when the server does not fully use the available capacity of

the machine and if you do not need to process messages in a specific message order.

 Data type Integer

Units Sessions

Default 1

Range 1 through 2147483647

Recommended v If you want to process messages in a strict message

order, set the value to 1, so only one thread is ever

processing messages.

v If you want to process multiple messages

simultaneously (known as “message concurrency”), set

this property to a value greater than 1. Keep this value

as low as possible to prevent overloading client

applications. A good starting point for a 100% JMS

workload with short transaction times is 2 to 4 sessions

per processor. If longer running transactions exist, you

may need more sessions, which should be determined

by experimentation.

Maximum retries:

The maximum number of times that the listener tries to deliver a message before the listener is stopped, in

the range 0 through 2147483647.

 The maximum number of times that the listener tries to deliver a message to a message-driven bean

instance before the listener is stopped.

 Data type Integer

Units Retry attempts

Default 0 (no retries)

Range 0 (no retries) through 2147483647

1370 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Maximum messages:

The maximum number of messages that the listener can process in one transaction.

 If the queue is empty, the listener processes each message when it arrives. Each message is processed

within a separate transaction.

For the WebSphere V5 default messaging provider or WebSphere MQ as the JMS provider, if messages

start accumulating on the queue then the listener can start processing messages in batches. For generic

JMS providers, this property value is passed to the JMS provider but the effect depends on the JMS

provider.

 Data type Integer

Units Number of messages

Default 1

Range 1 through 2147483647

Recommended For the WebSphere default messaging providers or

WebSphere MQ as the JMS provider, if you want to

process multiple messages in a single transaction, then

set this value to more than 1. If messages start

accumulating on the queue, then a value greater than 1

enables multiple messages to be batch-processed into a

single transaction, and eliminates much of the overhead of

transactions on JMS messages.

Note:

v If one message in the batch fails processing with an

exception, the entire batch of messages is put back on

the queue for processing.

v Any resource lock held by any of the interactions for the

individual messages are held for the duration of the

entire batch.

v Depending on the amount of processing that messages

need, and if XA transactions are being used, setting a

value greater than 1 can cause the transaction to time

out. If an XA transaction does time out routinely

because processing multiple messages exceeds the

transaction timeout, reduce this property to 1 (to limit

processing to one message per transaction) or increase

your transaction timeout.

Message listener service custom properties:

Use this panel to view or change an optional set of name and value pairs for custom properties of the

message listener service.

 To view this administrative console page, click Servers → Application Servers → application_server →

[Communications] Messaging → Message Listener Service → Custom Properties

You can use the Custom properties page to define the following properties for use by the message listener

service.

v NON.ASF.RECEIVE.TIMEOUT

v MQJMS.POOLING.TIMEOUT

v MQJMS.POOLING.THRESHOLD

v MAX.RECOVERY.RETRIES

v RECOVERY.RETRY.INTERVAL

Chapter 8. Developing WebSphere applications 1371

NON.ASF.RECEIVE.TIMEOUT:

The timeout in milliseconds for synchronous message receives performed by message-driven bean listener

sessions in the non-ASF mode of operation.

 You should set this property to a non-zero value only if you want to enable the non-ASF mode of operation

for all message-driven bean listeners on the application server.

The message listener service has two modes of operation, Application Server Facilities (ASF) and

non-Application Server Facilities (non-ASF).

v The ASF mode is meant to provide concurrency and transactional support for applications. For

publish/subscribe message-drive beans, the ASF mode provides better throughput and concurrency,

because in the non-ASF mode the listener is single-threaded.

v The non-ASF mode is mainly for use with generic JMS providers that do not support JMS ASF, which is

an optional extension to the JMS specification. The non-ASF mode is also transactional but, because

the path length is shorter than the ASF mode, usually provides improved performance.

Use non-ASF if:

– Your generic JMS provider does not provide JMS ASF support

– You are using message-driven beans with WebSphere topic connections with the DIRECT port,

because the embedded publish/subscribe broker using that port does not support XA transactions or

JMS ASF.

– Message order is a strict requirement

 Data type Integer

Units Milliseconds

Default ASF mode (custom property not created)

Range 0 or greater milliseconds

0 non-ASF mode is disabled

1 or more

The timeout in milliseconds for non-ASF

message-driven bean listener synchronous

session receives

Recommended If a transaction timeout occurs, the message must recycle

causing extra work. If you want to use the non-ASF mode,

set this property to lower than the transaction timeout, but

leave spare at least the maximum duration of your

message-driven bean’s onMessage() method. For

example, if your message-driven bean’s onMessage()

method typically takes a maximum of 10 seconds, and the

transaction timeout is set to 120 seconds, you might set

the NON.ASF.RECEIVE.TIMEOUT property to no more

than 110000 (110000 milliseconds, that is 110 seconds).

MQJMS.POOLING.TIMEOUT:

The number of milliseconds after which a connection in the pool is destroyed if it has not been used.

 An MQSimpleConnectionManager allocates connections on a most-recently-used basis, and destroys

connections on a least-recently-used basis. By default, a connection is destroyed if it has not been used

for five minutes.

 Data type Integer

Units Milliseconds

Default 5 minutes

Range

1372 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

MQJMS.POOLING.THRESHOLD:

The maximum number of unused connections in the pool.

 An MQSimpleConnectionManager allocates connections on a most-recently-used basis, and destroys

connections on a least-recently-used basis. By default, a connection is destroyed if there are more than

ten unused connections in the pool.

 Data type Integer

Units Number of connections

Default 10

Range

MAX.RECOVERY.RETRIES:

The maximum number of times that the listener service tries to get a message from a listener port before

the associated listener is stopped, in the range 0 through 2147483647.

 Data type Integer

Units Retry attempts

Default 0 (no retries)

Range 0 (no retries) through 2147483647

RECOVERY.RETRY.INTERVAL:

The time in seconds between retry attempts by the listener service to get a message from a listener port.

 Data type Integer

Units Seconds

Default 10

Range 1 through 2147483647

Creating a new listener port:

Use this task to create a new listener port for the message listener service, so that message-driven beans

can be associated with the port to retrieve messages.

 Although you can continue to deploy an EJB 2.0 message-driven bean against a listener port (as in

WebSphere Application Server version 5), you are recommended to deploy such beans as JCA

1.5-compliant resources and to upgrade them to be EJB 2.1 message-driven beans.

If you want to deploy an enterprise application to use EJB 2.0 message-driven beans with listener ports,

use this task to create a new listener port for a message-driven bean to retrieve messages from.

To create a new listener port, use the administrative console to complete the following steps:

1. Display the collection list of listener ports:

a. In the navigation pane, select Servers → Application Servers

b. In the content pane, click the name of the application server.

c. Under Additional Properties, click Message Listener Service

d. Click Listener Ports.

2. Click New.

Chapter 8. Developing WebSphere applications 1373

3. Specify the following required properties:

Name The name by which the listener port is known for administrative purposes.

Connection factory JNDI name

The JNDI name for the JMS connection factory to be used by the listener port; for example,

jms/connFactory1

Destination JNDI name

The JNDI name for the destination to be used by the listener port; for example, jms/destn1.

4. Optional: Change other properties for the listener port, according to your needs.

5. Click OK.

6. Save your changes to the master configuration.

7. To have the changed configuration take effect, stop then restart the application server.

If enabled, the listener port is started automatically when a message-driven bean associated with that port

is installed.

Configuring a listener port:

Use this task to browse or change the properties of an existing listener port, used by message-driven

beans associated with the port to retrieve messages.

 Although you can continue to deploy an EJB 2.0 message-driven bean against a listener port (as in

WebSphere Application Server version 5), you are recommended to deploy such beans as JCA

1.5-compliant resources and to upgrade them to be EJB 2.1 message-driven beans.

If you have deployed an enterprise application to use EJB 2.0 message-driven beans with listener ports,

use this task to browse or change the configuration of a listener port that a message-driven bean retrieves

messages from.

To configure the properties of a listener port, use the administrative console to complete the following

steps:

1. Display the collection list of listener ports:

a. In the navigation pane, select Servers → Application Servers

b. In the content pane, click the name of the application server.

c. Under Additional Properties, click Message Listener Service

d. Click Listener Ports.

2. Click the name of the listener port that you want to work with. This displays the properties of the

listener port in the content pane.

3. Optional: Change properties for the listener port, according to your needs.

4. Click OK.

5. Save any changes to the master configuration.

6. To have a changed configuration take effect, stop then restart the application server.

Deleting a listener port:

Use this task to delete a listener port from the message listener service, to prevent message-driven beans

associated with the port from retrieving messages.

 To delete a listener port, use the administrative console to complete the following steps:

1. In the navigation pane, select Servers-> Application Servers This displays a table of the application

servers in the administrative domain.

1374 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

2. In the content pane, click the name of the application server. This displays the properties of the

application server in the content pane.

3. Under Communications, click Messaging → Message Listener Service This displays the Message

Listener Service properties in the content pane.

4. In the content pane, click Listener Ports. This displays a list of the listener ports.

5. In the content pane, select the check box for the listener port that you want to delete.

6. Click Delete. This action stops the port (needed to allow the port to be deleted) then deletes the port.

7. To save your configuration, click Save on the task bar of the Administrative console window.

8. To have the changed configuration take effect, stop then restart the application server.

Configuring security for message-driven beans that use listener ports:

Use this task to configure resource security and security permissions for EJB 2.0 message-driven beans

deployed to use listener ports.

 Messages arriving at a listener port have no client credentials associated with them. The messages are

anonymous.

To call secure enterprise beans from a message-driven bean, the message-driven bean needs to be

configured with a RunAs Identity deployment descriptor. Security depends on the role specified by the

RunAs Identity for the message-driven bean as an EJB component.

For more information about EJB security, see EJB component security. For more information about

configuring security for your application, see Assembling secured applications.

JMS connections used by message-driven beans can benefit from the added security of using J2C

container-managed authentication. To enable the use of J2C container authentication aliases and mapping,

define a J2C container-managed alias on the JMS connection factory definition that the message-driven

bean is using to listen upon (defined by the Connection factory JNDI name property of the listener port).

If defined, the listener uses the container-managed authentication alias for its JMSConnection security

credentials instead of any application-managed alias. To set the container-managed alias, use the

administrative console to complete the following steps:

1. To display the listener port settings, click Servers → Application Servers → application_server →

[Communications] Messaging → Message Listener Service → Listener Ports → listener_port

2. To get the name of the JMS connection factory, look at the Connection factory JNDI name property.

3. Display the JMS connection factory properties. For example, to display the properties of a WebSphere

queue connection factory provided by the default messaging provider, click Resources → JMS

Providers → Default Messaging Provider → → [Content pane] WebSphere Queue Connection

Factories → connection_factory

4. Set the Authentication alias property.

5. Click OK

Administering listener ports:

Use the following tasks to administer listener ports, which each define the association between a

connection factory, a destination, and a message-driven bean.

 You can use the WebSphere administrative console to administer listener ports, as described in the

following tasks.

v Adding a new listener port

Use this task to create a new listener port, to specify a new association between a connection factory, a

destination, and a message-driven bean. This enables deployed message-driven beans associated with

the port to retrieve messages from the destination.

Chapter 8. Developing WebSphere applications 1375

v Configuring a listener port

Use this task to browse or change the configuration properties of a listener port.

v Starting a listener port

Use this task to start a listener port manually.

v Stopping a listener port

Use this task to stop a listener port manually.

Note: If configured as enabled, a listener port is started automatically when a message-driven bean

associated with that port is installed. You do not normally need to start or stop a listener port

manually.

Starting a listener port:

Use this task to start a listener port on an application server, to enable the listeners for message-driven

beans associated with the port to retrieve messages.

 A listener is active, that is able to receive messages from a destination, if the deployed message-driven

bean, listener port, and message listener service are all started. Although you can start these components

in any order, they must all be in a started state before the listener can retrieve messages.

If configured as enabled, a listener port is started automatically when a message-driven bean associated

with that port is installed. However, you can start a listener port manually, as described in this topic.

When a listener port is started, the listener manager tries to start the listeners for each message-driven

bean associated with the port. If a message-driven bean is stopped, the port is started but the listener is

not started, and remains stopped. If you start a message-driven bean, the related listener is started.

To start a listener port on an application server, use the administrative console to complete the following

steps:

1. If you want the listener for a deployed message-driven bean to be able to receive messages at the

port, check that the message-driven bean has been started.

2. Display the collection list of listener ports:

a. In the navigation pane, select Servers → Application Servers

b. In the content pane, click the name of the application server.

c. Under Additional Properties, click Message Listener Service

d. Click Listener Ports.

3. Select the check box for the listener port that you want to start.

4. Click Start.

5. Save your changes to the master configuration.

Stopping a listener port:

Use this task to stop a listener port on an application server, to prevent the listeners for message-driven

beans associated with the port from retrieving messages.

 When you stop a listener port as described in this topic, the listener manager stops the listeners for all

message-driven beans associated with the port.

To stop a listener port on an application server, use the administrative console to complete the following

steps:

1. Display the collection list of listener ports:

a. In the navigation pane, select Servers → Application Servers

1376 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

b. In the content pane, click the name of the application server.

c. Under Additional Properties, click Message Listener Service

d. Click Listener Ports.

2. Select the check box for the listener port that you want to stop.

3. Click Stop.

4. Save your changes to the master configuration.

5. To have the changed configuration take effect, stop then restart the application server.

Message-driven beans - listener port components: The WebSphere Application Server support for

message-driven beans deployed against listener ports is based on JMS message listeners and the

message listener service, and builds on the base support for JMS. The main components of WebSphere

Application Server support for message-driven beans are described below:

The message listener service is an extension to the JMS functions of the JMS provider and provides a

listener manager, which controls and monitors one or more JMS listeners.

Each listener monitors either a JMS queue destination (for point-to-point messaging) or a JMS topic

destination (for publish/subscribe messaging).

A connection factory is used to create connections with the JMS provider for a specific JMS queue or topic

destination. Each connection factory encapsulates the configuration parameters needed to create a

connection to a JMS destination.

A listener port defines the association between a connection factory, a destination, and a deployed

message-driven bean. Listener ports are used to simplify the administration of the associations between

these resources.

When a deployed message-driven bean is installed, it is associated with a listener port and the listener for

a destination. When a message arrives on the destination, the listener passes the message to a new

instance of a message-driven bean for processing.

When an application server is started, it initializes the listener manager based on the configuration data.

The listener manager creates a dynamic session thread pool for use by listeners, creates and starts

listeners, and during server termination controls the cleanup of listener message service resources. Each

listener completes several steps for the JMS destination that it is to monitor, including:

v Creating a JMS server session pool, and allocating JMS server sessions and session threads for

incoming messages.

v Interfacing with JMS ASF to create JMS connection consumers to listen for incoming messages.

v If specified, starting a transaction and requesting that it is committed (or rolled back) when the EJB

method has completed.

v Processing incoming messages by invoking the onMessage() method of the specified enterprise bean.

Important file for message-driven beans

The following file in the WAS_HOME/temp directory is important for the operation of the WebSphere

Application Server messaging service, so should not be deleted. If you do need to delete the

WAS_HOME/temp directory or other files in it, ensure that you preserve the following file:

server_name-durableSubscriptions.ser

You should not delete this file, because the messaging service uses it to keep track of durable

subscriptions for message-driven beans. If you uninstall an application that contains a

message-driven bean, this file is used to unsubscribe the durable subscription.

Chapter 8. Developing WebSphere applications 1377

Mail, URLs, and other J2EE resources

Using mail

Using the JavaMail API, a code segment can be embedded in any Java 2 Enterprise Edition (J2EE)

application component, such as an EJB or a servlet, allowing the application to send a message and save

a copy of the mail to the Sent folder.

The following is a code sample that you would embed in a J2EE application:

javax.naming.InitialContext ctx = new javax.naming.InitialContext();

 javax.mail.Session mail_session = (javax.mail.Session)

 ctx.lookup("java:comp/env/mail/MailSession3");

 MimeMessage msg = new MimeMessage(mail_session);

 msg.setRecipients(Message.RecipientType.TO,

 InternetAddress.parse("bob@coldmail.net"));

 msg.setFrom(new InternetAddress("alice@mail.eedge.com"));

 msg.setSubject("Important message from eEdge.com");

 msg.setText(msg_text);

 Transport.send(msg);

 Store store = mail_session.getStore();

 store.connect();

 Folder f = store.getFolder("Sent");

 if (!f.exists()) f.create(Folder.HOLDS_MESSAGES);

 f.appendMessages(new Message[] {msg});

J2EE applications can use JavaMail APIs by looking up references to logically named mail connection

factories through the java:comp/env/mail subcontext that is declared in the application deployment

descriptor and mapped to installation specific mail session resources. As in the case of other J2EE

resources, this can be done in order to eliminate the need for the application to hard code references to

external resources.

1. Locate a resource through Java Naming and Directory Interface (JNDI). The J2EE specification

considers a mail session instance as a resource, or a factory from which mail transport and store

connections can be obtained. Do not hard code mail sessions (namely, fill up a Properties object, then

use it to create a javax.mai.Session object). Instead, you must follow the J2EE programming model of

configuring resources through the system facilities and then locating them through JNDI lookups.

In the previous sample code, the line javax.mail.Session mail_session = (javax.mail.Session)

ctx.lookup(″java:comp/env/mail/MailSession3″); is an example of not hard coding a mail session

and using a resource name located through JNDI. You can consider the lookup name,

mail/MailSession3, as a soft link to the real resource.

2. Define resource references while assembling your application. See ″Assembling applications″ in the

information center. You must define a resource reference for the mail resource in the deployment

descriptor of the component, because a mail session is referenced in the JNDI lookup. Typically, you

can use an assembly tool shipped with WebSphere Application Server.

When you create this reference, be sure that the name of the reference matches the name used in the

code. For example, the previous code uses java:comp/env/mail/MailSession3 in its lookup. Therefore

1378 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

the name of this reference must be mail/Session3, and the type of the resource must be

javax.mail.Session. After configuration, the deployment descriptor contains the following entry for the

mail resource reference:

<resource-reference>

<description>description</description>

<res-ref-name>mail/MailSession3</res-ref-name>

<res-type>javax.mail.Session</res-type>

<res-auth>Container</res-auth>

3. Configure mail providers and sessions. The sample code references a mail resource, the deployment

descriptor declares the reference, but the resource itself does not exist yet. Now you need to configure

the mail resource that is referenced by your application component. Notice that the mail session you

configure must have both its transport and mail access portions defined; the former required because

the code is sending a message, the latter because it also saves a copy to the local mail store. When

you configure the mail session, you need to specify a JNDI name. This is an important name for

installing your application and linking up the resource references in your application with the real

resources that you configure.

4. Install your application. You can install your application using either the administrative console or the

scripting tool. During installation, WebSphere Application Server inspects all resource references and

requires you to supply a JNDI name for each of them. This is not an arbitrary JNDI name, but the JNDI

name given to a particular, configured resource that is the target of the reference.

5. Manage existing mail providers and sessions. You can update and remove mail providers and

sessions.

To update mail providers and sessions:

a. Open the administrative console.

b. Click Resources > Mail Providers in the console navigation tree. Then, click Mail Provider >

mail_provider > Mail Session.

c. Click the mail_provider or mail_session that you want to modify. To remove a mail provider or mail

session, click Remove after making your selection.

d. Click Apply or OK.

e. Save the configuration.

6. Enable debugger for a mail session.

If your application has a client, you can update mail providers and mail sessions using the Application

Client Resource Configuration Tool (ACRCT).

JavaMail API

The JavaMail APIs provide a platform and protocol-independent framework for building Java-based mail

client applications.

WebSphere Application Server supports the JavaMail API, Version 1.2, and the JavaBeans Activation

Framework (JAF) Version 1.0. In WebSphere Application Server, the JavaMail API is supported in all Web

application components, namely:

v Servlets

v JavaServer Pages (JSP) files

v Enterprise beans

v Application clients

The JavaMail APIs are generic for sending and reading mail. They require service providers, known in

WebSphere Application Server as protocol providers, to interact with mail servers that run on pertaining

protocols.

For example, Simple Mail Transfer Protocol (SMTP) is a popular transport protocol for sending mail.

JavaMail applications can connect to an SMTP server and send mail through it by using this SMTP

protocol provider.

Chapter 8. Developing WebSphere applications 1379

In addition to service providers, the JavaMail API requires the Java Application Framework (JAF) to handle

mail content that is not plain text, including Multipurpose Internet Mail Extensions (MIME), URL pages, and

file attachments.

The JavaMail APIs, the JAF, the service providers and the protocols are shipped as part of WebSphere

Application Server using the following Sun licensed packages:

v mail.jar - Contains the JavaMail APIs, and the SMTP, IMAP, and POP3 service providers.

v activation.jar - Contains the JavaBeans Activation Framework.

Mail providers and mail sessions

A JavaMail service provider is a driver that supports JavaMail interaction with mail servers using a

particular mail protocol. WebSphere Application Server includes service providers, also known as protocol

providers, for mail protocols including Simple Mail Transfer Protocol (SMTP), Internet Message Access

Protocol (IMAP), and Post Office Protocol 3 (POP3).

A mail provider encapsulates a collection of protocol providers. For example, WebSphere Application

Server has a built-in mail provider that encompasses the three protocol providers: SMTP, IMAP and POP3.

These protocol providers are installed as the default and suffice for most applications.

If you have a particular application that requires custom protocol providers, you must first follow the steps

outlined in the ″JavaMail API Design Specification, V1.2, Chapter 5 - The Mail Session″ to install your own

protocol providers. See the article, Mail: Resources for learning, for a link to this documentation.

Mail sessions are represented by the javax.mail.Session class. A mail Session object authenticates

users, and controls users’ access to messaging systems.

To create platform-independent applications, use a resource factory reference to create a JavaMail

session. A resource factory is an object that provides access to resources in the deployed environment of

a program using the naming conventions defined by the Java Naming and Directory Interface (JNDI).

Ensure that every mail session is defined under a parent mail provider. Select a mail provider first and

then create your new mail session.

Mail migration tip

Parts of the JavaServer Page (JSP) 1.2 specification change the way the EmailBean class works with

Email.jsp.

The specifications state that the JSP container creates a JSP page implementation class for each JSP

page. The name of the JSP page implementation class is implementation-dependent. The JSP page

implementation object belongs to an implementation-dependent named package which can vary between

one JSP and another; therefore minimal assumptions should be made. The unnamed package should not

be used without explicit import of the class.

Following these specifications, you should place EmailBean.class in a package referred to it by the fully

qualified packageName in Email.jsp. Otherwise, Email.jsp is unable to find EmailBean.class.

JavaMail security permissions best practices

In many of its activities, the JavaMail API needs to access certain configuration files. The JavaMail and

JavaBeans Activation Framework binary packages themselves already contain the necessary configuration

files. However, the JavaMail API allows the user to define user-specific and installation-specific

configuration files to meet special requirements.

The two locations where such configuration files can exist are <user.home>and <java.home>/lib. For

example, if the JavaMail API needs to access a file named mailcap when sending a message, it first tries

to access <user.home>/.mailcap. If that attempt fails, either due to lack of security permission or a

1380 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

nonexistent file, the API continues to try<java.home> /lib/mailcap. If that attempts also fails, it tries

META-INF/mailcap in the class path, which actually leads to the configuration files contained in the

mail.jar and activation.jar files. WebSphere Application Server uses the general-purpose JavaMail

configuration files contained in the mail.jar and activation.jar files and does not put any mail

configuration files in <user.home>and <java.home>/lib. File read permission for both the mail.jar and

activation.jar files is granted to all applications to ensure proper functioning of the JavaMail API, as

shown in the following segment of the app.policy file:

grant codeBase "file:${application}" {

 // The following are required by Java mail

permission java.io.FilePermission "${was.install.root}${/}java${/}jre${/}lib${/}ext${/}mail.jar", "read";

permission java.io.FilePermission "${was.install.root}${/}java${/}jre${/}lib${/}ext${/}activation.jar", "read";

};

JavaMail code attempts to access configuration files at <user.home>and <java.home>/lib causing

AccessControlExceptions to be thrown, since there is no file read permission granted for those two

locations by default. This activity does not affect the proper functioning of the JavaMail API, but you might

see a large amount of JavaMail-related security exceptions reported in the system log, which might swamp

harmful errors that you are looking for. If this situation is a problem, consider adding two more permission

lines to the permission block above. This should eliminate most, if not all, JavaMail-related harmless

security exceptions from the log file. The application permission block in the app.policy file now looks like:

 grant codeBase "file:${application}" {

// The following are required by Java mail

permission java.io.FilePermission "${was.install.root}${/}java${/}jre${/}lib${/}ext${/}mail.jar", "read";

permission java.io.FilePermission "${was.install.root}${/}java${/}jre${/}lib${/}ext${/}activation.jar", "read";

permission java.io.FilePermission "${user.home}${/}.mailcap", "read";

permission java.io.FilePermission "${java.home}${/}lib${/}mailcap", "read";

};

Mail: Resources for learning

Use the following links to find relevant supplemental information about the JavaMail API. The information

resides on IBM and non-IBM Internet sites, whose sponsors control the technical accuracy of the

information.

These links are provided for convenience. Often, the information is not specific to the IBM WebSphere

Application Server product, but is useful all or in part for understanding the product. When possible, links

are provided to technical papers and Redbooks that supplement the broad coverage of the release

documentation with in-depth examinations of particular product areas.

Programming model and decisions

v JavaMail documentation

Programming specifications

v JavaMail 1.3 API documentation (Sun Java specifications)

JavaMail support for IPv6

WebSphere Application Server Version 6.0 and its JavaMail component support Internet Protocol Version

6.0 (IPv6), meaning that:

v Both can run on a pure IPv4 network, a pure IPv6 network, or a mixed IPv4 and IPv6 network.

v On either the pure IPv6 network or the mixed network, the JavaMail component works with mail servers

(such as the SMTP mail transfer agent, and the IMAP and POP3 mail stores) that are also IPv6

compatible. Additionally, a JavaMail component that is run on the mixed IPv4 and IPv6 network can

communicate with mail servers using IPv4.

Use of brackets with IPv6 addresses

Chapter 8. Developing WebSphere applications 1381

http://java.sun.com/products/javamail/index.html
http://java.sun.com/products/javamail/1.3/docs/javadocs/overview-summary.html

When you configure a mail session, you can specify the mail server hosts (also known as mail transport

and mail store hosts) with domain-qualified host names or numerical IP addresses. Using host names is

generally the preferred method. If you use IP addresses, however, consider enclosing IPv6 addresses in

square brackets to prevent parsing inaccuracies. See the following example:

[fe80::202:57ff:fec4:2334]

The JavaMail API requires a combination of many host names or IP addresses with a port number, using

the host:port number syntax . This extra colon can cause the port number to be read as part of an IPv6

address. Using brackets prevents your JavaMail implementation from processing the extra characters

erroneously.

Using URL resources within an application

Java 2 Enterprise Edition (J2EE) applications can use Uniform Resource Locators (URLs) by looking up

references to logically named URL connection factories through the java:comp/env/url subcontext, which

is declared in the application deployment descriptor and mapped to installation specific URL resources. As

in the case of other J2EE resources, this can be done in order to eliminate the need for the application to

hard code references to external resources. The process is the same used with other J2EE resources,

such as JDBC objects and JavaMail sessions.

1. Develop an application that relies on naming features.

2. Define resource references while assembling your application. See ″Assembling applications″ in the

information center. A URL resource that uses a built-in protocol, such as HTTP, FTP, or file, can use

the default URL provider. URL resources that use other protocols need to use a custom URL provider.

3. Configure your URL resources within an application.

a. Open the administrative console.

b. Click Resources>URL Providers in the console navigation tree.

c. Click URL_provider>URLs.

4. Optional: Configure URL providers and URLs within an application client using the Application Client

Resource Configuration Tool (ACRCT).

5. Manage URL providers and URL resources used by the deployed application. To update or remove

existing URL configurations:

a. Open the administrative console.

b. Click Resources > URL Providers in the console navigation tree.

c. Click URL Provider > URLs.

d. Select the URL to modify.

e. Modify the URL properties.

f. Click Apply or OK.

To remove URL providers and URLs, after step 2, Click URL_provider > URLs. Select the URL you

want to remove and click Delete. Then, click Apply or OK.

URLs

A Uniform Resource Locator (URL) is an identifier that points to an electronically accessible resource, such

as a directory file on a machine in a network, or a document stored in a database.

URLs appear in the format scheme:scheme_information.

You can represent a scheme as HTTP, FTP, file, or another term that identifies the type of resource and

the mechanism by which you can access the resource.

In a World Wide Web browser location or address box, a URL for a file available using HyperText Transfer

Protocol (HTTP) starts with http:. An example is http://www.ibm.com. Files available using File Transfer

Protocol (FTP) start with ftp:. Files available locally start with file:.

1382 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

The scheme_information commonly identifies the Internet machine making a resource available, the path

to that resource, and the resource name. The scheme_information for HTTP, FTP and file generally starts

with two slashes (//), then provides the Internet address separated from the resource path name with one

slash (/). For example,

http://www-4.ibm.com/software/webservers/appserv/library.html.

For HTTP and FTP, the path name ends in a slash when the URL points to a directory. In such cases, the

server generally returns the default index for the directory.

URL provider collection

Use this page to create new URL providers to handle URL protocols that are not supported by the IBM

Developer Kit For the Java™ Platform. You also have the option of selecting the default URL provider,

which uses the URL support provided by the kit. Any URL resource with protocols based on Java 2

Standard Edition 1.3.1, such as HyperText Transfer Protocol (HTTP) or File Transfer Protocol (FTP), can

use the default URL provider.

To view this administrative console page, click Resources > URL Providers.

Name:

Specifies the administrative name for the URL provider.

Description:

Describes the URL provider for your administrative records.

URL provider settings

Use this page create new URL providers.

To view this administrative console page, click Resources > URL Providers > URL_provider.

Name:

Specifies the administrative name for the URL provider.

Description:

Describes the URL provider, for your administrative records.

Class path:

Specifies paths or JAR file names which together form the location for the resource provider classes.

Stream handler class name:

Specifies fully qualified name of a user-defined Java class that extends the java.net.URLStreamHandler

class for a particular URL protocol, such as FTP.

Protocol:

Specifies the protocol supported by this stream handler. For example, NNTP, SMTP, FTP.

URL configuration collection

Use this page to view existing Uniform Resource Locator (URL) configurations, as well as begin

configuring new URLs that point to electronically accessible resources (such as directory files on a

machine in a network, or a document stored in a database).

Chapter 8. Developing WebSphere applications 1383

To view this administrative console page, click Resources > URL Providers > URL_provider > URLs.

Name:

Specifies the display name for the resource.

JNDI Name:

Specifies the JNDI name.

Description:

Specifies the description of the resource.

Category:

Specifies the category string, which you can use to classify or group the resource.

URL configuration settings

Use this page to configure Uniform Resource Locators (URLs) that point to electronically accessible

resources, such as a directory file on a machine in a network, or a document stored in a database.

To view this administrative console page, click Resources > URL Providers > URL_provider > URLs >

URL.

Name:

Specifies the display name for the resource.

JNDI Name:

Specifies the JNDI name.

Description:

Specifies the description of the resource.

Category:

Specifies the category string, which you can use to classify or group the resource.

Spec:

Specifies the string from which to form a URL.

URLs: Resources for learning

Use the following links to find relevant supplemental information about URLs. The information resides on

IBM and non-IBM Internet sites, whose sponsors control the technical accuracy of the information.

These links are provided for convenience. Often, the information is not specific to the IBM WebSphere

Application Server product, but is useful all or in part for understanding the product. When possible, links

are provided to technical papers and Redbooks that supplement the broad coverage of the release

documentation with in-depth examinations of particular product areas.

Programming specifications

v W3C Architecture - Naming and Addressing: URIs, URLs

v URL API documentation

1384 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

http://www.w3.org/addressing/
http://java.sun.com/products/jdk/1.2/docs/api/java/net/URL.html

Resource environment entries

This topic provides instructions on configuring new resource environment entries, which define

environment resources that are the binding targets for resource-environment-references in an application’s

deployment descriptor.

1. Configure a resource environment provider, which is a library that provides the implementation for a

environment resource factory. Begin by clicking Resources >Resource Environment Providers >

New. (See the New Resource Environment Provider topic for more information.)

2. After saving your resource environment provider, go to the Additional Properties heading and click

Resource environment entries. Click New to define a new resource environment entry. Refer to the

“Resource environment entry settings” on page 1387 topic for descriptions of the required fields.

3. You also might need to create a referenceable, which specifies the factory class name that converts

information in the name space into a class instance for your resource. To view the appropriate

administrative console page for referenceables, click Resources >Resource Environment Providers

> your_resource_environment_provider > Referenceables. Click New to begin the configuration

process. See the “Referenceables settings” on page 1388 topic for descriptions of the required fields.

Resource environment providers and resource environment entries

A resource environment reference maps a logical name used by the client application to the physical name

of an object.

Not all objects bound into the server JNDI namespace are intended for use by an application client. For

example, the WebSphere Application Server client run time does not support the use of Java 2 Connector

(J2C) objects on the client. The object needs to be remotable, and the client-side implementations must be

made available on the application client run-time classpath.

Resource environment references are different than resource references. Resource environment

references allow your application client to use a logical name to look up a resource bound into the server

JNDI namespace. A resource reference allows your application to use a logical name to look up a local

J2EE resource. The J2EE specification does not specify a particular implementation of a resource.

Resource Environment Provider collection

Use this page to view the resource environment providers.

To view this administrative console page, click Resources >Resource Environment Providers.

Name:

Specifies a text identifier for the resource environment provider.

 Data type String

Description:

Specifies a text string describing the resource environment provider.

 Data type String

Resource environment provider settings:

Use this page to create settings for a resource environment provider.

 To view this administrative console page, click Resources >Resource Environment Providers >

resource environment provider

Chapter 8. Developing WebSphere applications 1385

Name:

Specifies the name of the resource provider.

 Data type String

Description:

Specifies a text description for the resource provider.

 Data type String

New Resource Environment Provider:

Use this page to define the configuration for a library that provides the implementation for a environment

resource factory.

 To view this administrative console page, click Resources >Resource Environment Providers > New.

Name:

Specifies a text identifier for the resource environment provider.

 Data type String

Description:

Specifies a text string describing the resource environment provider.

 Data type String

Resource environment entries collection

Use this page to view resource environment entries.

An environment resource can be of any arbitrary type. See the latest EJB specification for more

information about resource environment references and environment resources.

To view this administrative console page, click Resources >Resource Environment Providers >

resource_environment_provider > Resource Environment Entries.

Name:

Specifies a text identifier that helps distinguish this resource environment entry from others.

 For example, you can use My Resource for the name.

 Data type String

JNDI Name:

Specifies the string to be used when looking up this environment resource using JNDI.

1386 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

This is the string to which you bind resource environment reference deployment descriptors.

 Data type String

Description:

Specifies text for information to help further identify and distinguish this resource

 Data type String

Category:

Specifies a category you can use to group environment resources according to some common feature.

 It is strictly an organizational property and has no effect on the function of the environment resource.

 Data type String

Resource environment entry settings:

Use this page to set resource environment entries, which define configuration for an environment resource

that is the binding target for a resource-environment-reference in some application’s deployment

descriptor.

 To view this administrative console page, click Resources >Resource Environment Providers >

resource_environment_provider > Resource Environment Entries > resource_environment_entry.

Name:

Specifies a display name for the resource.

 Data type String

JNDI name:

Specifies the JNDI name for the resource, including any naming subcontexts.

 This name is used as the linkage between the platform’s binding information for resources defined by a

module’s deployment descriptor and actual resources bound into JNDI by the platform.

 Data type String

Description:

Specifies a text description for the resource.

 Data type String

Category:

Specifies a category string that you can use to classify or group the resource.

 Data type String

Chapter 8. Developing WebSphere applications 1387

Referenceables:

Specifies the referenceable that holds the factoryClass object name of the factory that converts information

in the name space into a class instance for the type of resource desired, and for the class name of the

type to be returned.

 Data type Drop-down menu

Referenceables collection

Use this page to specify the class name of the factory that will convert information in the name space into

a class instance for the type of resource desired.

To view this administrative console page, click Resources >Resource Environment Providers >

resource_environment_provider > Referenceables.

Factory Classname:

Specifies a javax.naming.ObjectFactory implementation class name

 Data type String

Classname:

Specifies the Java type to which a referenceable provides access, for binding validation and to create the

reference.

 Data type String

Referenceables settings:

Use this page to set the class name of the factory that converts information in the name space into a class

instance for the type of resource desired

 To view this administrative console page, click Resources >Resource Environment Providers >

resource_environment_provider > Referenceables > referenceable.

Factory Classname:

Specifies a javax.naming.ObjectFactory implementation class name

 Data type String

Classname:

Specifies the Java type to which a Referenceable provides access, for binding validation and to create the

reference.

 Data type String

1388 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Configuring mail providers and sessions

WebSphere Application Server includes a default mail provider called the built-in provider. If you use the

default mail provider you only have to configure the mail session, which is the last step in this task. To use

the customized mail provider you must first create the mail provider and session:

1. Open the administrative console.

2. Click Resources > Mail Providers.

3. Create the mail provider.

a. Click New.

b. Type the name of the mail provider in the Name field.

c. Click Apply or OK.

4. Define the protocol provider for the mail provider.

a. Click mail_provider.

b. Click Protocol Providers.

c. Click New.

d. Type the protocol name in the Protocol field.

e. Type the class name in the Class name field.

f. Click Apply or OK.

Ensure that every mail session is defined under a parent mail provider. Select a mail provider first and

then create your new mail session.

5. Create the mail session.

a. Click mail_provider.

b. Click Mail Sessions.

c. Click New.

d. Type the mail session name in the Name field.

e. Type the JNDI name in the JNDI Name field.

f. Click Apply or OK.

6. Configure the mail session.

a. Click mail_provider.

b. Click Mail Sessions.

c. Click mail_session.

d. Make changes to appropriate fields.

e. Click Apply or OK.

If your application has a client you can configure JavaMail providers and sessions using the Application

Client Resource Configuration Tool (ACRCT).

Mail provider collection

Use this page to begin implementing mail capabilities by selecting a JavaMail service provider, also known

simply as a mail provider. The mail provider encapsulates a collection of protocol providers.

To view this administrative console page, click Resources > Mail Providers.

The built-in mail provider made available by WebSphere Application Server encompasses three protocol

providers: Simple Mail Transfer Protocol (SMTP), Internet Message Access Protocol (IMAP) and Post

Office Protocol (POP3). Select the built-in provider if these protocols provide the right support for your mail

system. If you have installed or plan to install different protocol providers, you must assign them a mail

provider by selecting New and typing values for the following settings:

Chapter 8. Developing WebSphere applications 1389

Name:

Specifies the name of the JavaMail resource provider.

Description:

Specifies the resource provider description.

Mail provider settings

Use this page to establish and edit settings for your JavaMail service provider (also simply called a mail

provider). The mail provider informs the application server of the protocols needed for your mail

application.

To view this administrative console page, click Resources > Mail Providers > mail_provider (or

Resources > Mail Providers >New).

Supply appropriate values for the following general mail provider settings. After clicking Apply, select

Protocol providers to designate the protocols for your mail system, or select Mail sessions to begin

configuring mail sessions.

Name:

Specifies the name of the JavaMail resource provider.

Description:

Specifies the resource provider description.

Protocol providers collection

Use this page to select or add a protocol provider that supports interaction between your JavaMail

application and mail servers. For example, your application might require the Simple Mail Transfer Protocol

(SMTP), which is a popular transport protocol for sending mail. Selecting that protocol provider allows your

JavaMail application to connect to an SMTP server, and send mail through the server.

To view this administrative console page, click Resources > Mail Providers > mail_provider > Protocol

Providers.

Protocol:

Specifies the configuration of the protocol provider for a given protocol.

Class name:

Specifies the implementation class for the specific protocol provider (also known as JavaMail service

provider).

Class path:

Specifies the path to the implementation class for the specific protocol provider (also known as JavaMail

service provider).

Type:

Specifies the type of protocol provider. Valid options are STORE or TRANSPORT.

Protocol providers settings

Use this page to configure protocol provider settings.

1390 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

To view this administrative console page, click Resources > Mail Providers > mail_provider > Protocol

Providers > protocol_provider.

Protocol:

Specifies the configuration of the protocol provider for a given protocol.

Class name:

Specifies the implementation class for the specific protocol provider (also known as JavaMail service

provider).

Class path:

Specifies the path to the implementation class for the specific protocol provider (also known as JavaMail

service provider).

Type:

Specifies the type of protocol provider. Valid options are STORE or TRANSPORT.

Mail session collection

Use this page to view mail sessions that are defined under the parent mail provider, or to configure new

mail sessions.

To view this administrative console page, click Resources > Mail Providers > mail_provider > Mail

Sessions.

Name:

Specifies the administrative name of the JavaMail session object.

JNDI Name:

Specifies the Java Naming and Directory Interface (JNDI) name for the resource, including any naming

subcontexts.

 This name provides the link between the platform binding information for resources defined in the client

application deployment descriptor and the actual resources bound into JNDI by the platform.

Description:

Specifies an optional description for your administrative records.

Category:

Specifies an optional collection for classifying or grouping sessions.

Mail session settings

Use this page to configure mail sessions.

To view this administrative console page, click Resources> Mail Providers > mail_provider > Mail

Sessions > mail_session.

Name:

Specifies the administrative name of the JavaMail session object.

Chapter 8. Developing WebSphere applications 1391

JNDI name:

Specifies the Java Naming and Directory Interface (JNDI) name for the resource, including any naming

subcontexts.

 This name provides the link between the platform binding information for resources that are defined in the

client application deployment descriptor and the actual resources bound into JNDI by the platform.

Description:

Specifies an optional description for your administrative records.

Category:

Specifies an optional collection for classifying or grouping sessions.

Mail transport host:

Specifies the server that is accessed when sending mail.

Mail transport protocol:

Specifies the transport protocol that is used when sending mail.

Mail transport user ID:

Specifies the user ID when the mail transport host requires authentication.

 This setting is not generally used for most mail servers. Leave this field blank unless you use a mail server

that requires a user ID and password.

Mail transport password:

Specifies the password when the mail transport host requires authentication.

 This setting is not generally used for most mail servers. Leave this field blank unless you use a mail server

that requires a user ID and password.

Enable strict Internet address parsing:

Specifies whether the recipient addresses must be parsed in strict compliance with RFC 822, which is a

specifications document issued by the Internet Architecture Board.

 This setting is not generally used for most mail applications. RFC 822 syntax for parsing addresses

effectively enforces a strict definition of a valid e-mail address. If you select this setting, your JavaMail

component adheres to RFC 822 syntax and rejects recipient addresses that do not parse into valid e-mail

addresses (as defined by the specification). If you do not select this setting, your JavaMail component

does not adhere to RFC 822 syntax and accepts recipient addresses that do not comply with the

specification. By default, this setting is not selected. You can view the RFC 822 specification at the

following Web address for the World Wide Web Consortium (W3C): http://www.w3.org/Protocols/rfc822/.

Mail from:

Specifies the mail originator.

 This value represents the Internet e-mail address that, by default, displays in the received message, as

either the From or the Reply-To address. The recipient’s reply comes to this address.

1392 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Mail store host:

Specifies the server that is accessed when receiving the mail.

 This setting, combined with the mail store user ID and password, represents a valid mail account. For

example, if the mail account is john_william@my.company.com, then the mail store host is

my.company.com.

Mail store protocol:

Specifies the protocol that is used when receiving mail; it can be Internet Message Access Protocol

(IMAP), Post Office Protocol 3 (POP3), or any store protocol for which an administrator has installed a

provider.

Mail store user ID:

Specifies the user ID for the given mail account.

 For example, if the mail account is john_william@my.company.com then the user is john_william.

Mail store password:

Specifies the password for the given mail account .

 For example, if the mail account is john_william@my.company.com then enter the password for ID

john_william.

Enable debug mode:

Toggles debug mode on and off for this mail session.

Security

Securing applications and their environments

WebSphere Application Server supports the J2EE model for creating, assembling, securing, and deploying

applications. This article provides a high-level description of what is involved in securing resources in a

J2EE environment. Applications are often created, assembled and deployed in different phases and by

different teams.

Consult the J2EE specifications for complete details.

 1. Plan to secure your applications and environment. For more information, see “Planning to secure your

environment” on page 1394. Complete this step before you install the WebSphere Application Server.

 2. Consider pre-installation and post-installation requirements. For more information, see “Implementing

security considerations at installation time” on page 1404. For example, during this step, you learn

how to protect security configurations after you install the product.

 3. Migrate your existing security systems. For more information, see ″Migrating security configurations

from previous releases″ in the information center.

 4. Develop secured applications. For more information, see Developing secured applications.

 5. Assemble secured applications. For more information, see Assembling secured applications.

Development tools, such as those included in the topic ″Assembling applications″ in the information

center, are used to assemble J2EE modules and to set the attributes in the deployment descriptors.

Most of the steps in assembling J2EE applications involve deployment descriptors; deployment

descriptors play a central role in application security in a J2EE environment.

Chapter 8. Developing WebSphere applications 1393

Application assemblers combine J2EE modules, resolve references between them, and create from

them a single deployment unit, typically an Enterprise Archive (EAR) file. Component providers and

application assemblers can be represented by the same person but do not have to be.

 6. Deploy secured applications. For more information, see “Deploying secured applications” on page

1767.

Deployer link entities referred to in an enterprise application are mapped to the runtime environment.

The deployer:

v Maps actual users and groups to application roles

v Installs the enterprise application into the environment

v Makes the final adjustments needed to run the application

 7. Test secured applications. For more information, see Testing security.

 8. Manage security configurations. For more information, see ″Administering security″ in the information

center.

 9. Improve performance by tuning security configurations. For more information, see ″Tuning security

configurations″ in the information center.

10. Troubleshoot security configurations. For more information, see ″Troubleshooting security

configurations″ in the information center.

Your applications and production environment are secured.

See ″Security: Resources for learning″ in the information center for more information on the WebSphere

Application Server security architecture.

Planning to secure your environment

There are several communication links from a browser on the Internet, through Web servers and product

servers, to the enterprise data at the back-end. This section examines some typical configurations and

common security practices. WebSphere Application Server security is built on a layered security

architecture as showed in the following figure. This section also examines the security protection that is

offered by each security layer and common security practice for good quality of protection in end-to-end

security. The following figure illustrates the building blocks that comprise the operating environment for

security within WebSphere Application Server:

1394 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

WebSphere Application Server resources

Access control

WebSphere Application Server security

Java security

Platform security

WebSphere security

J2EE security API

CORBA security (CSIv2)

Java 2 security

Java Virtual Machine (JVM) 1.4

Operating system security

• Naming

• User r egistry

• JMX m essage

beans

• HTML

• Servlet or JSP file

• Enterprise beans

• Web services

WebSphere Security Layers

Network security

v Operating System Security -

The security infrastructure of the underlying operating system provides certain security services for

WebSphere Application Server. These services include the file system security support that secure

sensitive files in the product installation for WebSphere Application Server. The system administrator

can configure the product to obtain authentication information directly from the operating system user

registry.

v Network Security - The Network Security layers provide transport level authentication and message

integrity and encryption. You can configure the communication between separate application servers to

use Secure Sockets Layer (SSL) and HTTPS. Additionally, you can use IP Security and Virtual Private

Network (VPN) for added message protection.

v JVM 1.4 - The JVM security model provides a layer of security above the operating system layer.

v Java 2 Security - The Java 2 Security model offers fine-grained access control to system resources

including file system, system property, socket connection, threading, class loading, and so on.

Application code must explicitly grant the required permission to access a protected resource.

v OMG CSIv2 Security - Any calls made among secure Object Request Brokers (ORB) are invoked over

the Common Security Interoperability Version 2 (CSIv2) security protocol that sets up the security

context and the necessary quality of protection. After the session is established, the call is passed up to

the enterprise bean layer. For backward compatibility, WebSphere Application Server supports the

Secure Authentication Service (SAS) security protocol, which was used in prior releases of WebSphere

Application Server and other IBM products.

v J2EE Security - The security collaborator enforces Java 2 Platform, Enterprise Edition (J2EE)-based

security policies and supports J2EE security APIs.

v WebSphere Security - WebSphere Application Server security enforces security policies and services

in a unified manner on access to Web resources, enterprise beans, and JMX administrative resources.

It consists of WebSphere Application Server security technologies and features to support the needs of

a secure enterprise environment.

WebSphere Application Server Network Deployment installation: The following figure shows a typical

multiple-tier business computing environment for a WebSphere Application Server Network Deployment

installation.

Important: There is a node agent instance on every computer node.

Chapter 8. Developing WebSphere applications 1395

Each product application server consists of a Web container, an EJB container, and the administrative

subsystem. The WebSphere Application Server deployment manager contains only WebSphere

administrative code and the administrative console. The administrative console is a special J2EE Web

application that provides the interface for performing administrative functions. WebSphere Application

Server configuration data is stored in XML descriptor files, which must be protected by operating system

security. Passwords and other sensitive configuration data can be modified using the administrative

console. However, you must protect these passwords and sensitive data. For more information, see

“Protecting plain text passwords” on page 1407.

The administrative console Web application has a setup data constraint that requires the administrative

console servlets and JSP files to be accessed only through an SSL connection when global security is

enabled.

After installation, the administrative console HTTPS port is configured to use DummyServerKeyFile.jks

and DummyServerTrustFile.jks with the default self-signed certificate. Using the dummy key and trust file

certificate is not safe and you need to generate your own certificate to replace dummy ones immediately. It

is more secure if you first enable global security and complete other configuration tasks after global

security is enforced.

Global and administrative security:

WebSphere Application Servers interact with each other through CSIv2 and Secure Authentication

Services (SAS) security protocols as well as HTTP and HTTPS protocols.

You can configure these protocols to use Secure Sockets Layer (SSL) when you enable WebSphere

Application Server global security. The WebSphere Application Server administrative subsystem in every

server uses Simple Object Access Protocol (SOAP) Java Management Extensions (JMX) connectors and

Remote Method Invocation over the Internet Inter-ORB Protocol (RMI/IIOP) JMX connectors to pass

administrative commands and configuration data. When global security is disabled, the SOAP JMX

connector uses HTTP protocol and the RMI/IIOP connector uses the TCP/IP protocol. When global

Machine A

Data tier

(optional)

Application

data

Deployment

manager

Clustered application servers

Cell

JMS server

Node agent

Machine C Machine D

Web

container

cluster

manager

EJB

container

cluster

manager

Web server

Machine B

Client

HTTP

requests

HTTP

server

Plug-in

Clients

Figure 6. Multiple-tier business computing environment.

1396 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

security is enabled, the SOAP JMX connector always uses HTTPS protocol. When global security is

enabled, you can configure the RMI/IIOP JMX connector to either use SSL or to use TCP/IP. It is

recommended that you enable global security and enable SSL to protect the sensitive configuration data.

Global security and administrative security configuration is at the cell level.

When global security is enabled, you can disable application security at each individual application server

by clearing the Enable global security option on the global security panel. The Global security panel is

accessed through the administrative console by clicking Security > Global security. Disabling application

server security does not affect the administrative subsystem in that application server, which is controlled

by the global security configuration only. Both administrative subsystem and application code in an

application server share the optional per server security protocol configuration. For more information, see

″Configuring server security″ in the information center.

Security for J2EE resources: Security for J2EE resources is provided by the Web container and the EJB

container. Each container provides two kinds of security: declarative security and programmatic security.

In declarative security, an application security structure includes data integrity and confidentiality,

authentication requirements, security roles, and access control. Access control is expressed in a form that

is external to the application. In particular, the deployment descriptor is the primary vehicle for declarative

security in the J2EE platform. WebSphere Application Server maintains J2EE security policy, including

information derived from the deployment descriptor and specified by deployers and administrators in a set

of XML descriptor files. At run time, the container uses the security policy that is defined in the XML

descriptor files to enforce data constraints and access control.

When declarative security alone is not sufficient to express the security model of an application, you might

use Programmatic login to make access decisions. When global security is enabled and application server

security is not disabled at the server level, J2EE applications security is enforced. When the security policy

is specified for a Web resource, the Web container performs access control when the resource is

requested by a Web client. The Web container challenges the Web client for authentication data if none is

present according to the specified authentication method, ensures the data constraints are met, and

determines whether the authenticated user has the required security role. The Web security collaborator

enforces role-based access control by using an access manager implementation. An access manager

makes authorization decisions that are based on security policy derived from the deployment descriptor.

An authenticated user principal can access the requested servlet or JavaServer Pages (JSP) file if it has

one of the required security roles. Servlets and JSP pages can use the HttpServletRequest methods

isUserInRole and getUserPrincipal.

When global security is enabled and application server security is not disabled, the EJB container enforces

access control on EJB method invocation.

The authentication takes place regardless of whether method permission is defined for the specific EJB

method. The EJB security collaborator enforces role-based access control by using an access manager

implementation. An access manager makes authorization decisions that are based on security policy

derived from the deployment descriptor. An authenticated user principal can access the requested EJB

method if it has one of the required security roles. EJB code can use the EJBContext methods

isCallerInRole and getCallerPrincipal. Use the J2EE role-based access control to protect valuable

business data from access by unauthorized users from both the Internet and the intranet. Refer to

Securing Web applications using an assembly tool and Securing enterprise bean applications.

Role-based security: WebSphere Application Server extends the security, role-based access control to

administrative resources including the JMX system management subsystem, user registries, and JNDI

name space. WebSphere administrative subsystem defines four administrative security roles:

Monitor role

A monitor can view the configuration information and status, but cannot make any changes.

Chapter 8. Developing WebSphere applications 1397

Operator role

An operator can trigger run-time state changes, such as start an application server or stop an

application, but cannot make configuration changes.

Configurator role

A configurator can modify the configuration information, but cannot change the state of the run

time.

Administrator role

An operator as well as a configurator, which additionally can modify sensitive security configuration

and security policy such as setting server ID and password, enable or disable global security and

Java 2 security, and map users and groups to the administrator role.

A user with the configurator role can perform most administrative work including installing new applications

and application servers. There are certain configuration tasks a configurator does not have sufficient

authority to do when global security is enabled, including modifying a WebSphere Application Server

identity and password, LTPA password and keys, and assigning users to administrative security roles.

Those sensitive configuration tasks require the administrative role because the server ID is mapped to the

administrator role.

WebSphere Application Server administrative security is enforced when global security is enabled. It is

recommended that WebSphere Application Server global security be enabled to protect administrative

subsystem integrity. Application server security can be selectively disabled if there is no sensitive

information to protect. For securing administrative security, refer to ″Assigning users to administrator roles″

and “Assigning users and groups to roles” on page 1768.

Java 2 security permissions: WebSphere Application Server uses the Java 2 security model to create a

secure environment to run application code. Java 2 security provides a fine-grained and policy-based

access control to protect system resources such as files, system properties, opening socket connections,

loading libraries, and so on. The J2EE Version 1.4 specification defines a typical set of Java 2 security

permissions that Web and EJB components expect to have. These permissions are shown in the following

table.

 Table 9. J2EE security permissions set for Web components

Security Permission Target Action

java.lang.RuntimePermission loadLibrary

java.lang.RuntimePermission queuePrintJob

java.net.SocketPermission * connect

java.io.FilePermission * read, write

java.util.PropertyPermission * read

 Table 10. J2EE security permissions set for EJB components

Security Permission Target Action

java.lang.RuntimePermission queuePrintJob

java.net.SocketPermission * connect

java.util.PropertyPermission * read

The WebSphere Application Server Java 2 security implementation is based on the J2EE Version 1.4

specification. The specification granted Web components read and write file access permission to any file

in the file system, which might be too broad. The WebSphere Application Server default policy gives Web

components read and write permission to the subdirectory and the subtree where the Web module is

1398 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

installed. The default Java 2 security policy for all Java virtual machines and WebSphere Application

Server processes are contained in the following policy files:

${java.home}/jre/lib/security/java.policy

Used as the default policy for the Java virtual machine (JVM).

${USER_INSTALL_ROOT}/properties/server.policy

Used as the default policy for all product server processes

To simplify policy management, WebSphere Application Server policy is based on resource type rather

than code base (location). The following files are the default policy files for WebSphere Application Server

subsystem. These policy files, which are an extension of WebSphere Application Server run time and are

referred to as Service Provider Programming Interfaces (SPI), are shared by multiple J2EE applications:

${WAS_INSTALL_ROOT}/profiles/profile_name/config/cells/cell_name/nodes/node_name/spi.policy

Used for embedded resources defined in the resources.xml file, such as the Java Message

Service (JMS), JavaMail, and JDBC drivers.

${WAS_INSTALL_ROOT}/profiles/profile_name/config/cells/cell_name/nodes/node_name/library.policy

Used by the shared library that is defined by the WebSphere Application Server administrative

console.

${WAS_INSTALL_ROOT}/profiles/profile_name/config/cells/cell_name/nodes/node_name/app.policy

Used as the default policy for J2EE applications.

In general, applications should not require more permissions to run than those recommended by the J2EE

specification to be portable among various application servers. However, some applications might require

more permissions. WebSphere Application Server supports a per application policy file, was.policy, to be

packaged together with each application from granting extra permissions to that application.

Note: Grant extra permissions to an application after careful consideration because of the potential of

compromising the system integrity.

WebSphere Application Server uses a permission filtering policy file to alert users when an application

requires permissions that are on the filter list during application installation and causes the offended

application installation to fail. For example, it is recommended that you not give the

java.lang.RuntimePermission exitVM permission to an application so that application code cannot

terminate WebSphere Application Server. The filtering policy is defined by the filterMask in

${WAS_INSTALL_ROOT}/profiles/profile_name/config/cells/cell_name/filter.policy. Moreover,

WebSphere Application Server also performs run-time permission filtering that is based on the run-time

filtering policy to ensure that application code is not granted a permission that is considered harmful to

system integrity.

WebSphere Application Server Version 4 supported Java 2 Security, but enforced only three permissions

checking against exitVM, create and set the security manager. Other permission checking is disabled by

default.

Therefore, many applications developed for prior releases of WebSphere Application Server might not be

Java 2 Security ready. To migrate those applications to WebSphere Application Server Version 6 quickly,

you might temporarily give those applications java.security.AllPermission in the was.policy file. It is

recommended to test or make those applications Java 2 Security ready; for example, identity what extra

permissions, if any, are required and to grant only those permissions to a particular application. Not

granting applications AllPermission can certainly reduce the risk of compromising system integrity. For

more information on migrating applications to WebSphere Application Server Version 6, refer to ″Migrating

Java 2 security policy″ in the information center.

The WebSphere Application Server run time uses Java 2 Security to protect sensitive run-time functions;

therefore, it is recommended that you enforce Java 2 security. Applications that are granted with

Chapter 8. Developing WebSphere applications 1399

AllPermission not only have access to sensitive system resources, but also WebSphere Application

Server run-time resources and can potentially cause damage to both. In cases where an application can

be trusted to be safe, WebSphere Application Server allows Java 2 Security to be disabled on a per

application server basis. You can enforce Java 2 security by default in the security center and disable the

per application server Java 2 Security flag to disable it at the particular application server.

When you specify the Enable global security and Enable Java 2 Security options on the Global security

panel of the administrative console, the information, along with other sensitive configuration data, are

stored in a set of XML configuration files. Both role-based access control and Java 2 Security

permission-based access control are employed to protect the integrity of the configuration data. The

example uses configuration data protection to illustrate how system integrity is maintained.

v When Java 2 security is enforced, the application code cannot access the WebSphere Application

Server run-time classes that manage the configuration data unless it is granted the required WebSphere

Application Server run-time permissions.

v When Java 2 security is enforced, application code cannot access the WebSphere Application Server

configuration XML files unless it has been granted the required file read and write permission.

v The JMX administrative subsystem provides SOAP over HTTP or HTTPS and RMI/IIOP remote

interface to enable application programs to extract and to modify configuration files and data. When

global security is enabled, an application program can modify the WebSphere Application Server

configuration if the application program has presented valid authentication data and the security identity

has the required security roles.

v If a user can disable Java 2 security, then that user can modify the WebSphere Application Server

configuration including the WebSphere Application Server security identity and authentication data along

with other sensitive data. Only users with the administrator security role can disable Java 2 security.

v Because WebSphere Application Server security identity is given to the administrator role, only users

with the administrator role can disable global security, to change server ID and password, and to map

users and groups to administrative roles, and so on.

Other Runtime resources: Other WebSphere Application Server run time resources are protected by a

similar mechanism as described previously. It is very important to enable WebSphere Application Server

global security and to enforce Java 2 Security. J2EE Specification defines several authentication methods

for Web components: HTTP Basic Authentication, Form-Based Authentication, and HTTPS Client

Certificate Authentication. When you use client certificate login, it is more convenient for the browser client

if the Web resources have integral or confidential data constraint. If a browser uses HTTP to access the

Web resource, the Web container automatically redirects the browser to the HTTPS port. The CSIv2

security protocol also supports client certificate authentication. You can also use SSL client authentication

to setup secure communication among a selected set of servers based on a trust relationship.

If you start from the WebSphere Application Server plug-in at the Web server, you can configure SSL

mutual authentication between it and the WebSphere Application Server HTTPS server. When using a

self-signed certificate, you can restrict the WebSphere Application Server plug-in to communicate with only

the selected two WebSphere Application Server servers as shown in the following figure. Suppose you

want to restrict the HTTPS server in WebSphere Application Server A and in WebSphere Application

Server B to accept secure socket connections only from the WebSphere Application Server plug-in W. You

can generate three self-signed certificates using the IKEYMAN and the certificate management utilities.

For example, use certificate W and trust certificate A and B. The HTTPS server of WebSphere Application

Server A is configured to use certificate A and to trust certificate W. The HTTPS server of WebSphere

Application Server B is configured to use certificate B and to trust certificate W. For more information on

IKEYMAN, refer to ″Starting the key management utility (iKeyman)″ in the information center.

1400 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

The trust relationship depicted in the previous picture is shown in the following table.

 Server Key Trust

WebSphere Application Server plug-in W A, B

WebSphere Application Server A A W

WebSphere Application Server B B W

When WebSphere Application Server is configured to use an Lightweight Directory Access Protocol

(LDAP) user registry, you also can configure SSL with mutual authentication between every application

server and the LDAP server with self-signed certificate so that a password is not passed in clear text from

WebSphere Application Server to the LDAP server. In this example, the node agent processes are not

discussed. Each node agent must communicate with application servers on the same node and with the

Deployment Manager. Node agents also must communicate with LDAP servers when they are configured

to use an LDAP user registry. It is reasonable to let the deployment manager and the node agents use the

same certificate. Suppose application server A and C are on the same computer node. The Node agent

on that node needs to have certificates A and C in its trust file. WebSphere Application Server does not

provide a user registry configuration or management utility. In addition, it does not dictate the user registry

password policy. It is recommended that you use the password policy recommended by your user registry,

including the password length and expiration period.

1. Determine which versions of WebSphere Application Server you are using.

2. Review the WebSphere Application Server security architecture.

3. Review each of the following topics in the information center.

v Authentication protocol for EJB security

– Supported authentication protocols

– Common Secure Interoperability Version 2 features

– Identity assertion
v Authentication mechanisms

– Lightweight Third Party Authentication settings

Browser

In
te

rn
e
t

Demilitarized Zone

(DMZ)
Database

(DB2 version

8.1 fix pack 6)

MQ

CICS

IBM Directory

(LDAP)

Internet

Enterprise

Information

Systems

D
o
m

a
in

fi
re

w
a
ll

P
ro

to
c
o
l
fi
re

w
a
ll

WebSphere

Application

Server A

Web

server

WebSphere

Application

Server plug-in

Administrative

WebSphere

Application

Server C

Administrative

WebSphere

Application

Server D

Administrative

WebSphere

Application

Server B

Administrative

WebSphere

Application Server

Deployment Manager,

Administrative

Console

Browse

E

W

Chapter 8. Developing WebSphere applications 1401

– Trust associations

– Single signon (SSO)
v User registries

– Local operating system user registries

– Lightweight Directory Access Protocol
v Custom user registries

v Java 2 security

– Java 2 security policy files
v Java Authentication and Authorization Service (JAAS)

– Programmatic login
v J2EE Connector security

v Access control exception

– Role-based authorization

– Administrative console and naming service authorization
v Secure Socket Layer (SSL)

– Authenticity

– Confidentiality

– Integrity

Security considerations when adding a Base Application Server node to Network

Deployment

At some point, you might decide to centralize the configuration of your stand-alone base application

servers by adding them into a Network Deployment cell. If your base application server is currently

configured with security, there are some issues to consider. The major issue when adding a node to the

cell is whether the user registries between the base application server and the Deployment Manager are

the same.

When adding a node to the cell, you automatically inherit both the user registry and the authentication

mechanism of the cell.

For distributed security, all servers in the cell must use the same user registry and authentication

mechanism. To recover from a user registry change, you must modify your applications so that the user

and group to role mappings are correct for the new user registry. To do this, see the article on “Assigning

users and groups to roles” on page 1768.

Another major issue is the SSL public-key infrastructure. Prior to performing addNode with the Deployment

Manager, verify that addNode can communicate as an SSL client with the Deployment Manager. This

requires that the addNode truststore (configured in sas.client.props) contains the signer certificate of the

Deployment Manager personal certificate as found in the keystore (specified in the administrative console).

See the article, ″Managing digital certificates″ in the information center.

The following are other issues to consider when running the addNode command with security:

1. When attempting to run system management commands such as addNode, you need to explicitly

specify administrative credentials to perform the operation. The addNode command accepts -username

and -password parameters to specify the userid and password, respectively. The user ID and password

that are specified must be an administrative user; for example, a user that is a member of the console

users with Operator or Administrator privileges or the administrative user ID configured in the User

Registry. An example for addNode, addNode CELL_HOST 8879 -includeapps -username user -password

pass. -includeapps is optional, but this option attempts to include the server applications into the

Deployment Manager. The addNode command might fail if the user registries used by the WebSphere

Application Server and the Deployment Manager are not the same. To correct this problem, either

make the user registries the same or turn off security. If you change the user registries, remember to

verify that the users to roles and groups to roles mappings are correct. See the addNode command for

more information on the addNode syntax.

1402 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

2. Adding a secured remote node through the administrative console is not supported. You can either

disable security on the remote node before performing the operation or perform the operation from the

command line using the addNode script.

3. Before running the addNode command, you must verify that the truststore files on the nodes can

communicate with the keystore files from the Deployment Manager and vice versa. When using the

default DummyServerKeyFile and DummyServerTrustFile, you should not see this problem as these are

already able to communicate. However, never use these dummy files in a production environment or

anytime sensitive data is being transmitted.

4. After running addNode, the application server is in a new SSL domain. It might contain SSL

configurations that point to keystore and truststore files that are not prepared to interoperate with other

servers in the same domain. Consider which servers will be intercommunicating and ensure that the

servers are trusted within your truststore files.

Proper understanding of the security interactions between distributed servers greatly reduces problems

encountered with secure communications. Security adds complexity because additional function needs to

be managed. For security to function, it needs thorough consideration during the planning of your

infrastructure. This document helps to reduce the problems that could occur due to inherent security

interactions.

When you have security problems related to the WebSphere Application Server Network Deployment

environment, check the ″Troubleshooting security configurations″ section in the information center to see if

you can get information about the problem. When trace is needed to solve a problem, because servers are

distributed, quite often it is required to gather trace on all servers simultaneously while recreating the

problem. This trace can be enabled dynamically or statically, depending on the type problem occurring.

Creating login key files

1. Create a login key file. The authenticating user IDs, passwords, and target realms for each different

target server are specified in the login key file, which is an ASCII file. When the security authentication

service processes the login key file, the passwords in the file are encoded.

2. Add information to the login key file in the following format:

Realm_name User_ID Password

3. Make sure that the data conforms to the following rules:

v One realm name

v One user ID, and one password defined in each entry

v One entry per line

v No blank lines between entries

v Comments on separate lines only

v Begin any comment with a pound sign (#):

Example:

Sample key file

First target realm

TargetRealm serverID serverPassword

Second target realm

TargetRealm2 serverID2 serverPassword2

End of key file

Chapter 8. Developing WebSphere applications 1403

A sample file named wsserver.key also contains these instructions. After installation, you can locate

this sample file in the install_root/properties directory. You can use or modify the sample file as

needed for testing.

Note: You can place the login key file anywhere on a host machine running the application server.

However, it is recommended that you place the login key file under a securable file system .

After creating the login key files, read the article entitled, “Preparing truststore files.”

Preparing truststore files

Secure Sockets Layer (SSL) protocol protects the communication between WebSphere Application

Servers. To complete the SSL connection, establish a valid truststore file for the WebSphere Application

Server. A truststore file is a key database file that contains the public keys (See “Creating login key files”

on page 1403 for information about how to create a new keystore file.)

1. Extract the public key of the server by using the key management tool from WebSphere Application

Server. For details, see ″Configuring the server for request decryption: choosing the decryption

method″ in the information center.

2. Add the public key from the WebSphere Application Server as a signer certificate into the requesting

WebSphere Application Server truststore file. For details, see the related information about how to

import signer certificates.

The WebSphere Application Server truststore file is now ready to use for SSL connections with the

WebSphere Application Server.

See “Configuring the application server for interoperability” for interoperability.

Configuring the application server for interoperability

After the truststore file is ready, complete the following steps to configure the WebSphere Application

Server.

1. Configure the enterprise beans that access WebSphere Application Server. Before deploying the

enterprise beans, configure the RunAs Identity.

2. Enable security.

3. Enable outbound SAS authentication protocol.

4. Specify the truststore file in an Secure Sockets Layer (SSL) configuration alias and configure the

WebSphere Application Server with that alias.

5. Set the Request timeout and Locate request timeout values to zero for the Object Request Broker

(ORB) service.

6. Specify a security property named com.ibm.CORBA.keyFileName for the absolute path of the login key

file created earlier.

7. Restart the WebSphere Application Server.

Implementing security considerations at installation time

Complete the following tasks to implement security before, during, and after installing WebSphere

Application Server.

1. “Securing your environment before installation” on page 1405. This step describes how to install

WebSphere Application Server with the proper authority.

2. Install the WebSphere Application Server. This step describes how to install WebSphere Application

Server as the root user on a UNIX platform or as an administrator on a Windows platform.

During installation you are prompted to migrate security configurations from previous releases.

1404 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

3. “Securing your environment after installation.” This step provides information on how to protect

password information after you install WebSphere Application Server.

Securing your environment before installation

The following instructions explain how to perform a product installation with proper authority on UNIX

platforms, Linux platforms, Solaris operating environments, and Windows platforms.

UNIX platforms

On UNIX platforms, log on as root and verify that the umask value is 022.

To verify that the umask value is 022, execute the umask command.

To set up the umask value as 022, execute the umask 022 command.

Linux platforms and Solaris operating environments

On Linux platforms or Solaris operating environments, make sure that the /etc directory contains a

shadow password file. The shadow password file is named shadow and is in the /etc directory. If the

shadow password file does not exist, an error occurs after enabling global security and configuring the

user registry as local operating system.

To create the shadow file, run the pwconv command (with no parameters). This command creates an

/etc/shadow file from the /etc/passwd file. After creating the shadow file, you can configure local operating

system security.

Windows platforms

On Windows platforms, the logon user must be a member of the administrator group with the rights of Act

as part of the operating system and Log on as a service.

To add the rights to a user on a Windows 2000 platform:

1. Click Start > Programs > Administrative Tools > Local Security Policy (for domain configuration,

select Domain Security Policies, instead).

2. From the Local Security Settings Panel, click Local Policies > User Rights Assignment and add the

following rights to the user ID:

v Act as part of the operating system

v Log on as a service

Securing your environment after installation

WebSphere Application Server depends on several configuration files created during installation. These

files contain password information and need protection. Although the files are protected to a limited degree

during installation, this basic level of protection is probably not sufficient for your site. Verify that these files

are protected in compliance with the policies of your site.

The files in the install_root\profiles\profile_name\config and

install_root\profiles\profile_name\properties , except for those in the following list, need protection.

For example, give permission to the user who logs onto the system for WebSphere Application Server

primary administrative tasks. Other users or groups, such as WebSphere Application Server console users

and console groups, who perform partial WebSphere Application Server administrative tasks, like

configuring, starting servers and stopping servers, need permissions as well.

The files in the install_root\profiles\profile_name\properties directory that should not be protected

are:

Chapter 8. Developing WebSphere applications 1405

v TraceSettings.properties

v client.policy

v client_types.xml

v implfactory.properties

v sas.client.props

v sas.stdclient.properties

v sas.tools.properties

v soap.client.props

v wsadmin.properties

v wsjaas_client.conf

1. Secure files on a Windows system:

a. Open the browser for a view of the files and directories on the machine.

b. Locate and right-click the file or the directory that you want to protect.

c. Click Properties.

d. Click the Security tab.

e. Remove the Everyone entry and any other user or group that you do not want to have access to

the file.

f. Add the users who can access the files with the proper permission.

2. Secure files on UNIX systems. This procedure applies only to the ordinary UNIX file system. If your

site uses access-control lists, secure the files by using that mechanism. Any site-specific requirements

can affect the owner, group, and corresponding privileges. For example, on AIX,

a. Go to the install_root directory and change the ownership of the directory configuration and

properties to the user who logs onto the system for WebSphere Application Server primary

administrative tasks. Run the following command: chown -R logon_name directory_name

Where:

v login_name is a specified user or group.

v directory_name is the name of the directory that contains the files.

It is recommended that you assign ownership of the files that contain password information to the

user who runs the application server. If more than one user runs the application server, provide

permission to the group in which the users are assigned in the user registry.

b. Set up the permission by running the following command: chmod -R 770 directory_name.

c. Go to the install_root\profiles\profile_name\properties directory and set the following file

permission to everybody by running the following command: chmod 777 file_names. where

file_names are the following files:

v TraceSettings.properties

v client.policy

v client_types.xml

v implfactory.properties

v sas.client.props

v sas.stdclient.properties

v sas.tools.properties

v soap.client.props

v wsadmin.properties

v wsjaas_client.conf

d. Create a group for WebSphere Application Server and put the users who perform full or partial

WebSphere Application Server administrative tasks in that group.

e. If you want to use WebSphere MQ as a JMS provider, restrict access to the /var/mqm directories

and log files used. Give write access to the user ID mqm or members of the mqm user group only.

After securing your environment, only the users given permission can access the files. Failure to

adequately secure these files can lead to a breach of security in your WebSphere Application Server

applications.

1406 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

If failures occur that are caused by file accessing permissions, check the permission settings.

Protecting plain text passwords

The WebSphere Application Server has several plain text passwords. These passwords are not encrypted,

but are encoded. The following is a list of files with encoded passwords:

Important: WAS_INSTALL_ROOT is a WebSphere Application Server Environment variable that you can

configure through the administrative console by clicking Environment > WebSphere

variables.

 File name Additional information

WAS_INSTALL_ROOT \profiles \profile_name\config\cells

\cell_name\security.xml

The following fields contain encoded

passwords:

v LTPA password

v JAAS authentication data

v User registry server password

v LDAP user registry bind password

v Key file password

v Trust file password

v Cryptographic token device

password

WAS_INSTALL_ROOT \profiles \profile_name\properties

\sas.client.props

Specifies passwords for:

v com.ibm.ssl.keyStorePassword

v com.ibm.ssl.trustStorePassword

v com.ibm.CORBA.loginPassword

war/WEB-INF/ibm_web_bnd.xml Specify passwords for the default basic

authentication for the ″resource-ref″

bindings within all descriptors (except in

the Java cryptography architecture)

ejb jar/META-INF/ibm_ejbjar_bnd.xml Specify passwords for the default basic

authentication for the ″resource-ref″

bindings within all descriptors (except in

the Java crytography architecture)

client jar/META-INF/ibm-appclient_bnd.xml Specify passwords for the default basic

authentication for the ″resource-ref″

bindings within all descriptors (except in

the Java crytography architecture)

ear/META-INF/ibm_application_bnd.xml Specify passwords for the default basic

authentication for the ″run as″ bindings

within all descriptors

WAS_INSTALL_ROOT \profiles\profile_name\config\cells

\cell_name\nodes\node_name\servers \server.xml

The following fields contain encoded

passwords:

v Key file password

v Trust file password

v Cryptographic token device

password

v Authentication target password

v Session persistence password

v DRS Client data replication

password

Chapter 8. Developing WebSphere applications 1407

File name Additional information

WAS_INSTALL_ROOT\profiles\profile_name\config\cells

\cell_name\nodes\node_name \servers\server1\resources.xml

The following fields contain encoded

passwords:

v WAS40Datasource password

v mailTransport password

v mailStore password

v MQQueue queue mgr password

For WebSphere Application Server and WebSphere Application Server Express:

v WAS_INSTALL_ROOT\profiles\profile_name\config\cells \cell_name\ws-security.xml

v WAS_INSTALL_ROOT\profiles\profile_name\config\cells \cell_name\nodes\node_name\servers\server1\ws-
security

For Network Deployment:

WAS_INSTALL_ROOT\profiles\profile_name\config\cells \cell_name\ws-security.xml

ibm-webservices-bnd.xmi

ibm-webservicesclient-bnd.xmi

WAS_INSTALL_ROOT \profiles\profile_name

\properties\soap.client.props com.ibm.ssl.trustStorePassword

Specifies passwords for:

v com.ibm.ssl.keyStorePassword

v com.ibm.ssl.trustStorePassword

v com.ibm.SOAP.loginPassword

WAS_INSTALL_ROOT \profiles\profile_name

\properties\sas.tools.properties

Specifies passwords for:

v com.ibm.ssl.keyStorePassword

v com.ibm.ssl.trustStorePassword

v com.ibm.CORBA.loginPassword

WAS_INSTALL_ROOT \profiles\profile_name\properties

\sas.stdclient.propertiescom.ibm.ssl.keyStorePassword

Specifies passwords for:

v com.ibm.ssl.keyStorePassword

v com.ibm.ssl.trustStorePassword

v com.ibm.CORBA.loginPassword

WAS_INSTALL_ROOT \profiles\profile_name \properties\wsserver.key

To re-encode a password in one of the previous files, complete the following steps:

1. Access the file using a text editor and type over the encoded password in plain text. The new

password is shown in plain text and must be encoded.

2. Use the PropFilePasswordEncoder.bat or PropFilePasswordEncode.sh file in the

WAS_INSTALL_ROOT\profiles\profile_name\bin\ directory to re-encode the password.

If you are re-encoding SAS properties files, type PropFilePasswordEncoder file_name -sas and the

PropFilePasswordEncoder file encodes the known SAS properties.

If you are encoding files that are not SAS properties files, type PropFilePasswordEncoder file_name

password_properties_list

file_name is the name of the z/SAS properties file. password_properties_list is the name of the

properties to encode within the file.

Use the PropFilePasswordEncoder utility to encode WebSphere Application Server password files only.

The utility cannot encode passwords contained in XML files or other files that contain open and close

tags.

If you reopen the affected file or files, the passwords do not display in plain text. Instead, the passwords

appear encoded. WebSphere Application Server does not provide a utility for decoding the passwords.

1408 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

PropFilePasswordEncoder command reference

Purpose

The PropFilePasswordEncoder command encodes passwords located in plain text property files. This

command encodes both Secure Authentication Server (SAS) property files and non-SAS property files.

After you have encoded the passwords, note that a decoding command does not exist. To encode

passwords, you must run this command from the install_dir/bin directory of a WebSphere Application

Server installation.

Syntax

The command syntax is as follows:

PropFilePasswordEncoder file_name

Parameters

The following option is available for the PropFilePasswordEncoder command:

-sas

Encodes SAS property files.

The following examples demonstrate the correct syntax.

PropFilePasswordEncoder file_name password_properties_list

PropFilePasswordEncoder file_name -SAS

Integrating IBM WebSphere Application Server security with existing

security systems

WebSphere Application Server plays an integral part of the multiple-tier enterprise computing framework.

WebSphere Application Server adopts the open architecture paradigm and provides many plug-in points to

integrate with enterprise software components to provide end-to-end security. WebSphere Application

Server plug-in points are based on standard J2EE specifications wherever applicable. WebSphere

Application Server is actively involved in various standard bodies to externalize and to standardize plug-in

interfaces.

In the following example, several typical multiple-tier enterprise network configurations are discussed. In

each case, various WebSphere Application Server plug-in points are used to integrate with other business

components. The discussion starts with a basic multiple-tier enterprise network configuration:

Chapter 8. Developing WebSphere applications 1409

A list of terms used in this discussion follows:

Protocol firewall

Prevents unauthorized access from the Internet to the demilitarized zone. The role of this node is

to provide the Internet traffic access only on certain ports and to block other IP ports.

WebSphere Application Server plug-in

Redirects all the requests for servlets and JSP pages. Also referred to in WebSphere Application

Server literature as Web server redirector was introduced to separate Web server from application

server. The advantage of using Web server redirector is that you can move an application server

and all the application business logic behind the domain firewall.

Domain firewall

Prevents unauthorized access from the demilitarized zone to an internal network. The role of this

firewall is to allow the network traffic originating from the demilitarized zone and note from the

Internet.

Directory

Provides information about the users and their rights in the Web application. The information can

contain user IDs, passwords, certificates, access groups, and so forth. This node supplies the

information to the security services like authentication and authorization service.

Enterprise information system

Represents existing enterprise applications and business data in back-end databases.

WebSphere Application Server provides the infrastructure to run application business logic and

communicate with internal back-end systems and databases Web applications and enterprise beans can

access. WebSphere Application Server has a built in HTTPS server that can accept client requests. A

typical configuration, however, places WebSphere Application Server behind the domain firewall for better

protection. A WebSphere Application Server plug-in to Web server configuration can redirect Web requests

to WebSphere Application Server. WebSphere Application Server provides plug-ins for many popular Web

servers.

You can configure WebSphere Application Server and the Web server plug-in to communicate through

secure SSL channels. You can configure a WebSphere Application Server HTTP server to open

WebSphere

Application Server

Version 6

Access manager

(Authorization)

Security Role-based

authorization engine

Principal/

credential

mapping

J2EE

connector

Trust

association

interceptor

CSIv2 security protocol

Application

server

Enterprise

Information

System

Secure reverse

proxy server

JAAS

login module
User registry

Credential

mapping

Security server

(Authentication)

UserRegistry

interface

JAAS

login module

1410 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

communication channels only with a restricted set of Web server plug-ins. You can configure the HTTP

server to require client certificate authentication with self-signed certificates and to trust only the signer

certificate.

For more information, refer to Network communication using Secure Sockets Layer and the Channel

Framework

For instructions on how to generate self-signed certificates and how to set up secure communications

channels between an HTTP server and the WebSphere Application Server plug-in, refer to Configuring IHS

plug-in and the Internal Web Server for SSL and Configuring IHS for SSL Mutual Authentication.

The WebSphere Application Server plug-in routes HTTP requests according to the virtual host and port

configuration and the URL pattern matching. Client authentication and finer grained access control are

handled by WebSphere Application Server behind the firewall.

In cases where the Web server can contain sensitive data and direct access is not desirable, the following

configuration uses Tivoli WebSEAL to shield a Web server from unauthorized requests. WebSEAL is a

Reverse Proxy Security Server (RPSS) that uses Tivoli Access Manager to perform coarse-grained access

control to filter out unauthorized requests before they reach the domain firewall. WebSEAL uses Tivoli

Access Manager to perform access control as illustrated in the picture. WebSphere Application Server

supports various user registry implementations through the pluggable user registry interface.

WebSphere Application Server ships a Local OS user registry implementation for Windows, AIX, AS/400,

and Lightweight Directory Access Protocol (LDAP).

WebSphere Application Server also supports users in developing their own custom registry and plug-in

through the pluggable user registry interface. When integrated with a third party security provider,

WebSphere Application Server can share the user registry with the third-party security provider. In the

particular example of integrating with WebSEAL, you can configure WebSphere Application Server to use

the LDAP user registry, which can be shared with WebSEAL and Tivoli Access Manager. Moreover, you

can configure WebSphere Application Server to use the Light Weight Third Party (LTPA) authentication

mechanism, which supports the Trust Association Interceptor plug-in point.

Basically, the RPSS performs authentication and adds proper authentication data into the request header

and then redirects the request to Web server. A trust relationship is formed between an RPSS and

WebSphere Application Server, and the RPSS can assert client identity to WebSphere Application Server

to achieve single signon (SSO) between RPSS and WebSphere Application Server. When the request is

forward to WebSphere Application Server, WebSphere Application Server uses the TAI plug-in for the

Browser

In
te

rn
e
t

Demilitarized Zone

(DMZ)

Database

(DB2 version

8.1 fix pack 6)

MQ

CICS

IBM Directory

(LDAP)

Internet Enterprise

Information

Systems

D
o
m

a
in

fi
re

w
a
ll

P
ro

to
c
o
l
fi
re

w
a
ll

WebSphere

Application

Server

Web

server

WebSphere

Application

Server plug-in

Chapter 8. Developing WebSphere applications 1411

particular RPSS server to evaluate the trust relationship and to extract the authenticated client identity.

WebSphere Application Server then maps the client identity to a WebSphere Application Server security

credential. For instructions on setting up a trust association interceptor, refer to Trust associations,

Configuring trust association interceptors.

When configured to use the LDAP user registry, WebSphere Application Server uses LDAP to perform

authentication. The client ID and password are passed from WebSphere Application Server to the LDAP

server. You can configure WebSphere Application Server to set up an SSL connection to LDAP so that

passwords are not passed in plain text. To set up an SSL connection from WebSphere Application Server

to the LDAP server, refer to Configuring SSL for the LDAP client. WebSphere Application Server Version 5

supports the J2EE Connector Architecture (JCA). The connector architecture defines a standard interface

for WebSphere Application Server to connect to heterogeneous enterprise information systems (EIS).

Examples of EIS includes database systems, transaction processing such as CICS, and messaging such

as Message Queue (MQ). The EIS implementation can perform authentication and access control to

protect business data and resources. Resource Adapters authenticate EIS. The authentication data can be

provided either by application code or by WebSphere Application Server. WebSphere Application Server

provides a principal mapping plug-in point. A principal mapping module plug-in maps the authenticated

client principal to a password credential, (that is, user ID and password, for the EIS security domain).

WebSphere Application Server ships a default principal mapping module, which maps any authenticated

client principal to a configured pair of user IDs and passwords.

Each connector can be configured to use a different set of IDs and passwords. For a description on how

to configure JCA principal mapping user IDs and passwords, refer to Managing J2C Authentication Data

Entries. A principal mapping module is a special purpose Java Authentication and Authorization Service

(JAAS) login module. You can develop your own principal mapping module to fit your particular business

application environment. For detailed steps on developing and configuring a custom principal mapping

module, refer to the articles, Developing your own Java 2 security mapping module underneath JAAS

Programmatic Login and ″Managing Java Authentication and Authorization Service (JAAS) Login

Configuration.″

Security and WebSphere MQseries

It is important to note that security logging information on UNIX systems is not protected because of the

world-writeable files in the /var file system of MQseries. MQseries ships the following files with its product:

v -rw-rw-rw- /var/mqm/errors/AMQERR01.LOG

v -rw-rw-rw- /var/mqm/errors/AMQERR02.LOG

v -rw-rw-rw- /var/mqm/errors/AMQERR03.LOG

Browser

In
te

rn
e
t

Reverse

proxy security

server

(WebSeal,

and so on)

Demilitarized Zone

(DMZ)

Database

(DB2 version

8.1 fix pack 6)

MQ

CICS

IBM Directory

(LDAP)

Internet Enterprise

Information

Systems

D
o
m

a
in

fi
re

w
a
ll

P
ro

to
c
o
l
fi
re

w
a
ll

WebSphere

Application

Server

Web

server

WebSphere

Application

Server plug-in

Trust

Association

Interceptor

Third-party

security provider

(Tivoli Access Manager,

and so on)

1412 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

The previously mentioned files are world-writeable and enable any users on the system to fill up the /var

file system where all the security logging information is stored. This leaves the security information

unprotected because anyone can access the logging information without being tracked.

To work around this problem, create a file system for the embedded messaging component working data

on UNIX. Before you install the embedded messaging component of WebSphere Application Server on

UNIX platforms, consider creating and mounting a journalized file system called /var/mqm. Use a partition

strategy with a separate volume for the WebSphere MQ data. This means that other system activity is not

affected if a large amount of WebSphere MQ work builds up.

To determine the size of the /var/mqm file system for a server installation, consider the following:

v Maximum number of messages in the system at one time

v Contingency for message buildups, if there is a system problem

v Average size of the message data, plus 500 bytes for the message header

v Number of queues

v Size of log files and error messages

Allow 50MB as a minimum for a WebSphere MQ server. You need less space in the /var/mqm file system

for a WebSphere MQ client (typically 15MB).

Interoperability issues for security

To have interoperability of Security Authentication Service (SAS) between C++ and WebSphere Application

Server, use the Common Secure Interoperability Version 2 (CSIv2) authentication protocol over Remote

Method Invocation over the Internet Inter-ORB Protocol (RMI-IIOP).

Interoperating with a C++ common object request broker architecture client

You can achieve interoperability of Security Authentication Service between the C++ Common Object

Request Broker Architecture (CORBA) client and WebSphere Application Server using Common Secure

Interoperability Version 2 (CSIv2) authentication protocol over Remote Method Invocation over the Internet

Inter-ORB Protocol (RMI-IIOP). The CSIv2 security service protocol has authentication, attribute and

transport layers. Among the three layers, transport authentication is conceptually simple, however,

cryptographically based transport authentication is the strongest. WebSphere Application Server Enterprise

has implemented the transport authentication layer, so that C++ secure CORBA clients can use it

effectively in making CORBA clients and protected enterprise bean resources work together.

Security authentication from non-Java based C++ client to enterprise beans. WebSphere Application

Server supports security in the CORBA C++ client to access protected enterprise beans. If configured,

C++ CORBA clients can access protected enterprise bean methods using client certificate to achieve

mutual authentication on WebSphere Application Server Enterprise applications.

To support the C++ CORBA client in accessing protected enterprise beans:

v Create an environment file for the client, such as current.env. Set the variables listed below

(security_sslKeyring, client_protocol_user, client_protocol_password) in the file.

v Point to the environment file using the fully qualified path name through the environment variable

WAS_CONFIG_FILE. For example, in the test shell script test.sh, export

WAS_CONFIG_FILE=/WebSphere/V5R0M0/AppServer/bin/current.env.

 C++ security setting Description

client_protocol_password Specifies the password for the user ID.

client_protocol_user Specifies the user ID to be authenticated at the target

server.

Chapter 8. Developing WebSphere applications 1413

C++ security setting Description

security_sslKeyring Specifies the name of the RACF keyring the client will

use. The keyring must be defined under the user ID that

is issuing the command to run the client.

To support the C++ CORBA client in accessing protected enterprise beans:

1. Obtain a valid certificate to represent the client and export its public key to the target enterprise bean

server.

A valid certificate is needed to represent the C++ client. Request a certificate from the certificate

authority (CA) or create a self-signed certificate for testing purposes.

Use the Key Management Utility from the Global Security Kit (GSKit) to extract the public key from the

personal certificate and save it in the .arm format. For details, see the related information about how to

extract the personal certificate of the public key.

2. Prepare a truststore file for WebSphere Application Server.

Add the extracted client public key in the .arm file from the client to the server key truststore file. The

server can now authenticate the client.

Note: This is done by invoking the Key Management Utility through ikeyman.bat or ikeyman.sh from

WebSphere Application Server installation.

For details, see the article on Adding truststore files.

3. Configure WebSphere Application Server to support SSL as the authentication mechanism.

a. Start the administrative console.

b. Locate the application server that has the target enterprise bean deployed and configure it to use

SSL client certificate authentication.

If it is a base installation, complete the following steps:

1) Click Security > Global security. Under Authentication, click Authentication protocol >

CSIv2 inbound authentication. Select Supported for the Basic authentication and Client

certificate authentication options. Leave the rest of the options as defaults.

2) Click Security > Global security. Under Authentication, click Authentication protocol >

CSIv2 inbound transport and verify that the SSL-supported option is selected.

If it is a Network Deployment setting, complete the following steps:

1) Click Server > Application Server >server_name_where_the_EJB_resides. Under security,

click Server security. Under Additional properties, click CSI inbound authentication. Select

Supported for the Basic authentication and Client certificate authentication options. Leave the

rest of the options as defaults.

2) Click Server > Application Server >server_name_where_the_EJB_resides. Under security,

click Server security. Under Additional properties, click CSI inbound transport. Verify that the

SSL-Supported option is selected.

For details, see the security articles Configuring CSIv2 inbound authentication and Configuring

CSIv2 inbound transport.

c. Restart the application server.

The WebSphere Application Server is ready to take a C++ CORBA security client and a mutually

authenticated server and client by using SSL in the transport layer.

4. Configure the C++ CORBA client to use a certificate in performing the mutual authentication.

Client users are accustomed to using property files in their applications because they are helpful in

specifying configuration settings. The following list presents important C++ security settings:

 C++ security setting Description

com.ibm.CORBA.bootstrapHostName=ricebella.austin.ibm.com Specifies the target host name.

1414 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

com.ibm.CORBA.securityEnabled=yes Enables security.

com.ibm.CSI.performTLClientAuthenticationSupported=yes Ensures client is supporting mutual

authentication by certificate

com.ibm.CSI.performTransportAssocSSLTLSSupported=yes Ensures SSL is used, not TCP/IP

com.ibm.ssl.keyFile=C:/ricebella/etc/DummyKeyRingFile.KDB Specifies which key database file to use.

com.ibm.ssl.keyPassword=WebAS Specifies the password for opening the key

database file. WebSphere Application Server

supports a utility called PasswordEncode4cpp

to encode the plain password.

com.ibm.CORBA.translationEnabled=1 Enables the valueType conversion.

To use the property files in running a C++ client, an environment variable WASPROPS, is used to

indicate where a property file or a list of property files exist.

For the complete set of C++ client properties, see the sample property file scclient.props, which is

shipped with the product located in the install_root\profiles\profile_name\etc directory.

Interoperating with previous product versions

IBM WebSphere Application Server, Version 5.x or later interoperates with the previous product versions

(such as Version 4 and Version 3.5). Interoperability is achieved only when the Lightweight Third Party

Authentication (LTPA) authentication mechanism and Lightweight Directory Access Protocol (LDAP) user

registry are used. Credentials derived from Simple WebSphere Authentication Mechanisms (SWAM) are

not forwardable.

1. Enable security with the LTPA authentication mechanism and the LDAP user registry. Make sure that

the same LDAP user registry is shared by all the product versions.

2. Extract and add Version 5 server certificates into the server key ring file of the previous version.

a. Open the Version 5 server key ring file using the key management utility (iKeyman) and extract the

server certificate to a file.

b. Open the server key ring of the previous product version, using the key management utility and

add the certificate extracted from product Version 5.

3. Extract and add Version 5 server certificates into the server key ring file of the previous version.

a. Open the Version 5 server key ring file using the key management utility (iKeyman) and extract the

server certificate to a file.

b. Open the server key ring of the previous product version, using the key management utility and

add the certificate extracted from product Version 5.

4. Extract and add Version 5 trust certificates into the trust key ring file of the previous product version.

a. Open the Version 5 trust key ring file using the key management utility and extract the trust

certificate to a file.

b. Open the trust key ring file of the previous product version using the key management utility and

add the certificate extracted from Version 5.

5. If single signon (SSO) is enabled, export keys from the Version 5 product and import them into the

previous product version. The Version 4 product requires the fix, PQ61779, and the Version 3.5

product requires the fix, PQ59667, for SSO to function.

6. Verify that the application uses the correct JNDI name. In Version 5, the enterprise beans are

registered with long JNDI names like, (top)/nodes/node_name/servers/server_name/HelloHome.

Whereas in previous releases, enterprise beans are registered under a root like, (top)/HelloHome.

Therefore, EJB applications from previous versions perform a lookup on the Version 5 enterprise

beans.

You can also create EJB name bindings in Version 5 that are compatible with the previous version. To

create an EJB name binding at the root Version 5, start the administrative console and click

Environment > Naming > Naming Space Bindings > New > EJB > Next. Complete all the fields

and enter a short name (for example, -HelloHome) as the JNDI Name. Click Next and Finish.

Chapter 8. Developing WebSphere applications 1415

7. Stop and restart all the servers.

8. Make sure that the correct naming bootstrap port is used to perform naming lookup. In previous

product versions, the naming bootstrap port is 900. In Version 5, the bootstrap port is 2809.

Security: Resources for learning

Use the following links to find relevant supplemental information about Securing applications and their

environment. The information resides on IBM and non-IBM Internet sites, whose sponsors control the

technical accuracy of the information.

These links are provided for convenience. Often, the information is not specific to the IBM WebSphere

Application Server product, but is useful all or in part for understanding the product. When possible, links

are provided to technical papers and Redbooks that supplement the broad coverage of the release

documentation with in-depth examinations of particular product areas.

View links to additional information about:

v “Planning, business scenarios and IT architecture”

v “Programming model and decisions”

v “Programming specifications”

v “Administration” on page 1417

Planning, business scenarios and IT architecture

v WebSphere Application Server Library

v WebSphere Application Server Support

v WebSphere Application Server Version 5 Security Redbook

v Accessing the Samples (Samples Gallery)

The technology sample in the WebSphere Application Server Samples Gallery contains several

security-related samples including the form login sample and the Java Authentication and Authorization

Service (JAAS) login sample.

v WebSphere Application Server security: Presentation series

Programming model and decisions

v JSSE Documentation.

Refer to the http://www.ibm.com/developerworks/java/jdk/security/jsseDocs.zip file for the Javadoc of the

APIs, JSSE Reference Guide, and JSSE samples.

v iKeyman documentation.

Look in the http://www.ibm.com/developerworks/java/jdk/security/iKeymanDocs.zip file for the Secure

Sockets Layer (SSL) Introduction and iKeyman documentation.

v JCE documentation.

– For the JCA spec and JCE API usage refer to the

http://www.ibm.com/developerworks/java/jdk/security/jceDocs.zip file.

– For JCE sample applications refer to the

http://www.ibm.com/developerworks/java/jdk/security/jceDocs.zip file.

– For Java Cryptography Architecture Reference refer to the

http://www.ibm.com/developerworks/java/jdk/security/jceDocs.zip file.

– For how to implement a JCE provider refer to the

http://www.ibm.com/developerworks/java/jdk/security/jceDocs.zip file.

– For the Javadoc of JCE APIs refer to the

http://www.ibm.com/developerworks/java/jdk/security/jceDocs.zip file.

– For the 1.4.2 release of the IBM developer kit for the Java platform refer to the http://www-
106.ibm.com/developerworks/java/library/j-ibmsecurity.html file.

Programming specifications

v J2EE Specifications

v EJB Specifications

v Servlet Specifications

1416 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

http://www-3.ibm.com/software/webservers/appserv/library.html
http://www-3.ibm.com/software/webservers/appserv/support.html
http://www.redbooks.ibm.com/pubs/pdfs/redbooks/sg246573.pdf
http://www-106.ibm.com/developerworks/websphere/library/techarticles/0409_botzum/0409_botzum.html
http://www.ibm.com/developerworks/java/jdk/security/jsseDocs.zip
http://www.ibm.com/developerworks/java/jdk/security/iKeymanDocs.zip
http://www.ibm.com/developerworks/java/jdk/security/jceDocs.zip
http://www.ibm.com/developerworks/java/jdk/security/jceDocs.zip
http://www.ibm.com/developerworks/java/jdk/security/jceDocs.zip
http://www.ibm.com/developerworks/java/jdk/security/jceDocs.zip
http://www.ibm.com/developerworks/java/jdk/security/jceDocs.zip
http://www-106.ibm.com/developerworks/java/library/j-ibmsecurity.html
http://www-106.ibm.com/developerworks/java/library/j-ibmsecurity.html
http://java.sun.com/j2ee/download.html
http://java.sun.com/products/ejb/docs.html
http://java.sun.com/products/servlet/download.html

v Common Secure Interoperability Version 2 (CSIv2) Specification

v JAAS Specification.

For programming and usage in JAAS, refer to the specification located at

http://www.ibm.com/developerworks/java/jdk/security/ and scroll down to find the JAAS documentation

for your platform. This document contains the following when unpacked:

– login.html - LoginModule Developer’s Guide

– api.html - Developer’s Guide (JAAS JavaDoc)

– HelloWorld.tar - Sample JAAS Application
v Java 2 Platform, Standard Edition, v 1.4.2 API Specification

v Java Authorization Contract for Containers (JSR 115) Specification

Administration

v WebSphere Application Server Version 4.0 Security Redbook: WebSphere Security Model.

v IBM HTTP Server Support and Documentation

v IBM Directory Server Support and Documentation

v IBM developer kits

This Web site provides access to the IBM developer kits provided by the IBM Centre for Java

Technology Development. Using this Web site, you can find various security and diagnostic information

including information on the Federal Information Processing Standard, Java Version 1.4.1, Java Version

1.4.2, the iKeyman tool, and the Public Key Cryptography Standards (PKCS).

v IBM cryptographic hardware devices

v Supported hardware, software and APIs prerequisite Web site

v WebSphere education on demand: Enabling security best practice tutorials

Administering security

Administering secure applications requires access to the WebSphere Application Server administrative

console. Log in with a valid user ID and password that have administrative access. To administer security,

complete these steps:

 1. Configure global security. For more information, see “Configuring global security” on page 1418.

 2. Assign users to administrator roles. For more information, see “Assigning users to administrator roles”

on page 1430.

 3. Assign users to naming roles. For more information, see “Assigning users to naming roles” on page

1432.

 4. Configure authentication mechanisms. For more information, see “Configuring authentication

mechanisms” on page 1436.

 5. Configure Lightweight Third Party Authentication. For more information, see “Configuring Lightweight

Third Party Authentication” on page 1437.

 6. Configure trust association interceptors. For more information, see “Configuring trust association

interceptors” on page 1445.

 7. Configure single signon. For more information, see “Configuring single signon” on page 1448.

 8. Configure user registries. For more information, see “Configuring user registries” on page 1466.

a. Configure local operating system user registries. For more information, see “Configuring local

operating system user registries” on page 1471.

b. Configure Lightweight Directory Access Protocol user registries. For more information, see

“Configuring Lightweight Directory Access Protocol user registries” on page 1474.

c. Configure custom user registries. For more information, see “Configuring custom user registries”

on page 1488.

 9. Configure Java Authentication and Authorization Service login. For more information, see ″Configuring

application logins for Java Authentication and Authorization Service″ in the information center.

10. Configure an authorization provider. For more information, see “Configuring a JACC provider” on

page 1617. To configure the Tivoli Access Manager Java Authorization Contract for Containers

Chapter 8. Developing WebSphere applications 1417

http://www.omg.org/technology/documents/corba_spec_catalog.htm#CSIv2
http://www.ibm.com/developerworks/java/jdk/security/
http://java.sun.com/j2se/1.4/docs/api/index.html
http://java.sun.com/j2ee/javaacc/
http://www.redbooks.ibm.com/pubs/pdfs/redbooks/sg246520.pdf?#M10.8.newlink.WebSphereSecurityModel
http://www-3.ibm.com/software/webservers/httpservers/support.html
http://www-3.ibm.com/software/network/directory/support/
http://www.ibm.com/developerworks/java/jdk/index.html
http://www.ibm.com/security/cryptocards/html/library.shtml
http://www-3.ibm.com/software/webservers/appserv/doc/latest/prereq.html
http://www.ibm.com/developerworks/websphere/library/tutorials/ondemand/

(JACC) provider, see either “Configuring the JACC provider for Tivoli Access Manager using the

wsadmin utility” on page 1627 or “Configuring the JACC provider for Tivoli Access Manager using the

administrative console” on page 1629.

11. Configure the Common Secure Interoperability Version 2 and Security Authentication Service

authentication protocols. For more information, see “Configuring Common Secure Interoperability

Version 2 and Security Authentication Service authentication protocols” on page 1657.

12. Configure Secure Sockets Layer. For more information, see ″Configuring Secure Sockets Layer″ in

the information center.

13. Configure Java 2 Security Manager. For more information, see “Configuring Java 2 security” on page

1740.

14. Optional: Configure security attribute propagation. For more information, see “Security attribute

propagation” on page 1551.

Global security

Global security applies to all applications running in the environment and determines whether security is

used at all, the type of registry against which authentication takes place, and other values, many of which

act as defaults.

The term global security represents the security configuration that is effective for the entire security

domain. A security domain consists of all servers configured with the same user registry realm name. In

some cases, the realm can be the machine name of a Local OS user registry. In this case, all application

servers must reside on the same physical machine. In other cases, the realm can be the machine name of

an Lightweight Directory Access Protocol (LDAP) user registry. Since LDAP is a distributed user registry, a

multiple node configuration is supported, such as the case for a Network Deployment environment. The

basic requirement for a security domain is that the access ID returned by the registry from one server

within the security domain is the same access ID as that returned from the registry on any other server

within the same security domain. The access ID is the unique identification of a user and is used during

authorization to determine if access is permitted to the resource.

Configuration of global security for a security domain consists of configuring the common user registry, the

authentication mechanism, and other security information that defines the behavior of a security domain.

The other security information that you can configure includes Java 2 Security Manager, Java

Authentication and Authorization Service (JAAS), Java 2 Connector authentication data entries, Common

Secure Interoperability Version 2 (CSIv2)/Security Authentication Service (SAS) authentication protocol

(Remote Method Invocation over the Internet Inter-ORB Protocol (RMI/IIOP) security), and other

miscellaneous attributes. The global security configuration usually applies to every server within the

security domain.

Configuring global security

It is helpful to understand security from an infrastructure standpoint so that you know the advantages of

different authentication mechanisms, user registries, authentication protocols, and so on. Picking the right

security components to meet your needs is a part of configuring global security. The following sections

help you make these decisions. Read the following articles before continuing with the security

configuration.

v “Global security”

v Introduction: Security

After you understand the security components, you can proceed to configure global security in WebSphere

Application Server.

1. Start the WebSphere Application Server administrative console by clicking

http://yourhost.domain:9060/ibm/console after starting the WebSphere Application Server. If security

is currently disabled, log in with any user ID. If security is currently enabled, log in with a predefined

administrative ID and password (this is typically the server user ID specified when you configured the

user registry).

1418 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

2. Click Security > Global security and configure the authentication mechanism, user registry, and so

on. The configuration order is not important. However, when you select the Enable global security

flag in the Global security panel, verify that all these tasks are completed. When you click Apply or

OK and the Enable global security option is set, a verification occurs to see if the administrative user

ID and password can be authenticated to the configured user registry. If you do not configure these,

the validation fails.

3. Configure a user registry. For more information, see “Configuring user registries” on page 1466. You

can configure a local OS, LDAP, or custom user registry through the links under User registry on the

Global security panel.

One of the details common to all user registries is the server user ID. This ID is a member of the

chosen user registry, but also has special privileges in WebSphere Application Server. The privileges

for this ID and the privileges associated with the administrative role ID are the same. The server user

ID can access all protected administrative methods. On Windows systems, the ID must not be the

same name as the machine name of your system, since the registry sometimes returns

machine-specific information when querying a user of the same name. In LDAP user registries, verify

that the server user ID is a member of the registry and not just the LDAP administrative role ID. The

entry must be searchable.

The server user ID does not run WebSphere Application Server processes. Rather, the process ID

runs the WebSphere Application Server processes.The process ID runs the WebSphere Application

Server processes.

The process ID is determined by the way the process starts. For example, if you use a command line

to start processes, the user ID that is logged into the system is the process ID. If running as a service,

the user ID that is logged into the system is the user ID running the service. If you choose the

LocalOS registry, the process ID requires special privileges to call the operating system APIs.

Specifically, the process ID must have the Act as Part of Operating System privileges on Windows

systems or root privileges on a UNIX system.

4. Configure the authentication mechanism. To get details about configuring authentication mechanisms,

read the “Configuring authentication mechanisms” on page 1436 article. There are two authentication

mechanisms to choose from in the Global Security panel: Simple WebSphere Authentication

Mechanism (SWAM) and Lightweight Third-Party Authentication (LTPA). However, only LTPA requires

any additional configuration parameters. Use the SWAM option for single server requirements. Use the

LTPA option for multi-server distributed requirements. SWAM credentials are not forwardable to other

machines and for that reason do not expire. Credentials for LTPA are forwardable to other machines

and for security reasons do expire. This expiration time is configurable. If you choose to go with LTPA,

then “Configuring single signon” on page 1448 support. This support permits browsers to visit different

product servers without having to authenticate multiple times.

5. Configure the authentication protocol for special security requirements from Java clients, if needed.

This task entails choosing a protocol, either Common Secure Interoperability Version 2 (CSIv2) or

Security Authentication Service (SAS). The SAS protocol is still provided as a backwards compatibility

to previous product releases, but is being deprecated. For details on configuring CSIv2 or SAS, see

the article, “Configuring Common Secure Interoperability Version 2 and Security Authentication Service

authentication protocols” on page 1657.

6. Modify the default Secure Sockets Layer (SSL) keystore and truststore files that are packaged with the

product. This action protects the integrity of the messages sent across the Internet. The product

provides a single location where you can specify SSL configurations that the various WebSphere

Application Server features that use SSL can utilize, including the LDAP user registry, Web container

and the authentication protocol (CSIv2 and SAS). Create a new keystore and truststore, by referring to

the “Creating a keystore file” on page 1717 and “Creating truststore files” on page 1721 articles. You

can create different keystore files and truststore files for different uses or you can create just one set

for everything that the server uses Secure Sockets Layer (SSL) for. After you create these new

keystore and truststore files, specify them in the SSL Configuration Repertoires. To get to the SSL

Configuration Repertoires, click Security > SSL. See the article, ″Configuring Secure Sockets

Layer″ in the information center. To get to the SSL Configuration Repertoire, click Security > SSL. You

can either edit the DefaultSSLConfig file or create a new SSL configuration with a new alias name. If

Chapter 8. Developing WebSphere applications 1419

you create a new alias name for your new keystore and truststore files, change every location that

references the DefaultSSLConfig SSL configuration alias. The following list specifies the locations of

where the SSL configuration repertoire aliases are used in the WebSphere Application Server

configuration.

For any transports that use the new network input/output channel chains, including HTTP and Java

Message Service (JMS), you can modify the SSL configuration repertoire aliases in the following

locations for each server:

v Click Server > Application server > server_name. Under Communications, click Ports. Locate a

transport chain where SSL is enabled and click View associated transports. Click

transport_channel_name. Under Transport Channels, click SSL Inbound Channel (SSL_2).

For the Object Request Broker (ORB) SSL transports, you can modify the SSL configuration repertoire

aliases in the following locations. These configurations are for the server-level for WebSphere

Application Server and WebSphere Application Server Express and the cell level for WebSphere

Application Server Network Deployment.

v Click Security > Global security. Under Authentication, click Authentication protocol > CSIv2

Inbound Transport.

v Click Security > Global security. Under Authentication, click Authentication protocol > CSIv2

Outbound Transport.

v Click Security > Global security. Under Authentication, click Authentication protocol > SAS

Inbound Transport.

v Click Security > Global security. Under Authentication, click Authentication protocol > SAS

Outbound Transport.

For the Simple Object Access Protocol (SOAP) Java Management Extensions (JMX) administrative

transports, you can modify the SSL configurations repertoire aliases by clicking Servers > Application

servers >server_name. Under Server infrastructure, click Administration > Administration services.

Under Additional properties, click JMX connectors > SOAPConnector. Under Additional properties,

click Custom properties. If you want to point the sslConfig property to a new alias, click sslConfig

and select an alias in the Value field.

For the Lightweight Directory Access Protocol (LDAP) SSL transport, you can modify the SSL

configuration repertoire aliases by clicking Security > Global security. Under User registries, click

LDAP.

7. Click Security > Global security to configure the rest of the security settings and enable security. This

panel performs a final validation of the security configuration. When you click OK or Apply from this

panel, the security validation routine is performed and any problems are reported at the top of the

page. See the “Global security settings” on page 1421 article for detailed information about these

fields. When you complete all of the fields, click OK or Apply to accept the selected settings. Click

Save to persist these settings out to a file. If you see any informational messages in red text color,

then a problem has occurred with the security validation. Typically, the message indicates the problem;

therefore, review your configuration to verify that the user registry settings are accurate and the correct

registry is selected. In some cases the LTPA configuration might not be fully specified.

8. Store the configuration for the server to use after it restarts. Complete this action if you have clicked

OK or Apply on the Security > Global security panel, and there are no validation problems. To save

the configuration, click Save in the menu bar at the top. This action writes the settings out to the

configuration repository. If you do not click Apply or OK in the Global security panel before clicking

Save on the main menu, your changes are not written to the repository.

9. Start the WebSphere Application Server administrative console by typing

http://yourhost.domain:9060/ibm/console after the WebSphere Application Server deployment

manager has been started. If security is currently disabled, log in with any user ID. If security is

currently enabled, log in with a predefined administrative ID and password, which is typically the server

user ID specified when you configure the user registry.

Enabling global security:

1420 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

You can decide whether to enable IBM WebSphere Application Server security. You must enable security

for all other security settings to function.

Note: WebSphere Application Server uses cryptography to protect sensitive data and ensure

confidentiallity and integrity of communications between WebSphere Application Server and other

components in the network. Cryptography is also used by Web Services security when certain

security constraints have been configured for the Web Services application.

WebSphere uses JSSE and JCE libraries in the JDK to enforce this cryptography. The JDK

provides strong but limited jurisdiction policy files. Unrestricted policy files provide the ability to

perform full strength cryptography and improve performance.

IBM’s SDKs ship with strong but limited jurisdiction policy files. For Windows, Linux, HPUX Solaris,

and AIX platforms, the unrestricted policy files can be downloaded from

https://www6.software.ibm.com/dl/jcesdk/jcesdk-p (Use the link near the bottom of the page.) The

ZIP file should be unpacked and the two JAR files placed in the JRE’s jre/lib/security/ directory.

1. Select the unrestricted JCE policy files for SDK 1.4.2.

2. Extract the unlimited jurisdiction policy files that are packaged in the ZIP file that contains two

files:

a. US_export_policy.jar

b. local_policy.jar

3. Back up the original version of the policy files.

4. Replace the policy files in the $JAVA_HOME/jre/lib/security directory with the two files above.

Global security settings:

Use this page to configure security. When you enable security, you are enabling security settings on a

global level.

 To view this administrative console page, click Security > Global security.

When security is disabled, WebSphere Application Server performance is increased between 10-20%.

Therefore, consider disabling security when it is not needed.

If you are configuring security for the first time, complete the steps in the ″Configuring server security″

article in the documentation to avoid problems. When security is configured, validate any changes to the

registry or authentication mechanism panels. Click Apply to validate the user registry settings. An attempt

is made to authenticate the server ID to the configured user registry. Validating the user registry settings

after enabling global security can avoid problems when you restart the server for the first time.

Enable global security:

Specifies whether to enable global security for this WebSphere Application Server domain.

 This flag is commonly referred to as the global security flag in WebSphere Application Server information.

When enabling security, set the authentication mechanism configuration and specify a valid user ID and

password in the selected user registry configuration.

 Default: Disable

Enforce Java 2 Security:

Chapter 8. Developing WebSphere applications 1421

https://www6.software.ibm.com/dl/jcesdk/jcesdk-p

Specifies whether to enable or disable Java 2 security permission checking. By default, Java 2 security is

disabled. However, enabling global security automatically enables Java 2 security. You can choose to

disable Java 2 security, even when global security is enabled.

 When the Enforce Java 2 security option is enabled and if an application requires more Java 2 security

permissions than are granted in the default policy, then the application might fail to run properly until the

required permissions are granted in either the app.policy file or the was.policy file of the application.

AccessControl exceptions are generated by applications that do have all the required permissions. Consult

the WebSphere Application Server documentation and review the Java 2 Security and Dynamic Policy

sections if you are unfamiliar with Java 2 security.

If your server does not restart after you enable global security, you can disable security. Go to your

$install_root\bin directory and execute the wsadmin -conntype NONE command. At the wsadmin> prompt,

enter securityoff and then type exit to return to a command prompt. Restart the server with security

disabled to check any incorrect settings through the administrative console.

 Default: Disabled

Enforce fine-grained JCA security:

Enable this option to restrict application access to sensitive Java Connector Architecture (JCA) mapping

authentication data.

 Consider enabling this option when both of the following conditions are true:

v Java 2 Security is enforced.

v The application code is granted the accessRuntimeClasses WebSphereRuntimePermission in the

was.policy file found within the application enterprise archive (EAR) file. For example, the application

code is granted the permission when the following line is found in your was.policy file:

permission com.ibm.websphere.security.WebSphereRuntimePermission ″accessRuntimeClasses″;

The Enforce fine-grained JCA security option adds fine-grained Java 2 Security permission checking to

the default principal mapping of the WSPrincipalMappingLoginModule implementation. You must grant

explicit permission to Java 2 Platform, Enterprise Edition (J2EE) applications that use the

WSPrincipalMappingLoginModule implementation directly in the Java Authentication and Authorization

Service (JAAS) login when Java 2 Security and the Enforce fine-grained JCA security option is enabled.

 Default: Disabled

Use domain-qualified user IDs:

Specifies that user names returned by methods are qualified with the security domain in which they reside.

 Default: Disabled

Cache timeout:

Specifies the timeout value in seconds for security cache. This value is a relative timeout.

 If WebSphere Application Server security is enabled, the security cache timeout can influence

performance. The timeout setting specifies how often to refresh the security-related caches. Security

information pertaining to beans, permissions, and credentials is cached. When the cache timeout expires,

all cached information becomes invalid. Subsequent requests for the information result in a database

lookup. Sometimes, acquiring the information requires invoking a Lightweight Directory Access Protocol

1422 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

(LDAP)-bind or native authentication. Both invocations are relatively costly operations for performance.

Determine the best trade off for the application, by looking at usage patterns and security needs for the

site.

In a 20-minute performance test, setting the cache timeout so that a timeout does not occur yields a 40%

performance improvement.

 Data type: Integer

Units: Seconds

Default: 600

Range: Greater than 30 seconds

Issue permission warning:

Specifies that during application deployment and application start, the security run time issues a warning if

applications are granted any custom permissions. Custom permissions are permissions defined by the

user applications, not Java API permissions. Java API permissions are permissions in package java.* and

javax.*.

 WebSphere Application Server provides support for policy file management. A number of policy files are

available in this product, some of them are static and some of them are dynamic. Dynamic policy is a

template of permissions for a particular type of resource. There is no code base defined or relative code

base used in the dynamic policy template. The real code base is dynamically created from the

configuration and run-time data. The filter.policy file contains a list of permissions that an application

should not have according to the J2EE 1.3 specification. For more information on permissions, see the

″Java 2 security policy files″ article in the documentation.

 Default: Disabled

Active protocol:

Specifies the active authentication protocol for Remote Method Invocation over the Internet Inter-ORB

Protocol (RMI IIOP) requests when security is enabled.

 In previous releases the Security Authentication Service (SAS) protocol was the only available protocol.

An Object Management Group (OMG) protocol called Common Secure Interoperability Version 2 (CSIv2)

supports increased vendor interoperability and additional features. If all of the servers in your security

domain are Version 5 servers, specify CSI as your protocol.

If some servers are version 3.x or version 4.x servers, specify CSI and SAS.

 Default: BOTH

Range: CSI and SAS, CSI

Range:

Active authentication mechanism:

Specifies the active authentication mechanism when security is enabled.

 WebSphere Application Server and WebSphere Application Server Express, Version 6 support the

following authentication mechanisms: Simple WebSphere Authentication Mechanism (SWAM) and

Lightweight Third Party Authentication (LTPA).

Chapter 8. Developing WebSphere applications 1423

Default: SWAM (WebSphere Application Server)

Default:

Range: SWAM, LTPA

 Default:

Range:

Active User Registry:

Specifies the active user registry, when security is enabled. LDAP or a custom user registry is required

when running as a UNIX nonroot user or running in a multi-node environment.

 You can configure settings for one of the following user registries:

v Local OS

When you enable global security on a UNIX platform and the user registry is the local OS, you must run

the server as root. The local OS user registry is not supported for nonroot users on a UNIX platform.

v LDAP user registry

The LDAP user registry settings are used when users and groups reside in an external LDAP directory.

When security is enabled and any of these properties change, go to the Global Security panel and click

Apply or OK to validate the changes.

v Custom user registry

 Default: Local OS (single, stand-alone server or sysplex and root

administrator only)

Range: Local OS (single, stand-alone server or sysplex and root

administrator only), LDAP user registry, Custom user

registry

Use the Federal Information Processing Standard (FIPS):

Enables the use of Federal Information Processing Standard (FIPS)-approved cryptographic algorithms.

 When Use the Federal Information Processing Standard (FIPS) is enabled, the Lightweight Third Party

Authentication (LTPA) implementation uses IBMJCEFIPS. IBMJCEFIPS supports the Federal Information

Processing Standard (FIPS)-approved cryptographic algorithms for DES, Triple DES, and AES. Although

the LTPA keys are backwards compatible with prior releases of WebSphere Application Server, the LTPA

token is not compatible with prior releases.

WebSphere Application Server provides a FIPS-approved Java Secure Socket Extension (JSSE) provider

called IBMJSSEFIPS. A FIPS-approved JSSE requires the Transport Layer Security (TLS) protocol

because it is not compatible with the Secure Sockets Layer (SSL) protocol. If you select the Use the

Federal Information Processing Standard (FIPS) option prior to specifying a FIPS-approved JSSE

provider and a TLS protocol, the following error message displays at the top of the Global security panel:

The security policy is set to use only FIPS approved cryptographic algorithms.

However at least one SSL configuration may not be using a FIPS approved JSSE provider.

FIPS approved cryptographic algorithms may not be used in those cases.

To correct this problem, configure your JSSE provider and security protocol on the SSL configuration

repertoires panel by completing one of the following tasks:

v Clicking Security > SSL and modifying an existing configuration

v Clicking New and creating a new configuration

Note:

1424 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

v The IBMJSSEFIPS provider is not supported on the HP-UX platform.

v In WebSphere Application Server Version 6, the HTTP transport does not support the

FIPS-approved providers because it uses the new IBMJSSE2 provider to support channel

framework. The channel framework supports asynchronous communication that might enhance

performance. The IBMJSSE2 provider is specified for the Secure Sockets Layer (SSL) channel

because it must use the IBMJCE provider for encryption. Currently, an IBMJCEFIPS provider that

works with the IBMJSSE2 provider, is not available.

 Default: Disabled

Custom Properties: For an existing configuration, there are a number of profiles that you must modify. To

modify the profiles, go into the administrative console and click Security > Global security. Under

Additional Properties, click Custom properties.

Configuring server security

You can customize security to some extent at the application server level. You can disable user security on

an application server (administrative security remains enabled when global security is enabled). You can

also modify Java 2 Security Manager, CSIv2 or Secure Authentication Service (SAS), and some of the

other security attributes that are found on the global security (also called cell-level security) panel. You

cannot configure a different authentication mechanism or user registry on an individual server basis. This

feature is limited to cell-level configuration only. Also, when global security is disabled, you cannot enable

application server security.

By default, server security inherits all of the values that are configured in global security (cell-level

security). To override the security configuration at the server level, click Servers > Application Servers >

server name. Under Security, click Server Security > Additional properties and click any of the following

panels:

v CSIv2 Inbound Authentication

v CSIv2 Inbound Transport

v CSIv2 Outbound Authentication

v CSIv2 Outbound Transport

v SAS Inbound Transport

v SAS Outbound Transport

v Server-level Security

After modifying the configuration in any of these panels and clicking OK or Apply, the security

configuration for that panel or set of panels now overrides cell-level security. Other panels that are not

overridden continue to be inherited at the cell-level. However, you can always revert back to the cell-level

configuration at any time. On the Server Security panel, click to revert back to the global security

configuration on these panels:

v Use cell security

v Use cell CSI

v Use cell SAS

1. Start the administrative console for the deployment manager. To get to the administrative console, go

to http://host.domain:9060/ibm/console. If security is disabled, you can enter any ID. If security is

enabled, you must enter a valid user ID and password, which is either the administrative ID (configured

for the user registry) or a user ID entered as an administrative user. To add a user ID as an

administrative user, click System Administration > Console settings > Console Users.

2. Configure global security if you have not already done so. Go to the “Configuring global security” on

page 1418 article for detailed steps. After global security is configured, configure server-level security.

Chapter 8. Developing WebSphere applications 1425

3. To configure server-level security, click Servers > Application Servers > server name. Under Security,

click Server Security. The status of the security level that is in use for this application server is

displayed.

By default, you can see that global security, CSI, and SAS have not been overridden at the server

level. CSI and SAS are authentication protocols for RMI/IIOP requests. The Server Level Security

panel lists attributes that are on the Global Security panel and can be overridden at the server level.

Not all of the attributes on the Global Security panel can be overridden at the server level, including

Active Authentication Mechanism and Active User Registry.

4. To disable security for this application server, go to the Server Level Security panel, clear the Enabled

flag and click OK or Apply. Click Save. By modifying the Server Level Security panel, you can see

that this flag overrides the cell-level security.

5. To configure CSI at the server level, you can change any panel that starts with CSI. By doing so, all

panels that start with CSI will override the CSI settings specified at the cell level. This change includes

all authentication and transport panels for CSI. See the “Configuring Common Secure Interoperability

Version 2 and Security Authentication Service authentication protocols” on page 1657 article for more

detailed steps regarding configuring CSI authentication protocol.

Typically server-level security is used to disable user security for a specific application server. However,

this can also be used to disable (or enable) the Java 2 Security Manager, and configure the authentication

requirements for RMI/IIOP requests both incoming and outgoing from this application server.

After you modify the configuration for a particular application server, you must restart the application server

for the changes to become effective. To restart the application server, go to Servers > Application

Servers and click the server name that you recently modified. Then, click the Stop button and then the

Start button.

If you disabled security for the application server, you can typically test a URL that is protected when

security is enabled.

Server-level security settings:

Use this page to enable server level security and specify other server level security configurations.

 To view this administrative console page, click Servers > Application Servers > server_name. Under

Security, click Server Security. Under Additional properties, click Server Level Security.

Enable global security:

Use this flag to disable or enable security again for this application server while global security is enabled.

Server security is enabled by default when global security is enabled. You cannot enable security on an

application server while global security is disabled. Administrative (administrative console and wsadmin)

and naming security remain enabled while global security is enabled, regardless of the status of this flag.

 Default Disable

Enforce Java 2 security:

Specifies that the server enforces Java 2 Security permission checking at the server level. When cleared,

the Java 2 server-level security manager is not installed and all of the Java 2 Security permission checking

is disabled at the server level.

 If your application policy file is not set up correctly, see the documentation on configuring an application

policy in a was.policy file.

 Default Disabled

1426 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Enforce fine-grained JCA security: Enable this option to restrict application access to sensitive Java

Connector Architecture (JCA) mapping authentication data.

 Default Disabled

Use domain qualified user IDs:

Specifies whether user IDs returned by getUserPrincipal()-like calls are qualified with the server level

security domain within which they reside.

 Default Disabled

Cache timeout:

Specifies the timeout value for server level security cache in seconds.

 Data type Integer

Units Seconds

Default 600

Range Greater than 30 seconds. Avoid setting cache timeout

value to 30 seconds or less.

Issue permission warning:

Specifies whether a warning is issued during application installation when an application requires a Java 2

permission that is normally not granted to an application.

 WebSphere Application Server provides support for policy file management. A number of policy files are

included in WebSphere Application Server. Some of these policy files are static and some of them are

dynamic. Dynamic policy is a template of permissions for a particular type of resource. In dynamic policy

files, the code bases are evaluated at run time using configuration data. You can add or remove

permissions, as needed, for each code base. However, do not add, remove, or modify the existing code

bases. The real code base is dynamically created from the configuration and run-time data. The

filter.policy file contains a list of permissions that an application does not have, according to the J2EE

1.3 Specification. For more information on permissions, see the documentation on the Java 2 security

policy files.

 Default Enabled

Active protocol:

Specifies the active server level security authentication protocol when server level security is enabled.

 You can use an Object Management Group (OMG) protocol called Common Secure Interoperability

Version 2 (CSIv2) for more vendor interoperability and additional features. If all of the servers in your

entire security domain are Version 5.0 servers, it is best to specify CSI as your protocol.

If some servers are Version 3.x or Version 4.x servers, it is best to specify CSI and SAS. However, by

specifying CSI and SAS, you now have two interceptors invoking each request.

 Data type String

Default CSI and SAS

Chapter 8. Developing WebSphere applications 1427

Range CSI, CSI and SAS

Administrative console and naming service authorization

WebSphere Application Server extends the Java 2 Platform, Enterprise Edition (J2EE) security role-based

access control to protect the product administrative and naming subsystems.

Administrative console

Four administrative roles are defined to provide degrees of authority needed to perform certain

WebSphere Application Server administrative functions from either the administrative console or the

system management scripting interface. The authorization policy is only enforced when global security is

enabled. The four administrative security roles are defined in the following table:

 administrative roles

Role Description

monitor Least privileged where a user can view the WebSphere

Application Server configuration and current state.

configurator Monitor privilege plus the ability to change the

WebSphere Application Server configuration.

operator Monitor privilege plus the ability to change the run-time

state, such as starting or stopping services.

administrator Operator plus configuration privilege and the permission

required to access sensitive data including the server

password, LTPA password, LTPA, keys, and so on.

When global security is enabled, the administrative subsystem role-based access control is enforced. The

administrative subsystem includes security server, user registry, and all the Java Management Extensions

(JMX) MBeans. When security is enabled, both the administrative console and the administrative scripting

tool require users to provide the required authentication data. Moreover, the administrative console is

designed so the control functions that display on the pages are adjusted according to the security roles

that a user has. For example, a user who has only the monitor role can see only the non-sensitive

configuration data. A user with the operator role can change the system state.

The server identity specified when enabling global security is automatically mapped to the administrative

role. You can add or remove users and groups to or from the administrative roles from the WebSphere

Application Server administrative console. However, a server restart is required for the changes to take

effect. A best practice is to map a group, rather than specific users, to administrative roles because it is

more flexible and easier to administer. By mapping a group to an administrative role, adding or removing

users to or from the group occurs outside of WebSphere Application Server and does not require a server

restart for the change to take effect.

When global security is enabled, WebSphere Application Servers run under the server identity that is

defined under the active user registry configuration. Although it is not shown on the administrative console

and in other tools, a special Server subject is mapped to the administrator role. The WebSphere

Application Server run-time code, which runs under the server identity, requires authorization to runtime

operations. If no other user is assigned administrative roles, you can log into the administrative console or

to the wsadmin scripting tool using the server identity to perform administrative operations and to assign

other users or groups to administrative roles. Because the server identity is assigned to the administrative

role by default, the administrative security policy requires the administrative role to perform the following

operations:

v Change server ID and server password

v Enable or disable WebSphere Application Server global security

v Enforce or disable Java 2 Security

1428 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

v Change the LTPA password or generate keys

v Assign users and groups to administrative roles

When enabling security, you can assign one or more users and groups to administrative roles. For more

information, see Assigning users to naming roles. However, before assigning users to naming roles,

configure the active user registry. User and group validation depends on the active user registry. For more

information, see Configuring user registries.

Naming service authorization

CosNaming security offers increased granularity of security control over CosNaming functions. CosNaming

functions are available on CosNaming servers such as the WebSphere Application Server. They affect the

content of the WebSphere Application Server name space. There are generally two ways in which client

programs result in CosNaming calls. The first is through the JNDI interfaces. The second is with CORBA

clients invoking CosNaming methods directly.

Four security roles are introduced :

v CosNamingRead

v CosNamingWrite

v CosNamingCreate

v CosNamingDelete

The names of the four roles are the same with WebSphere Application Server Advanced Edition Version

4.0.2. The roles now have authority levels from low to high:

CosNamingRead

Users can query of the WebSphere Application Server name space, using, for example, the JNDI

lookup method. The special-subject Everyone is the default policy for this role.

CosNamingWrite

Users can perform write operations such as JNDI bind, rebind, or unbind, and CosNamingRead

operations. The special-subject AllAuthenticated is the default policy for this role.

CosNamingCreate

Users can create new objects in the name space through such operations as JNDI

createSubcontext and CosNamingWrite operations. The special subject AllAuthenticated is the

default policy for this role.

CosNamingDelete

Users can destroy objects in the name space, for example using the JNDI destroySubcontext

method and CosNamingCreate operations. The special-subject AllAuthenticated is the default

policy for this role.

Additionally, a Server special-subject is assigned to all the four CosNaming roles by default. The Server

special-subject provides a WebSphere Application Server server process, which runs under the server

identity, access to all the CosNaming operations. Note that the Server special-subject does not display and

cannot be modified through the administrative console or other administrative tools.

No special configuration is required to enable the server identity (as specified) when enabling global

security for administrative use because the server identity is automatically mapped to the administrator role

(enabled with PQ81586) .

Users, groups, or the special subjects AllAuthenticated and Everyone can be added or removed to or from

the naming roles from the WebSphere Application Server administrative console at any time. However, a

server restart is required for the changes to take effect. A best practice is to map groups or one of the

special-subjects, rather than specific users, to naming roles because it is more flexible and easier to

administer in the long run. By mapping a group to a naming role, adding or removing users to or from the

group occurs outside of WebSphere Application Server and does not require a server restart for the

change to take effect.

Chapter 8. Developing WebSphere applications 1429

The CosNaming authorization policy is only enforced when global security is enabled. When global

security is enabled, attempts to do CosNaming operations without the proper role assignment result in an

org.omg.CORBA.NO_PERMISSION exception from the CosNaming Server.

In WebSphere Application Server Version 4.0.2, each CosNaming function is assigned to only one role.

Therefore, users who are assigned the CosNamingCreate role cannot query the name space unless they

have also been assigned CosNamingRead. And in most cases a creator needs to be assigned three roles:

CosNamingRead, CosNamingWrite, and CosNamingCreate. The CosNamingRead and CosNamingWrite

roles assignment for the creator example are included in the CosNamingCreate role. In most of the cases,

WebSphere Application Server administrators do not have to change the roles assignment for every user

or group when they move to this release from a previous one.

Although the ability exists to greatly restrict access to the name space by changing the default policy,

unexpected org.omg.CORBA.NO_PERMISSION exceptions can occur at run time. Typically, J2EE applications

access the name space and the identity they use is that of the user that authenticated to WebSphere

Application Server when they access the J2EE application. Unless the J2EE application provider clearly

communicates the expected Naming roles, use caution when changing the default naming authorization

policy.

Assigning users to administrator roles

The following steps are needed to assign users to administrative roles.

In the administrative console, click System Administration > Console settings . Click either Console

Users or Console Groups.

1. To add a user or a group, click Add on the Console users or Console groups panel.

2. To add a new administrator user, enter a user identity in the User field, highlight Administrator, and

click OK. If there is no validation error, the specified user is displayed with the assigned security role.

3. To add a new administrative group, either enter a group name in the Specify group field or select

EVERYONE or ALL AUTHENTICATED from the Select from special subject menu, and click OK. If no

validation error exists, the specified group or special subject displays with the assigned security role.

4. To remove a user or group assignment, click Remove on the Console Users or the Console Groups

panel. On the Console Users or the Console Groups panel, select the check box of the user or group

to remove and click OK.

5. To manage the set of users or groups to display, expand the filter folder on the right panel and modify

the filter. For example, setting the filter to user* only displays users with the user prefix.

6. After the modifications are complete, click Save to save the mappings.

7. Restart the server for changes to take effect.

The task of assigning users and groups to administrative roles is performed to identify users for performing

WebSphere Application Server administrative functions. Administrator roles are used to control access to

WebSphere Application Server administrative functions. There are four roles: administrator, configurator,

operator and monitor.

Administrator role

Users and groups assigned to the administrator role can perform all administrative operations and

can set up both J2EE role-based and Java 2 security policy.

Configurator role

 Users assigned to the configurator role can perform all of the day-to-day configuration tasks

including installing and uninstalling applications, assigning users and groups to role mapping for

applications, setting run-as configurations, setting up Java 2 security permissions for applications,

and customizing Common Secure Interoperability Version 2 (CSIv2), Security Authentication

Service (SAS), and Secure Sockets Layer (SSL) configurations.

1430 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Operator role

Users assigned to the operator role can view the WebSphere Application Server configuration and

its current state, but also can change the run-time state such as stopping and starting services.

Monitor role

Users assigned the monitor state can view the WebSphere Application server configuration and its

current state only.

Before you assign users to administrative roles (administrator, configurator, operator, and monitor), you

must set up your user registry, which can be LDAP, local OS, or a custom registry. You can set up your

user registries without enabling security.

Once you assign users to administrative roles, you must restart the server for the new roles to take effect.

However, the administrative resources are not protected until you enable security.

Console groups and CORBA naming service groups:

Use the Console Groups page to give groups specific authority to administer the WebSphere Application

Server using tools such as the administrative console or wsadmin scripting. The authority requirements are

only effective when global security is enabled. Use the CORBA naming service groups page to manage

CORBA Naming Service groups settings.

 To view the Console Groups administrative console page, click System Administration > Console

Groups.

To view the CORBA naming service groups administrative console page, click Environment > Naming >

CORBA Naming Service Groups.

Group (Console groups):

Specifies groups.

 The ALL_AUTHENTICATED and the EVERYONE groups can have the following role privileges:

Administrator, Configurator, Operator, and Monitor.

 Data type: String

Range: ALL_AUTHENTICATED, EVERYONE

Group (CORBA naming service groups):

Identifies CORBA naming service groups.

 The ALL_AUTHENTICATED group has the following role privileges: CosNamingRead, CosNamingWrite,

CosNamingCreate, and CosNamingDelete. The EVERYONE group indicates that the users in this group

have CosNamingRead privileges only.

 Data type: String

Range: ALL_AUTHENTICATED, EVERYONE

Role (Console group):

Specifies user roles.

 The following administrative roles provide different degrees of authority needed to perform certain

WebSphere Application Server administrative functions:

Chapter 8. Developing WebSphere applications 1431

Administrator

The administrator role has operator permissions, configurator permissions, and the permission

required to access sensitive data including server password, LTPA password and keys, and so on.

Configurator

The configurator role has monitor permissions and can change the WebSphere Application Server

configuration.

Operator

The operator role has monitor permissions and can change the run-time state. For example, the

operator can start or stop services.

Monitor

The monitor role has the least permissions. This role primarily confines the user to viewing the

WebSphere Application Server configuration and current state.

 Data type: String

Range: Administrator, Configurator, Operator, and Monitor

Role (CORBA naming service groups):

Identifies naming service group roles.

 A number of naming roles are defined to provide degrees of authority needed to perform certain

WebSphere naming service functions. The authorization policy is only enforced when global security is

enabled.

Four name space security roles are available: CosNamingRead, CosNamingWrite, CosNamingCreate, and

CosNamingDelete. The names of the four roles are the same with WebSphere Advanced Edition, Version

4.0.2. However, the roles now have authority levels from low to high:

CosNamingRead

Users can query the WebSphere name space using, for example, the Java Naming and Directory

Interface (JNDI) lookup method. The special-subject EVERYONE is the default policy for this role.

CosNamingWrite

Users can perform write operations such as JNDI bind, rebind, or unbind, and CosNamingRead

operations. The special-subject ALL_AUTHENTICATED is the default policy for this role.

CosNamingCreate

Users can create new objects in the name space through operations such as JNDI

createSubcontext and CosNamingWrite operations. The special-subject ALL_AUTHENTICATED is

the default policy for this role.

CosNamingDelete

Users can destroy objects in the name space, for example using the JNDI destroySubcontext

method and CosNamingCreate operations. The special-subject ALL_AUTHENTICATED is the

default policy for this role.

 Data type: String

Range: CosNamingRead, CosNamingWrite, CosNamingCreate,

and CosNamingDelete

Assigning users to naming roles

The following steps are needed to assign users to naming roles. In the administrative console, expand

Environment > Naming, and click CORBA Naming Service Users or CORBA Naming Service Groups.

1. Click Add on the CORBA Naming Service Users or CORBA Naming Service Groups panel.

1432 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

2. To add a new naming service user, enter a user identity in the User field, highlight one or more naming

roles, and click OK. If no validation errors occur, the specified user is displayed with the assigned

security role.

3. To add a new naming service group, either select Specify group and enter a group name or select

Select from special subject and then select either EVERYONE or ALL AUTHENTICATED. Click OK.

If no validation errors occur, the specified group or special subject is displayed with the assigned

security role.

4. To remove a user or group assignment, go to the CORBA Naming Service Users or CORBA Naming

Service Groups panel. Select the check box next to the user or group that you want to remove and

click Remove.

5. To manage the set of users or groups to display, expand the Filter folder on the right panel, and

modify the filter text box. For example, setting the filter to user* displays only users with the user

prefix.

6. After modifications are complete, click Save to save the mappings. Restart the server for the changes

to take effect.

The default naming security policy is to grant all users read access to the CosNaming space and to grant

any valid user the privilege to modify the contents of the CosNaming space. You can perform the

previously mentioned steps to restrict user access to the CosNaming space. However, use caution when

changing the naming security policy. Unless a Java 2 Platform, Enterprise Edition (J2EE) application has

clearly specified its naming space access requirements, changing the default policy can result in

unexpected org.omg.CORBA.NO_PERMISSION exceptions at run time.

Console users settings and CORBA naming service user settings:

Use the Console users settings page to give users specific authority to administer WebSphere Application

Server using tools such as the administrative console or wsadmin scripting. The authority requirements are

only effective when global security is enabled. Use the common object request broker architecture

(CORBA) naming service users settings page to manage CORBA naming service users settings.

 To view the Console users administrative console page, click System Administration > Console Users.

To view the CORBA naming service users administrative console page, click Environment > Naming >

CORBA Naming Service users.

User (Console users):

Specifies users.

 The users entered must exist in the configured active user registry.

 Data type: String

User (CORBA naming service users):

Specifies CORBA naming service users.

 The users entered must exist in the configured active user registry.

 Data type: String

Role (Console users):

Specifies user roles.

Chapter 8. Developing WebSphere applications 1433

The following administrative roles provide different degrees of authority needed to perform certain

WebSphere Application Server administrative functions:

Administrator

The administrator role has operator permissions, configurator permissions, and the permission

required to access sensitive data including server password, Lightweight Third Party Authentication

(LTPA) password and keys, and so on.

Configurator

The configurator role has monitor permissions and can change the WebSphere Application Server

configuration.

Operator

The operator role has monitor permissions and can change the run-time state. For example, the

operator can start or stop services.

Monitor

The monitor role has the least permissions. This role primarily confines the user to viewing the

WebSphere Application Server configuration and current state.

 Data type: String

Range: Administrator, Configurator, Operator, and Monitor

Role (CORBA naming service users):

Specifies naming service user roles.

 A number of naming roles are defined to provide degrees of authority needed to perform certain

WebSphere naming service functions. The authorization policy is only enforced when global security is

enabled. The following roles are valid: CosNamingRead, CosNamingWrite, CosNamingCreate, and

CosNamingDelete.

The names of the four roles are the same with WebSphere Application Server, Advanced Edition Version

4.0.2. However, the roles now have authority levels from low to high:

CosNamingRead

Users can query the WebSphere name space using, for example, the Java Naming and Directory

Interface (JNDI) lookup method. The special-subject EVERYONE is the default policy for this role.

CosNamingWrite

Users can perform write operations such as JNDI bind, rebind, or unbind, plus CosNamingRead

operations. The special-subject ALL AUTHENTICATED is the default policy for this role.

CosNamingCreate

Users can create new objects in the name space through operations such as JNDI

createSubcontext and CosNamingWrite operations. The special-subject ALL AUTHENTICATED is

the default policy for this role.

CosNamingDelete

Users can destroy objects in the name space, for example using the JNDI destroySubcontext

method and CosNamingCreate operations. The special-subject ALL AUTHENTICATED is the

default policy for this role.

 Data type: String

Range: CosNamingRead, CosNamingWrite, CosNamingCreate

and CosNamingDelete

Authentication mechanisms

An authentication mechanism defines rules about security information (for example, whether a credential is

forwardable to another Java process), and the format of how security information is stored in both

credentials and tokens.

1434 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Authentication is the process of establishing whether a client is valid in a particular context. A client can be

either an end user, a machine, or an application.

An authentication mechanism in WebSphere Application Server typically collaborates closely with a user

registry. The user registry is the user and groups account repository that the authentication mechanism

consults with when performing authentication. The authentication mechanism is responsible for creating a

credential, which is an internal product representation of a successfully authenticated client user. Not all

credentials are created equally. The abilities of the credential are determined by the configured

authentication mechanism.

Although this product provides several authentication mechanisms, you can configure only a single active

authentication mechanism at a time. The active authentication mechanism is selected when configuring

WebSphere Application Server global security.

Authentication Process

The figure demonstrates the authentication process. Basically, authentication is required for enterprise

bean clients and Web clients when they access protected resources. Enterprise bean clients (a servlet or

other enterprise beans or a pure client) send the authentication information to a Web application server

using one of the following protocols:

v Common Secure Interoperability Version 2 (CSIv2)

v Secure Authentication Service (SAS)

Web clients use the HTTP or HTTPS protocol to send the authentication information as shown in the

previous figure.

The authentication information can be BasicAuth (user ID and password), credential token (in case of

Lightweight Third Party Authentication (LTPA) on all platforms), or client certificate. The Web authentication

is performed by the Web Authentication module and the enterprise bean authentication is performed by the

Enterprise JavaBean (EJB) authentication module, which resides in the CSIv2 and SAS layer. The

authentication module is implemented using the Java Authentication and Authorization Service (JAAS)

login module. The Web authenticator and the EJB authenticator pass the authentication data to the login

module (2), which can use any of the following mechanisms to authenticate the data:

v Lightweight Third Party Authentication (LTPA).

Authentication

module

WebSphere Application Server

(1)

(1)

(2)

(2)

CSIV2/SAS, TCP/IP,

SSL

Basic or

token credentials

HTTP or HTTPS

Basic, token, or

certificate

SWAM

module

LTPA

module

Login

module

Local OS

user registry

LDAP

user registry

Custom

user registry

Enterprise beans

authenticator

Web

authenticator

ORB

current

Java client

Web client

(6) (3)

(3)

(4)

(4)

Authorization

data

Received

credentials

(6)

Received

credentials

(5)

(5)

Credentials

Credentials

Authorization

data

Authentication

Chapter 8. Developing WebSphere applications 1435

v Simple WebSphere Authentication Mechanism (SWAM)

The authentication module uses the registry that is configured on the system to perform the authentication

(4). Three types of registries are supported: LocalOS, Lightweight Directory Access Protocol (LDAP), and

custom registry. External registry implementation following the registry interface specified by IBM can

replace either the LocalOS or the LDAP user registry.

The login module creates a JAAS subject after authentication and stores the Common Object Request

Broker Architecture (CORBA) credential derived from the authentication data in the public credentials list of

the subject. The credential is returned to the Web authenticator or EJB authenticator (5).

The Web authenticator and the EJB authenticator store the received credentials in the Object Request

Broker (ORB) current for the authorization service to use in performing further access control checks.

WebSphere Application Server provides two authentication mechanisms: SWAM and LTPA. These

authentication mechanisms differ primarily in the distributed security features that each supports.

Configuring authentication mechanisms

Configure authentication mechanisms by clicking Authentication Mechanisms under Security > Global

security in the administrative console.

For LTPA, follow the steps in “Configuring single signon” on page 1448 for most situations. If trust

association is required, follow the steps in “Configuring trust association interceptors” on page 1445.

Simple WebSphere authentication mechanism:

The Simple WebSphere authentication mechanism (SWAM) is intended for simple, non-distributed, single

application server run-time environments. The single application server restriction is due to the fact that

SWAM does not support forwardable credentials. If a servlet or enterprise bean in application server

process 1, invokes a remote method on an enterprise bean living in another application server process 2,

the identity of the caller identity in process 1 is not transmitted to server process 2. What is transmitted is

an unauthenticated credential, which, depending on the security permissions configured on the EJB

methods, can cause authorization failures.

Since SWAM is intended for a single application server process, single signon (SSO) is not supported.

The SWAM authentication mechanism is suitable for simple environments, software development

environments, or other environments that do not require a distributed security solution.

Lightweight Third Party Authentication:

Lightweight Third Party Authentication (LTPA) is intended for distributed, multiple application server and

machine environments. It supports forwardable credentials and single signon (SSO). LTPA can support

security in a distributed environment through cryptography. This support permits LTPA to encrypt, digitally

sign, and securely transmit authentication-related data, and later decrypt and verify the signature.

 The Lightweight Third Party Authentication (LTPA) protocol enables the WebSphere Application Server to

provide security in a distributed environment using cryptography. Application servers distributed in multiple

nodes and cells can securely communicate using this protocol. It also provides the single signon (SSO)

feature wherein a user is required to authenticate only once in a domain name system (DNS) domain and

can access resources in other WebSphere Application Server cells without getting prompted. The realm

names on each system in the SSO domain are case sensitive and must match identically.

For local OS on the Windows platform, the realm name is the domain name, if a domain is in

use, or the machine name.

1436 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

On the UNIX platform, the realm name is the same as the host name.

For the Lightweight Directory Access Protocol (LDAP), the realm name is the host:port of the LDAP server.

The LTPA protocol uses cryptographic keys (LTPA keys) to encrypt and decrypt user data that passes

between the servers. These keys need to be shared between the different cells for the resources in one

cell to access resources in other cells (assuming that all the cells involved use the same LDAP or custom

registry).

When using LTPA, a token is created with the user information and an expiration time and is signed by the

keys. The LTPA token is time sensitive. All product servers participating in a protection domain must have

their time, date, and time zone synchronized. If not, LTPA tokens appear prematurely expired and cause

authentication or validation failures.

This token passes to other servers, in the same cell or in a different cell through cookies (for Web

resources when SSO is enabled) or through the authentication layer (Security Authentication Service

(SAS) or Common Secure Interoperability Version 2 (CSIv2) for enterprise beans).

If the receiving servers share the same keys as the originating server, the token can be decrypted to

obtain the user information, which then is validated to make sure it has not expired and the user

information in the token is valid in its registry. On successful validation, the resources in the receiving

servers are accessible after the authorization check.

All the WebSphere Application Server processes in a cell (cell, nodes, application servers) share the same

set of keys. If key sharing is required between different cells, export them from one cell and import them to

the other. For security purposes, the exported keys are encrypted with a user-defined password. This

same password is needed when importing the keys into another cell.

In the base version of WebSphere Application Server, LTPA, ICSF, and the Simple WebSphere

Authentication Mechanism (SWAM) protocols are supported.

When security is enabled for the first time with LTPA, configuring LTPA is normally the initial step

performed.

LTPA requires that the configured user registry be a centrally shared repository such as LDAP or a

Windows domain type registry so that users and groups are the same regardless of the machine.

The following table summarizes the authentication mechanism capabilities and user registries with which

LTPA can work.

 Forwardable

Credentials

SSO LocalOS User

Registry

LDAP User

Registry

Custom User

Registry

SWAM No No Yes Yes Yes

LTPA Yes Yes Yes Yes Yes

ICSF Yes Yes Yes Yes Yes

Configuring Lightweight Third Party Authentication:

The following steps are needed to configure Lightweight Third Party Authentication (LTPA) when setting up

security for the first time:

1. Access the administrative console by typing http://localhost:port_number/ibm/console in a Web

browser. Port 9060 is the default port number for accessing the administrative console. During

installation, however, you might have specified a different port number. Use the appropriate port

number.

Chapter 8. Developing WebSphere applications 1437

2. Click Security > Global security.

3. Under Authentication mechanisms, click LTPA.

4. Enter the password and confirm it in the password fields. This password is used to encrypt and decrypt

the LTPA keys during export and import of the keys. Remember this password because you enter it

again when the keys from this cell are exported to another cell.

5. Enter a positive integer value in the Timeout field. This timeout value refers to how long an LTPA

token is valid in minutes. The token contains this expiration time so that any server that receives the

token can verify that the token is valid before proceeding further.

When the token expires, the user is prompted to log in.

An optimal value for this field depends on your configuration. The default value is 30 minutes.

6. Optional: In the Key file name field, specify the name of the file that is used when you import or

export keys. You can use this field in conjunction with the Import keys and Export keys buttons at the

top of the panel.

7. Click Apply or OK. The LTPA configuration is now set. Do not generate the LTPA keys in this step

because they are automatically generated later. Proceed with the rest of the steps required to enable

security, starting with single signon (SSO) (if SSO is required).

8. Complete the information in the Global Security panel and click OK. The LTPA keys are generated

automatically the first time. Do not generate the keys manually.

The previous steps configure LTPA by setting passwords that generate LTPA keys.

After configuring LTPA, complete the following steps to work with your key files:

1. Generate key files.

2. Export key files.

3. Import key files.

4. If you are enabling security, make sure that you complete the remaining steps starting with enabling

SSO.

5. If you generated a new set of keys or imported a new set of keys, verify that the keys are saved by

clicking Save at the top of the panel. Because LTPA authentication uses time sensitive tokens, verify

that the time, date, and time zone are synchronized among all product servers that are participating in

the protection domain. If the clock skew is too high between servers, the LTPA token appears

prematurely expired and causes authentication or validation failures.

Configuring Lightweight Third Party Authentication keys:

Generating keys:

Lightweight Third Party Authentication (LTPA) keys are automatically generated when a password change

is detected. The first time that you set the LTPA password, as part of enabling security, the LTPA keys are

automatically generated after OK or Apply is clicked in the LTPA panel. You do not have to click Generate

Keys in this situation. Complete the following steps in the administrative console to generate a new set of

LTPA keys:

1. Access the administrative console by typing http://localhost:9060/ibm/console in a Web browser.

2. Verify that all the WebSphere Application Server processes are running (cell, nodes, and all of the

application servers). If any of the servers are down at the time of key generation and then brought

back up later, these servers might contain old keys. Copy the new set of keys to these servers to bring

them back up.

3. Click Security > Authentication mechanisms > LTPA in the navigation panel on the left.

4. Click Generate Keys if you want to use the existing password. This action generates a new set of

keys that are encrypted with the same password as the old set of keys. Regardless of the password

change, a new set of keys is generated when you click Generate Keys. This new set of keys is not

propagated to the run time unless saved; save the files immediately.

1438 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

5. Enter the new password and confirm it, to use a new password to generate keys. Click OK or Apply.

A new set of keys is generated. A message indicating that a new set of keys is generated displays on

the console. Do not click Generate Keys. These new keys are propagated to the run time after you

save them.

6. Click Save to save the keys. After a new set of keys is generated and saved, the key propagation is

dynamic. All of the processes running at that time (cells, node agents, application servers) are updated

with the new set of keys. The next sections describe the process of exporting and importing the keys.

Exporting keys:

To support single signon (SSO) in WebSphere Application Server across multiple WebSphere Application

Server domains or cells, share the LTPA keys and the password among the domains. Make sure that the

time on the domains is similar to prevent the tokens from appearing as expired between the cells. You can

use Export Keys to export the LTPA keys to other domains or cells. Complete the following steps in the

administrative console to export key files for LTPA:

1. Access the administrative console by typing http://localhost:9060/ibm/console in a Web browser.

2. Click Security > Authentication mechanisms > LTPA in the navigation panel on the left.

3. In the Key File Name field, enter the full path of a file for key storage. This file needs write

permissions.

4. Click Export Keys. A file is created with the LTPA keys. Exporting keys fails if a new set of keys is

generated or imported and not saved prior to exporting. To avoid failure, make sure that you save the

new set of keys (if any) prior to exporting them.

5. Click Save to save the configuration.

Importing keys:

To support SSO in WebSphere Application Server across multiple WebSphere Application Server domains

or cells, share the LTPA keys and the password among the domains. You can use Import Keys to import

the LTPA keys from other domains. Verify that key files are exported from one of the cells involved, into a

file. Complete the following steps in the administrative console to import key files for LTPA.

Importing keys is a dynamic operation. All of the servers that are running at this time are updated with the

new set of keys. Any back-level tokens signed with the back-level keys fail validation and the user is

prompted to log in again.

1. Access the administrative console by typing http://localhost:9060/ibm/console in a Web browser.

2. Click Security > Authentication mechanisms > LTPA in the navigation panel on the left.

3. Change the password in the password fields to match the password in the cell from which you are

importing the keys.

4. Click Save to save the new set of keys in the repository. This step is important to complete before

importing the keys. If the password and the keys do not match, the servers fail. If the servers fail, turn

off security and redo these steps.

5. In the Key File Name field, enter the full path of a file for key storage. This file needs read

permissions.

6. Click Import Keys. The keys are now imported into the system.

7. Click Save to save the new set of keys in the repository. It is important to save the new set of keys to

match the new password so that no problems are encountered starting the servers later.

Lightweight Third Party Authentication settings:

Use this page to configure Lightweight Third Party Authentication (LTPA) settings.

 To view this administrative console page, complete the following steps:

1. Click Security > Global security.

Chapter 8. Developing WebSphere applications 1439

2. Under Authentication, click Authentication mechanisms > LTPA.

If you are configuring security for the first time, only the password is required. After the password is

entered, click Apply. Under Additional Properties, click Single signon (SSO) and enter the domain name.

Make sure that SSO is enabled. Click Apply.

To complete the security setup, make sure that the appropriate registry is set up and click Apply from the

Global security panel. When security is enabled and any of these properties change, go to the Global

security panel under Security > Global security and click Apply to validate the changes.

Generate Keys:

Specifies whether the server generates new Lightweight Third Party Authentication (LTPA) keys.

 When security is turned on for the first time with LTPA as the authentication mechanism, the LTPA keys

are automatically generated with the password entered in the panel. If you need a new set of keys to

generate using the previously set password, click Generate Keys. If a new password is used, do not click

this option. After the new password is entered and OK or Apply is clicked, a new set of keys is generated.

A new set of generated keys is not used until you save them.

Import Keys:

Specifies whether the server imports new LTPA keys.

 To support single signon (SSO) in the WebSphere product across multiple WebSphere domains (cells),

share the LTPA keys and the password among the domains. You can use the Import Keys option to

import the LTPA keys from other domains. The LTPA keys are exported from one of the cells to a file. To

import a new set of LTPA keys, enter the appropriate password, click OK and click Save. Then, enter the

directory location where the LTPA keys are located prior to clicking Import keys. Do not click OK or

Apply, but save the settings.

Export Keys:

Specifies whether the server exports LTPA keys.

 To support single signon (SSO) in the WebSphere product across multiple WebSphere Application Server

domains (cells), share the LTPA keys and the password among the domains. Use the Export Keys option

to export the LTPA keys to other domains.

To export the LTPA keys, make sure that the system is running with security enabled and is using LTPA.

Enter the file name in the Key file name field and click Export Keys. The encrypted keys are stored in

the specified file.

Password:

Specifies the password to encrypt and decrypt the LTPA keys. Use this password when importing these

keys into other WebSphere Application Server administrative domain configurations (if any) and when

configuring SSO for a Lotus Domino server.

 After the keys are generated or imported, they are used to encrypt and decrypt the LTPA token. Whenever

the password is changed, a new set of LTPA keys are automatically generated when you click OK or

Apply. The new set of keys is used after the configuration changes are saved.

 Data type String

Confirm password:

1440 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Specifies the confirmed password used to encrypt and decrypt the LTPA keys.

 Use this password when importing these keys into other WebSphere Application Server administrative

domain configurations (if any) and when configuring SSO for a Lotus Domino server.

 Data type String

Timeout:

Specifies the time period in minutes at which an LTPA token expires. Verify that this time period is longer

than the cache timeout configured in the Global security panel.

 Data type Integer

Units Minutes

Default 120

Key file name:

Specifies the name of the file used when importing or exporting keys.

 Enter a fully qualified key file name, and click Import Keys or Export Keys.

 Data type String

Trust associations:

Trust association enables the integration of IBM WebSphere Application Server security and third-party

security servers. More specifically, a reverse proxy server can act as a front-end authentication server

while the product applies its own authorization policy onto the resulting credentials passed by the proxy

server.

 Demand for such an integrated configuration has become more compelling, especially when a single

product cannot meet all of the customer needs or when migration is not a viable solution. This article

provides a conceptual background behind the approach.

The demand is growing to provide customers with a trust association solution between IBM WebSphere

Application Server and other Web authentication servers that act as a reverse proxy security server (IBM

Tivoli Access Manager for e-business - WebSEAL, Caching Proxy) as an entry point to all service requests

(See the first figure). This implementation design intends to have the proxy server as the only exposed

entry point. The proxy server authenticates all requests that come in and provides coarse, granularity

junction point authorization.

In this setup, the WebSphere Application Server is used as a back-end server to further exploit its

fine-grained access control. The reverse proxy server passes the HTTP request to the WebSphere

Application Server that includes the credentials of the authenticated user. WebSphere Application Server

then uses these credentials to authorize the request.

Trust association model

The idea that WebSphere Application Server can support trust association implies that the product

application security recognizes and processes HTTP requests received from a reverse proxy server.

WebSphere Application Server and the proxy server engage in a contract in which the product gives its full

trust to the proxy server and the proxy server applies its authentication policies on every Web request that

Chapter 8. Developing WebSphere applications 1441

is dispatched to WebSphere Application Server. This trust is validated by the interceptors that reside in the

product environment for every request received. The method of validation is agreed upon by the proxy

server and the interceptor.

Running in trust association mode does not prohibit WebSphere Application Server from accepting

requests that did not pass through the proxy server. In this case, no interceptor is needed for validating

trust. It is possible, however, to configure WebSphere Application Server to strictly require that all HTTP

requests go through a reverse proxy server. In this case, all requests that do not come from a proxy server

are immediately denied by WebSphere Application Server.

WebSphere Application Server supports the following trust association interceptor (TAI) interfaces:

com.ibm.ws.security.web.WebSealTrustAssociationInterceptor

This Tivoli TAI interceptor that implements WebSphere Application Serve TAI interface is provided

to support WebSEAL Version 4.1. If you plan to use WebSEAL 5.1, it is recommended that you

migrate to use the new com.ibm.ws.security.web.TAMTrustAssociationInterceptorPlus interceptor

which implements the new com.ibm.wsspi.security.tai.TrustAssociationInterceptor interface.

com.ibm.ws.security.web.TAMTrustAssociationInterceptorPlus

This TAI interceptor implementation that implements the new WebSphere Application Server

interface supports WebSphere Application Server Version 5.1.1 and later. The interface supports

WebSEAL Version 5.1, but does not support WebSEAL Version 4.1. For an explanation of security

attribute propagation, see ″Security attribute propagation.″

IBM WebSphere Application Server: WebSEAL Integration

The integration of WebSEAL and WebSphere Application Server security is achieved by placing the

WebSEAL server at the front-end as a reverse proxy server. See Figure 2. From a WebSEAL management

perspective, a junction is created with WebSEAL on one end, and the product Web server on the other

end. A junction is a logical connection created to establish a path from the WebSEAL server to another

server.

In this setup, a request for Web resources stored in a protected domain of the product is submitted to the

WebSEAL server where it is authenticated against the WebSEAL security realm. If the requesting user has

access to the junction, the request is transmitted to the WebSphere Application Server HTTP server

through the junction, and then to the application server.

Trust association model

User ID and password in basic authentication data

Trusted server ID and password in data

and user ID in the HTTP request header

basic authentication

Web application server

Requested

resource

HTTP

request

Web

client

Reverse

proxy

server

Modified

HTTP

request

Requested

resource

(4)

(1)

(6)

(2)

(5)

(3)

User ID

User ID

or Subject

if trust is valid

(using the old TAI interface)

(using the version 5.1.1

TAI++ interface)

Credentials

Modified HTTP

HTTP Request:

Modified HTTP Request:

Trust

association

interceptor

User

request

Web

authenticator

1442 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Meanwhile, the WebSphere Application Server validates every request that comes through the junction to

ensure that the source is a trusted party. This process is referenced as validating the trust and it is

performed by a WebSEAL product-designated interceptor. If the validation is successful, the WebSphere

Application Server authorizes the request by checking whether the client user has the required

permissions to access the Web resource. If so, the Web resource is delivered to the WebSEAL server,

through the Web server, which then gives it to the client user.

WebSEAL server

The policy director delegates all of the Web requests to its Web component, the WebSEAL server. One of

the major functions of the server is to perform authentication of the requesting user. The WebSEAL server

consults a Lightweight Directory Access Protocol (LDAP) directory. It can also map the original user ID to

another user ID, such as when global single signon (GSO) is used.

For successful authentication, the server plays the role of a client to WebSphere Application Server when

channeling the request. The server needs its own user ID and password to identify itself to WebSphere

Application Server. This identity must be valid in the security realm of WebSphere Application Server. The

WebSEAL server replaces the basic authentication information in the HTTP request with its own user ID

and password. In addition, WebSphere Application Server must determine the credentials of the requesting

client so that the application server has an identity to use as a basis for its authorization decisions. This

information is transmitted through the HTTP request by creating a header called iv-creds with the Tivoli

Access Manager user credentials as its value.

HTTP server

The junction created in the WebSEAL server must get to the HTTP server that serves as the product front

end. However, the HTTP server is shielded from knowing that trust association is used. As far as it is

concerned, the WebSEAL product is just another HTTP client, and as part of its normal routines, it sends

the HTTP request to the product. The only requirement on the HTTP server is a Secure Sockets Layer

(SSL) configuration using server authentication only. This requirement protects the requests that flow

within the junction.

HitCount

servlet

HitCountBean

Servlet engine

Enterprise beans

container

WebSEAL

trust

Security

collaborator

Security

application

Authorization

and delegation

Product

resources

Trust

validation

Requested

resource

HTTP

request with

credentials

Web server

Web server and

WebSphere Application Server

Web server

plug-in

Web server

resource

Requested

resource

HTTP

request

Web

client
WebSEAL

Chapter 8. Developing WebSphere applications 1443

Web collaborator

When trust association is enabled, the Web collaborator manages the interceptors that are configured in

the system. It loads and initializes these interceptors when you restart your servers. When a request is

passed to WebSphere Application Server by the Web server, the Web collaborator eventually receives the

request for a security check. Two actions must take place:

1. The request must be authenticated.

2. The request must be authorized.

The Web authenticator is called to authenticate the request by passing the HTTP request. If successful, a

good credential record is returned by the authenticator, which the Web collaborator uses to base its

authorization for the requested resource. If the authorization succeeds, the Web collaborator indicates to

WebSphere Application Server that the security check has succeeded and that the requested resource can

be served.

Web authenticator

The Web authenticator is asked by the Web collaborator to authenticate a given HTTP request. Knowing

that trust association is enabled, the task of the Web authenticator is to find the appropriate trust

association interceptor to direct the request for processing. The Web authenticator queries every available

interceptor. If no target interceptor is found, the Web authenticator processes the request as though trust

association is not enabled.

For an HTTP request sent by the WebSEAL server, the WebSEAL trust association interceptor replies with

a positive response to the Web authenticator. Subsequently, the interceptor is asked to validate its trust

association with the WebSEAL server and retrieve the Subject, using the new trust association interface

(TAI) interface, or user ID, using the old TAI interface, of the original user client.

Note: The new Trust Association Interceptor (TAI) interface,

com.ibm.wsspi.security.tai.TrustAssociationInterceptor, supports several new features and is

HTTP

request

HTTP

request
HTTP

server

WebSphere Application Server

WebSEAL

WebSEAL

trust association

interceptor

HTTP request

HTTP

request

Authorization

policy

HitCount

servlet

HitCountBean

Servlet engine

Enterprise beans

container

Web

collaborator

Web

authenticator

1444 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

different from the existing com.ibm.websphere.security.TrustAssociationInterceptor interface.

Although the existing interface is still supported, it is being deprecated in a future release. Refer to

X for more information.

WebSphere Application Server Version 4 through WebSphere Application Server Version 5.x

support the com.ibm.websphere.security.TrustAssociationInterceptor.java interface.

WebSphere Application Server Version 6 supports the

com.ibm.wsspi.security.tai.TrustAssociationInterceptor interface

For more information, seeTrust association interceptor support for Subject creation .

Trust association interceptor interface

The intent of the trust association interceptor interface is to have reverse proxy security servers (RPSS)

exist as the exposed entry points to perform authentication and coarse-grained authorization, while the

WebSphere Application Server enforces further fine-grained access control. Trust associations improve

security by reducing the scope and risk of exposure.

In a typical e-business infrastructure, the distributed environment of a company consists of Web

application servers, Web servers, legacy systems, and one or more RPSS, such as the Tivoli WebSEAL

product. Such reverse proxy servers, front-end security servers, or security plug-ins registered within Web

servers, guard the HTTP access requests to the Web servers and the Web application servers. While

protecting access to the Uniform Resource Identifiers (URIs), these RPSS perform authentication,

coarse-grained authorization, and request routing to the target application server.

Using the trust association interceptor feature

The following points further describe the benefits of the trust association interceptor (TAI) feature:

v RPSS can authenticate WebSphere Application Server users up front and send credential information

about the authenticated user to the product so that the product can trust the RPSS to perform

authentication and not prompt the end user for authentication data later. The strength of the trust

relationship between RPSS and the product is based on the criteria of trust association that is particular

to a RPSS and enforced through the TAI implementation. This level of trust might need relaxing based

on the environment. Be aware of the vulnerabilities in cases where the RPSS is not trusted, based on a

security technology.

v The end user credentials most likely are sent in a special format as part of the Hypertext Transfer

Protocol (HTTP) headers as in the case of RPSS authentication. The credentials can be a special

header or a cookie. The data that passes is implementation specific, and the TAI feature considers this

fact and accommodates the idea. The TAI implementation works with the credential data and returns a

Subject, using the new TAI interface, or a user ID, using the old TAI interface, that represents the end

user. WebSphere Application Server uses the information to enforce security policies.

Configuring trust association interceptors:

These steps are required to use either a WebSEAL trust association interceptor or your own trust

association interceptor with a reverse proxy security server. WebSphere Application Server enables you to

use multiple trust association interceptors. The Application Server uses the first interceptor that can handle

the request.

1. Access the administrative console by typing http://localhost:port_number/ibm/console in a Web

browser. Port 9060 is the default port number for accessing the administrative console. During

installation, however, you might have specified a different port number. Use the appropriate port

number.

2. Click Security > Global security.

3. Under Authentication mechanisms, click LTPA.

4. Under Additional properties, click Trust Association.

Chapter 8. Developing WebSphere applications 1445

5. Select the Enable trust association option.

6. Under Additional properties, click Interceptors. The default value appears.

7. Verify that the appropriate trust association interceptors are listed. If you need to use a WebSEAL trust

association interceptor, see “Configuring single signon using the trust association interceptor” on page

1457 or “Configuring single signon using trust association interceptor ++” on page 1458. If you are not

using WebSEAL and need to use a different interceptor, complete the following steps:

a. Select both the com.ibm.ws.security.web.WebSealTrustAssociationInterceptor and the

com.ibm.ws.security.web.TAMTrustAssociationInterceptorPlus class name and click Delete.

b. Click New and specify a trust association interceptor.

Enables trust association.

1. If you are enabling security, make sure that you complete the remaining steps for enabling security.

2. Save, stop and restart all of the product servers (deployment managers, nodes and Application

Servers) for the changes to take effect.

Trust association settings:

 Trust association enables the integration of IBM WebSphere Application Server security and third-party

security servers. More specifically, a reverse proxy server can act as a front-end authentication server

while the product applies its own authorization policy onto the resulting credentials passed by the proxy

server. Use this page to configure trust association settings.

To view this administrative console page, complete the following steps:

1. Click Security > Global security.

2. Under Authentication, click Authentication mechanisms > LTPA.

3. Under Additional properties, click Trust association.

When security is enabled and any of these properties change, go to the Global security panel and click

Apply to validate the changes.

Enable trust association:

Specifies whether trust association is enabled.

 Data type: Boolean

Default: Disable

Range: Enable or Disable

Trust association interceptor collection:

Use this page to specify trust information for reverse security proxy servers.

 To view this administrative console page, complete the following steps:

1. Click Security > Global security.

2. Under Authentication, click Authentication mechanisms > LTPA.

3. Under Additional Properties, click Trust association > Interceptors.

When security is enabled and any of these properties are changed, go to the Global security panel and

click Apply to validate the changes.

Interceptor class name:

Specifies the trust association interceptor class name.

1446 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Data type

String

Default

com.ibm.ws.security.web.WebSealTrustAssociationInterceptor

Single signon:

With single signon (SSO) support, Web users can authenticate once when accessing both WebSphere

Application Server resources, such as HTML, JavaServer Pages (JSP) files, servlets, enterprise beans,

and Lotus Domino resources, such as documents in a Domino database, or accessing resources in

multiple WebSphere Application Server domains.

 Web users can authenticate once to a WebSphere Application Server or to a Domino server. Without

logging in again, Web users can access any other WebSphere Application Servers or Domino servers in

the same Domain Name Service (DNS) domain that are enabled for SSO. This authentication is

accomplished by configuring the WebSphere Application Servers and the Domino servers to share

authentication information.

Enable SSO among WebSphere Application Servers by configuring SSO for WebSphere Application

Server. To enable SSO between WebSphere Application Servers and Domino servers, you must configure

SSO for both WebSphere Application Server and for Domino.

Prerequisites and conditions

To take advantage of support for single signon between WebSphere Application Servers or between

WebSphere Application Server and a Domino server, applications must meet the following prerequisites

and conditions:

v Verify that all servers are configured as part of the same DNS domain. For example, if the DNS domain

is specified as mycompany.com, then SSO is effective with any Domino server or WebSphere Application

Server on a host that is part of the mycompany.com domain, for example, a.mycompany.com and

b.mycompany.com.

v Verify that all servers share the same user registry.

This registry can be either a supported Lightweight Directory Access Protocol (LDAP) directory server

or, if SSO is configured between two WebSphere Application Servers, a custom user registry.Domino

servers do not support custom registries, but you can use a Domino-supported registry as a custom

registry within WebSphere Application Server. For more information on custom registries, see

Introduction to custom registries.

You can use a Domino directory (configured for LDAP access) or other LDAP directory for the user

registry. The LDAP directory product must have WebSphere Application Server support. Supported

products include both Domino and IBM SecureWay LDAP directory servers. Regardless of the choice to

use an LDAP or a custom registry, the SSO configuration is the same. The difference is in the

configuration of the registry.

v Define all users in a single LDAP directory. Using LDAP referrals to connect more than one directory

together is not supported. Using multiple Domino directory assistance documents to access multiple

directories also is not supported.

v Enable HTTP cookies in browsers because the authentication information that is generated by the

server is transported to the browser in a cookie. The cookie is then used to propagate the

authentication information for the user to other servers, exempting the user from entering the

authentication information for every request to a different server.

v For a Domino server:

– Domino Release 5.0.6a for iSeries 400 or later and Domino Release 5.0.5 or later for other platforms

are supported.

– A Lotus Notes client Release 5.0.5 or later is required for configuring the Domino server for SSO.

– You can share authentication information across multiple Domino domains.
v For WebSphere Application Server:

Chapter 8. Developing WebSphere applications 1447

– WebSphere Application Server Version 3.5 or later for all platforms is supported.

– You can use any HTTP Web server supported by WebSphere Application Server.

– You can share authentication information across multiple product administrative domains.

– Basic authentication (user ID and password) using the basic and form-login mechanisms is

supported.

– By default, WebSphere Application Server does a case-sensitive comparison for authorization. This

comparison implies that a user who is authenticated by Domino matches the entry exactly (including

the base distinguished name) in the WebSphere Application Server authorization table. If case

sensitivity is not considered for the authorization, enable the Ignore Case property in the LDAP user

registry settings.

Configuring single signon:

With single signon (SSO) support, Web users can authenticate once when accessing Web resources

across multiple WebSphere Application Servers. Form login mechanisms for Web applications require that

SSO is enabled.

SSO is supported only when Lightweight Third Party Authentication (LTPA) is the authentication

mechanism.

When SSO is enabled, a cookie is created containing the LTPA token and inserted into the HTTP

response. When the user accesses other Web resources in any other WebSphere Application Server

process in the same domain name service (DNS) domain, the cookie is sent in the request. The LTPA

token is then extracted from the cookie and validated. If the request is between different cells of

WebSphere Application Servers, you must share the LTPA keys and the user registry between the cells for

SSO to work. The realm names on each system in the SSO domain are case sensitive and must match

identically.

For local OS on the Windows platform, the realm name is the domain name if a domain is in

use or the machine name.

On the Linux or UNIX platforms, the release name is the same as the host name.

For the Lightweight Directory Access Protocol (LDAP) the realm name is the host:port realm name of the

LDAP server. The LTPA authentication mechanism requires that you enable SSO if any of the Web

applications have form login as the authentication method.

Because single signon is a subset of LTPA, it is recommended that you read “Lightweight Third Party

Authentication” on page 1436 for more information.

When you enable security attribute propagation, the following cookies are added to the response:

LtpaToken

The LtpaToken is used for interoperating with previous releases of WebSphere Application Server.

This token contains the authentication identity attribute only.

LtpaToken2

LtpaToken2 contains stronger encryption and enables you to add multiple attributes to the token.

This token contains the authentication identity and additional information such as the attributes

used for contacting the original login server and the unique cache key for looking up the Subject

when considering more than just the identity in determining uniqueness.

1448 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

For more information, see ″Security attribute propagation″ in the information center.

 Token type Purpose How to specify

LtpaToken only This token type is used for the same

SSO behavior existing in WebSphere

Application Server Version 5.1 and

previous releases. Also, this token

type is interoperable with those

previous releases.

Disable the Web inbound security

attribute propagation option located

in the SSO configuration panel in the

administrative console. To access this

panel, complete the following steps:

1. Click Security > Global security.

2. Under Authentication, click

Authentication mechanisms >

LTPA.

3. Under Additional properties, click

Single signon (SSO).

LtpaToken2 only This token type is used for Web

inbound security attribute propagation

and uses the AES, CBC, PKCS5

padding encryption strength (128 bit

key size). However, this token type is

not interoperable with releases prior

to WebSphere Application Server

Version 5.1.1. The token type allows

for multiple attributes specified in the

token (mostly containing information

to contact the original login server).

Enable the Web inbound security

attribute propagation option in the

SSO configuration panel within the

administrative console. Disable the

Interoperability mode option in the

SSO configuration panel within the

administrative console. To access this

panel, complete the following steps:

1. Click Security > Global security.

2. Under Authentication, click

Authentication mechanisms >

LTPA.

3. Under Additional properties, click

Single signon (SSO).

LtpaToken and LtpaToken2 These tokens together support both

of the previous two options. The

token types are interoperable with

releases prior to WebSphere

Application Server Version 5.1.1

because LtpaToken is present. The

security attribute propagation function

is enabled because the LtpaToken2 is

present.

Enable the Web inbound security

attribute propagation option in the

SSO configuration panel within the

administrative console. Enable the

Interoperability mode option in the

SSO configuration panel within the

administrative console. To access this

panel, complete the following steps:

1. Click Security > Global security.

2. Under Authentication, click

Authentication mechanisms >

LTPA.

3. Under Additional properties, click

Single signon (SSO).

The following steps are required to configure SSO for the first time.

 1. Access the administrative console by typing http://localhost:port_number/ibm/console in a Web

browser. Port 9060 is the default port number for accessing the administrative console. During

installation, however, you might have specified a different port number. Use the appropriate port

number.

 2. Click Security > Global security .

 3. Under Authentication, click Authentication mechanisms > LTPA.

 4. Under Additional properties, click Single signon (SSO).

 5. Click the Enabled option if SSO is disabled. After you click Enabled, make sure that you complete

the remaining steps to enable security.

 6. Click the Requires SSL option if all of the requests are expected to use HTTPS.

Chapter 8. Developing WebSphere applications 1449

7. Enter the fully-qualified domain names in the Domain name field where SSO is effective. The cookie

is sent for all of the servers that are contained within the domains that you specify in this field. If you

specify domain names, they must be fully qualified. If the domain name is not fully qualified,

WebSphere Application Server does not set a domain name value for the LtpaToken cookie and SSO

is valid only for the server that created the cookie.

You can configure the Domain name field using any of the following values:

 Domain name value type Example

Blank

Single domain name austin.ibm.com

UseDomainFromURL UseDomainFromURL

Multiple domain names austin.ibm.com;raleigh.ibm.com

Multiple domain names and UseDomainFromURL v austin.ibm.com;raleigh.ibm.com

v UseDomainFromURL

If you specify the UseDomainFromURL, WebSphere Application Server sets the SSO domain name

value to the domain of the host that makes the request. For example, if an HTTP request comes from

server1.raleigh.ibm.com, WebSphere Application Server sets the SSO domain name value to

raleigh.ibm.com.

Tip: The value, UseDomainFromURL, is case insensitive. You can type usedomainfromurl to use this

value.

When you specify multiple domains, you can use the following delimiters: a semicolon (;), a space (),

a comma (,), or a pipe (|). WebSphere Application Server searches the specified domains in order

from left to right. Each domain is compared with the host name of the HTTP request until the first

match is located. For example, if you specify ibm.com; austin.ibm.com and a match is found in the

ibm.com domain first, WebSphere Application server does not continue to search for a match in the

austin.ibm.com domain. However, if a match is not found in either the ibm.com or austin.ibm.com

domains, then WebSphere Application Server does not set a domain for the LtpaToken cookie.

For more information, see “Single signon settings” on page 1451.

 8. Optional: Enable the Interoperability mode option if you want to allow SSO connections in

WebSphere Application Server version 5.1.1 or later to interoperate with previous versions of the

application server. This option sets the old-style LtpaToken into the response so it can be sent to

other servers that work only with this token type. However, this option applies only when the Web

inbound security attribute propagation option is enabled. In this case, both the LtpaToken and

LtpaToken2 are added to the response. Otherwise, only the LtpaToken2 is added to the response. If

the Web inbound security attribute propagation option is disabled, then only the LtpaToken is

added to the response.

 9. Optional: Enable the Web inbound security attribute propagation option if you want information

added during the login at a specific front-end server to propagate to other front-end servers. The SSO

token does not contain any sensitive attributes, but does understand where the original login server

exists in cases where it needs to contact that server to retrieve serialized information. It also contains

the cache look up value for finding the serialized information in DynaCache, if both front-end servers

are configured in the same DRS replication domain. For more information, see ″Security attribute

propagation.″

Important: If the following statements are true, it is recommended that you disable the Web

inbound security attribute propagation option for performance reasons:

v You do not have any specific information added to the Subject during a login that

cannot be obtained at a different front-end server.

v You did not add custom attributes to the PropagationToken using WSSecurityHelper

application programming interfaces (APIs).

1450 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

If you find you are missing custom information in the Subject, re-enable the Web

inbound security attribute propagation option to see if the information is propagated

successfully to other front-end application servers. If you disable SSO, but use a trust

association interceptor instead, you might still need to enable the Web inbound security

attribute propagation option if you want to retrieve the same Subject generated at

different front-end servers.

10. Click OK.

For the changes to take effect, save, stop, and restart all the product servers (deployment managers,

nodes and Application Servers).

Single signon settings:

Use this page to set the configuration values for single signon (SSO).

 To view this administrative console page, complete the following steps:

1. Click Security > Global Security.

2. Under Authentication mechanisms, click LTPA.

3. Under Additional properties, click Single signon (SSO).

Enabled:

Specifies that the single signon function is enabled.

 Web applications that use J2EE FormLogin style login pages (such as the WebSphere Application Server

administrative console) require single signon (SSO) enablement. Only disable SSO for certain advanced

configurations where LTPA SSO-type cookies are not required.

 Data type: Boolean

Default: Enabled

Range: Enabled or Disabled

Requires SSL:

Specifies that the single signon function is enabled only when requests are made over HTTPS Secure

Sockets Layer (SSL) connections.

 Data type: Boolean

Default: Disable

Range: Enable or Disable

Domain name:

Specifies the domain name (.ibm.com, for example) for all single signon hosts.

 WebSphere Application Server uses all the information after the first period, from left to right, for the

domain names. If this field is not defined, the Web browser defaults the domain name to the host name

where the Web application is running. Also, single signon is then restricted to the application server host

name and does not work with other application server host names in the domain.

You can specify multiple domains separated by a semicolon (;), a space (), a comma (,), or a pipe (|).

Each domain is compared with the host name of the HTTP request until the first match is located. For

example, if you specify ibm.com;austin.ibm.com and a match is found in the ibm.com domain first,

Chapter 8. Developing WebSphere applications 1451

WebSphere Application server does not match the austin.ibm.com domain. However, if a match is not

found in either ibm.com or austin.ibm.com, then WebSphere Application Server does not set a domain for

the LtpaToken cookie.

If you specify UseDomainFromURL, WebSphere Application Server sets the SSO domain name value to the

domain of the host used in the URL. For example, if an HTTP request comes from

server1.raleigh.ibm.com, WebSphere Application Server sets the SSO domain name value to

raleigh.ibm.com.

Tip: The UseDomainFromURL value is case insensitive. You can type usedomainfromurl to use this value.

 Data type: String

Interoperability mode:

Specifies that an interoperable cookie is sent to the browser to support back-level servers.

 In WebSphere Application Server, Version 6 and later, a new cookie format is needed by the security

attribute propagation functionality. When the interoperability mode flag is enabled, the server can send a

maximum of two single signon (SSO) cookies back to the browser. In some cases, the server just sends

the interoperable SSO cookie.

Web inbound security attribute propagation:

When Web inbound security attribution propagation is enabled, security attributes are propagated to

front-end application servers. When this option is disabled, the single signon (SSO) token is used to log in

and recreate the Subject from the user registry. If you disable this option, the Web inbound login module

functions the same as it did in previous releases.

 If the application server is a member of a cluster and the cluster is configured with a distributed replication

service (DRS) domain, then propagation occurs. If DRS is not configured, then the SSO token contains the

originating server information. With this information the receiving server can contact the originating server

using an MBean call to get the original serialized security attributes.

Troubleshooting single signon configurations:

This article describes common problems in configuring single signon (SSO) between a WebSphere

Application Server and a Domino server and suggests possible solutions.

v Failure to save the Domino Web SSO configuration document

The client must find Domino server documents for the participating SSO Domino servers. The Web

SSO configuration document is encrypted for the servers that you specify. The home server that is

indicated by the client location record must point to a server in the Domino domain where the

participating servers reside. This pointer ensures that lookups can find the public keys of the servers.

If you receive a message stating that one or more of the participating Domino servers cannot be found,

then those servers cannot decrypt the Web SSO configuration document or perform SSO.

When the Web SSO configuration document is saved, the status bar indicates how many public keys

are used to encrypt the document by finding the listed servers, authors, and administrators in the

document.

v Failure of the Domino server console to load the Web SSO configuration document at Domino HTTP

server startup

During configuration of SSO, the server document is configured for Multi-Server in the Session

Authentication field. The Domino HTTP server tries to find and load a Web SSO configuration

document during startup. The Domino server console reports the following information if a valid

document is found and decrypted: HTTP: Successfully loaded Web SSO Configuration.

1452 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

If a server cannot load the Web SSO configuration document, SSO does not work. In this case, a

server reports the following message: HTTP: Error Loading Web SSO configuration. Reverting to

single-server session authentication.

Verify that only one Web SSO Configuration document is in the Web Configurations view of the Domino

directory and in the $WebSSOConfigs hidden view. You cannot create more than one document, but

you can insert additional documents during replication.

If you can verify only one Web SSO Configuration document, consider another condition. When the

public key of the Server document does not match the public key in the ID file, this same error message

can display. In this case, attempts to decrypt the Web SSO configuration document fail and the error

message is generated.

This situation can occur when the ID file is created multiple times but the Server document is not

updated correctly. Usually, an error message is displayed on the Domino server console stating that the

public key does not match the server ID. If this situation occurs, then SSO does not work because the

document is encrypted with a public key for which the server does not possess the corresponding

private key.

To correct a key-mismatch problem:

1. Copy the public key from the server ID file and paste it into the Server document.

2. Create the Web SSO configuration document again.

v Authentication fails when accessing a protected resource.

If a Web user is repeatedly prompted for a user ID and password, SSO is not working because either

the Domino or the WebSphere Application Server security server cannot authenticate the user with the

Lightweight Directory Access Protocol (LDAP) server. Check the following possibilities:

– Verify that the LDAP server is accessible from the Domino server machine. Use the TCP/IP ping

utility to check TCP/IP connectivity and to verify that the host machine is running.

– Verify that the LDAP user is defined in the LDAP directory. Use the ldapsearch utility to confirm that

the user ID exists and that the password is correct. For example, you can run the following

command, entered as a single line:

You can use the OS/400 Qshell, a UNIX shell, or a Windows DOS prompt

 % ldapsearch -D "cn=John Doe, ou=Rochester, o=IBM, c=US" -w mypassword

 -h myhost.mycompany.com -p 389

 -b "ou=Rochester, o=IBM, c=US" (objectclass=*)

(The percent character (%) indicates the prompt and is not part of the command.) A list of directory

entries is expected. Possible error conditions and causes are contained in the following list:

- No such object: This error indicates that the directory entry referenced by either the user’s

distinguished name (DN) value, which is specified after the -D option, or the base DN value, which

is specified after the -b option, does not exist.

- Invalid credentials: This error indicates that the password is invalid.

- Cannot contact the LDAP server: This error indicates that the host name or port specified for the

server is invalid or that the LDAP server is not running.

- An empty list means that the base directory specified by the -b option does not contain any

directory entries.
– If you are using the user’s short name (or user ID) instead of the distinguished name, verify that the

directory entry is configured with the short name. For a Domino directory, verify the Short

name/UserID field of the Person document. For other LDAP directories, verify the userid property of

the directory entry.

– If Domino authentication fails when using an LDAP directory other than a Domino directory, verify the

configuration settings of the LDAP server in the Directory assistance document in the Directory

assistance database. Also verify that the Server document refers to the correct Directory assistance

document. The following LDAP values specified in the Directory Assistance document must match

the values specified for the user registry in the WebSphere administrative domain:

- Domain name

- LDAP host name

- LDAP port

Chapter 8. Developing WebSphere applications 1453

- Base DN

Additionally, the rules defined in the Directory assistance document must refer to the base

distinguished name (DN) of the directory containing the directory entries of the users.

You can trace Domino server requests to the LDAP server by adding the following line to the server

notes.ini file:

webauth_verbose_trace=1

After restarting the Domino server, trace messages are displayed in the Domino server console as

Web users attempt to authenticate to the Domino server.

v Authorization failure when accessing a protected resource.

After authenticating successfully, if an authorization error message is displayed, security is not

configured correctly. Check the following possibilities:

– For Domino databases, verify that the user is defined in the access-control settings for the database.

Refer to the Domino Administrative documentation for the correct way to specify the user’s DN. For

example, for the DN cn=John Doe, ou=Rochester, o=IBM, c=US, the value on the access-control list

must be set as John Doe/Rochester/IBM/US.

– For resources protected by WebSphere Application Server, verify that the security permissions are

set correctly.

- If granting permissions to selected groups, make sure that the user attempting to access the

resource is a member of the group. For example, you can verify the members of the groups by

using the following Web site to display the directory contents:

Ldap://myhost.mycompany.com:389/ou=Rochester, o=IBM, c=US??sub

- If you have changed the LDAP configuration information (host, port, and base DN) in a

WebSphere Application Server administrative domain since the permissions were set, the existing

permissions are probably invalid and need to be recreated.

v SSO failure when accessing protected resources.

If a Web user is prompted to authenticate with each resource, SSO is not configured correctly. Check

the following possibilities:

1. Configure both the WebSphere Application Server and the Domino server to use the same LDAP

directory. The HTTP cookie used for SSO stores the full DN of the user, for example, cn=John Doe,

ou=Rochester, o=IBM, c=US, and the domain name service (DNS) domain.

2. Define Web users by hierarchical names if the Domino Directory is used. For example, update the

User name field in the Person document to include names of this format as the first value: John

Doe/Rochester/IBM/US.

3. Specify the full DNS server name, not just the host name or TCP/IP address for Web sites issued to

Domino servers and WebSphere Application Servers configured for SSO. For browsers to send

cookies to a group of servers, the DNS domain must be included in the cookie, and the DNS

domain in the cookie must match the Web address. (This requirement is why you cannot use

cookies across TCP/IP domains.)

4. Configure both Domino and the WebSphere Application Server to use the same DNS domain. Verify

that the DNS domain value is exactly the same, including capitalization. The DNS domain value is

found on the Configure Global Security Settings panel of the WebSphere Application Server

administrative console and in the Web SSO Configuration document of a Domino server. If you

make a change to the Domino Web SSO Configuration document, replicate the modified document

to all of the Domino servers participating in SSO.

5. Verify that the clustered Domino servers have the host name populated with the full DNS server

name in the Server document. By using the full DNS server name, Domino Internet Cluster Manager

(ICM) can redirect to cluster members using SSO. If this field is not populated, by default, ICM

redirects Web addresses to clustered Web servers by using the host name of the server only. It

cannot send the SSO cookie because the DNS domain is not included in the Web address. To

correct the problem:

a. Edit the Server document.

b. Click Internet Protocols > HTTP tab.

c. Enter the full DNS name of the server in the Host names field.

1454 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

6. If a port value for an LDAP server was specified for a WebSphere Application Server administrative

domain, edit the Domino Web SSO configuration document and insert a backslash character (\) into

the value of the LDAP Realm field before the colon character (:). For example, replace

myhost.mycompany.com:389 with myhost.mycompany.com\:389.

Single signon using WebSEAL or the Tivoli Access Manager plug-in for Web servers:

Either Tivoli Access Manager WebSEAL or Tivoli Access Manager plug-in for Web servers can be used as

reverse proxy servers to provide access management and single signon (SSO) capability to WebSphere

Application Server resources. With such an architecture, either WebSEAL or the plug-in authenticates

users and forwards the collected credentials to WebSphere Application Server in the form of an IV Header.

Two types of single signon are available, the TAI interface and the new TAI interface, so named as both

use WebSphere Application Server trust association interceptors (TAIs). With TAI, the end-user name is

extracted from the HTTP header and forwarded to embedded Tivoli Access Manager where it is used to

construct the client credential information and authorize the user. The difference with the new TAI interface

is that all user credential information is available in the HTTP header (not just user name). The new TAI is

the more efficient of the two solutions as an Lightweight Directory Access Protocol (LDAP) call is not

required as it is with TAI. TAI functionality is retained for backwards compatibility.

 The following tasks need to be completed to enable single signon to WebSphere Application Server using

either WebSEAL or the plug-in for Web servers. These tasks assume that embedded Tivoli Access

Manager is configured for use.

1. “Creating a trusted user account in Tivoli Access Manager”

2. “Configuring WebSEAL for use with WebSphere Application Server” or “Configuring Tivoli Access

Manager plug-in for Web servers for use with WebSphere Application Server” on page 1456

3. “Configuring single signon using the trust association interceptor” on page 1457 or “Configuring single

signon using trust association interceptor ++” on page 1458

Creating a trusted user account in Tivoli Access Manager:

Tivoli Access Manager Trust Association Interceptors require the creation of a trusted user account in the

shared LDAP user registry. This is the ID and password that WebSEAL uses to identify itself to

WebSphere Application Server. To prevent potential vulnerabilities, do not use sec_master as the trusted

user account and ensure the password you use is unique and generated randomly. The trusted user

account should be used for the TAI or TAI++ only.

Use either the Tivoli Access Manager pdadmin command line utility or Web Portal Manager to create the

trusted user. For example, from the pdadmin command line:

pdadmin> user create webseal_userid webseal_userid_DN firstname surname password

pdadmin> user modify webseal_userid account-valid yes

“Configuring WebSEAL for use with WebSphere Application Server” or “Configuring Tivoli Access Manager

plug-in for Web servers for use with WebSphere Application Server” on page 1456

Configuring WebSEAL for use with WebSphere Application Server:

A junction must be created between WebSEAL and WebSphere Application Server. This junction will carry

the iv-creds (for TAI++) or iv-user (for TAI) and the HTTP basic authentication headers with the request.

While WebSEAL can be configured to pass the end user identity in other ways, the iv-creds header is the

only one supported by the TAI++ and iv-user the only one supported by TAI.

We recommend that communications over the junction use SSL for increased security. Setting up SSL

across this junction requires that you configure the HTTP Server used by WebSphere Application Server,

and WebSphere Application Server itself, to accept inbound SSL traffic and route it correctly to WebSphere

Chapter 8. Developing WebSphere applications 1455

Application Server. This requires importing the necessary signing certificates into the WebSEAL certificate

keystore, and possibly also the HTTP Server certificate keystore.

Create the junction between WebSEAL and the WebSphere Application Server using the -c iv-creds

option for TAI++ and -c iv-user for TAI. For example (commands are entered as one line):

TAI++

server task webseald-server create -t ssl -b supply -c iv-creds

 -h host_name -p websphere_app_port_number junction_name

TAI

server task webseald-server create -t ssl -b supply -c iv-user

 -h host_name -p websphere_app_port_number junction_name

Notes:

1. If warning messages are displayed about the incorrect setup of certificates and key databases,

delete the junction, correct problems with the key databases and re-create the junction.

2. The junction can be created as -t tcp or -t ssl depending on your requirements.

For single signon to WebSphere Application Server the SSO password must be set in WebSEAL. To set

the password, complete the following steps:

1. Edit the WebSEAL configuration file, webseal_install_directory/etc/webseald-default.conf and set

the following parameter, basicauth-dummy-passwd=webseal_userid_passwd. Where

webseal_userid_passwd is the SSO password for the trusted user account set in “Creating a trusted

user account in Tivoli Access Manager” on page 1455.

2. Restart WebSEAL.

For more details and options about how to configure junctions between WebSEAL and WebSphere

Application Server, including other options for specifying the WebSEAL server identity, refer to the Tivoli

Access Manager WebSEAL Administration Guide as well as to the documentation for the HTTP Server

you are using with your WebSphere Application Server. Tivoli Access Manager documentation is available

at http://publib.boulder.ibm.com/tividd/td/tdprodlist.html.

Configuring Tivoli Access Manager plug-in for Web servers for use with WebSphere Application

Server:

Tivoli Access Manager plug-in for Web servers can be used as a security gateway for your protected

WebSphere Application resources. With such an arrangement the plug-in authorizes all user requests

before passing the authorized user’s credentials onto WebSphere Application Server in the form of an

iv-creds header. Trust between the plug-in and WebSphere Application Server is established through use

of basic authentication headers containing the single signon (SSO) user password.

In the following example Tivoli Access Manager plug-in for Web Servers Version 5.1 configuration shows

IV headers configured for post-authorization processing and basic authentication configured as the

authentication mechanism and for post-authorization processing. After a request has been authorized the

basic authentication header is removed from the request (strip-hdr = always) and a new one added

(add-hdr = supply). Included in this new header is the password set when the SSO user was created in

“Creating a trusted user account in Tivoli Access Manager” on page 1455. This password needs to be

specified in the supply-password parameter and is passed in the newly created header. This basic

authentication header enables trust between WebSphere Application Server and the plug-in.

An iv-creds header is also added (generate = iv-creds) which contains the credential information of the

user passed onto WebSphere Application Server. Note also that session cookies are used to maintain

session state.

1456 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

http://publib.boulder.ibm.com/tividd/td/tdprodlist.html

[common-modules]

authentication = BA

session = session-cookie

post-authzn = BA

post-authzn = iv-headers

[iv-headers]

accept = all

generate = iv-creds

[BA]

strip-hdr = always

add-hdr = supply

supply-password = sso_user_password

“Configuring single signon using the trust association interceptor” or “Configuring single signon using trust

association interceptor ++” on page 1458

Configuring single signon using the trust association interceptor:

The following steps are required when setting up security for the first time. Ensure that Lightweight Third

Party Authentication (LTPA) is the active authentication mechanism:

1. From the WebSphere Application Server console click Security > Global security.

2. Ensure that the Active authentication mechanism field is set to Lightweight Third Party

Authentication (LTPA). If not, set it and save your changes.

This task is performed to enable single signon using the trust association interceptor. The steps involve

setting up trust association and creating the interceptor properties.

 1. From the WebSphere Application Server console, click Security > Global security.

 2. Under Authentication mechanisms, click LTPA.

 3. Under Additional properties, click Trust association.

 4. Select the Enable trust association option.

 5. Under Additional properties, click the Interceptors link.

 6. Click the com.ibm.ws.security.web.WebSealTrustAssociationInterceptor link to use the WebSEAL

interceptor. This interceptor is the default.

 7. Under Additional properties, click Custom Properties .

 8. Click New to enter the property name and value pairs. Ensure the following parameters are set:

 Option Description

com.ibm.websphere.security.trustassociation.types Ensure webseal is listed.

com.ibm.websphere.security.webseal.loginId The WebSEAL trusted user as created in “Creating a

trusted user account in Tivoli Access Manager” on page

1455 The format of the username is the short name

representation. This is a mandatory property. If it is not

set in WebSphere then TAI initialization will fail.

com.ibm.websphere.security.webseal.id The iv-user header. That is;

com.ibm.websphere.security.webseal.id=iv-user

Chapter 8. Developing WebSphere applications 1457

Option Description

com.ibm.websphere.security.webseal.hostnames Do not set this property if using Tivoli Access Manager

Plug-in for Web Servers. The host names (case sensitive)

that are trusted and expected in the request header. For

example:

com.ibm.websphere.security.webseal.hostnames=host1

This should also include the proxy host names (if any)

unless the

com.ibm.websphere.security.webseal.ignoreProxy is set to

true. A list of servers can be obtained using the server list

pdadmin command.

com.ibm.websphere.security.webseal.ports Do not set this property if using Tivoli Access Manager

Plug-in for Web Servers. The corresponding port number

of the host names that are expected in the request

header. This should also include the proxy ports (if any)

unless the

com.ibm.websphere.security.webseal.ignoreProxy is set to

true. For example:

com.ibm.websphere.security.webseal.ports=80,443

com.ibm.websphere.security.webseal.ignoreProxy An optional property that if set to true or yes ignores the

proxy host names and ports in the IV header. By default

this property is set to false.

 9. Click OK.

10. Save configuration and logout.

11. Restart WebSphere Application Server.

Configuring single signon using trust association interceptor ++:

The following steps are required when setting up security for the first time. Ensure that LTPA is the active

authentication mechanism:

1. From the WebSphere Application Server console, click Security > Global Security.

2. Ensure that the Active Authentication Mechanism field is set to Lightweight Third Party

Authentication (LTPA). Save your changes.

This task is performed to enable single signon using trust association interceptor ++. The steps involve

setting up trust association and creating the interceptor properties.

 1. From the WebSphere Application Server console select, click Security > Global security.

 2. Under Authentication, click Authentication mechanisms > LTPA

 3. Under Additional properties, click Trust association.

 4. Select the Enable Trust Association option.

 5. Click the Interceptors link.

 6. Click com.ibm.ws.security.web.TAMTrustAssociationInterceptorPlus to use the WebSEAL

interceptor. This interceptor is the default.

 7. Click the Custom Properties link.

1458 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

8. Click New to enter the property name and value pairs. Ensure the following parameters are set:

 Option Description

com.ibm.websphere.security.webseal.checkViaHeader The TAI can be configured so that the via header can be

ignored when validating trust for a request. Set this

property to false if none of the hosts in the via header

need to be trusted. When set to false the trusted

hostnames and host ports properties do not need to be

set. Therefore the only mandatory property when check

via header is false is

com.ibm.websphere.security.webseal.loginId

The default value of the check via header property is

false. When using Tivoli Access Manager Plug-in for Web

Servers this property should be set to false.

Note: The via header is part of the standard HTTP

header that records the server names the request has

passed through.

com.ibm.websphere.security.webseal.loginId The WebSEAL trusted user as created in “Creating a

trusted user account in Tivoli Access Manager” on page

1455 The format of the username is the short name

representation. This is a mandatory property. If it is not

set in WebSphere Application Server, then the TAI

initialization fails.

com.ibm.websphere.security.webseal.id A comma-separated list of headers that should exist in

the request. If not all of the configured headers exist in

the request then trust can not be established. The default

value for the id property is iv-creds. Any other values set

in WebSphere Application Server are added to the list

along with iv-creds, separated by commas.

com.ibm.websphere.security.webseal.hostnames Do not set this property if using Tivoli Access Manager

Plug-in for Web Servers. The property specifies the host

names (case sensitive) that are trusted and expected in

the request header. Requests arriving from un-listed hosts

might not be trusted. If the checkViaHeader property is

not set or is set to false then the trusted host names

property has no influence. If the checkViaHeader property

is set to true and the trusted host names property is not

set then TAI initialization will fail.

com.ibm.websphere.security.webseal.ports Do not set this property if using Tivoli Access Manager

Plug-in for Web Servers. This property is a

comma-separated list of trusted host ports. Requests

arriving from unlisted ports might not be trusted. If the

checkViaHeader property is not set or is set to false then

this property has no influence. If the checkViaHeader

property is set to true and the trusted host ports property

is not set in WebSphere Application Server then the TAI

initialization fails.

Chapter 8. Developing WebSphere applications 1459

Option Description

com.ibm.websphere.security.webseal.viaDepth A positive integer specifying the number of source hosts

in the via header to check for trust. By default, every host

in the via header is checked and if any are not trusted

then trust cannot be established. The via depth property

is used when not all hosts in the via header are required

to be trusted. The setting indicates the number of hosts

that are required to be trusted.

As an example, consider the following header:

Via: HTTP/1.1 webseal1:7002, 1.1 webseal2:7001

If the viaDepth property is not set, is set to 2 or is set to

0, and a request with the previous via header is received

then both webseal1:7002 and webseal2:7001 need to be

trusted. The following configuration applies:

 com.ibm.websphere.security.webseal.hostnames =

 webseal1,webseal2

com.ibm.websphere.security.webseal.ports = 7002,7001

If the via depth property is set to 1 and the previous

request is received then only the last host in the via

header needs to be trusted. The following configuration

applies:

 com.ibm.websphere.security.webseal.hostnames =

 webseal2

com.ibm.websphere.security.webseal.ports = 7001

The viaDepth property is set to 0 by default which means

all hosts in the via header are checked for trust.

com.ibm.websphere.security.webseal.ssoPwdExpiry Once trust has been established for a request the single

signon user password is cached saving the need to have

the TAI re-authenticate the single signon user with Tivoli

Access Manager for every request. The cache timeout

period can be modified by setting the single signon

password expiry property to the required time in seconds.

If the password expiry property is set to 0, the cached

password will never expire. The default value for the

password expiry property is 600.

com.ibm.websphere.security.webseal.ignoreProxy This property can be used to tell the TAI to ignore proxies

as trusted hosts. If set to true the comments field of the

hosts entry in the via header is checked to determine if a

host is a proxy. It must be remembered that not all

proxies insert comments in the via header indicating that

they are proxies. The default value of the ignoreProxy

property is false. If the checkViaHeader property is set to

false then the ignoreProxy property has no influence in

establishing trust.

1460 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Option Description

com.ibm.websphere.security.webseal.configURL For the TAI to be able to establish trust for a request it

requires that SvrSslCfg has been run for the WebSphere

Java Virtual Machine resulting in a properties file being

created. If this properties file is not at the default URL

file://java.home/PdPerm.properties then the correct URL

of the properties file must be set in the config URL

property. If this property is not set and the SvrSslCfg

generated properties file is not in the default location, the

TAI initialization fails. The default value for the config URL

property is

file://${WAS_INSTALL_ROOT}/java/jre/PdPerm.properties

 9. Click OK.

10. Save configuration and logout.

11. Restart WebSphere Application Server.

Global signon principal mapping:

The Tivoli Access Manager JACC provider can be used to manage authentication to WebSphere

Enterprise Information Systems (EIS) such as databases, transaction processing systems and message

queue systems, located within the WebSphere Application Server security domain. Such authentication is

achieved using the Global single signon (GSO) Principal Mapper JAAS login module for J2EE Connector

Architecture (J2C) resources.

 With GSO principal mapping, a special-purpose JAAS login module inserts a credential into the subject

header. This is used by the resource adapter to authenticate to the Enterprise Information System (EIS).

The JAAS login module used is configured on a per-connection factory basis. The default principal

mapping module retrieves the user name and password information from XML configuration files. The

Tivoli Access Manager JACC provider bypasses the credential stored in the XML configuration files and

instead uses the Tivoli Access Manager GSO database to provide the EIS security domain authentication

information.

WebSphere Application Server provides a default principal mapping module that associates user credential

information with EIS resources. The default mapping module is defined in the WebSphere Application

Server administration console on the application login panel. To access the panel, click Security > Global

security. Under JAAS configuration, click Application logins. The mapping module name is

DefaultPrincipalMapping.

The EIS security domain user ID and password are defined under each connection factory by an

authDataAlias attribute. The authDataAlias attribute does not contain the user name and password, it

contains an alias that refers to a user name and password pair defined elsewhere.

The Tivoli Access Manager Principal Mapping module uses the authDataAlias to determine the GSO

resource name and user name required to perform the lookup on the Tivoli Access Manager GSO

database. It is the Tivoli Access Manager Policy Server which retrieves the GSO data from the registry.

Tivoli Access Manager stores authentication information on the Tivoli Access Manager GSO database

against a resource/user name pair.

GSO principal mapping architecture

Chapter 8. Developing WebSphere applications 1461

Configuring global signon principal mapping:

To create a new application login that uses the Tivoli Access Manager GSO database to store the login

credentials:

1. Select Security > Global security.

2. Under Authentication, click JAAS Configuration > Application logins

3. Click New to create a new JAAS login configuration.

4. Enter the alias name of the new application login. Click Apply.

5. Under Additional properties, click JAAS Login Modules link to define the JAAS Login Modules.

6. Click New and enter the following:

Module class name: com.tivoli.pd.as.gso.AMPrincipalMapper

Use Login Module Proxy: enable

Authentication strategy: REQUIRED

Click Apply

7. In the Additional Properties section, click Custom Properties to define Login Module-specific values

which are passed directly to the underlying Login Modules.

8. Click New.

The Tivoli Access Manager principal mapping module uses the configuration string, authDataAlias, to

retrieve the correct user name and password from the security configuration.

The authDataAlias passed to the module is configured for the J2C ConnectionFactory. Since the

authDataAlias is an arbitrary string entered at configuration time, the following scenarios are possible:

v The authDataAlias contains both the GSO Resource name and the user name. The format of this

string is ″Resource/User″

v The authDataAlias contains only the GSO Resource name. The user name is determined using the

Subject of the current session.

WebSphere Application Server

User

Application

Java 2 Connector (J2C)

Tivoli Access
Manager Principal
Mapping Module

Resource
adapter

user name/
password

authDataAlias

user name/
password

GSO
resource

name

user user name
password

user name/
password

GSO resource
name and
user name

Security.xml

LDAP
global single signon (GSO)

database

Tivoli Access
Manager

Policy Server

Enterprise
Information

System

1462 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Which scenario to use is determined by a JAAS configuration option. The details of these options are:

Name: com.tivoli.pd.as.gso.AliasContainsUserName

Value: True if the alias contains the user name, false if the user name is retrieved from the

 security context.

When entering authDataAliases through the WebSphere Application Server console, the node name is

automatically pre-pended to the alias. The JAAS configuration entry is to determine whether this node

name should be removed or included as part of the resource name.

Name: com.tivoli.pd.as.gso.AliasContainsNodeName

Value: True if the alias contains the node name.

Enter each new parameter using the following scenario information as a guide.

Note: If the PdPerm.properties configuration file is not located in the default location,

JAVA_HOME/PdPerm.properties, then you will also need to add the following property:

Name = com.tivoli.pd.as.gso.AMCfgURL

Value = file:///path to PdPerm.properties

Scenario 1

Auth Data Alias - BackendEIS/eisUser

Resource - BackEndEIS

User - eisUser

Principal Mapping Parameters

 Name Value

delegate com.tivoli.pdwas.gso.AMPrincipalMapper

com.tivoli.pd.as.gso.AliasContainsUserName true

com.tivoli.pd.as.gso.AliasContainsNodeName false

com.tivoli.pd.as.gso.AMLoggingURL file:///jlog_props_path

debug false

Scenario 2

Auth Data Alias - BackendEIS

Resource - BackEndEIS

User - Currently authenticated WAS user

Principal Mapping Parameters

 Name Value

delegate com.tivoli.pdwas.gso.AMPrincipalMapper

com.tivoli.pd.as.gso.AliasContainsUserName false

com.tivoli.pd.as.gso.AliasContainsNodeName false

com.tivoli.pd.as.gso.AMLoggingURL file:///jlog_props_path

debug false

Scenario 3

Auth Data Alias - nodename/BackendEIS/eisUser

Resource - BackEndEIS

User - eisUser

Principal Mapping Parameters

Chapter 8. Developing WebSphere applications 1463

Name Value

delegate com.tivoli.pdwas.gso.AMPrincipalMapper

com.tivoli.pd.as.gso.AliasContainsUserName true

com.tivoli.pd.as.gso.AliasContainsNodeName true

com.tivoli.pd.as.gso.AMLoggingURL file:///jlog_props_path

debug false

Scenario 4

Auth Data Alias - nodename/BackendEIS/eisUser

Resource - nodename/BackEndEIS (notice that node name was not removed)

User - eisUser

Principal Mapping Parameters

 Name Value

delegate com.tivoli.pdwas.gso.AMPrincipalMapper

com.tivoli.pd.as.gso.AliasContainsUserName true

com.tivoli.pd.as.gso.AliasContainsNodeName false

com.tivoli.pd.as.gso.AMLoggingURL file:///jlog_props_path

debug false

Scenario 5

Auth Data Alias - BackendEIS/eisUser

Resource - BackEndEIS

User - eisUser

Principal Mapping Parameters

 Name Value

delegate com.tivoli.pdwas.gso.AMPrincipalMapper

com.tivoli.pd.as.gso.AliasContainsUserName false

com.tivoli.pd.as.gso.AliasContainsNodeName true

com.tivoli.pd.as.gso.AMLoggingURL file:///jlog_props_path

debug false

Scenario 6

Auth Data Alias - nodename/BackendEIS/eisUser

Resource - nodename/BackendEIS/eisUser (notice that the Resource is the same as

 Auth Data Alias).

User - Currently authenticated WAS user

Principal Mapping Parameters

 Name Value

delegate com.tivoli.pdwas.gso.AMPrincipalMapper

com.tivoli.pd.as.gso.AliasContainsUserName false

com.tivoli.pd.as.gso.AliasContainsNodeName false

com.tivoli.pd.as.gso.AMLoggingURL file:///jlog_props_path

debug false

1464 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

You now need to create the J2C authentication aliases. The user name and password assigned to

these alias entries is irrelevant as Tivoli Access Manager is responsible for providing user names and

passwords. However, the user name and password assigned to the J2C authentication aliases need to

exist so they can be selected for the J2C connection factory in the console.

To create the J2C authentication aliases, from the WebSphere Application Server administrative

console, click Security >Global security. Under JAAS Configuration > J2C Authentication Data

and click New for each entry. Refer to the table above for scenario inputs.

The connection factories for each resource adapter that needs to use the GSO database must be

configured to use the Tivoli Access Manager Principal Mapping module. To do this:

a. From the WebSphere Application Server console, select Applications > Enterprise Applications

> application_name.

b. Under Related items, click the Connector Modules link.

c. Click the .rar link.

d. Under Additional properties, click the Resource Adapter link.

Note: The resource adapter does not need to be packaged with the application. It can be

standalone. For such a scenario the resource adapter is configured from Resources >

Resource Adapters.

e. Under Additional properties, click the J2C Connection Factories link.

f. Click New and enter the connection factory properties.

Note: Configuring custom mapping on connection factory is deprecated in WebSphere Application

Server Version 6. To configure the GSO credential mapping, it is recommended that you use the

Map Resource References to Resources panel on the administrative console. For more

information, refer to “J2EE Connector security” on page 1531.

User registries

Information about users and groups reside in a user registry.

With WebSphere Application Server, a user registry authenticates a user and retrieves information about

users and groups to perform security-related functions, including authentication and authorization.

WebSphere Application Server provides several implementations to support multiple types of operating

system base user registries. You can use the custom Lightweight Directory Access Protocol (LDAP)

feature to support any LDAP server by setting up the correct configuration (user and group filters).

However, support is not extended to these custom LDAP servers because many configuration possibilities

exist.

In addition to Local operating system (OS) and LDAP registries, WebSphere Application Server also

provides a plug-in that supports any user registry by using the custom registry feature (also referred to as

a custom user registry). The custom registry feature supports any user registry that is not implemented by

WebSphere Application Server. You can use any registry used in the product environment by implementing

the UserRegistry interface interface.

The UserRegistry interface is very helpful in situations where the current user and group information exists

in some other format (for example, a database) and cannot move to Local OS or LDAP. In such a case,

implement the UserRegistry interface so that WebSphere Application Server can use the existing registry

for all of the security-related operations. Using a custom registry is a software implementation effort; it is

expected that the implementation does not depend on other WebSphere Application Server resources, for

example, data sources, for its operation.

Although WebSphere Application Server supports different types of user registries, only one user registry

can be active. This active registry is shared by all of the product server processes. If the product

processes in one node or cell need to communicate with other product processes in other nodes or cells

Chapter 8. Developing WebSphere applications 1465

using Lightweight Third Party Authentication (LTPA) (or Integrated Cryptographic Service Facility (ICSF) on

the z/OS platform), all of the nodes and cells share the same user registry.

Configuring user registries

Before configuring the user registry, decide which registry to use. Though different types of registries are

supported, all of the processes in WebSphere Application Server can use one active registry. Configuring

the correct registry is a prerequisite to assigning users and groups to roles for applications. When no

registry is configured, the LocalOS registry is used by default. So, if your choice of registry is not Local OS

you need to first configure the registry, which is normally done as part of enabling security, restart the

servers, and then assign users and groups to roles for all your applications.

After the applications are assigned users and groups, and you need to change the registries (for example

from Lightweight Directory Access Protocol (LDAP) to Custom), delete all the users and groups (including

any RunAs role) from the applications, and reassign them after changing the registry through the

administrative console or by using wsadmin scripting. The following wsadmin command removes all of the

users and groups (including the RunAs role) from any application:

$AdminApp deleteUserAndGroupEntries yourAppName

where yourAppName is the name of the application. Backing up the old application is advised before

performing this operation. However, if both of the following conditions are true, you might be able to switch

the registries without having to delete the users and groups information:

v All of the user and group names (including the password for the RunAs role users) in all of the

applications match in both registries.

v The application bindings file does not contain the accessIDs, which are unique for each registry even for

the same user or group name.

By default, an application does not contain accessIDs in the bindings file (these IDs are generated when

the applications start). However, if you migrated an existing application from an earlier release, or if you

used the wsadmin script to add accessIDs for the applications to improve performance you have to

remove the existing user and group information and add the information after configuring the new registry.

For more information on updating accessIDs, see updateAccessIDs in the AdminApp object for scripted

administration article.

Complete one of the following steps to configure your user registry:

v Configure the local operating system user registry.

v Configure the LDAP user registry.

v Configure the custom user registries.

This step is required as part of enabling security in WebSphere Application Server.

1. If you are enabling security, make sure that you complete the remaining steps. Verify that the Active

User Registry field in the Global Security panel is set to the appropriate registry. As the final step,

validate the user ID and the password by clicking OK or Apply in the Global Security panel. Save,

stop and start all WebSphere Application Servers.

2. For any changes in user registry panels to be effective, you must validate the changes by clicking OK

or Apply in the Global Security panel. After validation, save the configuration, stop and start all

WebSphere Application Servers (cells, nodes and all the application servers). To avoid inconsistencies

between the WebSphere Application Server processes, make sure that any changes to the registry are

done when all of the processes are running. If any of the processes are down, force synchronization to

make sure that the process can start later.

If the server or servers start without any problems, the setup is correct.

Local operating system user registries:

1466 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

With the local operating system, or Local OS, user registry implementation, the WebSphere Application

Server authentication mechanism can use the user accounts database of the local operating system.

 WebSphere Application Server provides implementations for the Windows local accounts registry and

domain registry, as well as implementations for the Linux, Solaris, and AIX user accounts registries.

Windows Active Directory is supported through the Lightweight Directory Access Protocol (LDAP) user

registry implementation discussed later.

Note: For an Active Directory (domain controller), the three group scopes are Domain Local Group, Global

Group, and Universal Group. For an Active Directory (Domain Controller), the two group types are

Security and Distribution.

When a group is created, the default value is Global (and the default type is Security). With

Windows NT domain registry support for Windows 2000 and 20003 domain controllers, WebSphere

Application Server only supports Global groups that are the Security type. It is recommended that

you use the Active Directory registry support (rather than an NT domain registry) if you use

Windows 2000 and 2003 domain controllers because the Active Directory supports all group scopes

and types. The Active Directory also supports a nested group that is not support by NT domain

registry. The Active Directory is a centralized control registry.

WebSphere Application Server does not have to install the member of the domain because it can

be installed on any machine on any platform. Note that the NT domain native call only returns the

support group (with no error).

A Local OS user registry is not a centralized user registry like LDAP

Do not use a Local OS user registry in a WebSphere Application Server environment, where application

servers are dispersed across more than one machine because each machine has its own user registry.

Exceptions include a Windows domain registry, which is a centralized registry and Network Information

Services (NIS), which is not supported by WebSphere Application Server.

As mentioned previously, the access IDs taken from the user registry are used during authorization

checks. Because these IDs are typically unique identifiers, they vary from machine to machine, even if the

exact users and passwords exist on each machine.

Web client certificate authentication is not currently supported when using the local operating system user

registry. However, Java client certificate authentication does function with a local operating user registry.

Java client certificate authentication maps the first attribute of the certificate domain name to the user ID in

the user registry.

Even though Java client certificates function correctly, the following error displays in the SystemOut.log file:

CWSCJ0337E: The mapCertificate method is not supported

The error is intended for Web client certificates; however, it also displays for Java client certificates. Ignore

this error for Java client certificates.

Using Windows operating system registries

When enabling security on Windows operating systems, if the local operating system (LocalOS) is selected

as the registry, consider the following points:

Required privileges

The user that is running the WebSphere Application Server process requires enough operating system

privilege to call the Windows systems application programming interface (API) for authenticating and

Chapter 8. Developing WebSphere applications 1467

obtaining user and group information from the Windows operating system. This user logs into the machine,

or if running as a service, is the Log On As user. Depending on the machine and whether the machine is a

stand-alone machine or a machine that is part of a domain or is the domain controller, the access

requirements vary.

v For a stand-alone machine, the user:

– Is a member of the administrative group.

– Has the Act as part of the operating system privilege.

– Has the Log on as a service privilege, if the server is run as a service.
v For a machine that is a member of a domain, only a domain user can start the server process and:

– Is a member of the domain administrative groups in the domain controller.

– Has the Act as part of the operating system privilege in the Domain security policy on the domain

controller.

– Has the Act as part of the operating system privilege in the Local security policy on the local

machine.

– Has the Log on as a service privilege on the local machine, if the server is run as a service.

The user is a domain user and not a local user, which implies that when a machine is part of a

domain, only a domain user can start the server.
v For a domain controller machine, the user:

– Is a member of the domain administrative groups in the domain controller.

– Has the Act as part of the operating system privilege in the Domain security policy on the domain

controller.

– Has the Log on as a service privilege on the domain controller, if the server is run as a service.

To give a user the Act as part of the operating system or Log on as a service on Windows 2000 systems:

1. Click Start > Settings > Control Panel > Administrative Tools > Local Security Policy > Local

Policies > User Rights Assignments > Act as part of the operating system (or Log on as a

service) .

Note: If the machine is a stand-alone machine and not a member of a domain, you must add a

machineName\userID, where the userID is the owner of the process, such as WebSphere

Application Server. If you run WebSphere Application Server as a service, you can log on with

localsystem as the service.

If the machine is a member of a domain, add domainName\userID, where the userID is the

owner of process (such as WebSphere Application Server). Start WebSphere Application Server

as a service with login ID domainName\userID. If WebSphere Application Server is already in

service, go to the service and right-click IBM WebSphere Application Server > properties

>Logon to change the logon ID and password to restart WebSphere Application Server.

2. Add the user name by clicking Add.

3. Restart the machine.

Windows 2000 domain controller users: For a Windows 2000 domain controller, replace Local

Security Policy with Domain Security Policy in the previous step.

Note: In all of the previous configurations, the server can be run as a service using LocalSystem for

the Log On As entry. The LocalSystem entry has the required privileges and there is no need to

give special privileges to any user. However, because the LocalSystem entry has special

privileges, make sure that it is appropriate to use in your environment.

If the user running the server does not have the required privilege, you might see one of the following

exception messages in the log files:

v A required privilege is not held by the client.

v Access is denied.

1468 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Domain and local registries

When WebSphere Application Server is started, the security run-time initialization process dynamically

attempts to determine if the local machine is a member of a Windows domain. If the machine is part of a

domain then by default both the local registry users or groups and the domain registry users or groups can

be used for authentication and authorization purposes with the domain registry taking precedence. The list

of users and groups that is presented during the security role mapping includes users and groups from

both the local user registry and the domain user registry. The users and groups can be distinguished by

the associated host names.

WebSphere Application Server does not support trusted domains.

If the machine is not a member of a Windows system domain, the user registry local to that machine is

used.

Using both the domain registry and the local registry

When the machine that hosts the WebSphere Application Server process is a member of a domain, both

the local and the domain registries are used by default. The following section describes more on this topic

and recommends some best practices to avoid unfavorable consequences.

v Best practices

In general, if the local and the domain registries do not contain common users or groups, it is simpler to

administer and it eliminates unfavorable side effects. If possible, give users and groups access to

unique security roles, including the server ID and administrative roles). In this situation, select the users

and groups from either the local registry or the domain registry to map to the roles.

In cases where the same users or groups exist in both the local registry and the domain registry, it is

recommended that at least the server ID and the users and groups that are mapped to the

administrative roles be unique in the registries and exist only in the domain.

If a common set of users exists, set a different password to make sure that the appropriate user is

authenticated.

v How it works

When a machine is part of a domain, the domain user registry takes precedence over the local user

registry. For example, when a user logs into the system, the domain registry tries to authenticate the

user first. If the authentication fails the local registry is used. When a user or a group is mapped to a

role, the user and group information is first obtained from the domain registry. In case of failure, the

local registry is tried. However, when a fully qualified user or a group name (one with an attached

domain or host name) is mapped to a role, then only that registry is used to get the information. Use the

administrative console or scripts to get the fully qualified user and group names, which is the

recommended way to map users and groups to roles.

Note: A user Bob on one machine (the local registry, for example) is not the same as the user Bob on

another machine (say the domain registry) because the uniqueID of Bob (the security identifier

[SID], in this case) is different in different registries.

v Examples

The machine MyMachine is part of the domain MyDomain. MyMachine contains the following users and

groups:

– MyMachine\user2

– MyMachine\user3

– MyMachine\group2

MyDomain contains the following users and groups:

– MyDomain\user1

– MyDomain\user2

– MyDomain\group1

– MyDomain\group2

Chapter 8. Developing WebSphere applications 1469

Here are some scenarios that assume the previous set of users and groups.

1. When user2 logs into the system, the domain registry is used for authentication. If the authentication

fails (the password is different) the local registry is used.

2. If the user MyMachine\user2 is mapped to a role, only the user2 in MyMachine has access. So if the

user2 password is the same on both the local and the domain registries, user2 cannot access the

resource, because user2 is always authenticated using the domain registry. Hence, if both registries

have common users, it is recommended that the password be different.

3. If the group2 is mapped to a role, only the users who are members of the MyDomain\group2 can

access the resource because group2 information is first obtained from the domain registry.

4. If the group MyMachine\group2 is mapped to a role, only the users who are members of the

MyMachine\group2 can access the resource. A specific group is mapped to the role

(MyMachine\group2 instead of just group2).

5. Use either user3 or MyMachine\user3 to map to a role, because user3 is unique; it exists in one

registry only.

Authorizing with the domain user registry first can cause problems if a user exists in both the domain

and local user registries with the same password. Role-based authorization can fail in this situation

because the user is first authenticated within the domain user registry. This authentication produces a

unique domain security ID that is used in WebSphere Application Server during the authorization check.

However, the local user registry is used for role assignment. The domain security ID does not match the

unique security ID that is associated with the role. To avoid this problem, map security roles to domain

users instead of local users.

Using either the local or the domain registry. If you want to access users and groups from either the

local registry or the domain registry, instead of both, set the com.ibm.websphere.registry.UseRegistry

property. This property can be set to either localor domain. When this property is set to local(case

insensitive) only the local registry is used. When this property is set to domain, (case insensitive) only the

domain registry is used. Set this property by clicking Custom Properties in the Security > User

Registries > Local OS panel in the administrative console or by using scripts. When the property is set,

the privilege requirement for the user who is running the product process does not change. For example, if

this property is set to local, the user that is running the process requires the same privilege, as if the

property was not set.

Using UNIX system registries

When using UNIX system registries, the process ID that runs the WebSphere Application Server process

needs the root authority to call the local operating system APIs for authentication and for obtaining user or

group information.

Note: In UNIX systems, only the local machine registry is used. Network Information Service (NIS) (Yellow

Pages) is not supported.

Using Linux and Solaris system registries

For WebSphere Application Server Local OS security registry to work on the Linux and Solaris platforms, a

shadow password file must exist. The shadow password file is named shadow and is located in the /etc

directory. If the shadow password file does not exist, an error occurs after enabling global security and

configuring the user registry as Local OS.

To create the shadow file, run the pwconv command (with no parameters). This command creates an

/etc/shadow file from the /etc/passwd file. After creating the shadow file, you can enable local operating

system security successfully.

1470 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Remote registries

By default, the registry is local to all of the product processes. The performance is higher, (no need for

remote calls) and the registry also increases availability. Any process failing does not effect other

processes.

When using LocalOS as the registry, every product process must run with privilege access (root in UNIX,

Act as part of operating system in Windows systems).

If this process is not practical in some situations, you can use a remote registry from the node (or in very

rare situations from the cell). Using a remote registry affects performance and creates a single point of

failure. Use remote registries only in rare situations.

The node and the cell processes are meant for manipulating configuration information and for hosting the

registry for all the application servers that create traffic and cause problems.

Using a node agent (instead of the cell) to host the remote registry is preferable because the cell process

is not designed to be highly available. Also, using a node to host the remote registry indicates that only the

application servers in that node are using it. Because the node agent does not contain any application

code, giving it the access required privilege is not a concern.

You can set up a remote registry by setting the WAS_UseRemoteRegistry property in the Global Security

panel using the Custom Properties link at the bottom of the administrative console panel. Use either

theCell or the Node(case insensitive) value. If the value is Cell, the cell registry is used by all of the

product processes including the node agent and all of the application servers. If the cell process is down

for any reason, restart all of the processes after the cell is restarted. If the node agent registry is used for

the remote registry, set the WAS_UseRemoteRegistry value to node. In this case, all the application server

processes use the node agent registry. In this case, if the node agent fails and does not start

automatically, you might need to restart all the application servers after the node agent is started.

Configuring local operating system user registries:

For security purposes, the WebSphere Application Server provides and supports the implementation for

Windows operating system registries, AIX, Solaris and multiple versions of Linux operating systems. The

respective operating system APIs are called by the product processes (servers) for authenticating a user

and other security-related tasks (for example, getting user or group information). Access to these APIs are

restricted to users who have special privileges. These privileges depend on the operating system and are

described below.

Before configuring the LocalOS registry you need to know the user name (ID) and password to use here.

This user can be any valid user in the registry. This user is referred to as either a product security server

ID, a server ID or a server user ID in the documentation. Having a server ID means that a user has

special privileges when calling protected internal methods. Normally, this ID and password are used to log

into the administrative console after security is turned on. You can use other users to log in if those users

are part of the administrative roles. When security is enabled in the product, this server ID and password

are authenticated with the registry during product startup. If authentication fails, the server does not come

up. So it is important to choose an ID and password that do not expire or change often. If the product

server user ID or password need to change in the registry, ensure that the changes are performed when

all the product servers are up and running. After the changes are completed in the registry, use the

following steps to change the ID and the password information. Save, stop, and restart all the servers so

that the product can use the new ID or password. If any problem arises after starting the product because

of authentication problems (that cannot be fixed), disable security before the server can start up. To avoid

this step, make sure that the changes are validated in the Global Security panel. After the server is up,

change the ID and password information and enable security.

When using the Windows operating system, consider the following issues:

Chapter 8. Developing WebSphere applications 1471

v The server ID needs to be different from the Windows machine name where the product is installed. For

example, if the Windows machine name is vicky and the security server ID is vicky, the Windows

system fails when getting the information (group information, for example) for user vicky.

v WebSphere Application Server dynamically determines whether the machine is a member of a Windows

system domain.

v WebSphere Application Server does not support Windows trusted domains.

v If a machine is a member of a Windows domain, both the domain user registry and the local user

registry of the machine participate in authentication and security role mapping.

v The domain user registry takes precedence over the local user registry of the machine and can have

undesirable implications if users with the same password exist in both user registries.

v The user that the product processes run under requires the Administrative and Act as part of the

operating system privileges to call the Windows operating system APIs that authenticate or collect user

and group information. The process needs special authority, which is given by these privileges. The user

in this example might not be the same as the security server ID (the requirement for which is a valid

user in the registry). This user logs into the machine (if using the command line to start the product

process) or the Log On User setting in the services panel if the product processes have started using

the services. If the machine is also part of a domain, this user is a part of the Domain Admin group in

the domain to call the operating system APIs in the domain in addition to having the Act as part of

operating system privilege in the local machine.

When using the UNIX operating systems (AIX and Solaris) and Linux, consider the following points:

v The user that the product processes run under requires the root privilege. This privilege is needed to

call the UNIX operating system APIs to authenticate or to collect user and group information. The

process needs special authority, which is given by the root privilege. This user might not be the same

as the security server ID (the requirement is that it should be a valid user in the registry). This user logs

into the machine and is running the product processes.

v On a UNIX operating system, the user that enables global security must have the root privilege if you

use the local OS user registry. Otherwise, a failed validation error is displayed.

v When using the Linux operating system, you might need to have the password shadow file in your

system.

The following steps are needed to perform this task initially when setting up security for the first time.

1. Click Security > Global security.

2. Under User registries, click Local OS,

3. Enter a valid user name in the Server user ID field.

4. Enter the user password in the Server user password field.

5. Click OK. Validation of the user and password does not happen in this panel. Validation is only done

when you click OK or Apply in the Global Security panel. If you are enabling security for the first time,

complete the other steps and go to the Global Security panel. Make sure that LocalOS is the Active

User Registry. If security was already enabled and you had changed either the user or the password

information in this panel, make sure to go to the Global Security panel and click OK or Apply to

validate your changes. If your changes are not validated, the server might not come up.

The Local OS user registry has been configured.

1. If you are enabling security, complete the remaining steps. As the final step, ensure that you validate

the user and password by clicking OK or Apply in the Global Security panel. Save, stop, and start all

the product servers.

2. For any changes in this panel to be effective, you need to save, stop and start all the product servers

(deployment managers, nodes and Application Servers).

3. If the server comes up without any problems the setup is correct.

Local operating system user registry settings:

Use this page to configure local operating system user registry settings.

1472 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

To view this administrative console page, click Security > Global Security. Under User registries, click

Local OS.

Server user ID:

Specifies a valid user ID in the local OS registry.

 This ID is the security server ID, which is only used for WebSphere Application Server security and is not

associated with the system process that runs the server. The server calls the Local OS registry to

authenticate and obtain privilege information about users by calling the native APIs in that particular

registry. Access to native APIs is normally restricted to users having special privileges (for example, root in

UNIX systems and Act as part of operating system in Windows systems). To use security in the

application server, the process ID (not the security server ID) on which WebSphere Application Server runs

requires enough privileges to call the system APIs. The special privilege means that the process running

the WebSphere Application Server needs to be part of the Administrators group and have the Act as

part of operating system privilege on Windows systems, and be root, or have root authority on UNIX

systems.

Note:

If you are configuring Local OS security on Windows and you encounter the A

required privilege is not helped by the client error message, you must follow the procedure

documented to give the user those privileges. To set the privilege, click Start > Settings > Control

Panel > Administrative Tools > Local Security Policy > Local Policies > User Rights

Assignments > Act as part of the operating system.

When using a Windows system registry, this ID cannot match the name of the Windows machine.

Windows systems treat the machine name bob as having an account similar to user bob.

 Data type: String

Units: Alphanumeric characters

Server user password:

Specifies a valid user password that corresponds to a valid user ID in the local OS registry.

 Data type String

Lightweight Directory Access Protocol:

Lightweight Directory Access Protocol (LDAP) is a user registry in which authentication is performed using

an LDAP binding.

 WebSphere Application Server security provides and supports implementation of most major LDAP

directory servers, which can act as the repository for user and group information. These LDAP servers are

called by the product processes (servers) for authenticating a user and other security-related tasks (for

example, getting user or group information). This support is provided by using different user and group

filters to obtain the user and group information. These filters have default values that you can modify to fit

your needs. The custom LDAP feature enables you to use any other LDAP server (which is not in the

product supported list of LDAP servers) for its user registry by using the appropriate filters.

To use LDAP as the user registry, you need to know a valid user name (ID), the user password, the server

host and port, the base distinguished name (DN) and if necessary the bind DN and the bind password.

You can choose any valid user in the registry that is searchable. In some LDAP servers, the administrative

users are not searchable and cannot be used (for example, cn=root in SecureWay). This user is referred

to as WebSphere Application Server security server ID, server ID, or server user ID in the documentation.

Being a server ID means a user has special privileges when calling some protected internal methods.

Chapter 8. Developing WebSphere applications 1473

Normally, this ID and password are used to log into the administrative console after security is turned on.

You can use other users to log in if those users are part of the administrative roles.

When security is enabled in the product, this server ID and password are authenticated with the registry

during the product startup. If authentication fails, the server does not start. Choosing an ID and password

that do not expire or change often is important. If the product server user ID or password need to change

in the registry, make sure that the changes are performed when all the product servers are up and

running.

When the changes are done in the registry, use the steps described in Configuring LDAP user registries.

Change the ID, password, and other configuration information, save, stop, and restart all the servers so

that the new ID or password is used by the product. If any problems occur starting the product when

security is enabled, disable security before the server can start up (to avoid these problems, make sure

that any changes in this panel are validated in the Global Security panel). When the server is up, you can

change the ID, password and other configuration information and then enable security.

Configuring Lightweight Directory Access Protocol user registries:

Review the article on Lightweight Directory Access Protocol (LDAP) before beginning this task.

 1. In the administrative console, click Security > Global security.

 2. Under User registries, click LDAP.

 3. Enter a valid user name in the Server user ID field. You can either enter the complete distinguished

name (DN) of the user or the short name of the user as defined by the User Filter in the Advanced

LDAP settings panel. For example, enter the user ID for Netscape.

 4. Enter the password of the user in the Server user password field.

 5. Select the type of LDAP server that is used from the Type list. The type of LDAP server determines

the default filters that are used by the WebSphere Application Server. These default filters change the

Type field to Custom, which indicates that custom filters are used. This action occurs after you click

OK or Apply in the Advanced LDAP settings panel. Choose the Custom type from the list and

modify the user and group filters to use other LDAP servers, if required. If either the IBM Directory

Server or the iPlanet Directory Server is selected, also select the Ignore Case field.

 6. Enter the fully qualified host name of the LDAP server in the Host field.

 7. Enter the LDAP server port number in the Port field. The host name and the port number represent

the realm for this LDAP server in the WebSphere Application Server cell. So, if servers in different

cells are communicating with each other using Lightweight Third Party Authentication (LTPA) tokens,

these realms must match exactly in all the cells.

 8. Enter the Base distinguished name (DN) in the Base distinguished name field. The Base DN indicates

the starting point for searches in this LDAP directory server. For example, for a user with a DN of

cn=John Doe, ou=Rochester, o=IBM, c=US, specify the Base DN as any of the following options

(assuming a suffix of c=us): ou=Rochester, o=IBM, c=us or o=IBM c=us or c=us. This field can be

case sensitive. Match the case in your directory server. This field is required for all LDAP directories

except the Domino Directory. The Base DN field is optional for the Domino server.

 9. Enter the Bind DN name in the Bind distinguished name field, if necessary. The Bind DN is required if

anonymous binds are not possible on the LDAP server to obtain user and group information. If the

LDAP server is set up to use anonymous binds, leave this field blank.

10. Enter the password corresponding to the Bind DN in the Bind password field, if necessary.

11. Modify the Search time out value if required. This timeout value is the maximum amount of time that

the LDAP server waits to send a response to the product client before aborting the request. The

default is 120 seconds.

12. Deselect the Reuse connection option only if you use routers to send requests to multiple LDAP

servers, and if the routers do not support affinity. Leave this field enabled for all other situations.

13. Select the Ignore case for authorization option, if required. When this flag is enabled, the

authorization check is case insensitive. Normally, an authorization check involves checking the

1474 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

complete DN of a user, which is unique in the LDAP server and is case sensitive. However, when

using either the IBM Directory Server or the iPlanet Directory Server LDAP servers, this flag needs

enabling because the group information obtained from the LDAP servers is not consistent in case.

This inconsistency only effects the authorization check.

14. Enable Secure Sockets Layer (SSL) if the communication to the LDAP server is through SSL. For

more information on setting up LDAP for SSL, refer to Configuring SSL for LDAP clients.

15. Select the SSL enabled option if you want to use secure sockets layer communications with the

LDAP server. If you select the SSL enabled option, select the appropriate SSL alias configuration

from the list in the SSL configuration field.

16. Click OK. The validation of the user, password, and the setup do not take place in this panel.

Validation is only done when you click OK or Apply in the Global Security panel. If you are enabling

security for the first time, complete the remaining steps and go to the Global Security panel. Select

LDAP as the active user registry. If security is already enabled, but information on this panel

changes, go to the Global Security panel and click OK or Apply to validate your changes. If your

changes are not validated, the server might not come up.

Sets the LDAP registry configuration. This step is required to set up the LDAP registry. This step is

required as part of enabling security in the WebSphere Application Server.

1. If you are enabling security, complete the remaining steps. As the final step, validate this setup by

clicking OK or Apply in the Global Security panel.

2. Save, stop, and restart all the product servers (deployment managers, nodes and Application Servers)

for changes in this panel to take effect.

3. If the server comes up without any problems the setup is correct.

Lightweight Directory Access Protocol settings:

Use this page to configure Lightweight Directory Access Protocol (LDAP) settings when users and groups

reside in an external LDAP directory.

 To view this administrative console page, click Security > Global security. Under User registries, click

LDAP.

When security is enabled and any of these properties change, go to the Global security panel and click

Apply to validate the changes.

Server user ID:

Specifies the user ID that is used to run the WebSphere Application Server for security purposes.

 Although this ID is not the LDAP administrator user ID, specify a valid entry in the LDAP directory located

under the Base Distinguished Name.

Server user password:

Specifies the password corresponding to the security server ID.

Type:

Specifies the type of LDAP server to which you connect.

 IBM SecureWay Directory Server is not supported.

For a list of supported LDAP servers, see ″Supported directory services.″ in the documentation.

Host:

Chapter 8. Developing WebSphere applications 1475

Specifies the host ID (IP address or domain name service (DNS) name) of the LDAP server.

Port:

Specifies the host port of the LDAP server.

 If multiple WebSphere Application Servers are installed and configured to run in the same single signon

domain, or if the WebSphere Application Server interoperates with a previous version of the WebSphere

Application Server, then it is important that the port number match all configurations. For example, if the

LDAP port is explicitly specified as 389 in a Version 4.0.x configuration, and a WebSphere Application

Server at Version 5 is going to interoperate with the Version 4.0.x server, then verify that port 389 is

specified explicitly for the Version 5 server.

 Default: 389

Base distinguished name (DN):

Specifies the base distinguished name of the directory service, indicating the starting point for LDAP

searches of the directory service.

 For example, for a user with a distinguished name (DN) of cn=John Doe, ou=Rochester, o=IBM, c=US, you

can specify the base DN as (assuming a suffix of c=us): ou=Rochester, o=IBM, c=us. For authorization

purposes, this field is case sensitive. This specification implies that if a token is received (for example,

from another cell or Domino) the base DN in the server must match the base DN from the other cell or

Domino server exactly. If case sensitivity is not a consideration for authorization, enable the Ignore case

field. This field is required for all Lightweight Directory Access Protocol (LDAP) directories except for the

Domino Directory, where this field is optional.

If you need to interoperate between WebSphere Application Server Version 5 and a Version 5.0.1 or later

server, you must enter a normalized base distinguished name. A normalized base distinguished name

does not contain spaces before or after commas and equal symbols. An example of a non-normalized

base distinguished name is o = ibm, c = us or o=ibm, c=us. An example of a normalized base

distinguished name is o=ibm,c=us. In WebSphere Application Server, Version 5.0.1 or later, the

normalization occurs automatically during run time

Bind distinguished name (DN):

Specifies the distinguished name for the application server to use when binding to the directory service.

 If no name is specified, the application server binds anonymously. See the Base Distinguished Name field

description for examples of distinguished names.

Bind password:

Specifies the password for the application server to use when binding to the directory service.

Search timeout:

Specifies the timeout value in seconds for an Lightweight Directory Access Protocol (LDAP) server to

respond before aborting a request.

 Default: 120

Reuse connection:

1476 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Specifies whether the server reuses the Lightweight Directory Access Protocol (LDAP) connection. Clear

this option only in rare situations where a router is used to spray requests to multiple LDAP servers and

when the router does not support affinity.

 Default: Enabled

Range: Enabled or Disabled

Ignore case for authorization:

Specifies that a case insensitive authorization check is performed when using the default authorization.

 This field is required when IBM Directory Server is selected as the LDAP directory server.

This field is required when Sun ONE Directory Server is selected as the LDAP directory server. For more

information, see ″Using specific directory servers as the LDAP server″ in the documentation.

Otherwise, this field is optional and can be enabled when a case-sensitive authorization check is required.

For example, use this field when the certificates and the certificate contents do not match the case used

for the entry in the LDAP server. You can enable the Ignore case field when using single signon (SSO)

between WebSphere Application Server and Lotus Domino.

 Default: Enabled

Range: Enabled or Disabled

SSL enabled:

Specifies whether secure socket communication is enabled to the Lightweight Directory Access Protocol

(LDAP) server. When enabled, the LDAP Secure Sockets Layer (SSL) settings are used, if specified.

SSL configuration:

Specifies the Secure Sockets Layer configuration to use for the Lightweight Directory Access Protocol

(LDAP) connection. This configuration is used only when SSL is enabled for LDAP.

 Default: DefaultSSLSettings

Advanced Lightweight Directory Access Protocol user registry settings:

Use this page to configure the advanced Lightweight Directory Access Protocol (LDAP) user registry

settings when users and groups reside in an external LDAP directory.

 To view this administrative page, complete the following steps:

1. Click Security > Global security.

2. Under User registries, click LDAP.

3. Under Additional properties, click Advanced Lightweight Directory Access Protocol (LDAP) user

registry settings.

Default values for all the user and group related filters are already completed in the appropriate fields. You

can change these values depending on your requirements. These default values are based on the type of

LDAP server selected in the LDAP settings panel. If this type changes (for example from Netscape to

Secureway) the default filters automatically change. When the default filter values change, the LDAP

server type changes to Custom to indicate that custom filters are used. When security is enabled and any

of these properties change, go to the Global security panel and click Apply or OK to validate the

changes.

Chapter 8. Developing WebSphere applications 1477

User filter:

Specifies the LDAP user filter that searches the user registry for users.

 This option is typically used for security role to user assignments. It specifies the property by which to look

up users in the directory service. For example, to look up users based on their user IDs, specify

(%(uid=%v)(objectclass=inetOrgPerson)). For more information about this syntax, see the LDAP directory

service documentation.

 Data type: String

Group filter:

Specifies the LDAP group filter that searches the user registry for groups

 This option is typically used for security role to group assignments. It specifies the property by which to

look up groups in the directory service. For more information about this syntax, see the LDAP directory

service documentation.

 Data type: String

User ID map:

Specifies the LDAP filter that maps the short name of a user to an LDAP entry.

 Specifies the piece of information that represents users when users appear. For example, to display

entries of the type object class = inetOrgPerson by their IDs, specify inetOrgPerson:uid. This field takes

multiple objectclass:property pairs delimited by a semicolon (;).

 Data type: String

Group ID Map:

Specifies the LDAP filter that maps the short name of a group to an LDAP entry.

 Specifies the piece of information that represents groups when groups appear. For example, to display

groups by their names, specify *:cn. The asterisk (*) is a wildcard character that searches on any object

class in this case. This field takes multiple objectclass:property pairs delimited by a semicolon (;).

 Data type: String

Group member ID map:

Specifies the LDAP filter that identifies user to group relationships.

 For directory types SecureWay, Netscape, and Domino, this field takes multiple objectclass:property pairs,

delimited by a semicolon (;). In an objectclass:property pair, the objectclass value is the same objectclass

that is defined in the Group Filter, and the property is the member attribute. If the objectclass value does

not match the objectclass in Group Filter, authorization might fail if groups are mapped to security roles.

For more information about this syntax, see your LDAP directory service documentation.

For IBM Directory Server, iPlanet Directory Server and Active Directory, this field takes multiple (group

attribute:member attribute) pairs delimited by a semicolon (;). They are used to find the group

memberships of a user by enumerating all the group attributes possessed by a given user. For example,

1478 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

attribute pair (memberof:member) is used by Active Directory, and (ibm-allGroup:member) is used by IBM

Directory Server . This field also specifies which property of an objectclass stores the list of members

belonging to the group represented by the objectclass. For supported LDAP directory servers, see

″Supported directory services″.

 Data type: String

Perform a nested group search:

Specifies a recursive nested group search.

 Select this option if the Lightweight Directory Access Protocol (LDAP) server does not support recursive

server-side group member searches (and if recursive group member search is required). It is not

recommended that you select this option to locate recursive group memberships for LDAP servers.

WebSphere security leverages the LDAP server’s recursive search functionality to search a user‘s group

memberships, including recursive group memberships. For example:

v IBM Directory Server is pre-configured by WebSphere Application Server security to recursively

calculate a user‘s group memberships using the ibm-allGroup attribute

v SunONE directory server is pre-configured to calculate nested group memberships using the nsRole

attribute

 Data type: String

Certificate map mode:

Specifies whether to map X.509 certificates into an LDAP directory by EXACT_DN or

CERTIFICATE_FILTER. Specify CERTIFICATE_FILTER to use the specified certificate filter for the

mapping.

 Data type: String

Certificate filter:

Specifies the filter certificate mapping property for the LDAP filter. The filter is used to map attributes in the

client certificate to entries in the LDAP registry.

 If more than one LDAP entry matches the filter specification at run time, then authentication fails because

it results in an ambiguous match. The syntax or structure of this filter is: LDAP attribute=${Client

certificate attribute} (for example, uid=${SubjectCN}). The left side of the filter specification is an

LDAP attribute that depends on the schema that your LDAP server is configured to use. The right side of

the filter specification is one of the public attributes in your client certificate. The right side must begin with

a dollar sign ($) and open bracket ({) and end with a close bracket (}). You can use the following certificate

attribute values on the right side of the filter specification. The case of the strings is important:

v ${UniqueKey}

v ${PublicKey}

v ${PublicKey}

v ${Issuer}

v ${NotAfter}

v ${NotBefore}

v ${SerialNumber}

v ${SigAlgName}

v ${SigAlgOID}

v ${SigAlgParams}

v ${SubjectCN}

Chapter 8. Developing WebSphere applications 1479

v ${Version}

 Data type: String

Configuring Lightweight Directory Access Protocol search filters:

WebSphere Application Server uses Lightweight Directory Access Protocol (LDAP) filters to search and

obtain information about users and groups from an LDAP directory server. A default set of filters is

provided for each LDAP server that the product supports. You can modify these filters to fit your LDAP

configuration. After the filters are modified (and you click OK or Apply) the directory type in the LDAP

Registry panel changes to custom, which indicates that custom filters are used. Also, you can develop

filters to support any additional type of LDAP server. The effort to support additional LDAP directories is

optional and other LDAP directory types are not supported.

 1. In the administrative console, click Security > Global security..

 2. Under User registries, click LDAP.

 3. Under Additional properties, click Advanced Lightweight Directory Access Protocol (LDAP) user

registry settings.

 4. Modify the User filter, if necessary. The user filter is used for searching the registry for users and is

typically used for the security role to user assignment. Also, the filter is used to authenticate a user

using the attribute that is specified in the filter. The filter specifies the property that is used to look up

users in the directory service.

In the following example, the property that is assigned to %v, which is the short name of the user,

must be a unique key. Two LDAP entries with the same object class cannot have the same short

name. To look up users based on their user IDs (uid) and to use the inetOrgPerson object class,

specify the following syntax:

(&(uid=%v)(objectclass=inetOrgPerson)

For more information about this syntax, see the LDAP directory service documentation.

 5. Modify the Group filter, if necessary. The group filter is used in searching the registry for groups and

is typically used for the security role to group assignment. Also, the filter is used to specify the

property by which to look up groups in the directory service.

In the following example, the property that is assigned to %v, which is the short name of the group,

must be a unique key. Two LDAP entries with the same object class cannot have the same short

name. To look up groups based on their common names (CN) and to use either the groupOfNames

or the groupOfUniqueNames object class, specify the following syntax:

(&(cn=%v)(|(objectclass=groupOfNames)(objectclass=groupOfUniqueNames)))

For more information about this syntax, see the LDAP directory service documentation.

 6. Modify the User ID map, if necessary. This filter maps the short name of a user to an LDAP entry. It

specifies the piece of information that represents users when these users are displayed with their

short names. For example, to display entries of the type object class = inetOrgPerson by their IDs,

specify inetOrgPerson:uid. This field takes multiple objectclass:property pairs delimited by a

semicolon (;). To provide a consistent value for methods like the getCallerPrincipal() method and the

getUserPrincipal() method, the short name that is obtained by using this filter is used. For example,

the user CN=Bob Smith, ou=austin.ibm.com, o=IBM, c=US can log in using any attributes that are

defined (for example, e-mail address, social security number, and so on) but when these methods are

called, the user ID bob is returned no matter how the user logs in.

 7. Modify the Group ID map filter, if necessary. This filter maps the short name of a group to an LDAP

entry. It specifies the piece of information that represents groups when groups display. For example,

to display groups by their names, specify *:cn. The asterisk (*) is a wildcard character that searches

on any object class in this case. This field takes multiple objectclass:property pairs delimited by a

semicolon (;).

1480 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

8. Modify the Group Member ID Map filter, if necessary. This filter identifies user to group memberships.

For SecureWay, Netscape, and Domino directory types, this field is used to query all the groups that

match the specified object classes to see if the user is contained in the specified attribute. For

example, to get all the users belonging to groups with the groupOfNames object class and the users

that are contained in the member attributes, specify groupOfNames:member. This syntax, which is a

property of an objectclass, stores the list of members that belong to the group that is represented by

the objectclass. This field takes multiple objectclass:property pairs that are delimited by a semicolon

(;). For more information about this syntax, see the LDAP directory service documentation.

For the IBM Directory Server, iPlanet Directory Server, and Active Directory, this field is used to query

all users in a group by using the information that is stored in the user object (instead of querying all

the groups individually to find if the user exists in that group). For example, the memberof:member

filter (for Active Directory) is used to get the memberof attribute of the user object to obtain all the

groups to which the user belongs. The member attribute is used to get all the users in a group that

use the group object. Using the user object to obtain the group information improves performance.

 9. Select the Perform a nested group search option if your LDAP server does not support recursive

server-side searches.

10. Modify the Certificate map mode, if necessary. You can use the X.590 certificates for user

authentication when LDAP is selected as the user registry. This field is used to indicate whether to

map the X.509 certificates into an LDAP directory user by EXACT_DN or CERTIFICATE_FILTER. If

EXACT_DN is selected, the DN in the certificate must exactly match the user entry in the LDAP

server (including case and spaces).

Select the Ignore case for authorization field on the LDAP settings to make the authorization case

insensitive. To access the LDAP setting panel, complete the following steps:

a. Click Security > Global security..

b. Under User registries, click LDAP.

11. If you select CERTIFICATE_FILTER, specify the LDAP filter for mapping attributes in the client

certificate to entries in LDAP. If more than one LDAP entry matches the filter specification at run time,

authentication fails because an ambiguous match results. The syntax or structure of this filter is: LDAP

attribute=${Client certificate attribute} (for example, uid=${SubjectCN}).

The left side of the filter specification is an LDAP attribute that depends on the schema that your

LDAP server is configured to use. The right side of the filter specification is one of the public

attributes in your client certificate. Note that the right side must begin with a dollar sign ($), open

bracket ({), and end with a close bracket (}). Use the following certificate attribute values on the right

side of the filter specification. The case of the strings is important.

v ${UniqueKey}

v ${PublicKey}

v ${Issuer}

v ${NotAfter}

v ${NotBefore}

v ${SerialNumber}

v ${SigAlgName}

v ${SigAlgOID}

v ${SigAlgParams}

v ${SubjectDN}

v ${Version}

To enable this field, select CERTIFICATE_FILTER for the certificate mapping.

12. Click Apply.

When any LDAP user or group filter is modified in the Advanced LDAP Settings panel click Apply.

Clicking OK navigates you to the LDAP User Registry panel, which contains the previous LDAP

directory type, rather than the custom LDAP directory type. Clicking OK or Apply in the LDAP User

Registry panel saves the back-level LDAP directory type and the default filters of that directory. This

action overwrites any changes to the filters that you made. To avoid overwriting changes, you can

take either of the following actions:

Chapter 8. Developing WebSphere applications 1481

v Click Apply in the Advanced Lightweight Directory Access Protocol (LDAP) user registry settings

panel. To proceed to another panel, use the left navigation. Using the navigation to access the

LDAP User Registry panel changes the directory type to Custom.

v Choose Custom type from the LDAP User Registry panel. Click Apply and then change the filters

by clicking the Advanced Lightweight Directory Access Protocol (LDAP) user registry settings

panel. After you complete your changes, click Apply or OK.

The validation of the changes (if any) does not take place in this panel. Validation is done when you

click OK or Apply in the Global Security panel. If you are in the process of enabling security for the

first time, complete the remaining steps and go to the Global Security panel. Select LDAP as the

Active User Registry. If security is already enabled and any information on this panel changes, go to

the Global Security panel and click OK or Apply to validate your changes. If your changes are not

validated, the server might not start.

Setting the LDAP search filters. This step is required to modify existing user and group filters for a

particular LDAP directory type. It is also used to set up certificate filters to map certificates to entries in the

LDAP server.

1. If you are enabling security, complete the remaining steps. As the final step make sure that you

validate this setup by clicking OK or Apply in the Global Security panel.

2. Save, stop, and start all the product servers (cell, nodes and all the application servers) for any

changes in this panel to become effective.

3. After the server starts, go through all the security-related tasks (getting users, getting groups, and so

on) to verify that the changes to the filters function.

Using specific directory servers as the LDAP server:

For Using MS Active Directory server as the LDAP server below, note that to use Microsoft Active

Directory as the LDAP server for authentication with WebSphere Application Server you must take specific

steps. By default, Microsoft Active Directory does not permit anonymous LDAP queries. To create LDAP

queries or to browse the directory, an LDAP client must bind to the LDAP server using the distinguished

name (DN) of an account that belongs to the administrator group of the Windows system. A group

membership search in the Active Directory is done by enumerating the memberof attribute possessed by a

given user entry, rather than browsing through the member list in each group. If you change this default

behavior to browse each group, you can change the Group Member ID Map field from memberof:member

to group:member.

Using IBM Tivoli Directory Server as the LDAP server

To use IBM Tivoli Directory Server (formerly IBM Directory Server), choose IBM Tivoli Directory Server

as the directory type.

For supported directory servers, refer to the article, Supported directory services. The difference between

these two types is group membership lookup. It is recommended that you choose the IBM Tivoli Directory

Server for optimum performance during run time. In the IBM Tivoli Directory Server, the group membership

is an operational attribute. With this attribute, a group membership lookup is done by enumerating the

ibm-allGroups attribute for the entry, All group memberships, including the static groups, dynamic groups,

and nested groups, can be returned with the ibm-allGroups attribute. WebSphere Application Server

supports dynamic groups, nested groups, and static groups in IBM Tivoli Directory Server using the

ibm-allGroups attribute. To utilize this attribute in a security authorization application, use a

case-insensitive match so that attribute values returned by the ibm-allGroups attribute are all in uppercase.

Important: It is recommended that you do not install IBM Tivoli Directory Server Version 5.2 on the same

machine that you install WebSphere Application Server, Version 6.x. IBM Tivoli Directory

Server, Version 5.2 includes WebSphere Application Server Express, Version 5.0.2, which the

directory server uses for its administrative console. Install the Web Administration tool Version

5.2 and WebSphere Application Server Express, Version 5.0.2, which are both bundled with

IBM Tivoli Directory Server, Version 5.2, on a different machine from WebSphere Application

1482 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Server, Version 6.x. You cannot use WebSphere Application Server, Version 6.x as the

administrative console for IBM Tivoli Directory Server. If IBM Tivoli Directory Server, Version

5.2 and WebSphere Application Server, Version 6.x are installed on the same machine, you

might encounter port conflicts.

If you must install IBM Tivoli Directory Server Version 5.2 and WebSphere Application Server

Version 6.x on the same machine, consider the following information:

v During the IBM Tivoli Directory Server installation process, you must select both the Web

Administration tool and WebSphere Application Server Express, Version 5.0.2.

v Install WebSphere Application Server, Version 6.x.

v When you install WebSphere Application Server, Version 6.x, change the port number for

the application server.

v You might need to adjust the WebSphere Application Server environment variables on the

version 6.x application server for WAS_HOME and WAS_INSTALL_ROOT. To change the

variables using the administrative console, click Environment > WebSphere Variables.

Using a Lotus Domino Server as the LDAP server

If you choose the Lotus Domino LDAP server Version 6 and the attribute short name is not defined in the

schema, you can take either of the following actions:

v Change the schema to add the short name attribute.

v Change the user ID map filter to replace the short name with any other defined attribute (preferably to

UID). For example, change person:shortname to person:uid.

The userID map filter has been changed to use the uid attribute instead of the shortname attribute as the

current version of Lotus Domino does not create the shortname attribute by default. If you want to use the

shortname attribute, define the attribute in the schema and change the userID map filter to the following:

User ID Map : person:shortname

Using Sun ONE Directory Server as the LDAP server

You can choose Sun ONE Directory Server for your Sun ONE Directory Server system. For supported

directory servers, refer to the article, Supported directory services. In Sun ONE Directory Server, the

default object class is groupOfUniqueName when you create a group. For better performance, WebSphere

Application Server uses the user object to locate the user group membership from the nsRole attribute.

Thus, create the group from the role. If you want to use groupOfUniqueName to search groups, specify your

own filter setting. Roles unify entries. Roles are designed to be more efficient and easier to use for

applications. For example, an application can locate the role of an entry by enumerating all the roles

possessed by a given entry, rather than selecting a group and browsing through the members list. When

using roles, you can create a group could be created using a:

v Managed role

v Filtered role

v Nested role

All of these roles are computable by nsRole attribute.

Using Microsoft Active Directory server as the LDAP server

To set up Microsoft Active Directory as your LDAP server, complete the following steps.

1. Determine the full distinguished name (DN) and password of an account in the administrators group.

For example, if the Active Directory administrator creates an account in the Users folder of the Active

Directory Users and Computers Windows control panel and the DNS domain is ibm.com, the resulting

DN has the following structure:

Chapter 8. Developing WebSphere applications 1483

cn=<adminUsername>, cn=users, dc=ibm,

dc=com

2. Determine the short name and password of any account in the Microsoft Active Directory. This

password does not have to be the same account that is used in the previous step.

3. Use the WebSphere Application Server administrative console to set up the information needed to use

Microsoft Active Directory

a. Click Security > Global security.

b. Under Authentication, click Authentication mechanisms > LDAP.

c. Set up LDAP with Active Directory at the directory type. Based on the information determined in the

previous steps, you can specify the following values on the LDAP settings panel:

Server user ID

Specify the short name of the account that was chosen in the second step.

Server user password

Specify the password of the account that was chosen in the second step.

Type Specify Active Directory

Host Specify the domain name service (DNS) name of the machine that is running Microsoft

Active Directory.

Base distinguished name (DN)

Specify the domain components of the DN of the account that was chosen in the first step.

For example: dc=ibm, dc=com Bind

Bind distinguished name (DN)

Specify the full distinguished name of the account that was chosen in the first step. For

example: cn=<adminUsername>, cn=users, dc=ibm, dc=com

Bind password

Specify the password of the account that was chosen in the first step.

d. Click OK to save the changes.

e. Stop and restart the administrative server so that the changes take effect.

4. Optional: Set ObjectCategory as the filter in the Group member ID map field to improve LDAP

performance.

a. Under Additional properties, click Advanced Lightweight Directory Access Protocol (LDAP)

user registry settings .

b. Add ;objectCategory:group to the end of the Group member ID map field.

c. Click OK to save the changes

d. Stop and restart the administrative server so that the changes take effect.

Supported directory services:

WebSphere Application Server security supports several different LDAP servers. For a list of supported

LDAP servers, refer to the Supported hardware, software and APIs prerequisite Web site in the

information center.

It is expected that other LDAP servers follow the LDAP specification function. Support is limited to these

specific directory servers only. You can use any other directory server by using the custom directory type

in the list and by filling in the filters required for that directory.

To improve performance for LDAP searches, the default filters for IBM Directory Server, iPlanet Directory

Server, and Active Directory are defined such that when you search for a user, the result contains all the

relevant information about the user (user ID, groups, and so on). As a result, the product does not call the

LDAP server multiple times. This definition is possible only in these directory types, which support

searches where the complete user information is obtained.

1484 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

If you use the IBM Directory Server, enable the Ignore case flag. This flag is required because when the

group information is obtained from the user object attributes, the case is not the same as when you get

the group information directly. For the authorization to work in this case, perform a case insensitive check

and verify the requirement for the Ignore case flag.

Locating a user’s group memberships in Lightweight Directory Access Protocol: WebSphere

Application Server security can be configured to search group memberships directly or indirectly. It can

also be configured to search only a static group, or it can be configured to search static groups, recursive

(or nested) groups, and dynamic groups for some Lightweight Directory Access Protocol (LDAP) servers.

Evaluate group memberships from user object directly

Several popular LDAP servers enable user objects to contain information about the groups to

which they belong (such as Microsoft Active Directory Server, or eDirectory). Some user group

memberships can be computable attributes from the user object (such as IBM Directory Server or

Sun ONE directory server). In some LDAP servers, this attribute can be used to include a user’s

dynamic group memberships, nesting group memberships, and static group memberships to locate

all group memberships from a single attribute.

 For example, in IBM Directory Server all group memberships, including the static groups, dynamic

groups, and nested groups, can be returned using the ibm-allGroups attribute. In Sun ONE, all

roles, including managed roles, filtered roles, and nested roles, are calculated using the nsRole

attribute. If an LDAP server has such an attribute in a user object to include dynamic groups,

nested groups, and static groups, WebSphere Application Server security can be configured to use

this attribute to support dynamic groups, nested groups, and static groups.

Evaluate group memberships from a group object indirectly

Some LDAP servers enable only group objects such as the Lotus Domino LDAP server to contain

information about users. The LDAP server does not enable the user object to contain information

about groups. For this type of LDAP server, group membership searches are performed by

locating the user on the member list of groups. The member list evaluation is currently used in the

static group membership search for all of the releases before WebSphere Application Server

Version 5.

Use the direct method for searching group memberships if your LDAP server has such an attribute in user

object to include group information. To use the direct method or the indirect method, enter the appropriate

value in the Group Member ID Map field on the Advanced LDAP Settings panel using:

v objectclass:attribute pairs for the indirect method

v attribute:attribute pairs for the direct method

Sample entries of attribute:attribute pairs in Group Member ID Map fields include:

v ibm-allGroups:member for IBM Directory server

v nsRole:nsRole for Sun ONE directory if groups are created with Role inside Sun ONE

v memberOf:member in Microsoft Active Directory Server

Sample entries of objectClass:attribute pairs in the Group Member ID Map field include:

v dominoGroup:member for Domino

v groupOfNames:member for eDirectory

While using the direct method, dynamic groups, recursive groups, and static groups can be returned as

multiple values of a single attribute. For example, in IBM Directory Server all group memberships,

including the static groups, dynamic groups, and nested groups, can be returned using the ibm-allGroups

attribute. In Sun ONE, all roles, including managed roles, filtered roles, and nested roles, are calculated

using the nsRole attribute. If an LDAP server can use the nsRole attribute, dynamic groups, nested

groups, and static groups are all supported by WebSphere Application Server.

Chapter 8. Developing WebSphere applications 1485

Some LDAP servers do not have recursive computing functionality. For example, although Microsoft Active

Directory server has direct group search capability using the memberOf attribute, memberOf lists the

groups beneath which the group is directly nested only and does not contain the recursive list of nested

predecessors. Another example is that the Lotus Domino LDAP server, which only supports the indirect

method to locate the group memberships for a user (you cannot obtain recursive group memberships from

a Domino server directly). For LDAP servers without recursive searching capability, WebSphere Application

Server security provides a recursive function that is enabled by clicking Perform a Nested Group Search

in the Advanced LDAP user registry settings. Select this option only if your LDAP server does not provide

recursive searches and you want a recursive search.

Dynamic groups and nested group support: Dynamic groups contain a group name and membership

criteria:

v The group membership information is as current as the information on the user object.

v There is no need to manually maintain members on the group object.

v Dynamic groups are designed such so an application does not need to pull a large amount of

information from the directory to find out if someone is a member of a group.

Nested groups enable the creation of hierarchical relationships that are used to define inherited group

membership. A nested group is defined as a child group entry whose distinguished name (DN) is

referenced by a parent group entry attribute.

Dynamic and nested groups simplify WebSphere Application Server security management and increase its

effectiveness and flexibility. You only need to assign a larger parent group if all nested groups share the

same privilege. Assigning a role to a single parent group simplifies the runtime authorization table.

Dynamic and nested group support for the SunONE or iPlanet Directory Server: The SunONE or

iPlanet Directory Server uses two grouping mechanisms:

Groups

Groups are entries that name other entries as a list of members or as a filter for members.

Roles Roles are also entries that name other entries as a list of members or as a filter for members.

Additional functionality is provided by generating the nsrole attribute on each role member.

Three types of roles are available:

Filtered roles

Entries are members if they match a specified Lightweight Directory Access Protocol (LDAP) filter.

In this way, the role depends upon the attributes that are contained in each entry. This role is

equivalent to a dynamic group.

Nested roles

Creates roles that contain other roles. This role is equivalent to a nested group.

Managed roles

Explicitly assigns a role to member entries. This role is equivalent to a static group.

Refer to “Configuring dynamic and nested group support for the SunONE or iPlanet Directory Server” for

more information.

Configuring dynamic and nested group support for the SunONE or iPlanet Directory Server:

To use dynamic and nested groups with WebSphere Application Server security, you must be running

WebSphere Application Server Version 5.1.1 or later. Refer to “Dynamic and nested group support for the

SunONE or iPlanet Directory Server” for more information on this topic.

1. On the LDAP registry panel, select SunONE for the LDAP server.

2. Select the Ignore case option

1486 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

3. On the LDAP settings panel, change the Group Filter setting to &(cn=%v)(objectclass=ldapsubentry))

4. On the LDAP settings panel, change the Group Member ID Map setting to nsRole:nsRole.

Dynamic groups and nested group support for the IBM Directory Server: WebSphere Application

Server Version 5.x or later supports all Lightweight Directory Access Protocol (LDAP) dynamic and nested

groups when using IBM Directory Server 4.x and later. This function is enabled by default by taking

advantage of a new feature in IBM Directory Server. IBM Directory Server V4.1 uses the ibm-allGroups

forward reference group attribute that automatically calculates all the group memberships (including

dynamic and recursive memberships) for a user. Security directly locates a user group membership from a

user object rather than indirectly search all the groups to match group members.

Refer to “Configuring dynamic and nested group support for the IBM Directory Server” for more

information.

Configuring dynamic and nested group support for the IBM Directory Server:

When creating groups, ensure that nested and dynamic group memberships work correctly.

1. In the WebSphere Application Server security LDAP user registry configuration panel, select

IBM_Directory_Server for the LDAP server.

2. On the LDAP settings panel change the Group Filter setting. Change the setting to the following value:

(&(cn=%v)(|(objectclass=groupOfNames)(objectclass=groupOfUniqueNames)

(objectclass=groupOfURLs))).

3. On the LDAP settings panel change the Group Member ID Map setting. Change the setting to the

following value:

 ibm-allGroups:member;ibm-allGroups:uniqueMember

4. On the Add an LDAP entry panel the Auxiliary object class value is ibm-nestedGroup when creating a

nested group. On the Add an LDAP entry panel, the Auxiliary object class value is ibm-dynamicGroup

when creating a dynamic group.

Custom user registries:

A custom user registry is a customer-implemented user registry, that implements the UserRegistry Java

interface, as provided by the product. A custom-implemented user registry can support virtually any type of

an account repository from a relational database, flat file, and so on. The custom user registry provides

considerable flexibility in adapting product security to various environments where some form of a user

registry, other than Lightweight Directory Access Protocol (LDAP) or Local Operating System (LocalOS),

already exists in the operational environment.

 WebSphere Application Server security provides an implementation that uses various local operating

system-based registries (Windows, AIX, Solaris, Linux) and various Lightweight Directory Access Protocol

(LDAP)-based registries. However, situations can exist where your user and group data resides in other

repositories or custom registries (a database, for example) and moving this information to either a LocalOS

or an LDAP registry implementation might not be feasible. For these situations WebSphere Application

Server security provides a service provider interface (SPI) that you can implement to interact with your

current registry. The SPI is the UserRegistry interface. This interface has a set of methods to implement

for the product security to interact with your registries for all security-related tasks. The LocalOS and LDAP

registry implementations that are provided also implement this interface. Custom user registries are

sometimes called the pluggable user registries or custom registries for short. Your custom user registry

implementation is expected to be thread-safe.

The UserRegistry interface is a collection of methods that are required to authenticate individual users

using either password or certificates and to collect information about the user (privilege attributes) for

authorization purposes. This interface also includes methods that obtain user and group information so

Chapter 8. Developing WebSphere applications 1487

that they can be given access to resources. When implementing the methods in the interface, you must

decide how to map the information that is manipulated by the UserRegistry interface to the information in

your registry.

Make sure that your implementation of the custom registry does not depend on any WebSphere

Application Server components such as data sources, enterprise beans, and so on. Do not have this

dependency because security is initialized and enabled prior to most of the other WebSphere Application

Server components during startup. If your previous implementation used these components, make a

change that eliminates the dependency.

The methods in the UserRegistry interface operate on the following information for users:

User Security Name

The user name, which is similar to the user name in the Windows, Linux and UNIX systems Local

OS registries. This name is used to log in when prompted by a secured application. By default, the

Enterprise JavaBeans (EJB) getCallerPrincipal method and the getRemoteUser and

getUserPrincipal servlet methods return this name. The user security name is also referred to as

userSecurityName, userName, or user name.

Unique ID

This ID represents a unique identifier for the user. The UserRegistry interface requires this

identifier to be unique. The unique ID similar to the system ID (SID) in Windows systems, the

Unique ID (UID) in Linux and UNIX systems, and the distinguished name (DN) in Lightweight

Directory Authentication Protocol (LDAP). This ID is also referred to as uniqueUserId. The unique

ID is used to make the authorization decisions for protected resources.

Display name

This name is an optional string that describes a user, and it is similar to the FullName attribute in

Windows operating systems. The implementation can use display names for informational

purposes only; these names are not required to exist or to be unique. The user interface can use

the display name to present more information about the user.

Group Security name

This name, which represents the security group, is also referred to as groupSecurityName,

groupName and group name.

Unique ID

The unique ID is the identifier for a group. This name is also referred to as uniqueGroupId.

Display name

The display name is an optional string that describes a group.

The article on ″UserRegistry interface methods″, in the information center, describes each of the methods

in the UserRegistry interface that need implementing. An explanation of each of the methods and their

usage in the sample and any changes from the Version 4 interface are provided. The Related references

section provides links to all other custom user registries documentation, including a file-based registry

sample. The Sample provided is very simple and is intended to familiarize you with this feature. Do not

use this sample in an actual production environment.

Configuring custom user registries:

Before you begin this task, implement and build the UserRegistry interface. For more information on

developing custom user registries refer to the article, ″Developing custom user registries″ in the

information center. The following steps are required to configure custom user registries through the

administrative console.

1. Click Security > Global security

2. Under User registries, click Custom.

3. Enter a valid user name in the Server user ID field.

4. Enter the password of the user in the Server user password field.

5. Enter the full name of the location of the implementation class file in the Custom registry class name

field as a dot-separated file name. For the sample, this file name is

1488 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

com.ibm.websphere.security.FileRegistrySample. The file exists in the WebSphere Application Server

class path (preferably in the install_root/lib/ext directory). This file exists in all the product

processes. So, if you are operating in a Network Deployment environment, this file exists in the cell

class path and in all of the node class paths.

6. Select the Ignore case for authorization option for the authorization to perform a case insensitive

check. Enabling this option is necessary only when your registry is case insensitive and does not

provide a consistent case when queried for users and groups.

7. Click Apply if you have any other additional properties to enter for the registry initialization. Otherwise

click OK and complete the steps required to turn on security.

8. If you need to enter additional properties to initialize your implementation, click Custom properties.

Click New. Enter the property name and value. Click OK. Repeat this step to add other additional

properties. For the sample, enter the following two properties. It is assumed that the users.props and

the groups.props file are in the customer_sample directory under the product installation directory. You

can place these properties in any directory that you chose and reference their location through Custom

properties. However, make sure that the directory has the appropriate access permissions.

 Property name Property value

usersFile $USER_INSTALL_ROOT/customer_sample/users.props

groupsFile $USER_INSTALL_ROOT/customer_sample/groups.props

Samples of these two properties are available in the “users.props file” on page 1515 and the

“groups.props file” on page 1515 article.

The Description, Required, and Validation Expression fields are not used and you can leave them

blank.

Note: In a Network Deployment environment where multiple WebSphere Application Server processes

exist (cell and multiple nodes in different machines), these properties are available for each

process. Use the relative name USER_INSTALL_ROOT to locate any files, as this name

expands to the product installation directory. If this name is not used, ensure that the files exist

in the same location in all the nodes. To change the value for the USER_INSTALL_ROOT

variable

This step is required to set up the custom user registry and to enable security in WebSphere Application

Server.

1. Complete the remaining steps, if you are enabling security.

2. After security is turned on, save, stop, and start all the product servers (cell, nodes and all the

application servers) for any changes in this panel to take effect.

3. If the server comes up without any problems, the setup is correct.

4. Validate the user and password by clicking OK or Apply on the Global security panel. Save,

synchronize (in the cell environment), stop and restart all the product servers.

UserRegistry.java files:

// 5639-D57, 5630-A36, 5630-A37, 5724-D18

// (C) COPYRIGHT International Business Machines Corp. 1997, 2004

// All Rights Reserved * Licensed Materials - Property of IBM

//

// DESCRIPTION:

//

// This file is the UserRegistry interface that custom registries in WebSphere

// Application Server implement to enable WebSphere security to use the custom

// registry.

//

package com.ibm.websphere.security;

import java.util.*;

import java.rmi.*;

Chapter 8. Developing WebSphere applications 1489

import java.security.cert.X509Certificate;

import com.ibm.websphere.security.cred.WSCredential;/**

 * Implementing this interface enables WebSphere Application Server Security

 * to use custom registries. This interface extends java.rmi.Remote because the

 * registry can be in a remote process.

 *

 * Implementation of this interface must provide implementations for:

*

* initialize(java.util.Properties)

* checkPassword(String,String)

* mapCertificate(X509Certificate[])

* getRealm

* getUsers(String,int)

* getUserDisplayName(String)

* getUniqueUserId(String)

* getUserSecurityName(String)

* isValidUser(String)

* getGroups(String,int)

* getGroupDisplayName(String)

* getUniqueGroupId(String)

* getUniqueGroupIds(String)

* getGroupSecurityName(String)

* isValidGroup(String)

* getGroupsForUser(String)

* getUsersForGroup(String,int)

* createCredential(String)

**/

public interface UserRegistry extends java.rmi.Remote

{

 /**

 * Initializes the registry. This method is called when creating the

 * registry.

 *

 * @param props the registry-specific properties with which to

 * initialize the custom registry

 * @exception CustomRegistryException

 * if there is any registry specific problem

 * @exception RemoteException

 * as this extends java.rmi.Remote

 **/

 public void initialize(java.util.Properties props)

 throws CustomRegistryException,

 RemoteException; /**

 * Checks the password of the user. This method is called to authenticate a

 * user when the user’s name and password are given.

 *

 * @param userSecurityName the name of user

 * @param password the password of the user

 * @return a valid userSecurityName. Normally this is

 * the name of same user whose password was checked but if the

 * implementation wants to return any other valid

 * userSecurityName in the registry it can do so

 * @exception CheckPasswordFailedException if userSecurityName/

 * password combination does not exist in the registry

 * @exception CustomRegistryException if there is any registry specific

 * problem

 * @exception RemoteException as this extends java.rmi.Remote

 **/

 public String checkPassword(String userSecurityName, String password)

 throws PasswordCheckFailedException,

 CustomRegistryException,

1490 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

RemoteException; /**

 * Maps a certificate (of X509 format) to a valid user in the registry.

 * This is used to map the name in the certificate supplied by a browser

 * to a valid userSecurityName in the registry

 *

 * @param cert the X509 certificate chain

 * @return the mapped name of the user userSecurityName

 * @exception CertificateMapNotSupportedException if the particular

 * certificate is not supported.

 * @exception CertificateMapFailedException if the mapping of the

 * certificate fails.

 * @exception CustomRegistryException if there is any registry specific

 * problem

 * @exception RemoteException as this extends java.rmi.Remote

 **/

 public String mapCertificate(X509Certificate[] cert)

 throws CertificateMapNotSupportedException,

 CertificateMapFailedException,

 CustomRegistryException,

 RemoteException; /**

 * Returns the realm of the registry.

 *

 * @return the realm. The realm is a registry-specific string indicating

 * the realm or domain for which this registry

 * applies. For example, for OS400 or AIX this would be the

 * host name of the system whose user registry this object

 * represents.

 * If null is returned by this method realm defaults to the

 * value of "customRealm". It is recommended that you use

 * your own value for realm.

 * @exception CustomRegistryException if there is any registry specific

 * problem

 * @exception RemoteException as this extends java.rmi.Remote

 **/

 public String getRealm()

 throws CustomRegistryException,

 RemoteException; /**

 * Gets a list of users that match a pattern in the registry.

 * The maximum number of users returned is defined by the limit

 * argument.

 * This method is called by administrative console and by scripting (command

 * line) to make available the users in the registry for adding them (users)

 * to roles.

 *

 * @parameter pattern the pattern to match. (For example., a* will match all

 * userSecurityNames starting with a)

 * @parameter limit the maximum number of users that should be returned.

 * This is very useful in situations where there are thousands of

 * users in the registry and getting all of them at once is not

 * practical. A value of 0 implies get all the users and hence

 * must be used with care.

 * @return a Result object that contains the list of users

 * requested and a flag to indicate if more users exist.

 * @exception CustomRegistryException if there is any registry specific

 * problem

 * @exception RemoteException as this extends java.rmi.Remote

 **/

 public Result getUsers(String pattern, int limit)

 throws CustomRegistryException,

 RemoteException; /**

 * Returns the display name for the user specified by userSecurityName.

 *

 * This method is called only when the user information displays

Chapter 8. Developing WebSphere applications 1491

* (information purposes only, for example, in the administrative console) and not used

 * in the actual authentication or authorization purposes. If there are no

 * display names in the registry return null or empty string.

 *

 * In WebSphere Application Server Version 4.0 custom registry, if you had a display

 * name for the user and if it was different from the security name, the display name

 * was returned for the EJB methods getCallerPrincipal() and the servlet methods

 * getUserPrincipal() and getRemoteUser().

 * In WebSphere Application Server Version 5.0 for the same methods the security

 * name is returned by default. This is the recommended way as the display name

 * is not unique and might create security holes.

 * However, for backward compatibility if one needs the display name to

 * be returned set the property WAS_UseDisplayName to true.

 *

 * See the documentation for more information.

 *

 * @parameter userSecurityName the name of the user.

 * @return the display name for the user. The display name

 * is a registry-specific string that represents a descriptive, not

 * necessarily unique, name for a user. If a display name does

 * not exist return null or empty string.

 * @exception EntryNotFoundException if userSecurityName does not exist.

 * @exception CustomRegistryException if there is any registry specific

 * problem

 * @exception RemoteException as this extends java.rmi.Remote

 **/

 public String getUserDisplayName(String userSecurityName)

 throws EntryNotFoundException,

 CustomRegistryException,

 RemoteException; /**

 * Returns the unique ID for a userSecurityName. This method is called when

 * creating a credential for a user.

 *

 * @parameter userSecurityName the name of the user.

 * @return the unique ID of the user. The unique ID for an user is

 * the stringified form of some unique, registry-specific, data

 * that serves to represent the user. For example, for the UNIX

 * user registry, the unique ID for a user can be the UID.

 * @exception EntryNotFoundException if userSecurityName does not exist.

 * @exception CustomRegistryException if there is any registry specific

 * problem

 * @exception RemoteException as this extends java.rmi.Remote

 **/

 public String getUniqueUserId(String userSecurityName)

 throws EntryNotFoundException,

 CustomRegistryException,

 RemoteException; /**

 * Returns the name for a user given its unique ID.

 *

 * @parameter uniqueUserId the unique ID of the user.

 * @return the userSecurityName of the user.

 * @exception EntryNotFoundException if the uniqueUserID does not exist.

 * @exception CustomRegistryException if there is any registry specific

 * problem

 * @exception RemoteException as this extends java.rmi.Remote

 **/

 public String getUserSecurityName(String uniqueUserId)

 throws EntryNotFoundException,

 CustomRegistryException,

 RemoteException;

 /**

 * Determines if the userSecurityName exists in the registry

1492 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

*

 * @parameter userSecurityName the name of the user

 * @return true if the user is valid. false otherwise

 * @exception CustomRegistryException if there is any registry specific

 * problem

 * @exception RemoteException as this extends java.rmi.Remote

 **/

 public boolean isValidUser(String userSecurityName)

 throws CustomRegistryException,

 RemoteException;

 /**

 * Gets a list of groups that match a pattern in the registy.

 * The maximum number of groups returned is defined by the limit

 * argument.

 * This method is called by the administrative console and scripting

 * (command line) to make available the groups in the registry for adding

 * them (groups) to roles.

 *

 * @parameter pattern the pattern to match. (For e.g., a* will match all

 * groupSecurityNames starting with a)

 * @parameter limit the maximum number of groups to return.

 * This is very useful in situations where there are thousands of

 * groups in the registry and getting all of them at once is not

 * practical. A value of 0 implies get all the groups and hence

 * must be used with care.

 * @return a Result object that contains the list of groups

 * requested and a flag to indicate if more groups exist.

 * @exception CustomRegistryException if there is any registry-specific

 * problem

 * @exception RemoteException as this extends java.rmi.Remote

 **/

 public Result getGroups(String pattern, int limit)

 throws CustomRegistryException,

 RemoteException;

 /**

 * Returns the display name for the group specified by groupSecurityName.

 *

 * This method may be called only when the group information displayed

 * (for example, the administrative console) and not used in the actual

 * authentication or authorization purposes. If there are no display names

 * in the registry return null or empty string.

 *

 * @parameter groupSecurityName the name of the group.

 * @return the display name for the group. The display name

 * is a registry-specific string that represents a descriptive, not

 * necessarily unique, name for a group. If a display name does

 * not exist return null or empty string.

 * @exception EntryNotFoundException if groupSecurityName does not exist.

 * @exception CustomRegistryException if there is any registry specific

 * problem

 * @exception RemoteException as this extends java.rmi.Remote

 **/

 public String getGroupDisplayName(String groupSecurityName)

 throws EntryNotFoundException,

 CustomRegistryException,

 RemoteException;

 /**

 * Returns the unique ID for a group.

 * @parameter groupSecurityName the name of the group.

Chapter 8. Developing WebSphere applications 1493

* @return the unique ID of the group. The unique ID for

 * a group is the stringified form of some unique,

 * registry-specific, data that serves to represent the group.

 * For example, for the UNIX user registry, the unique IDd could

 * be the GID.

 * @exception EntryNotFoundException if groupSecurityName does not exist.

 * @exception CustomRegistryException if there is any registry specific

 * problem

 * @exception RemoteException as this extends java.rmi.Remote

 **/

 public String getUniqueGroupId(String groupSecurityName)

 throws EntryNotFoundException,

 CustomRegistryException,

 RemoteException;

 /**

 * Returns the unique IDs for all the groups that contain the unique ID of

 * a user.

 * Called during creation of a user’s credential.

 *

 * @parameter uniqueUserId the unique ID of the user.

 * @return a list of all the group unique IDs that the unique user ID

 * belongs to. The unique ID for an entry is the stringified

 * form of some unique, registry-specific, data that serves

 * to represent the entry. For example, for the

 * UNIX user registry, the unique ID for a group could be the GID

 * and the unique ID for the user could be the UID.

 * @exception EntryNotFoundException if unique user ID does not exist.

 * @exception CustomRegistryException if there is any registry specific

 * problem

 * @exception RemoteException as this extends java.rmi.Remote

 **/

 public List getUniqueGroupIds(String uniqueUserId)

 throws EntryNotFoundException,

 CustomRegistryException,

 RemoteException;

 /**

 * Returns the name for a group given its unique ID.

 *

 * @parameter uniqueGroupId the unique ID of the group.

 * @return the name of the group.

 * @exception EntryNotFoundException if the uniqueGroupId does not exist.

 * @exception CustomRegistryException if there is any registry-specific

 * problem

 * @exception RemoteException as this extends java.rmi.Remote

 **/

 public String getGroupSecurityName(String uniqueGroupId)

 throws EntryNotFoundException,

 CustomRegistryException,

 RemoteException;

 /**

 * Determines if the groupSecurityName exists in the registry

 *

 * @parameter groupSecurityName the name of the group

 * @return true if the groups exists, false otherwise

 * @exception CustomRegistryException if there is any registry specific

 * problem

 * @exception RemoteException as this extends java.rmi.Remote

 **/

 public boolean isValidGroup(String groupSecurityName)

1494 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

throws CustomRegistryException,

 RemoteException;

 /**

 * Returns the securityNames of all the groups that contain the user

 *

 * This method is called by administrative console and scripting

 * (command line) to verify the user entered for RunAsRole mapping belongs

 * to that role in the roles to user mapping. Initially, the check is done

 * to see if the role contains the user. If the role does not contain the user

 * explicitly, this method is called to get the groups that this user

 * belongs to so that checks are made on the groups that the role contains.

 *

 * @parameter userSecurityName the name of the user

 * @return a List of all the group securityNames that the user

 * belongs to.

 * @exception EntryNotFoundException if user does not exist.

 * @exception CustomRegistryException if there is any registry specific

 * problem

 * @exception RemoteException as this extends java.rmi.Remote

 **/

 public List getGroupsForUser(String userSecurityName)

 throws EntryNotFoundException,

 CustomRegistryException,

 RemoteException;

 /**

 * Gets a list of users in a group.

 *

 * The maximum number of users returned is defined by the limit

 * argument.

 *

 * This method is used by the WebSphere Business Integration

 * Server Foundation process choreographer when staff assignments

 * are modeled using groups.

 *

 * In rare situations if you are working with a registry where getting all of

 * the users from any of your groups is not practical (for example if

 * a large number of users exist) you can throw the NotImplementedException

 * for that particular groups. Make sure that if the WebSphere Business

 * Integration Server Foundation Process Choreographer is installed (or

 * if installed later) that are not modeled using these particular groups.

 * If no concern exists about the staff assignments returning the users from

 * groups in the registry it is recommended that this method be implemented

 * without throwing the NotImplemented exception.

 *

 * @parameter groupSecurityName that represents the name of the group

 * @parameter limit the maximum number of users to return.

 * This option is very useful in situations where lots of

 * users are in the registry and getting all of them at

 * once is not practical. A value of 0 means get all of

 * the users and must be used with care.

 * @return a Result object that contains the list of users

 * requested and a flag to indicate if more users exist.

 * @deprecated This method will be deprecated in the future.

 * @exception NotImplementedException throw this exception in rare situations

 * if it is not practical to get this information for any of the

 * groups from the registry.

 * @exception EntryNotFoundException if the group does not exist in

 * the registry

 * @exception CustomRegistryException if any registry-specific

 * problem occurs

Chapter 8. Developing WebSphere applications 1495

* @exception RemoteException as this extends java.rmi.Remote interface

 **/

 public Result getUsersForGroup(String groupSecurityName, int limit)

 throws NotImplementedException,

 EntryNotFoundException,

 CustomRegistryException,

 RemoteException;

 /**

 * This method is implemented internally by the WebSphere Application Server

 * code in this release. This method is not called for the custom registry

 * implementations for this release. Return null in the implementation.

 *

 * Note that because this method is not called you can also return the

 * NotImplementedException as the previous documentation says.

 *

 **/

 public com.ibm.websphere.security.cred.WSCredential

 createCredential(String userSecurityName)

 throws NotImplementedException,

 EntryNotFoundException,

 CustomRegistryException,

 RemoteException;

}

FileRegistrySample.java file: The user and group information required by this sample is contained in the

users.props and groups.props files.

The contents of the FileRegistrySample.java file:

//

// 5639-D57, 5630-A36, 5630-A37, 5724-D18

// (C) COPYRIGHT International Business Machines Corp. 1997, 2003

// All Rights Reserved * Licensed Materials - Property of IBM

////--

// This program may be used, executed, copied, modified and distributed

// without royalty for the purpose of developing, using, marketing, or

// distributing.

//--

//

// This sample is for the custom user registry feature in WebSphere

// Application Server.

import java.util.*;

import java.io.*;

import java.security.cert.X509Certificate;

import com.ibm.websphere.security.*;

/**

 * The main purpose of this sample is to demonstrate the use of the

 * custom user registry feature available in WebSphere Application Server. This

 * sample is a file-based registry sample where the users and the groups

 * information is listed in files (users.props and groups.props). As such

 * simplicity and not the performance was a major factor behind this. This

 * sample should be used only to get familiarized with this feature. An

 * actual implementation of a realistic registry should consider various

 * factors like performance, scalability, thread safety, and so on.

 **/

public class FileRegistrySample implements UserRegistry {

 private static String USERFILENAME = null;

 private static String GROUPFILENAME = null;

1496 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

/** Default Constructor **/

 public FileRegistrySample() throws java.rmi.RemoteException {

 }

 /**

 * Initializes the registry. This method is called when creating the

 * registry.

 *

 * @param props - The registry-specific properties with which to

 * initialize the custom registry

 * @exception CustomRegistryException

 * if there is any registry-specific problem

 **/

 public void initialize(java.util.Properties props)

 throws CustomRegistryException {

 try {

 /* try getting the USERFILENAME and the GROUPFILENAME from

 * properties that are passed in (For example, from the

 * administrative console). Set these values in the administrative

 * console. Go to the special custom settings in the custom

 * user registry section of the Authentication panel.

 * For example:

 * usersFile c:/temp/users.props

 * groupsFile c:/temp/groups.props

 */

 if (props != null) {

 USERFILENAME = props.getProperty("usersFile");

 GROUPFILENAME = props.getProperty("groupsFile");

 }

 } catch(Exception ex) {

 throw new CustomRegistryException(ex.getMessage(),ex);

 }

 if (USERFILENAME == null || GROUPFILENAME == null) {

 throw new CustomRegistryException("users/groups information missing");

 }

 } /**

 * Checks the password of the user. This method is called to authenticate

 * a user when the user’s name and password are given.

 *

 * @param userSecurityName the name of user

 * @param password the password of the user

 * @return a valid userSecurityName. Normally this is

 * the name of same user whose password was checked

 * but if the implementation wants to return any other

 * valid userSecurityName in the registry it can do so

 * @exception CheckPasswordFailedException if userSecurityName/

 * password combination does not exist

 * in the registry

 * @exception CustomRegistryException if there is any registry-

 * specific problem

 **/

 public String checkPassword(String userSecurityName, String passwd)

 throws PasswordCheckFailedException,

 CustomRegistryException {

 String s,userName = null;

 BufferedReader in = null;

 try {

 in = fileOpen(USERFILENAME);

 while ((s=in.readLine())!=null)

Chapter 8. Developing WebSphere applications 1497

{

 if (!(s.startsWith("#") || s.trim().length() <=0)) {

 int index = s.indexOf(":");

 int index1 = s.indexOf(":",index+1);

 // check if the userSecurityName:passwd combination exists

 if ((s.substring(0,index)).equals(userSecurityName) &&

 s.substring(index+1,index1).equals(passwd)) {

 // Authentication successful, return the userId.

 userName = userSecurityName;

 break;

 }

 }

 }

 } catch(Exception ex) {

 throw new CustomRegistryException(ex.getMessage(),ex);

 } finally {

 fileClose(in);

 }

 if (userName == null) {

 throw new PasswordCheckFailedException("Password check failed for user: "

 + userSecurityName);

 }

 return userName;

 } /**

 * Maps a X.509 format certificate to a valid user in the registry.

 * This is used to map the name in the certificate supplied by a browser

 * to a valid userSecurityName in the registry

 *

 * @param cert the X509 certificate chain

 * @return The mapped name of the user userSecurityName

 * @exception CertificateMapNotSupportedException if the

 * particular certificate is not supported.

 * @exception CertificateMapFailedException if the mapping of

 * the certificate fails.

 * @exception CustomRegistryException if there is any registry

 * -specific problem

 **/

 public String mapCertificate(X509Certificate[] cert)

 throws CertificateMapNotSupportedException,

 CertificateMapFailedException,

 CustomRegistryException {

 String name=null;

 X509Certificate cert1 = cert[0];

 try {

 // map the SubjectDN in the certificate to a userID.

 name = cert1.getSubjectDN().getName();

 } catch(Exception ex) {

 throw new CertificateMapNotSupportedException(ex.getMessage(),ex);

 }

 if(!isValidUser(name)) {

 throw new CertificateMapFailedException("user: " + name

 + " is not valid");

 }

 return name;

 } /**

 * Returns the realm of the registry.

 *

 * @return the realm. The realm is a registry-specific string

 * indicating the realm or domain for which this registry

1498 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

* applies. For example, for OS/400 or AIX this would be

 * the host name of the system whose user registry this

 * object represents. If null is returned by this method,

 * realm defaults to the value of "customRealm". It is

 * recommended that you use your own value for realm.

 *

 * @exception CustomRegistryException if there is any registry-

 * specific problem

 **/

 public String getRealm()

 throws CustomRegistryException {

 String name = "customRealm";

 return name;

 } /**

 * Gets a list of users that match a pattern in the registry.

 * The maximum number of users returned is defined by the limit

 * argument.

 * This method is called by the administrative console and scripting

 * (command line) to make the users in the registry available for

 * adding them (users) to roles.

 *

 * @param pattern the pattern to match. (For example, a* will

 * match all userSecurityNames starting with a)

 * @param limit the maximum number of users that should be

 * returned. This is very useful in situations where

 * there are thousands of users in the registry and

 * getting all of them at once is not practical. The

 * default is 100. A value of 0 implies get all the

 * users and hence must be used with care.

 * @return a Result object that contains the list of users

 * requested and a flag to indicate if more users

 * exist.

 * @exception CustomRegistryException if there is any registry-

 * specificproblem

 **/

 public Result getUsers(String pattern, int limit)

 throws CustomRegistryException {

 String s;

 BufferedReader in = null;

 List allUsers = new ArrayList();

 Result result = new Result();

 int count = 0;

 int newLimit = limit+1;

 try {

 in = fileOpen(USERFILENAME);

 while ((s=in.readLine())!=null)

 {

 if (!(s.startsWith("#") || s.trim().length() <=0)) {

 int index = s.indexOf(":");

 String user = s.substring(0,index);

 if (match(user,pattern)) {

 allUsers.add(user);

 if (limit !=0 && ++count == newLimit) {

 allUsers.remove(user);

 result.setHasMore();

 break;

 }

 }

 }

 }

 } catch (Exception ex) {

 throw new CustomRegistryException(ex.getMessage(),ex);

 } finally {

Chapter 8. Developing WebSphere applications 1499

fileClose(in);

 }

 result.setList(allUsers);

 return result;

 } /**

 * Returns the display name for the user specified by

 * userSecurityName.

 *

 * This method may be called only when the user information

 * is displayed (information purposes only, for example, in

 * the administrative console) and hence not used in the actual

 * authentication or authorization purposes. If there are no

 * display names in the registry return null or empty string.

 *

 * In WebSphere Application Server 4 custom registry, if you

 * had a display name for the user and if it was different from the

 * security name, the display name was returned for the EJB

 * methods getCallerPrincipal() and the servlet methods

 * getUserPrincipal() and getRemoteUser().

 * In WebSphere Application Server Version 5, for the same

 * methods, the security name will be returned by default. This

 * is the recommended way as the display name is not unique

 * and might create security holes. However, for backward

 * compatibility if one needs the display name to be returned

 * set the property WAS_UseDisplayName to true.

 *

 *See the InfoCenter documentation for more information.

 *

 * @param userSecurityName the name of the user.

 * @return the display name for the user. The display

 * name is a registry-specific string that

 * represents a descriptive, not necessarily

 * unique, name for a user. If a display name

 * does not exist return null or empty string.

 * @exception EntryNotFoundException if userSecurityName

 * does not exist.

 * @exception CustomRegistryException if there is any registry-

 * specific problem

 **/

 public String getUserDisplayName(String userSecurityName)

 throws CustomRegistryException,

 EntryNotFoundException {

 String s,displayName = null;

 BufferedReader in = null;

 if(!isValidUser(userSecurityName)) {

 EntryNotFoundException nsee = new EntryNotFoundException("user: "

 + userSecurityName + " is not valid");

 throw nsee;

 }

 try {

 in = fileOpen(USERFILENAME);

 while ((s=in.readLine())!=null)

 {

 if (!(s.startsWith("#") || s.trim().length() <=0)) {

 int index = s.indexOf(":");

 int index1 = s.lastIndexOf(":");

 if ((s.substring(0,index)).equals(userSecurityName)) {

 displayName = s.substring(index1+1);

 break;

1500 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

}

 }

 }

 } catch(Exception ex) {

 throw new CustomRegistryException(ex.getMessage(), ex);

 } finally {

 fileClose(in);

 }

 return displayName;

 }

 /**

 * Returns the unique ID for a userSecurityName. This method is called

 * when creating a credential for a user.

 *

 * @param userSecurityName - The name of the user.

 * @return The unique ID of the user. The unique ID for an user

 * is the stringified form of some unique, registry-specific,

 * data that serves to represent the user. For example, for

 * the UNIX user registry, the unique ID for a user can be

 * the UID.

 * @exception EntryNotFoundException if userSecurityName does not

 * exist.

 * @exception CustomRegistryException if there is any registry-

 * specific problem

 **/

 public String getUniqueUserId(String userSecurityName)

 throws CustomRegistryException,

 EntryNotFoundException {

 String s,uniqueUsrId = null;

 BufferedReader in = null;

 try {

 in = fileOpen(USERFILENAME);

 while ((s=in.readLine())!=null)

 {

 if (!(s.startsWith("#") || s.trim().length() <=0)) {

 int index = s.indexOf(":");

 int index1 = s.indexOf(":", index+1);

 if ((s.substring(0,index)).equals(userSecurityName)) {

 int index2 = s.indexOf(":", index1+1);

 uniqueUsrId = s.substring(index1+1,index2);

 break;

 }

 }

 }

 } catch(Exception ex) {

 throw new CustomRegistryException(ex.getMessage(),ex);

 } finally {

 fileClose(in);

 }

 if (uniqueUsrId == null) {

 EntryNotFoundException nsee =

 new EntryNotFoundException("Cannot obtain uniqueId for user: "

 + userSecurityName);

 throw nsee;

 }

 return uniqueUsrId;

 } /**

 * Returns the name for a user given its uniqueId.

Chapter 8. Developing WebSphere applications 1501

*

 * @param uniqueUserId - The unique ID of the user.

 * @return The userSecurityName of the user.

 * @exception EntryNotFoundException if the unique user ID does not exist.

 * @exception CustomRegistryException if there is any registry-specific

 * problem

 **/

 public String getUserSecurityName(String uniqueUserId)

 throws CustomRegistryException,

 EntryNotFoundException {

 String s,usrSecName = null;

 BufferedReader in = null;

 try {

 in = fileOpen(USERFILENAME);

 while ((s=in.readLine())!=null)

 {

 if (!(s.startsWith("#") || s.trim().length() <=0)) {

 int index = s.indexOf(":");

 int index1 = s.indexOf(":", index+1);

 int index2 = s.indexOf(":", index1+1);

 if ((s.substring(index1+1,index2)).equals(uniqueUserId)) {

 usrSecName = s.substring(0,index);

 break;

 }

 }

 }

 } catch (Exception ex) {

 throw new CustomRegistryException(ex.getMessage(), ex);

 } finally {

 fileClose(in);

 }

 if (usrSecName == null) {

 EntryNotFoundException ex =

 new EntryNotFoundException("Cannot obtain the

 user securityName for " + uniqueUserId);

 throw ex;

 }

 return usrSecName;

 } /**

 * Determines if the userSecurityName exists in the registry

 *

 * @param userSecurityName - The name of the user

 * @return True if the user is valid; otherwise false

 * @exception CustomRegistryException if there is any registry-

 * specific problem

 * @exception RemoteException as this extends java.rmi.Remote

 * interface

 **/

 public boolean isValidUser(String userSecurityName)

 throws CustomRegistryException {

 String s;

 boolean isValid = false;

 BufferedReader in = null;

 try {

 in = fileOpen(USERFILENAME);

 while ((s=in.readLine())!=null)

 {

 if (!(s.startsWith("#") || s.trim().length() <=0)) {

 int index = s.indexOf(":");

 if ((s.substring(0,index)).equals(userSecurityName)) {

1502 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

isValid=true;

 break;

 }

 }

 }

 } catch (Exception ex) {

 throw new CustomRegistryException(ex.getMessage(), ex);

 } finally {

 fileClose(in);

 }

 return isValid;

 }

 /**

 * Gets a list of groups that match a pattern in the registry

 * The maximum number of groups returned is defined by the

 * limit argument. This method is called by administrative console

 * and scripting (command line) to make available the groups in

 * the registry for adding them (groups) to roles.

 *

 * @param pattern the pattern to match. (For example, a* matches

 * all groupSecurityNames starting with a)

 * @param Limits the maximum number of groups to return

 * This is very useful in situations where there

 * are thousands of groups in the registry and getting all

 * of them at once is not practical. The default is 100.

 * A value of 0 implies get all the groups and hence must

 * be used with care.

 * @return A Result object that contains the list of groups

 * requested and a flag to indicate if more groups exist.

 * @exception CustomRegistryException if there is any registry-specific

 * problem

 **/

 public Result getGroups(String pattern, int limit)

 throws CustomRegistryException {

 String s;

 BufferedReader in = null;

 List allGroups = new ArrayList(); Result result = new Result();

 int count = 0;

 int newLimit = limit+1;

 try {

 in = fileOpen(GROUPFILENAME);

 while ((s=in.readLine())!=null)

 {

 if (!(s.startsWith("#") || s.trim().length() <=0)) {

 int index = s.indexOf(":");

 String group = s.substring(0,index);

 if (match(group,pattern)) {

 allGroups.add(group);

 if (limit !=0 && ++count == newLimit) {

 allGroups.remove(group);

 result.setHasMore();

 break;

 }

 }

 }

 }

 } catch (Exception ex) {

 throw new CustomRegistryException(ex.getMessage(),ex);

 } finally {

 fileClose(in);

 }

Chapter 8. Developing WebSphere applications 1503

result.setList(allGroups);

 return result;

 }

 /**

 * Returns the display name for the group specified by groupSecurityName.

 * For this version of WebSphere Application Server, the only usage of

 * this method is by the clients (administrative console and scripting)

 * to present a descriptive name of the user if it exists.

 *

 * @param groupSecurityName the name of the group.

 * @return the display name for the group. The display name

 * is a registry-specific string that represents a

 * descriptive, not necessarily unique, name for a group.

 * If a display name does not exist return null or empty

 * string.

 * @exception EntryNotFoundException if groupSecurityName does

 * not exist.

 * @exception CustomRegistryException if there is any registry-

 * specific problem

 **/

 public String getGroupDisplayName(String groupSecurityName)

 throws CustomRegistryException,

 EntryNotFoundException {

 String s,displayName = null;

 BufferedReader in = null;

 if(!isValidGroup(groupSecurityName)) {

 EntryNotFoundException nsee = new EntryNotFoundException("group: "

 + groupSecurityName + " is not valid");

 throw nsee;

 }

 try {

 in = fileOpen(GROUPFILENAME);

 while ((s=in.readLine())!=null)

 {

 if (!(s.startsWith("#") || s.trim().length() <=0)) {

 int index = s.indexOf(":");

 int index1 = s.lastIndexOf(":");

 if ((s.substring(0,index)).equals(groupSecurityName)) {

 displayName = s.substring(index1+1);

 break;

 }

 }

 }

 } catch(Exception ex) {

 throw new CustomRegistryException(ex.getMessage(),ex);

 } finally {

 fileClose(in);

 }

 return displayName;

 }

 /**

 * Returns the Unique ID for a group.

 * @param groupSecurityName the name of the group.

 * @return The unique ID of the group. The unique ID for

 * a group is the stringified form of some unique,

 * registry-specific, data that serves to represent

 * the group. For example, for the UNIX user registry,

1504 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

* the unique ID might be the GID.

 * @exception EntryNotFoundException if groupSecurityName does

 * not exist.

 * @exception CustomRegistryException if there is any registry-

 * specific problem

 * @exception RemoteException as this extends java.rmi.Remote

 **/

 public String getUniqueGroupId(String groupSecurityName)

 throws CustomRegistryException,

 EntryNotFoundException {

 String s,uniqueGrpId = null;

 BufferedReader in = null;

 try {

 in = fileOpen(GROUPFILENAME);

 while ((s=in.readLine())!=null)

 {

 if (!(s.startsWith("#") || s.trim().length() <=0)) {

 int index = s.indexOf(":");

 int index1 = s.indexOf(":", index+1);

 if ((s.substring(0,index)).equals(groupSecurityName)) {

 uniqueGrpId = s.substring(index+1,index1);

 break;

 }

 }

 }

 } catch(Exception ex) {

 throw new CustomRegistryException(ex.getMessage(),ex);

 } finally {

 fileClose(in);

 }

 if (uniqueGrpId == null) {

 EntryNotFoundException nsee =

 new EntryNotFoundException("Cannot obtain the uniqueId for group: "

 + groupSecurityName);

 throw nsee;

 }

 return uniqueGrpId;

 }

 /**

 * Returns the Unique IDs for all the groups that contain the UniqueId

 * of a user. Called during creation of a user’s credential.

 *

 * @param uniqueUserId the unique ID of the user.

 * @return A list of all the group unique IDs that the unique user

 * ID belongs to. The unique ID for an entry is the

 * stringified form of some unique, registry-specific, data

 * that serves to represent the entry. For example, for the

 * UNIX user registry, the unique ID for a group might be

 * the GID and the Unique ID for the user might be the UID.

 * @exception EntryNotFoundException if uniqueUserId does not exist.

 * @exception CustomRegistryException if there is any registry-specific

 * problem

 **/

 public List getUniqueGroupIds(String uniqueUserId)

 throws CustomRegistryException,

 EntryNotFoundException {

 String s,uniqueGrpId = null;

 BufferedReader in = null;

 List uniqueGrpIds=new ArrayList();

 try {

Chapter 8. Developing WebSphere applications 1505

in = fileOpen(USERFILENAME);

 while ((s=in.readLine())!=null)

 {

 if (!(s.startsWith("#") || s.trim().length() <=0)) {

 int index = s.indexOf(":");

 int index1 = s.indexOf(":", index+1);

 int index2 = s.indexOf(":", index1+1);

 if ((s.substring(index1+1,index2)).equals(uniqueUserId)) {

 int lastIndex = s.lastIndexOf(":");

 String subs = s.substring(index2+1,lastIndex);

 StringTokenizer st1 = new StringTokenizer(subs, ",");

 while (st1.hasMoreTokens())

 uniqueGrpIds.add(st1.nextToken());

 break;

 }

 }

 }

 } catch(Exception ex) {

 throw new CustomRegistryException(ex.getMessage(),ex);

 } finally {

 fileClose(in);

 }

 return uniqueGrpIds;

 }

 /**

 * Returns the name for a group given its uniqueId.

 *

 * @param uniqueGroupId the unique ID of the group.

 * @return The name of the group.

 * @exception EntryNotFoundException if the uniqueGroupId does

 * not exist.

 * @exception CustomRegistryException if there is any registry-

 * specific problem

 **/

 public String getGroupSecurityName(String uniqueGroupId)

 throws CustomRegistryException,

 EntryNotFoundException {

 String s,grpSecName = null;

 BufferedReader in = null;

 try {

 in = fileOpen(GROUPFILENAME);

 while ((s=in.readLine())!=null)

 {

 if (!(s.startsWith("#") || s.trim().length() <=0)) {

 int index = s.indexOf(":");

 int index1 = s.indexOf(":", index+1);

 if ((s.substring(index+1,index1)).equals(uniqueGroupId)) {

 grpSecName = s.substring(0,index);

 break;

 }

 }

 }

 } catch (Exception ex) {

 throw new CustomRegistryException(ex.getMessage(),ex);

 } finally {

 fileClose(in);

 }

 if (grpSecName == null) {

 EntryNotFoundException ex =

 new EntryNotFoundException("Cannot obtain the group

1506 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

security name for: " + uniqueGroupId);

 throw ex;

 }

 return grpSecName;

 }

 /**

 * Determines if the groupSecurityName exists in the registry

 *

 * @param groupSecurityName the name of the group

 * @return True if the groups exists; otherwise false

 * @exception CustomRegistryException if there is any registry-

 * specific problem

 **/

 public boolean isValidGroup(String groupSecurityName)

 throws CustomRegistryException {

 String s;

 boolean isValid = false;

 BufferedReader in = null;

 try {

 in = fileOpen(GROUPFILENAME);

 while ((s=in.readLine())!=null)

 {

 if (!(s.startsWith("#") || s.trim().length() <=0)) {

 int index = s.indexOf(":");

 if ((s.substring(0,index)).equals(groupSecurityName)) {

 isValid=true;

 break;

 }

 }

 }

 } catch (Exception ex) {

 throw new CustomRegistryException(ex.getMessage(),ex);

 } finally {

 fileClose(in);

 }

 return isValid;

 }

 /**

 * Returns the securityNames of all the groups that contain the user

 *

 * This method is called by the administrative console and scripting

 * (command line) to verify the user entered for RunAsRole mapping

 * belongs to that role in the roles to user mapping. Initially, the

 * check is done to see if the role contains the user. If the role does

 * not contain the user explicitly, this method is called to get the groups

 * that this user belongs to so that check can be made on the groups that

 * the role contains.

 *

 * @param userSecurityName the name of the user

 * @return A list of all the group securityNames that the user

 * belongs to.

 * @exception EntryNotFoundException if user does not exist.

 * @exception CustomRegistryException if there is any registry-

 * specific problem

 * @exception RemoteException as this extends the java.rmi.Remote

 * interface

 **/

 public List getGroupsForUser(String userName)

Chapter 8. Developing WebSphere applications 1507

throws CustomRegistryException,

 EntryNotFoundException {

 String s;

 List grpsForUser = new ArrayList();

 BufferedReader in = null;

 try {

 in = fileOpen(GROUPFILENAME);

 while ((s=in.readLine())!=null)

 {

 if (!(s.startsWith("#") || s.trim().length() <=0)) {

 StringTokenizer st = new StringTokenizer(s, ":");

 for (int i=0; i<2; i++)

 st.nextToken();

 String subs = st.nextToken();

 StringTokenizer st1 = new StringTokenizer(subs, ",");

 while (st1.hasMoreTokens()) {

 if((st1.nextToken()).equals(userName)) {

 int index = s.indexOf(":");

 grpsForUser.add(s.substring(0,index));

 }

 }

 }

 }

 } catch (Exception ex) {

 if (!isValidUser(userName)) {

 throw new EntryNotFoundException("user: " + userName

 + " is not valid");

 }

 throw new CustomRegistryException(ex.getMessage(),ex);

 } finally {

 fileClose(in);

 }

 return grpsForUser;

 }

 /**

 * Gets a list of users in a group.

 *

 * The maximum number of users returned is defined by the

 * limit argument.

 *

 * In rare situations, if you are working with a registry where

 * getting all the users from any of your groups is not practical

 * (for example if there are a large number of users) you can throw

 * the NotImplementedException for that particular group. Make sure

 * that if the process choreographer is installed (or if installed later)

 * the staff assignments are not modeled using these particular groups.

 * If there is no concern about returning the users from groups

 * in the registry it is recommended that this method be implemented

 * without throwing the NotImplemented exception.

 * @param groupSecurityName the name of the group

 * @param Limits the maximum number of users that should be

 * returned. This is very useful in situations where there

 * are lot of users in the registry and getting all of

 * them at once is not practical. A value of 0 implies

 * get all the users and hence must be used with care.

 * @return A result object that contains the list of users

 * requested and a flag to indicate if more users exist.

 * @deprecated This method will be deprecated in future.

 * @exception NotImplementedException throw this exception in rare

 * situations if it is not practical to get this information

 * for any of the group or groups from the registry.

1508 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

* @exception EntryNotFoundException if the group does not exist in

 * the registry

 * @exception CustomRegistryException if there is any registry-specific

 * problem

 **/

 public Result getUsersForGroup(String groupSecurityName, int limit)

 throws NotImplementedException,

 EntryNotFoundException,

 CustomRegistryException {

 String s, user;

 BufferedReader in = null;

 List usrsForGroup = new ArrayList();

 int count = 0;

 int newLimit = limit+1;

 Result result = new Result();

 try {

 in = fileOpen(GROUPFILENAME);

 while ((s=in.readLine())!=null)

 {

 if (!(s.startsWith("#") || s.trim().length() <=0)) {

 int index = s.indexOf(":");

 if ((s.substring(0,index)).equals(groupSecurityName))

 {

 StringTokenizer st = new StringTokenizer(s, ":");

 for (int i=0; i<2; i++)

 st.nextToken();

 String subs = st.nextToken();

 StringTokenizer st1 = new StringTokenizer(subs, ",");

 while (st1.hasMoreTokens()) {

 user = st1.nextToken();

 usrsForGroup.add(user);

 if (limit !=0 && ++count == newLimit) {

 usrsForGroup.remove(user);

 result.setHasMore();

 break;

 }

 }

 }

 }

 }

 } catch (Exception ex) {

 if (!isValidGroup(groupSecurityName)) {

 throw new EntryNotFoundException("group: "

 + groupSecurityName

 + " is not valid");

 }

 throw new CustomRegistryException(ex.getMessage(),ex);

 } finally {

 fileClose(in);

 }

 result.setList(usrsForGroup);

 return result;

 }

 /**

 * This method is implemented internally by the WebSphere Application

 * Server code in this release. This method is not called for the custom

 * registry implementations for this release. Return null in the

 * implementation.

 *

 **/

Chapter 8. Developing WebSphere applications 1509

public com.ibm.websphere.security.cred.WSCredential

 createCredential(String userSecurityName)

 throws CustomRegistryException,

 NotImplementedException,

 EntryNotFoundException {

 // This method is not called.

 return null;

 }

 // private methods

 private BufferedReader fileOpen(String fileName)

 throws FileNotFoundException {

 try {

 return new BufferedReader(new FileReader(fileName));

 } catch(FileNotFoundException e) {

 throw e;

 }

 }

 private void fileClose(BufferedReader in) {

 try {

 if (in != null) in.close();

 } catch(Exception e) {

 System.out.println("Error closing file" + e);

 }

 }

 private boolean match(String name, String pattern) {

 RegExpSample regexp = new RegExpSample(pattern);

 boolean matches = false;

 if(regexp.match(name))

 matches = true;

 return matches;

 }

}

//--

// The program provides the Regular Expression implementation

// used in the sample for the custom user registry (FileRegistrySample).

// The pattern matching in the sample uses this program to search for the

// pattern (for users and groups).

//--

class RegExpSample

{

 private boolean match(String s, int i, int j, int k)

 {

 for(; k < expr.length; k++)

label0:

 {

 Object obj = expr[k];

 if(obj == STAR)

 {

 if(++k >= expr.length)

 return true;

 if(expr[k] instanceof String)

 {

 String s1 = (String)expr[k++];

 int l = s1.length();

 for(; (i = s.indexOf(s1, i)) >= 0; i++)

1510 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

if(match(s, i + l, j, k))

 return true;

 return false;

 }

 for(; i < j; i++)

 if(match(s, i, j, k))

 return true;

 return false;

 }

 if(obj == ANY)

 {

 if(++i > j)

 return false;

 break label0;

 }

 if(obj instanceof char[][])

 {

 if(i >= j)

 return false;

 char c = s.charAt(i++);

 char ac[][] = (char[][])obj;

 if(ac[0] == NOT)

 {

 for(int j1 = 1; j1 < ac.length; j1++)

 if(ac[j1][0] <= c && c <= ac[j1][1])

 return false;

 break label0;

 }

 for(int k1 = 0; k1 < ac.length; k1++)

 if(ac[k1][0] <= c && c <= ac[k1][1])

 break label0;

 return false;

 }

 if(obj instanceof String)

 {

 String s2 = (String)obj;

 int i1 = s2.length();

 if(!s.regionMatches(i, s2, 0, i1))

 return false;

 i += i1;

 }

 }

 return i == j;

 }

 public boolean match(String s)

 {

 return match(s, 0, s.length(), 0);

 }

 public boolean match(String s, int i, int j)

 {

 return match(s, i, j, 0);

 }

 public RegExpSample(String s)

 {

 Vector vector = new Vector();

Chapter 8. Developing WebSphere applications 1511

int i = s.length();

 StringBuffer stringbuffer = null;

 Object obj = null;

 for(int j = 0; j < i; j++)

 {

 char c = s.charAt(j);

 switch(c)

 {

 case 63: /* ’?’ */

 obj = ANY;

 break;

 case 42: /* ’*’ */

 obj = STAR;

 break;

 case 91: /* ’[’ */

 int k = ++j;

 Vector vector1 = new Vector();

 for(; j < i; j++)

 {

 c = s.charAt(j);

 if(j == k && c == ’^’)

 {

 vector1.addElement(NOT);

 continue;

 }

 if(c == ’\\’)

 {

 if(j + 1 < i)

 c = s.charAt(++j);

 }

 else

 if(c == ’]’)

 break;

 char c1 = c;

 if(j + 2 < i && s.charAt(j + 1) == ’-’)

 c1 = s.charAt(j += 2);

 char ac1[] = {

 c, c1

 };

 vector1.addElement(ac1);

 }

 char ac[][] = new char[vector1.size()][];

 vector1.copyInto(ac);

 obj = ac;

 break;

 case 92: /* ’\\’ */

 if(j + 1 < i)

 c = s.charAt(++j);

 break;

 }

 if(obj != null)

 {

 if(stringbuffer != null)

 {

 vector.addElement(stringbuffer.toString());

 stringbuffer = null;

 }

 vector.addElement(obj);

1512 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

obj = null;

 }

 else

 {

 if(stringbuffer == null)

 stringbuffer = new StringBuffer();

 stringbuffer.append(c);

 }

 }

 if(stringbuffer != null)

 vector.addElement(stringbuffer.toString());

 expr = new Object[vector.size()];

 vector.copyInto(expr);

 }

 static final char NOT[] = new char[2];

 static final Integer ANY = new Integer(0);

 static final Integer STAR = new Integer(1);

 Object expr[];

}

Result.java file: This module is used by user registries in WebSphere Application Server when calling the

getUsers and getGroups methods. The user registries use this method to set the list of users and groups

and to indicate if there are more users and groups in the registry than requested.

// @(#) 1.20 src/en/ae/rsec_result.xml, WEBSJAVA.INFO.DOCSRC,

// ASVINFO1 10/17/02 16:43:01 [10/18/02 07:31:30]

// 5639-D57, 5630-A36, 5630-A37, 5724-D18

// (C) COPYRIGHT International Business Machines Corp. 1997, 2003

// All Rights Reserved * Licensed Materials - Property of IBM

//

package com.ibm.websphere.security;

import java.util.List;

public class Result implements java.io.Serializable {

 /**

 Default constructor

 */

 public Result() {

 }

 /**

 Returns the list of users and groups

 @return the list of users and groups

 */

 public List getList() {

 return list;

 }

 /**

 indicates if there are more users and groups in the registry

 */

 public boolean hasMore() {

 return more;

 }

 /**

 Set the flag to indicate that there are more users and groups

 in the registry to true

 */

 public void setHasMore() {

 more = true;

 }

Chapter 8. Developing WebSphere applications 1513

/*

 Set the list of users and groups

 @param list list of users/groups

 */

 public void setList(List list) {

 this.list = list;

 }

 private boolean more = false;

 private List list;

}

Custom user registry settings:

Use this page to configure the custom user registry.

 To view this administrative console page, click Security > Global security. Under User registries, click

Custom.

After the properties are set in this panel, click Apply. Under Additional Properties, click Custom

properties to include additional properties that the custom registry requires. The following property is

predefined by the product; set this property when required only:

WAS_UseDisplayName

When this property is set to true, the getCallerPrincipal(), getUserPrincipal(), and

getRemoteUser() methods return the display name. By default, the securityName of the user is

returned. This property is introduced to support backward compatibility with the version 4 custom

registry.

When security is enabled and any of these custom user registry settings change, go to the Global security

panel and click Apply to validate the changes.

Server user ID:

Specifies the user ID under which the server runs, for security purposes.

 This server ID represents a valid user in the custom registry.

 Data type: String

Server user password:

Specifies the password corresponding to the security server ID.

 Data type: String

Custom registry class name:

Specifies a dot-separated class name that implements the com.ibm.websphere.security.UserRegistry

interface.

 Put the custom registry class name in the class path. A suggested location is the %install_root%/lib/ext

directory. Although the custom registry implements the com.ibm.websphere.security.UserRegistry interface,

for backward compatibility, a user registry can alternately implement the

com.ibm.websphere.security.CustomRegistry interface.

 Data type: String

1514 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Default: com.ibm.websphere.security.FileRegistrySample

Ignore case for authorization:

Specifies that a case insensitive authorization check is performed when you use the default authorization.

 Default: Disabled

Range: Enabled or Disabled

users.props file: Following is the format for the users.props file:

5639-D57, 5630-A36, 5630-A37, 5724-D18

(C) COPYRIGHT International Business Machines Corp. 1997, 2004

All Rights Reserved * Licensed Materials - Property of IBM

Format:

name:passwd:uid:gids:display name

where name = userId/userName of the user

passwd = password of the user

uid = uniqueId of the user

gid = groupIds of the groups that the user belongs to

display name = a (optional) display name for the user.

bob:bob1:123:567:bob

dave:dave1:234:678:

jay:jay1:345:678,789:Jay-Jay

ted:ted1:456:678:Teddy G

jeff:jeff1:222:789:Jeff

vikas:vikas1:333:789:vikas

bobby:bobby1:444:789:

groups.props file: The following example illustrates the format for the groups.props file:

5639-D57, 5630-A36, 5630-A37, 5724-D18

(C) COPYRIGHT International Business Machines Corp. 1997, 2003

All Rights Reserved * Licensed Materials - Property of IBM

Format:

name:gid:users:display name

where name = groupId of the group

gid = uniqueId of the group

users = list of all the userIds that the group contains

display name = a (optional) display name for the group.

admins:567:bob:Administrative group

operators:678:jay,ted,dave:Operators group

users:789:jay,jeff,vikas,bobby:

Java Authentication and Authorization Service

The standard Java 2 security API helps enforce access control, based on the location of the code and the

user. The current principal of the running thread is not considered in the Java 2 security authorization.

Instances where authorization is based on the principal (as opposed to the code base) and the user exist.

The Java Authentication and Authorization Service is a standard Java API that supports the Java 2

security authorization to extend the code base on the principal as well as the code base and users.

The Java Authentication and Authorization Service (JAAS) Version 1.0 extends the Java 2 security

architecture of the Java 2 platform with additional support to authenticate and enforce access control with

principals and users. It implements a Java version of the standard Pluggable Authentication Module (PAM)

framework, and extends the access control architecture of the Java 2 platform in a compatible fashion to

support user-based authorization or principal-based authorization. WebSphere Application Server fully

supports the JAAS architecture and extends the access control architecture to support role-based

Chapter 8. Developing WebSphere applications 1515

authorization for Java 2 Platform, Enterprise Edition (J2EE) resources including servlets, JavaServer

Pages (JSP) files, and Enterprise JavaBeans (EJB) components. Refer to Java 2 security for more

information.

The following sections cover the JAAS implementation and programming model:

v Java Authentication and Authorization Service login configuration

v Programmatic Login

v Java Authentication and Authorization Service authorization

The JAAS documentation can be found at http://www.ibm.com/developerworks/java/jdk/security. Scroll

down to find the JAAS documentation for your platform.

Java Authentication and Authorization Service authorization:

 Java 2 security architecture uses a security policy to specify which access rights are granted to running

code. This architecture is code-centric. That is, the permissions are granted based on code characteristics

including where the code is coming from, whether it is digitally signed, and by whom. Authorization of the

Java Authentication and Authorization Service (JAAS) augments the existing code-centric access controls

with new user-centric access controls. Permissions are granted based on what code is running and who is

running it.

When using JAAS authentication to authenticate a user, a subject is created to represent the authenticated

user. A subject is comprised of a set of principals, where each principal represents an identity for that user.

You can grant permissions in the policy to specific principals. After the user is authenticated, the

application can associate the subject with the current access control context. For each subsequent

security-checked operation, the Java run time automatically determines whether the policy grants the

required permission to a specific principal only. If so, the operation is supported if the subject associated

with the access control context contains the designated principal only.

Associate a subject with the current access control context by calling the static doAs method from the

subject class, passing it an authenticated subject and java.security.PrivilegedAction or

java.security.PrivilegedExceptionAction. The doAs method associates the provided subject with the current

access control context and then invokes the run method from the action. The run method implementation

contains all the code that ran as the specified subject. The action runs as the specified subject.

In the Java 2 Platform, Enterprise Edition (J2EE) programming model, when invoking the EJB method

from an enterprise bean or servlet, the method runs under the user identity that is determined by the

run-as setting. The J2EE Version 1.4 Specification does not indicate which user identity to use when

invoking an enterprise bean from a Subject.doAs action block within either the EJB code or the servlet

code. A logical extension is to use the proper identity specified in the subject when invoking the EJB

method within the Subject doAs action block.

This simple rule of letting Subject.doAs overwrite the run-as identity setting is an ideal way to integrate the

JAAS programming model with the J2EE run-time environment. However, a general JAAS design oversight

was introduced into IBM Software Development Kit (SDK), Java Technology Edition Version 1.3 or later

when integrating the JAAS Version 1.0 or later implementation with the Java 2 security architecture. A

subject, which is associated with the access control context is cut off by a doPrivileged call when a

doPrivileged call occurs within the Subject.doAs action block. Until this problem is corrected, no reliable

and run-time efficient way is available to guarantee the correct behavior of Subject.doAs in a J2EE

run-time environment.

The problem can be explained better with the following example:

Subject.doAs(subject, new java.security.PrivilegedAction() {

 Public Object run() {

 // Subject is associated with the current thread context

1516 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

http://www.ibm.com/developerworks/java/jdk/security

java.security.AccessController.doPrivileged(new

 java.security.PrivilegedAction() {

 public Object run() {

 // Subject was cut off from the current

 // thread context

 return null;

 }

 });

 // Subject is associated with the current thread context

 return null;

 }

});

At line three, the subject object is associated with the context of the current thread. As indicated on line 7

within the run method of a doPrivileged action block, the subject object is removed from the thread

context. After leaving the doPrivileged block, the subject object is restored to the current thread context.

Because doPrivileged blocks can be placed anywhere along the running path and instrumented quite often

in a server environment, the run-time behavior of a doAs action block becomes difficult to manage.

To resolve this difficulty, WebSphere Application Server provides a WSSubject helper class to extend the

JAAS authorization to a J2EE EJB method invocation as described previously. The WSSubject class

provides static doAs and doAsPrivileged methods that have identical signatures to the subject class. The

WSSubject.doAs method associates the Subject to the currently running thread. The WSSubject.doAs and

WSSubject.doAsPrivileged methods then invoke the corresponding Subject.doAs and

Subject.doAsPrivileged methods. The original credential is restored and associated with the running thread

upon leaving the WSSubject.doAs and WSSubject.doAsPrivileged methods.

Note that the WSSubject class is not a replacement of the subject object, but rather a helper class to

ensure consistent run-time behavior as long as an EJB method invocation is a concern.

The following example illustrates the run-time behavior of the WSSubject.doAs method:

WSSubject.doAs(subject, new java.security.PrivilegedAction() {

 Public Object run() {

 // Subject is associated with the current thread context

 java.security.AccessController.doPrivileged(new

 java.security.PrivilegedAction() {

 public Object run() {

 // Subject was cut off from the current thread

 // context.

 return null;

 }

 });

 // Subject is associated with the current thread context

 return null;

 }

});

The Subject.doAs and Subject.doAsPrivileged methods are not integrated with the J2EE run-time

environment. EJB methods that are invoked within the Subject.doAs and Subject.doAsPrivileged action

blocks run under the identity specified by the run-as setting and not by the subject identity.

v The subject object generated by the WSLoginModuleImpl instance and the WSClientLoginModuleImpl

instance contains a principal that implements the WSPrincipal interface. Using the getCredential()

method for a WSPrincipal object returns an object that implements the WSCredential interface. You can

also find the WSCredential object instance in the PublicCredentials list of the subject instance. Retrieve

the WSCredential object from the PublicCredentials list instead of using the getCredential() method.

Chapter 8. Developing WebSphere applications 1517

v The getCallerPrincipal() method for the WSSubject class returns a string representing the caller security

identity. The return type differs from the getCallerPrincipal method of the EJBContext interface, which is

java.security.Principal.

v The Subject object generated by the J2C DefaultPrincipalMapping module contains a resource principal

and a PasswordCredentials list. The resource principal represents the RunAs identity.

Refer to “J2EE Connector security” on page 1531 for more information

Configuring application logins for Java Authentication and Authorization Service

Java Authentication and Authorization Service (JAAS) is a new feature in WebSphere Application Server. It

is a collection of WebSphere Application Server strategic authentication APIs and replaces the Common

Object Request Broker Architecture (CORBA) programmatic login APIs.

WebSphere Application Server provides some extensions to JAAS:

v com.ibm.websphere.security.auth.WSSubject. The com.ibm.websphere.security.auth.WSSubject API

extends the JAAS authorization model to Java 2 Platform, Enterprise Edition (J2EE) resources.

v You can configure JAAS login in the administrative console and store this configuration in the

WebSphere configuration application programming interface (API). However, WebSphere Application

Server still supports the default JAAS login configuration format (plain text file) provided by the JAAS

default implementation. If duplicate login configurations are defined in both the WebSphere configuration

API and the plain text file format, the one in the WebSphere configuration API takes precedence.

Advantages to defining the login configuration in the WebSphere configuration API include:

– User interface support in defining JAAS login configuration

– Central management of the JAAS login configuration

– Distribution of the JAAS login configuration in a Network Deployment product installation

Due to a design oversight in the JAAS V1.0, javax.security.auth.Subject.getSubject() method does not

return the subject associated with the running thread inside a

java.security.AccessController.doPrivileged() code block. This problem presents an inconsistent behavior

that is problematic and causes undesirable effort. The com.ibm.websphere.security.auth.WSSubject API

provides a workaround to associate the subject to a running thread.

v Proxy LoginModule. The Proxy LoginModule loads the actual LoginModule. The default JAAS

implementation does not use the thread context class loader to load classes. The LoginModule module

cannot load if the LoginModule class file is not in the application class loader or the Java extension

class loader class path. Due to this class loader visibility problem, WebSphere Application Server

provides a proxy LoginModule module to load the JAAS LoginModule using the thread context class

loader. You do not need to place the LoginModule implementation on the application class loader or the

Java extension class loader class path with this proxy LoginModule module.

If you do not want to use the Proxy LoginModule, you can place the LoginModule in the jre/lib/ext

directory. However, this is not recommended due to the security risks.

Two JAAS login configurations are defined in the WebSphere Configuration API security document for

applications to use. In the left navigation pane, click Security > Global Security > JAAS Configuration >

Application Login >WSLogin and ClientContainer. The following three JAAS login configurations are

available:

WSLogin

Defines a login configuration and a LoginModule implementation that applications can use in

general.

ClientContainer

Defines a login configuration and a LoginModule implementation that is similar to that of the

WSLogin configuration, but enforces the requirements of the WebSphere Application Server client

container. Refer to ″Configuration entry settings for Java Authentication and Authorization Service″

for more information.

1518 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

DefaultPrincipalMapping,

Defines a special LoginModule module that is typically used by J2EE Connector to map an

authenticated WebSphere user identity to a set of user authentication data (user ID and password)

for the specified back-end enterprise information system (EIS). For more information about J2EE

Connector and the DefaultMappingModule module, refer to the J2EE security section.

A new JAAS login configuration can be added and modified using the administrative console. The changes

are saved in the cell-level security document and are available to all managed application servers. An

application server restart is required for the changes to take effect at run time.

Attention: Do not remove or delete the predefined JAAS login configurations (ClientContainer, WSLogin

and DefaultPrincipalMapping). Deleting or removing them can cause other enterprise applications to fail.

1. Delete a JAAS login configuration.

a. Click Security in the navigation tree and expand the Global Security panel.

b. Click JAAS Configuration > Application Logins. The Application Login Configuration panel

appears.

c. Select the check box for the login configurations to delete and click Delete.

2. Create a new JAAS login configuration.

a. Click Security in the navigation tree and expand the Global Security panel.

b. Click JAAS Configuration > Application Logins.

c. Click New. The Application Login Configuration panel appears.

d. Specify the alias name of the new JAAS login configuration and click Apply. This value is the

name of the login configuration that you pass in the javax.security.auth.login.LoginContext

implementation for creating a new LoginContext.

Click Apply to save changes and to add the extra node name that precedes the original alias

name. Clicking OK does not save the new changes in the security.xml file.

e. Click JAAS Login Modules.

f. Click New.

g. Specify the Module Classname. Specify WebSphere Proxy LoginModule because of the limitation

of the class loader visibility problem.

h. Specify the LoginModule implementation as the delegate property of the Proxy LoginModule. The

WebSphere Proxy LoginModule class name is

com.ibm.ws.security.common.auth.module.proxy.WSLoginModuleProxy.

i. Select Authentication Strategy from the list and click Apply.

j. Click Custom Properties. The Custom Properties panel is displayed for the selected

LoginModule.

k. Create a new property with the name delegate and the value of the real LoginModule

implementation. You can specify other properties like debug with the value true. These properties

are passed to the LoginModule class as options to the initialize() method of the LoginModule

instance.

l. Click Save.

There are several locations within the WebSphere Application Server directory structure where you can

place a JAAS login module. The following list provides locations for the JAAS login module in order of

recommendation:

v Within an Enterprise Archive (EAR) file for a specific Java 2 Enterprise Edition (J2EE) application.

If you place the login module within the EAR file, it is accessible to the specific application only.

v In the WebSphere Application Server shared library.

If you place the login module in the shared library, you must specify which applications can access

the module. For more information on shared libraries, see ″Managing shared libraries.″

v In the Java extensions directory (WAS_HOME\jre\lib\ext)

Chapter 8. Developing WebSphere applications 1519

If you place the JAAS login module in the Java extensions directory, the login module is available to

all applications.

Although the Java extensions directory provides the greatest availability for the login module, it is

recommended that you place the login module in an application EAR file. If other applications need to

access the same login module, consider using shared libraries.

3. Change the plain text file. WebSphere Application Server supports the default JAAS login configuration

format (plain text file) provided by the JAAS default implementation. However, a tool is not provided

that edits plain text files in this format. You can define the JAAS login configuration in the plain text file

(install_root/properties/wsjaas.conf). Any syntax errors can cause the incorrect parsing of the

plain JAAS login configuration text file. This problem can cause other applications to fail.

Java client programs that use the Java Authentication and Authorization Service (JAAS) for

authentication must invoke with the JAAS configuration file specified. This configuration file is set in the

/install_root/bin/launchClient.bat file as set JAAS_LOGIN_CONFIG=-
Djava.security.auth.login.config=%install_root%\properties\wsjaas_client.conf. If the

launchClient.bat file is not used to invoke the Java client program, verify that the appropriate JAAS

configuration file is passed to the Java virtual machine with the -Djava.security.auth.login.config

flag.

A new JAAS login configuration is created or an old JAAS login configuration is removed. An enterprise

application can use a newly created JAAS login configuration without restarting the application server

process.

However, new JAAS login configurations defined in the install_root/properties/wsjaas.conf file, do not

refresh automatically. Restart the application servers to validate changes. These JAAS login configurations

are specific to a particular node and are not available for other application servers running on other nodes.

Create new JAAS login configurations used by enterprise applications to perform custom authentication.

Use these newly defined JAAS login configurations to perform programmatic login.

Login configuration for Java Authentication and Authorization Service:

Java Authentication and Authorization Service (JAAS) is a new feature in WebSphere Application Server.

JAAS is WebSphere strategic APIs for authentication and it will replace the CORBA programmatic login

APIs. WebSphere Application Server provides some extensions to JAAS:

v com.ibm.websphere.security.auth.WSSubject: The com.ibm.websphere.security.auth.WSSubject API

extends the JAAS authorization model to J2EE resources. You can configure JAAS login in the

administrative console (or by using the scripting functions) and store this configuration in the

WebSphere configuration application programming interface (API). However, WebSphere Application

Server still supports the default JAAS login configuration format (plain text file) provided by the JAAS

default implementation. If duplicate login configurations are defined in both the WebSphere configuration

API and the plain text file format, the one in the WebSphere configuration API takes precedence.

Advantages to defining the login configuration in the WebSphere configuration API include:

– User interface support in defining JAAS login configuration

– Central management of the JAAS login configuration

– Distribution of the JAAS login configuration in a Network Deployment product installation

Due to a design oversight in the JAAS 1.0, javax.security.auth.Subject.getSubject() does not return the

Subject associated with the thread of execution inside a java.security.AccessController.doPrivileged()

code block. This can present a inconsistent behavior that is problematic and causes undesirable effort.

com.ibm.websphere.security.auth.WSSubject provides a work around to associate Subject to thread of

execution. com.ibm.websphere.security.auth.WSSubject extends the JAAS authorization model to J2EE

resources.

Note: Why WebSphere Application Server has its own subject class: You can retrieve the subjects

in a Subject.doAs() block with the Subject.getSubject() call. However, this procedure does not

1520 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

work if there is an AccessController.doPrivileged() call within the Subject.doAs() block. In the

following example, s1 is equal to s, but s2 is null:

* AccessController.doPrivileged() not only truncates the Subject propagation,

* but also reduces the permissions. It does not include the JAAS security

* policy defined for the principals in the Subject.

Subject.doAs(s, new PrivilegedAction() {

 public Object run() {

 System.out.println(″Within Subject.doAsPrivileged()″);

 Subject s1 = Subject.getSubject(AccessController.getContext());

 AccessController.doPrivileged(new PrivilegedAction() {

 public Object run() {

 Subject s2 = Subject.getSubject(AccessController.getContext());

 return null;

 }

 });

 return null;

}

});

v JAAS Login Configuration can be configured in administrative console (or by using the scripting

functions) and stored in WebSphere configuration application programming interface (API). An

application can define new JAAS login configuration in the Admin Console and the the data is persisted

in the configuration respository (stored in the WebSphere configuration API). However, WebSphere still

support the default JAAS login configuration format (plan text file) provided by the JAAS default

implementation. But if there are duplication login configurations defined in both the WebSphere

configuration API and the plan text file format, the one in the WebSphere configuration API takes

precedence. There are advantages to define the login configuration in the WebSphere configuration API:

– UI support in defining JAAS login configuration.

– The JAAS configuration login configuration can be managed centrally.

– The JAAS configuration login configuration is distributed in a Network Deployment installation.
v Proxy LoginModule: The Proxy.LoginModule API stores login module .jar files. The default JAAS

implementation does not use the thread context class loader to load classes, the LoginModule could not

be loaded if the LoginModule class file is not in the application class loader or the Java extension class

loader classpath. Due to this class loader visibility problem, WebSphere provides a proxy LoginModule

to load JAAS LoginModule using the thread context class loader. The LoginModule implementation does

not have to be placed on the application class loader or the Java extension class loader classpath with

this proxy LoginModule.

Note: Do not remove or delete the pre-defined JAAS Login Configurations (ClientContainer, WSLogin and

DefaultPrincipalMapping). Deleting or removing them could cause other enterprise applications to

fail.

A system administrator determines the authentication technologies, or LoginModules, to be used for each

application and configures them in a login configuration. The source of the configuration information (for

example, a file or a database) is up to the current javax.security.auth.login.Configuration implementation.

The WebSphere Application Server implementation permits the login configuration to be defined in both

the WebSphere configuration API security document and in a JAAS configuration file where the former

takes precedence.

Two JAAS login configurations are defined in the WebSphere configuration API security document for

applications to use. To access the configurations, click Security > JAAS Configuration > Application

Login Config: WSLogin and ClientContainer. The WSLogin defines a login configuration and

LoginModule implementation that may be used by applications in general. The ClientContainer defines a

login configuration and LoginModule implementation that is similar to that of WSLogin but enforces the

requirements of the WebSphere Application Server Client Container. The third entry,

DefaultPrincipalMapping, defines a special LoginModule that is typically used by Java 2 Connector to

Chapter 8. Developing WebSphere applications 1521

map an authenticated WebSphere user identity to a set of user authentication data (user ID and password)

for the specified back end enterprise information system (EIS). For more information about Java 2

Connector and the DefaultMappingModule please refer to the Java 2 Security section.

New JAAS login configuration may be added and modified using Security Center. The changes are saved

in the cell level security document and are available to all managed application servers. An application

server restart is required for the changes to take effect at run time and for the client container login

configuration to be made available.

WebSphere Application Server also reads JAAS Configuration information from the wsjaas.conf file under

the properties sub directory of the root directory under which WebSphere Application Server is installed.

Changes made to the wsjaas.conf file is used only by the local application server and will take effect after

restarting the application server. Note that JAAS configuration in the WebSphere configuration API security

document takes precedence over that defined in the wsjaas.conf file. In other words, a configuration entry

in wsjaas.conf will be overridden by an entry of the same alias name in the WebSphere configuration API

security document.

Note: The Java Authentication and Authorization Service (JAAS) login configuration entries in the Security

Center are propagated to the server run time when they are created, not when the configuration is

saved. However, the deleted JAAS login configuration entries are not removed from the server run

time. To remove the entries, save the new configuration, then stop and restart the server.

The samples gallery provides a JAAS login sample that demonstrates how to use JAAS with WebSphere

Application Server. The sample uses a server-side login with JAAS to authenticate a user with the security

run time for WebSphere Application Server. The sample demonstrates the following technology:

v Java 2 Platform, Enterprise Edition (J2EE) Java Authentication and Authorization Service (JAAS)

v JAAS for WebSphere Application Server

v WebSphere Application Server security

The form login sample is component of the technology samples. For more information on how to access

the form login sample, see ″Accessing the Samples (Samples Gallery)″ in the information center

Configuration entry settings for Java Authentication and Authorization Service:

Use this page to specify a list of Java Authentication and Authorization Service (JAAS) login configurations

for the application code to use, including J2EE artifacts such as enterprise beans, JavaServer Pages

(JSP) files, servlets, resource adapters, and message data blocks (MDBs).

 To view this administrative console page, complete the following steps:

1. Click Security > Global security.

2. Under Authentication, click JAAS configuration > Application logins.

Read the JAAS documentation before you begin defining additional login modules for authenticating to the

WebSphere Application Server security run time. You can define additional login configurations for your

applications. However, if the WebSphere Application Server LoginModule

(com.ibm.ws.security.common.auth.module.WSLoginModuleImpl) is not used or the LoginModule does not

produce a credential that is recognized by WebSphere Application Server, then the WebSphere Application

Server security run time cannot use the authenticated subject from these login configurations for an

authorization check for resource access.

Note: You must invoke Java client programs that use Java Authentication and Authorization Service

(JAAS) for authentication with a JAAS configuration file specified. The WebSphere product supplies

the default JAAS configuration file, wsjaas_client.conf under the install_root/properties directory.

This configuration file is set in the /install_root/bin/launchClient.bat file as: set

1522 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

JAAS_LOGIN_CONFIG=-
Djava.security.auth.login.config=%WAS_HOME%\properties\wsjaas_client.conf

If launchClient.bat file is not used to invoke Java client programs, make sure that the appropriate

JAAS configuration file is passed to the Java virtual machine with the

-Djava.security.auth.login.config flag.

ClientContainer:

Specifies the login configuration used by the client container application, which uses the CallbackHandler

API defined in the client container deployment descriptor.

 The ClientContainer configuration is the default login configuration for the WebSphere Application Server.

Do not remove this default, as other applications that use it fail.

 Default: ClientContainer

DefaultPrincipalMapping:

Specifies the login configuration used by Java 2 Connectors to map users to principals that are defined in

the J2C Authentication Data Entries.

 ClientContainer is the default login configuration for the WebSphere Application Server. Do not remove this

default, as other applications that use it fail.

 Default: ClientContainer

WSLogin:

Specifies whether all applications can use the WSLogin configuration to perform authentication for the

WebSphere Application Server security run time.

 This login configuration does not honor the CallbackHandler defined in the client container deployment

descriptor. To use this functionality, use the ClientContainer login configuration.

The WSLogin configuration is the default login configuration for the WebSphere Application Server. Do not

remove this default because other administrative applications that use it will fail. This login configuration

authenticates users for the WebSphere Application Server security run time. Use credentials from the

authenticated subject returned from this login configurations as an authorization check for access to

WebSphere Application Server resources.

 Default: ClientContainer

System login configuration entry settings for Java Authentication and Authorization Service:

Use this page to specify a list of Java Authentication and Authorization Service (JAAS) system login

configurations.

 To view this administrative console page, click Security > Global security. Under Authentication, click

JAAS configuration > System logins.

Read the Java Authentication and Authorization Service documentation before you begin defining

additional login modules for authenticating to the WebSphere Application Server security run time. Do not

remove the following system login modules:

Chapter 8. Developing WebSphere applications 1523

v RMI_INBOUND

v WEB_INBOUND

v DEFAULT

v RMI_OUTBOUND

v SWAM

v wssecurity.IDAssertion

v wssecurity.signature

v wssecurity.PKCS7

v wssecurity.PkiPath

v wssecurity.UsernameToken

v wssecurity.X509BST

v LTPA

v LTPA_WEB

RMI_INBOUND, WEB_INBOUND, DEFAULT:

Processes inbound login requests for Remote Method Invocation (RMI), Web applications, and most of the

other login protocols. These login configurations are used by WebSphere Application Server Version 5.1.1

and later.

RMI_INBOUND

The RMI_INBOUND login configuration handles logins for inbound RMI requests. Typically, these

logins are requests for authenticated access to Enterprise JavaBeans (EJB) files. Also, these

logins might be Java Management Extensions (JMX) requests when using the RMI connector.

WEB_INBOUND

The WEB_INBOUND login configuration handles logins for Web application requests, which

includes servlets and JavaServer Pages (JSP) files. This login configuration can interact with the

output that is generated from a trust association interceptor (TAI), if configured. The Subject

passed into the WEB_INBOUND login configuration might contain objects generated by the TAI.

DEFAULT

The DEFAULT login configuration handles the logins for inbound requests made by most of the

other protocols and internal authentications.

 These three login configurations can pass in the following callback information, which is handled by the

login modules within these configurations. These callbacks are not passed in at the same time. However,

the combination of these callbacks determines how WebSphere Application Server authenticates the user.

Callback

callbacks[0] = new javax.security.auth.callback.

NameCallback(″Username: ″);

Responsibility

Collects the user name that is provided during a login. This information can be the user name for

the following types of logins:

v User name and password login, which is known as basic authentication.

v User name only for identity assertion.

Callback

callbacks[1] = new javax.security.auth.callback.

PasswordCallback(″Password: ″, false);

Responsibility

Collects the password that is provided during a login.

1524 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Callback

callbacks[2] = new com.ibm.websphere.security.auth.callback.

WSCredTokenCallbackImpl(″Credential Token: ″);

Responsibility

Collects the Lightweight Third Party Authentication (LTPA) token (or other token type) during a

login. Typically, this information is present when a user name and a password are not present.

Callback

callbacks[3] = new com.ibm.wsspi.security.auth.callback.

WSTokenHolderCallback(″Authz Token List: ″);

Responsibility

Collects the ArrayList of the TokenHolder objects that are returned from the call to the

WSOpaqueTokenHelper. createTokenHolderListFromOpaqueToken () method using the Common

Secure Interoperability version 2 (CSIv2) authorization token as input.

Restriction: This callback is present only when the Security Attribute Propagation option is

enabled and this login is a propagation login. In a propagation login, sufficient

security attributes are propagated with the request to prevent having to access the

user registry for additional attributes.

 In system login configurations, WebSphere Application Server authenticates the user based upon the

information collected by the callbacks. However, a custom login module does not need to act upon any of

these callbacks. The following list explains the typical combinations of these callbacks:

v The callbacks[0] = new javax.security.auth.callback.NameCallback(″Username: ″); callback only

This callback occurs for CSIv2 Identity Assertion; Web and CSIv2 X509 certificate logins; old-style trust

association interceptor logins, and so on. In Web and CSIv2 X509 certificate logins, WebSphere

Application Server maps the certificate to a user name. This callback is used by any login type that

establishes trust using the user name only.

v Both the callbacks[0] = new javax.security.auth.callback.NameCallback(″Username: ″); callback

and the callbacks[1] = new javax.security.auth.callback.PasswordCallback(″Password: ″, false);

callbacks.

This combination of callbacks is typical for basic authentication logins. Most user authentications occur

using these two callbacks.

v The callbacks[2] = new

com.ibm.websphere.security.auth.callback.WSCredTokenCallbackImpl(″Credential Token: ″); only

This callback is used to validate a Lightweight Third Party Authentication (LTPA) token. This validation

typically occurs during an single signon (SSO) or downstream login. Any time a request originates from

a WebSphere Application Server, instead of a pure client, the LTPA token typically flows to the target

server. For single signon (SSO), the LTPA token is received in the cookie and the token is used for

login. If a custom login module needs the user name from an LTPA token, the module can use the

following method to retrieve the unique ID from the token:

com.ibm.wsspi.security.token.WSSecurityPropagationHelper.

validateLTPAToken(byte[])

After retrieving the unique ID, use the following method to get the user name:

com.ibm.wsspi.security.token.WSSecurityPropagationHelper.

getUserFromUniqueID(uniqueID)

Important: Any time a custom login module is plugged in ahead of the WebSphere Application Server

login modules and it changes the identity using the credential mapping services, it is

important that this login module validates the LTPA token, if present. Calling the following

method is sufficient to validate the trust in the LTPA token:

Chapter 8. Developing WebSphere applications 1525

com.ibm.wsspi.security.token.WSSecurityPropagationHelper.

validateLTPAToken(byte[])

The receiving server must have the same LTPA keys as the sending server in order for this

to be successful. There is a possible security exposure if you do not validate this LTPA

token, when present.

v A combination of any of the previously mentioned callbacks plus the callbacks[3] = new

com.ibm.wsspi.security.auth.callback.WSTokenHolderCallback(″Authz Token List: ″); callback.

This callback indicates that some propagated attributes arrived at the server. The propagated attributes

still require one of the following authentication methods:

– callbacks[0] = new javax.security.auth.callback.

NameCallback(″Username: ″);

– callbacks[1] = new javax.security.auth.callback.

PasswordCallback(″Password: ″, false);

– callbacks[2] = new com.ibm.websphere.security.auth.callback.

WSCredTokenCallbackImpl(″Credential Token: ″);

If the attributes are added to the Subject from a pure client, then the NameCallback and

PasswordCallback callbacks authenticate the information and the objects that are serialized in the token

holder are added to the authenticated Subject.

If both CSIv2 identity assertion and propagation are enabled, WebSphere Application Server uses the

NameCallback and the token holder, which contains all of the propagated attributes, to deserialize most

of the objects. WebSphere Application Server uses the NameCallback because trust is established with

the servers that you indicate in the CSIv2 trusted server list. To specify trusted servers, complete the

following steps:

1. Click Security > Global security.

2. Under Authentication, click Authentication protocol > CSIv2 Inbound authentication.

Custom serialization needs to be handled by a custom login module. For more information, see

″Security attribute propagation″.

In addition to the callbacks defined previously, the WEB_INBOUND login configuration only can contain

the following additional callbacks

Callback

callbacks[4] = new com.ibm.websphere.security.auth.callback.

WSServletRequestCallback(″HttpServletRequest: ″);

Responsibility

Collects the HTTP servlet request object, if presented. This callback enables login modules to

retrieve information from the HTTP request to use during a login.

Callback

callbacks[5] = new com.ibm.websphere.security.auth.callback.

WSServletResponseCallback(″HttpServletResponse: ″);

Responsibility

Collects the HTTP servlet response object, if presented. This callback enables login modules to

add information into the HTTP response as a result of the login. For example, login modules might

add the SingleSignonCookie to the response.

Callback

callbacks[6] = new com.ibm.websphere.security.auth.callback.

WSAppContextCallback(″ApplicationContextCallback: ″);

Responsibility

Collects the Web application context used during the login. This callback consists of a Hashtable,

which contains the application name and the redirect Web address, if present.

1526 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

The following login modules are predefined for the RMI_INBOUND, WEB_INBOUND, and DEFAULT

system login configurations. You can add custom login modules before, between, or after any of these

login modules, but you cannot remove these predefined login modules.

v com.ibm.ws.security.server.lm.ltpaLoginModule

This login module performs the primary login when attribute propagation is either enabled or disabled. A

primary login uses normal authentication information such as a user ID and password; an LTPA token;

or a trust association interceptor (TAI) and a certificate distinguished name (DN). If any of the following

scenarios are true, this login module is not used and the

com.ibm.ws.security.server.lm.wsMapDefaultInboundLoginModule module performs the primary login:

– The java.util.Hashtable object with the required user attributes is contained in the Subject.

– The java.util.Hashtable object with the required user attributes is present in the sharedState

HashMap of the LoginContext.

– The WSTokenHolderCallback callback is present without a specified password. If a user name and a

password are present with a WSTokenHolderCallback, callback, which indicates propagated

information, the request likely originates from either a pure client or a server from a different realm

that mapped the existing identity to a user ID and password.

v com.ibm.ws.security.server.lm.wsMapDefaultInboundLoginModule

This login module performs the primary login using the normal authentication information if any of the

following conditions are true:

– A java.util.Hashtable object with required user attributes is contained in the Subject

– A java.util.Hashtable object with required user attributes is present in the sharedState HashMap of

the LoginContext

– The WSTokenHolderCallback callback is present without a PasswordCallback callback.

When the java.util.Hashtable object is present, the login module maps the object attributes into a valid

Subject. When the WSTokenHolderCallback is present, the login module deserializes the byte token

objects and regenerates the serialized Subject contents. The java.util.Hashtable takes precedence over

all of the other forms of login. Be careful to avoid duplicating or overriding what WebSphere Application

Server might have propagated previously. By specifying a java.util.Hashtable to take precedence over

other authentication information, the custom login module must have already verified the LTPA token, if

present, to establish sufficient trust. The custom login module can use the

com.ibm.wsspi.security.token.WSSecurityPropagationHelper.validationLTPAToken(byte[]) method to

validate the LTPA token present in the WSCredTokenCallback. Failure to validate the LTPA token

presents a security risk.

For more information on adding a Hashtable containing well-known and well-formed attributes used by

WebSphere Application Server as sufficient login information, see ″Configuring inbound identity

mapping″.

RMI_OUTBOUND:

Processes Remote Method Invocation (RMI) requests that are sent outbound to another server when

either the com.ibm.CSI.rmiOutboundLoginEnabled or the com.ibm.CSIOutboundPropagationEnabled

properties are true.

 These properties are set in the CSIv2 authentication panel. To access the panel, click Security > Global

security. Under Authentication protocol, click CSIv2 Outbound authentication. To set the

com.ibm.CSI.rmiOutboundLoginEnabled property, select Custom outbound mapping. To set the

com.ibm.CSIOutboundPropagationEnabled property, select the Security attribute propagation option.

This login configuration determines the security capabilities of the target server and its security domain.

For example, if WebSphere Application Server Version 5.1.1 or later communicates with a version 5.x

Application Server, then the Version 5.1.1 Application Server sends the authentication information only,

using an LTPA token, to the Version 5.x Application Server. However, if WebSphere Application Server

Version 5.1.1 or later communicates with a version 5.1.x Application Server, the authentication and

Chapter 8. Developing WebSphere applications 1527

authorization information is sent to the receiving application server if propagation is enabled at both the

sending and receiving servers. When the application server sends both the authentication and

authorization information downstream, it removes the need to re-access the user registry and look up the

security attributes of the user for authorization purposes. Additionally, any custom objects added at the

sending server should be present in the Subject at the downstream server.

The following callback is available to in the RMI_OUTBOUND login configuration. You can use the

com.ibm.wsspi.security.csiv2.CSIv2PerformPolicy object that is returned by this callback to query the

security policy for this particular outbound request. This query can help determine if the target realm is

different than the current realm and if WebSphere Application Server must map the realm. For more

information, see ″Configuring outbound mapping to a different target realm″.

Callback

callbacks[0] = new WSProtocolPolicyCallback(″Protocol Policy Callback: ″);

Responsibility

 Provides protocol-specific policy information for the login modules on this outbound invocation.

This information is used to determine the level of security, including the target realm, target

security requirements, and coalesced security requirements.

 The following method obtains the CSIv2PerformPolicy from this specific login module:

csiv2PerformPolicy = (CSIv2PerformPolicy)

((WSProtocolPolicyCallback)callbacks[0]).getProtocolPolicy();

 A different protocol other than RMI might have a different type of policy object.

 The following login module is predefined in the RMI_OUTBOUND login configuration. You can add custom

login modules before, between, or after any of these login modules, but you cannot remove these

predefined login modules.

com.ibm.ws.security.lm.wsMapCSIv2OutboundLoginModule

Retrieves the following tokens and objects before creating an opaque byte that is sent to another

server by using the Common Secure Interoperability version 2 (CSIv2) authorization token layer:

v Forwardable com.ibm.wsspi.security.token.Token implementations from the Subject

v Serializable custom objects from the Subject

v Propagation tokens from the thread

You can use a custom login module prior to this login module to perform credential mapping.

However, it is recommended that the login module change the contents of the Subject that is

passed in during the login phase. If this recommendation is followed, the login modules processed

after this login module act on the new Subject contents.

For more information, see ″ Configuring outbound mapping to a different target realm″.

SWAM:

Processes login requests in a single server environment when Simple WebSphere Authentication

Mechanism (SWAM) is used as the authentication method.

 SWAM does not support forwardable credentials. When SWAM is the authentication method, WebSphere

Application Server cannot send requests from server to server. In this case, you must use LTPA.

wssecurity.IDAssertion:

Processes login configuration requests for Web services security using identity assertion. This login

configuration is for version 5.x systems.

1528 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

wssecurity.PKCS7: This login configuration is for version 6.x systems.

wssecurity.PkiPath: This login configuration is for version 6.x systems.

wssecurity.signature:

Processes login configuration requests for Web services security using digital signature validation. This

login configuration is for version 5.x systems.

wssecurity.UsernameToken: This login configuration is for version 6.x systems.

wssecurity.X509BST: This login configuration is for version 6.x systems.

LTPA_WEB:

Processes login requests used by the Web container such as servlets and JavaServer pages (JSP) files.

 This login configuration is used by WebSphere Application Server Version 5.1. This login configuration was

introduced in version 5.1 and is no longer used in version 5.1.1.

The com.ibm.ws.security.web.AuthenLoginModule login module is predefined in the LTPA login

configuration. You can add custom login modules before or after this module in the LTPA_WEB login

configuration.

The LTPA_WEB login configuration can process the HttpServletRequest object, the HttpServletResponse

object, and the Web application name that are passed in using a callback handler. For more information,

see ″Customizing a server-side Java Authentication and Authorization Service authentication and login

configuration″ in the documentation.

LTPA:

Processes login requests that are not handled by the LTPA_WEB login configuration.

 This login configuration is used by WebSphere Application Server Version 5.1 and previous versions.

The com.ibm.ws.security.server.lm.ltpaLoginModule login module is predefined in the LTPA login

configuration. You can add custom login modules before or after this module in the LTPA login

configuration. For more information, see ″Customizing a server-side Java Authentication and Authorization

Service authentication and login configuration″ in the documentation.

Login module settings for Java Authentication and Authorization Service:

Use this page to define the login module for a Java Authentication and Authorization Service (JAAS) login

configuration.

 You can define the JAAS login modules for application and system logins. To define these login modules in

the administrative console, use one of the following paths:

v To view this administrative console page, click Security > Global security. Under Authentication, click

JAAS configuration > Application logins or System logins > alias_name. Under Additional

properties, click JAAS login modules.

Module class name:

Specifies the class name of the given login module.

 Data type: String

Chapter 8. Developing WebSphere applications 1529

Proxy class name:

Specifies the name of the proxy login module class.

 The default login modules defined by the WebSphere product use the proxy LoginModule class,

com.ibm.ws.security.common.auth.module.WSLoginModuleProxy. This proxy class loads the WebSphere

Application Server login module with the thread context class loader and delegates all the operations to

the real login module implementation. The real login module implementation is specified as the delegate

option in the option configuration. The proxy class is needed because the Developer Kit application class

loaders do not have visibility of the WebSphere Application Server product class loaders.

 Data type: String

Authentication Strategy:

Specifies the authentication behavior as authentication proceeds down the list of login modules.

 A Java Authentication and Authorization Service (JAAS) authentication provider supplies the authentication

strategy. In JAAS, an authentication strategy is implemented through the LoginModule interface.

 Data type: String

Default: Required

Range: Required, Requisite, Sufficient and Optional

Required

The LoginModule is required to succeed. If it succeeds or fails, authentication still continues to

proceed down the LoginModule list for each realm.

Requisite

The LoginModule is required to succeed. If it succeeds, authentication continues down the

LoginModule list in the realm entry. If it fails, control immediately returns to the application--that is,

authentication does not proceed down the LoginModule list.

Sufficient

The LoginModule is not required to succeed. If it does succeed, control immediately returns to the

application--again, authentication does not proceed down the LoginModule list. If it fails,

authentication continues down the list.

Optional

The LoginModule is not required to succeed. If it succeeds or fails, authentication still continues to

proceed down the LoginModule list.

Specify additional options by clicking Custom Properties under Additional Properties. These name and

value pairs are passed to the login modules during initialization. This process is one of the mechanisms

that is used to passed information to login modules.

Module order:

Specifies the order in which the Java Authentication and Authorization Service (JAAS) login modules are

processed.

 Click Set Order to change the processing order of the login modules.

Login module order settings for Java Authentication and Authorization Service:

Use this page to specify the order in which WebSphere Application Server processes the login

configuration modules.

1530 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

You can specify the order of the login modules for application and system logins. To define these login

modules in the administrative console, complete the following steps:

1. Click Security > Global security.

2. Under Authentication, click JAAS Configuration > Application logins or System logins >

login_configuration. You can create a new configuration by clicking New.

3. Under Additional properties, click JAAS login modules.

4. Click Set order.

When you select one of the JAAS login module class names, you can move that class name up and down

the list. After you press OK and save the changes, the new order is reflected on either the Application

login configuration or System login configuration panel.

Login configuration settings for Java Authentication and Authorization Service:

Use this page to configure application login configurations.

 To view this administrative console page, click Security > Global security. Under Authentication, click

JAAS configuration > Application logins or System logins > alias_name.

Click Apply to save changes and to add the extra node name that precedes the original alias name.

Clicking OK does not save the new changes in the security.xml file.

Alias:

Specifies the alias name of the application login.

 Do not use the forward slash character (/) in the alias name when defining JAAS login configuration

entries. The JAAS login configuration parser cannot process the forward slash character.

 Data type: String

J2EE Connector security:

The J2EE connector architecture defines a standard architecture for connecting the Java 2 Platform,

Enterprise Edition (J2EE) to heterogeneous enterprise information systems (EIS). Examples of EIS include

Enterprise Resource Planning (ERP), mainframe transaction processing (TP) and database systems.

 The connector architecture enables an EIS vendor to provide a standard resource adapter for its EIS. A

resource adapter is a system-level software driver that is used by a Java application to connect to an EIS.

The resource adapter plugs into an application server and provides connectivity between the EIS, the

application server, and the enterprise application. Accessing information in EIS typically requires access

control to prevent unauthorized accesses. J2EE applications must authenticate to the EIS to open a

connection to it.

The J2EE Connector security architecture is designed to extend the end-to-end security model for

J2EE-based applications to include integration with EISs. An application server and an EIS collaborate to

ensure the proper authentication of a resource principal, which establishes a connection to an underlying

EIS. The connector architecture identifies the following mechanisms as the commonly-supported

authentication mechanisms although other mechanisms can be defined:

v BasicPassword: Basic user-password-based authentication mechanism that is specific to an EIS

v Kerbv5: Kerberos Version 5-based authentication mechanism

Applications define whether to use application-managed sign-on or container-managed sign-on in the

resource-ref elements in the deployment descriptor. Each resource-ref element describes a single

connection factory reference binding. The res-auth element in a resource-ref element, whose value is

Chapter 8. Developing WebSphere applications 1531

either Application or Container, indicates whether the enterprise bean code should perform sign-on or

whether it should enable the WebSphere Application Server to sign-on to the resource manager using the

principal mapping configuration. The resource-ref element is defined at application assembly time. Use the

WebSphere Development Toolkit to configure the resource -ref.

Application managed sign-on

To access an EIS system, applications locate a connection factory from the JNDI namespace and invoke

the getConnection method on that connection factory object. The getConnection method might require a

user ID and password argument. A J2EE application can pass in a user ID and password to

getConnection, which subsequently passes the information to the resource adapter. Specifying a user ID

and password in the application code has some security implications, however.

The user ID and password, if coded into the Java source code, are available to developers and testers in

the organization. Also, the user ID and password are visible to users if they de-compile the Java class.

The user ID and password cannot be changed without first requiring a synchronized code change.

Alternatively, application code might retrieve sets of user IDs and passwords from persistent storage or

from an external service. This approach requires that IT administrators configure and manage a user ID

and password using the application-specific mechanism.

WebSphere Application Server allows a component-managed authentication alias to be specified on a

resource. This authentication data is common to all references to the resource. On the Resource

Adapter>Connection Factory configuration panel, select component-managed authentication alias.

With res-auth=Application, the authentication data is taken from, in order:

1. user id and password passed to getConnection(...)

2. component-managed auth alias on the Connection Factory or DataSource

3. Custom Properties UserName and Password on the DataSource

The username and password properties can be initially defined in the RAR file, and can also be defined in

the admininstrative console or wsadmin scripting under custom properties. Do not use the custom

properties, which enable users to connect to the resources.

Container-managed sign-on

The user ID and password for the target EIS can be supplied by the application server. WebSphere

Application Server provides container-managed sign-on functionality. It locates the proper authentication

data for the target EIS to enable the client to establish a connection. Application code does not have to

provide a user ID and password in the getConnection call when it is configured to use container-managed

sign-on, nor does authentication data have to be common to all references to a resource. WebSphere

Application Server uses a Java Authentication and Authorization Service (JAAS) pluggable authentication

mechanism to use a pre-configured JAAS login configuration, and LoginModule(s) to map a client security

identity and credentials on the thread of execution to a pre-configured user ID and password.

WebSphere Application Server ships a default many-to-one credential mapping LoginModule that maps

any client identity on the thread of execution to a pre-configured user ID and password for a specified

target EIS. The default mapping module is a special purpose JAAS LoginModule that returns a

PasswordCredential specified by the configured J2C authentication data entry. The default mapping

LoginModule performs a table lookup, but does not perform actual authentication. The user ID and

password are stored together with an alias in the J2C Authentication data list. The J2C Authentication data

list is located on the Global Security panel under Authentication > JAAS Configuration. The default

principal and credential mapping function is defined by the DefaultPrincipalMapping application JAAS login

configuration.

1532 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

The DefaultPrincipalMapping login configuration should not be modified since WebSphere Application

Server added performance enhancements to this frequently used default mapping configuration.

WebSphere Application Server does not support modifying the DefaultPrincipalMapping configuration,

changing the default LoginModule, or stacking a custom LoginModule in the configuration.

For most systems, the default configuration with a many-to-one mapping is sufficient. However,

WebSphere Application Server does support custom principal and credential mapping configurations.

Custom mapping modules can be added to the application logins JAAS configuration by creating a new

JAAS login configuration with a unique name. For example, a custom mapping module can provide

one-to-one mapping or Kerberos functionality.

You also can use the WebSphere Application Server administrative console to bind the resource manager

connection factory references to one of the configured resource factories. If the value of the res-auth

element is Container, you must configure the mapping configuration using the Map resource references

to resources link on an enterprise application panel.

Map resource references to references

To map resource references to resources, do the following:

1. Click Applications > Enterprise Applications.

2. Select an application.

3. Under Additional Properties, select Map resource references to resources.

4. Select a connection factory reference binding from the table that has a login configuration of Resource

authorization: Container. You must specify an authentication method for the selected connection factory

reference binding. Choose either Use default method or Use custom login configuration. If you

choose the Use default method option, the WebSphere Application Server DefaultPrincipalMapping

login configuration is selected. You must select an authentication data alias from the drop-down list.

5. After you make a selection, click Apply for the configuration to take effect.

6. If you choose Use custom login configuration, you must select a mapping JAAS login configuration

from the drop-down list.

7. Click Apply. The selected login configuration name and an Update button appear in the login

configuration field of the particular connection factory reference binding.

8. Click Update to define mapping properties that you might need to pass to the mapping

LoginModule(s).

J2C mapping modules and mapping properties

Mapping modules are special JAAS login modules that provide principal and credential mapping

functionality. You can define and configure custom mapping modules using the administrative console.

You also can define and pass context data to mapping modules by using login options in each JAAS login

configuration. In WebSphere Application Server Version 6, you also can define context data using mapping

properties on each connection factory reference binding.

Login options that are defined under each JAAS login configuration are shared among all resources that

use the same JAAS login configuration and mapping modules. Mapping properties that are defined for

each connection factory reference binding are used exclusively by that resource reference.

Consider a usage scenario where an external mapping service is used, (such the as Tivoli Access

Manager Global Sign-On (GSO) service). You have two EIS servers: DB2 and MQ.

Use the Tivoli Access Manager GSO to locate authentication data for both backend servers. The

authentication data for DB2 is different from that for MQ, however. Use the login option in a mapping JAAS

Chapter 8. Developing WebSphere applications 1533

login configuration to specify the parameters that are required to establish a connection to the TAM GSO

service. Use the mapping properties in a connection factory reference binding to specify which EIS server

the user ID and password are required for.

For more detailed information about developing a mapping module, see the ″Developing your own Java 2

security mapping module″ article in the information center.

Note:

v WebSphere Application Server Version 6 configures container-managed sign-on under each

enterprise application. This is different than WebSphere Application Server Version 5, which

configures container-managed sign-on for each connection factory.

v The deprecated way of configuration at the Resource Adapter > Connection factory panel still

works in WebSphere Application Server Version 6. The advantage to configuring at the

connection factory reference level is that the configuration has application scope and is not

visible to other applications. However, the mapping configuration defined at the connection

factory is visible to other applications.

v The mapping configuration at the connection factory has moved to the resource manager

connection factory reference. The mapping LoginModules that were developed using WebSphere

Application Server Version 5 JAAS Callback types can be used by the resource manager

connection factory reference, but the mapping LoginModules cannot take advantage of the

custom mapping properties feature.

v Connection factory reference binding supports mapping properties, and passes those properties

to mapping LoginModules by way of a new WSMappingPropertiesCallback Callback type. In

addition, WSMappingPropertiesCallback and the new WSManagedConnectionFactoryCallback

are defined in the com.ibm.wsspi package. New mapping LoginModules should use the new

Callback types.

Managing J2EE Connector Architecture authentication data entries:

Java 2 Platform, Enterprise Edition (J2EE) Connector authentication data entries are used by resource

adapters and Java DataBase Connectivity (JDBC) data sources. A J2EE Connector authentication data

entry contains authentication data, which includes the following information:

Alias An identifier that identifies the authenticated data entry. When configuring resource adapters or

data sources, the administrator can specify which authentication data to choose using the

corresponding alias.

User ID

A user identity of the intended security domain. For example, if a particular authentication data

entry is used to open a new connection to DB2, this entry contains a DB2 user identity.

Password

The password of the user identity is encoded in the configuration respository.

Description

A short text description.

This task creates and deletes Java 2 Connector (J2C) authentication data entries.

1. Delete a J2C authentication data entry.

a. Click Security in the navigation tree and select Global Security, and then click JAAS

Configuration > J2C Authentication Data. The J2C Authentication Data Entries panel is

displayed.

b. Select the check boxes for the entries to delete and click Delete. Before deleting or removing an

authentication data entry, make sure that it is not used or referenced by any resource adapter or

data source. If the deleted authentication data entry is used or referenced by a resource, the

application that uses the resource adapter or the data source fails to connect to the resources.

2. Create a new J2C authentication data entry.

1534 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

a. Click Security in the navigation tree and select Global Security, and then click JAAS

Configuration > J2C Authentication Data. The J2C Authentication Data Entries panel is

displayed.

b. Click New.

c. Enter a unique alias, a valid user ID, a valid password, and a short description (optional).

d. Click OK or Apply. No validation for the user ID and password is required.

e. Click Save. For a Network Deployment installation, make sure that a file synchronized operation is

performed to propagate the changes to other nodes.

A new J2C authentication data entry is created or an old entry is removed. The newly created entry is

visible without restarting the application server process to use in the data source definition. But the entry is

only in effect after the server is restarted. Specifically, the authentication data is loaded by an application

server when starting an application and is shared among applications in the same application server.

If you create or update a data source that points to a newly created J2C authentication data alias, the test

connection fails to connect until you restart the deployment manager. After you restart the deployment

manager, the J2C authentication data is reflected in the run-time configuration. Any changes to the J2C

authentication data fields require a deployment manager restart for the changes to take effect.

This step defines authentication data that you can share among resource adapters and data sources. Use

the authentication data entry that is defined in the resource adapters or the data sources.

Java 2 Connector authentication data entry settings:

Use this page as a central place for administrators to define authentication data, which includes user

identities and passwords. These values can reference authentication data entries by resource adapters,

data sources, and other configurations that require authentication data using an alias.

 You can display this page directly from the JAAS configuration page or from other pages for resources that

use J2EE Connector (J2C) authentication data entries. For example, to view this administrative page, you

can click either Security > Global security. Under Authentication, click JAAS configuration > J2C

authentication data.

Deleting authentication data entries: Be careful when deleting authentication data entries. If the deleted

authentication data is used by other configurations, the initializing resources process fails.

Define a new authentication data entry by clicking New.

Alias:

Specifies the name of the authentication data entry.

 Data type: String

Units: String

Default: None

User ID:

Specifies the user identity.

 Data type: String

Description:

Chapter 8. Developing WebSphere applications 1535

Specifies an optional description of the authentication data entry. For example, this authentication data

entry is used to connect to DB2.

 Data type: String

Identity mapping

Identity mapping is a one-to-one mapping of a user identity between two servers so that the proper

authorization decisions are made by downstream servers. Identity mapping is necessary when the

integration of servers is needed, but the user registries are different and not shared between the systems.

In most cases, requests flow downstream between two servers that are part of the same security domain.

In WebSphere Application Server, two servers that are members of the same cell are also members of the

same security domain. In the same cell, the two servers have the same user registry and the same

Lightweight Third Party Authentication (LTPA) keys for token encryption. These two commonalities ensure

that the LTPA token (among other user attributes), which flows between the two servers, not only can be

decrypted and validated, but also the user identity in the token can be mapped to attributes that are

recognized by the authorization engine.

The most reliable and recommended configuration involves two servers within the same cell. However,

sometimes you need to integrate multiple systems that cannot use the same user registry. When the user

registries are different between two servers, the security domain or realm of the target server does not

match the security domain of the sending server.

WebSphere Application Server enables mapping to occur either before sending the request outbound or

before enabling the existing security credentials to flow to the target server as-is. The credentials are

mapped inbound with the specification that the target realm is trusted.

An alternative to mapping is to send the user identity without the token or the password to a target server

without actually mapping the identity. The use of the user identity is based on trust between the two

servers. Use Common Secure Interoperability version 2 (CSIv2) identity assertion. When enabled, it sends

just the X.509 certificate, principal name, or distinguished name (DN) based upon what was used by the

original client to perform the initial authentication. During CSIv2 identity assertion, trust is established

between the WebSphere Application Servers.

The user identity must exist in the target user registry for identity assertion to work. This process can also

enable interoperability between other Java 2 Platform, Enterprise Edition (J2EE) Version 1.3 and higher

compliant application servers. When using identity assertion, if both the sending server and target servers

have identity assertion configured, WebSphere Application Server always uses this method of

authentication, even when both servers are in the same security domain. For more information on CSIv2

identity assertion, see ″Identity assertion.″

When the user identity is not present in the user registry of the target server, identity mapping must occur

either before the request is sent outbound or when the request comes inbound. This decision depends

upon your environment and requirements. However, it is typically easier to map the user identity before the

request is sent outbound for the following reasons:

v You know the user identity of the existing credential as it comes from the user registry of the sending

server.

v You do not have to worry about sharing Lightweight Third Party Authentication (LTPA) keys with the

other target realm because you are not mapping the identity to LTPA credentials. Typically, you are

mapping the identity to a user ID and password that are present in the user registry of the target realm.

When you do perform outbound mapping, in most cases, it is recommended that you use Secure Sockets

Layer (SSL) to protect the integrity and confidentiality of the security information sent across the network.

If LTPA keys are not shared between servers, an LTPA token cannot be validated at the inbound server. In

1536 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

this case, outbound mapping is necessary because the user identity can not be determined at the inbound

server to do inbound mapping. For more information, see ″Configuring outbound mapping to a different

target realm.″

When you need inbound mapping, potentially due to the mapping capabilities of the inbound server, you

must ensure that both servers have the same LTPA keys so that you can get access to the user identity.

Typically, in secure communications between servers, an LTPA token is passed into the

WSCredTokenCallback of the inbound JAAS login configuration for the purposes of client authentication. A

method is available that enables you to open the LTPA token, if valid, and get access to the user unique

ID so that mapping can be performed. For more information, see ″Configuring inbound identity mapping″ in

the information center. In other cases, such as identity assertion, you might receive a user name in the

NameCallback of the inbound login configuration that enables you to map the identity.

Configuring inbound identity mapping

For inbound identity mapping, it is recommend that you write a custom login module and configure

WebSphere Application Server to run the login module first within the system login configurations.

Consider the following steps when you write your custom login module:

1. Get the inbound user identity from the callbacks and map the identity, if necessary This step occurs in

the login() method of the login module. A valid authentication has either or both of the following

callbacks present: NameCallback and the WSCredTokenCallback. The following code sample shows

you how to determine the user identity:

javax.security.auth.callback.Callback callbacks[] =

 new javax.security.auth.callback.Callback[3];

 callbacks[0] = new javax.security.auth.callback.NameCallback(″″);

 callbacks[1] = new javax.security.auth.callback.PasswordCallback

 (″Password: ″, false);

 callbacks[2] = new com.ibm.websphere.security.auth.callback.

 WSCredTokenCallbackImpl(″″);

 callbacks[3] = new com.ibm.wsspi.security.auth.callback.

 WSTokenHolderCallback(″″);

 try

 {

 callbackHandler.handle(callbacks);

 }

 catch (Exception e)

 {

 // Handles exceptions

 throw new WSLoginFailedException (e.getMessage(), e);

 }

 // Shows which callbacks contain information

 boolean identitySwitched = false;

 String uid = ((NameCallback) callbacks[0]).getName();

 char password[] = ((PasswordCallback) callbacks[1]).getPassword();

 byte[] credToken = ((WSCredTokenCallbackImpl) callbacks[2]).getCredToken();

 java.util.List authzTokenList = ((WSTokenHolderCallback)

 callbacks[3]).getTokenHolderList();

 if (credToken != null)

 {

 try

 {

 String uniqueID = WSSecurityPropagationHelper.validateLTPAToken(credToken);

Chapter 8. Developing WebSphere applications 1537

String realm = WSSecurityPropagationHelper.getRealmFromUniqueID (uniqueID);

 // Now set the string to the UID so that you can use the result for either

 // mapping or logging in.

 uid = WSSecurityPropagationHelper.getUserFromUniqueID (uniqueID);

 }

 catch (Exception e)

 {

 // Handles the exception

 }

 }

 else if (uid == null)

 {

 // Throws an except if invalid authentication data exists.

 // You must have either UID or CredToken

 throw new WSLoginFailedException(″invalid authentication data.″);

 }

 else if (uid != null && password != null)

 {

 // This is a typical authentication. You can choose to map this ID to

 // another ID or you can skip it and allow WebSphere Application Server

 // to login for you. When passwords are presented, be very careful to not

 // validate the password because this is the initial authentication.

 return true;

 }

 // If desired, map this uid to something else and set the identitySwitched

 // boolean. If the identity was changed, clear the propagated attributes

 // below so they are not used incorrectly.

 uid = myCustomMappingRoutine (uid);

 // Clear the propagated attributes because they no longer applicable to the

 // new identity

 if (identitySwitched)

 {

 ((WSTokenHolderCallback) callbacks[3]).setTokenHolderList(null);

 }

2. Check to see if attribute propagation occurred and if the attributes for the user are already present

when the identity remains the same. Check to see if the user attributes are already present from the

sending server to avoid duplicate calls to the user registry lookup. To check for the user attributes, use

a method on the WSTokenHolderCallback that analyzes the information present in the callback to

determine if the information is sufficient for WebSphere Application Server to create a Subject. The

following code sample checks for the user attributes:

boolean requiresLogin =

((com.ibm.wsspi.security.auth.callback.WSTokenHolderCallback)

callbacks[2]).requiresLogin();

If sufficient attributes are not present to form the WSCredential and WSPrincipal objects needed to

perform authorization, the previous code sample returns a true result. When the result is false, you can

choose to discontinue processing as the necessary information exists to create the Subject without

performing additional remote user registry calls.

3. Optional: Look up the required attributes from the user registry, put the attributes in hashtable, and

add the hashtable to the shared state. If the identity is switched in this login module, you must

complete the following steps:

1538 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

a. Create the hashtable of attributes as shown in the following example.

b. Add the hashtable to shared state.

If the identity is not switched, but the value of the requiresLogin code sample shown previously is

true, you can create the hashtable of attributes. However, you are not required to create a hashtable in

this situation as WebSphere Application Server handles the login for you. However, you might consider

creating a hashtable to gather attributes in special cases where you are using your own special user

registry. Creating a UserRegistry implementation, using a hashtable, and letting WebSphere Application

Server gather the user attributes for you might be the easiest solution. The following table shows how

to create a hashtable of user attributes:

if (requiresLogin || identitySwitched)

 {

 // Retrives the default InitialContext for this server.

 javax.naming.InitialContext ctx = new javax.naming.InitialContext();

 // Retrieves the local UserRegistry implementation.

 com.ibm.websphere.security.UserRegistry reg = (com.ibm.websphere.

 security.UserRegistry)

 ctx.lookup(″UserRegistry″);

 // Retrieves the user registry uniqueID based on the uid specified

 // in the NameCallback.

 String uniqueid = reg.getUniqueUserId(uid);

 uid = WSSecurityPropagationHelper.getUserFromUniqueID (uniqueID);

 // Retrieves the display name from the user registry based on the uniqueID.

 String securityName = reg.getUserSecurityName(uid);

 // Retrieves the groups associated with the uniqueID.

 java.util.List groupList = reg.getUniqueGroupIds(uid);

 // Creates the java.util.Hashtable with the information that you gathered

 // from the UserRegistry implementation.

 java.util.Hashtable hashtable = new java.util.Hashtable();

 hashtable.put(com.ibm.wsspi.security.token.AttributeNameConstants.

 WSCREDENTIAL_UNIQUEID, uniqueid);

 hashtable.put(com.ibm.wsspi.security.token.AttributeNameConstants.

 WSCREDENTIAL_SECURITYNAME, securityName);

 hashtable.put(com.ibm.wsspi.security.token.AttributeNameConstants.

 WSCREDENTIAL_GROUPS, groupList);

 // Adds a cache key that is used as part of the look up mechanism for

 // the created Subject. The cache key can be an object, but should have

 // an implemented toString() method. Make sure that the cacheKey contains

 // enough information to scope it to the user and any additional attributes

 // that you are using. If you do not specify this property the Subject is

 // scoped to the returned WSCREDENTIAL_UNIQUEID, by default.

 hashtable.put(com.ibm.wsspi.security.token.AttributeNameConstants.

 WSCREDENTIAL_CACHE_KEY, ″myCustomAttribute″ + uniqueid);

 // Adds the hashtable to the sharedState of the Subject.

 _sharedState.put(com.ibm.wsspi.security.token.AttributeNameConstants.

 WSCREDENTIAL_PROPERTIES_KEY, hashtable);

 }

The following rules define in more detail how a hashtable login is performed. You must use a

java.util.Hashtable object in either the Subject (public or private credential set) or shared state

Chapter 8. Developing WebSphere applications 1539

HashMap. The com.ibm.wsspi.security.token.AttributeNameConstants class defines the keys that

contain the user information. If the hashtable object is put into the shared state of the login context

using a custom login module that is listed prior to the Lightweight Third Party Authentication (LTPA)

login module, the value of the java.util.Hashtable object is searched using the following key within the

shared state hashMap:

Property

com.ibm.wsspi.security.cred.propertiesObject

Reference to the property

AttributeNameConstants.WSCREDENTIAL_PROPERTIES_KEY

Explanation

This key searches for the hashtable object that contains the required properties in sharedState

of the login context.

Expected result

A java.util.Hashtable object.

If a java.util.Hashtable object is found either inside the Subject or within the sharedState area, verify

that the following properties are present in the hashtable:

Property

com.ibm.wsspi.security.cred.uniqueId

Reference to the property

AttributeNameConstants.WSCREDENTIAL_UNIQUEID

Returns

java.util.String

Explanation

The value of the property must be a unique representation of the user. For the WebSphere

Application Server default implementation, this property represents the information that is

stored in the application authorization table. The information is located in the application

deployment descriptor after it is deployed and user-to-role mapping is performed. See the

expected format examples if the user to role mapping is performed using a lookup to a

WebSphere Application Server user registry implementation. If a third-party authorization

provider overrides the user to role mapping, then the third-party authorization provider defines

the format. To ensure compatibility with the WebSphere Application Server default

implementation for the unique ID value, call the WebSphere Application Server public String

getUniqueUserId(String userSecurityName) UserRegistry method.

Expected format examples

 Realm Format (uniqueUserId)

Lightweight Directory Access

Protocol (LDAP)

ldaphost.austin.ibm.com:389/cn=user,o=ibm,c=us

Windows MYWINHOST/S-1-5-21-963918322-163748893-4247568029-500

UNIX MYUNIXHOST/32

The com.ibm.wsspi.security.cred.uniqueId property is required.

Property

com.ibm.wsspi.security.cred.securityName

Reference to the property

AttributeNameConstants. WSCREDENTIAL_ SECURITYNAME

Returns

java.util.String

1540 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Explanation

This property searches for the securityName of the authentication user. This name is

commonly called the display name or short name. WebSphere Application Server uses the

securityName attribute for the getRemoteUser(), getUserPrincipal() and getCallerPrincipal()

application programming interfaces (APIs). To ensure compatibility with the WebSphere

Application Server default implementation for the securityName value, call the WebSphere

Application Server public String getUserSecurityName(String uniqueUserId) UserRegistry

method.

Expected format examples

 Realm Format (uniqueUserId)

LDAP user (LDAP UID)

Windows user (Windows username)

UNIX user (UNIX username)

The com.ibm.wsspi.security.cred.securityName property is required.

Property

com.ibm.wsspi.security.cred.groups

Reference to the property

AttributeNameConstants. WSCREDENTIAL_GROUPS

Returns

java.util.ArrayList

Explanation

This key searches for the ArrayList of groups to which the user belongs. The groups are

specified in the realm_name/user_name format. The format of these groups is important as the

groups are used by the WebSphere Application Server authorization engine for group-to-role

mappings in the deployment descriptor. The format provided must match the format expected

by the WebSphere Application Server default implementation. When you use a third-party

authorization provider, you must use the format expected by the third-party provider. To ensure

compatibility with the WebSphere Application Server default implementation for the unique

group IDs value, call the WebSphere Application Server public List

getUniqueGroupIds(String uniqueUserId) UserRegistry method.

Expected format examples for each group in the ArrayList

 Realm Format

LDAP ldap1.austin.ibm.com:389/cn=group1,o=ibm,c=us

Windows MYWINREALM/S-1-5-32-544

UNIX MY/S-1-5-32-544

The com.ibm.wsspi.security.cred.groups property is not required. A user is not required to have

associated groups.

Property

com.ibm.wsspi.security.cred.cacheKey

Reference to the property

AttributeNameConstants. WSCREDENTIAL_CACHE_KEY

Returns

java.lang.Object

Explanation

This key property can specify an Object that represents the unique properties of the login

Chapter 8. Developing WebSphere applications 1541

including the user-specific information and the user dynamic attributes that might affect

uniqueness. For example, when the user logs in from location A, which might affect their

access control, the cacheKey needs to include location A so that the Subject received is the

correct Subject for the current location.

This com.ibm.wsspi.security.cred.cacheKey property is not required. When this property is not

specified, the cache lookup is the value specified for WSCREDENTIAL_UNIQUEID. When this

information is found in the java.util.Hashtable object, WebSphere Application Server creates a Subject

similar to the Subject that goes through the normal login process (at least for LTPA). The new Subject

contains a WSCredential object and a WSPrincipal object that is fully populated with the information

found in the Hashtable object.

4. Add your custom login module into the RMI_INBOUND, WEB_INBOUND, and DEFAULT Java

Authentication and Authorization Service (JAAS) system login configurations. Configure the

RMI_INBOUND login configuration so that WebSphere Application Server loads your new custom login

module first.

a. Click Security > Global security.

b. Under Authentication, click JAAS configuration > System logins > RMI_INBOUND

c. Under Additional Properties, click JAAS login modules > New to add your login module to the

RMI_INBOUND configuration.

d. Return to the JAAS login modules panel for RMI_INBOUND and click Set order to change the

order that the login modules are loaded so that WebSphere Application Server loads your custom

login module first.

e. Repeat the previous three steps for the WEB_INBOUND and DEFAULT login configurations.

This process configures identity mapping for an inbound request.

The “Example: Custom login module for inbound mapping” article shows a custom login module that

creates a java.util.Hashtable based on the specified NameCallback. The java.util.Hashtable is added to the

sharedState java.util.Map so that the WebSphere Application Server login modules can locate the

information in the Hashtable.

Example: Custom login module for inbound mapping:

This sample shows a custom login module that creates a java.util.Hashtable hastable that is based on the

specified NameCallback callback. The java.util.Hashtable hash table is added to the sharedState

java.util.Map so that the WebSphere Application Server login modules can locate the information in the

Hashtable.

 public customLoginModule()

{

public void initialize(Subject subject, CallbackHandler callbackHandler,

 Map sharedState, Map options)

{

 // (For more information on initialization, see

 // ″Custom login module development for a system login configuration″

 // in the information center.

 _sharedState = sharedState;

}

public boolean login() throws LoginException

{

 // (For more information on what to do during login, see

 // ″Custom login module development for a system login configuration″

1542 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

// in the information center.

 // Handles the WSTokenHolderCallback to see if this is an initial or

 // propagation login.

 javax.security.auth.callback.Callback callbacks[] =

 new javax.security.auth.callback.Callback[3];

 callbacks[0] = new javax.security.auth.callback.NameCallback(″″);

 callbacks[1] = new javax.security.auth.callback.PasswordCallback(

 ″Password: ″, false);

 callbacks[2] = new com.ibm.websphere.security.auth.callback.

 WSCredTokenCallbackImpl(″″);

 callbacks[3] = new com.ibm.wsspi.security.auth.callback.

 WSTokenHolderCallback(″″);

 try

 {

 callbackHandler.handle(callbacks);

 }

 catch (Exception e)

 {

 // Handles the exception

 }

 // Determines which callbacks contain information

 boolean identitySwitched = false;

 String uid = ((NameCallback) callbacks[0]).getName();

 char password[] = ((PasswordCallback) callbacks[1]).getPassword();

 byte[] credToken = ((WSCredTokenCallbackImpl) callbacks[2]).getCredToken();

 java.util.List authzTokenList = ((WSTokenHolderCallback) callbacks[3]).

 getTokenHolderList();

 if (credToken != null)

 {

 try

 {

 String uniqueID = WSSecurityPropagationHelper.validateLTPAToken(credToken);

 String realm = WSSecurityPropagationHelper.getRealmFromUniqueID (uniqueID);

 // Set the string to the UID so you can use the information to either

 // map or login.

 uid = WSSecurityPropagationHelper.getUserFromUniqueID (uniqueID);

 }

 catch (Exception e)

 {

 // handle exception

 }

 }

 else if (uid == null)

 {

 // Invalid authentication data. You must have either UID or CredToken

 throw new WSLoginFailedException(″invalid authentication data.″);

 }

 else if (uid != null && password != null)

 {

 // This is a typical authentication. You can choose to map this ID to

 // another ID or you can skip it and allow WebSphere Application Server

 // to login for you. When passwords are presented, be very careful not to

 // validate the password because this is the initial authentication.

Chapter 8. Developing WebSphere applications 1543

return true;

 }

 // If desired, map this uid to something else and set the identitySwitched

 // boolean. If the identity is changed, clear the propagated attributes below

 // so they are not used incorrectly.

 uid = myCustomMappingRoutine (uid);

 // Clear the propagated attributes because they no longer apply to the new identity

 if (identitySwitched)

 {

 ((WSTokenHolderCallback) callbacks[3]).setTokenHolderList(null);

 }

 boolean requiresLogin = ((com.ibm.wsspi.security.auth.callback.

 WSTokenHolderCallback) callbacks[2]).requiresLogin();

 if (requiresLogin || identitySwitched)

 {

 // Retrieves the default InitialContext for this server.

 javax.naming.InitialContext ctx = new javax.naming.InitialContext();

 // Retrieves the local UserRegistry object.

 com.ibm.websphere.security.UserRegistry reg =

 (com.ibm.websphere.security.UserRegistry) ctx.lookup(″UserRegistry″);

 // Retrieves the registry uniqueID based on the uid that is specified

 // in the NameCallback.

 String uniqueid = reg.getUniqueUserId(uid);

 uid = WSSecurityPropagationHelper.getUserFromUniqueID (uniqueID);

 // Retrieves the display name from the user registry based on the uniqueID.

 String securityName = reg.getUserSecurityName(uid);

 // Retrieves the groups associated with this uniqueID.

 java.util.List groupList = reg.getUniqueGroupIds(uid);

 // Creates the java.util.Hashtable with the information that you gathered

 // from the UserRegistry.

 java.util.Hashtable hashtable = new java.util.Hashtable();

 hashtable.put(com.ibm.wsspi.security.token.AttributeNameConstants.

 WSCREDENTIAL_UNIQUEID, uniqueid);

 hashtable.put(com.ibm.wsspi.security.token.AttributeNameConstants.

 WSCREDENTIAL_SECURITYNAME, securityName);

 hashtable.put(com.ibm.wsspi.security.token.AttributeNameConstants.

 WSCREDENTIAL_GROUPS, groupList);

 // Adds a cache key that is used as part of the look up mechanism for

 // the created Subject. The cache key can be an object, but should have

 // an implemented toString() method. Make sure the cacheKey contains enough

 // information to scope it to the user and any additional attributes you are

 // using. If you do not specify this property, the Subject is scoped to the

 // WSCREDENTIAL_UNIQUEID returned, by default.

 hashtable.put(com.ibm.wsspi.security.token.AttributeNameConstants.

 WSCREDENTIAL_CACHE_KEY, ″myCustomAttribute″ + uniqueid);

 // Adds the hashtable to the sharedState of the Subject.

1544 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

_sharedState.put(com.ibm.wsspi.security.token.AttributeNameConstants.

 WSCREDENTIAL_PROPERTIES_KEY, hashtable);

 }

 else if (requiresLogin == false)

 {

 // For more information on this section, see

 // Security attribute propagation.

 // If you added a custom Token implementation, you can search through the

 // token holder list for it to deserialize.

 // Note: Any Java objects are automatically deserialized by

 // wsMapDefaultInboundLoginModule

 for (int i=0; i<authzTokenList.size(); i++)

 {

 if (authzTokenList[i].getName().equals(″com.acme.MyCustomTokenImpl″)

 {

 byte[] myTokenBytes = authzTokenList[i].getBytes();

 // Passes these bytes into the constructor of your implementation

 // class for deserialization.

 com.acme.MyCustomTokenImpl myTokenImpl =

 new com.acme.MyCustomTokenImpl(myTokenBytes);

 }

 }

 }

}

public boolean commit() throws LoginException

{

 // (For more information on what to do during a commit, see

 // ″Custom login module development for a system login configuration″

 // in the information center.

 // Not doing anything here for this specific example

}

// Defines your login module variables

com.ibm.wsspi.security.token.AuthorizationToken customAuthzToken = null;

com.ibm.wsspi.security.token.AuthenticationToken defaultAuthToken = null;

java.util.Map _sharedState = null;

}

Configuring outbound mapping to a different target realm

By default, when WebSphere Application Server makes an outbound request from one server to another

server in a different security realm, the request is rejected. This request is rejected to protect against a

rogue server reading potentially sensitive information if successfully impersonating the home of the object.

The following alternatives are available to enable one server to send outbound requests to a target server

in a different realm:

v Do not perform mapping, instead, allow the existing security information to flow to a trusted target

server even if the target server resides in a different realm. To allow information to flow to a server in a

different realm, complete the following steps in the administrative console:

1. Click Security > Global security.

2.

Chapter 8. Developing WebSphere applications 1545

3. Specify the target realms in the Trusted target realms field. You can specify each trusted target

realm that is separated by a pipe (|) character. For example, specify

server_name.domain:port_number for a Lightweight Directory Access Protocol (LDAP) server or the

machine name for Local OS. If you want to propagate security attributes to a different target realm,

you must specify that target realm in the Trusted target realms field.

v Use the Java Authentication and Authorization Service (JAAS) WSLogin application login configuration

to create a basic authentication Subject that contains the credentials of the new target realm. This

configuration enables you to log in with a realm, user ID, and password that are specific to the user

registry of the target realm. You can provide the login information from within the Java 2 Platform,

Enterprise Edition (J2EE) application that is making the outbound request or from within the

RMI_OUTBOUND system login configuration. These two login options are described in the following

information:

1. Use the WSLogin application login configuration from within the J2EE application to log in and get a

Subject that contains the user ID and the password of the target realm. The application then can

wrap the remote call with a WSSubject.doAs call. For an example, see “Example: Using the

WSLogin configuration to create a basic authentication subject” on page 1547.

2. Use the code sample in “Example: Using the WSLogin configuration to create a basic authentication

subject” on page 1547 from this plug point within the RMI_OUTBOUND login configuration. Every

outbound Remote Method Invocation (RMI) request passes through this login configuration when it

is enabled. Complete the following steps to enable and plug in this login configuration:

a. Click Security > Global security.

b. Under Authentication, click Authentication protocol > CSIv2 outbound authentication.

c. Select the Custom outbound mapping option. If the Security Attribute Propagation option is

selected, then WebSphere Application Server is already using this login configuration and you do

not need to enable custom outbound mapping.

d. Write a custom login module. For more information, see ″Custom login module development for

a system login configuration″ in the information center.

The “Example: Sample login configuration for RMI_OUTBOUND” on page 1548 article shows a

custom login module that determines whether the realm names match. In this example, the

realm names do not match so the WSLogin is used to create a basic authentication Subject

based on custom mapping rules. The custom mapping rules are specific to the customer

environment and must be implemented using a realm to user ID and password mapping utility.

e. Configure the RMI_OUTBOUND login configuration so that your new custom login module is first

in the list.

1) Click Security > Global security.

2) Under Authentication, click JAAS configuration > System logins > RMI_OUTBOUND.

3) Under Additional Properties, click JAAS login modules > New to add your login module to

the RMI_OUTBOUND configuration.

4) Return to the JAAS login modules panel for RMI_OUTBOUND and click Set order to

change the order that the login modules are loaded so that your custom login is loaded first.

v Add the use_realm_callback and use_appcontext_callback options to the outbound mapping module for

WSLogin. To add these options, complete the following steps:

1. Click Security > Global security.

2. Under Authentication, click JAAS Configuration > Application logins > WSLogin.

3. Under Additional Properties, click JAAS Login Modules >

com.ibm.ws.security.common.auth.module.WSLoginModuleImpl.

4. Under Additional Properties, click Custom Properties > New.

5. On the Custom Properties panel, enter use_realm_callback in the Name field and true in the Value

field.

6. Click OK.

7. Click New to enter the second custom property.

1546 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

8. On the Custom Properties panel, enter use_appcontext_callback in the Name field and true in the

Value field.

9. Click OK.

The following changes are made to the security.xml file:

<entries xmi:id=″JAASConfigurationEntry_2″ alias=″WSLogin″>

 <loginModules xmi:id=″JAASLoginModule_2″

 moduleClassName=″com.ibm.ws.security.common.auth.module.proxy.WSLoginModuleProxy″

 authenticationStrategy=″REQUIRED″>

 <options xmi:id=″Property_2″ name=″delegate″

 value=″com.ibm.ws.security.common.auth.module.WSLoginModuleImpl″/>

 <options xmi:id=″Property_3″ name=″use_realm_callback″ value=″true″/>

 <options xmi:id=″Property_4″ name=″use_appcontext_callback″ value=″true″/>

 </loginModules>

</entries>

Example: Using the WSLogin configuration to create a basic authentication subject:

This example shows how to use the WSLogin application login configuration from within a Java 2 Platform,

Enterprise Edition (J2EE) application to login and get a Subject that contains the user ID and the

password of the target realm

 javax.security.auth.Subject subject = null;

try

{

 // Create a login context using the WSLogin login configuration and specify a

 // user ID, target realm, and password. Note: If the target_realm_name is the

 // same as the current realm, an authenticated Subject is created. However, if

 // the target_realm_name is different from the current realm, a basic

 // authentication Subject is created that is not validated. This unvalidated

 // Subject is created so that you can send a request to the different target

 // realm with valid security credentials for that realm.

 javax.security.auth.login.LoginContext ctx = new LoginContext(″WSLogin″,

 new WSCallbackHandlerImpl(″userid″, ″target_realm_name″, ″password″));

 // Note: The following is an alternative that validates the user ID and

 // password specified against the target realm. It will perform a remote call

 // to the target server and will return true if the user ID and password are

 // valid and false if the user ID and password are invalid. If false is

 // returned, a WSLoginFailedException is thrown. You can catch that exception and

 // perform a retry or stop the request from flowing by allowing that exception to

 // surface out of this login.

 // ALTERNATIVE LOGIN CONTEXT THAT VALIDATES THE USER ID AND PASSWORD TO THE

 // TARGET REALM

 /**** currently remarked out ****

 java.util.Map appContext = new java.util.HashMap();

 appContext.put(javax.naming.Context.INITIAL_CONTEXT_FACTORY,

 ″com.ibm.websphere.naming.WsnInitialContextFactory″);

 appContext.put(javax.naming.Context.PROVIDER_URL,

 ″corbaloc:iiop:target_host:2809″);

 javax.security.auth.login.LoginContext ctx = new LoginContext(″WSLogin″,

Chapter 8. Developing WebSphere applications 1547

new WSCallbackHandlerImpl(″userid″, ″target_realm_name″, ″password″, appContext));

 **** currently remarked out ****/

 // Starts the login

 ctx.login();

 // Gets the Subject from the context

 subject = ctx.getSubject();

 }

 catch (javax.security.auth.login.LoginException e)

 {

 throw new com.ibm.websphere.security.auth.WSLoginFailedException (e.getMessage(), e);

 }

 if (subject != null)

 {

 // Defines a privileged action that encapsulates your remote request.

java.security.PrivilegedAction myAction = java.security.PrivilegedAction()

 {

 public Object run()

 {

 // Assumes a proxy is already defined. This example method returns a String

 return proxy.remoteRequest();

 }

 });

 // Executes this action using the basic authentication Subject needed for

 // the target realm security requirements.

 String myResult = (String) com.ibm.websphere.security.auth.WSSubject.doAs

 (subject, myAction);

 }

Example: Sample login configuration for RMI_OUTBOUND:

This example shows a sample login configuration for RMI_OUTBOUND that determines whether the realm

names match between two servers.

 public customLoginModule()

{

 public void initialize(Subject subject, CallbackHandler callbackHandler,

 Map sharedState, Map options)

 {

 // (For more information on what to do during initialization, see

 // ″Custom login module development for a system login configuration″

 // in the information center.

 }

 public boolean login() throws LoginException

 {

 // (For more information on what to do during login, see

 // ″Custom login module development for a system login configuration″

 // in the information center.

 // Gets the WSProtocolPolicyCallback object

 Callback callbacks[] = new Callback[1];

 callbacks[0] = new com.ibm.wsspi.security.auth.callback.

1548 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

WSProtocolPolicyCallback(″Protocol Policy Callback: ″);

 try

 {

 callbackHandler.handle(callbacks);

 }

 catch (Exception e)

 {

 // Handles the exception

 }

 // Receives the RMI (CSIv2) policy object for checking the target realm

 // based upon information from the IOR.

 // Note: This object can be used to perform additional security checks.

 // See the Javadoc for more information.

 csiv2PerformPolicy = (CSIv2PerformPolicy) ((WSProtocolPolicyCallback)callbacks[0]).

 getProtocolPolicy();

 // Checks if the realms do not match. If they do not match, then login to

 // perform a mapping

 if (!csiv2PerformPolicy.getTargetSecurityName().equalsIgnoreCase(csiv2PerformPolicy.

 getCurrentSecurityName()))

 {

 try

 {

 // Do some custom realm -> user ID and password mapping

 MyBasicAuthDataObject myBasicAuthData = MyMappingLogin.lookup

 (csiv2PerformPolicy.getTargetSecurityName());

 // Creates the login context with basic authentication data gathered from

 // custom mapping

 javax.security.auth.login.LoginContext ctx = new LoginContext(″WSLogin″,

 new WSCallbackHandlerImpl(myBasicAuthData.userid,

 csiv2PerformPolicy.getTargetSecurityName(),

 myBasicAuthData.password));

 // Starts the login

 ctx.login();

 // Gets the Subject from the context. This subject is used to replace

 // the passed-in Subject during the commit phase.

 basic_auth_subject = ctx.getSubject();

 }

 catch (javax.security.auth.login.LoginException e)

 {

 throw new com.ibm.websphere.security.auth.

 WSLoginFailedException (e.getMessage(), e);

 }

 }

 }

 public boolean commit() throws LoginException

 {

 // (For more information on what to do during commit, see

 // ″Custom login module development for a system login configuration″

 // in the information center.

Chapter 8. Developing WebSphere applications 1549

if (basic_auth_subject != null)

 {

 // Removes everything from the current Subject and adds everything from the

 // basic_auth_subject

 try

 {

 public final Subject basic_auth_subject_priv = basic_auth_subject;

 // Do this in a doPrivileged code block so that application code

 // does not need to add additional permissions

 java.security.AccessController.doPrivileged(new java.security.

 PrivilegedExceptionAction()

 {

 public Object run() throws WSLoginFailedException

 {

 // Removes everything user-specific from the current outbound

 // Subject. This a temporary Subject for this specific invocation

 // so you are not affecting the Subject set on the thread. You may

 // keep any custom objects that you want to propagate in the Subject.

 // This example removes everything and adds just the new information

 // back in.

 try

 {

 subject.getPublicCredentials().clear();

 subject.getPrivateCredentials().clear();

 subject.getPrincipals().clear();

 }

 catch (Exception e)

 {

 throw new WSLoginFailedException (e.getMessage(), e);

 }

 // Adds everything from basic_auth_subject into the login subject.

 // This completes the mapping to the new user.

 try

 {

 subject.getPublicCredentials().addAll(basic_auth_subject.

 getPublicCredentials());

 subject.getPrivateCredentials().addAll(basic_auth_subject.

 getPrivateCredentials());

 subject.getPrincipals().addAll(basic_auth_subject.

 getPrincipals());

 }

 catch (Exception e)

 {

 throw new WSLoginFailedException (e.getMessage(), e);

 }

 return null;

 }

 });

 }

 catch (PrivilegedActionException e)

 {

 throw new WSLoginFailedException (e.getException().getMessage(),

 e.getException());

 }

1550 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

}

 }

 // Defines your login module variables

 com.ibm.wsspi.security.csiv2.CSIv2PerformPolicy csiv2PerformPolicy = null;

 javax.security.auth.Subject basic_auth_subject = null;

}

Security attribute propagation

Security attribute propagation enables WebSphere Application Server to transport security attributes

(authenticated Subject contents and security context information) from one server to another in your

configuration. WebSphere Application Server might obtain these security attributes from either an

enterprise user registry, which queries static attributes, or a custom login module, which can query static or

dynamic attributes. Dynamic security attributes, which are custom in nature, might include the

authentication strength used for the connection, the identity of the original caller, the location of the original

caller, the IP address of the original caller, and so on.

Security attribute propagation provides propagation services using Java serialization for any objects that

are contained in the Subject. However, Java code must be able to serialize and de-serialize these objects.

The Java programming language specifies the rules for how Java code can serialize an object. Because

problems can occur when dealing with different platforms and versions of software, WebSphere Application

Server also offers a token framework that enables custom serialization functionality. The token framework

has other benefits that include the ability to identify the uniqueness of the token. This uniqueness

determines how the Subject gets cached and the purpose of the token. The token framework defines four

marker token interfaces that enable the WebSphere Application Server run time to determine how to

propagate the token.

Important: Any custom tokens that are used in this framework are not used by WebSphere Application

Server for authorization or authentication. The framework serves as a way to notify

WebSphere Application Server that you want these tokens propagated in a particular way.

WebSphere Application Server handles the propagation details, but does not handle

serialization or deserialization of custom tokens. Serialization and deserialization of these

custom tokens are carried out by the implementation and handled by a custom login module.

With WebSphere Application Server 6.0 and later, a custom Java Authorization Contract for

Container (JACC) provider can be configured to enforce access control for Java 2 Platform,

Enterprise Edition (J2EE) applications. A custom JACC provider can explore the custom

security attributes in the caller JAAS subject in making access control decisions.

When a request is being authenticated, a determination is made by the login modules whether this is an

initial login or a propagation login. An initial login is the process of authenticating the user information,

typically a user ID and password, and then calling the application programming interfaces (APIs) for the

remote user registry to look up secure attributes that represent the user access rights. A propagation login

is the process of validating the user information, typically an Lightweight Third Party Authentication (LTPA)

token, and then deserializing a series of tokens that constitute both custom objects and token framework

objects known to the WebSphere Application Server.

The following marker tokens are introduced in the framework:

Authorization token

The authorization token contains most of the authorization-related security attributes that are

propagated. The default authorization token is used by the WebSphere Application Server

authorization engine to make Java 2 Platform, Enterprise Edition (J2EE) authorization decisions.

Service providers can use custom authorization token implementations to isolate their data in a

different token; perform custom serialization and de-serialization; and make custom authorization

decisions using the information in their token at the appropriate time. For information on how to

Chapter 8. Developing WebSphere applications 1551

use and implement this token type, see “Default PropagationToken” on page 1557 and

“Implementing a custom PropagationToken” on page 1563.

Single signon (SSO) token

A custom SingleSignonToken token that is added to the Subject is automatically added to the

response as an HTTP cookie and contains the attributes sent back to Web browsers. The token

interface getName() method together with the getVersion method defines the cookie name.

WebSphere Application Server defines a default SingleSignonToken with the LtpaToken name and

version 2. The cookie name added is LtpaToken2. Do not add sensitive information, confidential

information, or unencrypted data to the response cookie.

 It is also recommended that any time that you use cookies, use the Secure Sockets Layer (SSL)

protocol to protect the request. Using an SSO token, Web users can authenticate once when

accessing Web resources across multiple WebSphere Application Servers. A custom SSO token

extends this functionality by adding custom processing to the single signon scenario. For more

information on SSO tokens, see “Configuring single signon” on page 1448. For information on how

to use and implement this token type, see “Default SingleSignonToken” on page 1585 and

“Implementing a custom SingleSignonToken” on page 1586.

Propagation token

The propagation token is not associated with the authenticated user so it is not stored in the

Subject. Instead, the propagation token is stored on the thread and follows the invocation

wherever it goes. When a request is sent outbound to another server, the propagation tokens on

that thread are sent with the request and the tokens are executed by the target server. The

attributes stored on the thread are propagated regardless of the Java 2 Platform, Enterprise

Edition (J2EE) RunAs user switches.

 The default propagation token monitors and logs all user switches and host switches. You can add

additional information to the default propagation token using the WSSecurityHelper application

programming interfaces (APIs). To retrieve and set custom implementations of a propagation

token, you can use the WSSecurityPropagationHelper class. For information on how to use and

implement this token type, see “Default PropagationToken” on page 1557 and “Implementing a

custom PropagationToken” on page 1563.

Authentication token

The authentication token flows to downstream servers and contains the identity of the user. This

token type serves the same function as the Lightweight Third Party Authentication (LTPA) token in

previous versions. Although this token type is typically reserved for internal WebSphere Application

Server purposes, you can add this token to the Subject and the token is propagated using the

getBytes method of the token interface.

 A custom authentication token is used solely for the purpose of the service provider that adds it to

the Subject. WebSphere Application Server do not use it for authentication purposes, because a

default authentication token exists that is used for WebSphere Application Server authentication.

This token type is available for the service provider to identify the purpose of the custom data to

use the token to perform custom authentication decisions. For information on how to use and

implement this token type, see “Default AuthenticationToken” on page 1597 and “Implementing a

custom AuthenticationToken” on page 1598.

Horizontal propagation versus downstream propagation

In WebSphere Application Server, both horizontal propagation, which is uses single signon for Web

requests, and downstream propagation, which uses Remote Method Invocation over the Internet

Inter-ORB Protocol (RMI/IIOP) to access enterprise beans, are available.

Horizontal propagation

In horizontal propagation, security attributes are propagated amongst front-end servers. The serialized

security attributes, which are the Subject contents and the propagation tokens, can contain both static and

1552 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

dynamic attributes. The single signon (SSO) token stores additional system-specific information that is

needed for horizontal propagation. The information contained in the SSO token tells the receiving server

where the originating server is located and how to communicate with that server. Additionally, the SSO

token also contains the key to look up the serialized attributes. In order to enable horizontal propagation,

you must configure the single signon token and the Web inbound security attribute propagation features.

You can configure both of these features using the administrative console by completing the following

steps:

1. Click Security > Global security.

2. Under Authentication, click Authentication Mechanisms > LTPA.

3. Under Additional properties, click Single signon (SSO)

For more information, see “Enabling security attribute propagation” on page 1555.

When front-end servers are configured and in the same distributed replication service (DRS) replication

domain, the application server automatically propagates the serialized information to all of the servers

within the same domain. In figure 1, application 1 is deployed on server 1 and server 2, and both servers

are members of the same DRS replication domain. If a request originates from application 1 on server 1

and then gets redirected to application 1 on server 2, the original login attributes are found on server 2

without additional remote requests. However, if the request originates from application 1 on either server 1

or server 2, but the request is redirected to application 2 on either server 1 or server 2, the serialized

information is not found in the DRS cache because the servers are not configured in the same replication

domain. As a result, a remote Java Management Extensions (JMX) request is sent back to the originating

server that hosts application 1 to obtain the serialized information so that original login information is

available to the application. By getting the serialized information using a single JMX remote call back to

the originating server, the following benefits are realized:

v You gain the function of retrieving login information from the original server.

v You do not need to perform any remote user registry calls because the application server can

regenerate the Subject from the serialized information. Without this ability, the application server might

make 5 to 6 separate remote calls.

Figure 1

Chapter 8. Developing WebSphere applications 1553

Initial HTTP

authentication

Later HTTP request

with single signon

Data Replication Service

(DRS)

attribute replication

Application 1 in server 1

Application 1 in server 2

Application 2 in server 3

Application 3 in server 5

Application 2 in server 4

Data Replication Service

(DRS)

attribute replication

Java Management Extensions (JMX)

request for subject

The subject is kept in the

Common Secure Interoperability version 2 (CSIV2) session

Application 1 in server 1

Application 3 in server 5

Application 1 in server 2 Application 2 in server 4

Application 2 in server 3

The Subject is requested from original server

because it is not found in DynaCache

The Subject is replicated

using DynaCache in this cluster.

There is no return to the

original cluster
The Subject and propagation attributes

are sent using RMI/IIOP

1. User authenticates to server 1.

2. Server 1 makes an RMI request to server 5.

3. User accesses another Web application on server 3.

Security

cache

DynaCache

DynaCache

Security

cache

DynaCache

DynaCache

CSIV2 session

cache

Performance implications for horizontal propagation

The performance implications of either the DRS or JMX remote call depends upon your environment. THE

DRS or JMX remote call is used for obtaining the original login attributes. Horizontal propagation reduces

many of the remote user registry calls in cases where these calls cause the most performance problems

for an application. However, the de-serialization of these objects also might cause performance

degradation, but this degradation might be less than the remote user registry calls. It is recommended that

you test your environment with horizontal propagation enabled and disabled. In cases where you must use

horizontal propagation for preserving original login attributes, test whether DRS or JMX provides better

performance in your environment. Typically, it is recommended that you configure DRS both for failover

and performance reasons. However, because DRS propagates the information to all of the servers in the

same replication domain (whether the servers are accessed or not), there might be a performance

degradation if too many servers are in the same replication domain. In this case, either reduce the number

of servers in the replication domain or do not configure the servers in a DRS replication domain. The later

suggestion causes a JMX remote call to retrieve the attributes, when needed, which might be quicker

overall.

Downstream propagation

In downstream propagation, a Subject is generated at the Web front-end server, either by a propagation

login or a user registry login. WebSphere Application Server propagates the security information

downstream for enterprise bean invocations when both Remote Method Invocation (RMI) outbound and

inbound propagation are enabled.

Benefits of propagating security attributes

The security attribute propagation feature of WebSphere Application Server has the following benefits:

1554 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

v Enables WebSphere Application Server to use the security attribute information for authentication and

authorization purposes. The propagation of security attributes can eliminate the need for user registry

calls at each remote hop along an invocation. Previous versions of WebSphere Application Server

propagated only the user name of the authenticated user, but ignored other security attribute information

that needed to be regenerated downstream using remote user registry calls. To accentuate the benefits

of this new functionality, consider the following example:

In previous releases, you might use a reverse proxy server (RPSS), such as WebSEAL, to authenticate

the user, gather group information, and gather other security attributes. As stated previously,

WebSphere Application Server accepted the identity of the authenticated user, but disregarded the

additional security attribute information. To create a Java Authentication and Authorization Service

(JAAS) Subject containing the needed WSCredential and WSPrincipal objects, WebSphere Application

Server made 5 to 6 calls to the user registry. The WSCredential object contains various security

information that is required to authorize a J2EE resource. The WSPrincipal object contains the realm

name and the user that represents the principal for the Subject.

In the current release of the Application Server, information that is obtained from the reverse proxy

server can be used by WebSphere Application Server and propagated downstream to other server

resources without additional calls to the user registry. The retaining of the security attribute information

enables you to protect server resources properly by making appropriate authorization and trust-based

decisions User switches that occur because of J2EE RunAs configurations do not cause the application

server to lose the original caller information. This information is stored in the PropagationToken located

on the running thread.

v Enables third-party providers to plug in custom tokens. The token interface contains a getBytes method

that enables the token implementation to define custom serialization, encryption methods, or both.

v Provides the ability to have multiple tokens of the same type within a Subject created by different

providers. WebSphere Application Server can handle multiple tokens for the same purpose. For

example, you might have multiple authorization tokens in the Subject and each token might have

distinct authorization attributes that are generated by different providers.

v Provides the ability to have a unique ID for each token type that is used to formulate a more unique

subject identifier than just the user name in cases where dynamic attributes might change the context of

a user login. The token type has a getUniqueId() method that is used for returning a unique string for

caching purposes. For example, you might need to propagate a location ID, which indicates the location

from which the user logs into the system. This location ID can be generated during the original login

using either an reverse proxy server or the WEB_INBOUND login configuration and added to the

Subject prior to serialization. Other attributes might be added to the Subject as well and use a unique

ID. All of the unique IDs must be considered for the uniqueness of the entire Subject. WebSphere

Application Server has the ability to specify what is unique about the information in the Subject, which

might affect how the user accesses the Subject later.

Enabling security attribute propagation

The security attribute propagation feature of WebSphere Application Server enables you to send security

attribute information regarding the original login to other servers using a token. To fully enable security

attribute propagation, you must configure the single signon (SSO), CSIv2 inbound, and CSIv2 outbound

panels in the WebSphere Application Server Administrative Console. You can enable just the portions of

security attribute propagation relevant to your configuration. For example, you can enable Web

propagation, which is propagation amongst front-end application servers, using either the push technique

(DynaCache) or the pull technique (remote method to originating server). You also can choose whether to

enable Remote Method Invocation (RMI) outbound and inbound propagation, which is commonly called

downstream propagation. Typically both types of propagation are enabled for any given cell. In some

cases, you might want to choose a different option for a specific application server using the server

security panel within the specific application server settings. To access the server security panel in the

administrative console, click Servers > Application Servers > server_name. Under Security, click Server

security. Under Additional properties, click Server-level security.

Complete the following steps to configure WebSphere Application Server for security attribute propagation:

Chapter 8. Developing WebSphere applications 1555

1. Access the WebSphere Application Server administrative console by typing

http://server_name:9060/ibm/console The administrative console address might differ if you have

previously changed the port number.

 2. Click Security > Global security. Under Authentication, click Authentication mechanisms > LTPA.

Under Additional Properties, click Single Signon (SSO).

 3. Optional: Select the Interoperability Mode option if you need to interoperate with servers that do

not support security attribute propagation. Servers that do not support security attribute propagation

receive the Lightweight Third Party Authentication (LTPA) token and the PropagationToken, but ignore

the security attribute information that it does not understand.

 4. Select the Web inbound security attribute propagation option. The Web inbound security

attribute propagation option enables horizontal propagation, which allows the receiving SSO token

to retrieve the login information from the original login server. If you do not enable this option,

downstream propagation can occur if you enable the Security Attribute Propagation option on both

the CSIv2 Inbound authentication and CSIv2 outbound authentication panels.

Typically, you enable the Web inbound security attribute propagation option if you need to gather

dynamic security attributes set at the original login server that cannot be regenerated at the new

front-end server. This attributes include any custom attributes that might be set in the

PropagationToken using the com.ibm.websphere.security.WSSecurityHelper application programming

interfaces (APIs). You must determine whether enabling this option improves or degrades the

performance of your system. While the option prevents some remote user registry calls, the

deserialization and decryption of some tokens might impact performance. In some cases, propagation

is faster especially if your user registry is the bottleneck of your topology. It is recommended that you

measurement the performance of your environment using and not using this option. When you test

the performance, it is recommended that you test in the operating environment of the typical

production environment with the typical number of unique users accessing the system simultaneously.

 5. Click Security > Global security. Under Authentication, click Authentication protocol > CSIv2

inbound authentication. The Login configuration field specifies RMI_INBOUND as the system login

configuration used for inbound requests. To add custom Java Authentication and Authorization

Service (JAAS) login modules, complete the following steps:

a. Click Security > Global security. Under Authentication, click JAAS Configuration > System

logins. A list of the system login configurations is displayed. WebSphere Application Server

provides the following pre-configured system login configurations: DEFAULT, LTPA, LTPA_WEB,

RMI_INBOUND, RMI_OUTBOUND, SWAM, WEB_INBOUND, wssecurity.IDAssertion, and

wssecurity.Signature. Do not delete these predefined configurations.

b. Click the name of the login configuration that you want to modify.

c. Under Additional Properties, click JAAS Login Modules. The JAAS Login Modules panel is

displayed, which lists all of the login modules processed in the login configuration. Do not delete

the required JAAS login modules. Instead, you can add custom login modules before or after the

required login modules. If you add custom login modules, do not begin their names with

com.ibm.ws.security.server because this prefix is reserved for WebSphere Application Server

internal use.

You can specify the order in which the login modules are processed by clicking Set Order.

 6. Select the Security attribute propagation option on the CSIv2 Inbound authentication panel. When

you select Security Attribute Propagation, the server advertises to other application servers that it

can receive propagated security attributes from another server in the same realm over the Common

Secure Interoperability version 2 (CSIv2) protocol.

 7. Click Security. Under Authentication, click Authentication protocol > CSIv2 Outbound

authentication. The CSIv2 outbound authentication panel is displayed. The Login configuration

field specifies RMI_OUTBOUND as JAAS login configuration that is used for outbound configuration. You

cannot change this login configuration. Instead, you can customize this login configuration by

completing the substeps listed previously for CSIv2 Inbound authentication.

 8. Optional: Verify that the Security Attribute Propagation option is selected if you want to enable

outbound Subject and security context token propagation for the Remote Method Invocation (RMI)

1556 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

protocol. When you select this option, WebSphere Application Server serializes the Subject contents

and the PropagationToken contents. After the contents are serialized, the server uses the Common

Secure Interoperability version 2 (CSIv2) protocol to send the Subject and PropagationToken to the

target servers that support security attribute propagation. If the receiving server does not support

security attribute tokens, WebSphere Application Server sends the Lightweight Third Party

Authentication (LTPA) token only.

Important: WebSphere Application Server propagates only the objects within the Subject that it can

serialize. The server propagates custom objects on a best-effort basis.

When Security Attribute Propagation is enabled, WebSphere Application Server adds marker

tokens to the Subject to enable the target server to add additional attributes during the inbound login.

During the commit phase of the login, the marker tokens and the Subject are marked as read-only

and cannot be modified thereafter.

 9. Optional: Select the Custom Outbound Mapping option if you deselect the Security Attribute

Propagation option and you want to use the RMI_OUTBOUND login configuration. If the Custom

Outbound Mapping option nor the Security Attribute Propagation option is selected, WebSphere

Application Server does not call the RMI_OUTBOUND login configuration. If you need to plug in a

credential mapping login module, you must select the Custom Outbound Mapping option.

10. Optional: Specify trusted target realm names in the Trusted Target Realms field. By specifying

these realm names, information can be sent to servers that reside outside the realm of the sending

server to allow for inbound mapping to occur at these downstream servers. To perform outbound

mapping to a realm different from the current realm, you must specify the realm in this field so that

you can get to this point without the request being rejected due to a realm mismatch. If you need

WebSphere Application Server to propagate security attributes to another realm when a request is

sent, you must specify the realm name in the Trusted Target Realms field. Otherwise, the security

attributes are not propagated to the unspecified realm. You can add multiple target realms by adding

a pipe (|) delimiter between each entry.

11. Optional: Enable propagation for a pure client. For a pure client to propagate attributes added to the

invocation Subject, you must add the following property to the sas.client.props file:

com.ibm.CSI.rmiOutboundPropagationEnabled=true

After completing these steps, you have configured WebSphere Application Server to propagate security

attributes to other servers. After you have configured WebSphere Application Server for security attribute

propagation and need to disable this functionality, you can disable propagation for either the server level or

the cell level. To disable security attribute propagation on the server level, click Server > Application

Servers >server_name. Under Security, click Server security. You can disable security attribute

propagation for inbound requests by clicking CSI inbound authentication under Additional Properties and

deselecting Security attribute propagation. You can disable security attribute propagation for outbound

requests by clicking CSI outbound authentication under Additional Properties and deselecting Security

attribute propagation. To disable security attribute propagation on the cell level, undo each of the steps

that you completed to enable security attribute propagation in this task.

Default PropagationToken

A default PropagationToken is located on the thread of execution for applications and the security

infrastructure to use. WebSphere Application Server propagates this default PropagationToken downstream

and the token stays on the thread where the invocation lands at each hop. The data should be available

from within the container of any resource where the PropagationToken lands. Remember that you must

enable the propagation feature at each server where a request is sent in order for propagation to work.

Make sure that you have enabled security attribute propagation for all of the cells in your environment

where you want propagation

There is a WSSecurityHelper class that has application programming interfaces (APIs) for accessing the

PropagationToken attributes. This article documents the usage scenarios and includes examples. A close

Chapter 8. Developing WebSphere applications 1557

relationship exists between PropagationToken and the WorkArea feature. The main difference between

these features is that after you add attributes to the PropagationToken, you cannot change the attributes.

You cannot change these attributes so that the security run time can add auditable information and have

that information remain there for the life of the invocation. Any time that you add an attribute to a specific

key, an ArrayList is stored to hold that attribute. Any new attribute added with the same key is added to the

ArrayList. When you call getAttributes, the ArrayList is converted to a String[] and the order is preserved.

The first element in the String[] is the first attribute added for that specific key.

In the default PropagationToken, a change flag is kept that logs any data changes to the token. These

changes are tracked to enable WebSphere Application Server to know when to re-send the authentication

information downstream so that the downstream server has those changes. Normally, Common Secure

Interoperability Version 2 (CSIv2) maintains a session between servers for an authenticated client. If the

PropagationToken changes, a new session is generated and subsequently a new authentication occurs.

Frequent changes to the PropagationToken during a method causes frequent downstream calls. If you

change the token prior to making many downstream calls, but you change the token between each

downstream call, you might impact security performance.

Getting the server list from the default PropagationToken

Every time the PropagationToken is propagated and used to create the authenticated Subject, either

horizontally or downstream, the name of the receiving application server is logged into the

PropagationToken. The format of the host is ″Cell:Node:Server″, which provides you access to the cell

name, node name, and server name of each application server that receives the invocation. The following

code provides you with this list of names and can be called from a Java 2 Platform, Enterprise Edition

(J2EE) application:

 String[] server_list = null;

 // If security is disabled on this application server, do not bother checking

 if (com.ibm.websphere.security.WSSecurityHelper.isServerSecurityEnabled())

 {

 try

 {

 // Gets the server_list string array

 server_list = com.ibm.websphere.security.WSSecurityHelper.getServerList();

 }

 catch (Exception e)

 {

 // Performs normal exception handling for your application

 }

 if (server_list != null)

 {

 // print out each server in the list, server_list[0] is the first server

 for (int i=0; i<server_list.length; i++)

 {

 System.out.println(″Server[″ + i + ″] = ″ + server_list[i]);

 }

 }

 }

The format of each server in the list is: cell:node:server. The output, for example, is:

myManager:node1:server1

1558 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Getting the caller list from the default PropagationToken

A default PropagationToken is generated any time an authenticated user is set on the thread of execution

or any one tries to add attributes to the PropagationToken. Whenever an authenticated user is set on the

thread, the user is logged in the default PropagationToken. There may be some pushing and popping of

Subjects by the authorization code. At times, the same user might be logged in multiple times if the RunAs

user is different from the caller. The following list provides the rules that are used to determine if a user

added to the thread gets logged into the PropagationToken:

v The current Subject must be authenticated. For example, an unauthenticated Subject is not logged.

v The current authenticated Subject is logged if a Subject has not been previously logged.

v The current authenticated Subject is logged if the last authenticated Subject logged does not contain the

same user.

v The current authenticated Subject is logged on each unique application server involved in the

propagation process.

The following code sample shows how to use the getCallerList() API:

 String[] caller_list = null;

 // If security is disabled on this application server, do not check the caller list

 if (com.ibm.websphere.security.WSSecurityHelper.isServerSecurityEnabled())

 {

 try

 {

 // Gets the caller_list string array

 caller_list = com.ibm.websphere.security.WSSecurityHelper.getCallerList();

 }

 catch (Exception e)

 {

 // Performs normal exception handling for your application

 }

 if (caller_list != null)

 {

 // Prints out each caller in the list, caller_list[0] is the first caller

 for (int i=0; i<caller_list.length;i++)

 {

 System.out.println(″Caller[″ + i + ″] = ″ + caller_list[i]);

 }

 }

 }

The format of each caller in the list is: cell:node:server:realm/securityName. The output, for example, is:

myManager:node1:server1:ldap.austin.ibm.com:389/jsmith.

Getting the first caller from the default PropagationToken

Whenever you want to know which authenticated caller started the request, you can call the getFirstCaller

method and the caller list is parsed. However, this method returns the securityName of the caller only. If

you need to know more than the securityName, call the getCallerList() method and retrieve the first entry

in the String[]. This entry provides the entire caller information. The following code sample retrieves the

securityName of the first authenticated caller using the getFirstCaller() API:

 String first_caller = null;

Chapter 8. Developing WebSphere applications 1559

// If security is disabled on this application server, do not bother checking

 if (com.ibm.websphere.security.WSSecurityHelper.isServerSecurityEnabled())

 {

 try

 {

 // Gets the first caller

 first_caller = com.ibm.websphere.security.WSSecurityHelper.getFirstCaller();

 // Prints out the caller name

 System.out.println(″First caller: ″ + first_caller);

 }

 catch (Exception e)

 {

 // Performs normal exception handling for your application

 }

 }

The output, for example, is: jsmith.

Getting the first host from the default PropagationToken

Whenever you want to know what the first application server is for this request, you can call the

getFirstServer() method directly. The following code sample retrieves the name of the first application

server using the getFirstServer() API:

 String first_server = null;

 // If security is disabled on this application server, do not bother checking

 if (com.ibm.websphere.security.WSSecurityHelper.isServerSecurityEnabled())

 {

 try

 {

 // Gets the first server

 first_server = com.ibm.websphere.security.WSSecurityHelper.getFirstServer();

 // Prints out the server name

 System.out.println(″First server: ″ + first_server);

 }

 catch (Exception e)

 {

 // Performs normal exception handling for your application

 }

 }

The output, for example, is: myManager:node1:server1.

Adding custom attributes to the default PropagationToken

You can add custom attributes to the default PropagationToken for application usage. This token follows

the request downstream so that the attributes are available when they are needed. When you use the

default PropagationToken to add attributes, you must understand the following issues:

v When you add information to the PropagationToken, it affects CSIv2 session caching. Add information

sparingly between remote requests.

v After you add information with a specific key, the information cannot be removed.

1560 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

v You can add as many values to a specific key as your need. However, all of the values must be

available from a returned String[] in the order they were added.

v The PropagationToken is available only on servers where propagation and security are enabled.

v The Java 2 Security javax.security.auth.AuthPermission wssecurity.addPropagationAttribute is needed to

add attributes to the default PropagationToken.

v An application cannot use keys that begin with either com.ibm.websphere.security or

com.ibm.wsspi.security. These prefixes are reserved for system usage.

The following code sample shows how to use the addPropagationAttribute API:

 // If security is disabled on this application server,

 // do not check the status of server security

 if (com.ibm.websphere.security.WSSecurityHelper.isServerSecurityEnabled())

 {

 try

 {

 // Specifies the key and values

 String key = ″mykey″;

 String value1 = ″value1″;

 String value2 = ″value2″;

 // Sets key, value1

 com.ibm.websphere.security.WSSecurityHelper.

 addPropagationAttribute (key, value1);

 // Sets key, value2

 String[] previous_values = com.ibm.websphere.security.WSSecurityHelper.

 addPropagationAttribute (key, value2);

 // Note: previous_values should contain value1

 }

 catch (Exception e)

 {

 // Performs normal exception handling for your application

 }

 }

See “Getting custom attributes from the default PropagationToken” to retrieve attributes using the

getPropagationAttributes application programming interface (API).

Getting custom attributes from the default PropagationToken

Custom attributes are added to the default PropagationToken using the addPropagationAttribute API.

These attributes can be retrieved using the getPropagationAttributes API. This token follows the request

downstream so the attributes are available when they are needed. When you use the default

PropagationToken to retrieve attributes, you must understand the following issues.

v The PropagationToken is available only on servers where propagation and security are enabled.

v The Java 2 Security javax.security.auth.AuthPermission wssecurity.getPropagationAttributes is needed

to retrieve attributes from the default PropagationToken.

The following code sample shows how to use the getPropagationAttributes API:

 // If security is disabled on this application server, do not bother checking

 if (com.ibm.websphere.security.WSSecurityHelper.isServerSecurityEnabled())

 {

Chapter 8. Developing WebSphere applications 1561

try

 {

 String key = ″mykey″;

 String[] values = null;

 // Sets key, value1

 values = com.ibm.websphere.security.WSSecurityHelper.

 getPropagationAttributes (key);

 // Prints the values

 for (int i=0; i<values.length; i++)

 {

 System.out.println(″Value[″ + i + ″] = ″ + values[i]);

 }

 }

 catch (Exception e)

 {

 // Performs normal exception handling for your application

 }

 }

The output, for example, is:

Value[0] = value1

Value[1] = value2

See Adding custom attributes to the default PropagationToken to add attributes using the

addPropagationAttributes API.

Changing the TokenFactory associated with the default PropagationToken

When WebSphere Application Server generates a default PropagationToken, the application server utilizes

the TokenFactory class that is specified using the com.ibm.wsspi.security.token.propagationTokenFactory

property. To modify this property using the administrative console, complete the following steps:

1. Click Security > Global Security.

2. Under Additional properties, click Custom properties.

The default TokenFactory specified for this property is called

com.ibm.ws.security.ltpa.AuthzPropTokenFactory. This token factory encodes the data in the

PropagationToken and does not encrypt the data. Because the PropagationToken typically flows over

Common Secure Interoperability version 2 (CSIv2) using Secure Sockets Layer (SSL), there is no need to

encrypt the token itself. However, if you need additional security for the PropagationToken, you can

associate a different TokenFactory implementation with this property to get encryption. For example, if you

choose to associate com.ibm.ws.security.ltpa.LTPAToken2Factory with this property, the token is AES

encrypted. However, you need to weigh the performance impacts against your security needs. Adding

sensitive information to the PropagationToken is a good reason to change the TokenFactory

implementation to something that encrypts rather than just encodes.

If you want to perform your own signing and encryption of the default PropagationToken, you must

implement the following classes:

v com.ibm.wsspi.security.ltpa.Token

v com.ibm.wsspi.security.ltpa.TokenFactory

Your TokenFactory implementation instantiates and validates your token implementation. You can choose

to use the Lightweight Third Party Authentication (LTPA) keys passed into the initialize method of the

1562 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

TokenFactory or you can use your own keys. If you use your own keys, they must be the same

everywhere in order to validate the tokens that are generated using those keys. See the Javadoc,

available through a link on the front page of the information center, for more information on implementing

your own custom TokenFactory. To associate your TokenFactory with the default PropagationToken, using

the administrative console, complete the following steps:

1. Click Security > Global Security.

2. Under Additional properties, click Custom properties.

3. Locate the com.ibm.wsspi.security.token.propagationTokenFactory property and verify that the value of

this property matches your custom TokenFactory implementation.

4. Verify that your implementation classes are put into the install directory/classes directory so that

the WebSphere class loader can load the classes.

Implementing a custom PropagationToken

This task explains how you might create your own PropagationToken implementation, which is set on the

thread of execution and propagated downstream. The default PropagationToken usually is sufficient for

propagating attributes that are not user-specific. Consider writing your own implementation if you want to

accomplish one of the following tasks:

v Isolate your attributes within your own implementation.

v Serialize the information using custom serialization. You must deserialize the bytes at the target and add

that information back on the thread by plugging in a custom login module into the inbound system login

configurations. This task also might include encryption and decryption.

To implement a custom Propagation token, you must complete the following steps:

1. Write a custom implementation of the PropagationToken interface. There are many different methods

for implementing the PropagationToken interface. However, make sure that the methods required by

the PropagationToken interface and the token interface are fully implemented. After you implement this

interface, you can place it in the install_dir/classes directory. Alternatively, you can place the class

in any private directory. However, make sure that the WebSphere Application Server class loader can

locate the class and that it is granted the appropriate permissions. You can add the Java archive (JAR)

file or directory that contains this class into the server.policy file so that it has the necessary

permissions that are needed by the server code.

Tip: All of the token types defined by the propagation framework have similar interfaces. Basically, the

token types are marker interfaces that implement the com.ibm.wsspi.security.token.Token

interface. This interface defines most of the methods. If you plan to implement more than one

token type, consider creating an abstract class that implements the

com.ibm.wsspi.security.token.Token interface. All of your token implementations, including the

PropagationToken, might extend the abstract class and then most of the work is completed.

To see an implementation of PropagationToken, see “Example:

com.ibm.wsspi.security.token.PropagationToken implementation” on page 1564

2. Add and receive the custom PropagationToken during WebSphere Application Server logins This task

is typically accomplished by adding a custom login module to the various application and system login

configurations. You also can add the implementation from an application. However, in order to

deserialize the information, you will need to plug in a custom login module, which is discussed in

“Propagating a custom Java serializable object” on page 1602. The WSSecurityPropagationHelper

class has APIs that are used to set a PropagationToken on the thread and to retrieve it from the thread

to make updates.

The code sample in “Example: custom PropagationToken login module” on page 1570 shows how to

determine if the login is an initial login or a propagation login. The difference between these login types

is whether the WSTokenHolderCallback contains propagation data. If the callback does not contain

propagation data, initialize a new custom PropagationToken implementation and set it on the thread. If

Chapter 8. Developing WebSphere applications 1563

the callback contains propagation data, look for your specific custom PropagationToken TokenHolder

instance, convert the byte[] back into your customer PropagationToken object, and set it back on the

thread. The code sample shows both instances.

You can add attributes any time your custom PropagationToken is added to the thread. If you add

attributes between requests and the getUniqueId method changes, then the CSIv2 client session is

invalidated so that it can send the new information downstream. Keep in mind that adding attributes

between requests can affect performance. In many cases, this is the desired behavior so that

downstream requests receive the new PropagationToken information.

To add the custom PropagationToken to the thread, call

WSSecurityPropagationHelper.addPropagationToken. This call requires the following Java 2 Security

permission: WebSphereRuntimePerMission ″setPropagationToken″

3. Add your custom login module to WebSphere Application Server system login configurations that

already contain the com.ibm.ws.security.server.lm.wsMapDefaultInboundLoginModule for receiving

serialized versions of your custom propagation token Also, you can add this login module to any of the

application logins where you might want to generate your custom PropagationToken on the thread

during the login. Alternatively, you can generate the custom PropagationToken implementation from

within your application. However, to deserialize it, you need to add the implementation to the system

login modules.

For information on how to add your custom login module to the existing login configurations, see

″Custom login module development for a system login configuration″ in the information center.

After completing these steps, you have implemented a custom PropagationToken.

Example: com.ibm.wsspi.security.token.PropagationToken implementation:

Use this file to see an example of a PropagationToken implementation. The following sample code does

not extend an abstract class, but rather implements the com.ibm.wsspi.security.token.PropagationToken

interface directly. You can implement the interface directly, but it might cause you to write duplicate code.

However, you might choose to implement the interface directly if there are considerable differences

between how you handle the various token implementations.

 For information on how to implement a custom PropagationToken, see “Implementing a custom

PropagationToken” on page 1563.

package com.ibm.websphere.security.token;

import com.ibm.websphere.security.WSSecurityException;

import com.ibm.websphere.security.auth.WSLoginFailedException;

import com.ibm.wsspi.security.token.*;

import com.ibm.websphere.security.WebSphereRuntimePermission;

import java.io.ByteArrayOutputStream;

import java.io.ByteArrayInputStream;

import java.io.DataOutputStream;

import java.io.DataInputStream;

import java.io.ObjectOutputStream;

import java.io.ObjectInputStream;

import java.io.OutputStream;

import java.io.InputStream;

import java.util.ArrayList;

public class CustomPropagationTokenImpl implements com.ibm.wsspi.security.

 token.PropagationToken

{

 private java.util.Hashtable hashtable = new java.util.Hashtable();

 private byte[] tokenBytes = null;

1564 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

// 2 hours in millis, by default

 private static long expire_period_in_millis = 2*60*60*1000;

 private long counter = 0;

/**

 * The constructor that is used to create initial PropagationToken instance

 */

 public CustomAbstractTokenImpl ()

 {

 // set the token version

 addAttribute(″version″, ″1″);

 // set the token expiration

 addAttribute(″expiration″, new Long(System.currentTimeMillis() +

 expire_period_in_millis).toString());

 }

/**

 * The constructor that is used to deserialize the token bytes received

 * during a propagation login.

 */

 public CustomAbstractTokenImpl (byte[] token_bytes)

 {

 try

 {

 hashtable = (java.util.Hashtable) com.ibm.wsspi.security.token.

 WSOpaqueTokenHelper.deserialize(token_bytes);

 }

 catch (Exception e)

 {

 e.printStackTrace();

 }

 }

/**

 * Validates the token including expiration, signature, and so on.

 * @return boolean

 */

 public boolean isValid ()

 {

 long expiration = getExpiration();

 // if you set the expiration to 0, it does not expire

 if (expiration != 0)

 {

 // return if this token is still valid

 long current_time = System.currentTimeMillis();

 boolean valid = ((current_time < expiration) ? true : false);

 System.out.println(″isValid: returning ″ + valid);

 return valid;

 }

 else

 {

 System.out.println(″isValid: returning true by default″);

Chapter 8. Developing WebSphere applications 1565

return true;

 }

 }

/**

 * Gets the expiration as a long type.

 * @return long

 */

 public long getExpiration()

 {

 // get the expiration value from the hashtable

 String[] expiration = getAttributes(″expiration″);

 if (expiration != null && expiration[0] != null)

 {

 // expiration is the first element (should only be one)

 System.out.println(″getExpiration: returning ″ + expiration[0]);

 return new Long(expiration[0]).longValue();

 }

 System.out.println(″getExpiration: returning 0″);

 return 0;

 }

/**

 * Returns if this token should be forwarded/propagated downstream.

 * @return boolean

 */

 public boolean isForwardable()

 {

 // You can choose whether your token gets propagated. In some cases

 // you might want the token to be local only.

 return true;

 }

/**

 * Gets the principal that this token belongs to. If this token is an

 * authorization token, this principal string must match the authentication

 * token principal string or the message is rejected.

 * @return String

 */

 public String getPrincipal()

 {

 // It is not necessary for the PropagtionToken to return a principal,

 // because it is not user-centric.

 return ″″;

 }

/**

 * Returns the unique identifier of the token based upon information that

 * the provider considers makes it a unique token. This identifier is used

 * for caching purposes and might be used in combination with other token

 * unique IDs that are part of the same Subject.

 *

 * This method should return null if you want the accessID of the user to

 * represent its uniqueness. This is the typical scenario.

1566 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

*

 * @return String

 */

 public String getUniqueID()

 {

 // If you want to propagate the changes to this token, change the

 // value that this unique ID returns whenever the token is changed.

 // Otherwise, CSIv2 uses an existing session when everything else is

 // the same. This getUniqueID ischecked by CSIv2 to determine the

 // session lookup.

 return counter;

 }

/**

 * Gets the bytes to be sent across the wire. The information in the byte[]

 * needs to be enough to recreate the Token object at the target server.

 * @return byte[]

 */

 public byte[] getBytes ()

 {

 if (hashtable != null)

 {

 try

 {

 // Do this if the object is set to read-only during login commit

 // because this guarantees that no new data is set.

 if (isReadOnly() && tokenBytes == null)

 tokenBytes = com.ibm.wsspi.security.token.WSOpaqueTokenHelper.

 serialize(hashtable);

 // You can deserialize this in the downstream login module using

 // WSOpaqueTokenHelper.deserialize()

 return tokenBytes;

 }

 catch (Exception e)

 {

 e.printStackTrace();

 return null;

 }

 }

 System.out.println(″getBytes: returning null″);

 return null;

 }

/**

 * Gets the name of the token, which is used to identify the byte[] in the

 * protocol message.

 * @return String

 */

 public String getName()

 {

 return this.getClass().getName();

 }

/**

Chapter 8. Developing WebSphere applications 1567

* Gets the version of the token as an short type. This code also is used

 * to identify the byte[] in the protocol message.

 * @return short

 */

 public short getVersion()

 {

 String[] version = getAttributes(″version″);

 if (version != null && version[0] != null)

 return new Short(version[0]).shortValue();

 System.out.println(″getVersion: returning default of 1″);

 return 1;

 }

/**

 * When called, the token becomes irreversibly read-only. The implementation

 * needs to ensure that any setter methods check that this read-only flag has

 * been set.

 */

 public void setReadOnly()

 {

 addAttribute(″readonly″, ″true″);

 }

/**

 * Called internally to see if the token is readonly

 */

 private boolean isReadOnly()

 {

 String[] readonly = getAttributes(″readonly″);

 if (readonly != null && readonly[0] != null)

 return new Boolean(readonly[0]).booleanValue();

 System.out.println(″isReadOnly: returning default of false″);

 return false;

 }

/**

 * Gets the attribute value based on the named value.

 * @param String key

 * @return String[]

 */

 public String[] getAttributes(String key)

 {

 ArrayList array = (ArrayList) hashtable.get(key);

 if (array != null && array.size() > 0)

 {

 return (String[]) array.toArray(new String[0]);

 }

 return null;

 }

1568 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

/**

 * Sets the attribute name and value pair. Returns the previous values set

 * for the key, or returns null if the value is not previously set.

 * @param String key

 * @param String value

 * @returns String[];

 */

 public String[] addAttribute(String key, String value)

 {

 // Gets the current value for the key

 ArrayList array = (ArrayList) hashtable.get(key);

 if (!isReadOnly())

 {

 // Increments the counter to change the uniqueID

 counter++;

 // Copies the ArrayList to a String[] as it currently exists

 String[] old_array = null;

 if (array != null && array.size() > 0)

 old_array = (String[]) array.toArray(new String[0]);

 // Allocates a new ArrayList if one was not found

 if (array == null)

 array = new ArrayList();

 // Adds the String to the current array list

 array.add(value);

 // Adds the current ArrayList to the Hashtable

 hashtable.put(key, array);

 // Returns the old array

 return old_array;

 }

 return (String[]) array.toArray(new String[0]);

 }

/**

 * Gets the list of all of the attribute names present in the token.

 * @return java.util.Enumeration

 */

 public java.util.Enumeration getAttributeNames()

 {

 return hashtable.keys();

 }

/**

 * Returns a deep clone of this token. This is typically used by the session

 * logic of the CSIv2 server to create a copy of the token as it exists in the

 * session.

 * @return Object

 */

 public Object clone()

Chapter 8. Developing WebSphere applications 1569

{

 com.ibm.websphere.security.token.CustomPropagationTokenImpl deep_clone =

 new com.ibm.websphere.security.token.CustomPropagationTokenImpl();

 java.util.Enumeration keys = getAttributeNames();

 while (keys.hasMoreElements())

 {

 String key = (String) keys.nextElement();

 String[] list = (String[]) getAttributes(key);

 for (int i=0; i<list.length; i++)

 deep_clone.addAttribute(key, list[i]);

 }

 return deep_clone;

 }

}

Example: custom PropagationToken login module:

This file shows how to determine if the login is an initial login or a propagation login

 public customLoginModule()

{

 public void initialize(Subject subject, CallbackHandler callbackHandler,

 Map sharedState, Map options)

 {

 // (For more information on what to do during initialization, see

 // ″Custom login module development for a system login configuration″

 // in the information center.

 }

 public boolean login() throws LoginException

 {

 // (For more information on what to do during login, see

 // ″Custom login module development for a system login configuration″

 // in the information center.

 // Handles the WSTokenHolderCallback to see if this is an initial

 // or propagation login.

 Callback callbacks[] = new Callback[1];

 callbacks[0] = new WSTokenHolderCallback(″Authz Token List: ″);

 try

 {

 callbackHandler.handle(callbacks);

 }

 catch (Exception e)

 {

 // handle exception

 }

 // Receives the ArrayList of TokenHolder objects (the serialized tokens)

1570 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

List authzTokenList = ((WSTokenHolderCallback) callbacks[0]).getTokenHolderList();

 if (authzTokenList != null)

 {

 // Iterates through the list looking for your custom token

 for (int i=0; i<authzTokenList.size(); i++)

 {

 TokenHolder tokenHolder = (TokenHolder)authzTokenList.get(i);

 // Looks for the name and version of your custom PropagationToken implementation

 if (tokenHolder.getName().equals(″

 com.ibm.websphere.security.token.CustomPropagationTokenImpl″) &&

 tokenHolder.getVersion() == 1)

 {

 // Passes the bytes into your custom PropagationToken constructor

 // to deserialize

 customPropToken = new

 com.ibm.websphere.security.token.CustomPropagationTokenImpl(tokenHolder.

 getBytes());

 }

 }

 }

 else // This is not a propagation login. Create a new instance of

 // your PropagationToken implementation

 {

 // Adds a new custom propagation token. This is an initial login

 customPropToken = new com.ibm.websphere.security.token.CustomPropagationTokenImpl();

 // Adds any initial attributes

 if (customPropToken != null)

 {

 customPropToken.addAttribute(″key1″, ″value1″);

 customPropToken.addAttribute(″key1″, ″value2″);

 customPropToken.addAttribute(″key2″, ″value1″);

 customPropToken.addAttribute(″key3″, ″something different″);

 }

 }

 // Note: You can add the token to the thread during commit in case

 // something happens during the login.

 }

 public boolean commit() throws LoginException

 {

 // For more information on what to do during commit, see

 // ″Custom login module development for a system login configuration″

 // in the information center.

 if (customPropToken != null)

 {

 // Sets the propagation token on the thread

 try

 {

 System.out.println(tc, ″*** ADDED MY CUSTOM PROPAGATION TOKEN TO THE THREAD ***″);

 // Prints out the values in the deserialized propagation token

Chapter 8. Developing WebSphere applications 1571

java.util.Enumeration keys = customPropToken.getAttributeNames();

 while (keys.hasMoreElements())

 {

 String key = (String) keys.nextElement();

 String[] list = (String[]) customPropToken.getAttributes(key);

 for (int k=0; k<list.length; k++)

 System.out.println(″Key/Value: ″ + key + ″/″ + list[k]);

 }

 // This sets it on the thread using getName() + getVersion() as the key

 com.ibm.wsspi.security.token.WSSecurityPropagationHelper.addPropagationToken(

 customPropToken);

 }

 catch (Exception e)

 {

 // Handles exception

 }

 // Now you can verify that you have set it properly by trying to get

 // it back from the thread and print the values.

 try

 {

 // This gets the PropagationToken from the thread using getName()

 // and getVersion() parameters.

 com.ibm.wsspi.security.token.PropagationToken tempPropagationToken =

 com.ibm.wsspi.security.token.WSSecurityPropagationHelper.getPropagationToken

 (″com.ibm.websphere.security.token.CustomPropagationTokenImpl″, 1);

 if (tempPropagationToken != null)

 {

 System.out.println(tc, ″*** RECEIVED MY CUSTOM PROPAGATION

 TOKEN FROM THE THREAD ***″);

 // Prints out the values in the deserialized propagation token

 java.util.Enumeration keys = tempPropagationToken.getAttributeNames();

 while (keys.hasMoreElements())

 {

 String key = (String) keys.nextElement();

 String[] list = (String[]) tempPropagationToken.getAttributes(key);

 for (int k=0; k<list.length; k++)

 System.out.println(″Key/Value: ″ + key + ″/″ + list[k]);

 }

 }

 }

 catch (Exception e)

 {

 // Handles exception

 }

 }

 }

 // Defines your login module variables

 com.ibm.wsspi.security.token.PropagationToken customPropToken = null;

}

1572 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Default AuthorizationToken

This article explains how WebSphere Application Server uses the default AuthorizationToken. Consider

using the default AuthorizationToken when you are looking for a place to add string attributes that will get

propagated downstream. However, make sure that the attributes that you add to the AuthorizationToken

are specific to the user associated with the authenticated Subject. If they are not specific to a user, the

attributes probably belong in the PropagationToken, which is also propagated with the request. For more

information on the PropagationToken, see “Default PropagationToken” on page 1557. To add attributes into

the AuthorizationToken, you must plug in a custom login module into the various system login modules that

are configured. Any login module configuration that has the

com.ibm.ws.security.server.lm.wsMapDefaultInboundLoginModule implementation configured can receive

propagated information and can generate propagation information that can be sent outbound to another

server.

If propagated attributes are not presented to the login configuration during an initial login, a default

AuthorizationToken is created in the wsMapDefaultInboundLoginModule after the login occurs in the

ltpaLoginModule. A reference to the default AuthorizationToken can be obtained from the login() method

using the sharedState hashmap. You must plug in the custom login module after the

wsMapDefaultInboundLoginModule implementation for WebSphere Application Server to see the default

AuthorizationToken..

For more information on the Java Authentication and Authorization Service (JAAS) programming model,

see ″Security: Resources for learning″ in the information center.

Important: Whenever you plug in a custom login module into the WebSphere Application Server login

infrastructure, you must ensure that the code is trusted. When you add the login module into

the install_dir/classes directory, it has Java 2 Security AllPermissions. It is recommended

that you add your login module and other infrastructure classes into a private directory.

However, if you use a private directory, modify the

$(WAS_INSTALL_ROOT)/properties/server.policy file so that the private directory, Java archive

(JAR) file, or both have the permissions needed to execute the application programming

interfaces (API) called from the login module. Because the login module might run after the

application code on the call stack, you might consider adding a doPrivileged code block so

that you do not need to add additional permissions to your applications.

The following sample code shows you how to obtain a reference to the default AuthorizationToken from the

login() method, how to add attributes to the token, and how to read from the existing attributes that are

used for authorization.

public customLoginModule()

{

 public void initialize(Subject subject, CallbackHandler callbackHandler,

 Map sharedState, Map options)

 {

 // (For more information on initialization, see

 // ″Custom login module development for a system login configuration″

 // in the information center.

 // Get a reference to the sharedState map that is passed in during initialization.

 _sharedState = sharedState;

 }

 public boolean login() throws LoginException

 {

 // (For more information on what to during login, see

 // ″Custom login module development for a system login configuration″

Chapter 8. Developing WebSphere applications 1573

// in the information center.

 // Look for the default AuthorizationToken in the shared state

 defaultAuthzToken = (com.ibm.wsspi.security.token.AuthorizationToken)

 sharedState.get

 (com.ibm.wsspi.security.auth.callback.Constants.WSAUTHZTOKEN_KEY);

 // Might not always have one of these generated. It depends on the login

 // configuration setup.

 if (defaultAuthzToken != null)

 {

 try

 {

 // Add a custom attribute

 defaultAuthzToken.addAttribute(″key1″, ″value1″);

 // Determine all of the attributes and values that exist in the token.

 java.util.Enumeration listOfAttributes = defaultAuthorizationToken.

 getAttributeNames();

 while (listOfAttributes.hasMoreElements())

 {

 String key = (String) listOfAttributes.nextElement();

 String[] values = (String[]) defaultAuthorizationToken.getAttributes (key);

 for (int i=0; i<values.length; i++)

 {

 System.out.println (″Key: ″ + key + ″, Value[″ + i + ″]: ″

 + values[i]);

 }

 }

 // Read the existing uniqueID attribute.

 String[] uniqueID = defaultAuthzToken.getAttributes

 (com.ibm.wsspi.security.token.AttributeNameConstants.

 WSCREDENTIAL_UNIQUEID);

 // Getthe uniqueID from the String[]

 String unique_id = (uniqueID != null &&

 uniqueID[0] != null) ? uniqueID[0] : ″″;

 // Read the existing expiration attribute.

 String[] expiration = defaultAuthzToken.getAttributes

 (com.ibm.wsspi.security.token.AttributeNameConstants.

 WSCREDENTIAL_EXPIRATION);

 // An example of getting a long expiration value from the string array.

 long expire_time = 0;

 if (expiration != null && expiration[0] != null)

 expire_time = Long.parseLong(expiration[0]);

 // Read the existing display name attribute.

 String[] securityName = defaultAuthzToken.getAttributes

 (com.ibm.wsspi.security.token.AttributeNameConstants.

 WSCREDENTIAL_SECURITYNAME);

1574 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

// Get the display name from the String[]

 String display_name = (securityName != null &&

 securityName[0] != null) ? securityName[0] : ″″;

 // Read the existing long securityName attribute.

 String[] longSecurityName = defaultAuthzToken.getAttributes

 (com.ibm.wsspi.security.token.AttributeNameConstants.

 WSCREDENTIAL_LONGSECURITYNAME);

 // Get the long security name from the String[]

 String long_security_name = (longSecurityName != null &&

 longSecurityName[0] != null) ? longSecurityName[0] : ″″;

 // Read the existing group attribute.

 String[] groupList = defaultAuthzToken.getAttributes

 (com.ibm.wsspi.security.token.AttributeNameConstants.

 WSCREDENTIAL_GROUPS);

 // Get the groups from the String[]

 ArrayList groups = new ArrayList();

 if (groupList != null)

 {

 for (int i=0; i<groupList.length; i++)

 {

 System.out.println (″group[″ + i + ″] = ″ + groupList[i]);

 groups.add(groupList[i]);

 }

 }

 }

 catch (Exception e)

 {

 throw new WSLoginFailedException (e.getMessage(), e);

 }

 }

 }

 public boolean commit() throws LoginException

 {

 // (For more information on what to do during commit, see

 // ″Custom login module development for a system login configuration″

 // in the information center.

 }

 private java.util.Map _sharedState = null;

 private com.ibm.wsspi.security.token.AuthorizationToken defaultAuthzToken = null;

}

Chapter 8. Developing WebSphere applications 1575

Changing the TokenFactory associated with the default AuthorizationToken

When WebSphere Application Server generates a default AuthorizationToken, the application server

utilizes the TokenFactory class that is specified using the

com.ibm.wsspi.security.token.authorizationTokenFactory property. To modify this property using the

administrative console, complete the following steps:

1. Click Security > Global Security.

2. Under Additional properties, click Custom properties.

The default TokenFactory that used is called com.ibm.ws.security.ltpa.AuthzPropTokenFactory. This token

factory encodes the data, but does not encrypt the data in the AuthorizationToken. Because the

AuthorizationToken typically flows over Common Secure Interoperability version 2 (CSIv2) using Secure

Sockets Layer (SSL), there is no need to encrypt the token itself. However, if you need addition security

for the AuthorizationToken, you can associate a different TokenFactory implementation with this property to

get encryption. For example, if you associate com.ibm.ws.security.ltpa.LTPAToken2Factory with this

property, the token uses AES encryption. However, you need to weigh the performance impacts against

your security needs. Adding sensitive information to the AuthorizationToken is one reason to change the

TokenFactory implementation to something that encrypts rather than just encodes.

If you want to perform your own signing and encryption of the default AuthorizationToken you must

implement the following classes:

v com.ibm.wsspi.security.ltpa.Token

v com.ibm.wsspi.security.ltpa.TokenFactory

Your TokenFactory implementation instantiates and validates your token implementation. You can use the

Lightweight Third Party Authentication (LTPA) keys that are passed into the initialize method of the

TokenFactory or you can use your own keys. If you use your own keys, they must be the same

everywhere in order to validate the tokens that are generated using those keys. See the Javadoc,

available through a link on the front page of the information center, for more information on implementing

your own custom TokenFactory. To associate your TokenFactory with the default AuthorizationToken, using

the administrative console, complete the following steps:

1. Click Security > Global Security.

2. Under Additional properties, click Custom properties.

3. Locate the com.ibm.wsspi.security.token.authorizationTokenFactory property and verify that the value of

this property matches your custom TokenFactory implementation.

4. Verify that your implementation classes are put into the install directory/classes directory so that

the WebSphere class loader can load the classes.

Implementing a custom AuthorizationToken

This task explains how you might create your own AuthorizationToken implementation, which is set in the

login Subject and propagated downstream. The default AuthorizationToken usually is sufficient for

propagating attributes that are user-specific. Consider writing your own implementation if you want to

accomplish one of the following tasks:

v Isolate your attributes within your own implementation.

v Serialize the information using custom serialization. You must deserialize the bytes at the target and add

that information back on the thread. This task also might include encryption and decryption.

v Affect the overall uniqueness of the Subject using the getUniqueID() API.

To implement a custom authorization token, you must complete the following steps:

1. Write a custom implementation of the AuthorizationToken interface. There are many different methods

for implementing the AuthorizationToken interface. However, make sure that the methods required by

the AuthorizationToken interface and the token interface are fully implemented. After you implement

1576 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

this interface, you can place it in the install_dir/classes directory. Alternatively, you can place the

class in any private directory. However, make sure that the WebSphere Application Server class loader

can locate the class and that it is granted the appropriate permissions. You can add the Java archive

(JAR) file or directory that contains this class into the server.policy file so that it has the necessary

permissions that are needed by the server code.

Tip: All of the token types defined by the propagation framework have similar interfaces. Basically, the

token types are marker interfaces that implement the com.ibm.wsspi.security.token.Token

interface. This interface defines most of the methods. If you plan to implement more than one

token type, consider creating an abstract class that implements the

com.ibm.wsspi.security.token.Token interface. All of your token implementations, including the

AuthorizationToken, might extend the abstract class and then most of the work is completed.

To see an implementation of AuthorizationToken, see “Example:

com.ibm.wsspi.security.token.AuthorizationToken implementation”

2. Add and receive the custom AuthorizationToken during WebSphere Application Server logins This task

is typically accomplished by adding a custom login module to the various application and system login

configurations. However, in order to deserialize the information, you must plug in a custom login

module, which is discussed in “Propagating a custom Java serializable object” on page 1602. After the

object is instantiated in the login module, you can the object to the Subject during the commit()

method.

If you only want to add information to the Subject to get propagated, see “Propagating a custom Java

serializable object” on page 1602. If you want to ensure that the information is propagated, want to do

you own custom serialization, or want to specify the uniqueness for Subject caching purposes, then

consider writing your own AuthorizationToken implementation.

The code sample in “Example: custom AuthorizationToken login module” on page 1582 shows how to

determine if the login is an initial login or a propagation login. The difference between these login types

is whether the WSTokenHolderCallback contains propagation data. If the callback does not contain

propagation data, initialize a new custom AuthorizationToken implementation and set it into the Subject.

If the callback contains propagation data, look for your specific custom AuthorizationToken TokenHolder

instance, convert the byte[] back into your custom AuthorizationToken object, and set it back into the

Subject. The code sample shows both instances.

You can make your AuthorizationToken read-only in the commit phase of the login module. If you do

not make the token read-only, then attributes can be added within your applications.

3. Add your custom login module to WebSphere Application Server system login configurations that

already contain the com.ibm.ws.security.server.lm.wsMapDefaultInboundLoginModule for receiving

serialized versions of your custom authorization token

Because this login module relies on information in the sharedState added by the

com.ibm.ws.security.server.lm.wsMapDefaultInboundLoginModule, add this login module after

com.ibm.ws.security.server.lm.wsMapDefaultInboundLoginModule. For information on how to add your

custom login module to the existing login configurations, see ″Custom login module development for a

system login configuration″ in the information center.

After completing these steps, you have implemented a custom AuthorizationToken.

Example: com.ibm.wsspi.security.token.AuthorizationToken implementation:

Use this file to see an example of a AuthorizationToken implementation. The following sample code does

not extend an abstract class, but rather implements the com.ibm.wsspi.security.token.AuthorizationToken

interface directly. You can implement the interface directly, but it might cause you to write duplicate code.

However, you might choose to implement the interface directly if there are considerable differences

between how you handle the various token implementations.

 For information on how to implement a custom AuthorizationToken, see “Implementing a custom

AuthorizationToken” on page 1576.

Chapter 8. Developing WebSphere applications 1577

package com.ibm.websphere.security.token;

import com.ibm.websphere.security.WSSecurityException;

import com.ibm.websphere.security.auth.WSLoginFailedException;

import com.ibm.wsspi.security.token.*;

import com.ibm.websphere.security.WebSphereRuntimePermission;

import java.io.ByteArrayOutputStream;

import java.io.ByteArrayInputStream;

import java.io.DataOutputStream;

import java.io.DataInputStream;

import java.io.ObjectOutputStream;

import java.io.ObjectInputStream;

import java.io.OutputStream;

import java.io.InputStream;

import java.util.ArrayList;

public class CustomAuthorizationTokenImpl implements com.ibm.wsspi.security.

 token.AuthorizationToken

{

 private java.util.Hashtable hashtable = new java.util.Hashtable();

 private byte[] tokenBytes = null;

 private static long expire_period_in_millis = 2*60*60*1000;

 // 2 hours in millis, by default

/**

 * Constructor used to create initial AuthorizationToken instance

 */

 public CustomAuthorizationTokenImpl (String principal)

 {

 // Sets the principal in the token

 addAttribute("principal", principal);

 // Sets the token version

 addAttribute("version", "1");

 // Sets the token expiration

 addAttribute("expiration", new Long(System.currentTimeMillis() +

 expire_period_in_millis).toString());

 }

/**

 * Constructor used to deserialize the token bytes received during a

 * propagation login.

 */

 public CustomAuthorizationTokenImpl (byte[] token_bytes)

 {

 try

 {

 hashtable = (java.util.Hashtable) com.ibm.wsspi.security.token.

 WSOpaqueTokenHelper.deserialize(token_bytes);

 }

 catch (Exception e)

 {

 e.printStackTrace();

 }

 }

/**

 * Validates the token including expiration, signature, and so on.

 * @return boolean

 */

 public boolean isValid ()

 {

 long expiration = getExpiration();

 // if you set the expiration to 0, it does not expire

 if (expiration != 0)

1578 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

{

 // return if this token is still valid

 long current_time = System.currentTimeMillis();

 boolean valid = ((current_time < expiration) ? true : false);

 System.out.println("isValid: returning " + valid);

 return valid;

 }

 else

 {

 System.out.println("isValid: returning true by default");

 return true;

 }

 }

/**

 * Gets the expiration as a long.

 * @return long

 */

 public long getExpiration()

 {

 // Gets the expiration value from the hashtable

 String[] expiration = getAttributes("expiration");

 if (expiration != null && expiration[0] != null)

 {

 // The expiration is the first element. There should be only one expiration.

 System.out.println("getExpiration: returning " + expiration[0]);

 return new Long(expiration[0]).longValue();

 }

 System.out.println("getExpiration: returning 0");

 return 0;

 }

/**

 * Returns if this token should be forwarded/propagated downstream.

 * @return boolean

 */

 public boolean isForwardable()

 {

 // You can choose whether your token gets propagated. In some cases,

 // you might want it to be local only.

 return true;

 }

/**

 * Gets the principal that this Token belongs to. If this is an authorization token,

 * this principal string must match the authentication token principal string or the

 * message will be rejected.

 * @return String

 */

 public String getPrincipal()

 {

 // this might be any combination of attributes

 String[] principal = getAttributes("principal");

 if (principal != null && principal[0] != null)

 {

 return principal[0];

 }

 System.out.println("getExpiration: returning null");

 return null;

 }

/**

Chapter 8. Developing WebSphere applications 1579

* Returns a unique identifier of the token based upon the information that provider

 * considers makes this a unique token. This will be used for caching purposes

 * and might be used in combination with other token unique IDs that are part of

 * the same Subject.

 *

 * This method should return null if you want the accessID of the user to represent

 * uniqueness. This is the typical scenario.

 *

 * @return String

 */

 public String getUniqueID()

 {

 // if you don’t want to affect the cache lookup, just return NULL here.

 // return null;

 String cacheKeyForThisToken = "dynamic attributes";

 // if you do want to affect the cache lookup, return a string of

 // attributes that you want factored into the lookup.

 return cacheKeyForThisToken;

 }

/**

 * Gets the bytes to be sent across the wire. The information in the byte[]

 * needs to be enough to recreate the Token object at the target server.

 * @return byte[]

 */

 public byte[] getBytes ()

 {

 if (hashtable != null)

 {

 try

 {

 // Do this if the object is set to read-only during login commit,

 // because this makes sure that no new data gets set.

 if (isReadOnly() && tokenBytes == null)

 tokenBytes = com.ibm.wsspi.security.token.WSOpaqueTokenHelper.

 serialize(hashtable);

 // You can deserialize this in the downstream login module using

 // WSOpaqueTokenHelper.deserialize()

 return tokenBytes;

 }

 catch (Exception e)

 {

 e.printStackTrace();

 return null;

 }

 }

 System.out.println("getBytes: returning null");

 return null;

 }

/**

 * Gets the name of the token used to identify the byte[] in the protocol message.

 * @return String

 */

 public String getName()

 {

 return this.getClass().getName();

 }

/**

 * Gets the version of the token as an short. This also is used to identify the

 * byte[] in the protocol message.

 * @return short

1580 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

*/

 public short getVersion()

 {

 String[] version = getAttributes("version");

 if (version != null && version[0] != null)

 return new Short(version[0]).shortValue();

 System.out.println("getVersion: returning default of 1");

 return 1;

 }

/**

 * When called, the token becomes irreversibly read-only. The implementation

 * needs to ensure that any setter methods check that this flag has been set.

 */

 public void setReadOnly()

 {

 addAttribute("readonly", "true");

 }

/**

 * Called internally to see if the token is read-only

 */

 private boolean isReadOnly()

 {

 String[] readonly = getAttributes("readonly");

 if (readonly != null && readonly[0] != null)

 return new Boolean(readonly[0]).booleanValue();

 System.out.println("isReadOnly: returning default of false");

 return false;

 }

/**

 * Gets the attribute value based on the named value.

 * @param String key

 * @return String[]

 */

 public String[] getAttributes(String key)

 {

 ArrayList array = (ArrayList) hashtable.get(key);

 if (array != null && array.size() > 0)

 {

 return (String[]) array.toArray(new String[0]);

 }

 return null;

 }

/**

 * Sets the attribute name and value pair. Returns the previous values set for key,

 * or null if not previously set.

 * @param String key

 * @param String value

 * @returns String[];

 */

 public String[] addAttribute(String key, String value)

 {

 // Gets the current value for the key

 ArrayList array = (ArrayList) hashtable.get(key);

 if (!isReadOnly())

 {

 // Copies the ArrayList to a String[] as it currently exists

Chapter 8. Developing WebSphere applications 1581

String[] old_array = null;

 if (array != null && array.size() > 0)

 old_array = (String[]) array.toArray(new String[0]);

 // Allocates a new ArrayList if one was not found

 if (array == null)

 array = new ArrayList();

 // Adds the String to the current array list

 array.add(value);

 // Adds the current ArrayList to the Hashtable

 hashtable.put(key, array);

 // Returns the old array

 return old_array;

 }

 return (String[]) array.toArray(new String[0]);

 }

/**

 * Gets the list of all attribute names present in the token.

 * @return java.util.Enumeration

 */

 public java.util.Enumeration getAttributeNames()

 {

 return hashtable.keys();

 }

/**

 * Returns a deep copying of this token, if necessary.

 * @return Object

 */

 public Object clone()

 {

 com.ibm.websphere.security.token.CustomAuthorizationTokenImpl deep_clone =

 new com.ibm.websphere.security.token.CustomAuthorizationTokenImpl();

 java.util.Enumeration keys = getAttributeNames();

 while (keys.hasMoreElements())

 {

 String key = (String) keys.nextElement();

 String[] list = (String[]) getAttributes(key);

 for (int i=0; i<list.length; i++)

 deep_clone.addAttribute(key, list[i]);

 }

 return deep_clone;

 }

}

Example: custom AuthorizationToken login module:

This file shows how to determine if the login is an initial login or a propagation login

 public customLoginModule()

{

 public void initialize(Subject subject, CallbackHandler callbackHandler,

 Map sharedState, Map options)

 {

1582 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

// (For more information on what to do during initialization, see

 // ″Custom login module development for a system login configuration″

 // in the information center.

 _sharedState = sharedState;

 }

 public boolean login() throws LoginException

 {

 // (For more information on what do during login, see

 // ″Custom login module development for a system login configuration″

 // in the information center.

 // Handles the WSTokenHolderCallback to see if this is an initial or

 // propagation login.

 Callback callbacks[] = new Callback[1];

 callbacks[0] = new WSTokenHolderCallback(″Authz Token List: ″);

 try

 {

 callbackHandler.handle(callbacks);

 }

 catch (Exception e)

 {

 // Handles exception

 }

 // Receives the ArrayList of TokenHolder objects (the serialized tokens)

 List authzTokenList = ((WSTokenHolderCallback) callbacks[0]).getTokenHolderList();

 if (authzTokenList != null)

 {

 // Iterates through the list looking for your custom token

 for (int i=0; i

 for (int i=0; i<authzTokenList.size(); i++)

 {

 TokenHolder tokenHolder = (TokenHolder)authzTokenList.get(i);

 // Looks for the name and version of your custom AuthorizationToken

 // implementation

 if (tokenHolder.getName().equals(″com.ibm.websphere.security.token.

 CustomAuthorizationTokenImpl″) &&

 tokenHolder.getVersion() == 1)

 {

 // Passes the bytes into your custom AuthorizationToken constructor

 // to deserialize

 customAuthzToken = new

 com.ibm.websphere.security.token.CustomAuthorizationTokenImpl(

 tokenHolder.getBytes());

 }

 }

 }

 else

 // This is not a propagation login. Create a new instance of your

 // AuthorizationToken implementation

Chapter 8. Developing WebSphere applications 1583

{

 // Gets the prinicpal from the default AuthenticationToken. This must match

 // all tokens.

 defaultAuthToken = (com.ibm.wsspi.security.token.AuthenticationToken)

 sharedState.get(com.ibm.wsspi.security.auth.callback.Constants.WSAUTHTOKEN_KEY);

 String principal = defaultAuthToken.getPrincipal();

 // Adds a new custom authorization token. This is an initial login. Pass the

 // principal into the constructor

 customAuthzToken = new com.ibm.websphere.security.token.

 CustomAuthorizationTokenImpl(principal);

 // Adds any initial attributes

 if (customAuthzToken != null)

 {

 customAuthzToken.addAttribute(″key1″, ″value1″);

 customAuthzToken.addAttribute(″key1″, ″value2″);

 customAuthzToken.addAttribute(″key2″, ″value1″);

 customAuthzToken.addAttribute(″key3″, ″something different″);

 }

 }

 // Note: You can add the token to the Subject during commit in case something

 // happens during the login.

 }

 public boolean commit() throws LoginException

 {

 // (For more information on what to do during a commit, see

 // ″Custom login module development for a system login configuration″

 // in the information center.

 if (customAut // (hzToken != null)

 {

 // sSets the customAuthzToken token into the Subject

 try

 {

 public final AuthorizationToken customAuthzTokenPriv = customAuthzToken;

 // Do this in a doPrivileged code block so that application code does not

 // need to add additional permissions

 java.security.AccessController.doPrivileged(new java.security.PrivilegedAction()

 {

 public Object run()

 {

 try

 {

 // Adds the custom authorization token if it is not null

 // and not already in the Subject

 if ((customAuthzTokenPriv != null) &&

 (!subject.getPrivateCredentials().contains(customAuthzTokenPriv)))

 {

 subject.getPrivateCredentials().add(customAuthzTokenPriv);

 }

 }

 catch (Exception e)

 {

1584 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

throw new WSLoginFailedException (e.getMessage(), e);

 }

 return null;

 }

 });

 }

 catch (Exception e)

 {

 throw new WSLoginFailedException (e.getMessage(), e);

 }

 }

 }

 // Defines your login module variables

 com.ibm.wsspi.security.token.AuthorizationToken customAuthzToken = null;

 com.ibm.wsspi.security.token.AuthenticationToken defaultAuthToken = null;

 java.util.Map _sharedState = null;

}

Default SingleSignonToken

Do not use the default SingleSignonToken in service provider code. This default token is used by the

WebSphere Application Server run-time code only. There are size limitations for this token when it is

added as an HTTP cookie. If you need to create an HTTP cookie using this token framework, you can

implement a custom SingleSignonToken. To implement a custom SingleSignonToken, see “Implementing a

custom SingleSignonToken” on page 1586 for more information.

Changing the TokenFactory associated with the default SingleSignonToken

When default SingleSignonToken is generated, the application server utilizes the TokenFactory class that

is specified using the com.ibm.wsspi.security.token.singleSignonTokenFactory property. To modify this

property using the administrative console, complete the following steps:

1. Click Security > Global Security.

2. Under Additional properties, click Custom properties.

The default TokenFactory specified for this property is called com.ibm.ws.security.ltpa.LTPAToken2Factory.

This token factory creates an SSO token called LtpaToken2, which WebSphere Application Server uses for

propagation. This TokenFactory uses the AES/CBC/PKCS5Padding cipher. If you change this

TokenFactory, you lose the interoperability with any servers running a version of WebSphere Application

Server prior to version 5.1.1 that use the default TokenFactory. Only servers running WebSphere

Application Server Version 5.1.1 or later with propagation enabled are aware of the LtpaToken2 cookie.

However, this is not a problem if all of your application servers use WebSphere Application Server Version

5.1.1 or later and all of your servers use your new TokenFactory.

If you need to perform your own signing and encryption of the default SingleSignonToken, you must

implement the following classes:

v com.ibm.wsspi.security.ltpa.Token

v com.ibm.wsspi.security.ltpa.TokenFactory

Your TokenFactory implementation instantiates (createToken) and validates (validateTokenBytes) your

token implementation. You can use the LTPA keys passed into the initialize method of the TokenFactory or

you can use your own keys. If you use your own keys, they must be the same everywhere in order to

validate the tokens that are generated using those keys. See the Javadoc, available through a link on the

Chapter 8. Developing WebSphere applications 1585

front page of the information center, for more information on implementing your own custom TokenFactory.

To associate your TokenFactory with the default SingleSignonToken using the administrative console,

complete the following steps:

1. Click Security > Global Security.

2. Under Additional properties, click Custom properties.

3. Locate the com.ibm.wsspi.security.token.singleSignonTokenFactory property and verify that the value of

this property matches your custom TokenFactory implementation.

4. Verify that your implementation classes are put into the install directory/classes directory so that

the WebSphere class loader can load the classes.

Implementing a custom SingleSignonToken

This task explains how to create your own SingleSignonToken implementation, which is set in the login

Subject and added to the HTTP response as an HTTP cookie. The cookie name is the concatenation of

the SingleSignonToken.getName() application programming interface (API) and the

SingleSignonToken.getVersion() API. There is no delimiter. When you add a SingleSignonToken to the

Subject, it also gets propagated horizontally and downstream in case the Subject is used for other Web

requests. You must deserialize your custom SingleSignonToken when you receive it from a propagation

login. Consider writing your own implementation if you want to accomplish one of the following:

v Isolate your attributes within your own implementation.

v Serialize the information using custom serialization. It is recommended that you encrypt the information

because it is out to the HTTP response and is available on the Internet. You must deserialize or decrypt

the bytes at the target and add that information back into the Subject.

v Affect the overall uniqueness of the Subject using the getUniqueID() API

To implement a custom SingleSignonToken, you must complete the following steps:

1. Write a custom implementation of the SingleSignonToken interface.

There are many different methods for implementing the SingleSignonToken interface. However, make

sure that the methods required by the SingleSignonToken interface and the token interface are fully

implemented. After you implement this interface, you can place it in the install_dir/classes directory.

Alternatively, you can place the class in any private directory. However, make sure that the WebSphere

Application Server class loader can locate the class and that it is granted the appropriate permissions.

You can add the Java archive (JAR) file or directory that contains this class into the server.policy file

so that it has the necessary permissions that are needed by the server code.

Tip: All of the token types defined by the propagation framework have similar interfaces. Basically, the

token types are marker interfaces that implement the com.ibm.wsspi.security.token.Token

interface. This interface defines most of the methods. If you plan to implement more than one

token type, consider creating an abstract class that implements the

com.ibm.wsspi.security.token.Token interface. All of your token implementations, including the

SingleSignonToken, might extend the abstract class and then most of the work is completed.

To see an implementation of the SingleSignonToken, see “Example:

com.ibm.wsspi.security.token.SingleSignonToken implementation” on page 1587

2. Add and receive the custom SingleSignonToken during WebSphere Application Server logins. This task

is typically accomplished by adding a custom login module to the various application and system login

configurations. However, in order to deserialize the information, you will need to plug in a custom login

module, which is discussed in a subsequent step. After the object is instantiated in the login module,

you can add it to the Subject during the commit() method.

The code sample in “Example: custom SingleSignonToken login module” on page 1592 shows how to

determine if the login is an initial login or a propagation login. The difference is whether the

WSTokenHolderCallback contains propagation data. If the token does not contain propagation data,

initialize a new custom SingleSignonToken implementation and set it into the Subject. Also, look for the

HTTP cookie from the HTTP request if the HTTP request object is available in the callback. You can

1586 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

get your custom SingleSignonToken both from a horizontal propagation login and from the HTTP

request. However, it is recommended that you make the token available in both places because then

the information arrives at any front-end application server even if that server that does not support

propagation.

You can make your SingleSignonToken read-only in the commit phase of the login module. If you

make the token read-only, additional attributes cannot be added within your applications.

Restriction:

v HTTP cookies have a size limitation so do not add too much data to this token.

v The WebSphere Application Server run time does not handle cookies that it does not

generate, so this cookie is not used by the run time.

v The SingleSignonToken object, when in the Subject, does affect the cache lookup of

the Subject if you return something in the getUniqueID() method.

3. Get the HTTP cookie from the HTTP request object during login or from an application. The sample

code, found in “Example: HTTP cookie retrieval” on page 1594 shows how you can retrieve the HTTP

cookie from the HTTP request, decode the cookie so that it is back to your original bytes, and create

your custom SingleSignonToken object from the bytes.

4. Add your custom login module to WebSphere Application Server system login configurations that

already contain the com.ibm.ws.security.server.lm.wsMapDefaultInboundLoginModule for receiving

serialized versions of your custom propagation token Because this login module relies on information

in the sharedState added by the com.ibm.ws.security.server.lm.wsMapDefaultInboundLoginModule, add

this login module after com.ibm.ws.security.server.lm.wsMapDefaultInboundLoginModule.

For information on adding your custom login module into the existing login configurations, see ″Custom

login module development for a system login configuration″ in the information center.

After completing these steps, you have implemented a custom AuthorizationToken.

Example: com.ibm.wsspi.security.token.SingleSignonToken implementation:

Use this file to see an example of a SingleSignon implementation. The following sample code does not

extend an abstract class, but rather implements the com.ibm.wsspi.security.token.SingleSignonToken

interface directly. You can implement the interface directly, but it might cause you to write duplicate code.

However, you might choose to implement the interface directly if there are considerable differences

between how you handle the various token implementations.

 For information on how to implement a custom SingleSignonToken, see “Implementing a custom

SingleSignonToken” on page 1586.

package com.ibm.websphere.security.token;

import com.ibm.websphere.security.WSSecurityException;

import com.ibm.websphere.security.auth.WSLoginFailedException;

import com.ibm.wsspi.security.token.*;

import com.ibm.websphere.security.WebSphereRuntimePermission;

import java.io.ByteArrayOutputStream;

import java.io.ByteArrayInputStream;

import java.io.DataOutputStream;

import java.io.DataInputStream;

import java.io.ObjectOutputStream;

import java.io.ObjectInputStream;

import java.io.OutputStream;

import java.io.InputStream;

import java.util.ArrayList;

public class CustomSingleSignonTokenImpl implements com.ibm.wsspi.security.

 token.SingleSignonToken

{

 private java.util.Hashtable hashtable = new java.util.Hashtable();

Chapter 8. Developing WebSphere applications 1587

private byte[] tokenBytes = null;

 // 2 hours in millis, by default

 private static long expire_period_in_millis = 2*60*60*1000;

/**

 * Constructor used to create initial SingleSignonToken instance

 */

 public CustomSingleSignonTokenImpl (String principal)

 {

 // set the principal in the token

 addAttribute("principal", principal);

 // set the token version

 addAttribute("version", "1");

 // set the token expiration

 addAttribute("expiration", new Long(System.currentTimeMillis() +

 expire_period_in_millis).toString());

 }

/**

 * Constructor used to deserialize the token bytes received during a propagation login.

 */

 public CustomSingleSignonTokenImpl (byte[] token_bytes)

 {

 try

 {

 // you should implement a decryption algorithm to decrypt the cookie bytes

 hashtable = (java.util.Hashtable) some_decryption_algorithm (token_bytes);

 }

 catch (Exception e)

 {

 e.printStackTrace();

 }

 }

/**

 * Validates the token including expiration, signature, and so on.

 * @return boolean

 */

 public boolean isValid ()

 {

 long expiration = getExpiration();

 // if you set the expiration to 0, it’s does not expire

 if (expiration != 0)

 {

 // return if this token is still valid

 long current_time = System.currentTimeMillis();

 boolean valid = ((current_time < expiration) ? true : false);

 System.out.println("isValid: returning " + valid);

 return valid;

 }

 else

 {

 System.out.println("isValid: returning true by default");

 return true;

 }

 }

/**

 * Gets the expiration as a long.

 * @return long

 */

 public long getExpiration()

 {

1588 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

// get the expiration value from the hashtable

 String[] expiration = getAttributes("expiration");

 if (expiration != null && expiration[0] != null)

 {

 // expiration will always be the first element (should only be one)

 System.out.println("getExpiration: returning " + expiration[0]);

 return new Long(expiration[0]).longValue();

 }

 System.out.println("getExpiration: returning 0");

 return 0;

 }

/**

 * Returns if this token should be forwarded/propagated downstream.

 * @return boolean

 */

 public boolean isForwardable()

 {

 // You can choose whether your token gets propagated or not, in some cases

 // you might want it to be local only.

 return true;

 }

/**

 * Gets the principal that this Token belongs to. If this is an authorization token,

 * this principal string must match the authentication token principal string or the

 * message will be rejected.

 * @return String

 */

 public String getPrincipal()

 {

 // this could be any combination of attributes

 String[] principal = getAttributes("principal");

 if (principal != null && principal[0] != null)

 {

 return principal[0];

 }

 System.out.println("getExpiration: returning null");

 return null;

 }

/**

 * Returns a unique identifier of the token based upon information the provider

 * considers makes this a unique token. This will be used for caching purposes

 * and may be used in combination with outher token unique IDs that are part of

 * the same Subject.

 *

 * This method should return null if you want the accessID of the user to represent

 * uniqueness. This is the typical scenario.

 *

 * @return String

 */

 public String getUniqueID()

 {

 // this could be any combination of attributes

 return getPrincipal();

 }

/**

 * Gets the bytes to be sent across the wire. The information in the byte[]

 * needs to be enough to recreate the Token object at the target server.

 * @return byte[]

 */

Chapter 8. Developing WebSphere applications 1589

public byte[] getBytes ()

 {

 if (hashtable != null)

 {

 try

 {

 // do this if the object is set read-only during login commit,

 // since this guarantees no new data gets set.

 if (isReadOnly() && tokenBytes == null)

 tokenBytes = some_encryption_algorithm (hashtable);

 // you can deserialize the tokenBytes using a similiar decryption algorithm.

 return tokenBytes;

 }

 catch (Exception e)

 {

 e.printStackTrace();

 return null;

 }

 }

 System.out.println("getBytes: returning null");

 return null;

 }

/**

 * Gets the name of the token, used to identify the byte[] in the protocol message.

 * @return String

 */

 public String getName()

 {

 return "myCookieName";

 }

/**

 * Gets the version of the token as an short. This is also used to identify the

 * byte[] in the protocol message.

 * @return short

 */

 public short getVersion()

 {

 String[] version = getAttributes("version");

 if (version != null && version[0] != null)

 return new Short(version[0]).shortValue();

 System.out.println("getVersion: returning default of 1");

 return 1;

 }

/**

 * When called, the token becomes irreversibly read-only. The implementation

 * needs to ensure any setter methods check that this has been set.

 */

 public void setReadOnly()

 {

 addAttribute("readonly", "true");

 }

/**

 * Called internally to see if the token is readonly

 */

 private boolean isReadOnly()

 {

 String[] readonly = getAttributes("readonly");

 if (readonly != null && readonly[0] != null)

1590 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

return new Boolean(readonly[0]).booleanValue();

 System.out.println("isReadOnly: returning default of false");

 return false;

 }

/**

 * Gets the attribute value based on the named value.

 * @param String key

 * @return String[]

 */

 public String[] getAttributes(String key)

 {

 ArrayList array = (ArrayList) hashtable.get(key);

 if (array != null && array.size() > 0)

 {

 return (String[]) array.toArray(new String[0]);

 }

 return null;

 }

/**

 * Sets the attribute name/value pair. Returns the previous values set for key,

 * or null if not previously set.

 * @param String key

 * @param String value

 * @returns String[];

 */

 public String[] addAttribute(String key, String value)

 {

 // get the current value for the key

 ArrayList array = (ArrayList) hashtable.get(key);

 if (!isReadOnly())

 {

 // copy the ArrayList to a String[] as it currently exists

 String[] old_array = null;

 if (array != null && array.size() > 0)

 old_array = (String[]) array.toArray(new String[0]);

 // allocate a new ArrayList if one was not found

 if (array == null)

 array = new ArrayList();

 // add the String to the current array list

 array.add(value);

 // add the current ArrayList to the Hashtable

 hashtable.put(key, array);

 // return the old array

 return old_array;

 }

 return (String[]) array.toArray(new String[0]);

 }

/**

 * Gets the List of all attribute names present in the token.

 * @return java.util.Enumeration

 */

 public java.util.Enumeration getAttributeNames()

 {

 return hashtable.keys();

Chapter 8. Developing WebSphere applications 1591

}

/**

 * Returns a deep copying of this token, if necessary.

 * @return Object

 */

 public Object clone()

 {

 com.ibm.websphere.security.token.CustomSingleSignonImpl deep_clone =

 new com.ibm.websphere.security.token.CustomSingleSignonTokenImpl();

 java.util.Enumeration keys = getAttributeNames();

 while (keys.hasMoreElements())

 {

 String key = (String) keys.nextElement();

 String[] list = (String[]) getAttributes(key);

 for (int i=0; i<list.length; i++)

 deep_clone.addAttribute(key, list[i]);

 }

 return deep_clone;

 }

}

Example: custom SingleSignonToken login module:

This file shows how to determine if the login is an initial login or a propagation login

 public customLoginModule()

{

 public void initialize(Subject subject, CallbackHandler callbackHandler,

 Map sharedState, Map options)

 {

 // (For more information on initialization, see

 // ″Custom login module development for a system login configuration″

 // in the information center.

 _sharedState = sharedState;

 }

 public boolean login() throws LoginException

 {

 // (For more information on what to do during login, see

 // ″Custom login module development for a system login configuration″

 // in the information center.

 // Handles the WSTokenHolderCallback to see if this is an initial or

 // propagation login.

 Callback callbacks[] = new Callback[1];

 callbacks[0] = new WSTokenHolderCallback(″Authz Token List: ″);

 try

 {

 callbackHandler.handle(callbacks);

 }

 catch (Exception e)

 {

1592 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

// handle exception

 }

 // Receives the ArrayList of TokenHolder objects (the serialized tokens)

 List authzTokenList = ((WSTokenHolderCallback) callbacks[0]).getTokenHolderList();

 if (authzTokenList != null)

 {

 // iterate through the list looking for your custom token

 for (int i=0; i

 for (int i=0; i<authzTokenList.size(); i++)

 {

 TokenHolder tokenHolder = (TokenHolder)authzTokenList.get(i);

 // Looks for the name and version of your custom SingleSignonToken

 // implementation

 if (tokenHolder.getName().equals(″myCookieName″)

 && tokenHolder.getVersion() == 1)

 {

 // Passes the bytes into your custom SingleSignonToken constructor

 // to deserialize

 customSSOToken = new

 com.ibm.websphere.security.token.CustomSingleSignonTokenImpl

 (tokenHolder.getBytes());

 }

 }

 }

 else

 // This is not a propagation login. Create a new instance of your

 // SingleSignonToken implementation

 {

 // Gets the principal from the default SingleSignonToken. This principal

 // must match all tokens.

 defaultAuthToken = (com.ibm.wsspi.security.token.AuthenticationToken)

 sharedState.get(com.ibm.wsspi.security.auth.callback.Constants.WSAUTHTOKEN_KEY);

 String principal = defaultAuthToken.getPrincipal();

 // Adds a new custom single signon (SSO) token. This is an initial login.

 // Pass the principal into the constructor

 customSSOToken = new com.ibm.websphere.security.token.

 CustomSingleSignonTokenImpl(principal);

 // add any initial attributes

 if (customSSOToken != null)

 {

 customSSOToken.addAttribute(″key1″, ″value1″);

 customSSOToken.addAttribute(″key1″, ″value2″);

 customSSOToken.addAttribute(″key2″, ″value1″);

 customSSOToken.addAttribute(″key3″, ″something different″);

 }

 }

 // Note: You can add the token to the Subject during commit in case something

 // happens during the login.

 }

Chapter 8. Developing WebSphere applications 1593

public boolean commit() throws LoginException

 {

 // (For more information on what to do during commit, see

 // ″Custom login module development for a system login configuration″

 // in the information center.

 if (customSSOToken != null)

 {

 // Sets the customSSOToken token into the Subject

 try

 {

 public final SingleSignonToken customSSOTokenPriv = customSSOToken;

 // Do this in a doPrivileged code block so that application code does not

 // need to add additional permissions

 java.security.AccessController.doPrivileged(new java.security.PrivilegedAction()

 {

 public Object run()

 {

 try

 {

 // Adds the custom SSO token if it is not null and

 // not already in the Subject

 if ((customSSOTokenPriv != null) &&

 (!subject.getPrivateCredentials().

 contains(customSSOTokenPriv)))

 {

 subject.getPrivateCredentials().

 add(customSSOTokenPriv);

 }

 }

 catch (Exception e)

 {

 throw new WSLoginFailedException (e.getMessage(), e);

 }

 return null;

 }

 });

 }

 catch (Exception e)

 {

 throw new WSLoginFailedException (e.getMessage(), e);

 }

 }

 }

 // Defines your login module variables

 com.ibm.wsspi.security.token.SingleSignonToken customSSOToken = null;

 com.ibm.wsspi.security.token.AuthenticationToken defaultAuthToken = null;

 java.util.Map _sharedState = null;

}

Example: HTTP cookie retrieval:

1594 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Use this file to see an example of how to retrieve a cookie from an HTTP request, decode the cookie so

that it is back to your original bytes, and create your custom SingleSignonToken object from the bytes.

This example shows how to complete these steps from a login module. However, you also can complete

these steps using a servlet.

 For information on how to implement a custom SingleSignonToken, see “Implementing a custom

SingleSignonToken” on page 1586.

public customLoginModule()

{

 public void initialize(Subject subject, CallbackHandler callbackHandler,

 Map sharedState, Map options)

 {

 // (For more information on what to do during initialization, see

 // ″Custom login module development for a system login configuration″

 // in the information center.

 _sharedState = sharedState;

 }

 public boolean login() throws LoginException

 {

 // (For more information on what to do during login, see

 // ″Custom login module development for a system login configuration″

 in the information center.

 // Handles the WSTokenHolderCallback to see if this is an

 // initial or propagation login.

 Callback callbacks[] = new Callback[2];

 callbacks[0] = new WSTokenHolderCallback(″Authz Token List: ″);

 callbacks[1] = new WSServletRequestCallback(″HttpServletRequest: ″);

 try

 {

 callbackHandler.handle(callbacks);

 }

 catch (Exception e)

 {

 // Handles the exception

 }

 // receive the ArrayList of TokenHolder objects (the serialized tokens)

 List authzTokenList = ((WSTokenHolderCallback) callbacks[0]).getTokenHolderList();

 javax.servlet.http.HttpServletRequest request =

 ((WSServletRequestCallback) callbacks[1]).getHttpServletRequest();

 if (request != null)

 {

 // Checks if the cookie is present

 javax.servlet.http.Cookie[] cookies = request.getCookies();

 String[] cookieStrings = getCookieValues (cookies, ″myCookeName1″);

 if (cookieStrings != null)

 {

 String cookieVal = null;

Chapter 8. Developing WebSphere applications 1595

for (int n=0;n<cookieStrings.length;n++)

 {

 cookieVal = cookieStrings[n];

 if (cookieVal.length()>0)

 {

 // Removes the cookie encoding from the cookie to get

 // your custom bytes

 byte[] cookieBytes =

 com.ibm.websphere.security.WSSecurityHelper.

 convertCookieStringToBytes(cookieVal);

 customSSOToken =

 new com.ibm.websphere.security.token.

 CustomSingleSignonTokenImpl(cookieBytes);

 // Now that you have your cookie from the request,

 // you can do something with it here, or add it

 // to the Subject in the commit() method for use later.

 if (debug || tc.isDebugEnabled())

 {

 Systen.out.println(″*** GOT MY CUSTOM SSO TOKEN FROM

 THE REQUEST ***″);

 }

 }

 }

 }

 }

 }

 public boolean commit() throws LoginException

 {

 // (For more information on what to during a commit, see

 // ″Custom login module development for a system login configuration″

 // in the information center.

 if (customSSOToken != null)

 {

 // Sets the customSSOToken token into the Subject

 try

 {

 public final SingleSignonToken customSSOTokenPriv = customSSOToken;

 // Do this in a doPrivileged code block so that application code does not

 // need to add additional permissions

 java.security.AccessController.doPrivileged(new java.security.PrivilegedAction()

 {

 public Object run()

 {

 try

 {

 // Add the custom SSO token if it is not null and not

 // already in the Subject

 if ((customSSOTokenPriv != null) &&

 (!subject.getPrivateCredentials().

 contains(customSSOTokenPriv)))

 {

 subject.getPrivateCredentials().add(customSSOTokenPriv);

1596 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

}

 }

 catch (Exception e)

 {

 throw new WSLoginFailedException (e.getMessage(), e);

 }

 return null;

 }

 });

 }

 catch (Exception e)

 {

 throw new WSLoginFailedException (e.getMessage(), e);

 }

 }

 }

 // Private method to get the specific cookie from the request

 private String[] getCookieValues (Cookie[] cookies, String hdrName)

 {

 Vector retValues = new Vector();

 int numMatches=0;

 if (cookies != null)

 {

 for (int i = 0; i < cookies.length; ++i)

 {

 if (hdrName.equals(cookies[i].getName()))

 {

 retValues.add(cookies[i].getValue());

 numMatches++;

 System.out.println(cookies[i].getValue());

 }

 }

 }

 if (retValues.size()>0)

 return (String[]) retValues.toArray(new String[numMatches]);

 else

 return null;

 }

 // Defines your login module variables

 com.ibm.wsspi.security.token.SingleSignonToken customSSOToken = null;

 com.ibm.wsspi.security.token.AuthenticationToken defaultAuthToken = null;

 java.util.Map _sharedState = null;

}

Default AuthenticationToken

Do not use the default AuthenticationToken in service provider code. This default token is used by the

WebSphere Application Server run-time code only and is authentication mechanism specific. Any

modifications to this token by service provider code can potentially cause interoperability problems. If you

need to create an authentication token for custom usage, see “Implementing a custom

AuthenticationToken” on page 1598 for more information.

Chapter 8. Developing WebSphere applications 1597

Changing the TokenFactory associated with the default AuthenticationToken

When WebSphere Application Server generates a default AuthenticationToken, the application server

utilizes the TokenFactory class that is specified using the

com.ibm.wsspi.security.token.authenticationTokenFactory property. To modify this property using the

administrative console, complete the following steps:

1. Click Security > Global Security.

2. Under Additional properties, click Custom properties.

The default TokenFactory specified for this property is called com.ibm.ws.security.ltpa.LTPATokenFactory.

The LTPATokenFactory uses the DESede/ECB/PKCS5Padding cipher. This token factory creates an

interoperable Lightweight Third Party Authentication (LTPA) token. If you change this TokenFactory, you

lose the interoperability with any servers running a version of WebSphere Application Server prior to

version 5.1.1 and any other servers that do not support the new TokenFactory implementation. However,

this is not a problem if all of your application servers use WebSphere Application Server Version 5.1.1 or

later and all of your servers use your new TokenFactory.

If you associate com.ibm.ws.security.ltpa.LTPAToken2Factory with the

com.ibm.wsspi.security.token.authenticationTokenFactory property, the token is AES encrypted. However,

you need to weigh the performance against your security needs. By doing this, you might add additional

attributes to the AuthenticationToken in the Subject during a login that are available downstream.

If you need to perform your own signing and encryption of the default AuthenticationToken, you must

implement the following classes:

v com.ibm.wsspi.security.ltpa.Token

v com.ibm.wsspi.security.ltpa.TokenFactory

Your TokenFactory implementation instantiates (createToken) and validates (validateTokenBytes) your

token implementation. You can use the LTPA keys passed into the initialize method of the TokenFactory or

you can use your own keys. If you use your own keys, they must be the same everywhere in order to

validate the tokens that are generated using those keys. See the Javadoc, available through a link on the

front page of the information center, for more information on implementing your own custom TokenFactory.

To associate your TokenFactory with the default AuthenticationToken using the administrative console,

complete the following steps:

1. Click Security > Global Security.

2. Under Additional properties, click Custom properties.

3. Locate the com.ibm.wsspi.security.token.authenticationTokenFactory property and verify that the value

of this property matches your custom TokenFactory implementation.

4. Verify that your implementation classes are put into the install directory/classes directory so that

the WebSphere class loader can load the classes.

Implementing a custom AuthenticationToken

This task explains how you might create your own AuthenticationToken implementation, which is set in the

login Subject and propagated downstream. This implementation enables you to specify an authentication

token that can be used by a custom login module or application. Consider writing your own implementation

if you want to accomplish one of the following tasks:

v Isolate your attributes within your own implementation.

v Serialize the information using custom serialization. You must deserialize the bytes at the target and add

that information back on the thread. This task also might include encryption and decryption.

v Affect the overall uniqueness of the Subject using the getUniqueID() API.

1598 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Important: Custom AuthenticationToken implementations are not used by the security run time in

WebSphere Application Server to enforce authentication. WebSphere Application Security run

time uses this token in the following situations only:

v Call the getBytes() method for serialization

v Call the getForwardable() method to determine whether to serialize the AuthenticationToken.

v Call the getUniqueId() method for uniqueness

v Call the getName() and the getVersion() methods for adding serialized bytes to the

TokenHolder that is sent downstream

All of the other uses are custom implementations.

To implement a custom authentication token, you must complete the following steps:

1. Write a custom implementation of the AuthenticationToken interface. There are many different methods

for implementing the AuthenticationToken interface. However, make sure that the methods required by

the AuthenticationToken interface and the token interface are fully implemented. After you implement

this interface, you can place it in the install_dir/classes directory. Alternatively, you can place the

class in any private directory. However, make sure that the WebSphere Application Server class loader

can locate the class and that it is granted the appropriate permissions. You can add the Java archive

(JAR) file or directory that contains this class into the server.policy file so that it has the necessary

permissions that are needed by the server code.

Tip: All of the token types defined by the propagation framework have similar interfaces. Basically, the

token types are marker interfaces that implement the com.ibm.wsspi.security.token.Token

interface. This interface defines most of the methods. If you plan to implement more than one

token type, consider creating an abstract class that implements the

com.ibm.wsspi.security.token.Token interface. All of your token implementations, including the

AuthenticationToken, might extend the abstract class and then most of the work is completed.

To see an implementation of AuthenticationToken, see ″Example:

com.ibm.wsspi.security.token.AuthenticationToken implementation″ in the information center.

2. Add and receive the custom AuthenticationToken during WebSphere Application Server logins This

task is typically accomplished by adding a custom login module to the various application and system

login configurations. However, in order to deserialize the information, you must plug in a custom login

module. After the object is instantiated in the login module, you can the object to the Subject during the

commit() method.

If you only want to add information to the Subject to get propagated, see “Propagating a custom Java

serializable object” on page 1602. If you want to ensure that the information is propagated, if you want

to do your own custom serialization, or if you want to specify the uniqueness for Subject caching

purposes, then consider writing your own AuthenticationToken implementation.

The code sample in “Example: custom AuthenticationToken login module” on page 1600 shows how to

determine if the login is an initial login or a propagation login. The difference between these login types

is whether the WSTokenHolderCallback contains propagation data. If the callback does not contain

propagation data, initialize a new custom AuthenticationToken implementation and set it into the

Subject. If the callback contains propagation data, look for your specific custom AuthenticationToken

TokenHolder instance, convert the byte[] back into your custom AuthenticationToken object, and set it

back into the Subject. The code sample shows both instances.

You can make your AuthenticationToken read-only in the commit phase of the login module. If you do

not make the token read-only, then attributes can be added within your applications.

3. Add your custom login module to WebSphere Application Server system login configurations that

already contain the com.ibm.ws.security.server.lm.wsMapDefaultInboundLoginModule for receiving

serialized versions of your custom authorization token

Because this login module relies on information in the sharedState added by the

com.ibm.ws.security.server.lm.wsMapDefaultInboundLoginModule, add this login module after

com.ibm.ws.security.server.lm.wsMapDefaultInboundLoginModule. For information on how to add your

Chapter 8. Developing WebSphere applications 1599

custom login module to the existing login configurations, see ″Custom login module development for a

system login configuration″ in the information center.

After completing these steps, you have implemented a custom AuthenticationToken.

Example: custom AuthenticationToken login module:

This file shows how to determine if the login is an initial login or a propagation login.

 public customLoginModule()

{

 public void initialize(Subject subject, CallbackHandler callbackHandler,

 Map sharedState, Map options)

 {

 // (For more information on what to do during initialization, see

 // ″Custom login module development for a system login configuration″

 // in the information center.

 _sharedState = sharedState;

 }

 public boolean login() throws LoginException

 {

 // (For information on what to do during login, see

 // ″Custom login module development for a system login configuration″

 // in the information center.

 // Handles the WSTokenHolderCallback to see if this is an initial or

 // propagation login.

 Callback callbacks[] = new Callback[1];

 callbacks[0] = new WSTokenHolderCallback(″Authz Token List: ″);

 try

 {

 callbackHandler.handle(callbacks);

 }

 catch (Exception e)

 {

 // Handles exception

 }

 // Receives the ArrayList of TokenHolder objects (the serialized tokens)

 List authzTokenList = ((WSTokenHolderCallback) callbacks[0]).getTokenHolderList();

 if (authzTokenList != null)

 {

 // Iterates through the list looking for your custom token

 for (int i=0; i<authzTokenList.size(); i++)

 {

 TokenHolder tokenHolder = (TokenHolder)authzTokenList.get(i);

 // Looks for the name and version of your custom AuthenticationToken

 // implementation

 if (tokenHolder.getName().equals(″your_oid_name″) && tokenHolder.getVersion() == 1)

 {

 // Passes the bytes into your custom AuthenticationToken constructor

1600 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

// to deserialize

 customAuthzToken = new

 com.ibm.websphere.security.token.

 CustomAuthenticationTokenImpl(tokenHolder.getBytes());

 }

 }

 }

 else

 // This is not a propagation login. Create a new instance of your

 // AuthenticationToken implementation

 {

 // Gets the principal from the default AuthenticationToken. This principal

 // should match all default tokens.

 // Note: WebSphere Application Server run time only enforces this for

 // default tokens. Thus, you can choose

 // to do this for custom tokens, but it is not required.

 defaultAuthToken = (com.ibm.wsspi.security.token.AuthenticationToken)

 sharedState.get(com.ibm.wsspi.security.auth.callback.Constants.WSAUTHTOKEN_KEY);

 String principal = defaultAuthToken.getPrincipal();

 // Adds a new custom authentication token. This is an initial login. Pass

 // the principal into the constructor

 customAuthToken = new com.ibm.websphere.security.token.

 CustomAuthenticationTokenImpl(principal);

 // Adds any initial attributes

 if (customAuthToken != null)

 {

 customAuthToken.addAttribute(″key1″, ″value1″);

 customAuthToken.addAttribute(″key1″, ″value2″);

 customAuthToken.addAttribute(″key2″, ″value1″);

 customAuthToken.addAttribute(″key3″, ″something different″);

 }

 }

 // Note: You can add the token to the Subject during commit in case

 // something happens during the login.

 }

 public boolean commit() throws LoginException

 {

 // (For more information on what do during commit, see

 // ″Custom login module development for a system login configuration″

 // in the information center.

 if (customAuthToken != null)

 {

 // Sets the customAuthToken token into the Subject

 try

 {

 private final AuthenticationToken customAuthTokenPriv = customAuthToken;

 // Do this in a doPrivileged code block so that application code does

 // not need to add additional permissions

 java.security.AccessController.doPrivileged(new java.security.PrivilegedAction()

 {

Chapter 8. Developing WebSphere applications 1601

public Object run()

 {

 try

 {

 // Adds the custom Authentication token if it is not

 // null and not already in the Subject

 if ((customAuthTokenPriv != null) &&

 (!subject.getPrivateCredentials().

 contains(customAuthTokenPriv)))

 {

 subject.getPrivateCredentials().add(customAuthTokenPriv);

 }

 }

 catch (Exception e)

 {

 throw new WSLoginFailedException (e.getMessage(), e);

 }

 return null;

 }

 });

 }

 catch (Exception e)

 {

 throw new WSLoginFailedException (e.getMessage(), e);

 }

 }

 }

 // Defines your login module variables

 com.ibm.wsspi.security.token.AuthenticationToken customAuthToken = null;

 com.ibm.wsspi.security.token.AuthenticationToken defaultAuthToken = null;

 java.util.Map _sharedState = null;

}

Propagating a custom Java serializable object

Prior to completing this task, verify that security propagation is enabled in the administrative console.

With security attribute propagation enabled, you can propagate data either horizontally with single signon

(SSO) enabled or downstream using Common Secure Interoperability version 2 (CSIv2). When a login

occurs, either through an application login configuration or a system login configuration, a custom login

module can be plugged in to add Java serializable objects into the Subject during login. This document

describes how to add an object into the Subject from a login module and describes other infrastructure

considerations to make sure that the Java object gets propagated.

1. Add your custom Java object into the Subject from a custom login module. There is a two-phase

process for each Java Authentication and Authorization Service (JAAS) login module. WebSphere

Application Server completes the following processes for each login module present in the

configuration:

login() method

In this step, the login configuration callbacks are analyzed, if necessary, and the new objects

or credentials are created.

commit() method

In this step, the objects or credentials that are created during login are added into the Subject.

1602 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

After a custom Java object is added into the Subject, WebSphere Application Server serializes the

object, deserializes the object, and adds the object back into the Subject downstream. However, there

are some requirements for this process to occur. See ″Security: Resources for learning″ in the

information center.

Important: Whenever you plug a custom login module into the login infrastructure of WebSphere

Application Server, make sure that the code is trusted. When you add the login module

into the install_root/classes directory, the login module has Java 2 Security

AllPermissions. It is recommended that you add your login module and other infrastructure

classes into any private directory. However, you must modify the

install_root/properties/server.policy file to make sure that your private directory, Java

archive (JAR) file, or both have the permissions needed to execute the application

programming interfaces (API) that are called from the login module. Because the login

module might be executed after the application code on the call stack, you might add

doPrivileged code so that you do not need to add additional properties to your

applications.

The following code sample shows how to add doPrivileged:

public customLoginModule()

{

 public void initialize(Subject subject, CallbackHandler callbackHandler,

 Map sharedState, Map options)

 {

 // (For more information on what to do during initialization, see

 // ″Custom login module development for a system login configuration″

 // in the information center.)

 }

 public boolean login() throws LoginException

 {

 // (For more information on what to do during login phase, see

 // ″Custom login module development for a system login configuration″

 // in the information center.)

 // Construct callback for the WSTokenHolderCallback so that you

 // can determine if

 // your custom object has propagated

 Callback callbacks[] = new Callback[1];

 callbacks[0] = new WSTokenHolderCallback(″Authz Token List: ″);

 try

 {

 _callbackHandler.handle(callbacks);

 }

 catch (Exception e)

 {

 throw new LoginException (e.getLocalizedMessage());

 }

 // Checks to see if any information is propagated into this login

 List authzTokenList = ((WSTokenHolderCallback) callbacks[1]).

 getTokenHolderList();

 if (authzTokenList != null)

 {

 for (int i = 0; i< authzTokenList.size(); i++)

Chapter 8. Developing WebSphere applications 1603

{

 TokenHolder tokenHolder = (TokenHolder)authzTokenList.get(i);

 // Look for your custom object. Make sure you use

 // ″startsWith″because there is some data appended

 // to the end of the name indicating in which Subject

 // Set it belongs. Example from getName():

 // ″com.acme.CustomObject (1)″. The class name is

 // generated at the sending side by calling the

 // object.getClass().getName() method. If this object

 // is deserialized by WebSphere Application Server,

 // then return it and you do not need to add it here.

 // Otherwise, you can add it below.

 // Note: If your class appears in this list and does

 // not use custom serialization (for example, an

 // implementation of the Token interface described in

 // the Propagation Token Framework), then WebSphere

 // Application Server automatically deserializes the

 // Java object for you. You might just return here if

 // it is found in the list.

 if (tokenHolder.getName().startsWith(″com.acme.CustomObject″))

 return true;

 }

 }

 // If you get to this point, then your custom object has not propagated

 myCustomObject = new com.acme.CustomObject();

 myCustomObject.put(″mykey″, ″mydata″);

 }

 public boolean commit() throws LoginException

 {

 // (For more information on what to do during the commit phase, see

 // ″Custom login module development for a system login configuration″

 // in the information center.)

 try

 {

 // Assigns a reference to a final variable so it can be used in

 // the doPrivileged block

 final com.acme.CustomObject myCustomObjectFinal = myCustomObject;

 // Prevents your applications from needing a JAAS getPrivateCredential

 // permission.

 java.security.AccessController.doPrivileged(new java.security.

 PrivilegedExceptionAction()

 {

 public Object run() throws java.lang.Exception

 {

 // Try not to add a null object to the Subject or an object

 // that already exists.

 if (myCustomObjectFinal != null && !subject.getPrivateCredentials().

 contains(myCustomObjectFinal))

 {

 // This call requires a special Java 2 Security permission,

 // see the JAAS Javadoc.

 subject.getPrivateCredentials().add(myCustomObjectFinal);

1604 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

}

 return null;

 }

 });

 }

 catch (java.security.PrivilegedActionException e)

 {

 // Wraps the exception in a WSLoginFailedException

 java.lang.Throwable myException = e.getException();

 throw new WSLoginFailedException (myException.getMessage(), myException);

 }

 }

 // Defines your login module variables

 com.acme.CustomObject myCustomObject = null;

}

2. Verify that your custom Java class implements the java.io.Serializable interface. An object that is

added to the Subject must be serializable if you want the object to propagate. For example, the object

must implement the java.io.Serializable interface. If the object is not serializable, the request does

not fail, but the object does not propagate. To make sure that an object added to the Subject is

propagated, implement one of the token interfaces defined in the ″Security attribute propagation″

article or add attributes to one of the following existing default token implementations:

AuthorizationToken

Add attributes if they are user-specific. For more information, see “Default AuthorizationToken”

on page 1573.

PropagationToken

Add attributes that are specific to an invocation. For more information, see “Default

PropagationToken” on page 1557.

If you are careful adding custom objects and follow all the steps to make sure that WebSphere

Application Server can serialize and deserialize the object at each hop, then it is sufficient to use

custom Java objects only.

3. Verify that your custom Java class exists on all of the systems that might receive the request. When

you add a custom object into the Subject and expect WebSphere Application Server to propagate the

object, make sure that the class definition for that custom object exists in the install_root/classes

directory on all of the nodes where serialization or deserialization might occur. Also, verify that the Java

class versions are the same.

4. Verify that your custom login module is configured in all of the login configurations used in your

environment where you would need to add your custom object during a login. Any login configuration

that interacts with WebSphere Application Server generates a Subject that might be propagated

outbound for an EJB request. If you want WebSphere Application Server to propagate a custom object

in all cases, make sure that the custom login module is added to every login configuration that is used

in your environment. For more information, see ″Custom login module development for a system login

configuration″ in the information center.

5. Verify that security attribute propagation is enabled on all of the downstream servers that receive the

propagated information. When an EJB request is sent to a downstream server and security attribute

propagation is disabled on that server, only the authentication token is sent for backwards compatibility.

Therefore, you must review the configuration to verify that propagation is enabled in all of the cells that

might receive requests. There are several places in the administrative console that you must check to

make sure propagation is fully enabled. For more information, see “Enabling security attribute

propagation” on page 1555.

6. Add any custom objects to the propagation exclude list that you do not want to propagate. You can

configure a property to exclude the propagation of objects that match specific class names, package

names, or both. For example, you can have a custom object that is related to a specific process. If the

Chapter 8. Developing WebSphere applications 1605

object is propagated, it does not contain valid information. You must tell WebSphere Application Server

not to propagate this object. Complete the following steps to specify the object in the propagation

exclude list, using the administrative console:

a. Click Security > Global Security.

b. Under Additional Properties, click Custom Properties > New.

c. Add com.ibm.ws.security.propagationExcludeList in the Name field.

d. Add the name of the custom object in the Value field. You can add a list of custom objects to the

propagation exclude list separated by a colon. For example, you might enter

com.acme.CustomLocalObject:com.acme.private.*. You can enter a class name such as

com.acme.CustomLocalObject or a package name such as com.acme.private.*. In this example,

WebSphere Application Server does not propagate any class that equals

com.acme.CustomLocalObject or begins with com.acme.private..

Although you can add custom objects to the propagation exclude list, you must be aware of a side

effect. WebSphere Application Server stores the opaque token, or the serialized Subject contents,

in a local cache for the life of the single signon (SSO) token. The life of the SSO token, which has

a default of two hours, is configured in the SSO properties on the administrative console. The

information that is added to the opaque token includes only the objects not in the exclude list. If

your authentication cache does not match your SSO token timeout, you might get a Subject on the

local server that is regenerated from the opaque token but does not contain the objects on the

exclude list. The authentication cache, which has a default of ten minutes, is configured on the

Global Security panel on the administrative console. It is recommended that you make your

authentication cache timeout value equal to the SSO token timeout so that the Subject contents

are consistent locally.

As a result of this task, custom Java serializable objects are propagated horizontally or downstream. For

more information on the differences between horizontal and downstream propagation, see ″Security

attribute propagation″ in the information center.

Authorization in WebSphere Application Server

WebSphere Application Server supports authorization based on the Java Authorization Contract for

Containers (JACC) specification in addition to the default authorization. JACC is a new specification in

Java 2 Platform, Enterprise Edition (J2EE) 1.4. It enables third-party security providers to manage

authorization in the application server. The default JACC provider that is provided by WebSphere

Application Server uses the Tivoli Access Manager as the authorization provider.

When security is enabled in the WebSphere Application Server, the default authorization is used unless a

JACC provider is specified. The default authorization does not require special setup, and the default

authorization engine makes all of the authorization decisions. However, if a JACC provider is configured

and setup to be is used by WebSphere Application Server, all of the Enterprise JavaBeans (EJB) and Web

authorization decisions are then delegated to the JACC provider.

WebSphere Application Server supports security for J2EE applications and also for its administrative

components. J2EE applications such as Web and EJB components are protected and authorized per the

J2EE specification. The administrative components are internal to WebSphere Application Server, and are

protected by the RoleBasedAuthorizer. The administrative components include the adminConsole

application, MBeans, and other components such as naming and security. For more information on

administrative security, see ″Role-based authorization″ in the information center.

When a JACC provider is used for authorization in WebSphere Application Server, all of the J2EE

application-based authorization decisions are delegated to the provider per the JACC specification.

However, all administrative security authorization decisions are made by the WebSphere Application

Server default authorization engine. The JACC provider is not called to make the authorization decisions

for administrative security.

1606 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

When a protected J2EE resource is accessed, the authorization decision to give access to the principal is

the same whether using the default authorization engine or a JACC provider. Both of the authorization

models satisfy the J2EE specification, so there should be no differences in function. Choose a JACC

provider only when you want to work with an external security provider such as the Tivoli Access Manager.

In this instance, the security provider must support the JACC specification and be set up to work with the

WebSphere Application Server. Setting up and configuring a JACC provider requires additional

configuration steps, depending on the provider. Unless you have an external security provider that you can

use with WebSphere Application Server, use the default authorization.

JACC providers

The Java Authorization Contract for Containers (JACC) is a new specification introduced in Java 2

Platform, Enterprise Edition (J2EE) 1.4 through the Java Specifications Request (JSR) 115 process. This

specification defines a contract between J2EE containers and authorization providers.

The contract enables third-party authorization providers to plug into J2EE 1.4 application servers (such as

WebSphere Application Server) to make the authorization decisions when a J2EE resource is accessed.

The access decisions are made through the standard java.security.Policy object.

In WebSphere Application Server, two authorization contracts are supported using both a native and a

third-party JACC provider implementation. The default (out-of-box) solution is the WebSphere Application

Server default J2EE role based authorization implementation, which does not implement the JACC Policy

provider interface.

To plug-in to WebSphere Application Server, the third-party JACC provider must implement the policy

class, policy configuration factory class, and policy configuration interface. All are required by the JACC

specification.

The JACC specification does not specify how to handle the authorization table (user or group to role)

information between the container and the provider. It is the responsibility of the provider to provide some

management facilities to handle this information. It does not require the container to provide the

authorization table information in the binding file to the provider.

WebSphere Application Server provides two role configuration interfaces (RoleConfigurationFactory and

RoleConfiguration) to help the provider obtain information from the binding file, as well as an initialization

interface (InitializeJACCProvider). The implementation of these interfaces is optional. See “Interfaces used

to support JACC” on page 1619 for more information about these interfaces.

Tivoli Access Manager as the default JACC provider for WebSphere Application Server

The JACC provider in WebSphere Application Server is implemented by both the client and the server

pieces of the Tivoli Access Manager server. The client piece of Tivoli Access Manager is embedded in

WebSphere Application Server. The server piece is located on a separate installable CD that is shipped as

part of the WebSphere network deployment (ND) package.

The JACC provider is not an out-of-box solution. You must configure WebSphere Application Server to use

the JACC provider.

Authorization providers settings:

Use this page to enable a Java Authorization Contract for Containers (JACC) provider for authorization

decisions.

 To view this administrative console page, click Security > Global security. Under Authorization, click

Authorization providers.

Chapter 8. Developing WebSphere applications 1607

WebSphere Application Server provides a default authorization engine that performs all of the authorization

decisions. In addition, WebSphere Application Server also supports an external authorization provider

using the JACC specification to replace the default authorization engine for Java 2 Platform, Enterprise

Edition (J2EE) applications.

JACC is part of the J2EE specification, which enables third-party security providers such as Tivoli Access

Manager to plug into WebSphere Application Server and make authorization decisions.

Important: Unless you have an external JACC provider or want to use a JACC provider for Tivoli Access

Manager that can handle J2EE authorizations based on JACC, and it is configured and set up

to be used with WebSphere Application Server, do not enable External authorization using

JACC.

Default authorization:

This option should be used all the time unless you want an external security provider such as the Tivoli

Access Manager to perform the authorization decision for J2EE applications based on the JACC

specification.

 Default: Enabled

External authorization using a JACC provider:

Enable this option only when you plan to use an external security provider such as the Tivoli Access

Manager for performing authorization decisions for J2EE applications using the JACC specification.

 To use an external provider, you must complete the following steps:

1. Configure your JACC provider.

2. Verify that the required provider implementation classes are in the class path for each WebSphere

Application Server process.

 Attention: This step is not required when you use Tivoli Access Manager because the application

server already contains the implementation classes.

3. Enable the External authorization using a JACC provider option

4. Enter the appropriate properties for the provider under the External JACC provider link, which is

located under Related Items.

 Default: Disabled

External JACC provider: Use this link to configure WebSphere Application Server to use an external

JACC provider. For example to configure an external JACC provider, the policy class name and the policy

configuration factory class name are required by the JACC specification.

The default settings contained in this link are used by Tivoli Access Manager for authorization decisions. If

you intend to use another provider, modify the settings as appropriate.

JACC support in WebSphere Application Server

WebSphere Application Server supports the Java Contract for Containers (JACC) specification, which

enables third-party security providers to handle the Java 2 Platform, Enterprise Edition (J2EE)

authorization.

The specification requires that both the containers in the application server and the provider satisfy some

requirements. Specifically, the containers are required to propagate the security policy information to the

provider during the application deployment and to call the provider for all authorization decisions. The

1608 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

providers are required to include the storing of the policy information in their repository during application

deployment. The providers then use this information to make authorization access decisions when called

by the container.

JACC access decisions

When security is enabled and an enterprise bean or Web resource is accessed, the Enterprise JavaBean

(EJB) container or Web container calls the security run time to make an authorization decision on whether

to permit access. When using an external provider, the access decision is delegated to that provider.

According to the Java Contract for Containers (JACC) specification, the appropriate permission object is

created, the appropriate policy context handlers are registered, and the appropriate policy context identifier

(contextID) is set. A call is made to the java.security.Policy object method implemented by the provider to

make the access decision.

The following sections describe how the provider is called for both the EJB and the Web resources.

Access decisions for enterprise beans:

When security is enabled, and an EJB method is accessed, the EJB container delegates the authorization

check to the security runtime. If JACC is enabled, the security runtime uses the following process to

perform the authorization check:

1. It creates the EJBMethodPermission object using the bean name, method name, interface name and

the method signature.

2. It creates the contextID and sets it on the thread by using the PolicyContext.setContextID(contextID)

method.

3. It registers the required policy context handlers, including the Subject policy context handler.

4. It creates the ProtectionDomain object with principal in the Subject. If there is no principal, null is

passed for the principal name.

5. The access decision is delegated to the JACC provider by calling the implies() method of the Policy

object, which is implemented by the provider. The EJBMethodPermission and the ProtectionDomain

objects are passed to this method.

6. The isCallerInRole() access check also follows the same process, except that an

EJBRoleRefPermission object is created instead of an EJBMethodPermission.

Access decisions for Web Resources:

When security is enabled and configured to use a JACC provider, and when a Web resource such as a

servlet or a JavaServer pages (JSP) is accessed, the security runtime delegates the authorization decision

to the JACC provider by using the following process:

1. A WebResourcePermission is created to see if the URI is unchecked. If the provider honors the

Everyone subject it should also be checked here.

a. The WebResourcePermission is constructed with urlPattern and the HTTP method accessed.

b. A ProtectionDomain with a null principal name is created.

c. The JACC provider‘s Policy.implies() method is called with the permission and the protection

domain. If the URI access is unchecked (or given access to Everyone subject), the provider should

permit access (return true) in the implies() method. Access is then granted without further checks.

2. If the access was not granted in Step 1, a WebUserDataPermission is created and used to see if the

Uniform Resource Identifier (URI) is precluded or excluded or must be redirected using HTTPS

protocol.

a. The WebUserDataPermission is constructed with the urlPattern accessed, along with the HTTP

method invoked and the transport type of the request. If the request is over HTTPS, the transport

type is set to CONFIDENTIAL; otherwise, null is passed.

Chapter 8. Developing WebSphere applications 1609

b. ProtectionDomain with a null principal name is created.

c. The JACC provider‘s Policy.implies() method is called with the permission and the protection

domain. If the request is using the HTTPS protocol and the implies returns false, the HTTP 403

error is returned to imply excluded/precluded permission and no further checks are performed. If

the request is not using the HTTPS protocol, and the implies returns false, the request is redirected

over HTTPS.

3. The security runtime attempts to authenticate the user. If the authentication information already exists

(for example, LTPAToken), it is used. Otherwise, the user’s credentials must be entered.

4. After the user credentials are validated, a final authorization check is performed to see if the user has

been granted access privileges to the URI.

a. As in Step 1, the WebResourcePermission is created. The ProtectionDomain now contains the

Principal that is attempting to access the URI. The Subject policy context handler also contains the

user‘s information, which can be used for the access check.

b. The provider‘s implies() method is called using the Permission object and the ProtectionDomain

created above. If the user is granted permission to access the resource, the implies() method

should return true. If the user is not granted access, the implies() method should return false.

Note: Even if the order listed above is changed later (for example, to improve performance) the end result

should be the same. For example, if the resource is precluded or excluded the end result is that the

resource cannot be accessed.

Using information from the Subject for Access Decision:

If the provider relies on the WebSphere Application Server generated Subject for access decision, the

provider can query the public credentials in the Subject to obtain the credential of type WSCredential . The

WSCredential API is used to obtain information about the user, including the name and the groups that the

user belongs to. This information is then used to make the access decision.

If the provider adds information to the Subject (for example, by using the Trust Association Interface

feature or by plugging login modules into the Application Server), that information is available in the

Subject. The provider can then make use of the information added in the Subject to make the access

decision.

The security attribute propagation has more information on how to add information to the Subject. See

“Enabling security attribute propagation” on page 1555 for more information.

Dynamic module updates in JACC

WebSphere Application Server supports dynamic updates to Web modules under certain conditions. If a

Web module is updated, deleted or added to an application, only that module is stopped and/or started as

appropriate. The other existing modules in the application are not impacted, and the application itself is not

stopped and then restarted.

When any security policies are modified in the Web modules, the application is stopped and then restarted

when using the default authorization engine. When using the Java Contract for Containers (JACC) based

authorization, the behavior depends on the functionality that a provider supports. If a provider can handle

dynamic changes to the Web modules, then only the Web modules are impacted. Otherwise, the entire

application is stopped and restarted for the new changes in the Web modules to take effect.

A provider can indicate if they will support the dynamic updates by configuring the supports dynamic

module updates option in the JACC configuration model (see “Configuring a JACC provider” on page

1617 for more information). This option can be enabled or disabled using the administrative console or by

scripting. It is expected that most providers will store the policy information in their external repository,

which makes it possible for them to support these dynamic updates. This option is enabled by default for

most providers.

1610 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

When the supports dynamic module updates option is enabled, if a Web module that contains security

roles is dynamically added, modified, or deleted, only the specific Web modules are impacted and

restarted. If the option is disabled, the entire application is restarted. When dynamic updates are

performed, the security policy information of the modules impacted are propagated to the provider. For

more information about security policy propagation, see “JACC policy propagation” on page 1612.

Initialization of the JACC provider

If a Java Contract for Containers (JACC) provider requires initialization during server startup (for example,

to enable the client code to communicate to the server code), they can implement the

com.ibm.wsspi.security.authorization.InitializeJACCProvider interface. See “Interfaces used to support

JACC” on page 1619 for more information.

When this interface is implemented, it is called during server startup. Any custom properties in the JACC

configuration model are propagated to the initialize method of this implementation. The custom properties

can be entered using either the administrative console or by scripting.

During server shutdown, the cleanup method is called for any clean-up work that a provider requires.

Implementation of this interface is strictly optional, and should be used only if the provider requires

initialization during server startup.

Mixed node environment and JACC

Authorization using Java Contract for Containers (JACC) is a new feature in WebSphere Application

Server Version 6. Previous versions of the WebSphere Application Server do not support this feature. Also,

the JACC configuration is set up at the cell level and is applicable for all the nodes and servers in that

cell..

If you are planning to use the JACC-based authorization the cell only contains 6.0 nodes. This implies that

a mixed node environment containing a set of 5.x nodes in a 6.0 cell is not supported.

JACC policy context handlers: WebSphere Application Server supports all of the policy context

handlers that are required by the Java Contract for Containers (JACC) specification. However, due to

performance impacts, the Enterprise JavaBeans (EJB) arguments policy context handler is not activated

unless it is specifically required by the provider. Performance impacts result if objects must be created for

each of the arguments for each EJB method.

If the provider supports and requires this context handler, enable the Requires the EJB arguments

policy context handler for access decisions check box in the External Jacc provider link under the

Authorization providers panel or by using scripting. Any changes to this are effective after the servers has

been restarted . By default this is disabled. When using the Tivoli Access Manager as the JACC provider,

this option should be disabled, since the argument values are not required for access decisions.

JACC policy context identifiers (ContextID) format: A policy context identifier is defined as a unique

string that represents a policy context. A policy context contains all of the security policy statements as

defined by the Java Contract for Containers (JACC) specification that affect access to the resources in a

Web or Enterprise JavaBeans (EJB) module. During policy propagation to the JACC provider, a

PolicyConfiguration object is created for each policy context. The object is populated with the policy

statements (represented by the JACC permission objects) that correspond to the context. The object is

then propagated to the JACC provider using the JACC specification APIs.

WebSphere Application Server makes the contextID unique by using the string

href:cellName/appName/moduleName as the contextID format for the modules. The href part of the string

indicates that a hierarchical name is passed as the contextID.

Chapter 8. Developing WebSphere applications 1611

The cellName represents the name of the deployment manager cell or the base cell where the application

is installed. After an application is installed in one cell (for example, in a base application server where the

cell name is base1) and is added to a deployment manager cell whose name is cell1 by using addNode,

the contextID for the modules in the application contain base1 (not cell1) as the cell name since the

application was initially installed in base1.

The appName part of the string in the contextID represents the application name containing the module. The

moduleName refers to the name of the module.

As an example, the contextID for the module Increment.jar in an application named DefaultApplication that

is installed in cell1 is href:cell1/DefaultApplication/Increment.jar.

JACC policy propagation: When an application is installed or deployed in the WebSphere Application

Server, the security policy information in the application is propagated to the provider when the

configuration is saved. The contextID for that application is saved in its application.xml file, used for

propagating the policy to the JACC provider, and also for access decisions for J2EE resources.

When an application is uninstalled, the security policy information in the application is removed from the

provider when the configuration is saved.

If the provider has implemented the RoleConfiguration interface, the security policy information propagated

to the policy provider also contains the authorization table information. See “Interfaces used to support

JACC” on page 1619 for more information about this interface.

If an application does not contain security policy information, the PolicyConfiguration (and the

RoleConfiguration, if implemented) objects do not contain any information. The existence of empty

PolicyConfiguration and RoleConfiguration objects indicates that security policy information for the module

does not exist.

Once an application is installed, it can be updated without first being uninstalled and reinstalled. For

example, a new module can be added to an existing application, or an existing module can be modified. In

this instance, the information in the impacted modules is propagated to the provider by default. A module

is impacted when the deployment descriptor of the module changed as part of the update. If the provider

supports the RoleConfiguration interfaces, the entire authorization table for that application is propagated

to the provider.

If for some reason, the security information should not be propagated to the provider during application

updates, you can set the JVM property com.ibm.websphere.security.jacc.propagateonappupdate to

false in the deployment manager (in ND) or the unmanaged base application server. If this property is set

to false, then any updates to an existing application in the server are not propagated to the provider. You

also can set this property on a per-application basis using the custom properties of an application. The

wsadmin tool can be used to set the custom property of an application. If this property is set at the

application level, any updates to that application are not propagated to the provider. If the update to an

application is a full update, for example a new application ear file is used to replace the existing one, the

provider is then refreshed with the entire application security policy information.

In the network deployment (ND) environment, when an application is installed and saved, the security

policy information in that application is updated in the provider from the deployment manager (dmgr or

cell). However, the application is not propagated to its respective nodes until the sychronization command

is issued and completed. Also, in the ND setup when an application is uninstalled and saved at the

deployment manager, the policy for that application is removed from the JACC provider. However, unless

the synchronization command is issued and completed from the deployment manager to the nodes hosting

the application, the applications are still running in the respective nodes. In this instance, any access to

this application should be denied since the JACC provider does not contain the required information to

make the access decision for that application. Note that any updates to the application already installed as

1612 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

described above are also propagated to the provider from the deployment manager. The changes in the

provider are not in sync with the applications in the nodes until the synchronization is completed.

JACC registration of the provider implementation classes: The JACC specification states that

providers can plug in their provider using the system properties javax.security.jacc.policy.provider

and javax.security.jacc.PolicyConfigurationFactory.provider.

The javax.security.jacc.policy.provider property is used to set the policy object of the provider, while

the javax.security.jacc.PolicyConfigurationFactory.provider property is used to set the provider‘s

PolicyConfigurationFactory implementation.

Although both system properties are supported in WebSphere Application Server, it is highly recommended

that you use the configuration model provided. You can set these values using either the JACC

configuration panel (see “Configuring a JACC provider” on page 1617 for more information) or by using

wsadmin scripting. One of the advantages of using the configuration model instead of the system

properties is that the information is entered in one place at the cell level, and is propagated to all nodes

during synchronization. Also, as part of the configuration model, additional properties can be entered as

described in the JACC configuration panel.

Enabling an external JACC provider

The Java Contract for Containers (JACC) defines a contract between Java 2 Platform, Enterprise Edition

(J2EE) containers and authorization providers. This contract enables any third-party authorization providers

to plug into a J2EE 1.4 application server such as WebSphere Application Server to make the

authorization decisions when a J2EE resource is accessed.

To enable an external JACC provider using the administrative console:

1. From the WebSphere Application Server administrative console, click Security > Global Security from

the left navigation menu.

2. Under Authorization, click Authorization Providers.

3. Under Related Items, click External JACC provider.

4. The fields are set for Tivoli Access Manager by default. Unless you want to use Tivoli Access Manager

as the JACC provider, replace these fields with the details for your own external JACC provider.

5. If any custom properties are required by the JACC provider, use the Custom properties link to enter

the properties. When using the Tivoli Access Manager, use the Tivoli Access Manager properties link

instead of the Custom properties link.

6. Select the External authorization using a JACC provider option under Security > Global Security

> Authorization Providers and then click OK.

7. Complete the remaining steps to enable global security. If you are using the Tivoli Access Manager you

must select LDAP as the user registry. This same LDAP server should be used by the Tivoli Access

Manager. For more information on configuring LDAP registries, see “Configuring Lightweight Directory

Access Protocol user registries” on page 1474.

8. In a multinode environment, start the deployment manager configuration by issuing the following

commands:

install_dir\profiles\profile_name\bin\stopManager.bat -username user_name -password password

install_dir\profiles\profile_name\bin\startManager.bat

9. Restart all servers to make these changes effective.

External Java Authorization Contract for Containers provider settings:

Use this page to configure WebSphere Application Server to use an external Java Authorization Contract

for Containers (JACC) provider. For example, the policy class name and the policy configuration factory

class name are required by the JACC specification.

Chapter 8. Developing WebSphere applications 1613

For more information on JACC support in WebSphere Application Server, refer to the information center

documentation.

Use these settings when you have set up an external security provider to work with WebSphere

Application Server that can support Java 2 Platform, Enterprise Edition (J2EE) authorization based on the

JACC specification. The setup process involves installing and configuring the provider server and

configuring the client of the provider in the application server to communicate with the server. If the JACC

provider is not enabled, which implies the default authorization, these settings are not used.

To view this administrative console page, complete the following steps:

1. Click Security > Global security.

2. Under Authorization, click Authorization providers.

3. Under Related items, click External JACC provider.

Use the default settings when you use Tivoli Access Manager as the JACC provider. Install and configure

the Tivoli Access Manager server prior to using it with WebSphere Application Server. Using the Tivoli

Access Manager properties link under Additional properties, configure the Tivoli Access Manager client in

the application server to use the Tivoli Access Manager server. If you intend to use another provider,

modify the settings as appropriate.

Name:

Specifies the name used to identify the external JACC provider.

 This field is required.

 Data type: String

Description:

Provides an optional description for the provider.

 Data type: String

Policy class name:

Specifies a fully qualified class name that represents the javax.security.jacc.policy.provider property as per

the JACC specification. The class represents the provider-specific implementation of the

java.security.Policy abstract methods.

 The class file must reside in the class path of each WebSphere Application Server process. This class is

used during authorization decisions. The default class name is for Tivoli Access Manager implementation

of the policy file.

This field is required.

 Data type: String

Default: com.tivoli.pd.as.jacc.TAMPolicy

Policy configuration factory class name:

1614 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Specifies a fully qualified class name that represents the

javax.security.jacc.PolicyConfigurationFactory.provider property as per the JACC specification. The class

represents the provider-specific implementation of the javax.security.jacc.PolicyConfigurationFactory

abstract methods.

 This class represents the provider-specific implementation of the PolicyConfigurationFactory abstract class.

The class file must reside in the class path of each WebSphere Application Server process. This class is

used to propagate the security policy information to the JACC provider during the installation of the J2EE

application. The default class name is for the Tivoli Access Manager implementation of the policy

configuration factory class name.

This field is required.

 Data type: String

Default: com.tivoli.pd.as.jacc.TAMPolicyConfigurationFactory

Role configuration factory class name:

Specifies a fully qualified class name that implements the

com.ibm.wsspi.security.authorization.RoleConfigurationFactory interface.

 The class file must reside in the class path of each WebSphere Application Server process. When you

implement this class, the authorization table information in the binding file is propagated to the provider

during the installation of the J2EE application. The default class name is for the Tivoli Access Manager

implementation of the role configuration factory class name.

This field is optional.

 Data type: String

Default: com.tivoli.pd.as.jacc.TAMRoleConfigurationFactory

Provider initialization class name:

Specifies a fully qualified class name that implements the

com.ibm.wsspi.security.authorization.InitializeJACCProvider interface.

 The class file must reside in the class path of each WebSphere Application Server process. When

implemented, this class is called at the start and the stop of all the application server processes. You can

use this class for any required initialization that is needed by the provider client code to communicate with

the provider server. The properties entered in the custom properties link are passed to the provider when

the process starts up. The default class name is for the Tivoli Access Manager implementation of the

provider initialization class name.

This field is optional.

 Data type: String

Default: com.tivoli.pd.as.jacc.cfg.TAMConfigInitialize

Requires the EJB arguments policy context handler for access decisions:

Specifies whether the JACC provider requires the EJBArgumentsPolicyContextHandler to make access

decisions.

Chapter 8. Developing WebSphere applications 1615

Because this option has an impact on performance, do not set it unless it is required by the provider.

Normally, this handler is required only when the provider supports instance-based authorization. Tivoli

Access Manager does not support this option for J2EE applications.

 Default: Disabled

Supports dynamic module updates:

Specifies whether you can apply changes, made to security policies of Web modules in a running

application, dynamically without affecting the rest of the application.

 If this option is enabled, the security policies of the added or modified Web modules are propagated to the

JACC provider and only the affected Web modules are started.

If this option is disabled, then the security policies of the entire application are propagated to the JACC

provider for any module-level changes. The entire application is restarted for the changes to take effect.

Typically, this option is enabled for an external JACC provider.

 Default: Enabled

Custom properties:

Specifies the properties required by the provider.

 These properties are propagated to the provider during the start up process when the provider initialization

class name is initialized. If the provider does not implement the provider initialization class name as

described previously, the properties are not used.

Tivoli Access Manager implementation does not require you to enter any properties in this link.

Tivoli Access Manager properties:

Specifies properties required by the Tivoli Access Manager implementation.

 These properties are used to set up the communication between the application server and the Tivoli

Access Manager server. You must install and configure the Tivoli Access Manager server before entering

these properties.

Propagating security policy of installed applications to a JACC provider using

wsadmin

It is possible that you have applications installed prior to enabling the JACC-based authorization. You can

start with default authorization and then move to an external provider based authorization using JACC later

on. In this case, the security policy of the previously installed applications would not exist in the JACC

provider to make the access decisions. You can reinstall all of the applications once JACC is enabled so

that the JACC provider is updated with this information. However, since reinstallation might not be an

option in some cases, the wsadmin tool can be used to propagate information to the JACC provider

independent of the application install process. The tool eliminates the need for reinstalling the applications.

The tool uses the SecurityAdmin MBean to propagate the policy information in the deployment descriptor

of any installed application to the JACC provider. The wsadmin tool can be used to invoke this method at

the deployment manager level.

1616 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Use propagatePolicyToJACCProvider(String appNames) to propagate the policy information in the

deployment descriptor of the enterprise archive (EAR) files to the JACC provider. If the

RoleConfigurationFactory and the RoleConfiguration interfaces are implemented by the JACC provider, the

authorization table information in the binding file of the EAR files is also propagated to the provider. See

“Interfaces used to support JACC” on page 1619 for more information about these interfaces.

The appNames contains the list of application names, delimited by a colon (:), whose policy information

must be stored in the provider. If a null value is passed, the policy information of the deployed applications

is propagated to the provider.

Also, be aware of the following items:

v Before migrating application(s) to the Tivoli Access Manager JACC provider, please create or import the

users and groups that are in the application(s) to Tivoli Access Manager.

v Depending on the application or the number of applications propagated you might have to increase the

request time-out period either in the soap.client.props (if using SOAP) or the sas.client.props (if using

RMI) for the command to complete. You can set the request time-out value to 0 to avoid the timeout

problem, and change it back to the original value after the command is run.

1. Configure your JACC provider in WebSphere Application Server. See “Configuring a JACC provider”

for more information.

2. Restart the server.

3. Enter the following commands:

// use the SecurityAdmin Mbean at the Deployment Manager or the unmanaged

// base application server

wsadmin -user serverID -password serverPWD

set secadm [lindex [$AdminControl queryNames type=SecurityAdmin,*] 0]

// to propagate specific applications security policy information

wsadmin>set appNames [list app1:app2]

// or to propagate all applications installed

wsadmin>set appNames [list null]

// Run the command to propagate

wsadmin>$AdminControl invoke $secadm propagatePolicyToJACCProvider $appNames

Configuring a JACC provider

The Java Contract for Containers (JACC) defines a contract between Java 2 Platform, Enterprise Edition

(J2EE) containers and authorization providers. It enables any third party authorization providers to plug

into a J2EE 1.4 application server such as the WebSphere Application Server to make the authorization

decisions when a J2EE resource is accessed. The JACC provider is implemented using the Tivoli Access

Manager.

Read the following articles for more detailed information about JACC before you attempt to configure the

WebSphere Application Server to use a JACC provider:

v “JACC support in WebSphere Application Server” on page 1608

v “JACC providers” on page 1607

v “Tivoli Access Manager integration as the JACC provider” on page 1622

v

1. Start the WebSphere Application Server administrative console by clicking

http://yourhost.domain:9060/ibm/console after starting the WebSphere Application Server. If security

is currently disabled, log in with any user ID. If security is currently enabled, log in with a predefined

administrative ID and password (this is typically the server user ID specified when you configured the

user registry).

Chapter 8. Developing WebSphere applications 1617

2. Click Security > Global Security from the left navigation menu.

3. Under Authorization, click Authorization Providers.

4. Under General Properties, click External JACC provider.

5. Under Additional Properties, click Tivoli Access Manager properties.

6. Enter the following information:

Enable embedded Tivoli Access Manager

Select this option to enable the Tivoli Access Manager.

Ignore errors during embedded Tivoli Access Manager disablement

Select this option when you want to unconfigure the JACC provider. Do not select this option

during configuration.

Client listening point set

WebSphere Application Server must listen using a TCP/IP port for authorization database

updates from the policy server. More than one process can run on a particular node or

machine

 Enter the listening ports used by Tivoli Access Manager clients, separated by a comma. If a

range of ports is specified, separate the lower and higher values by a colon (for example,

7999, 9990:999)..

Policy server

Enter the name of the Tivoli Access Manager policy server and the connection port. Use the

form policy_server:port. The policy communication port is set at the time of the Tivoli Access

Manager configuration, and the default is 7135.

Authorization servers

Enter the name of the Tivoli Access Manager authorization server. Use the form

auth_server:port:priority. The authorization server communication port is set at the time of

the Tivoli Access Manager configuration, and the default is 7136.

 More than one authorization server can be specified by separating the entries with commas.

Specifying more than one authorization server at a time is useful for reasons of failover and

performance.

 The priority value is determined by the order of the authorization server use (for example,

auth_server1:7136:1, and auth_server2:7137:2). A priority value of 1 is required when

configuring against a single authorization server.

Administrator user name

Enter the Tivoli Access Manager administrator user name that was created when Tivoli Access

Manager was configured (it is usually sec_master).

Administrator user password

Enter the Tivoli Access Manager administrator password.

User registry distinguished name suffix

Enter the distinguished name suffix for the user registry that is shared between Tivoli Access

Manager and WebSphere (for example, o=inm, c=us).

Security domain

You can create more than one security domain in Tivoli Access Manager, each with its own

administrative user. Users, groups and other objects are created within a specific domain, and

are not permitted to access resource in another domain.

 Enter the name of the Tivoli Access Manager security domain that is used to store WebSphere

Application Server users and groups.

 If a security domain has not been established at the time of the Tivoli Access Manager

configuration, leave the value as Default.

1618 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Administrator user distinguished name

Enter the full distinguished name of the WebSphere security administrator ID (for example,

cn=wasdmin, o=organization, c=country). The ID name must match the Server user ID on the

LDAP User Registry panel in the administrative console. To access the LDAP User Registry

panel, click Security > Global Security. Under User registries, click LDAP.

After you have configured a JACC provider, you must enable it in the WebSphere Application Server

administrative console. See “Enabling an external JACC provider” on page 1613 for more information.

Interfaces used to support JACC

WebSphere Application Server provides interfaces similar to PolicyConfigurationFactory and

PolicyConfiguration so that the information that is stored in the bindings file can be propagated to the

provider during installation. The interfaces are called RoleConfigurationFactory and RoleConfiguration .

The implementation of these interfaces is optional.

RoleConfiguration

The RoleConfiguration interface is used to propagate the authorization information to the provider. This

interface is similar to the PolicyConfiguration interface found in Java Authorization Contact for Containers

(JACC).

RoleConfiguration

 - com.ibm.wsspi.security.authorization.RoleConfiguration

/**

 * This interface is used to propagate the authorization table information

 * in the binding file during application install. Implementation of this interface is

 * optional. When a JACC provider implements this interface during an application, both

 * the policy and the authorization table information are propagated to the provider.

* If this is not implemented, only the policy information is propagated as per the JACC specification.

 *

 * @ibm-spi

 * @ibm-support-class-A1

 */

public interface RoleConfiguration

/**

 * Add the users to the role in RoleConfiguration.

 * The role is created, if it doesn‘t exist in RoleConfiguration.

 * @param role the role name.

 * @param users the list of the user names.

 * @exception RoleConfigurationException if the users cannot be added.

 */

 public void addUsersToRole(String role, List users)

 throws RoleConfigurationException

/**

 * Remove the users to the role in RoleConfiguration.

 * @param role the role name.

 * @param users the list of the user names.

 * @exception RoleConfigurationException if the users cannot be removed.

 */

 public void removeUsersFromRole(String role, List users)

 throws RoleConfigurationException

/**

 * Add the groups to the role in RoleConfiguration.

 * The role is created if it doesn‘t exist in RoleConfiguration.

 * @param role the role name.

 * @param groups the list of the group names.

Chapter 8. Developing WebSphere applications 1619

* @exception RoleConfigurationException if the groups cannot be added.

 */

 public void addGroupsToRole(String role, List groups)

 throws RoleConfigurationException

/**

 * Remove the groups to the role in RoleConfiguration.

 * @param role the role name.

 * @param groups the list of the group names.

 * @exception RoleConfigurationException if the groups cannot be removed.

 */

 public void removeGroupsFromRole(String role, List groups)

 throws RoleConfigurationException

/**

 * Add the everyone to the role in RoleConfiguration.

 * The role is created if it doesn‘t exist in RoleConfiguration.

 * @param role the role name.

 * @exception RoleConfigurationException if the everyone cannot be added.

 */

 public void addEveryoneToRole(String role)

 throws RoleConfigurationException

/**

 * Remove the everyone to the role in RoleConfiguration.

 * @param role the role name.

 * @exception RoleConfigurationException if the everyone cannot be removed.

 */

 public void removeEveryoneFromRole(String role)

 throws RoleConfigurationException

/**

 * Add the all authenticated users to the role in RoleConfiguration.

 * The role is created if it doesn‘t exist in RoleConfiguration.

 * @param role the role name.

 * @exception RoleConfigurationException if the authentication users cannot

 * be added.

 */

 public void addAuthenticatedUsersToRole(String role)

 throws RoleConfigurationException

/**

 * Remove the all authenticated users to the role in RoleConfiguration.

 * @param role the role name.

 * @exception RoleConfigurationException if the authentication users cannot

 * be removed.

 */

 public void removeAuthenticatedUsersFromRole(String role)

 throws RoleConfigurationException

/**

 * This commits the changes in Roleconfiguration.

 * @exception RoleConfigurationException if the changes cannot be

 * committed.

 */

 public void commit()

 throws RoleConfigurationException

/**

 * This deletes the RoleConfiguration from the RoleConfiguration Factory.

 * @exception RoleConfigurationException if the RoleConfiguration cannot

 * be deleted.

 */

 public void delete()

 throws RoleConfigurationException

1620 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

/**

 * This returns the contextID of the RoleConfiguration.

 * @exception RoleConfigurationException if the contextID cannot be

 * obtained.

 */

 public String getContextID()

 throws RoleConfigurationException

RoleConfigurationFactory

The RoleConfigurationFactory interface is similar to the PolicyConfigurationFactory interface introduced by

JACC, and is used to obtain RoleConfiguration objects based on the contextIDs.

RoleConfigurationFactory

 - com.ibm.wsspi.security.authorization.RoleConfigurationFactory

/**

 * This interface is used to instantiate the com.ibm.wsspi.security.authorization.RoleConfiguration

 * objects based on the context identifier similar to the policy context identifier.

 * Implementation of this interface is required only if the RoleConfiguration interface is implemented.

 *

 * @ibm-spi

 * @ibm-support-class-A1

 */

public interface RoleConfigurationFactory

/**

 * This gets a RoleConfiguration with contextID from the

 * RoleConfigurationfactory. If the RoleConfiguration doesn‘t exist

 * for the contextID in the RoleConfigurationFactory, a new

 * RoleConfiguration with contextID is created in the

 * RoleConfigurationFactory. The contextID is similar to

 * PolicyContextID, but it doesn‘t contain the module name.

 * If remove is true, the old RoleConfiguration is removed and a new

 * RoleConfiguration is created, and returns with the contextID.

 * @return the RoleConfiguration object for this contextID

 * @param contextID the context ID of RoleConfiguration

 * @param remove true or false

 * @exception RoleConfigurationException if RoleConfiguration

 * can‘t be obtained.

 **/

public abstract com.ibm.ws.security.policy.RoleConfiguration

 getRoleConfiguration(String contextID, boolean remove)

 throws RoleConfigurationException

InitializeJACCProvider

When implemented by the provider, this interface is called for every process start. All additional properties

that are entered during the authorization check are passed to the provider. For example, the provider can

use this information to initialize their client code to communicate with their server or repository. The

cleanup method is called during server shutdown to clean up the configuration.

Declaration

public interface InitializeJACCProvider

Description

This interface has two methods. The JACC provider can implement it, and WebSphere Application Server

calls it to initialize the JACC provider. The name of the implementation class is obtained from the value of

the initializeJACCProviderClassName system property.

This class must reside in a Java archive (JAR) file on the class path of each server that uses this provider.

Chapter 8. Developing WebSphere applications 1621

InitializeJACCProvider

 - com.ibm.wsspi.security.authorization.InitializeJACCProvider

 /**

 * Initializes the JACC provider

 * @return 0 for success.

 * @param props the custom properties that are included for this provider will

 * pass to the implementation class.

 * @exception Exception for any problems encountered.

 **/

 public int initialize(java.util.Properties props)

 throws Exception

 /**

 * This method is for the JACC provider cleanup and will be called during a process stop.

 **/

 public void cleanup()

Tivoli Access Manager integration as the JACC provider

Tivoli Access Manager uses the Java Authorization Contract for Container (JACC) model in WebSphere

Application Server to perform access checks. It consists of the following components.

v Run time

v Client configuration

v Authorization table support

v Access check

v Authentication using the PDLoginModule module

Tivoli Access Manager run-time changes that are used to support JACC

For the run-time changes, Tivoli Access Manager implements the PolicyConfigurationFactory and the

PolicyConfiguration interfaces, as required by JACC. During the application installation, the security policy

information in the deployment descriptor and the authorization table information in the binding files is

propagated to the Tivoli provider using these interfaces. The Tivoli provider stores the policy and the

authorization table information in the Tivoli Access Manager policy server by calling the respective Tivoli

Access Manager APIs. The information is stored in the security policy database in the Tivoli Access

Manager policy server.

Tivoli Access Manager also implements the RoleConfigurationFactory and the RoleConfiguration

interfaces. These interfaces are used to ensure that the authorization table information is passed to the

provider with the policy information. See “Interfaces used to support JACC” on page 1619 for more

information about these interfaces.

Tivoli Access Manager client configuration

The Tivoli Access Manager client can be configured using either the administrative console or wsadmin

scripting. The administrative console panels for the Tivoli Access Manager client configuration are located

under the Security center panel. The Tivoli client must be set up to use the Tivoli JACC provider. The

setup can be done either before (using wsadmin) or during the time of WebSphere Application Server

configuration.

For more information about how to configure the Tivoli Access Manager client, see “Tivoli Access Manager

JACC provider configuration” on page 1626.

Authorization table support

Tivoli Access Manager uses the RoleConfiguration interface to ensure that the authorization table

information is passed to the Tivoli Access Manager provider when the application is installed or deployed.

When an application is deployed or edited, the set of users and groups for the user or group-to-role

1622 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

mapping are obtained from the Tivoli Access Manager server, which shares the same Lightweight Directory

Access Protocol (LDAP) server as WebSphere Application Server. This sharing is accomplished by

plugging into the application management users or groups-to-role administrative console panels. The

management APIs are called to obtain users and groups rather than relying on the WebSphere Application

Server-configured LDAP registry.

Access check

When WebSphere Application Server is configured to use the JACC provider for Tivoli Access Manager , it

passes the information to Tivoli Access Manager to make the access decision. The Tivoli Access Manager

policy implementation queries the local replica of the access control list (ACL) database for the access

decision.

Authentication using the PDLoginModule module

The custom login module in WebSphere Application Server can do the authentication. This login module is

plugged in before the WebSphere Application Server-provided login modules. The custom login modules

can provide information that can be stored in the Subject. If the required information is stored, no

additional registry calls are made to obtain that information.

As part of the JACC integration, the Tivoli Access Manager-provided PDLoginModule module is also used

to plug into WebSphere Application Server for both Lightweight Third Party Authentication (LTPA) and

Simple WebSphere Authentication Mechanism (SWAM) authentication. The PDLoginModule module is

modified to authenticate with the user ID or password. The module is also used to fill in the required

attributes in the Subject so that no registry calls are made by the login modules in WebSphere Application

Server. The information that is placed in the Subject is available for the Tivoli Access Manager policy

object to use for access checking.

Tivoli Access Manager security for WebSphere Application Server

WebSphere Application Server Version 6.0 provides embedded IBM Tivoli Access Manager client

technology to secure your WebSphere Application Server managed resources.

The benefits of using Tivoli Access Manager described here are only applicable when Tivoli Access

Manager client code is used with the Tivoli Access Manager server:

Note: Tivoli Access Manager code is not imbedded but bundled in some versions of WebSphere

Application Server.

v Robust container-based authorization

v Centralized policy management

v Management of common identities, user profiles, and authorization mechanisms

v Single-point security management for Java 2 Platform, Enterprise Edition (J2EE) compliant and

non-compliant J2EE resources using the Tivoli Access Manager Web Portal Manager GUI

v No requirements for coding or deployment changes to applications

v Easy management of users, groups, and roles using the WebSphere Application Server administrative

console

WebSphere Application Server Version 6.0 supports the Java Authorization Contract for Containers (JACC)

specification. JACC details the contract requirements for J2EE containers and authorization providers. With

this detail, authorization providers can perform the access decisions for resources in J2EE 1.4 application

servers such as WebSphere Application Server. The Tivoli Access Manager security utility that is

embedded within WebSphere Application Server Version 6.0 is JACC-compliant and is used to:

v Add security policy information when applications are deployed

v Authenticate users

v Authorize access to WebSphere Application Server-secured resources.

Chapter 8. Developing WebSphere applications 1623

When applications are deployed, the embedded Tivoli Access Manger client takes any policy and or user

and role information that is stored within the application deployment descriptor and stores it within the

Tivoli Access Manager Policy Server.

The Tivoli Access Manager JACC provider is also called when a user requests access to a resource that is

managed by WebSphere Application Server.

Embedded Tivoli Access Manager client architecture

The previous figure illustrates the following sequence of events:

1. Users that access protected resources are authenticated using the Tivoli Access Manager login module

that is configured for use when the embedded Tivoli Access Manager client is enabled.

2. The WebSphere Application Server container uses information from the J2EE application deployment

descriptor to determine the required role membership.

3. WebSphere Application Server uses the embedded Tivoli Access Manager client to request an

authorization decision (granted or denied) from the Tivoli Access Manager authorization server.

Additional context information, when present, is also passed to the authorization server. This context

information is comprised of the cell name, J2EE application name, and J2EE module name. If the

Tivoli Access Manager policy database has policies that are specified for any of the context

information, the authorization server uses this information to make the authorization decision.

4. The authorization server consults the permissions that are defined for the specified user within the

Tivoli Access Manager-protected object space. The protected object space is part of the policy

database.

5. The Tivoli Access Manager authorization server returns the access decision to the embedded Tivoli

Access Manager client.

6. WebSphere Application Server either grants or denies access to the protected method or resource,

based on the decision returned from the Tivoli Access Manager Authorization Server.

At its core, Tivoli Access Manager provides an authentication and authorization framework. You can learn

more about Tivoli Access Manager, including information that is necessary to make deployment decisions,

by reviewing the product documentation. Start with the following guides, available at

http://publib.boulder.ibm.com/tividd/td/tdprodlist.html:

Tivoli Access
Manager

login module

Tivoli Access Manager
JACC provider

Tivoli Access Manager
authorization server

Tivoli Access Manager
policy server

WebSphere Application Server

Policy
database
replication

LDAP
server

Policy
database

Policy
database

Protected object
space

/

SD

Client

Request

Response

1624 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

http://publib.boulder.ibm.com/tividd/td/tdprodlist.html

v IBM Tivoli Access Manager Base Installation Guide

This guide describes how to plan, install, and configure a Tivoli Access Manager secure domain. Using

a series of easy installation scripts, you can quickly deploy a fully functional secure domain. These

scripts are very useful when prototyping the deployment of a secure domain.

v IBM Tivoli Access Manager Base Administration Guide

This document presents an overview of the Tivoli Access Manager security model for managing

protected resources. This guide describes how to configure the Tivoli Access Manager servers that

make access control decisions. In addition, detailed instructions describe how to perform important

tasks such as declaring security policies, defining protected object spaces, and administering user and

group profiles.

Tivoli Access Manager provides centralized administration of multiple servers.

Machine C

Tivoli
Access Manager
policy database

Machine A - Cell Manager

Machine D - Node 1

Policy database
replication

Machine B

WebSphere Application Server

Tivoli Access
Manager JACC

provider

Tivoli Access Manager
local policy

database replica

Policy database
replication

WebSphere Application Server

Tivoli Access
Manager JACC

provider

Tivoli Access Manager
local policy

database replica

authorization
decisions

User registry
shared by all
applications

WebSphere Application Server Cell

authorization
decisions

Master Policy
database

Machine E

Tivoli
Access Manager

Authorization
Server

Tivoli Access Manager
local policy

database replica

credential
acquisition

credential
acquisition

The previous figure is an example architecture showing WebSphere Application Servers secured by Tivoli

Access Manager.

The participating WebSphere Application Servers use a local replica of the Tivoli Access Manager policy

database to make authorization decisions for incoming requests. The local policy databases are replicas of

the master policy database that are installed as part of the Tivoli Access Manager installation. Having

policy database replicas on each participating WebSphere Application Server optimizes performance when

making authorization decisions and provides failover capability.

Chapter 8. Developing WebSphere applications 1625

The authorization server can also be installed on the same system as WebSphere Application Server,

although this configuration is not illustrated in the diagram.

All instances of Tivoli Access Manager and WebSphere Application Server in the example architecture

share the Lightweight Directory Access Protocol (LDAP) user registry on Machine E.

The LDAP registries that are supported by WebSphere Application Server are also supported by Tivoli

Access Manager.

Note: It is possible to have separate WebSphere Application Server profiles on the same host configured

against different Tivoli Access Manager servers. Such an architecture requires the profiles to be

configured against separate Java Runtime Environments (JRE) and therefore multiple JREs need to

be installed on the same host.

Creating the security administrative user

Enabling security requires the creation of a WebSphere Application Server administrative user. Use either

the Tivoli Access Manager command-line pdadmin utility (available on the policy server host box) to create

the Tivoli Access Manager administrative user for WebSphere Application Server. To use the pdadmin

utility:

1. From a command line, start the pdadmin utility as the Tivoli Access Manager administrative user,

sec_master:

pdadmin -a sec_master -p sec_master_password

2. Create a WebSphere Application Server security user. For example, the following instructions create a

new user, wasadmin. The command is entered as one continuous line:

pdadmin> user create wasadmin cn=wasadmin,o=organization,

c=country wasadmin wasadmin myPassword

Substitute values for organization and country that are valid for your Lightweight Directory Access

Protocol (LDAP) user registry.

3. Enable the account for the WebSphere Application Server security administrative user by issuing the

following command:

pdadmin> user modify wasadmin account-valid yes

Configure the Java Authorization Contract for Container (JACC) provider for Tivoli Access Manager- “Tivoli

Access Manager JACC provider configuration.”

Tivoli Access Manager JACC provider configuration

The Tivoli Access Manager JACC provider can be configured to deliver authentication and authorization

protection for your applications or authentication only. Most deployments using the Tivoli Access Manager

JACC provider will configure Tivoli Access Manager to provide both authentication and authorization

functionality.

If you want Tivoli Access Manager to provide authentication but leave authorization as part of WebSphere

Application Server’s native security, add the following property to the amwas.amjacc.template.properties

file located on the directory profiles/profileName/cells/cellName.

com.tivoli.pd.as.amwas.DisableAddAuthorizationTableEntry=true

Once this property is set, perform the tasks for setting Tivoli Access Manager Security as documented.

1626 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

You can configure the Tivoli Access Manager JACC provider using either the WebSphere Application

Server administrative console or the wsadmin command line utility.

v For details on configuring the Tivoli Access Manager JACC provider using the administration console,

refer to “Configuring the JACC provider for Tivoli Access Manager using the administrative console” on

page 1629

v For details on configuring the Tivoli Access Manager JACC provider using the wsadmin command line

utility, refer to “Configuring the JACC provider for Tivoli Access Manager using the wsadmin utility”

Note:

Tivoli Access Manager JACC configuration files that are common across multiple WebSphere

Application Server profiles are created by default under the java/jre directory. The user installing

WebSphere Application Server will be given permissions to read and write to the files in this

directory. On UNIX platforms, profiles created by users who are different to the user that installed

the application will have read-only permissions for this directory. In addition, all users on the iSeries

platform will have read-only access to this directory. This is not ideal as configuration of the Tivoli

Access Manager JACC provider will fail in these situations.

To avoid this problem read and write permissions can be manually applied to the java/jre

directory. For iSeries installations however, the permissions for this directory cannot be changed. To

avoid this situation the following property can be added to the

etc/amwas.amjacc.template.properties file.

com.tivoli.pd.as.jacc.CommonFileLocation=new location

Where new location is a fully qualified directory name. This property sets the location of the Tivoli

Access Manager JACC provider properties files that are common across profiles.

Note: The wsadmin command is available to reconfigure the Tivoli Access Manager Java Authorization

Contract for Containers (JACC) interface:

$AdminTask reconfigureTAM -interactive

This command effectively prompts you through the process of unconfiguring the interface and then

reconfiguring it.

Configuring the JACC provider for Tivoli Access Manager using the wsadmin

utility

In a network deployment architecture, verify that all the managed servers, including node agents, are

started. The following configuration is performed once on the deployment manager server. The

configuration parameters are forwarded to managed servers, including node agents, when a

synchronization is performed. The managed servers then require their own restart for the configuration

changes to take effect.

You can use the wsadmin utility to configure Tivoli Access Manager security for WebSphere Application

Server:

1. Start WebSphere Application Server.

2. Start the command-line utility by running the wsadmin command from the install_dir/bin directory.

3. At the wsadmin prompt, enter the following command:

$AdminTask configureTAM -interactive

Chapter 8. Developing WebSphere applications 1627

You are prompted to enter the following information:

 Option Description

WebSphere Application Server node name Specify a single node or enter an asterisk (*) to choose

all nodes.

Tivoli Access Manager Policy Server Enter the name of the Tivoli Access Manager policy

server and the connection port. Use the format,

policy_server : port. The policy server communication port

is set at the time of Tivoli Access Manager configuration –

the default port is 7135.

Tivoli Access Manager Authorization Server Enter the name of the Tivoli Access Manager

authorization server. Use the format auth_server : port :

priority. The authorization server communication port is

set at the time of Tivoli Access Manager configuration –

the default port is 7136. More than one authorization

server can be specified by separating the entries with

commas. Having more than one authorization server

configured is useful for failover and performance. The

priority value is the order of authorization server use. For

example: auth_server1:7136:1,auth_server2:7137:2. A

priority (of 1) is still required when configuring against a

single authorization server.

WebSphere Application Server administrator’s

distinguished name

Enter the full distinguished name of the WebSphere

Application Server security administrator ID as created in

“Creating the security administrative user” on page 1626.

For example: cn=wasadmin,o=organization,c=country

Tivoli Access Manager user registry distinguished

name suffix

For example: o=organization,c=country

Tivoli Access Manager administrator’s user name Enter the Tivoli Access Manager administration user ID,

as created at the time of Tivoli Access Manager

configuration. This ID is usually, sec_master.

Tivoli Access Manager administrator’s user password Enter the password for the Tivoli Access Manager

administrator.

Tivoli Access Manager security domain Enter the name of the Tivoli Access Manager security

domain that is used to store users and groups. If a

security domain is not already established at the time of

Tivoli Access Manager configuration, click Return to

accept the default.

Embedded Tivoli Access Manager listening port set WebSphere Application Server needs to listen on a

TCP/IP port for authorization database updates from the

policy server. More than one process can run on a

particular node and machine so a list of ports is required

for the processes. Enter the ports that are used as

listening ports by Tivoli Access Manager clients,

separated by a comma. If you specify a range of ports,

separate the lower and higher values by a colon. For

example, 7999, 9990:9999.

Defer Set to yes, this option defers the configuration of the

management server until the next restart. Set to no,

configuration of the management server occurs

immediately. Managed servers are configured on their

next restart.

4. When all information is entered, select F to save the configuration properties or C to cancel from the

configuration process and discard entered information.

1628 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Now enable the JACC provider for Tivoli Access Manager- “Enabling the JACC provider for Tivoli Access

Manager” on page 1632.

Configuring the JACC provider for Tivoli Access Manager using the administrative

console

In a Network Deployment architecture, verify that all the managed servers, including node agents, are

started. The following configuration is performed on the management server. When either Apply or OK is

clicked, configuration information is checked for consistency, saved, and applied if successful. In Network

Deployment environments, this configuration information is propagated to nodes when a synchronization is

performed. Restart the nodes for the configuration changes to take effect.

To configure the Java Authorization Contract for Containers (JACC) provider for Tivoli Access Manager

using the administrative console:

1. Click Security > Global security.

2. Under Authorization, click Authorization Providers.

3. Under General properties, select External authorization using a JACC provider.

4. Under Related items, click External JACC provider.

5. Under Additional properties, click Tivoli Access Manager Properties. The Tivoli Access Manager

JACC provider configuration screen is displayed.

6. Enter the following information:

 Option Description

Enable embedded Tivoli Access Manager enable

Ignore errors during embedded Tivoli Access

Manager disablement

This option is applicable only when reconfiguring an

embedded Tivoli Access Manager client or when disabling

an embedded Tivoli Access Manager client. When

selected, errors are ignored during disablement of an

embedded Tivoli Access Manager client.

Client listening port set WebSphere Application Server needs to listen on a

TCP/IP port for authorization database updates from the

policy server. More than one process can run on a

particular node and machine so a list of ports is required

for the processes. Enter the ports that are used as

listening ports by Tivoli Access Manager clients, with each

entry on a new line. If you specify a range of ports,

separate the lower and higher values by a colon (:), as

shown in the following example:

 7999

 9990:9999

Policy Server Enter the name, the fully-qualified domain name, or the IP

address of the Tivoli Access Manager policy server.

Include the connection port. Use the form policy_server :

port. The policy server communication port is set at the

time of Tivoli Access Manager configuration – the default

is 7135.

Chapter 8. Developing WebSphere applications 1629

Option Description

Authorization Servers Enter the name, the fully-qualified domain name, or the IP

address of the Tivoli Access Manager authorization

server. Use the form auth_server : port : priority. The

authorization server communication port is set at the time

of Tivoli Access Manager configuration – the default is

7136. More than one authorization server can be

specified by entering each server on a new line. Having

more than one authorization server configured is useful

for failover and performance. The priority value is the

order of authorization server use. For example:

 auth_server1:7136:1

auth_server2:7137:2

A priority (of 1) is still required when configuring against a

single authorization server.

Administrator user name Enter the Tivoli Access Manager administration user ID as

created at the time of Tivoli Access Manager

configuration. This ID is usually, sec_master.

Administrator user password Enter the Tivoli Access Manager administration password

for the user ID identified previously.

User registry distinguished name suffix Enter the distinguished name suffix for the user registry

for Tivoli Access Manager and WebSphere Application

Server to share. For example: o=organization,c=country

Security domain More than one security domain can be created in Tivoli

Access Manager with its own administrative user. Users,

groups, and other objects are created within a specific

domain and are not permitted to access resources in

another domain. Enter the name of the Tivoli Access

Manager security domain that is used to store

WebSphere Application Server users and groups. If a

security domain is not yet established at the time of Tivoli

Access Manager configuration, leave the value as

Default.

Administrator user distinguished name Enter the full distinguished name of the WebSphere

Application Server user ID, as created for Tivoli Access

Manager in “Creating the security administrative user” on

page 1626. For example,

cn=wasadmin,o=organization,c=country. The name

specified in this field must match the server user ID that

is specified on the Lightweight Directory Access Protocol

setting panel in the WebSphere Application Server

administrative console. To access this panel, click

Security > Global security. Under User registries, click

LDAP.

7. When all information is entered, click OK to save the configuration properties. The configuration

parameters are checked for validity and the configuration is attempted at the host server or cell

manager.

After you click OK, WebSphere Application Server completes the following actions:

v Validate the configuration parameters.

v Configure the host server or cell manager.

These processes might take some time depending on network traffic or the speed of your machine.

1630 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

If the configuration is successful, the parameters are copied to all subordinate servers, including the node

agents. To complete the embedded Tivoli Access Manager client configuration, you must restart all of the

servers, including the host server, and enable WebSphere Application Server security.

Tivoli Access Manager JACC provider settings:

Use this page to configure the Java Authorization Contract for Container (JACC) provider for Tivoli Access

Manager.

 To view the JACC provider settings for Tivoli Access Manager, complete the following steps:

1. Click Security > Global security.

2. Under Authorization, click Authorization Providers.

3. Under Related items, click External JACC provider.

4. Under Additional properties, click Tivoli Access Manager Properties.

Enable embedded Tivoli Access Manager:

Enables or disables the embedded Tivoli Access Manager client configuration.

 Default: Disabled

Range: Enabled or Disabled

Ignore errors during embedded Tivoli Access Manager disablement:

When selected, errors are ignored during disablement of the embedded Tivoli Access Manager client.

 This option is applicable only when reconfiguring an embedded Tivoli Access Manager client or disabling

an embedded Tivoli Access Manager.

 Default: Disabled

Range: Enabled or Disabled

Client listening port set:

Enter the ports that are used as listening ports by Tivoli Access Manager clients.

 WebSphere Application Server needs to listen on a TCP/IP port for authorization database updates from

the policy server. More than one process can run on a particular node and machine so a list of ports is

required for use by the processes. If a range of ports is to be specified, separate the lower and higher

values by a colon (:). Single ports and port ranges are specified on separate lines. An example list might

look like the following example:

7999

 9990:9999

Policy server:

Enter the name, fully-qualified domain name, or IP address of the Tivoli Access Manager policy server and

the connection port.

 Use the form policy_server:port. The policy server communication port was set at the time of Tivoli Access

Manager configuration – the default is 7135.

Authorization servers:

Chapter 8. Developing WebSphere applications 1631

Enter the name, fully-qualified domain name, or IP address of the Tivoli Access Manager authorization

server. Use the form auth_server:port:priority.

 The authorization server communication port was set at the time of Tivoli Access Manager configuration –

the default is 7136. More than one authorization server can be specified by entering each server on a new

line. Having more than one authorization server configured is useful for failover and performance. The

priority value is the order of authorization server use. For example:

auth_server1.mycompany.com:7136:1

auth_server2.mycompany.com:7137:2

A priority (of 1) is still required when configuring against a single authorization server.

Administrator user name:

Enter the Tivoli Access Manager administration user ID, as created at the time of Tivoli Access Manager

configuration. This ID is usually, sec_master.

Administrator user password:

Enter the Tivoli Access Manager administration password for the user ID entered in the Administrator user

name field.

User registry distinguished name suffix:

Enter the distinguished name suffix for the user registry to share between Tivoli Access Manager and

WebSphere Application Server. For example: o=organization,c=country

Security domain:

Enter the name of the Tivoli Access Manager security domain that is used to store WebSphere Application

Server users and groups.

 Specification of the Tivoli Access Manager domain is required as more than one security domain can be

created in Tivoli Access Manager with its own administrative user. Users, groups, and other objects are

created within a specific domain and are not permitted to access resources in another domain. If a security

domain is not established at the time of Tivoli Access Manager configuration, leave the value as Default.

 Default: Default

Administrator user distinguished name:

Enter the full, distinguished name of the WebSphere Application Server security administrator ID. For

example, cn=wasadmin,o=organization,c=country

Enabling the JACC provider for Tivoli Access Manager

Note: Do not perform this task if you are configuring the Java Authorization Contract for Container (JACC)

provider for Tivoli Access Manager to supply authentication services only. Only perform this task for

installations that require both Tivoli Access Manager authentication and authorization protection.

The JACC provider for Tivoli Access Manager is configured by default. The following list shows the JACC

provider configuration settings for Tivoli Access Manager .

 Field Value

Name Tivoli Access Manager

1632 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Field Value

Description This field is optional and used as a reference.

J2EE policy class name com.tivoli.pd.as.jacc.TAMPolicy

Policy configuration factory class name com.tivoli.pd.as.jacc.TAMPolicyConfigurationFactory

Role configuration factory class name com.tivoli.pd.as.jacc.TAMRoleConfigurationFactory

JACC provider initialization class name com.tivoli.pd.as.jacc.cfg.TAMConfigInitialize

Requires the EJB arguments policy

context handler for access decisions

false

Supports dynamic module updates true

To enable the JACC provider for Tivoli Access Manager, use the previous settings and complete the

following steps:

1. Click Security > Global security.

2. Under Authorization, click Authorization providers.

3. Select the External JACC provider option.

4. The JACC provider settings for Tivoli Access Manager are displayed. Click OK.

5. Save the settings by clicking Save at the top of the page; click the Save button.

6. Log out of the WebSphere Application Server administrative console.

7. Restart the WebSphere Application Server. The security configuration is now replicated to managed

servers and node agents. These other servers within a cell also require restarting before the security

changes take effect.

Configuring additional authorization servers

Tivoli Access Manager secure domains can contain more than one authorization server. Having multiple

authorization servers is useful for providing a failover capability as well as improving performance when

the volume of access requests is large.

1. Refer to the Tivoli Access Manager Base Administration Guide for details on installing and configuring

authorization servers. This document is available from

http://publib.boulder.ibm.com/tividd/td/tdprodlist.html.

2. Reconfigure the Java Authorization Contract for Containers (JACC) provider using the $AdminTask

reconfigureTAM interactive wsadmin command. Enter all new and existing options.

Role-based security with embedded Tivoli Access Manager

The Java 2 Platform, Enterprise Edition (J2EE) role-based authorization model uses the concepts of roles

and resources. An example is provided here.

 Methods

Roles getBalance deposit closeAccount

Teller granted granted

Cashier granted

Supervisor granted

In the example of the banking application that is conceptualized in the previous table, three roles are

defined: teller, cashier, and supervisor. Permission to perform the getBalance, deposit, and closeAccount

application methods are mapped to these roles. From the example, you can see that users assigned the

role, Supervisor, can run the closeAccount method, whereas the other two roles are unable to run this

method.

Chapter 8. Developing WebSphere applications 1633

http://publib.boulder.ibm.com/tividd/td/tdprodlist.html

The term, principal, within WebSphere Application Sever security refers to a person or a process that

performs activities. Groups are logical collections of principals that are configured in WebSphere

Application Server to promote the ease of applying security. Roles can be mapped to principals, groups, or

both. The entry invoked in the following table indicates that the principal or group can invoke any methods

that are granted to that role.

 Roles

Principal/Group Teller Cashier Supervisor

TellerGroup Invoke

CashierGroup Invoke

SupervisorGroup

Frank - a principal

who is not a

member of any of

 the previous

 groups

Invoke Invoke

In the previous example, the principal Frank, can invoke the getBalance and the closeAccount methods,

but cannot invoke the deposit method because this method is not granted either the Cashier or the

Supervisor role.

At the time of application deployment, the Java Authorization Contract for Container (JACC) provider of

Tivoli Access Manager populates the Tivoli Access Manager-protected object space with any security

policy information that is contained in the application deployment descriptor. This security information is

used to determine access whenever the WebSphere resource is requested.

By default, the Tivoli Access Manager access check is performed using the role name, the cell name, the

application name, and the module name.

Tivoli Access Manager access control lists (ACLs) determine which application roles are assigned to a

principal. ACLs are attached to the applications in the Tivoli Access Manager-protected object space at the

time of application deployment.

Note: Principal-to-role mappings are managed from the WebSphere Application Server administrative

console and are never modified using Tivoli Access Manager. Direct updates to ACLs are performed

for administrative security users only.

The following sequence of events occur:

1. During application deployment, policy information is sent to the Tivoli Access Manager JACC provider.

This policy information contains permission-to-role mappings and role-to-principal and role-to-group

mapping information.

2. The Tivoli Access Manager JACC provider converts the information into the required format, and

passes this information to the Tivoli Access Manager policy server.

3. The policy server adds entries to the Tivoli Access Manager-protected object space to represent the

roles that are defined for the application and the permission-to-role mappings. A permission is

represented as a Tivoli Access Manager-protected object and the role granted to this object is attached

as an extended attribute.

1634 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Administering security users and roles with Tivoli Access Manager

User-to-role mapping and user-to-group mapping for the Tivoli Access Manager JACC provider are

performed using the WebSphere Application Server administrative console. To manage user-to-role

mappings and user-to-group mappings for applications:

1. Click Applications > Enterprise applications >application_name.

2. Under Additional properties, click Map security roles to Tivoli Access Manager users/groups. The

user and groups management screen is displayed.

3. Select the role which requires user or group management and use Lookup users or Lookup groups

to manage the users or groups for the selected role. The native role mapping uses the

MapRolesToUsers administrative task. If you are using Tivoli Access Manager, use the

TAMMapRolesToUsers administrative task instead. The syntax and options for the Tivoli version are

the same as those used in the native version.

Configuring Tivoli Access Manager groups

The WebSphere Application Server administrative console can be used to specify security policies for

applications that run in the WebSphere Application Server environment. The WebSphere Application

Server administrative console can also specify security policies for other Web resources, based on the

entities that are stored in the registry.

Tivoli Access Manager adds the accessGroup object class to the registry. Tivoli Access Manager

administrators can use the pdadmin utility (available only on the policy server host in the PD.RTE fileset)

to create new groups. These new groups are added to the registry as the accessGroup object class.

The WebSphere Application Server administrative console is not configured by default to recognize objects

of the accessGroup class as user registry groups. You can configure the WebSphere Application Server

administrative console to add this object class to the list of object classes that represent user registry

groups. To do this configuration, complete the following instructions:

1. From the WebSphere Application Server administrative console, access the advanced settings for

configuring security by clicking Security > Global security.

2. Under User registries, click LDAP.

3. Under Additional properties, click Advanced Lightweight Directory Access Protocol (LDAP) user

registry settings

4. Modify the Group Filter field. Add the following entry: (objectclass=accessGroup)

The Group Filter field then looks like the following example:

(&(cn=%w)(|(objectclass=groupOfNames)

(objectclass=groupOfUniqueNames)(objectclass=accessGroup)))

5. Modify the Group Member ID Map field. Add the following entry: accessGroup:member The Group

Member ID Map field then looks like the following example:

groupOfNames:member;groupOfUniqueNames:uniqueMember;

accessGroup:member

6. Stop and restart WebSphere Application Server.

Tivoli Access Manager JACC provider configuration properties

The Java property files are created in the WebSphere Application Server

install_dir/profiles/profiles_name/etc/tam directory.

There are two properties files that may require configuration:

v amwas.node_server.amjacc.properties – contains properties used by the Tivoli Access Manager

JACC provider.

Chapter 8. Developing WebSphere applications 1635

v amwas.node_server.pdjlog.properties – contains logging properties created from the

amwas.pdjlog.template.properties file for the specific node and server combination at the time of

configuration.

Use amwas.node_server.amjacc.properties to configure static role caching, dynamic role caching, object

caching, and role-based policy framework properties.

Static role caching properties:

The static role cache holds role memberships that do not expire. These properties are in the file,

amwas.node_server.amjacc.properties, located in the WebSphere Application Server

install_dir/profiles/profile_name/etc/tam directory.

Enabling static role caching

com.tivoli.pd.as.cache.EnableStaticRoleCaching=true

Enables or disables static role caching. Static role caching is enabled by default.

Setting the static role cache

com.tivoli.pd.as.cache.StaticRoleCache=com.tivoli.pd.as.cache.StaticRoleCacheImpl

This property holds the implementation class of the static role cache. You should not need to change this

though the opportunity exists to implement your own cache if considered necessary.

Define static roles

com.tivoli.pd.as.cache.StaticRoleCache.Roles=Administrator,Operator,Monitor,Deployer

Defines the administration roles for WebSphere Application Server.

Note: Application performance can be enhanced by adding the static roles: CosNamingRead,

CosNamingWrite, CosNamingCreate, CosNamingDelete. These roles allow for improved lookup

performance within the application naming service.

Dynamic role caching properties:

The dynamic role cache holds role memberships that expire. These properties are in the file,

amwas.node_server.amjacc.properties, located in the WebSphere Application Server

install_dir/profiles/profile_name/etc/tam directory.

Enabling dynamic role caching

com.tivoli.pd.as.cache.EnableDynamicRoleCaching=true

Enables or disables dynamic role caching. Dynamic role caching is enabled by default.

Setting the dynamic role cache

com.tivoli.pd.as.cache.DynamicRoleCache=com.tivoli.pd.as.cache.DynamicRoleCacheImpl

This property holds the implementation class of the dynamic role cache. You should not need to change

this though the opportunity exists to implement your own cache if considered necessary.

1636 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Specifying the maximum number of users

com.tivoli.pd.as.cache.DynamicRoleCache.MaxUsers=100000

The maximum number of users that the cache supports before a cache cleanup is performed. The default

number of users is 100000.

Specifying the number of cache tables

com.tivoli.pd.as.cache.DynamicRoleCache.NumBuckets=20

The number of tables used internally by the dynamic role cache. The default is 20. When a large number

of threads use the cache, increase the value to tune and optimize cache performance.

Specifying the principal lifetime

com.tivoli.pd.as.cache.DynamicRoleCache.PrincipalLifeTime=10

The period of time in minutes that a principal entry is stored in the cache. The default time is 10 minutes.

The term principal here refers to the Tivoli Access Manager credential returned from a unique LDAP user.

Specifying the role lifetime

com.tivoli.pd.as.cache.DynamicRoleCache.RoleLifetime=20

The period of time in seconds that a role is stored in the role list for a user before it is discarded. The

default is 20 seconds.

Object caching properties:

The object cache is used to cache all Tivoli Access Manager objects, including their extended attributes.

This bypasses the need to query the Tivoli Access Manager authorization server for each resource

request.

These properties are in the file, amwas.node_server.amjacc.properties, located in the WebSphere

Application Server install_dir/profiles/profile_name/etc/tam directory.

Enabling object caching

com.tivoli.pd.as.cache.EnableObjectCaching=true

This property enables or disables object caching. The default value is true.

Setting the object cache

com.tivoli.pd.as.cache.ObjectCache=com.tivoli.pd.as.cache.ObjectCacheImpl

This property is the class used to perform object caching. You can implement your own object cache if

required. This can be done by implementing the com.tivoli.pd.as.cache.IObjectCache interface. The default

is com.tivoli.pd.as.cache.ObjectCacheImpl.

Setting the number of cache buckets

com.tivoli.pd.as.cache.ObjectCache.NumBuckets=20

Chapter 8. Developing WebSphere applications 1637

This property specifies the number of buckets used to store object cache entries in the underlying hash

table. The default is 20.

Setting the number of cache bucket entries

com.tivoli.pd.as.cache.ObjectCache.MaxResources=10000

This property specifies the total number of entries for all buckets in the cache. This figure, divided by

NumBuckets determines the maximum size of each bucket. The default is 10000.

Setting the resource lifetime

com.tivoli.pd.as.cache.ObjectCache.ResourceLifeTime=20

This property specifies the length of time in minutes that objects are kept in the object cache. The default

is 20.

These object cache properties cannot be changed after configuration. If any require changing, it should be

done before configuration of the nodes in the cell. Changes need to be made in the template properties

file before any configuration actions are performed. Properties changed after configuration might cause

access decisions to fail.

Role-based policy framework properties:

The role-based policy framework parameters are located in the JACC configuration file and in the

authorization configuration file. They are set at the time of JACC provider configuration and authorization

server configuration. The role-based policy framework settings for the authorization table and the JACC

provider can be modified separately for each WebSphere Application Server instance. The name of the

configuration file generated from the authorization table is, amwas.node_server.authztable.properties.

The name of the configuration file generated from the JACC provider is,

amwas.node_server.amjacc.properties. Both files are stored on the WebSphere Application Server

install_dir/profiles/profile_name/etc/tam directory. It is very unlikely that you will need to change

these properties. They are described here for reference:

Supported properties include :

com.tivoli.pd.as.rbpf.AMAction=i

This property is used to signify that a user is granted access to a role. This value is added to a Tivoli

Access Manager access control list (ACL). It places invoke access on roles for users and groups.

com.tivoli.pd.as.rbpf.AMActionGroup=WebAppServer

This property sets the Tivoli Access Manager action group that serves as a container for the action

specified by the com.tivoli.pd.as.rbpf.AMAction property. The permission set in

com.tivoli.pd.as.rbpf.AMAction goes into this action group.

com.tivoli.pd.as.rbpf.PosRoot=WebAppServer

This property is used to determine where roles are stored in the protected object space.

com.tivoli.pd.as.rbpf.ProductId=deployedResources

This property specifies the location under the root location (specified in the posroot property) to

separate other products in the protected object space. Thus, embedded Tivoli Access Manager objects

are found in the /WebAppServer/deployedResources directory and say AMWLS is in the

/WebAppServer/WLS directory. The default value is deployedResources.

com.tivoli.pd.as.rbpf.ResourceContainerName=Resources

This property specifies the Tivoli Access Manager object space container name for the protected

resources. The default location is the /WebAppServer/deployedResources/Resources directory.

1638 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

com.tivoli.pd.as.rbpf.RoleContainerName=Roles

This property specifies the Tivoli Access Manager protected object space container name for the

security roles. The default location is the /WebAppServer/deployedResources/Roles directory.

The previous settings cannot be changed after configuration. If any of these properties require changing it

should be done before configuration of the nodes in the cell. Changes need to be made in the template

properties file before any configuration actions are performed. Properties changed after configuration will

cause access decisions to fail.

System-dependent configuration properties:

These properties are in the amwas.node_server.amjacc.properties file on the install_dir/etc directory.

They should not be changed and are included here for reference only.

The supported arguments include :

com.tivoli.pd.as.rbpf.AmasSession.CfgURL=$WAS_HOME/profiles\profile_Name\etc\tam

Files\\IBM\\WebSphere\\AppServer\\etc\\amwas.node_server.pdperm.properties

This entry is generated by the Java Authorization Contract for Containers (JACC) provider

configuration. It specifies the location of the file containing information about the Tivoli Access

Manager JACC provider. This entry should not be changed nor the properties in the file it points to.

com.tivoli.pd.as.rbpf.AmasSession.LoggingURL=file\:/C\:\\Program

Files\\IBM\\WebSphere\\AppServer\\etc\\amwas.node_server.pdjlog.properties

This entry contains the location of the logging configuration file for the Tivoli Access Manager JACC

provider. The file referenced is generated by the Tivoli Access Manager JACC provider configuration.

This entry should not be changed.

Logging Tivoli Access Manager security

Tivoli Access Manager JACC provider messages are logged to the WebSphere Application Server file,

SystemOut.log . Trace logging is sent to the WebSphere Application Server file, trace.log. When trace is

enabled, all logging, both trace and messaging, is sent to trace.log.

The Tivoli Access Manager JACC provider uses the JLog logging framework as does the Tivoli Access

Manager Java runtime environment. Tracing and messaging can be enabled selectively for specific Tivoli

Access Manager JACC provider components.

Tracing and message logging for the Tivoli Access Manager JACC provider is configured in the properties

file, amwas.node_server.pdjlog.properties, located on the etc directory. This file contains logging

properties taken from the template file, amwas.pdjlog.template.properties, for the specific node and

server combination at the time of Tivoli Access Manager JACC provider configuration.

The contents of this file lets the user control:

v Whether tracing is enabled or disabled for Tivoli Access Manager JACC provider components.

v Whether message logging is enabled or disabled for Tivoli Access Manager JACC provider components.

The amwas.node_server.pdjlog.properties file defines several loggers, each of which is associated with

one Tivoli Access Manager JACC provider component. These loggers include:

 AmasRBPFTraceLogger

AmasRBPFMessageLogger

Used to log messages and trace for the role-based policy framework.

This is an underlying framework used by embedded Tivoli Access

Manager to make access decisions.

AmasCacheTraceLogger

AmasCacheMessageLogger

Used to log messages and trace for the policy caches used by the

role-based policy framework.

Chapter 8. Developing WebSphere applications 1639

AMWASWebTraceLogger

AMWASWebMessageLogger

Used to log messages and trace for the WebSphere Application Server

authorization plug-in.

AMWASConfigTraceLogger

AMWASConfigMessageLogger

Used to log messages and trace for the configuration actions for the

Tivoli Access Manager JACC provider.

JACCTraceLogger JACCMessageLogger Used to log messages and trace for Tivoli Access Manager JACC

provider activity.

Note: Tracing can have a significant impact on system performance and should only be enabled when

diagnosing the cause of a problem.

The implementation of these loggers routes messages to the WebSphere Application Server logging

sub-system. All messages are written to the WebSphere Application Server’s trace.log file.

For each logger, the amwas.node_server.pdjlog.properties file defines an isLogging attribute which,

when set to true, enables logging for the specific component. A value of false disables logging for that

component.

amwas.node_server.pdjlog.properties defines parent loggers called MessageLogger and TraceLogger

that also have an isLogging attribute. If the child loggers do not specify this isLogging attribute, they

inherit the value of their respective parent. When the Tivoli Access Manager JACC provider is enabled, the

isLogging attribute is set to true for the MessageLogger and false for the TraceLogger. Message

logging is therefore enabled for all components and tracing is disabled for all components by default.

To turn on tracing for a Tivoli Access Manager JACC provider component, two operations must occur:

1. The amwas.node_server.pdjlog.properties file must be updated and the isLogging attribute set to

true for the required component. For example, to enable tracing for the Tivoli Access Manager JACC

provider, the following line must be set to true in the

amwas.node_server.pdjlog.properties:baseGroup.AMWASWebTraceLogger.isLogging=true

2. Enable tracing for the Tivoli Access Manager JACC provider components in the WebSphere Application

Server administrative console by completing the following steps:

a. Click Troubleshooting > Logs and Trace > server_name.

b. Under Logs and Trace tasks, click Diagnostic trace.

c. Select the Enable Log check box.

d. Click Apply.

e. Click Troubleshooting > Logs and Trace > server name.

f. Under Logs and Trace tasks, click Change Log Detail Levels.

g. Click Components. Tracing for all components can be enabled using com.tivoli.pd.as.* or tracing

for separate components can be enabled using:

v com.tivoli.pd.as.rbpf.* for role-based policy framework tracing

v com.tivoli.pd.as.jacc.* for JACC provider tracing

v com.tivoli.pd.as.pdwas.* for the authorization table

v com.tivoli.pd.as.cfg.* for configuration

v com.tivoli.pd.as.cache.* for caching

h. Click Apply.

The trace specification should now indicate that tracing is enabled at the required level. Save the

configuration, and restart the server for the changes to take effect.

1640 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Enabling embedded Tivoli Access Manager

Embedded Tivoli Access Manager is not enabled by default but needs to be configured for use.

Enabling Tivoli Access Manager security within WebSphere Application Server requires:

v A supported Lightweight Directory Access Protocol (LDAP) installed somewhere on your network. This is

the user registry containing the user and group information for both Tivoli Access Manager and

WebSphere Application Server.

v A Tivoli Access Manager Version 5.1 domain exists and is configured to use the user registry. For

details on the installation and configuration of Tivoli Access Manager refer to the: Tivoli Access Manager

Base installation Guide and the Tivoli Access Manager Base Administrator‘s Guide available from

http://publib.boulder.ibm.com/tividd/td/tdprodlist.html.

v WebSphere Application Server Version 6 is installed either in a single server model or as a network

deployment.

Complete the following steps to enable the embedded Tivoli Access Manager security:

1. Create the security administrative user. For more information, see “Creating the security administrative

user” on page 1626.

2. Configure the Tivoli Access Manager Java Authorization Contract for Containers (JACC) provider. For

more information, see “Tivoli Access Manager JACC provider configuration” on page 1626.

3. Enable WebSphere Application Server security. When you are using Tivoli Access Manager you must

configure LDAP as the user registry. For more information, see “Configuring Lightweight Directory

Access Protocol user registries” on page 1474.

4. Enable the Tivoli Access Manager JACC provider. For more information, see “Enabling the JACC

provider for Tivoli Access Manager” on page 1632.

Disabling embedded Tivoli Access Manager client

You can unconfigure Tivoli Access Manager Security in WebSphere Application Server using either the

wsadmin command line utility or the WebSphere Application Server Administrative Console.

v For details on unconfiguring embedded Tivoli Access Manager client using the WebSphere Application

Server Administration console, refer to “Disabling embedded Tivoli Access Manager client using the

Administration Console.”

v For details on unconfiguring embedded Tivoli Access Manager client using the wsadmin command line

utility, refer to “Disabling embedded Tivoli Access Manager client using wsadmin” on page 1642.

Disabling embedded Tivoli Access Manager client using the Administration

Console

In a network deployment architecture ensure all managed servers, including node agents, are started then

perform the following process once on the deployment management server. Information from the

unconfigure operation is forwarded to managed servers, including node agents, when the server is

restarted. The managed servers then require their own restart for changes to take effect.

To unconfigure the Tivoli Access Manager JACC provider using the WebSphere Application Server

administration console, complete the following steps:

 1. Disable global security by clicking Security > Global security and deselect the Enable global

security option.

 2. Restart the server or, in a network deployment architecture, restart the deployment manager process.

 3. Select Security > Global security.

 4. Under Authorization, click Authorization Providers.

 5. Under Related items, click External JACC provider.

 6. Under Additional properties, click Tivoli Access Manager Properties. The configuration screen for

the Tivoli Access Manager JACC provider is displayed.

Chapter 8. Developing WebSphere applications 1641

http://publib.boulder.ibm.com/tividd/td/tdprodlist.html

7. Deselect the Enable embedded Tivoli Access Manager option. If you want to ignore errors when

unconfiguring, select the Ignore errors during embedded Tivoli Access Manager disablement

option. Select this option only when the Tivoli Access Manager domain is in an irreparable state.

 8. Click OK.

 9. Optional: If you want security enabled, without Tivoli Access Manager, re-enable global security.

10. Optional: In network deployment environments, synchronize all nodes.

11. Restart all WebSphere Application Server instances for the changes to take effect.

Disabling embedded Tivoli Access Manager client using wsadmin

In a network deployment architecture ensure all managed servers, including node agents, are started then

perform the following process once on the deployment management server. Details of the unconfiguration

are forwarded to managed servers, including node agents, when a synchronization is performed. The

managed servers then require their own reboot for the configuration changes to take effect.

To unconfigure the Tivoli Access Manager JACC provider:

1. Disable global security by clicking Security > Global security and deselect the Enable global

security option.

2. Restart the server or, in a network deployment architecture, restart the deployment manager process.

3. Start the wsadmin command line utility. The wsadmin command is found in install_dir\AppServer\bin.

4. From the wsadmin prompt, enter the following command:

WSADMIN>$AdminTask unconfigureTAM -interactive

You are prompted to enter the following information:

 Option Description

WebSphere Application Server node name Enter * to select all nodes.

Tivoli Access Manager administrator’s user name Enter the Tivoli Access Manager administration user ID as

created at the time of Tivoli Access Manager

configuration. This name is usually, sec_master.

Tivoli Access Manager administrator’s user password Enter the password for the Tivoli Access Manager

administrator.

Force Enter yes if you want to ignore errors when unconfiguring

the Tivoli Access Manager Java Authorization Contract for

Containers (JACC) provider. Enter this option as yes only

when the Tivoli Access Manager domain is in an

irreparable state.

Defer Enter no to force the unconfiguration of the connected

server. Enter No for the unconfiguration to proceed

correctly.

5. When all information is entered, enter F to save the properties or C to cancel from the unconfiguration

process and discard entered information.

6. Optional: If you want security enabled, not using Tivoli Access Manager, re-enable global security.

7. Optional: In network deployment environments, synchronize all nodes.

8. Restart all WebSphere Application Server instances for the changes to take effect.

Forcing the unconfiguration of the Tivoli Access Manager JACC provider

If you find you cannot restart WebSphere Application Server after configuring the Tivoli Access Manager

JACC provider a utility is available to clear the security configuration and return WebSphere Application

Server to an operable state.

1642 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

The utility removes all of the PDLoginModuleWrapper entries as well as the Tivoli Access Manager

authorization table from security.xml and wsjaas.conf. This effectively removes the Tivoli Access

Manager JACC provider.

1. Back-up security.xml and wsjaas.conf.

2. Enter the following command as one continuous line:

WAS_HOME/java/jre/bin/java -classpath ″WAS_HOME/lib/AMJACCProvider.jar:CLASSPATH″

 com.tivoli.pd.as.jacc.cfg.CleanSecXML fully_qualified_path/security.xml

 fully_qualified_path/wsjaas.conf

Updating console users and groups

Additions and changes to console users and groups are not automatically added to the Tivoli Access

Manager object space once the Tivoli Access Manager JACC provider is configured. Changes to console

users and groups are saved in the admin-authz.xml file and this file will require migration before any

changes take effect. The Tivoli Access Manger JACC provider includes the migration utility, migrateEAR,

for incorporating console user and group changes into the Tivoli Access Manager object space.

Note: The migrateEAR utility is used to migrate the changes made to console users and groups after the

Tivoli Access Manager JACC provider has been configured. The utility will not need to be run for

changes and additions to console user and groups made prior to the Tivoli Access Manager JACC

provider being configured as the changes (made to admin-authzn.xml) are automatically migrated

at configuration time. Furthermore, the migration tool does not need to be run before deploying

standard J2EE applications, J2EE application policy deployment is also performed automatically.

To migrate admin-authzn.xml:

1. Before executing the migrateEAR utility, setup the environment by running setupCmdLine.bat or

setupCmdLine.sh located in the installation/bin directory.

2. Make sure that the WAS_HOME environment variable is set to the WebSphere Application Server

installation directory.

3. Change to the directory where the migrateEAR utility is located: ${WAS_HOME}/bin/

4. Run the migrateEAR utility to migrate the data contained in admin-authzn.xml. Use the parameter

descriptions listed in The Tivoli Access Manager migrateEAR5 utility. For example:

migrateEAR

\ -j “c:\Program Files\IBM\WebSphere\AppServer\profiles\profileName\config\

 cells\cellName\admin-authz.xml”

\ -a sec_master

\ -p password

\ -w wsadmin

\ -d o=ibm,c=us

\ -c file:/”c:\Program Files\IBM\WebSphere\AppServer\java\jre\PdPerm.properties”

A status message is displayed when the migration completes. Output of the utility is logged to the file,

pdwas_migrate.log, created on the directory where the utility is run. Check the log file after each

migration. If the log file displays errors, check the last recorded transaction, correct the source of the

error, and rerun the migration utility. If the migration is unsuccessful, verify that you supplied the correct

values for the -c and -j options.

5. WebSphere Application Server does not require a restart for the changes to take effect.

The Tivoli Access Manager migrateEAR utility

Purpose

Migrates changes made to console users and groups in the admin-authzn.xml file into the Tivoli Access

Manager object space.

Chapter 8. Developing WebSphere applications 1643

Syntax

migrateEAR

-j path

-c URI

-a admin_ID

-p admin_pwd

-w Websphere_admin_user

-d user_registry_domain_suffix

[-r root_objectspace_name]

[-t ssl_timeout]

Parameters

-a admin_ID

Specifies the administrative user identifier. The administrative user must have the privileges required to

create users, objects, and access control lists (ACLs). For example, -a sec_master.

 This parameter is optional. When the parameter is not specified, you are prompted to supply it at run

time.

-c URI

Specifies the Uniform Resource Indicator (URI) location of the PdPerm.properties file that is

configured by the pdwascfg utility. When WebSphere Application Server is installed in the default

location, the URI is:

Solaris, Linux and HP-UX -

file:/opt/IBM/WebSphere/AppServer/java/jre/PdPerm.propertiesAIX –

file:/usr/IBM/WebSphere/AppServer/java/jre/PdPerm.properties

Windows –

file:/”c:\Program Files\IBM\WebSphere\AppServer\java\jre\PdPerm.properties”

-d user_registry_domain_suffix

Specifies the domain suffix for the user registry to use. For example, for Lightweight Directory Access

Protocol (LDAP) user registries, this value is the domain suffix, such as: ″o=ibm,c=us″

 Windows platforms require that the domain suffix is enclosed within quotes.

 You can use the pdadmin user show command to display the distinguished name (DN) for a user.

-j path

Specifies the fully qualified path and file name of the Java 2 Platform Enterprise Edition application

archive file. Optionally, this path can also be a directory of an expanded enterprise application. When

WebSphere Application Server is installed in the default location, the paths to data files to migrate

include:

Solaris, Linux and HP-UX -

file:/opt/IBM/WebSphere/AppServer/profiles/profileName/config/cells/

 cellName/admin-authz.xml

AIX –

file:/usr/IBM/WebSphere/AppServer/profiles/profileName/config/cells/

 cellName/admin-authz.xml

Windows –

“c:\Program Files\IBM\WebSphere\AppServer\profiles\profileName\config\

 cells\cellName\admin-authz.xml”

-p admin_pwd

Specifies the password for the Tivoli Access Manager administrative user. The administrative user

must have the privileges required to create users, objects, and access control lists (ACLs). For

example, you can specify the password for the -a sec_master administrative user as -p myPassword.

1644 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

This parameter is optional. When it is not specified, the user is prompted to supply the password for

the administrative user name.

-r root_objectspace_name

Specifies the space name of the root object. The value is the name of the root of the protected object

namespace hierarchy that is created for WebSphere Application Server policy data. This parameter is

optional.

 The default value for the root object space is WebAppServer.

 The Tivoli Access Manager root object space name is set by modifying the

amwas.amjacc.template.properties prior to configuring the Tivoli Access Manager JACC provider for

the first time. This option should be used if the default object space value is not used in the

configuration of the Tivoli Access Manager JACC provider.

 The Tivoli Access Manager object space name should never be changed after the Tivoli Access

Manager JACC provider has been configured.

-t ssl_timeout

Specifies the number of minutes for the Secure Sockets Layer (SSL) timeout. This parameter is used

to disconnect and reconnect the SSL context between the Tivoli Access Manager authorization server

and policy server before the default connection times out.

 The default is 60 minutes. The minimum is 10 minutes. The maximum value cannot exceed the Tivoli

Access Manager ssl-v3-timeout value. The default value for ssl-v3-timeout is 120 minutes.

 This parameter is optional. If you are not familiar with the administration of this value, you can safely

use the default value.

-w WebSphere_admin_user

Specifies the user name that is configured in the WebSphere Application Server security user registry

field as the administrator. This value matches the account that you created or imported in Creating a

Tivoli Access Manager administrative user for WebSphere Application Server. Access permission for

this user is needed to create or update the Tivoli Access Manager protected object space.

 When the WebSphere Application Server administrative user does not already exist in the protected

object space, it is created or imported. In this case, a random password is generated for the user and

the account is set to not valid. Change this password to a known value and set the account to valid.

 A protected object and access control list (ACL) are created. The administrative user is added to the

pdwas-admin group with the following ACL attributes:

T Traverse permission

i Invoke permission

WebAppServer

Specifies the action group name. WebAppServer is the default name. This action group name

(and the matching root object space) can be overwritten when the migration utility is run with

the -r option.

Comments

This utility migrates security policy information from deployment descriptors (enterprise archive files) to

Tivoli Access Manager for WebSphere Application Server. The script calls the Java class:

com.tivoli.pdwas.migrate.Migrate.

Before invoking the script you must run setupCmdLine.bat or setupCmdLine.sh. These files can be found in

the %WAS_HOME%/bin directory.

The script is dependent on finding the correct environment variables for the location of prerequisite

software. The script calls Java code with the following options:

Chapter 8. Developing WebSphere applications 1645

-Dpdwas.lang.home

The directory containing the native language support libraries that are provided with the Tivoli

Access Manager JACC provider. These libraries are located in a subdirectory under the Tivoli

Access Manager JACC provider installation directory. For example:

-Dpdwas.lang.home=%PDWAS_HOME%\java\nls

-cp %CLASSPATH% com.tivoli.pdwas.migrate.Migrate

The CLASSPATH variable must be set correctly for your Java installation.

On Windows platforms, both the -j option and the -c option can reference the %WAS_HOME% variable to

determine where WebSphere Application Server is installed. This information is used to:

v Build the full path name of the enterprise archive file.

v Build the full URI path name to the location of the PdPerm.properties file.

Return codes

The following exit status codes can be returned:

0 The command completed successfully.

1 The command failed.

Troubleshooting authorization providers

This article describes the issues you might encounter using a Java Contract for Containers (JACC)

authorization provider. Tivoli Access Manager is bundled with WebSphere Application Server as an

authorization provider. However, you also can plug in your own authorization provider.

Using Tivoli Access Manager as a Java Contract for Containers authorization provider

You might encounter the following issues when using Tivoli Access Manager as a JACC authorization

provider:

v The configuration of JACC might fail.

v The server might fail to start after configuring JACC.

v The application might not deploy properly.

v The startServer command might fail after you have configured Tivoli Access Manager or a clean

uninstall did not take place after unconfiguring JACC.

v An ″HPDIA0202w An unknown user name was presented to Access Manager″ error might occur.

v An ″HPDAC0778E The specified user’s account is set to invalid″ error might occur.

v An WASX7017E: Exception received while running file ″InsuranceServicesSingle.jacl″ error might occur.

Using an external provider for Java Contract for Containers authorization

You might encounter the following issues when you use an external provider for JACC authorization:

v An ″HPDJA0506E Invalid argument: Null or zero-length user name field for the ACL entry″ error might

occur.

The configuration of JACC might fail

If you are having problems configuring JACC, check the following:

v Ensure that the parameters are correct. For example, there should not be a number after

TAM_Policy_server_hostname:7135, but there should be a number after

TAM_Authorization_server_hostname:7136 (for example, TAM_Authorization_server_hostname:7136:1).

v If a message such as “server can‘t be contacted” appears, it is possible that the host names or port

numbers of the Tivoli Access Manager servers are incorrect, or that the Tivoli Access Manager servers

have not been started.

1646 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

v Ensure that the password for sec_master is correct.

v Check the SystemOut.log and search for the string AMAS to see if any error messages are present.

The server might fail to start after configuring JACC

If the server does not start after JACC has been configured, check the following:

v Ensure that the WebSphere Application Server and Tivoli Access Manager use the same Lightweight

Directory Access Protocol (LDAP) server.

v If the message “Policy Director Authentication failed″ appears, ensure that the:

– WebSphere Application Server LDAP serverID is the same as the “Administrator user” in the Tivoli

Access Manager JACC configuration panel.

– Tivoli Access Manager Administrator distinguished name (DN) is correct.

– Password of the Tivoli Access Manager administrator has not expired and is valid.

– Account is valid for the Tivoli Access Manager administrator.

v If a message such as “socket can‘t be opened for xxxx″ (where xxxx is a number) appears, do the

following:

1. Go to $WAS_HOME/profiles/profile_name/etc/tam.

2. Change xxxx to an available port number in amwas.commomconfig.properties, and

amwas*cellName_dmgr.properties if dmgr failed to start. If Node failed to start, change xxx to an

available port number in amwas*cellName_nodeName_.properties. If appSever failed to start,

change xxxx in Amwas*cellname_nodeName_serverName.properties.

The application might not deploy properly

When you click Save, the policy and role information is propagated to the Tivoli Access Manager policy. It

might take some time to finish. If the save fails, you must uninstall the application and then reinstall it.

To access an application after it is installed, you must wait 30 seconds (by default) to start the application

after you save.

The startServer command might fail after you have configured Tivoli Access Manager or a clean

uninstall did not take place after unconfiguring JACC.

If the cleanup for JACC unconfiguration or start server fails after JACC has been configured, do the

following:

v Remove Tivoli Access Manager properties files from WebSphere Application Server. For each

application server in a network deployment (ND) environment with N servers defined (for example,

server1, server2), the following files must be removed:

$WAS_INSTALL/java/jre/PdPerm.properties

$WAS_INSTALL/java/jre/PdPerm.ks

$WAS_INSTALL/profiles/profile_name/etc/tam/*

v Use a utility to clear the security configuration and return the system to the state it was in before Tivoli

Access Manager JACC was configured. The utility removes all of the PDLoginModuleWrapper entries

as well as the Tivoli Access Manager authorization table entry from the security.xml file, effectively

removing the Tivoli Access Manager JACC provider. Backup security.xml before running this utility.

Enter the following commands:

$WAS_HOME/java/jre/bin/java -classpath

 ″$WAS_HOME/lib/AMJACCProvider.jar:CLASSPATH″

com.tivoli.pd.as.jacc.cfg.CleanSecXML fully_qualified_path/security.xml

Chapter 8. Developing WebSphere applications 1647

An "HPDIA0202w An unknown user name was presented to Access Manager" error might occur

You might encounter the following error message if you are attempting to use an existing user in a Local

Directory Access Protocol (LDAP) user registry with Tivoli Access Manager:

AWXJR0008E Failed to create a PDPrincipal for principal mgr1.:

AWXJR0007E A Tivoli Access Manager exception was caught. Details are:

″HPDIA0202W An unknown user name was presented to Access Manager.″

To correct this error, complete the following steps:

1. On the command line, type the following information to get a Tivoli Access Manager command prompt:

pdadmin -a administrator_name -p administrator_password

The pdadmin administrator_name prompt is displayed. For example:

pdadmin -a administrator1 -p password

2. At the pdadmin command prompt, import the user from the LDAP user registry to Tivoli Access

Manager by typing the following information:

user import user_name cn=user_name,o=organization_name,c=country

For example:

user import jstar cn=jstar,o=ibm,c=us

After importing the user to Tivoli Access Manager, you must use the user modify command to set the user

account to valid. The following syntax shows how to use this command:

user modify user_name account-valid yes

For example:

user modify jstar account-valid yes

For information on how to import a group from LDAP to Tivoli Access Manager, see the Tivoli Access

Manager documentation.

An "HPDAC0778E The specified user’s account is set to invalid" error might occur

You might encounter the following error message after you import a user to Tivoli Access Manager and

restart the client:

AWXJR0008E Failed to create a PDPrincipal for principal mgr1.:

AWXJR0007E A Tivoli Access Manager exception was caught.

Details are: "HPDAC0778E The specified user’s account is set to invalid."

To correct this error, use the user modify command to set the user account to valid. The following syntax

shows how to use this command:

user modify user_name account-valid yes

For example:

user modify jstar account-valid yes

1648 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

An "HPDJA0506E Invalid argument: Null or zero-length user name field for the ACL entry" error

might occur

You might encounter an error similar to the following message when you propagate the security policy

information from the application to the provider using the wsadmin command

propagatePolicyToJACCProvider:

AWXJR0035E An error occurred while attempting to add member, cn=agent3,o=ibm,c=us, to role AgentRole

HPDJA0506E Invalid argument: Null or zero-length user name field for the ACL entry

To correct this error, create or import the user, which is mapped to the security role to the Tivoli Access

Manager. For more information on propagating the security policy information, see the documentation for

your authorization provider.

An WASX7017E: Exception received while running file "InsuranceServicesSingle.jacl" error might

occur

After the JACC provider and Tivoli Access Manager are enabled, when attempting to install the application

(which is configured with security roles using the wsadmin command), the following error might occur:

WASX7017E: Exception received while running file "InsuranceServicesSingle.jacl"; exception information:

 com.ibm.ws.scripting.ScriptingException: WASX7111E: Cannot find a match for supplied option:

"[RuleManager, , , cn=mgr3,o=ibm,c=us|cn=agent3,o=ibm,c=us, cn=ManagerGro

up,o=ibm,c=us|cn=AgentGroup,o=ibm,c=us]" for task "MapRolesToUsers

The $AdminApp task option MapRolesToUsers becomes invalid when Tivoli Access Manager is used as

the authorization server. To correct the error, change MapRolesToUsers to TAMMapRolesToUsers.

Authentication protocol for EJB security

In WebSphere Application Server Version 6, two authentication protocols are available to choose from:

Secure Authentication Service (SAS) and Common Secure Interoperability Version 2 (CSIv2). SAS is the

authentication protocol used by all previous releases of WebSphere Application Server and is maintained

for backwards compatibility. The Object Management Group (OMG) has defined the authentication protocol

called CSIv2 so that vendors can interoperate securely. CSIv2 is implemented in WebSphere Application

Server with more features than SAS and it is considered the strategic protocol.

Invoking EJB methods in a secure WebSphere Application Server environment requires an authentication

protocol to determine the level of security and the type of authentication, which occur between any given

client and server for each request. It is the job of the authentication protocol during a method invocation to

merge the server authentication requirements (determined by the object Interoperable Object Reference

(IOR)) with the client authentication requirements (determined by the client configuration) and come up

with an authentication policy specific to that client and server pair.

The authentication policy makes the following decisions, among others, which are all based on the client

and server configurations:

v What kind of connection can you make to this server--SSL or TCP/IP?

v If Secure Sockets Layer (SSL) is chosen, how strong is the encryption of the data?

v If SSL is chosen, do you authenticate the client using client certificates?

v Do you authenticate the client with a user ID and password? Does an existing credential exist?

v Do you assert the client identity to downstream servers?

v Given the configuration of the client and server, can a secure request proceed?

You can configure both protocols (SAS and CSIv2) to work simultaneously. If a server supports both

protocols, it exports an IOR containing tagged components describing the configuration for SAS and

CSIv2. If a client supports both protocols, it reads tagged components for both CSIv2 and SAS. If the

client supports both and the server supports both, CSIv2 is used. However, if the server supports SAS (for

example, it is a previous WebSphere Application Server release) and the client supports both, the client

chooses SAS for this request because the SAS protocol is what both have in common.

Chapter 8. Developing WebSphere applications 1649

Choose a protocol by specifying the com.ibm.CSI.protocol property on the client side and configuring

through the administrative console on the server side. More details are included in the SAS and CSIv2

properties articles.

Common Secure Interoperability Specification, Version 2

The Common Secure Interoperability Specification, Version 2 (CSIv2) defines the Security Attribute Service

(SAS) that enables interoperable authentication, delegation and privileges. The CSIv2 SAS and SAS

protocols are entirely different. The CSIv2 SAS is a subcomponent of CSIv2 that supports SSL and

interoperability with the EJB Specification, Version 2.1.

Security Attribute Service

The Common Secure Interoperability Specification, Version 2 Security Attribute Service (CSIv2 SAS)

protocol is designed to exchange its protocol elements in the service context of a General Inter-ORB

Protocol (GIOP) request and reply messages that are communicated over a connection-based transport.

The protocol is intended for use in environments where transport layer security, such as that available

through Secure Sockets Layer (SSL) and Transport Layer Security (TLS), is used to provide message

protection (that is, integrity and or confidentiality) and server-to-client authentication. The protocol provides

client authentication, delegation, and privilege functionality that might be applied to overcome

corresponding deficiencies in an underlying transport. The CSIv2 SAS protocol facilitates interoperability by

serving as the higher-level protocol under which secure transports can be unified.

Connection and request interceptors

The authentication protocols used by WebSphere Application Server are add-on Interoperable Inter-ORB

Protocol (IIOP) services. IIOP is a request-and-reply communications protocol used to send messages

between two Object Request Brokers (ORBs). For each request made by a client ORB to a server ORB,

an associated reply is made by the server ORB back to the client ORB. Prior to any request flowing, a

connection between the client ORB and the server ORB must be established over the TCP/IP transport

(SSL is a secure version of TCP/IP). The client ORB invokes the authentication protocol client connection

interceptor, which is used to read the tagged components in the IOR of the object located on the server.

As mentioned previously, this is where the authentication policy is established for the request. Given the

authentication policy (a coalescing of the server configuration with the client configuration), the strength of

the connection is returned to the ORB. The ORB makes the appropriate connection, usually over SSL.

After the connection is established, the client ORB invokes the authentication protocol client request

interceptor, which is used to send security information other than what is established by the transport. The

security information includes the user ID and password token (authenticated by the server), an

authentication mechanism-specific token (validated by the server), or an identity assertion token. Identity

assertion is a way for one server to trust another server without the need to reauthenticate or revalidate

the originating client. However, some work is required for the server to trust the upstream server. This

additional security information is sent with the message in a service context. A service context has a

registered identifier so that the server ORB can identify which protocol is sending the information. The fact

that a service context contains a unique identity is another way for WebSphere Application Server to

support both SAS or z/SAS and CSIv2 simultaneously because both protocols have different service

context IDs. After the client request interceptor finishes adding the service context to the message, the

message is sent to the server ORB.

When the message is received by the server ORB, the ORB invokes the authentication protocol server

request interceptor. This interceptor looks for the service context ID known by the protocol. When both

SAS or z/SAS and CSIv2 are supported by a server, two different server request interceptors are invoked

and both interceptors look for different service context IDs. However, only one finds a service context for

any given request. When the server request interceptor finds a service context, it reads the information in

the service context. A method is invoked to the security server to authenticate or validate client identity.

The security server either rejects the information or returns a credential. A credential contains additional

1650 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

information about the client, retrieved from the user registry so that authorization can make the appropriate

decision. Authorization is the process of determining if the user can invoke the request based on the roles

applied to the method and the roles given to the user. If the request is rejected by the security server, a

reply is sent back to the client without ever invoking the business method.

If a service context is not found by the CSIv2 server request interceptor, the interceptor then looks at the

transport connection to see if a client certificate chain was sent. This is done when SSL client

authentication is configured between the client and server.

If a client certificate chain is found, the distinguished name (DN) is extracted from the certificate and is

used to map to an identity in the user registry. If the user registry is Lightweight Directory Access Protocol

(LDAP), the search filters defined in the LDAP registry configuration determine how the certificate maps to

an entry in the registry. If the user registry is local OS, the first attribute of the distinguished name (DN)

maps to the user ID of the registry. This attribute is typically the common name.

If the certificate does not map, no credential is created and the request is rejected. When invalid security

information is presented, the method request is rejected and a NO_PERMISSION exception is sent back

with the reply. However, when no security information is presented, an unauthenticated credential is

created for the request and the authorization engine determines if the method gets invoked or not. For an

unauthenticated credential to invoke an Enterprise JavaBean (EJB) method, either no security roles are

defined for the method or a special Everyone role is defined for the method.

When the method invocation is completed in the EJB container, the server request interceptor is invoked

again to complete server authentication and a new reply service context is created to inform the client

request interceptor of the outcome. This process is typically for making the request stateful. When a

stateful request is made, only the first request between a client and server requires that security

information is sent. All subsequent method requests need to send a unique context ID only so that the

server can look up the credential stored in a session table. The context ID is unique within the connection

between a client and server.

Finally, the method request cycle is completed by the client request interceptor receiving a reply from the

server with a reply service context providing information so the client side stateful context ID can be

confirmed and reused.

Specifying a stateful client is done through the property com.ibm.CSI.performStateful (true/false).

Specifying a stateful server is done through the administrative console configuration.

Chapter 8. Developing WebSphere applications 1651

Authentication policy for each request

The authentication policy of a given request determines the security protection between a client and a

server. A client or server authentication protocol configuration can describe required features, supported

features and non-supported features. When a client requires a feature, it can only talk to servers that

either require or support that feature. When a server requires a feature, it can only talk to clients that

either require or support that feature. When a client supports a feature, it can talk to a server that supports

or requires that feature, but can also talk to servers that do not support the feature. When a server

supports a feature, it can talk to a client that supports or requires the feature, but can also talk to clients

that do not support the feature (or chose not to support the feature).

For example, for a client to support client certificate authentication, some setup is required to either

generate a self-signed certificate or to get one from a certificate authority (CA). Some clients might not

need to complete these actions, therefore, you can configure this feature as not supported. By making

this decision, the client cannot communicate with a secure server requiring client certificate authentication.

Instead, this client can choose to use the user ID and password as the method of authenticating itself to

the server.

Typically, supporting a feature is the most common way of configuring features. It is also the most

successful during run time because it is more forgiving than requiring a feature. Knowing how secure

servers are configured in your domain, you can choose the right combination for the client to ensure

successful method invocations and still get the most security. If you know that all of your servers support

both client certificate and user ID and password authentication for the client, you might want to require one

and not support the other. If both the user ID and password and the client certificate are supported on the

client and server, both are performed but user ID and password take precedence at the server. This action

is based on the CSIv2 specification requirements.

Common Secure Interoperability Version 2 features:

Authentication protocol flow

Step 1:

Client ORB calls the connection

interceptor to create the connection.

Step 5:

Client ORB calls the request interceptor

so that the client can clean up and set

the session status as good or bad.

Client request

interceptor -

receive_reply()

Client connection

interceptor

Client request

interceptor -

send_request()

Server request

interceptor -

receive_request()

Server request

interceptor -

send_reply()

Step 3:

Server ORB calls the request interceptor

to receive the security information,

authenticate, and set the received credential.

Step 4:

Server ORB calls the request interceptor

so that security can send information

back to the client with the reply.

Step 2:

Client ORB calls the request

interceptor to get client security

information.

Client ORB Server ORB

Invocation

credential:

user: peter

pass: beans

1

2

Request

Service context

Service context

3

Received

credential:

security

token

45
Reply

User: peter,

Password: beans

foo.getCoffee()

Coffee

Stateful request

valid

Transport connectionfoo.getCoffee() Server enterprise
beans Foo

. Authentication protocol flow

1652 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

The following Common Secure Interoperability Version 2 (CSIv2) features are available in IBM WebSphere

Application Server: Secure Sockets Layer (SSL) client certificate authentication, message layer

authentication, identity assertion, and security attribute propagation.

v SSL Client Certificate authentication.

An additional way to authenticate a client to a server using SSL client authentication.

v Message Layer Authentication.

Authenticates credential information and sends that information across the network so that a receiving

server can interpret it.

v Identity Assertion.

Supports a downstream server in accepting the client identity that is established on an upstream server,

without having to authenticate again. The downstream server trusts the upstream server.

v Security attribute propagation

Supports the use of the authorization token to propagate serialized Subject contents and

PropagationToken contents with the request. You can propagate these objects using a pure client or a

server login that adds custom objects to the Subject. Propagating security attributes prevents

downstream logins from having to make UserRegistry calls to look up these attributes.

Propagating security attributes is also useful when the security attributes contain information that is only

available at the time of authentication (meaning this information cannot be located using the

UserRegistry on downstream servers).

Identity assertion:

Identity assertion is the invocation credential that is asserted to the downstream server.

 When a client authenticates to a server, the received credential is set. When authorization checks the

credential to determine whether access is permitted, it also sets the invocation credential so that if the

Enterprise JavaBeans (EJB) method calls another EJB method that is located on other servers, the

invocation credential can be the identity used to invoke the downstream method. Depending on the RunAs

mode for the enterprise beans, the invocation credential is set as the originating client identity, the server

identity, or a specified different identity. Regardless of the identity that is set, when identity assertion is

enabled, it is the invocation credential that is asserted to the downstream server.

The invocation credential identity is sent to the downstream server in an identity token. In addition, the

sending server identity, including the password or token, is sent in the client authentication token when

basic authentication is enabled. The sending server identity is sent through a Secure Sockets Layer (SSL)

client certification authentication when client certificate authentication is enabled. Basic authentication

takes precedence over client certificate authentication.

Both tokens are needed by the receiving server to accept the asserted identity. The receiving server

completes the following actions to accept the asserted identity:

v The server determines whether the sending server identity, sent with a basic authentication token or

with an SSL client certificate, is on the trusted principal list of the receiving server. The server

determines whether the sending server can send an identity token to the receiving server.

v After it is determined that the sending server is on the trusted list, the server authenticates the sending

server to verify its identity.

v The server is authenticated by comparing the user ID and password from the sending server to the

receiving server, or it might require a real authenticated call. If the credentials of the sending server are

authenticated and on the trusted principal list, then the server proceeds to evaluate the identity token.

Evaluation of the identity token consists of the following four identity formats that exist in an identity token:

v Principal name

v Distinguished name

v Certificate chain

v Anonymous identity

Chapter 8. Developing WebSphere applications 1653

The product servers that receive authentication information typically support all four identity types. The

sending server decides which one is chosen, based on how the original client authenticated. The existing

type depends on how the client originally authenticates to the sending server. For example, if the client

uses Secure Sockets Layer (SSL) client authentication to authenticate to the sending server, then the

identity token sent to the downstream server contains the certificate chain. With this information, the

receiving server can perform its own certificate chain mapping and interoperability is increased with other

vendors and platforms.

After the identity format is understood and parsed, the identity maps to a credential. For an ITTPrincipal

identity token, this identity maps one-to-one with the user ID fields.

For an ITTDistinguishedName identity token, the mapping depends on the user registry. For Lightweight

Directory Access Protocol (LDAP), the configured search filter determines how the mapping occurs. For

LocalOS, the first attribute of the distinguished name (DN), which is typically the same as the common

name, maps to the user ID of the registry. For an ITTCertChain identity token, see the Map certificates to

users section for details on how this action is performed for the LDAP user registry. For LocalOS, the first

attribute of the DN in the certificate is used to map to the user ID in the registry.

Some user registry methods are called to gather additional credential information that is used by

authorization. In a stateful server, this action completes once for the sending server and the receiving

server pair where the identity tokens are the same. Subsequent requests are made through a session ID.

Identity assertion is only available using the Common Secure Interoperability Version 2 (CSIv2) protocol.

Message layer authentication:

Defines the credential information and sends that information across the network so that a receiving server

can interpret it.

 When you send authentication information across the network using a token (whether the token is a user

ID and password token, that is, Generic Security Services Username Password (GSSUP), or a

mechanism-specific format token, Lightweight Third Party Authentication (LTPA), for example on non-z/OS

platforms), the transmission is considered message layer authentication because the data is sent with the

message inside a service context.

A pure Java client uses basic authentication (GSSUP) as the authentication mechanism to establish client

identity.

However, a servlet can use either basic authentication (GSSUP) or the authentication mechanism of the

server (LTPA) to send security information in the message layer. Use LTPA by authenticating or by

mapping the basic authentication credentials to the security mechanism of the server.

The security token that is contained in a token-based credential is authentication mechanism-specific. The

way that the token is interpreted is only known by the authentication mechanism. Therefore, each

authentication mechanism has an object ID (OID) representing it. The OID and the client token are sent to

the server, so that the server knows which mechanism to use when reading and validating the token. The

following list contains the OIDs for each mechanism:

BasicAuth (GSSUP): oid:2.23.130.1.1.1

LTPA: oid:1.3.18.0.2.30.2

SWAM: No OID because it is not forwardable

On the server, the authentication mechanisms can interpret the token and create a credential, or they can

authenticate basic authentication data from the client, and create a credential. Either way, the created

1654 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

credential is the received credential that the authorization check uses to determine if the user has access

to invoke the method. You can specify the authentication mechanism by using the following property on

the client side:

v com.ibm.CORBA.authenticationTarget

Basic authentication is currently the only valid value. You can configure the server through the

administrative console.

While this property tells you which authentication mechanism to use, you also need to specify whether you

want to perform authentication over the message layer, that is get a BasicAuth or a token-based

credential. To complete this task, specify the com.ibm.CSI.performClientAuthenticationRequired (True or

False) and com.ibm.CSI.performClientAuthenticationSupported (True or False) properties. Indicating that

client authentication is required implies that it must be done for every request. Indicating that the

authentication mechanism is supported implies that it might be done, but is not required. For some

servers, this option is appropriate if no resources are protected. In most cases, it is a best practice to

indicate that this mechanism is supported so that client authentication is performed if both the client and

server support it. Client authentication is not performed when communicating with certain servers that do

not want security, yet the method requests still succeed.

Configuring authentication retries

Situations occur where you want a prompt to display again if you entered your user ID and password

incorrectly or you want a method to retry when a particular error occurs back at the client. If you can

correct the error by information at the client side, the system automatically performs a retry without the

client seeing the failure, if the system is configured appropriately.

Some of these errors include:

v Entering a user ID and password that are not valid

v Having an expired credential on the server

v Failing to find the stateful session on the server

By default, authentication retries are enabled and perform three retries before returning the error to the

client. Use the com.ibm.CORBA.authenticationRetryEnabled property (True or False) to enable or disable

authentication retries. Use the com.ibm.CORBA.authenticationRetryCount property to specify the number

of retry attempts.

Secure Sockets Layer client certificate authentication:

An additional way to authenticate a client to a server is using Secure Sockets Layer (SSL) client

authentication.

 Using SSL client authentication is another way of authenticating a client to a server. This form of

authentication does not occur at the message layer using a user ID and password or tokens. This

authentication occurs during the connection handshake using SSL certificates.

When the client is configured with a personal certificate in the SSL keystore file, which indicates that SSL

client authentication is required and the server supports SSL client authentication, the following actions

occur to establish the identity on the client side.

v When a method request is invoked in the client code to a remote enterprise bean, the Object Request

Broker (ORB) invokes the client connection interceptor to establish a connection with the server.

Because the configuration specifies SSL and SSL client authentication, the connection type is SSL and

the SSL handshake sends the client certificate to the server to validate. If the client certificate does not

validate, the connection is not established and an exception is sent back to the client code where the

method is invoked, which indicates the failure. If the client certificate is validated, then a connection

opens between the client and the server.

Chapter 8. Developing WebSphere applications 1655

v The ORB proceeds to call the client request interceptor, which might be busy.

If basic authentication is also configured, for example, then the user might be prompted for a user ID

and password. Because this action is not necessary, disable this option in the configuration if the SSL

certificate is the identity against which to invoke the method. If no message layer security exists, then

no security context is created and associated with the request.

v After the server receives the request, the server-side request interceptor checks for a security context.

Because the server does not find a service context, it checks the server socket for a client certificate

chain that contains the client identity. In this case, the server finds the certificate chain from the client.

The identity in the certificate chain is valid because the connection is made. To create a credential, map

the identity from the certificate to the user registry. This action is done differently based on the type of

authentication mechanism. Mapping a certificate to a credential is done differently based on the user

registry type.

See the “Map certificates to users” on page 1722 article, for details on how this mapping is performed

for the Lightweight Directory Access Protocol (LDAP) user registry. For local OS, the first attribute of the

distinguished name (DN) in the certificate is used to map to the user ID in the registry.

One benefit of SSL client certificate authentication is that it optimizes authentication performance, because

an SSL connection is typically created anyway. The extra overhead of sending the client certificate is

minimal. While the client-side request interceptor performs no activity, the server-side request interceptor

maps the certificate to a credential.

One disadvantage to this type of authentication is the complexity of setting up the keystore file on each

client system.

To enable SSL client certificate authentication on the client side, you must enable the properties, such as

SSL. This action is completed using the following two properties:

v com.ibm.CSI.performTransportAssocSSLTLSRequired (true or false)

v com.ibm.CSI.performTransportAssocSSLTLSSupported (true or false)

Indicating that SSL is required implies that every request must generate an SSL connection key. If a server

does not support SSL, then the request fails. After you enable SSL by either supporting it or requiring it,

you can enable some of the SSL features.

To enable SSL client authentication, you can specify the following two properties:

v com.ibm.CSI.performTLClientAuthenticationRequired (true or false)

v com.ibm.CSI.performTLClientAuthenticationSupported (true or false)

The TL means transport layer. If you indicate that SSL client authentication is required, then you only limit

the ability to communicate with servers that support SSL client authentication. For a server to support SSL

client authentication, that server must have similarly configured properties through the administrative

console, and have an SSL listener port that is open to handle mutual authentication handshakes.

Configuration of server properties are done through the administrative console.

SSL client certificate authentication from a Java client is only available using the Common Secure

Interoperability Version 2 (CSIv2) protocol.

Supported authentication protocols: Two authentication protocols are supported. Secure Authentication

Service (SAS) is the authentication protocol used by all previous releases of the WebSphere Application

Server product. Common Secure Interoperability Version 2 (CSIv2), which is considered the strategic

protocol, is implemented in WebSphere Application Server, Version 5 and later.

You can configure both protocols to work simultaneously. If a server supports both protocols, it exports an

interoperable object reference (IOR) that contains tagged components describing the configuration for SAS

and CSIv2. If a client supports both protocols, it reads tagged components for both CSIv2 and SAS. If the

1656 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

client and the server support both protocols, CSIv2 is used. However, if the server supports SAS (for

example, it is a previous WebSphere Application Server release) and the client supports both protocols,

the client chooses SAS for this request.

Choose a protocol using the com.ibm.CSI.protocol property on the client side and configure this protocol

through the administrative console on the server side.

Configuring Common Secure Interoperability Version 2 and Security

Authentication Service authentication protocols

1. Determine how to configure security inbound and outbound at each point in your infrastructure.

For example, you might have a Java client communicating with an Enterprise JavaBeans (EJB)

application server, which in turn communicates to a downstream EJB application server.

The Java client utilizes the sas.client.props file to configure outbound security. Pure clients need to

configure outbound security only.

The upstream EJB application server configures inbound security to handle the right type of

authentication from the Java client. The upstream EJB application server utilizes the outbound security

configuration when going to the downstream EJB application server.

This type of authentication might be different than what you expect from the Java client into the

upstream EJB application server. Security might be tighter between the pure client and the first EJB

server, depending on your infrastructure. The downstream EJB server utilizes the inbound security

configuration to accept requests from the upstream EJB server. These two servers require similar

configuration options as well. If the downstream EJB application server communicates to other

downstream servers, then the outbound security might require a special configuration.

2. Specify the type of authentication.

By default, authentication by a user ID and password is performed.

Both Java client certificate authentication and identity assertion are disabled by default. If you want this

type of basic authentication performed at every tier, use the CSIv2 authentication protocol configuration

as is. However, if you have any special requirements where some servers authenticate differently from

other servers, then consider how to configure CSIv2 to its best advantage.

3. Configure clients and servers.

Configuring a pure Java client is done through the sas.client.props file, where properties are

modified.

Configuring servers is always done from the administrative console, either from the security navigation

for cell-level configurations or from the server security of the application server for server-level

configurations. If you want some servers to authenticate differently from others, modify some of the

server-level configurations. When you modify the server-level configurations, you are overriding the

cell-level configurations.

Common Secure Interoperability Version 2 and Security Authentication Service client

configuration:

A secure Java client requires configuration properties to determine how to perform security with a server.

These configuration properties are typically put into a properties file somewhere on the client system and

referenced by specifying the following system property on the command line of the Java client. The syntax

of this property accepts a valid Web address with the protocol type, file.

 -Dcom.ibm.CORBA.ConfigURL=file:/C:/WebSphere/AppServer/properties/sas.client.props

When this file is processed by the Object Request Broker (ORB), security can be enabled between the

Java client and the target server.

If any syntax problems exist with the ConfigURL property and the sas.client.props file is not found, the

Java client proceeds to connect insecurely. Errors display indicating the failure to read the ConfigURL

property. Typically the problem is related to having two slashes after file, which is not valid.

Chapter 8. Developing WebSphere applications 1657

Use the following properties to configure the SAS and CSIv2 authentication protocols:

v “CSIv2 authentication protocol client settings”

v “Security Authentication Service authentication protocol client settings” on page 1660

CSIv2 authentication protocol client settings: In addition to the properties that are valid for both Security

Authentication Service (SAS) and Common Secure Interoperability Version 2 (CSIv2), this page documents

the properties that are valid for the CSIv2 protocol only.

com.ibm.CSI.performStateful:

Used to determine if the CSIv2 protocol maintains stateful sessions between a client and server after the

initial secure association (authentication between a particular client and server).

 For performance reasons, it is beneficial to enable this property. Considerations for disabling this property

include troubleshooting an authentication protocol session-related problem.

 Data type: Boolean

Default: True

Range: True or False

com.ibm.CSI.performClientAuthenticationSupported:

Use to determine if message layer client authentication is supported.

 When supported, message layer client authentication is performed when communicating with any server

that supports or requires the authentication. Message layer client authentication involves transmitting either

a user ID and password or a token from an already authenticated credential. If the authenticationTarget

property is BasicAuth, the user ID and password are transmitted to the target server. If the

authenticationTarget password is a token-based mechanism such as Lightweight Third Party Authentication

(LTPA) or Kerberos, then the credential token is transmitted to the server after authenticating the user ID

and password directly to the security server.

 Data type: Boolean

Default: True

Range: True or False

com.ibm.CSI.performClientAuthenticationRequired:

Use to determine if message layer client authentication is required.

 When required, message layer client authentication must occur when communicating with any server. If

transport layer client authentication is also enabled, both authentications are performed, but message layer

client authentication takes precedence at the server.

 Data type: Boolean

Default: True

Range: True or False

com.ibm.CSI.performTransportAssocSSLTLSSupported:

Use to determine if Secure Sockets Layer (SSL) is supported.

 When SSL is supported, this client causes either SSL or TCP/IP to communicate with a server. If SSL is

not supported, then the client must communicate over TCP/IP to the server. Supporting SSL is

recommended so that any sensitive information is encrypted and digitally signed. When the associated

1658 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

com.ibm.CSI.performTransportAssocSSLTLSRequired property is enabled (set to true), this property is

ignored. In this case, SSL is always required.

 Data type: Boolean

Default: True

Range: True or False

com.ibm.CSI.performTransportAssocSSLTLSRequired:

Use to determine if SSL is required.

 When SSL is required, this client must use SSL to communicate to a server. If SSL is not supported by a

server, this client does not attempt a connection to that server. When this property is enabled, the

associated com.ibm.CSI.performTransportAssocSSLTLSSupported property is ignored.

 Data type: Boolean

Default: True

Range: True or False

com.ibm.CSI.performTLClientAuthenticationSupported:

Use to determine if transport layer client authentication is supported.

 When performing client authentication using SSL, the client key file must have a personal certificate

configured. Without a personal certificate, the client cannot authenticate to the server over SSL. If the

personal certificate is a self-signed certificate, the server must contain the public key of the client in the

server trust file. If the personal certificate is granted from a certificate authority (CA), the server must

contain the root public key of the CA in the server trust file. This property is only valid when SSL is

supported or required. If the associated com.ibm.CSI.performTLClientAuthenticationRequired property is

enabled, this property is ignored.

 Data type: Boolean

Default: True

Range: True or False

com.ibm.CSI.performTLClientAuthenticationRequired:

Use to determine if transport layer client authentication is required.

 If required, every secure socket that is opened between a client and server authenticates using SSL

mutual authentication. When performing client authentication using SSL, the client key file must have a

personal certificate configured. Without a personal certificate, the client cannot authenticate to the server

over SSL.

If the personal certificate is a self-signed certificate, the server must contain the public key of the client in

the server trust file. If the personal certificate is granted by a certificate authority (CA), the server must

contain the root public key of the CA in the server trust file. When this property is specified, the associated

com.ibm.CSI.performTLClientAuthenticationSupported property is ignored.

 Data type: Boolean

Default: True

Range: True or False

com.ibm.CSI.performMessageConfidentialitySupported:

Chapter 8. Developing WebSphere applications 1659

Use to determine if 128-bit ciphers are supported to make SSL connections.

 If a target server does not support 128-bit ciphers, you can make a connection at a lower encryption

strength. This property is only valid when SSL is enabled.

 Data type: Boolean

Default: True

Range: True or False

com.ibm.CSI.performMessageConfidentialityRequired:

Use to determine if 128-bit ciphers must be used to make SSL connections.

 If a target server does not support 128-bit ciphers, a connection to that server fails. This property is only

valid when SSL is enabled. When this property is enabled, the associated

com.ibm.CSI.performMessageConfidentialitySupported property is ignored.

 Data type: Boolean

Default: True

Range: True or False

com.ibm.CSI.performMessageIntegritySupported:

Use to determine if 40-bit ciphers are supported to make SSL connections.

 If a target server does not support 40-bit ciphers, you can make a connection using only digital-signing

ciphers. This property is only valid when SSL is enabled. This property is ignored if the associated

com.ibm.CSI.performMessageIntegrityRequired property is enabled.

 Data type: Boolean

Default: True

Range: True or False

com.ibm.CSI.performMessageIntegrityRequired:

Use to determine if 40-bit ciphers must be used to make SSL connections.

 If a target server does not support 40-bit ciphers, a connection to that server fails. This property is only

valid when SSL is enabled. When this property is enabled, the associated

com.ibm.CSI.performMessageIntegritySupported property is ignored.

 Data type: Boolean

Default: True

Range: True or False

com.ibm.CSI.rmiOutboundPropagationEnabled: Enables the propagation of custom objects that are

added to the Subject. On a pure client, add this property to the sas.client.props file. For more

information, see Security Attribute Propagation.

Security Authentication Service authentication protocol client settings:

 In addition to those properties which are valid for both Security Authentication Service (SAS) and Common

Secure Interoperability Version 2 (CSIv2), this article documents properties which are valid only for the

SAS authentication protocol.

1660 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

com.ibm.CORBA.standardPerformQOPModels:

Specifies the strength of the ciphers when making an Secure Sockets Layer (SSL) connection.

 Data type: String

Default: High

Range Low, Medium, High

Configuring Common Secure Interoperability Version 2 inbound authentication:

Inbound authentication refers to the configuration that determines the type of accepted authentication for

inbound requests. This authentication is advertised in the interoperable object reference (IOR) that the

client retrieves from the name server.

1. Start the administrative console.

2. Click Security > Global security.

3. Under Authentication, click Authentication Protocol > CSI inbound authentication

4. Consider the following three layers of security:

v Identity assertion (attribute layer).

When selected, this server accepts identity tokens from upstream servers. If the server receives an

identity token, the identity is taken from an originating client. For example, the identity is in the same

form that the originating client presented to the first server. An upstream server sends the identity of

the originating client. The format of the identity can be either a principal name, a distinguished

name, or a certificate chain. In some cases, the identity is anonymous. It is important to trust the

upstream server that sends the identity token because the identity is authenticating on this server.

Trust of the upstream server is established either using Secure Sockets Layer (SSL) client certificate

authentication or basic authentication. You must select one of the two layers of authentication in

both inbound and outbound authentication when you choose identity assertion.

The server ID is sent in the client authentication token with the identity token. The server ID is

checked against the trusted server ID list. If the server ID is on the trusted server list, the server ID

is authenticated. If the server ID is valid, the identity token is put into a credential and used for

authorization of the request.

v User ID and password (message layer).

This type of authentication is the most typical. The user ID and password or authenticated token is

sent from a pure client or from an upstream server. However, the upstream server cannot be a z/OS

server because z/OS does not support a user ID or password from a server acting as a client. When

a user ID and password are received at the server, they are authenticated with the user registry.

Usually, a token is sent from an upstream server and a user ID and password are sent from a client,

including a servlet. When a token is received at the server level, the token is validated to determine

whether tampering has occurred or whether it is expired.

v Secure Sockets Layer client certificate authentication (transport layer).

This type of authentication typically occurs from pure clients using the certificate identity and from

servers trusting the upstream server. Usually, when a server delegates an identity to a downstream

server, the identity comes from either the message layer (a client authentication token) or the

attribute layer (an identity token), not from the transport layer, through the client certificate

authentication.

A client has an SSL client certificate that is stored in the keystore file (or in the key ring file on the

z/OS platform) of the client configuration. When SSL client authentication is enabled on this server,

the server requests that the client send the SSL client certificate when the connection is established.

The certificate chain is available on the socket whenever a request is sent to the server. The server

request interceptor gets the certificate chain from the socket and maps this certificate chain to a

user in the registry. This type of authentication is optimal for communicating directly from a client to

a server. However, when you have to go downstream, the identity typically flows over the message

layer or through identity assertion.

Chapter 8. Developing WebSphere applications 1661

5. Consider the following points when deciding what type of authentication to accept:

v A server can receive multiple layers simultaneously, so an order of precedence rule decides which

identity to use. The identity assertion layer has the highest priority, the message layer follows, and

the transport layer has the lowest priority. The SSL client certificate authentication is used when it is

the only layer provided. If the message layer and the transport layer are provided, the message

layer is used to establish the identity for authorization. The identity assertion layer is used to

establish precedence when provided.

v Does this server usually receive requests from a client, from a server or both? If the server always

receives requests from a client, identity assertion is not needed. You can then choose either the

message layer, the transport layer, or both. You also can decide when authentication is required or

just supported. To select a layer as required, the sending client must supply this layer, or the request

is rejected. However, if the layer is only supported, the layer might not be supplied.

v What kind of client identity is supplied? If the client identity is client certificates authentication and

you want the certificate chain to flow downstream so that it maps to the downstream server user

registries, then identity assertion is the appropriate choice. Identity assertion preserves the format of

the originating client. If the originating client authenticated with a user ID and password, then a

principal identity is sent. If authentication is done with a certificate, then the certificate chain is sent.

In some cases, if the client authenticated with a token and a Lightweight Directory Access Protocol

(LDAP) server is the user registry, then a distinguished name (DN) is sent.

6. Configure a trusted server list. When identity assertion is selected for inbound requests, insert a

pipe-separated (|) list of server administrator IDs to which this server can support identity token

submission. For backwards compatibility, you can still use a comma-delimited list. However, if the

server ID is a distinguished name (DN), then you must use a pipe-delimited (|) list because a comma

delimiter does not work. If you choose to support any server sending an identity token, you can enter

an asterisk (*) in this field. This action is called presumed trust. In this case, use SSL client certificate

authentication between servers to establish the trust.

7. Configure session management. You can choose either stateful or stateless security. Performance is

optimum when choosing stateful sessions. The first method request between a client and server is

authenticated. All subsequent requests (or until the credential token expires) reuse the session

information, including the credential. A client sends a context ID for subsequent requests. The context

ID is scoped to the connection for uniqueness.

When you finish configuring this panel, you have configured most of the information that a client coalesces

when determining what to send to this server. A client or server outbound configuration with this server

inbound configuration, determines the security that is applied. When you know what clients send, the

configuration is simple. However, if you have a diverse set of clients with differing security requirements,

your server considers various layers of authentication.

For an enterprise bean server, the authentication choice is usually either identity assertion or message

layer because you want the identity of the originating client delegated downstream. You cannot easily

delegate a client certificate using an SSL connection. It is acceptable to enable the transport layer

because additional server security, as the additional client certificate portion of the SSL handshake, adds

some overhead to the overall SSL connection establishment.

After you determine which type of authentication data this server might receive, you can determine what to

select for outbound security. Refer to the article, Configuring Common Secure Interoperability Version 2

outbound authentication.

Common Secure Interoperability inbound authentication settings:

Use this page to specify the features that a server supports for a client accessing its resources.

 To view this administrative console page, click Security > Global security. Under Authentication, click

Authentication protocols > CSIv2 inbound authentication.

1662 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

You can also view this administrative console page, by clicking Servers > Application servers

>server_name. Under Security, click Server security. Under Additional properties, click CSIv2 inbound

authentication.

Use common secure interoperability (CSI) inbound authentication settings for configuring the type of

authentication information that is contained in an incoming request or transport.

Authentication features include three layers of authentication that you can use simultaneously:

v Transport layer. The transport layer, which is the lowest layer, might contain a Secure Sockets Layer

(SSL) client certificate as the identity.

v Message layer. The message layer might contain a user ID and password or an authenticated token

with an expiration.

v Attribute layer. The attribute layer might contain an identity token, which is an identity from an

upstream server that already is authenticated. The identity layer has the highest priority, followed by the

message layer, and then the transport layer. If a client sends all three, only the identity layer is used.

The only way to use the SSL client certificate as the identity is if it is the only information that is

presented during the request. The client picks up the interoperable object reference (IOR) from the

namespace and reads the values from the tagged component to determine what the server needs for

security.

Basic authentication:

Specifies that basic authentication occurs over the message layer.

 In the message layer, basic authentication (user ID and password) takes place. This type of authentication

typically involves sending a user ID and a password from the client to the server for authentication.

This authentication also involves delegating a credential token from an already authenticated credential,

provided the credential type is forwardable (for example, Lightweight Third Party Authentication (LTPA)).

If you select Basic Authentication and LTPA is the configured authentication protocol, user name,

password, and LTPA tokens are accepted.

The following options are available for Basic Authentication:

Never This option indicates that this server cannot accept user ID and password authentication.

Supported

This option indicates that a client communicating with this server can specify a user ID and

password. However, a method might be invoked without this type of authentication. For example,

an anonymous or client certificate might be used instead.

Required

This option indicates that clients communicating with this server must specify a user ID and

password for any method request.

Basic authentication takes precedence over client certificate authentication, if both are performed.

Client certificate authentication:

Specifies that authentication occurs when the initial connection is made between the client and the server

during a method request.

 In the transport layer, Secure Sockets Layer (SSL) client certificate authentication occurs. In the message

layer, basic authentication (user ID and password) is performed. Client certificate authentication typically

performs better than message layer authentication, but requires some additional setup. These additional

steps involve verifying that the server has the signer certificate of each client to which it is connected. If

Chapter 8. Developing WebSphere applications 1663

the client uses a certificate authority (CA) to create its personal certificate, you only need the CA root

certificate in the server signer section of the SSL trust file.

When the certificate is authenticated to a Lightweight Directory Access Protocol (LDAP) user registry, the

distinguished name (DN) is mapped based on the filter that is specified when configuring LDAP. When the

certificate is authenticated to a LocalOS user registry, the first attribute of the distinguished name (DN) in

the certificate, which is typically the common name, is mapped to the user ID in the registry.

The identity from client certificates is used only if no other layer of authentication is presented to the

server.

The following options are available for Client certificate authentication:

Never This option indicates that clients cannot attempt Secure Sockets Layer (SSL) client certificate

authentication with this server.

Supported

This option indicates that clients connecting to this server can authenticate using SSL client

certificates. However, the server can invoke a method without this type of authentication. For

example, anonymous or basic authentication can be used instead.

Required

This option indicates that clients connecting to this server must authenticate using SSL client

certificates before invoking the method.

Identity assertion:

Specifies that identity assertion is a way to assert identities from one server to another during a

downstream Enterprise JavaBeans (EJB) invocation.

 This server does not authenticate the asserted identity again because it trusts the upstream server. Identity

assertion takes precedence over all other types of authentication.

Identity assertion is performed in the attribute layer and is only applicable on servers. The principal

determined at the server is based on precedence rules. If identity assertion is performed, the identity is

always derived from the attribute. If basic authentication is performed without identity assertion, the identity

is always derived from the message layer. Finally, if SSL client certificate authentication is performed

without either basic authentication, or identity assertion, then the identity is derived from the transport

layer.

The identity asserted is the invocation credential that is determined by the RunAs mode for the enterprise

bean. If the RunAs mode is Client, the identity is the client identity. If the RunAs mode is System, the

identity is the server identity. If the RunAs mode is Specified, the identity is the one specified. The

receiving server receives the identity in an identity token and also receives the sending server identity in a

client authentication token. The receiving server validates the sending server identity as a trusted identity

through the Trusted Server IDs entry box. Enter a list of pipe-separated (|) principal names, for example,

serverid1|serverid2|serverid3.

When authenticating to a LocalOS user registry, all identity token types map to the user ID field of the

active user registry. For an ITTPrincipal identity token, this token maps one-to-one with the user ID fields.

For an ITTDistinguishedName identity token, the value from the first equal sign is mapped to the user ID

field. For an ITTCertChain identity token, the value from the first equal sign of the distinguished name is

mapped to the user ID field.

When authenticating to an LDAP user registry, the LDAP filters determine how an identity of type

ITTCertChain and ITTDistinguishedName get mapped to the registry. If the token type is ITTPrincipal, then

the principal gets mapped to the UID field in the LDAP registry.

1664 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Data type: String

Trusted servers:

 Specifies a pipe-separated (|) list of trusted server IDs, which are trusted to perform identity assertion to

this server. For example, serverid1|serverid2|serverid3. WebSphere Application Server supports the

comma (,) character as the list delimiter for backwards compatibility. WebSphere Application Server checks

the comma character when the pipe character (|) fails to find a valid trusted server ID.

Use this list to decide whether a server is trusted. Even if the server is on the list, the sending server must

still authenticate with the receiving server to accept the identity token of the sending server.

 Data type String

Stateful sessions:

Specifies stateful sessions that are used mostly for performance improvements.

 The first contact between a client and server must fully authenticate. However, all subsequent contacts

with valid sessions reuse the security information. The client passes a context ID to the server, and the ID

is used to look up the session. The context ID is scoped to the connection, which guarantees uniqueness.

Whenever the security session is not valid and the authentication retry is enabled, which is the default, the

client-side security interceptor invalidates the client-side session and submits the request again without

user awareness. This situation might occur if the session does not exist on the server (the server failed

and resumed operation). When this value is disabled, every method invocation must authenticate again.

 Data type String

Login configuration:

Specifies the type of system login configuration to use for inbound authentication.

 You can add custom login modules by clicking Security > Global security. Under Authentication, click

JAAS configuration > System logins.

Security attribute propagation:

Specifies whether to support security attribute propagation during login requests. When you select this

option, WebSphere Application Server retains additional information about the login request, such as the

authentication strength used, and retains the identity and location of the request originator.

 Verify that you are using Lightweight Third Party Authentication (LTPA) as your authentication mechanism.

LTPA is the only authentication mechanism supported when you enable the security attribute propagation

feature. To configure LTPA, click Security > Global security. Under Authentication, click Authentication

mechanisms > LTPA.

If you do not select this option, WebSphere Application Server does not accept any additional login

information to propagate to downstream servers.

Configuring Common Secure Interoperability Version 2 outbound authentication:

Outbound authentication refers to the configuration that determines the type of authentication performed

for outbound requests to downstream servers. Several layers or methods of authentication can occur. The

downstream server inbound authentication configuration must support at least one choice made in this

Chapter 8. Developing WebSphere applications 1665

server outbound authentication configuration. If nothing is supported, the request might go outbound as

unauthenticated. This situation does not create a security problem because the authorization run time is

responsible for preventing access to protected resources. However, if you choose to prevent an

unauthenticated credential to go outbound, you might want to designate one of the authentication layers as

required, rather than supported. If a downstream server does not support authentication, then when

authentication is required, the method request fails to go outbound.

The following choices are available in the Common Secure Interoperability Version 2 (CSIv2) Outbound

Authentication panel. Remember that you are not required to complete these steps in the displayed order.

Rather, these steps are provided to help you understand your choices for configuring outbound

authentication.

1. Select Identity Assertion (attribute layer). When selected, this server submits an identity token to a

downstream server, if the downstream server supports identity assertion. When an originating client

authenticates to this server, the authentication information supplied is preserved in the outbound

identity token. If the client authenticating to this server uses client certificate authentication, then the

identity token format is a certificate chain, containing the exact client certificate chain on the socket.

The same scenario is true for other mechanisms of authentication. Read the ″Identity Assertion″ article

in the information center for details.

2. Select User ID and Password (message layer). This type of authentication is the most typical. The

user ID and password (if BasicAuth credential) or authenticated token (if authenticated credential) are

sent outbound to the downstream server if the downstream server supports message layer

authentication in the inbound authentication panel. Refer to the Message Layer Authentication article

for more information.

3. Select SSL Client certificate authentication (transport layer). The main reason to enable outbound

Secure Sockets Layer (SSL) client authentication from one server to a downstream server is to create

a trusted environment between those servers. For delegating client credentials, use one of the two

layers mentioned previously. However, you might want to create SSL personal certificates for all the

servers in your domain, and only trust those servers in your SSL truststore file. No other servers or

clients can connect to the servers in your domain, except at the tiers where you want them. This

process can protect your enterprise bean servers from access by anything other than your servlet

servers. Refer to the SSL Client Certificate Authentication article for more information.

A server can send multiple layers simultaneously, therefore, an order of precedence rule decides which

identity to use. The identity assertion layer has the highest priority, the message layer follows, and the

transport layer has the lowest priority. SSL client certificates are only used as the identity for invoking

method requests, when that is the only layer provided. SSL client certificates are useful for trust

purposes, even if the identity is not used for the request. If only the message layer and transport layer

are provided, the message layer is used to establish the identity for authorization. If the identity

assertion layer is provided (regardless of what is provided), then the identity from the identity token is

always used by the authorization engine as the identity for that request.

Configuring session management:

You can choose either stateful or stateless security. Performance is optimum when choosing stateful

sessions. The first method request between this server and the downstream server is authenticated. All

subsequent requests reuse the session information, including the credential. A unique session entry is

defined as the combination of a unique client authentication token and an identity token, scoped to the

connection.

When you finish configuring this panel, you configured the information that this server uses to make

decisions about the type of authentication to perform with downstream servers. If the downstream server is

configured not to support the outbound configuration of the server, the following exception likely occurs:

Exception received: org.omg.CORBA.INITIALIZE:

CWWSA1477W: SECURITY CLIENT/SERVER CONFIG MISMATCH: The client security

configuration (sas.client.props or outbound settings in GUI) does not

1666 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

support the server security configuration for the following reasons:

ERROR 1: CWWSA0607E: The client requires SSL Confidentiality but the server

does not support it.

ERROR 2: CWWSA0610E: The server requires SSL Integrity but the client does

not support it.

ERROR 3: CWWSA0612E: The client requires client (e.g., userid/password or token),

but the server does not support it.

minor code: 0 completed: No

 at com.ibm.ISecurityLocalObjectBaseL13Impl.SecurityConnectionInterceptor.

getConnectionKey(SecurityConnectionInterceptor.java:1770)

 at com.ibm.ws.orbimpl.transport.WSTransport.getConnection(Unknown Source)

 at com.ibm.rmi.iiop.TransportManager.get(TransportManager.java:79)

 at com.ibm.rmi.iiop.GIOPImpl.locate(GIOPImpl.java:167)

 at com.ibm.CORBA.iiop.ClientDelegate._createRequest(ClientDelegate.java:2088)

 at com.ibm.CORBA.iiop.ClientDelegate.createRequest(ClientDelegate.java:1264)

 at com.ibm.CORBA.iiop.ClientDelegate.createRequest(ClientDelegate.java:1177)

 at com.ibm.CORBA.iiop.ClientDelegate.request(ClientDelegate.java:1726)

 at org.omg.CORBA.portable.ObjectImpl._request(ObjectImpl.java:245)

 at com.ibm.WsnOptimizedNaming._NamingContextStub.get_compatibility_level

(Unknown Source)

 at com.ibm.websphere.naming.DumpNameSpace.getIdlLevel(DumpNameSpace.java:300)

 at com.ibm.websphere.naming.DumpNameSpace.getStartingContext

(DumpNameSpace.java:329)

 at com.ibm.websphere.naming.DumpNameSpace.main(DumpNameSpace.java:268)

 at java.lang.reflect.Method.invoke(Native Method)

 at com.ibm.ws.bootstrap.WSLauncher.main(WSLauncher.java:163)

The reasons for the mismatch are explained in the exception. You can make the corrections when you

configure the outbound configuration for this server, or when you configure the inbound configuration of the

downstream server. If multiple reasons exist for a failure, the reasons are explained as message text in the

exception.

Typically, the outbound authentication configuration is for an upstream server to communicate with a

downstream server. Most likely, the upstream server is a servlet server and the downstream server is an

Enterprise JavaBeans (EJB) server. On a servlet server, the client authentication that is performed to

access the servlet can be one of many different types of authentication, including client certificate and

basic authentication. When receiving basic authentication data, whether through a prompt login or a

form-based login, the basic authentication information is typically authenticated to from a credential of the

mechanism type that is supported by the server, such as Lightweight Third Party Authentication (LTPA) or

LocalOS. When LTPA is the mechanism, a forwardable token exists in the credential. Choose the message

layer (BasicAuth) authentication to propagate the client credentials. If the credential is created using a

certificate login and you want to preserve sending the certificate downstream, you might decide to go

outbound with identity assertion.

Save the configuration and restart the server for the changes to take effect.

Common Secure Interoperability Version 2 outbound authentication settings:

Use this page to specify the features that a server supports when acting as a client to another downstream

server.

 To view this administrative console page, click Security > Global Security. Under Authentication, click

Authentication protocols > CSIv2 outbound authentication.

Chapter 8. Developing WebSphere applications 1667

You can also view this administrative console page by clicking Servers > Application Servers >

server_name. Under Security, click Server Security. Under Additional properties, click CSIv2 Outbound

Authentication.

Authentication features include the following layers of authentication that you can use simultaneously:

Transport layer

The transport layer, the lowest layer, might contain a Secure Sockets Layer (SSL) client certificate

as the identity.

Message layer

The message layer might contain a user ID and password or authenticated token.

Attribute layer

The attribute layer might contain an identity token, which is an identity from an upstream server

that is already authenticated. The attribute layer has the highest priority, followed by the message

layer and then the transport layer. If this server sends all three, only the attribute layer is used by

the downstream server. The only way to use the SSL client certificate as the identity is if it is the

only information presented during the outbound request.

Basic authentication:

Specifies whether to send a user ID and a password from the client to the server for authentication.

 This type of authentication occurs over the message layer. Basic authentication also involves delegating a

credential token from an already authenticated credential, provided the credential type is forwardable (for

example, Lightweight Third Party Authentication (LTPA)). Basic authentication refers to any authentication

over the message layer and indicates user ID and password as well as token-based authentication.

If you select Basic Authentication, the following options are available:

Never This option indicates that this server does not send user ID and password authentication

information to downstream servers. By selecting never, requests to downstream servers that

require basic authentication fail.

Supported

This option indicates that this server can specify a user ID and password to authenticate with

downstream servers. However, a method might be invoked without this type of authentication. For

example, the server can use anonymous or client certificate instead.

Required

This option indicates that this server must specify a user ID and password to authenticate with

downstream servers for any method request. This server cannot initiate requests with servers that

do not support or require basic authentication for inbound requests.

Client certificate authentication:

Specifies whether a client certificate from the configured keystore file is used to authenticate to the server

when the SSL connection is made between this server and a downstream server (provided that the

downstream server supports client certificate authentication).

 Typically, client certificate authentication has a higher performance than message layer authentication, but

requires some additional setup. These additional steps include verifying that this server has a personal

certificate and that the downstream server has the signer certificate of this server.

If you select client certificate authentication, the following options are available:

Never This option indicates that this server does not attempt Secure Sockets Layer (SSL) client

certificate authentication with downstream servers.

Supported

This option indicates that this server can use SSL client certificates to authenticate to downstream

1668 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

servers. However, a method can be invoked without this type of authentication. For example, the

server can use anonymous or basic authentication instead.

Required

This option indicates that this server must use SSL client certificates to authenticate to

downstream servers.

Identity assertion:

Specifies whether to assert identities from one server to another during a downstream enterprise bean

invocation.

 The identity asserted is the invocation credential that is determined by the RunAs mode for the enterprise

bean. If the RunAs mode is Client, the identity is the client identity. If the RunAs mode is System, the

identity is the server identity. If the RunAs mode is Specified, the identity is the identity specified. The

receiving server receives the identity in an identity token and also receives the sending server identity in a

client authentication token. The receiving server validates the identity of the sending server to ensure a

trusted identity.

When specifying identity assertion on the CSIv2 Authentication Outbound panel, you must also select

basic authentication as supported or required on the CSIv2 Authentication Outbound panel. The server

identity can then be submitted with the identity token, so that the receiving server can trust the sending

server. Without specifying basic authentication as supported or required, trust is not established and the

identity assertion fails.

Stateful sessions:

Specifies whether to reuse security information during authentication. This option is usually used to

increase performance.

 The first contact between a client and server must fully authenticate. However, all subsequent contacts

with valid sessions reuse the security information. The client passes a context ID to the server, and that ID

is used to look up the session. The context ID is scoped to the connection, which guarantees uniqueness.

When the security session is not valid and if authentication retry is enabled, which is the default, the

client-side security interceptor invalidates the client-side session and resubmits the request transparently.

For example, if the session does not exist on the server; the server fails and resumes operation.

When this value is disabled, every method invocation must authenticate again.

Login configuration:

Specifies the type of system login configuration that is used for outbound authentication.

 You can add custom login modules before or after this login module by clicking Security > Global

security. Under Authentication, click JAAS configuration > System login.

Custom outbound mapping:

Enables the use of custom Remote Method Invocation (RMI) outbound login modules.

 The custom login module maps or performs other functions before the predefined RMI outbound call. To

declare a custom outbound mapping, click Security > Global security. Under Authentication, click JAAS

configuration > System logins > New.

Security attribute propagation:

Chapter 8. Developing WebSphere applications 1669

Enables WebSphere Application Server to propagate the Subject and the security content token to other

application servers using the Remote Method Invocation (RMI) protocol.

 Verify that you are using Lightweight Third Party Authentication (LTPA) as your authentication mechanism.

LTPA is the only authentication mechanism that is supported when you enable the security attribute

propagation feature. To configure LTPA, click Security > Global security. Under Authentication,

clickAuthentication mechanisms > LTPA.

By default, the Security attribute propagation option is enabled and outbound login configuration is

invoked. If you clear this option, WebSphere Application Server does not propagate any additional login

information to downstream servers.

Trusted target realms:

Specifies a list of trusted target realms, separated by a pipe character (|), that differ from the current

realm.

 Prior to WebSphere Application Server, Version 5.1.1, if the current realm does not match the target realm,

the authentication request is not sent outbound to other application servers.

Additional Common Secure Interoperability outbound authentication settings:

Use this page to configure additional authentication settings for requests that are received by this server

using the Object Management Group (OMG) Common Secure Interoperability authentication protocol.

 To view this administrative console page, click Global security > CSIv2 Outbound Authentication >

Additional Settings. You can also view this administrative console page by clicking Servers >

Application Servers > server_name > Server Security > CSIv2 Outbound Authentication > Additional

Settings.

Client authentication type:

Specifies the type of client authentication that is supported for outbound requests.

 Data type String

Default SAFUSERIDPASSWORD

Configuring inbound transports:

Inbound transports refer to the types of listener ports and their attributes that are opened to receive

requests for this server. Both Common Secure Interoperability Specification, Version 2 (CSIv2) and Secure

Authentication Service (SAS) have the ability to configure the transport.

However, the following differences between the two protocols exist:

v CSIv2 is much more flexible than SAS, which requires Secure Sockets Layer (SSL); CSIv2 does not

require SSL.

v SAS does not support SSL client certificate authentication, while CSIv2 does.

v CSIv2 can require SSL connections, while SAS only supports SSL connections.

v SAS always has two listener ports open: TCP/IP and SSL.

v CSIv2 can have as few as one listener port and as many as three listener ports. You can open one port

for just TCP/IP or when SSL is required. You can open two ports when SSL is supported, and open

three ports when SSL and SSL client certificate authentication is supported.

Complete the following steps to configure the Inbound transport panels in the administrative console:

1. Click Security > Global security.

1670 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

2. Under Authentication, click Authentication Protocol > CSIv2 Inbound Transport to select the type of

transport and the SSL settings. By selecting the type of transport, as noted previously, you choose

which listener ports you want to open. In addition, you disable the SSL client certificate authentication

feature if you choose TCP/IP as the transport.

3. Select the SSL settings that correspond to an SSL transport. These SSL settings are defined in the

Security > SSL panel and define the SSL configuration including the key ring, security level, ciphers,

and so on.

4. Consider fixing the listener ports that you configured.

You complete this action in a different panel, but think about this action now. Most end points are

managed at a single location, which is why they do not display in the Inbound transport panels.

Managing end points at a single location helps you decrease the number of conflicts in your

configuration when you assign the endpoints. The location for SSL end points is at each server. The

following port names are defined in the End points panel and are used for Object Request Broker

(ORB) security:

v CSIV2_SSL_MUTUALAUTH_LISTENER_ADDRESS - CSIv2 Client Authentication SSL Port

v CSIV2_SSL_SERVERAUTH_LISTENER_ADDRESS - CSIv2 SSL Port

v SAS_SSL_SERVERAUTH_LISTENER_ADDRESS - SAS SSL Port

v ORB_LISTENER_PORT - TCP/IP Port

For an application server, click Servers > Application servers >server_name . Under

Communications, click Ports. The Ports panel is displayed for the specified server.

The Object Request Broker (ORB) on WebSphere Application Server uses a listener port for Remote

Method Invocation over the Internet Inter-ORB Protocol (RMI/IIOP) communications, which is generally

not specified and selected dynamically during run time. If you are working with a firewall, you must

specify a static port for the ORB listener and open that port on the firewall so that communication can

pass through the specified port. The endPoint property for setting the ORB listener port is:

ORB_LISTENER_ADDRESS.

Complete the following steps using the administrative console to specify the

ORB_LISTENER_ADDRESS port or ports.

a. Click Servers > Application Servers > server_name. Under Communications, click Ports > New.

b. Select ORB_LISTENER_ADDRESS from the Port name field in the Configuration panel.

c. Enter the IP address, the fully qualified Domain Name System (DNS) host name, or the DNS host

name by itself in the Host field. For example, if the host name is myhost, the fully qualified DNS

name can be myhost.myco.com and the IP address can be 155.123.88.201.

d. Enter the port number in the Port field. The port number specifies the port for which the service is

configured to accept client requests. The port value is used with the host name. Using the previous

example, the port number might be 9000.

5. Click Security > Global security. Under Authentication, click Authentication Protocol > SAS

inbound transport to select the SSL settings used for inbound requests from SAS clients. Remember

that the SAS protocol is used to interoperate with previous releases. When configuring the keystore

and truststore files in the SSL configuration, these files need the right information for interoperating

with previous releases of WebSphere Application Server. For example, a previous release has a

different truststore file than the Version 5 release. If you use the Version 5 keystore file, add the signer

to the truststore file of the previous release for those clients connecting to this server.

The inbound transport configuration is complete. With this configuration, you can configure a different

transport for inbound security versus outbound security. For example, if the application server is the first

server that is used by users, the security configuration might be more secure. When requests go to

back-end enterprise bean servers, you might lessen the security for performance reasons when you go

outbound. With this flexibility you can design the right transport infrastructure to meet your needs.

When you finish configuring security, perform the following steps to save, synchronize, and restart the

servers:

1. Click Save in the administrative console to save any modifications to the configuration.

Chapter 8. Developing WebSphere applications 1671

2. Stop and restart all servers, when synchronized.

Common Secure Interoperability Version 2 transport inbound settings:

Use this page to specify which listener ports to open and which Secure Sockets Layer (SSL) settings to

use. These specifications determine which transport a client or upstream server uses to communicate with

this server for incoming requests.

 To view this administrative console page, click Security > Global security. Under Authentication, click

CSIv2 inbound transport.

Transport:

Specifies whether client processes connect to the server using one of its connected transports.

 You can choose to use either Secure Sockets Layer (SSL), TCP/IP or both as the inbound transport that a

server supports. If you specify TCP/IP, the server only supports TCP/IP and cannot accept SSL

connections. If you specify SSL-supported, this server can support either TCP/IP or SSL connections. If

you specify SSL-required, then any server communicating with this one must use SSL.

If you specify SSL-supported or SSL-required, decide which set of SSL configuration settings you want to

use for the inbound configuration. This decision determines which key file and trust file are used for

inbound connections to this server.

TCP/IP

If you select TCP/IP, then the server opens a TCP/IP listener port only and all inbound requests

do not have SSL protection.

SSL-required

If you select SSL-required, then the server opens an SSL listener port only and all inbound

requests are received using SSL.

Important: If you set the active authentication protocol to CSI and SAS, then the server opens a

TCP/IP listener port for the Secure Authentication Service (SAS) protocol regardless of

this setting.
Only an SSL listener port is opened, and all requests come through SSL connections. If you

choose SSL-required, you must also choose CSI as the active authentication protocol. If you

choose CSI and SAS, SAS requires an open TCP/IP socket for some special requests. You can

select either CSI or CSI and SAS from the Global security panel, which is accessible from

Security > Global Security.

SSL-supported

If you select SSL-supported, then the server opens both a TCP/IP and an SSL listener port and

most inbound requests are received using SSL.

By default, SSL ports for Common Secure Interoperability Version 2 (CSIv2) and Security Authentication

Service (SAS) are dynamically generated. In cases where you need to fix the SSL ports on application

servers, click Servers > Application Servers > server_name > End Points.

Provide a fixed port number for the following ports. A zero port number indicates that a dynamic

assignment is made at run time.

CSIV2_SSL_MUTUALAUTH_LISTENER_ADDRESS

CSIV2_SSL_SERVERAUTH_LISTENER_ADDRESS

SAS_SSL_SERVERAUTH_LISTENER_ADDRESS

 Default: SSL-Supported

Range: TCP/IP, SSL Required, SSL-Supported

1672 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Secure Authentication Service inbound transport settings:

Use this page to specify transport settings for connections that are accepted by this server using the

Secure Authentication Service (SAS) authentication protocol. The SAS protocol is used to communicate

securely to enterprise beans with previous releases of the WebSphere Application Server.

 To view this administrative console page, click Security > Global security. Under Authentication, click

Authentication protocol > SAS inbound transport.

SSL Settings:

Specifies a list of predefined SSL settings to choose from for inbound connections. These settings are

configured at the SSL Repertoire panel.

 Data type: String

Default: DefaultSSLSettings

Configuring outbound transports:

Outbound transports refers to the transport used to connect to a downstream server. When you configure

the outbound transport, consider the transports that the downstream servers support. If you are

considering Secure Sockets Layer (SSL), also consider including the signers of the downstream servers in

this server truststore file for the handshake to succeed.

When you select an SSL configuration, that configuration points to keystore and truststore files that contain

the necessary signers.

If you configured client certificate authentication for this server by completing the following steps, then the

downstream servers contain the signer certificate belonging to the server personal certificate:

1. Click Security > Global security.

2. Under Authentication, click Authentication protocols > CSIv2 outbound authentication.

Complete the following steps to configure the Outbound Transport panels.

1. Select the type of transport and the SSL settings by clicking Security > Global security. Under

Authentication, click Authentication Protocol > CSIv2 Outbound Transport. By selecting the type of

transport, you are choosing the transport to use when connecting to downstream servers. The

downstream servers support the transport that you choose. If you choose SSL-Supported, the

transport used is negotiated during the connection. If both the client and server support SSL, always

select the SSL-Supported option unless the request is considered a special request that does not

require SSL, such as if an object request broker (ORB) is a request.

2. Pick the SSL settings that correspond to an SSL transport. Click Security > SSL .

This panel includes the SSL configuration of keystore files, truststore files, file formats, security levels,

ciphers, cryptographic token selections, and so on. Verify that the truststore keyring file in the selected

SSL configuration contains the signers for any downstream servers. Also, verify that the downstream

servers contain the server signer certificates when outbound client certificate authentication is used.

3. Select the SSL settings used for outbound requests to downstream Secure Authentication Service

(SAS) servers. Click Security > Global security. Under Authentication, click Authentication Protocol

> SAS Outbound transport. Remember that the SAS protocol allows interoperability with previous

releases. When configuring the keystore and truststore files in the SSL configuration, these files have

the correct information for interoperating with previous releases of WebSphere Application Server. For

example, a previous release has a different personal certificate than the Version 5 release. If you use

Chapter 8. Developing WebSphere applications 1673

the keystore file from the Version 5.0 release, you must add the signer to the truststore file of the

previous release. Also, you must extract the signer for the Version 5.0 release and import that signer

into the truststore file of the previous release.

The outbound transport configuration is complete. With this configuration you can configure a different

transport for inbound security versus outbound security. For example, if the application server is the first

server used by end users, the security configuration might be more secure. When requests go to back-end

enterprise beans servers, you might consider less security for performance reasons when you go

outbound. With this flexibility you can design a transport infrastructure that meets your needs.

When you finish configuring security, perform the following steps to save, synchronize, and restart the

servers.

v Click Save in the administrative console to save any modifications to the configuration.

v Stop and restart all servers, after synchronization.

Common Secure Interoperability Version 2 outbound transport settings:

Use this page to specify which transports and Secure Sockets Layer (SSL) settings this server uses when

communicating with downstream servers for outbound requests.

 To view this administrative console page, click Security > Global security. Under Authentication, click

Authentication > Authentication protocol > CSIv2 outbound transport.

Transport:

Specifies whether the client processes connect to the server using one of the server-connected transports.

 You can choose to use either SSL, TCP/IP, or Both as the outbound transport that a server supports. If

you specify TCP/IP, the server supports only TCP/IP and cannot initiate SSL connections with downstream

servers. If you specify SSL-supported, this server can initiate either TCP/IP or SSL connections. If you

specify SSL-required, this server must use SSL to initiate connections to downstream servers. When you

do specify SSL, decide which set of SSL configuration settings you want to use for the outbound

configuration.

This decision determines which keyfile and trustfile to use for outbound connections to downstream

servers.

Consider the following options:

TCP/IP

If you select this option, the server opens TCP/IP connections with downstream servers only.

SSL-required

If you select this option, the server opens SSL connections with downstream servers.

SSL-supported

If you select this option, the server opens SSL connections with any downstream server that

supports them and opens TCP/IP connections with any downstream servers that do not support

SSL.

 Default: SSL-supported

Range: TCP/IP, SSL-required, SSL-supported

SSL settings:

Specifies a list of predefined SSL settings for outbound connections. These settings are configured at the

SSL Configuration Repertoires panel. To access the panel, click Security > SSL.

 Data type: String

1674 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Default: DefaultSSLSettings

Range: Any SSL settings that are configured in the SSL

Configuration Repertoires panel

Secure Authentication Service outbound transport settings:

Use this page to specify transport settings for connections that are accepted by this server using the

Secure Authentication Service (SAS) authentication protocol. Use the SAS protocol to communicate

securely to enterprise beans with previous releases of WebSphere Application Server.

 To view this administrative console page, click Security > Global security. Under Authentication, click

Authentication protocol > SAS outbound transport.

SSL settings:

Specifies a list of predefined Secure Sockets Layer (SSL) settings to choose from for outbound

connections. These settings are configured at the SSL Repertoire panel.

 Data type: String

Default: DefaultSSLSettings

Example: Common Secure Interoperability Version 2 scenarios:

The articles included in this section are intended to demonstrate how to configure specific Common

Secure Interoperability Version 2 (CSIv2) configuration examples.

Scenario 1: Basic authentication and identity assertion:

This example presents a pure Java client, C, that accesses a secure enterprise bean on server, S1,

through user ″bob.″ The enterprise bean code on S1 accesses another enterprise bean on server, S2.

This configuration uses identity assertion to propagate the identity of ″bob″ to the downstream server, S2.

S2 trusts that ″bob″ already is authenticated by S1 because it trusts S1. To gain this trust, the identity of

S1 also flows to S2 simultaneously and S2 validates the identity by checking the trustedPrincipalList list to

verify that it is a valid server principal. S2 also authenticates S1. The following steps take you through the

configuration of C, S1, and S2.

server1/passwordbob/password

Java client Enterprise beans

Invocation credentials: bob

Message layerMessage layer

Transport layer Transport layer

Identity assertion layer

SSLSSL

bob

C S1 S2

Received credentials: bob

Enterprise beans

Chapter 8. Developing WebSphere applications 1675

Configuring client, C

Client C requires message layer authentication with a Secure Sockets Layer (SSL) transport. To

accomplish this task:

1. Point the client to the sas.client.props file using the

com.ibm.CORBA.ConfigURL=file:/C:/was/properties/sas.client.props property.

All further configuration involves setting properties within this file.

2. Enable SSL.

In this case, SSL is supported but not required:

com.ibm.CSI.performTransportAssocSSLTLSSupported=true,

com.ibm.CSI.performTransportAssocSSLTLSRequired=false

3. Enable client authentication at the message layer.

In this case, client authentication is supported but not required:

com.ibm.CSI.performClientAuthenticationRequired=false,

com.ibm.CSI.performClientAuthenticationSupported=true

4. Use all of the remaining defaults in the sas.client.props file.

Configuring server, S1

In the administrative console, server S1 is configured for incoming requests to support message-layer

client authentication and incoming connections to support SSL without client certificate authentication.

Server S1 is configured for outgoing requests to support identity assertion.

1. Configure S1 for incoming connections.

a. Disable identity assertion.

b. Enable user ID and password authentication.

c. Enable SSL.

d. Disable SSL client certificate authentication.

2. Configure S1 for outgoing connections.

a. Enable identity assertion.

b. Disable user ID and password authentication.

c. Enable SSL.

d. Disable SSL client certificate authentication.

Configuring server, S2

In the administrative console, server S2 is configured for incoming requests to support identity assertion

and to accept SSL connections. Complete the following steps to configure incoming connections.

Configuration for outgoing requests and connections are not relevant for this scenario.

1. Enable identity assertion.

2. Disable user ID and password authentication.

3. Enable SSL.

4. Disable SSL client authentication.

Scenario 2: Basic authentication, identity assertion, and client certificates:

1676 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

This scenario is the same as Scenario 1, except for the interaction from client C2 to server S2. Therefore,

the configuration of Scenario 1 still is valid, but you have to modify server S2 slightly and add a

configuration for client C2. The configuration is not modified for C1 or S1.

Configuring client C2

Client C2 requires transport layer authentication (Secure Sockets Layer (SSL) client certificates). To

configure transport layer authentication:

1. Point the client to the sas.client.props file using the

com.ibm.CORBA.ConfigURL=file:/C:/was/properties/sas.client.props property.

All further configuration involves setting properties within this file.

2. Enable SSL.

In this case, SSL is supported but not required:

com.ibm.CSI.performTransportAssocSSLTLSSupported=true,

com.ibm.CSI.performTransportAssocSSLTLSRequired=false

3. Disable client authentication at the message layer.

com.ibm.CSI.performClientAuthenticationRequired=false,

com.ibm.CSI.performClientAuthenticationSupported=false

4. Enable client authentication at the transport layer where it is supported, but not required:

com.ibm.CSI.performTLClientAuthenticationRequired=false,

com.ibm.CSI.performTLClientAuthenticationSupported=true

server1/passwordbob/password

Java client Enterprise beans

Invocation credentials: bob

Message layerMessage layer

Transport layer Transport layer

Identity assertion layer

SSLSSL

bob

C S1 S2

Received credentials: bob

Enterprise beans

Transport layer

SSL: cn=bob, o=ibm, c=us

C S1

Chapter 8. Developing WebSphere applications 1677

Configuring server, S2

In the administrative console, server S2 is configured for incoming requests to SSL client authentication

and identity assertion. Configuration for outgoing requests is not relevant for this scenario.

1. Enable identity assertion.

2. Disable user ID and password authentication.

3. Enable SSL.

4. Enable SSL client authentication.

You can mix and match these configuration options. However, a precedence exists as to which

authentication features become the identity in the received credential:

1. Identity assertion

2. Message-layer client authentication (basic authentication or token)

3. Transport-layer client authentication (SSL certificates)

Scenario 3: Client certificate authentication and RunAs system:

This example presents a pure Java client, C, accessing a secure enterprise bean on S1. C authenticates

to S1 using Secure Sockets Layer (SSL) client certificates. S1 maps the common name of the

distinguished name (DN) in the certificate to a user in the local registry. The user in this case is bob. The

enterprise bean code on S1 accesses another enterprise bean on S2. Because the RunAs mode is

system, the invocation credential is set as server1 for any outbound requests.

Configuring C

C requires transport layer authentication (SSL client certificates):

1. Point the client to the sas.client.props file using the

com.ibm.CORBA.ConfigURL=file:/C:/was/properties/sas.client.props property.

All further configuration involves setting properties within this file.

2. Enable SSL.

In this case, SSL is supported but not required:

com.ibm.CSI.performTransportAssocSSLTLSSupported=true,

com.ibm.CSI.performTransportAssocSSLTLSRequired=false

3. Disable client authentication at the message

layer:com.ibm.CSI.performClientAuthenticationRequired=false,

com.ibm.CSI.performClientAuthenticationSupported=false

server1/password

Java client Enterprise beans

Invocation credentials: bob

RunAs system

Message layer

Transport layer Transport layer

SSLSSL: cn=bob, o=ibm, c=us

C S1 S2

Received credentials: server1

Enterprise beans

1678 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

4. Enable client authentication at the transport layer. It is supported, but not required:

com.ibm.CSI.performTLClientAuthenticationRequired=false,

com.ibm.CSI.performTLClientAuthenticationSupported=true

Configuring S1

In the administrative console, S1 is configured for incoming connections to support SSL with client

certificate authentication. The S1 server is configured for outgoing requests to support message layer

client authentication.

1. Configure S1 for incoming connections:

a. Disable identity assertion.

b. Disable user ID and password authentication.

c. Enable SSL.

d. Enable SSL client certificate authentication.

2. Configure S1 for outgoing connections:

a. Disable identity assertion.

b. Disable user ID and password authentication.

c. Enable SSL.

d. Enable SSL client certificate authentication.

Configuring S2

In the administrative console, the S2 server is configured for incoming requests to support message layer

authentication over SSL. Configuration for outgoing requests is not relevant for this scenario.

1. Disable identity assertion.

2. Enable user ID and password authentication.

3. Enable SSL.

4. Disable SSL client authentication.

Scenario 4: TCP/IP transport using a virtual private network:

Chapter 8. Developing WebSphere applications 1679

This scenario illustrates the ability to choose TCP/IP as the transport when it is appropriate. In some

cases, when two servers are on the same virtual private network (VPN), it can be appropriate to select

TCP/IP as the transport for performance reasons because the VPN already encrypts the message.

Configuring C

C requires message layer authentication with an SSL transport:

1. Point the client to the sas.client.props file using the

com.ibm.CORBA.ConfigURL=file:/C:/was/properties/sas.client.props property. All further

configuration involves setting properties within this file.

2. Enable SSL. In this case, SSL is supported but not required:

com.ibm.CSI.performTransportAssocSSLTLSSupported=true,

com.ibm.CSI.performTransportAssocSSLTLSRequired=false

3. Enable client authentication at the message layer. In this case, client authentication is supported but

not required: com.ibm.CSI.performClientAuthenticationRequired=false,

com.ibm.CSI.performClientAuthenticationSupported=true

4. Use the remaining defaults in the sas.client.props file.

Configuring the S1 server

In the administrative console, the S1 server is configured for incoming requests to support message-layer

client authentication and incoming connections to support SSL without client certificate authentication. The

S1 server is configured for outgoing requests to support identity assertion.

1. Configure S1 for incoming connections:

tom/password
token

Java client Enterprise

beans

Virtual Private Network

Invocation

credentials: tom

Received

credentials: tom

Message layer
Message layer

Transport layer

TCP/IP

C S1 S2

Transport layer

SSL

Enterprise

beans

1680 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

a. Disable identity assertion.

b. Enable user ID and password authentication.

c. Enable SSL.

d. Disable SSL client certificate authentication.

2. Configure S1 for outgoing connections:

a. Disable identity assertion.

b. Enable user ID and password authentication.

c. Disable SSL.

It is possible to enable SSL for inbound connections and disable SSL for outbound connections. The same

is true in reverse.

Configuring the S2 server

In the administrative console, the S2 server is configured for incoming requests to support identity

assertion and to accept SSL connections. Configuration for outgoing requests and connections are not

relevant for this scenario.

1. Disable identity assertion.

2. Enable user ID and password authentication.

3. Disable SSL.

Scenario 5: Interoperability with WebSphere Application Server Version 4.x:

S2

WebSphere Application

Server Version 4

(SAS only)

Message layer:

bob/”password”

Message layer:

bob/”password”

Transport layer:

SSL

Transport layer:

SSL

WebSphere Application

Server Version 5.x and later

(CSIv2 and SAS)

S3

Interoperability with WebSphere

Application Server Version 4.x

S1

WebSphere Application

Server Version 5.x and later

(CSIv2 and SAS)

The purpose of this scenario is to show how secure interoperability can occur between different releases

simultaneously while using multiple authentication protocols (Security Authentication Service (SAS) and

Common Secure Interoperability Version 2 (CSIv2)). For WebSphere Application Server Version 5.x or

later to communicate with a WebSphere Application Server Version 4, Version 5.x or later server must

support either SAS or SAS and CSIv2 as the protocol choice. By choosing SAS and CSIv2, the Version

5.x or later server also can communicate with other Version 5.x or later servers that support CSI. If the

only servers in your security domain are version 5.x or later, it is recommended that you choose CSI as

the protocol because this prevents the SAS interceptors from loading. However, a chance exists that any

server has to communicate with a previous release of WebSphere Application Server, select the protocol

choice of SAS and CSIv2.

Chapter 8. Developing WebSphere applications 1681

Configuring the S1 server

The S1 server requires message layer authentication with an SSL transport. The protocol for the S1 server

must be SAS and CSIv2. Configuration for incoming requests for the S1 server is not relevant for this

scenario. To configure the S1 server for outgoing connections:

1. Disable identity assertion.

2. Enable user ID and password authentication.

3. Enable Secure Sockets Layer (SSL).

4. Disable SSL client certificate authentication.

5. Set authentication protocol to SAS and CSIv2 in the global security settings.

Configuring the S2 server

All previous releases of WebSphere Application Server support the SAS authentication protocol only. No

special configuration steps are needed other than enabling global security on the server (S2).

Configuring the S3 server

In the administrative console, the S3 server is configured for incoming requests to support message layer

authentication and to accept SSL connections. Configuration for outgoing requests and connections are

not relevant for this scenario.

1. Enable identity assertion.

2. Disable user ID and password authentication.

3. Enable SSL.

4. Disable SSL client authentication.

5. Set authentication protocol to either CSI or SAS and CSIv2.

Secure Sockets Layer

The Secure Sockets Layer (SSL) protocol provides transport layer security with authenticity, integrity, and

confidentiality, for a secure connection between a client and server in WebSphere Application Server. The

protocol runs above TCP/IP and below application protocols such as Hypertext Transfer Protocol (HTTP),

Lightweight Directory Access Protocol (LDAP), and Internet Inter-ORB Protocol (IIOP), and provides trust

and privacy for the transport data.

Depending upon the SSL configurations of both the client and server, various levels of trust, data integrity,

and privacy can be established. Understanding the basic operation of SSL is very important to proper

configuration and to achieve the required protection level for both client and application data.

Some of the security features that are provided by SSL are data encryption to prevent the exposure of

sensitive information while data flows. Data signing prevents unauthorized modification of data while data

flows. Client and server authentication ensures that you talk to the appropriate person or machine. SSL

can be effective in securing an enterprise environment.

SSL is used by multiple components within WebSphere Application Server to provide trust and privacy.

These components are the built-in HTTP transport, the Object Request Broker (ORB), and the secure

LDAP client.

1682 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

In this figure:

v The built-in HTTP transport in WebSphere Application Server accepts HTTP requests over SSL from a

Web client like a browser.

v The Object Request Broker used in WebSphere Application Server can perform Internet Inter-ORB

Protocol (IIOP) over SSL to secure the message.

v The secure LDAP client uses LDAP over SSL to securely connect to an LDAP user registry and is

present only when LDAP is configured as the user registry.

WebSphere Application Server and the IBM Java Secure Socket Extension (IBMJSSE and

IBMJSSE2) providers

The SSL implementations used by WebSphere Application Server are the IBM Java Secure Sockets

Extension (IBMJSSE) and the IBM Java Secure Sockets Extension 2 (IBMJSSE2). The IBMJSSE and

IBMJSSE2 providers contain a reference implementation supporting SSL and Transport Layer Security

(TLS) protocols and an application programming interface (API) framework. The IBMJSSE and IBMJSSE2

providers also come with a standard provider, which supplies Rivest Shamir Adleman (RSA) support for

the signature-related J2EE Connector Architecture (JCA) features of the Java 2 platform, common SSL

and TLS cipher suites, hardware cryptographic token device, X.509-based key and trust managers, and

PKCS12 implementation for a JCA keystore. A graphical tool called Key Management Tool (iKeyman) also

is provided to manage digital certificates. With this tool, you can create a new key database or a test

digital certificate, add certificate authority (CA) roots to the database, copy certificates from one database

to another as well as request and receive a digital certificate from a CA.

Note: The HTTP and JMS transports utilize the transport channel service for asynchronous I/O. This

framework requires the use of IBMJSSE2 provider for SSL. Any provider you specify other than the

IBMJSSE2 provider in the SSL repertoire is ignored and the IBMJSSE2 provider is used. Other SSL

transports such as IIOP over SSL and LDAP over SSL utilize the provider you specify in the SSL

repertoire configuration.

Configuring the JSSE provider is very similar to configuring most other SSL implementations (for example,

GSKit); however, a couple of differences are worth noting.

Browser
HTTP

transport

WebSphere

Application Server

ORB

JSSE

ORB

Enterprise

beans client

JSSE

Web server

LDAP

client

LDAP

client
GSkit

(A)

HTTP or HTTPS

request/response

over SSL

(D)

HTTP or HTTPS

request/response

over SSL

(C)

RMI/IIOP

over SSL

(B)

HTTP or HTTPS

request/response

over SSL

IBM HTTP

Server

Plug-in

GSKit

Figure 7. SSL and WebSphere Application Server

Chapter 8. Developing WebSphere applications 1683

v The JSSE provider supports both signer and personal certificate storage in an SSL key file, but it also

supports a separate file called a trust file. A trust file can contain only signer certificates. You can put all

of your personal certificates in an SSL keyfile and your signer certificates in a trustfile. This support

might be helpful, for example, if you have an inexpensive hardware cryptographic device with only

enough memory to hold a personal certificate. In this case, the keyfile refers to the hardware device and

the trustfile refers to a file on a disk that contains all of the signer certificates.

v The JSSE provider does not recognize the proprietary SSL keyfile format, which is used by the plug-in

(.kdb files). Instead, the JSSE provider recognizes standard file formats such as Java Key Standard

(JKS). SSL keyfiles might not be shared between the plug-in and application server. Furthermore, a

different implementation of the key management utility must be used to manage application server key

and trustfiles.

Certain limitations exist with the Java Secure Socket Extension (JSSE) provider:

v Customer code using JSSE and Java Cryptography Extension (JCE) APIs must reside within

WebSphere Application Server environment. This restriction includes applications that are deployed in

WebSphere Application Server and client applications in the J2EE application client environment.

v Only com.ibm.crypto.provider.IBMJCE, com.ibm.jsse.IBMJSSEProvider,

com.ibm.security.cert.IBMCertPath, and com.ibm.crypto.pkcs11.provider.IBMPKCS11 are provided as

the cryptography package providers.

v Interoperability of the IBMJSSE implementation with other SSL implementations by vendors is limited to

tested implementations. The tested implementations include Microsoft Internet Information Services

(IIS), BEA WebLogic Server, IBM AIX, and IBM AS/400.

v Hardware token support is limited to supported cryptographic token devices. .

 Tested for SSL clients Tested for SSL clients or servers

IBM Security Kit Smartcard IBM 4758-23

GemPlus Smartcards IBM 4758-23

Rainbow iKey 1000/2000(USB ″Smartcard″ device) IBM 4758-23

v The SSL protocol of Version 2.0 is not supported. In addition, the JSSE and JCE APIs are not

supported with Java applet applications.

WebSphere Application Server and the Federal Information Processing Standards for Java Secure

Socket Extension and Java Cryptography Extension providers

The Federal Information Processing Standards (FIPS)-approved Java Secure Socket Extension (JSSE)

and Java Cryptography Extension (JCE) providers are optional in WebSphere Application Server. By

default, the FIPS-approved JSSE and JCE providers are disabled. When these providers are enabled,

WebSphere Application Server uses FIPS-approved cryptographic algorithms in the IBMJSSEFIPS and

IBMJCEFIPS provider packages only.

Important: The IBMJSSEFIPS and IBMJCEFIPS modules are undergoing FIPS 140-2 certification. For

more information on the FIPS certification process and to check the status of the IBM

submission, see the Cryptographic Module Validation Program FIPS 140-1 and FIPS 140-2

Pre-validation List Web site.

Authenticity:

Authenticity of client and server identities during a Secure Sockets Layer (SSL) connection is validated by

both communicating parties using public key cryptography or asymmetric cryptography, to prove the

claimed identity from each other.

 Public key cryptography is a cryptographic method that uses public and private keys to encrypt and

decrypt messages. The public key is distributed as a public key certificate while the private key is kept

private. The public key is also a cryptographic inverse of the private key. Well known public key

1684 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

http://csrc.nist.gov/cryptval/preval.htm
http://csrc.nist.gov/cryptval/preval.htm

cryptographic algorithms such as the Rivest Shamir Adleman (RSA) algorithm and Diffie-Hellman (DH)

algorithm are supported in WebSphere Application Server.

Public key certificates are either issued by a trusted organization like a certificate authority (CA) or

extracted from a self-signed personal certificate by using the IBM Key Management Tool (iKeyman). A

self-signed certificate is less secure and is not recommended for use in a production environment.

The public key certificate includes the following information:

v Issuer of the certificate

v Expiration date

v Subject that the certificate represents

v Public key belonging to the subject

v Signature by the issuer

You can link multiple key certificates into a certificate chain. In a certificate chain, the client is always first,

while the certificate for a root CA is last. In between, each certificate belongs to the authority that issued

the previous one.

During the Secure Sockets Layer (SSL) connection, a digital signature is also applied to avoid forged keys.

The digital signature is an encrypted hash and cannot be reversed. It is very useful for validating the public

keys.

SSL supports reciprocal authentication between the client and the server. This process is optional during

the handshake. By default, a WebSphere Application Server client always authenticates its server during

the SSL connection. For further protection, you can configure a WebSphere Application Server for client

authentication.

Refer to the Transport Layer Security (TLS) specification at http://www.ietf.org/rfc/rfc2246.txt for further

information.

Confidentiality:

Secure Sockets Layer (SSL) uses private or secret key cryptography or symmetric cryptography to support

message confidentiality or privacy. After an initial handshake (a negotiation process by message

exchange), the client and server decide on a secret key and a cipher suite. Between the communicating

parties, each message encryption and decryption using the secret key occurs based on the cipher suite.

 Private key cryptography requires the two communicating parties to use the same key for encryption and

decryption. Both parties must have the key and keep the key private. Well known secret key cryptographic

algorithms include the Data Encryption Standard (DES), triple-strength DES (3DES), and Rivest Cipher 4

(RC4), which are all supported in WebSphere Application Server. These algorithms provide excellent

security and quick encryption.

A cryptographic algorithm is a cipher, while a set of ciphers is a cipher suite. A cipher suite is a

combination of cryptographic parameters that define the security algorithms and the key sizes used for

authentication, key agreement, encryption strength, and integrity protection.

v SSL_RSA_WITH_RC4_128_MD5

v SSL_RSA_WITH_RC4_128_SHA

v SSL_RSA_WITH_AES_128_CBC_SHA

v SSL_RSA_WITH_AES_256_CBC_SHA

v SSL_RSA_FIPS_WITH_DES_CBC_SHA

v SSL_RSA_WITH_3DES_EDE_CBC_SHA

v SSL_RSA_FIPS_WITH_3DES_EDE_CBC_SHA

v SSL_DHE_RSA_WITH_AES_128_CBC_SHA

v SSL_DHE_RSA_WITH_AES_256_CBC_SHA

v SSL_DHE_RSA_WITH_DES_CBC_SHA

Chapter 8. Developing WebSphere applications 1685

v SSL_DHE_RSA_WITH_3DES_EDE_CBC_SHA

v SSL_DHE_DSS_WITH_AES_128_CBC_SHA

v SSL_DHE_DSS_WITH_AES_256_CBC_SHA

v SSL_DHE_DSS_WITH_RC4_128_SHA

v SSL_DHE_DSS_WITH_DES_CBC_SHA

v SSL_DHE_DSS_WITH_3DES_EDE_CBC_SHA

v SSL_RSA_EXPORT_WITH_RC4_40_MD5

v SSL_RSA_EXPORT_WITH_DES40_CBC_SHA

v SSL_RSA_EXPORT_WITH_RC2_CBC_40_MD5

v SSL_DHE_RSA_EXPORT_WITH_DES40_CBC_SHA

v SSL_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA

v SSL_RSA_WITH_NULL_MD5

v SSL_RSA_WITH_NULL_SHA

v SSL_DH_anon_WITH_AES_128_CBC_SHA *

v SSL_DH_anon_WITH_AES_256_CBC_SHA *

v SSL_DH_anon_WITH_RC4_128_MD5 *

v SSL_DH_anon_WITH_DES_CBC_SHA *

v SSL_DH_anon_WITH_3DES_EDE_CBC_SHA *

v SSL_DH_anon_EXPORT_WITH_RC4_40_MD5 *

v SSL_DH_anon_EXPORT_WITH_DES40_CBC_SHA *

Important: Although anonymous cipher suites are enabled, the IBM version of the Java Secure Sockets

Extension (JSSE) client trust manager does not support anonymous cipher suites. The default

implementation can be overwritten by providing your own trust manager that does support

anonymous cipher suites.

All of the previously mentioned cipher suites provide data integrity protection by using hash algorithms like

MD5 and SHA-1. The cipher suite names ending with _SHA indicate that the SHA-1 algorithm is used. SHA-1

is considered a stronger hash, while MD5 provides better performance.

The SSL_DH_anon_xxx cipher suites (for example, those cipher suites that begin with SSL_DH_anon_, where,

anon is anonymous) are not enabled on the product client side. Because the Java Secure Socket

Extension (JSSE) client trust manager does not support anonymous connections, the JSSE client must

always establish trust in the server. However, the SSL_DH_anon_xxx cipher suites are enabled on the server

side to support another type of client connection. That client might not require trust in the server. These

cipher suites are vulnerable to man-in-the-middle attacks and are strongly discouraged. In a

man-in-the-middle attack, an attacker can intercept and potentially modify communications between two

parties without either party being aware of the attack.

Where:

 Name Description

SSL Secure Sockets Layer

RSA v Public key algorithm developed by Rivest, Shamir and

Adleman

v Requires RSA or DSS key exchange

DH v Diffie-Hellman public key algorithm

v Server certificate contains the Diffie-Hellman

parameters that are signed by the certificate authority

(CA)

DHE v Ephemeral Diffie-Hellman public key algorithm

v Diffie-Hellman parameters are signed by a DSS or an

RSA certificate, which is signed by the certificate

authority (CA)

1686 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Name Description

DSS Digital Signature Standard, using the Digital Signature

Algorithm for digital signatures

DES v Data Encryption Standard, an symmetric encryption

algorithm

v Block cipher

v Performance cost is high when using software without

the support of a hardware cryptographic device

3DES v Triple DES, increasing the security of DES by

encrypting three times with different keys

v Strongest of the ciphers

v Performance cost is very high when using software

without the support of a hardware cryptographic device

support

RC4 v A stream cipher designed for RSA

v Variable key-size stream cipher with key length from 40

bits to 128 bits

EDE Encrypt-decrypt-encrypt for the triple DES algorithm

CBC v Cipher block chaining

v A mode in which every plain text block that is

encrypted with the block cipher is first exclusive-ORed

with the previous ciphertext block

128 128-bit key size

40 40-bit key size

EXPORT Exportable

MD5 v Secure hashing function that converts an arbitrarily

long data stream into a digest of fixed size

v Produces 128-bit hash

SHA v Secure Hash Algorithm, same as SHA-1

v Produces 160-bit hash

anon For anonymous connections

NULL No encryption

WITH The cryptographic algorithm is defined after this key word

Refer to the Transport Layer Security (TLS) specification at http://www.ietf.org/rfc/rfc2246.txt for further

information.

Integrity:

Secure Sockets Layer (SSL) uses a cryptographic hash function similar to checksum, to ensure data

integrity in transit. Use the cryptographic hash function to detect accidental alterations in the data. This

function does not require a cryptographic key. After a cryptographic hash is created, the hash is encrypted

with a secret key. The private key belonging to the sender encrypts the hash for the digital signature of the

message.

 When secret key information is included with the cryptographic hash, the resulting hash is known as a

Key-Hashing Message Authentication Code (HMAC) value. HMAC is a mechanism for message

authentication that uses cryptographic hash functions. Use this mechanism with any iterative cryptographic

hash function, in combination with a secret shared key.

In the product, both well known one-way hash algorithms, MD5 and SHA-1, are supported. One-way hash

is an algorithm that converts processing data into a string of bits known as a hash value or a message

Chapter 8. Developing WebSphere applications 1687

digest. One-way means that it is extremely difficult to turn the fixed string back into the original data. The

following explanation includes both the MD5 and SHA-1 one-way hash algorithms:

v MD5 is a hash algorithm designed for a 32-bit machine. It takes a message of arbitrary length as input

and produces a 128-bit hash value as output. Although this process is less secure than SHA-1, MD5

provides better performance.

v SHA-1 is a secure hash algorithm specified in the Secure Hash Standard. It is designed to produce a

160-bit hash. Although it is slightly slower than MD5, the larger message digest makes it more secure

against attacks like brute-force collision.

Refer to the Transport Layer Security (TLS) specification at http://www.ietf.org/rfc/rfc2246.txt for further

information.

Configuring Secure Sockets Layer

Secure Sockets Layer (SSL) is used by multiple components within WebSphere Application Server to

provide trust and privacy. The following is a listing of these components:

v Built-in HTTP Transport

v Object Request Broker (ORB) for client and server

v Secure Lightweight Directory Access Protocol (LDAP) client.

Configuring SSL is different between client and server with WebSphere Application Server

1. Configure the client (JSSE). Use the sas.client.props file located, by default, in the

install_root/profiles/profile_name/properties directory. The sas.client.props file is a

configuration file that contains lists of property-value pairs, using the syntax <property> = <value>. The

property names are case sensitive, but the values are not; the values are converted to lowercase when

the file is read. Specify the following properties for an SSL connection:

v com.ibm.ssl.protocol

v com.ibm.ssl.keyStoreType

v com.ibm.ssl.keyStore

v com.ibm.ssl.keyStorePassword

v com.ibm.ssl.trustStoreType

v com.ibm.ssl.trustStore

v com.ibm.ssl.trustStorePassword

v com.ibm.ssl.enabledCipherSuites

v com.ibm.ssl.contextProvider

v com.ibm.ssl.keyStoreServerAlias

v com.ibm.ssl.keyStoreClientAlias
v For the Secure Authentication Services (SAS) authentication protocol only:

com.ibm.CORBA.standardPerformQOPModels

v For the cryptographic token device:

– com.ibm.ssl.tokenType

– com.ibm.ssl.tokenLibraryFile

– com.ibm.ssl.tokenPassword

– com.ibm.ssl.tokenSlot (added as a custom property)

Note: Although WebSphere Application Server supports the IBM Federal Information Processing

Standard-approved Java Secure Socket Extension (IBMJSSEFIPS), IBMJSSEFIPS is not

supported for the HTTP and JMS transports due to their use of the channel framework which

requires the IBMJSSE2 provider. This provider itself does not need to be FIPS compliant

because it uses IBMJCE for encryption.

2. Configure the server. Use the administrative console to configure an application server that makes SSL

connections. To start the administrative console, specify the following Web address:

http://server_hostname:9060/ibm/console.

3. Create an SSL configuration repertoires alias or entry. You can select the alias later when a component

is configured for SSL support. An SSL configuration repertoires entry contains the following fields:

1688 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

http://www.ietf.org/rfc/rfc2246.txt

v Typical configuration settings:

– Alias

– Key file name

– Key file password

– Key file format

– Trust file name

– Trust file password

– Trust file format

– Client authentication

– Security level

– Cipher suites
v For the cryptographic token device:

– Cryptographic token (Create the alias first so you can configure these fields).

- Token type

- Library file

- Password
v For additional Java properties:

– Custom properties (Create the alias first so you can configure these fields).

- com.ibm.ssl.contextProvider

- com.ibm.ssl.protocol

- com.ibm.ssl.tokenSlot (for crypto slot)

- com.ibm.ssl.keyStoreClientAlias (alias selection for client authentication to servers)

- com.ibm.ssl.keyStoreServerAlias (alias selection for server authentication to clients)

Note: WebSphere Application Server contains IBM Developer Kit for Java Technology Edition Version

1.4.x , which includes changes from IBM Developer Kit for Java Technology Edition Version 1.3.

See Changes to IBM Developer Kit for Java Technology Edition Version 1.4.x for more

information.

Configuring Secure Sockets Layer for Web client authentication:

To enable client-side certificate-based authentication, you must modify the authentication method that is

defined on the Java 2 Platform, Enterprise Edition (J2EE) Web module that you want to manage. The Web

module might already be configured to use the basic challenge authentication method. In this case, modify

the challenge type to client certificate. This functionality is delivered to the WebSphere Application

Server administrator in assembly tools. However, developers can use the Rational Web Developer

environment to achieve the same result.

1. Launch the assembly tool. See ″Assembling applications″ in the information center for more

information. This step can be done either before an enterprise application archive .ear file is deployed

into WebSphere Application Server or after deployment into the product. The latter option is

discouraged in a production environment because it involves opening the expanded archive correlating

to the enterprise application archive, found in the installedApps directory.

2. Locate and expand the Web module package under an application to enable the client-side certificate

authentication method.

3. Select the appropriate Web application, and switch to the Advanced tab. Modify the authentication

method to client certificate. The realm name is the scope of the login operation and is the same for all

participating resources.

4. Click OK, and save the changes you made with the assembly tool.

5. Stop and restart the associated application server containing the resource, so that the security

modification is included in the run time. Complete this action if the modification is made to a resource

that already is deployed in WebSphere Application Server.

Now your enterprise application prompts the user for proof of identity with a certificate.

Note:

Chapter 8. Developing WebSphere applications 1689

The Web server must also be configured to request a client certificate. If the Web server is

external, refer to the appropriate configuration documentation. If the Web server is the Web

container transport (for example, 9043) within WebSphere Application Server, verify that the client

authentication flag is selected in the referenced SSL configuration.

Also, add the browser’s signer certificate to the application server’s keystore. For a self-signed

personal certificate, the signer certificate is the is the public key of the personal certificate. For a

certificate authority-signed server personal certificate, the signer certificate is the root certificate

authority certificate of the certificate authority that signed the personal certificate.

Refer to the Map certificates to users article to determine how a certificate is authenticated within

the product.

Configuring Secure Sockets Layer for the Lightweight Directory Access Protocol client:

This topic describes how to establish a Secure Sockets Layer (SSL) connection between WebSphere

Application Server and a Lightweight Directory Access Protocol (LDAP) server. This page provides an

overview. Refer to the linked pages for more details. To understand SSL concepts, refer to ″Secure

Sockets Layer″ in the information center.

Setting up an SSL connection between WebSphere Application Server and an LDAP server requires the

following steps:

 1. Set up an LDAP server with users. The server configured in this example is IBM Directory Server.

Other servers are configured differently. Refer to the documentation of the directory server you are

using for details on SSL enablement. For a product-supported LDAP directory server, see the

“Supported directory services” on page 1484 article.

 2. Configure certificates for the LDAP server using the key management utility (iKeyman) that is located

in the install_dir\java\jre\bin directory.

 3. Click Key Database File > New.

 4. Type LDAPkey.kdb as the file name and a proper path and click OK.

 5. Specify a password, confirm the password, and click OK.

 6. Under Key database content, select Personal Certificates.

 7. Click New Self-signed. The Create New Self-Signed Certificate panel is displayed. Type the

following required information in the fields and click OK:

Key Label

LDAP_Cert

Version

Select the version of the X.509 certificate.

Key size

Select either a 512 or a 1024 bit size for your key.

Common Name

droplet.austin.ibm.com

 This common name is the host name where the WebSphere Application Server plug-in runs.

Organization

ibm

Country

US

Validity period

Specify the number days in which your certificate is valid.

 8. Return to the Personal Certificates panel and click Extract Certificate.

 9. Click the Base64-encoded ASCII data data type. Type LDAP_cert.arm as the file name and a proper

path. Click OK.

10. Enable SSL on the LDAP server:

1690 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

a. Copy the LDAPkey.kdb, LDAPkey.sth, LDAPkey.rdb, and LDAPkey.crl files created previously to the

LDAP server system, for example, the \Program Files\IBM\LDAP\ssl\ directory.

b. Open the LDAP Web administrator from a browser (http://secnt3.austin.ibm.com/ldap, for

example). IBM HTTP Server is running on secnt3.

c. Click SSL properties to open the SSL Settings window.

d. Click SSL On > Server Authentication and type an SSL port (636, for example) and a full path to

the LDAPkey.kdb file.

e. Click Apply, and restart the LDAP server.

11. Manage certificates for WebSphere Application Server using the default SSL key files.

a. Open the install_root\etc\DummyServerTrustFile.jks file using the key management utility that

shipped with WebSphere Application Server. The password is WebAS.

b. Click Personal Certificates > Import. The Import Key panel is displayed. Specify LDAP_cert.arm

for the file name. Complete this step for all the servers including the deployment manager.

12. Establish a connection between the WebSphere Application Server and the LDAP server using the

WebSphere Application Server administrative console.

a. Click Security > Global security.

b. Under User registries, click LDAP.

c. Enter the Server ID, Server Password, Type, Host, Port, and Base Distinguished Name fields.

d. Select the SSL Enabled option. The port is the same port number that the LDAP server is using

for SSL (636, for example).

e. Click Apply.

f. Return to the Global security panel and click Authentication Mechanisms > LTPA > Single

SignOn (SSO).

g. Under Additional properties, click Single signon (SSO).

h. Type in a domain name (austin.ibm.com, for example).

i. Click Apply.

13. Enable global security.

a. Click Security > Global Security.

b. Select the Enable global security option.

c. Select the Lightweight Third Party Authentication (LTPA) option as the active authentication

mechanism and the Lightweight Directory Access Protocol (LDAP) user registry option as the

active user registry.

Note: Verify that the security level for the LDAP server is set to HIGH. The default security level

is HIGH (128-bit).

d. Click Apply and Save.

e. Verify that the ibm-slapdSSLCipherSpecs parameter in the LDAP_install_root\etc\slapd32.conf

file has the value, 15360, instead of 12288.

f. Restart the servers.

Restarting the servers ensures that the security settings are synchronized between the deployment

manager and the application servers.

You can test the configuration by accessing https://fully_qualified_host_name:9443/snoop. You are

presented with a login challenge. This test can be beneficial when using LDAP as your user registry.

Sensitive information can flow between the WebSphere Application Server and the LDAP server, including

passwords. Using SSL to encrypt the data protects this sensitive information.

1. If you are enabling security, make sure that you complete the remaining steps. As the final step,

validate this configuration by clicking OK or Apply in the Global Security panel. Refer to the

“Configuring global security” on page 1418 article for detailed steps on enabling global security.

Chapter 8. Developing WebSphere applications 1691

2. For changes in this panel to become effective, save, stop, and start all WebSphere Application Servers

(cells, nodes and all the application servers).

3. After the server starts up, go through all the security-related tasks (getting users, getting groups, and

so on) to make sure that the changes to the filters are functioning.

Configuring IBM HTTP Server for Secure Sockets Layer mutual authentication:

IBM HTTP Server supports Secure Sockets Layer (SSL) Version 2 and Version 3 and Transport Layer

Security (TLS) Version 1. IBM HTTP Server is based on the Apache Web server, but for SSL configuration

it requires the IBM-supplied SSL modules, rather than the OpenSSL modules. This document describes

configuration of IBM HTTP Server, although it is possible to use another supported Web server.

SSL is disabled by default and it is necessary to modify a configuration file and generate a server-side

certificate using the key management utility (iKeyman) provided with IBM HTTP Server to enable SSL.

 1. For a single server, enable SSL on IBM HTTP Server (port 443,for example).

 2. To set up certificates complete the following steps: Start the key management utility by clicking Start

> Programs > IBM HTTP Server > Start Key Management Utility. Refer to Requesting a

CA-signed personal certificate, Creating a certificate signing request (CSR), Receiving a CA-signed

personal certificate, and Extracting a public certificate for use in a truststore file

 3. Create a key database and click Key Database File > New.

 4. Type a file name, serverkey.kdb, for example, and the location path. Click OK.

 5. Type a password, select the Stash the password to a file check box and click OK.

 6. Obtain a personal certificate for IBM HTTP Server: Click Personal Certificate in the key

management utility menu. Click Create > New Certificate Request. The Create New Key and

Certificate Request panel is displayed. Complete the following information:

Key label

Server_Cert

Key size

Select either a 512 or a 1024 bit size for your key.

Common name

droplet.austin.ibm.com

Organization

IBM

Organization unit

WebSphere

Locality

Austin

State Texas

Zip code

76758

Country

US

File name

Server_certreq.arm

The Verisign Test CA Root Certificate is in the set of signer certificates that ship with the IKeyMan

utility for IBM HTTP Server.

 7. Go to http://www.verisign.com, click Free SSL Trial. Complete the profile information, click Submit,

and click Continue twice.

 8. Use your favorite text editor to edit the request file Server_certreq.arm, and copy the entire contents

of the file into the browser request panel. Click Continue. VeriSign sends the signed personal

certificate to your e-mail.

 9. Copy and paste this certificate into a file, for example Server_Cert.arm. Click Personal Certificate

from the menu in the key management utility. Click Receive. Specify the file name, Server_Cert.arm,

1692 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

and click OK. You might need to add VeriSign test root certificate to the signer certificates for the

receive to be successful. Close the serverkey.kdb file.

10. To allow IBM HTTP Server to support HTTPS, port 443, for example, enable SSL on IBM HTTP

Server. Modify the configuration file of IBM HTTP Server, IHS_HOME/conf/httpd.conf. You also can

enable SSL through the IBM HTTP Server administrative console. Open the

IHS_HOME/conf/httpd.conffile and add the following lines to the bottom of the file:

LoadModule ibm_ssl_module modules/mod_ibm_ssl.so

Listen 443

<VirtualHost droplet.austin.ibm.com:443>

ServerName droplet.austin.ibm.com

DocumentRoot <install_root>\htdocs

SSLEnable

#SSLClientAuth required

</VirtualHost>

SSLDisable

Keyfile <IHS_HOME>/serverkey.kdb

Note: Change the host name and the path for the key file accordingly. Modify the Web server to

support client certificates by uncommenting the SSLClientAuth directive shown in the

httpd.conf file.

SSLClientAuth required

11. Restart IBM HTTP Server.

12. Test SSL between a browser and IBM HTTP Server. For more information on the default IBM HTTP

Server port number, see Port number settings in WebSphere Application Server versions.

13. Follow the prompts to select a personal certificate if the SSLClientAuth directive is set to required.

14. To enable the application server to communicate with IBM HTTP Server using port 443, add the host

alias on the default_host. In the administrative console, click Environment > Virtual Hosts

>default_host. Under Additional properties, click Host Aliases > New. Enter the following information

in the appropriate fields:

Host name

*

Port 443

15. Click Apply and Save When you click Save, the information is written to the security.xml file and

the Web server plug-in is automatically updated.

16. Restart WebSphere Application Server.

17. Test your connection.

You can connect to the Snoop servlet.

Enable Secure Sockets Layer communication between IBM HTTP Server and WebSphere Application

Server.

Configuring the Web server plug-in for Secure Sockets Layer:

WebSphere has an internal HTTP transport which accepts HTTP requests. If you install an external HTTP

server, the Web server plug-in must forward requests from the external HTTP server to WebSphere’s

internal HTTP transport. You should follow HTTP vendor’s instruction to install and configure your HTTP

server. Test your HTTP server by accessing http://your-host-URL and https://your-host-URL. You should

also have Web server plugin installed. See ″Installing IBM HTTP Server″ for instructions on installing

HTTP Server and Web server plugin. The connection between external HTTP server and WebSphere is by

default not secured, even when global security is enabled.

Chapter 8. Developing WebSphere applications 1693

This section documents the configuration necessary to instantiate a secure connection between the Web

server plug-in and the internal HTTP transport in the WebSphere Application Server Web container on a

distributed platform. By default, this connection is not secure, even when global security is enabled. This

document discusses the configuration for IBM HTTP Server; however, the Web server-related configuration

in this situation is not specific to any distributed platform Web server.

 1. “Creating self-signed personal certificates” on page 1718. The Web server plug-in requires a key ring

file to store its own private and public key files and to store the public certificate from the Web

container key file. The following steps are required to generate a self-signed certificate for the Web

server plug-in.

When you install Web server plugin, a default key ring, plugin-key.kdb, is installed in plugin_root\etc.

Use this file instead of creating a new one. In the following steps, a new file is created, but the steps

are similar if you use an existing file. Create a directory on the Web server host for storing the key

ring file that is referenced by the plug-in and associated files (for example,

IHS_install_root\conf\keys).

a. Create a directory on the Web server host for storing the key ring file that is referenced by the

plug-in and associated files, for example: IHS_install_root\conf\keys.

b. Launch the key management utility (iKeyman), which is available in the WebSphere Application

Server install_root\bin installation directory.

c. From the iKeyman menu, click Key Database File > New.

d. Enter the following settings:

Key database type

CMS Key Database File

File name

WASplugin.kdb

Location

C:\http1324\conf\keys\ or the file of your choice

e. Click OK.

f. Set the password of your choice at the password prompt and confirm the password.

g. Click the Stash the password to a file? option.

h. Click OK.

i. From the iKeyman menu, click Create > New Self-Signed Certificate to create a new self-signed

certificate key pair. Specify the following options. Optionally, you can choose to complete all of the

remaining fields.

Key label

WASplugin

Version

X509 V3

Key size

1024

Common name

droplet.austin.ibm.com

Organization

IBM

Country

US

Validity period

365

j. Click OK.

k. Extract the public self-signed certificate key. This key is used later by the embedded HTTP server

peer to authenticate connections that originate from the plug-in.

l. Click Personal Certificates in the menu and select the WASplugin certificate that you just created.

m. Click Extract Certificate. Extract the certificate to a file:

1694 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Data type

Base64-encoded ASCII data

Certificate file name

WASpluginPubCert.arm

Location

C:\http1324\conf\keys , or a directory of your choice

n. Click OK.

o. Close the key database and exit the iKeyman utility when you finish.

 2. Generate a self-signed certificate for the Web container.

a. Launch the JKS-capable iKeyman version that is located the product /bin directory.

b. Click Key Database File > New from the iKeyman menu.

c. Enter the following settings:

Key database type

JKS

File name

WASWebContainer.jks

Location

C:\WebSphere\AppServer\etc\ or the directory of your choice

d. Click OK.

e. Set the password of your choice at the password prompt and confirm the password.

f. Click Create > New Self-Signed Certificate from the iKeyman menu. The following values are

used in this example:

Key Label

WASWebContainer

Version

X509 V3

Key size

1024

Common name

droplet.austin.ibm.com

Organization

IBM

Country

US

Validity Period

365

g. Click OK.

h. Extract the public self-signed certificate key. This key is used later by the Web server plug-in peer

to authenticate connections that originate from the embedded HTTP server in the product.

i. Click Personal Certificates from the list. Select the WASWebContainer certificate that you just

created. Click Extract Certificate. Extract the certificate to a file:

Data type

Base64-encoded ASCII data

Certificate file name

WASWebContainerPubCert.arm

Location

C:\WebSphere\AppServer\etc\

j. Click OK.

k. Close the database and exit the key management utility.

 3. Exchange the public certificates.

Chapter 8. Developing WebSphere applications 1695

a. Copy the WASpluginPubCert.arm file from the Web server machine to the WebSphere Application

Server machine. The source directory in this case is C:\http1324\conf\keys, while the destination

is C:\WebSphere\Appserver\etc.

b. Copy the WASWebContainerPubCert.arm file from the product machine to the Web server machine.

The source directory in this case is C:\WebSphere\Appserver\etc, while the destination is

C:\http1324\conf\keys.

 4. Import the certificate into the Web server plug-in key file.

a. On the Web server machine, launch the iKeyman utility, which supports the CMS key database

format.

b. From the iKeyman menu, click Key Database File > Open and select the previously created key

database file: WASplugin.kdb.

c. In the password prompt window, enter the password. Click OK.

d. Click Signer Certificates from the list and click Add. This action imports the public certificate

previously extracted from the embedded HTTP server (Web container) keystore file.

Data type

Base64-encoded ASCII data

Certificate file name

WASWebContainerPubCert.arm

Location

C:\WebSphere\Appserver\etc\

e. Click OK. You are prompted for a label name that represents the trusted signer public certificate.

f. Enter a label for the certificate: WASWebContainer.

g. Close the key database and exit IKeyman when you finish.

 5. Import the certificate into the Web container keystore file.

a. On the WebSphere Application Server machine, launch the JKS-capable iKeyman version, which

is located in the product /bin directory.

b. From the iKeyman menu, click Key Database File > Open. Select the previously created

WASWebContainer.jks file.

c. In the password prompt window, enter the password. Click OK.

d. Click Signer Certificates from the list. Click Add. This action imports the public certificate

previously extracted from the embedded HTTP server (Web container) keystore file.

Data type

Base64-encoded ASCII data

Certificate file name

WASpluginPubCert.arm

Location

C:\WebSphere\Appserver\etc\

e. Click OK. You are prompted for a label name that represents the trusted signer public certificate.

f. Enter a label for the certificate: WASplugin.

g. Close the key database and exit iKeyman when you finish.

 6. Modify the Web server plug-in file. In a production environment, add the secure transport definition,

port 9443, to the plugin-cfg.xml file. For example, your modified plugin-key.kdb file contains the

following lines:

<Transport Hostname=″hpws07″ Port=″9080″ Protocol=″http″/>

<Transport Hostname=″hpws07″ Port=″9443″ Protocol=″https″/>

After you verify that the proper plugin-key.kdb and plugin-key.sth files exist on the Web server,

modify the plugin-cfg.xml file that resides on the Web server. You must specify the local path to

both the plugin-key.kdb and plugin-key.sth files in the plugin-cfg.xml file.

1696 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Important: If you manually edit the plugin-cfg.xml file and an automatic regeneration of the file

occurs, you must replace your manual edits.

 7. Modify the Web container to support SSL. To complete the configuration between Web server plug-in

and Web container, modify the WebSphere Application Server Web container to use the previously

created self-signed certificates.

a. Start the WebSphere Application Server administrative console.

b. Click Security > SSL.

c. Click New JSSE repertoire to create a new entry in the repertoire. Provide the following values to

complete the form:

Alias WebContainerSSLSettings

Security level

HIGH

Key file name

C:\WebSphere\Appserver\etc\WASWebContainer.jks

Key file password

<key_file_password>

Key file format

JKS

Trust file name

C:\WebSphere\Appserver\etc\WASWebContainer.jks

Trust file password

<trust_file_password>

Trust file format

JKS

d. Click OK.

e. If you want mutual SSL between the two parties, select the Client authentication option.

f. Save the configuration in the administrative console.

g. Click Servers > Clusters > <cluster_name> > Cluster Members > <server_name>.

h. Under Container settings, click Web container settings > Web container transport chains.

You can either modify the WCInboundDefaultSecure transport chain or click New and create a

new transport chain.

If you are modifying the WCInboundDefaultSecure transport chain, click TCP Inbound Channel

(TCP 4). Under related items, click Ports. Click WC defaulthost secure and modify the

information in the Host and Port fields. Click OK and then Save.

If you create a new transport chain, use the transport chain wizard, and specify a secure port

number. You must add the same port number to the virtual hosts.

i. Add a new virtual host entry by clicking Environment > Virtual hosts > default_host.

j. Under Additional properties, click Host aliases > New.

k. Enter a host name and specify the same port number that you specified for the transport chain.

l. Click OK.

m. Click Save at the top of the panel.

 8. Optional: If you want to access the Web server plug-in from the Web server, click Servers > Web

servers, and then click the Generate Plug-in option.

 9. Test the secure connection. Test the secure connection by accessing a Web application on the

WebSphere Application Server using port 9443. For example,

https://droplet.austin.ibm.com:9443/snoop.

10. Import the correct certificate with public and private keys into the browser to test the secured

connection, when client-side certification is required.

a. Launch the iKeyman utility that supports the CMS key database file, on the Web server machine.

The iKeyman utility is also bundled with IBM HTTP Server.

Chapter 8. Developing WebSphere applications 1697

b. Open the key file for the plug-in, C:\http1324\conf\keys\WASplugin.kdb. Provide the password

when prompted.

c. Click WASplugin certificate, located under the personal certificates. Click Export.

d. Save the certificate in PKCS12 format to a file, for example

C:\http1324\conf\keys\WASplugin.p12 . Provide a password to secure the PKCS12 certificate

file.

e. Close the key file and exit iKeyman.

f. Copy the saved WASplugin.p12 file to the client machine from where you access the product

server.

g. Import the PKCS12 file into your browser. Then, access

https://your_server_address:9443/snoop.

h. The browser asks which personal certificate to use for the connection. Select the certificate, and

continue connecting.

i. After the browser test with direct product access is successful, test the connection through the

Web server using port 9443. For example, https://your_server_address:9443/snoop.

The IBM HTTP Server plug-in and the internal Web server are configured for SSL.

Configuring Secure Sockets Layer for Java client authentication:

WebSphere Application Server supports Java client authentication using a digital certificate when the client

attempts to make a Secure Sockets Layer (SSL) connection. The authentication occurs during an SSL

handshake. The SSL handshake is a series of messages exchanged over the SSL protocol to negotiate

for connection-specific protection. During the handshake, the secure server requests that the client to send

back a certificate or certificate chain for the authentication.

 To configure SSL for Java client authentication, consider the following questions:

v Have you enabled security with your WebSphere Application Server?

v Have you configured Common Secure Interoperability (CSI) authentication protocol for your target

application server? Refer to “Configuring global security” on page 1418 for more details.

Note: The Security Authentication Service (SAS) authentication protocol does not support Java client

authentication with SSL transport.

v Have you configured your server to support secure transport for the CSIv2 inbound authentication

protocol?

v Have you configured your server to support client authentication at the transport layer for the inbound

CSI authentication protocol?

v If you are using a self-signed personal certificate, have you exported the public certificate from your

client application Java keystore file or cryptographic token device?

v If you are using a certificate authority (CA)-signed personal certificate, have you received the root

certificate of the CA?

v If you are using a self-signed personal certificate, have you imported the public certificate into your

target Java truststore file as a signer certificate?

v If you are using a CA-signed (certificate authority) personal certificate, have you imported the CA root

certificate into your target Java truststore file as a signer certificate?

v Does the common name (CN) specified in your personal certificate name exist in your configured user

registry or is there a SAF mapping for the certificate?

If you answer yes to all of these questions that are appropriate to your product and platform, you can

configure SSL for Java client authentication.

Note: Java client authentication using digital certificates is supported only by the Common Secure

Interoperability Version 2 (CSIv2) authentication protocol.

1698 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

1. “Configuring Common Secure Interoperability Version 2 for Secure Sockets Layer client authentication.”

2. “Adding keystore files” on page 1700.

3. “Adding truststore files” on page 1700.

4. Save changes.

5. Restart the server if you configured the server.

A secure client connects to a secure Internet InterORB Protocol (IIOP) server that requires client

authentication at the transport layer. If a connection problem occurs, you can set a Java property,

javax.net.debug=true, before you run your client or your server to generate debugging information. See

″Troubleshooting security configurations″ for further information about how to debug an IBMJSSE problem.

Configuring Common Secure Interoperability Version 2 for Secure Sockets Layer client authentication:

Configure the Secure Sockets Layer (SSL) client authentication using the sas.client.props configuration

file or the administrative console. To configure a Java client application, use the sas.client.props

configuration file. By default, the sas.client.props file is located in the

install_root\profiles\profile_name\properties directory of your WebSphere Application Server

installation.

To configure a WebSphere Application Server, use the administrative console. To start the administrative

console, specify URL: http://server host_name:9060/ibm/console.

To configure a Java client application, complete the following steps, which explain how to edit the

sas.client.props file directly:

1. To require SSL client authentication, set property

com.ibm.CSI.performTLClientAuthenticationRequired=true. Do not set this property unless you know

your target server also supports SSL client authentication for the inbound CSI authentication protocol.

2. To support SSL client authentication, set the property

com.ibm.CSI.performTLClientAuthenticationSupported=true.

3. To specify the CSI protocol, set the property com.ibm.CSI.protocol=csiv2.

4. To match the SSL protocol configured with your server, set the property, com.ibm.ssl.protocol,

accordingly.

5. Specify the com.ibm.CORBA.ConfigURL property with the fully qualified path of your Java property file

when you run your application. For example,

-Dcom.ibm.CORBA.ConfigURL=file:/c:/WebSphere/AppServer/profiles/

profile_name/properties/sas.client.props

Using the WebSphere Application Server to edit the sas.client.props file:

To edit the sas.client.props file using the administrative console, complete the following steps:

 1. Start the administrative console.

 2. Expand Security > Global security.

 3. Under Authentication, click Authentication protocol > CSIv2 inbound authentication.

 4. Select Supported or Required for Client certificate authentication.

 5. Click OK.

 6. If you selected Required in step 4, configure the CSIv2 outbound authentication as well to support

the client certificate authentication. Otherwise, you can skip this step. Return to the Global security

panel and under Authentication, click CSIv2 Outbound Authentication. Select either Supported or

Required for Client certificate authentication.

 7. Click CSIv2 Outbound Transport.

Chapter 8. Developing WebSphere applications 1699

8. Select an SSL setting from the SSLSettings list for keystore, truststore, cryptographic token, SSL

protocol, and ciphers use.

 9. Create an alias from the SSL Configuration Repertoires panel for an SSL setting.

10. Update the SSL setting selected in CSIv2 Inbound Transport accordingly.

11. Save your configuration.

12. Restart the server for the changes to become effective.

Client authentication using digital certificates is performed during SSL connection. A secure client connects

using SSL to a secure Internet InterORB Protocol (IIOP) server with client authentication at the transport

layer.

Specify the keystore and truststore files in your configuration.

Adding keystore files:

A keystore file contains both public keys and private keys. Public keys are stored as signer certificates

while private keys are stored in the personal certificates. In WebSphere Application Server, adding

keystore files to the configuration is different between client and server. For the client, a keystore file is

added to a property file like sas.client.props. For the server, a keystore file is added through the

WebSphere Application Server administrative console.

 Before you add the keystore file to your configuration, consider the following questions:

v Is a self-signed or a certificate authority (CA)-signed personal certificate created in the keystore file?

v If you configure client authentication using digital certificates, is the public key of the signed personal

certificate imported as a signer certificate into the server truststore file?

1. Add a keystore file into a client configuration by editing the sas.client.props file and setting the

following properties:

v com.ibm.ssl.keyStoreType for the keystore format. Range: JKS (default), PKCS12KS, JCEK

v com.ibm.ssl.keyStore for a fully qualified path to the keystore file. The keystore file contains private

keys and sometimes public keys.

v com.ibm.ssl.keyStorePassword for the password to access the keystore file.

2. Add a keystore file into a server configuration:

a. Start the administrative console by specifying: http://server_hostname:9060/ibm/console.

b. Click Security > SSL Configuration Repertoires.

c. Create a new Secure Sockets Layer (SSL) setting alias if one does not exist.

d. Select the alias that you want to add into the keystore file.

e. Type in the key file name for the path of the keystore file.

f. Type in the key file password for the password to access the keystore file.

g. Select the key file format for the keystore type. Range: JKS (default), PKCS12KS, or JCEK.

h. Click OK and Save to save the configuration.

The SSL configuration alias now has a valid keystore file for an SSL connection.

Note: If the Cryptographic token field is selected and you only want to use cryptographic tokens for your

keystore file, leave the Key file name field and the Key file password field blank.

v SSL connection for Internet InterORB Protocol (IIOP)

v SSL connection for Lightweight Directory Access Protocol (LDAP)

v SSL connection for Hypertext Transfer Protocol (HTTP)

Adding truststore files:

A truststore file is a key database file that contains public keys. The public key is stored as a signer

certificate. The keys are used for a variety of purposes, including authentication and data integrity. In

1700 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

WebSphere Application Server, adding truststore files to the configuration is different between client and

server. For the client, a truststore file is added to a property file, like sas.client.props. For the server, a

truststore file is added through the WebSphere Application Server administrative console.

Before you add the truststore file to your configuration, ask the following questions:

v If you configure for client authentication using digital certificate, has the public key of the client personal

certificate been imported as a signer certificate into the server truststore file?

v Does the truststore file contain all the required signer certificates with respect to the keystore files of the

target servers?

1. Add a truststore file into a client configuration, by editing the sas.client.props file and setting the

following properties:

v com.ibm.ssl.trustStoreType for the truststore format. Range: JKS (default), PKCS12KS, JCEK,

JCERACFKS.

v com.ibm.ssl.trustStore for a fully qualified path to the truststore file. The truststore file contains the

public keys.

v com.ibm.ssl.trustStorePassword for the password to access the truststore file.

2. Add a truststore file into a server configuration:

a. Start the administrative console by specifying : http://server_host_name:9060/ibm/console

b. Click Security > SSL.

c. Create a new Secure Sockets Layer (SSL) setting alias if one does not exist.

d. Select the alias that you want to add into the truststore file.

e. Type the trust file name for the path of the truststore file.

f. Type the trust file password for the password to access the truststore file.

g. Select the trust file format for the truststore type. JKS (Default), PKCS12KS, JCEK.

h. Click OK and Save to save the configuration.

The SSL configuration alias now contains a valid truststore file for an SSL connection.

v SSL connection for Internet InterORB Protocol (IIOP)

v SSL connection for Lightweight Directory Access Protocol (LDAP)

v SSL connection for Hypertext Transfer Protocol (HTTP)

Secure Sockets Layer configuration repertoire settings:

Use this page to define a new Secure Sockets Layer (SSL) alias. Using the SSL configuration repertoire,

administrators can define any number of SSL settings to use in configuring the Hypertext Transfer Protocol

with SSL (HTTPS), Internet InterORB Protocol with SSL (IIOPS) or Lightweight Directory Access Protocol

with SSL (LDAPS) connections. You can pick one of the SSL settings defined here from any location within

the administrative console that supports SSL connections. This flexibility simplifies the SSL configuration

process because you can reuse many of these SSL configurations by specifying the alias in multiple

places.

 To view this administrative console page, click Security > SSL.

Click New to create a new SSL Configuration Repertoire alias.

Click Delete to remove an SSL Configuration Repertoire alias. If an SSL configuration alias is referenced

in the configuration and is deleted here, then an SSL connection fails when the deleted alias is accessed.

Alias:

Specifies the name of the specific SSL setting.

Type:

Chapter 8. Developing WebSphere applications 1701

Specifies the type of repertoire configured for the alias listed.

 The value is either SSSL for System Secure Sockets Layer repertoire or JSSE for Java Secure Sockets

Extension repertoire.

New Secure Sockets Layer repertoire:

Use this page to specify the list of defined Secure Sockets Layer (SSL) configurations.

 To view this administrative console page, click Security > SSL > New JSSE repertoire.

Alias:

Specifies the name of the specific SSL setting.

 Data type: String

This field is used on the System SSL Repertoire and Java Secure Sockets Extension (JSSE) Repertoire

panels.

Key file name:

Specifies the fully qualified path to the SSL key file that contains public keys and private keys.

 Data type: String

For JSSE SSL, the key file specifies the keystore file. The key file might also specify the System

Authorization Facility (SAF) key ring that contains certificates and keys. You can create a JSSE SSL

keystore file by using the keytool utility found in the WebSphere Application Server bindirectory. The key

file contains certificates and keys.

For System SSL or JSSE, you can create an SSL key ring by using the Resource Access Control Facility

(RACF) command, RACDCERT. Issue this command in your MVS environment, such as TSO READY or

ISPF option 6. The key ring contains the private certificate of this server and certificates of trusted

certificate authorities. The certificates for the trusted certificate authorities validate the client certificates

and other server certificates that are exchanged with this server during the SSL handshake. The

repertoires that you define for a server require identical key file names.

Client authentication:

Specifies whether to request a certificate from the client for authentication purposes when making a

connection.

 Data type: Boolean

Default: Disabled

Range: Enabled or Disabled

When performing client authentication with the Internet InterORB Protocol (IIOP) for Enterprise JavaBeans

(EJB) requests, click Security > Global Security > CSIv2 Inbound or Outbound Authentication from

the left navigation pane of the administrative console. (You can also click Servers > Application Servers

> server_name > CSIv2 Inbound or Outbound Authentication.) Click SSL Client Certificate

Authentication to enable it for these requests.

Security level:

1702 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Specifies whether the server selects from a preconfigured set of security levels.

 Data type: Valid values include Low, Medium or High.

v Low specifies only digital signing ciphers (no

encryption)

v Medium specifies only 40-bit ciphers (including digital

signing)

v High specifies only 128-bit ciphers (including digital

signing).

To specify all ciphers or any particular range, you can set

the com.ibm.ssl.enabledCipherSuites property.

See the SSL documentation for more information.

Default: High

Range: Low, Medium, or High

V3 timeout:

Specifies the length of time that a browser can reuse a System SSL Version 3 session ID without

renegotiating encryption keys with the server.

 The repertoires that you define for a server require the same V3 timeout value.

 Data type integer

Default 100

Range 1 to 86400

Cipher suites:

Specifies a list of supported cipher suites that can be selected during the SSL handshake. If you select

cipher suites individually here, you override the cipher suites set in the Security Level field.

 Data type:

Default:

Range:

Transport channel name:

This name must be unique across all channels in a WebSphere Application Server environment. TCP

transport channels and HTTP transport channels cannot have the same name if they reside within the

same system.

 Data type:

Default:

Range:

Repertoire settings:

Use this page to configure Secure Sockets Layer (SSL) or Java Secure Sockets Extension (JSSE) settings

for the server. To configure Secure Sockets Layer (SSL), you need to define an SSL configuration

repertoire. A repertoire contains the details necessary for building an SSL connection, such as the location

of the key files, their type and the available ciphers. WebSphere Application Server provides a default

repertoire called DefaultSSLSettings.

Chapter 8. Developing WebSphere applications 1703

To view this administrative console page, click Security > SSL >alias_name.

Alias:

Specifies the name of the specific SSL setting

 Data type: String

Client authentication:

Specifies whether to request a certificate from the client for authentication purposes when making a

connection.

 This attribute is only valid when it is used by the Web container HTTP transport.

When performing client authentication with the Internet InterORB Protocol (IIOP) for EJB requests, click

Security > Global security. Under Authentication, click Authentication protocol > CSIv2 inbound

authentication or Authentication protocol > CSIv2 outbound authentication. Select the appropriate

option under Client certificate authentication.

 Default: Disabled

Range: Enabled or Disabled

Security level:

Specifies whether the server selects from a preconfigured set of security levels.

 Data type: Valid values include Low, Medium or High.

v Low specifies digital signing ciphers only without

encryption.

v Medium specifies 40-bit ciphers only including digital

signing.

v High specifies 128-bit ciphers only including digital

signing.

To specify all ciphers or any particular range, you can set

the com.ibm.ssl.enabledCipherSuites property.

See the SSL documentation for more information.

Default: High

Range: Low, Medium, or High

Cipher suites:

Specifies a list of supported cipher suites that can be selected during the SSL handshake. If you select

cipher suites individually here, you override the cipher suites set in the Security Level field.

Cryptographic token:

Specifies whether the server enables or disables cryptographic hardware and software support. The SOAP

connector does not use hardware cryptography.

 Data type: Boolean

Default: Disabled

Range: Enabled or Disabled

1704 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Provider:

Refers to a package that implements a subset of the Java security application programming interface (API)

cryptography aspects.

 If you select Predefined JSSE provider, select a provider from the menu.

WebSphere Application Server has the IBMJSSE, IBMJSSE2, and the IBMJSSEFIPS predefined

providers. IBMJSSEFIPS is the the IBMJSSE provider that is Federal Information Processing Standard

(FIPS) certified. If you select Custom JSSE provider , enter a custom provider. For a custom provider,

you first must enter the cipher suites through Custom properties under Additional Properties. Cipher suites

and protocol values depend on the provider.

Note: You can only specify the IBMJSSE2 provider for transports using the channel framework, including

HTTP and JMS. Any other provider specified causes the server to fail initialization. FIPS is not

supported for these transports in WebSphere Application Server Version 6.

Protocol:

Specifies which SSL protocol to use.

 If you are using a FIPS-approved JSSE such as IBMJSSEFIPS, you must select a TLS protocol. However,

because the FIPS-approved JSSE providers are not backwards-compatible, a server that uses the TLS

protocol cannot communicate with a client that uses an SSL protocol.

 Default SSLv3

Range SSL, SSLv2, SSLv3, TLS, TLSv1

Key file name:

Specifies the fully qualified path to the SSL key file that contains public keys and might contain private

keys.

 You can create an SSL key file with the key management utility, or this file can correspond to a hardware

device if one is available. In either case, this option indicates the source for personal certificates and for

signer certificates unless a trust file is specified. The default SSL key files, DummyClientKeyFile.jks and

DummyServerKeyFile.jks, contais a self-signed personal test certificate expiring on March 17, 2005. The

test certificate is only intended for use in a test environment. The default SSL key files should never be

used in a production environment because the private keys are the same on all the WebSphere

Application Server installations. Refer to the Managing certificates article for information about creating and

managing digital certificates for your WebSphere Application Server domain.

 Data type: String

Key file password:

Specifies the password for accessing the SSL key file.

 Data type: String

Key file format:

Specifies the format of the SSL key file.

Chapter 8. Developing WebSphere applications 1705

You can choose from the following key file formats: JKS, JCEK, PKCS12. The JKS format does not store a

shared key. For more secure key files, use the JCEK format. PKCS12 is the standard file format.

 Data type: String

Default: JKS

Range: JKS, PKCS12, JCEK

Trust file name:

Specifies the fully qualified path to a trust file containing the public keys.

 You can create a trust file with the key management utility included in the WebSphere bin directory. Using

the key management utility from Global Security Kit (GSKit) (another SSL implementation) does not work

with the Java Secure Socket Extension (JSSE) implementation.

Unlike the SSL key file, no personal certificates are referenced; only signer certificates are retrieved. The

default SSL trust files, DummyClientTrustFile.jks and DummyServerTrustFile.jks, contain multiple test

public keys as signer certificates that can expire. The public key for the WebSphere Application Server

Version 4.0 test certificates expires on January 15, 2004, and the public key for the WebSphere

Application Server Version 5 test certificates and WebSphere Application Server CORBA C++ client

expires on March 17, 2005. The test certificate is only intended for use in a test environment.

The public key for the WebSphere Application Server Version 6 test certificates expires on October 13,

2021.

If a trust file is not specified but the SSL key file is specified, then the SSL key file is used for retrieval of

signer certificates as well as personal certificates.

 Data type: String

Trust file password:

Specifies the password for accessing the SSL trust file.

 Data type: String

Trust file format:

Specifies the format of the SSL trust file.

 You can choose from the following trust file formats: JKS, JCEK, PKCS12. The JKS format does not store

a shared key. For more secure key files, use the JCEK format. PKCS12 is the standard file format.

 Data type: String

Default: JKS

Range: JKS, JCEK, PKCS12

Secure Sockets Layer settings for custom properties:

Use this page to configure additional Secure Sockets Layer (SSL) settings for a defined alias.

 To view this administrative console page, click Security > SSL > alias_name > Custom properties.

Custom Properties:

1706 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Specifies the name-value pairs that you can use to configure additional SSL settings beyond those

available in the com.ibm.ssl.protocol administrative interface.

 This value is the SSL protocol used (including its version). The possible values are SSL, SSLv2, SSLv3,

TLS, or TLSv1. The default value, SSL, is backward-compatible with the other SSL protocols.

com.ibm.ssl.keyStoreProvider

The name of the key store provider to use. Specify one of the security providers listed in your

java.security file, which has a keystore implementation. The default value is IBMJCE.

com.ibm.ssl.keyManager

The name of the key management algorithm to use. Specify any key management algorithm that

is implemented by one of the security providers listed in your java.security file. The default value

is IbmX509.

com.ibm.ssl.trustStoreProvider

The name of the trust store provider to use. Specify one of the security providers listed in your

java.security file, which has a truststore implementation. The default value is IBMJCE.

com.ibm.ssl.trustManager

The name of the trust management algorithm to use. Specify any trust management algorithm that

is implemented by one of the security providers listed in your java.security file. The default value

is IbmX509.

com.ibm.ssl.trustStoreType

The type or format of the truststore file. The possible values are JKS, PKCS12, JCEK. The default

value is JKS.

com.ibm.ssl.enabledCipherSuites

The list of cipher suites to enable. By default, this is not set and the set of cipher suites used is

determined by the value of the security level (high, medium, or low). A cipher suite is a

combination of cryptographic algorithms used for an SSL connection. Enter a space-separated list

of any of the following cipher suites:

v SSL_RSA_WITH_RC4_128_MD5

v SSL_RSA_WITH_RC4_128_SHA

v SSL_RSA_WITH_DES_CBC_SHA

v SSL_RSA_WITH_3DES_EDE_CBC_SHA

v SSL_DHE_RSA_WITH_DES_CBC_SHA

v SSL_DHE_RSA_WITH_3DES_EDE_CBC_SHA

v SSL_DHE_DSS_WITH_DES_CBC_SHA

v SSL_DHE_DSS_WITH_3DES_EDE_CBC_SHA

v SSL_RSA_EXPORT_WITH_RC4_40_MD5

v SSL_RSA_EXPORT_WITH_DES40_CBC_SHA

v SSL_RSA_EXPORT_WITH_RC2_CBC_40_MD5

v SSL_DHE_RSA_EXPORT_WITH_DES40_CBC_SHA

v SSL_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA

v SSL_RSA_WITH_NULL_MD5

v SSL_RSA_WITH_NULL_SHA

v SSL_DH_anon_WITH_RC4_128_MD5

v SSL_DH_anon_WITH_DES_CBC_SHA

v SSL_DH_anon_WITH_3DES_EDE_CBC_SHA

v SSL_DH_anon_EXPORT_WITH_RC4_40_MD5

v SSL_DH_anon_EXPORT_WITH_DES40_CBC_SHA

 Data type: String

Cryptographic token:

Specifies information about the cryptographic tokens related to SSL support.

Chapter 8. Developing WebSphere applications 1707

A cryptographic token is a hardware or software device that has a built-in keystore implementation.

Document the exact values for the following fields found in the literature of your supported cryptographic

device.

Creating a Secure Sockets Layer repertoire configuration entry:

The first step in configuring Secure Sockets Layer (SSL) is to define an SSL configuration repertoire. A

repertoire contains the details necessary for building an SSL connection, such as the location of the key

files, their type and the available ciphers. WebSphere Application Server provides a default repertoire

called DefaultSSLSettings. To view this page in the administrative console, click Security > SSL to see

the list of SSL repertoire settings.

The appropriate repertoire is referenced during the configuration of a service that sends and receives

requests encrypted using SSL, such as the Web and enterprise beans containers. If an SSL configuration

alias is referenced elsewhere, but the alias is deleted from the SSL Configuration Repertoires panel, the

SSL connection fails if the deleted alias is accessed.

With the SSL configuration repertoire, administrators can define SSL settings to use for making Hypertext

Transfer Protocol with SSL (HTTPS), Internet InterORB Protocol with SSL (IIOPS) or Lightweight Directory

Access Protocol with SSL (LDAPS) connections. You can pick one of the SSL settings defined here from

any location within the administrative console, which supports SSL connections. This selection simplifies

the SSL configuration process because you can reuse many of these SSL configurations by specifying the

alias in multiple places.

 1. From the SSL Configuration Repertoire window, click New.

 2. Enter the information needed to access the key file.

a. Type the name of the key file, which must include the fully qualified path to the key file, in the Key

File Name field. Type safkeyring:/// if you are using a RACF key ring for the key file.

b. Type the password needed to access the key file in the Key File Password field. Type password if

you are using a RACF key ring for the key store.

c. Select the format of the key file from the Key File Format menu.

 3. Enter the information needed to access the trust file.

a. Type the name of the trust file, which must include the fully qualified path to the trust file, in the

Trust File Name field. Type safkeyring:/// if you are using a RACF key ring as the trust store.

b. Type the password needed to access the trust file in the Trust File Password field. Type password

if you are using a RACF key ring as the trust store.

c. Select the format of the trust file from the Trust File Format menu.

 4. Select the Client Authentication option if this configuration supports client authentication. This

selection only affects HTTP and LDAP requests.

 5. Select the appropriate security level from the Security Level menu. Valid values are low, medium, and

high. Low specifies digital signing ciphers only (no encryption), medium specifies 40-bit ciphers only

(including digital signing), high specifies 128-bit ciphers only (including digital signing).

If you are using a Federal Information Processing Standards (FIPS)-supported Java Secure Socket

Extension (JSSE), you must select High from the Security Level menu.

 6. Select a cipher suite from the Cipher Suites menu. Manually add the cipher suite if the preset security

level does not define the required cipher. Select the Cryptographic Token check box if the RACF

key ring contains keys or certificates that were created using the RACDCERT command with the ICSF

keyword specified.

 7. Select the Cryptographic Token check box if hardware or software cryptographic support is

available.

See “Configuring to use cryptographic tokens” on page 1726 for details regarding cryptographic

support.

1708 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

8. Indicate which JSSE provider you are using by either selecting IBMJSSE, IBMJSSE2 (recommended)

or IBMJSSEFIPS from the menu, or by typing the name of the provider. WebSphere Application

Server includes the IBMJSSE, IBMJSSE2 and IBMJSSEFIPS JSSE providers. Use IBMJSSEFIPS

only if you are using the Transport Layer Security (TLS) protocol and not the Secure Sockets Layer

(SSL) protocol. See “Configuring Federal Information Processing Standard Java Secure Socket

Extension files” for more information.

If you are not using the predefined providers, configure the custom provider by clicking Apply, then

Custom Properties > New in the Additional Properties section. After the custom provider is

configured, return to the SSL Configuration Repertoires window and continue with these instructions.

 9. Select an SSL or TLS protocol version.

If you are using a FIPS-approved JSSE, you must select a TLS protocol version.

10. Click Apply to apply the changes.

11. If no errors occur, save the changes to the master configuration and restart the WebSphere

Application Server.

For more information on the FIPS certification process and to check the status of the IBM submission,

see the Cryptographic Module Validation Program FIPS 140-1 and FIPS 140-2 Pre-validation List

Web site.

You included additional SSL configuration repertoires with the default DefaultSSLSettings repertoire.

The appropriate repertoire is referenced during the configuration of a service that sends and receives

requests encrypted using SSL, such as the Web and enterprise bean containers, and Lightweight Directory

Access Protocol (LDAP) servers.

For the changes to take effect, restart the server after saving the configuration.

Configuring Federal Information Processing Standard Java Secure Socket Extension files:

In WebSphere Application Server Version 6, the Java Secure Socket Extension (JSSE) provider used is

the IBMJSSE2 provider. This provider delegates encryption and signature functions to the Java

Cryptography Extension (JCE) provider. Consequently, IBMJSSE2 does not need to be Federal

Information Processing Standard (FIPS)-approved because it does not perform cryptography. However, the

JCE provider requires FIPS-approval.

WebSphere Application Server provides a FIPS-approved IBMJCEFIPS provider that IBMJSSE2 can

utilize. The IBMJCEFIPS provider shipped in WebSphere Application Server Version 6 supports the

following SSL ciphers:

v SSL_RSA_WITH_AES_128_CBC_SHA

v SSL_RSA_WITH_3DES_EDE_CBC_SHA

v SSL_RSA_FIPS_WITH_3DES_EDE_CBC_SHA

v SSL_DHE_RSA_WITH_AES_128_CBC_SHA

v SSL_DHE_RSA_WITH_3DES_EDE_CBC_SHA

v SSL_DHE_DSS_WITH_AES_128_CBC_SHA

v SSL_DHE_DSS_WITH_3DES_EDE_CBC_SHA

v SSL_DH_anon_WITH_AES_128_CBC_SHA

v SSL_DH_anon_WITH_3DES_EDE_CBC_SHA

Even though the IBMJSSEFIPS provider is still present, the runtime does not use this provider. If

IBMJSSEFIPS is specified as a contextProvider, WebSphere Application Server automatically defaults to

the IBMJSSE2 provider (with the IBMJCEFIPS provider) for supporting FIPS in Version 6. When enabling

FIPS in the server Global Security Panel, the runtime always uses IBMJSSE2. despite whatever

contextProvider you specify for SSL (IBMJSSE, IBMJSSE2 or IBMJSSEFIPS). Also, because FIPS

Chapter 8. Developing WebSphere applications 1709

http://csrc.nist.gov/cryptval/preval.htm
http://csrc.nist.gov/cryptval/preval.htm

requires the SSL protocol be TLS, the runtime always uses TLS when FIPS is enabled regardless of the

SSL protocol setting in the SSL repertoire. This simplifies the FIPS configuration in Version 6 because an

administrator only needs to enable the FIPS flag in the Global Security Panel to enable all transports using

SSL.

1. Click Security > Global Security. Select the Use the Federal Information Processing Standard (FIPS)

option and click OK. IBMJSSE2 and IBMJCEFIPS is enabled.

2. If you have a Java client that must access enterprise beans, modify the

install_dir/profiles/profile_name/properties/sas.client.props file and set the property:

#com.ibm.security.useFIPS=false

#com.ibm.security.useFIPS=true

3. If you have an administrative client using the Simple Object Access Protocol (SOAP) connector, modify

the install_dir/profiles/profile_name/properties/soap.client.props file on the administrative

client and set the following property:

#com.ibm.ssl.contextProvider=IBMJSSE2

com.ibm.ssl.contextProvider=IBMJSSEFIPS

Note: Note: Specifying IBMJSSEFIPS indicates that the client wants to be in FIPS mode, and the

runtime uses the IBMJSSE2 provider in combination with the IBMJCEFIPS provider.

After completing these steps, a FIPS-approved JSSE or JCE provider offers increased encryption

capabilities. However, when you use FIPS-approved providers:

v By default, Microsoft Internet Explorer Version 5.5 might not have Transport Layer Security (TLS)

enabled. To enable TLS, open the Internet Explorer browser and click Tools > Internet Options. On the

Advanced tab, select the Use TLS 1.0 option.

Note: Netscape Version 4.7.x and earlier versions might not support TLS.

v IBM Directory Server Version 5.1 (and earlier versions) do not support TLS.

v If you have an administrative client that uses a SOAP connector, and you enable FIPS, add the

following lines to the install_dir/profiles/profile_name/properties/soap.client.props file:

com.ibm.ssl.contextProvider=IBMJSSEFIPS

v When you select the Use the Federal Information Processing Standard (FIPS) option on the Global

Security panel, the Lightweight Third-Party Authentication (LTPA) token format is not

backwards-compatible with previous releases of WebSphere Application Server. However, you can

continue to use the LTPA keys configured using a previous version of WebSphere Application Server.

Note: When enabling FIPS, you cannot configure cryptographic token devices in the SSL repertoires.

IBMJSSE2 must use IBMJCEFIPS when utilizing crytpographic services for FIPS.

Digital certificates:

Certificates provide a way of authenticating users. Instead of requiring each participant in an application to

authenticate every user, third-party authentication relies on the use of digital certificates.

 A digital certificate is equivalent to an electronic ID card. It serves two purposes:

v Establishes the identity of the owner of the certificate

v Distributes the owner’s public key

Certificates are issued by trusted parties, called certificate authorities (CAs). These authorities can be

commercial ventures or they can be local entities, depending on the requirements of your application.

Regardless, the CA is trusted to adequately authenticate users before issuing certificates. A CA issues

certificates with digital signatures. When a user presents a certificate, the recipient of the certificate

validates it by using the digital signature. If the digital signature validates the certificate, the certificate is

recognized as intact and authentic. Participants in an application only need to validate certificates; they do

1710 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

not need to authenticate users. The fact that a user can present a valid certificate proves that the CA has

authenticated the user. The descriptor, trusted third-party, indicates that the system relies on the

trustworthiness of the CAs.

Contents of a digital certificate

A certificate contains several pieces of information, including information about the owner of the certificate

and the issuing CA. Specifically, a certificate includes:

v The distinguished name (DN) of the owner. A DN is a unique identifier, a fully qualified name including

not only the common name (CN) of the owner but the owner’s organization and other distinguishing

information.

v The public key of the owner.

v The date on which the certificate was issued.

v The date on which the certificate expires.

v The distinguished name of the issuing CA.

v The digital signature of the issuing CA. (The message-digest function is run over all the preceding

fields.)

The core idea of a certificate is that a CA takes the owner’s public key, signs the public key with its own

private key, and returns the information to the owner as a certificate. When the owner distributes the

certificate to another party, it signs the certificate with its private key. The receiver can extract the

certificate (containing the CA signature) with the owner’s public key. By using the CA public key and the

CA signature on the extracted certificate, the receiver can validate the CA signature. If it is valid, the public

key used to extract the certificate is recognized as good. The owner signature is then validated, and if the

validation succeeds, the owner is successfully authenticated to the receiver.

The additional information in a certificate helps an application decide whether to honor the certificate. With

the expiration date, the application can determine if the certificate is still valid. With the name of the

issuing CA, the application can check that the CA is considered trustworthy by the site.

A process that uses certificates must provide its personal certificate, the one containing its public key, and

the certificate of the CA that signed its certificate, called a signer certificate. In cases where chains of trust

are established, several signer certificates can be involved.

Requesting certificates

To get a certificate, send a certificate request to the CA. The certificate request includes:

v The distinguished name of the owner (the user for whom the certificate is requested).

v The public key of the owner.

v The digital signature of the owner.

The message-digest function is run over all these fields.

The CA verifies the signature with the public key in the request to ensure that the request is intact and

authentic. The CA then authenticates the owner. Exactly what the authentication consists of depends on a

prior agreement between the CA and the requesting organization. If the owner in the request is

successfully authenticated, the CA issues a certificate for that owner.

Using certificates: Chain of trust and self-signed certificate

To verify the digital signature on a certificate, you must have the public key of the issuing CA. Because

public keys are distributed in certificates, you must have a certificate for the issuing CA that is signed by

the issuer. One CA can certify other CAs, so a chain of CAs can issue certificates for other CAs, all of

whose public keys you need. Eventually, you reach a root CA that issues itself a self-signed certificate. To

validate a user’s certificate, you need certificates for all intervening participants, back to the root CA. Then

you have the public keys you need to validate each certificate, including the user’s.

Chapter 8. Developing WebSphere applications 1711

A self-signed certificate contains the public key of the issuer and is signed with the private key. The digital

signature is validated like any other, and if the certificate is valid, the public key it contains is used to

check the validity of other certificates issued by the CA. However, anyone can generate a self-signed

certificate. In fact, you can probably generate self-signed certificates for testing purposes before installing

production certificates. The fact that a self-signed certificate contains a valid public key does not mean that

the issuer is really a trusted certificate authority. To ensure that self-signed certificates are generated by

trusted CAs, such certificates must be distributed by secure means (hand-delivered on floppy disks,

downloaded from secure sites, and so on).

Applications that use certificates store these certificates in a keystore file. This file typically contains the

necessary personal certificates, its signing certificates, and its private key. The private key is used by the

application to create digital signatures. Servers always have personal certificates in their keystore files. A

client requires a personal certificate only if the client must authenticate to the server when mutual

authentication is enabled.

To allow a client to authenticate to a server, a server keystore file contains the private key and the

certificate of the server and the certificates of its CA. A client truststore file must contain the signer

certificates of the CAs of each server to which the client must authenticate.

If mutual authentication is needed, the client keystore file must contain the client private key and

certificate. The server truststore file requires a copy of the certificate of the client CA.

Digital signatures:

A digital signature is a number attached to a document. For example, in an authentication system that

uses public-key encryption, digital signatures are used to sign certificates.

 This signature establishes the following information:

v The integrity of the message: Is the message intact? That is, has the message been modified between

the time it was digitally signed and now?

v The identity of the signer of the message: Is the message authentic? That is, was the message actually

signed by the user who claims to have signed it?

A digital signature is created in two steps. The first step distills the document into a large number. This

number is the digest code or fingerprint. The digest code is then encrypted, resulting in the digital

signature. The digital signature is appended to the document from which the digest code was generated.

Several options are available for generating the digest code. WebSphere Application Server supports the

MD5 message digest function and the SHA1 secure hash algorithm, but these procedures reduce a

message to a number. This process is not encryption, but a sophisticated checksum. The message cannot

regenerate from the resulting digest code. The crucial aspect of distilling the document to a number is that

if the message changes, even in a trivial way, a different digest code results. When the recipient gets a

message and verifies the digest code by recomputing it, any changes in the document result in a

mismatch between the stated and the computed digest codes.

To stop someone from intercepting a message, changing it, recomputing the digest code, and

retransmitting the modified message and code, you need a way to verify the digest code as well. To verify

the digest code, reverse the use of the public and private keys. For private communication, it makes no

sense to encrypt messages with your private key; these keys can be decrypted by anyone with your public

key. This technique can be useful for proving that a message came from you. No one can create it

because no one else has your private key. If some meaningful message results from decrypting a

document by using someone’s public key, the decryption process verifies that the holder of the

corresponding private key did encrypt the message.

1712 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

The second step in creating a digital signature takes advantage of this reverse application of public and

private keys. After a digest code is computed for a document, the digest code is encrypted with the

sender’s private key. The result is the digital signature, which is attached to the end of the message.

When the message is received, the recipient follows these steps to verify the signature:

1. Recomputes the digest code for the message.

2. Decrypts the signature by using the sender’s public key. This decryption yields the original digest code

for the message.

3. Compares the original and recomputed digest codes. If these codes match, the message is both intact

and authentic. If not, something has changed and the message is not to be trusted.

Public key cryptography:

All encryption systems rely on the concept of a key. A key is the basis for a transformation, usually

mathematical, of an ordinary message into an unreadable message. For centuries, most encryption

systems have relied on what is called private key encryption. Only within the last 30 years has a challenge

to private key encryption appeared - public key encryption.

 Private key encryption

Private-key encryption systems use a single key that is shared between the sender and the receiver. Both

must have the key; the sender encrypts the message by using the key, and the receiver decrypts the

message with the same key. Both must keep the key private to keep their communication private. This

kind of encryption has characteristics that make it unsuitable for widespread, general use:

v Private key encryption requires a key for every pair of individuals who need to communicate privately.

The necessary number of keys rises dramatically as the number of participants increases.

v The fact that keys must be shared between pairs of communicators means the keys must somehow be

distributed to the participants. The need to transmit secret keys makes them vulnerable to theft.

v Participants can communicate only by prior arrangement. There is no way to send a usable encrypted

message to someone spontaneously. You and the other participant must make arrangements to

communicate by sharing keys.

Private-key encryption is also called symmetric encryption, because the same key is used to encrypt and

decrypt the message.

Public key encryption

Public key encryption uses a pair of mathematically related keys. A message encrypted with the first key

must be decrypted with the second key, and a message encrypted with the second key must be decrypted

with the first key.

Each participant in a public-key system has a pair of keys. The symmetric (private) key is kept secret. The

other key is distributed to anyone who wants it; this key is the public key.

To send an encrypted message to you, the sender encrypts the message by using your public key. When

you receive the message, you decrypt it by using your symmetric key. To send a message to someone,

you encrypt the message by using the recipient’s public key. The message can be decrypted with the

recipient’s symmetric key only. This kind of encryption has characteristics that make it very suitable for

general use:

v Public-key encryption requires only two keys per participant. The increase in the total number of keys is

less dramatic as the number of participants increases, compared to symmetric key encryption.

v The need for secrecy is more easily met. Only the symmetric key needs to be kept symmetric and

because it does not need to be shared, the symmetric key is less vulnerable to theft in transmission

than the shared key in a symmetric key system.

Chapter 8. Developing WebSphere applications 1713

v Public keys can be published, which eliminates the need for prior sharing of a secret key before

communication. Anyone who knows your public key can use it to send you a message that only you can

read.

Public-key encryption is also called asymmetric encryption, because the same key cannot be used to

encrypt and decrypt the message. Instead, one key of a pair is used to undo the work of the other.

WebSphere Application Server uses the Rivest Shamir Adleman (RSA) public and symmetric key

encryption algorithm.

With symmetric key encryption, you have to be careful of stolen or intercepted keys. In public-key

encryption, where anyone can create a key pair and publish the public key, the challenge is in verifying

that the owner of the public key is really the person you think it is. Nothing prevents a user from creating a

key pair and publishing the public key under a false name. The listed owner of the public key cannot read

messages encrypted with that key because the owner does not have the symmetric key. If the creator of

the false public key can intercept these messages, that person can decrypt and read messages intended

for someone else. To counteract the potential for forged keys, public-key systems provide mechanisms for

validating public keys and other information with digital signatures and digital certificates.

Managing digital certificates:

Secure Sockets Layer (SSL) connections rely on the existence of digital certificates. A digital certificate

reveals information about its owner, including their identity. During the initialization of an SSL connection,

the server must present its certificate to the client for the client to determine the server identity. The client

can also present the server with its own certificate for the server to determine the client identity. SSL is

therefore, a means of propagating identity between components. Refer to “Configuring Secure Sockets

Layer” on page 1688 and “Creating a Secure Sockets Layer repertoire configuration entry” on page 1708.

A client can trust the contents of a certificate if that certificate is digitally signed by a trusted third party. A

Certificate Authority (CA) acts as a trusted third party and signs certificates on the basis of its knowledge

of the certificate requestor. Complete the following steps to manage digital certificates using either the key

management utility (iKeyman) or the keytool utility:

v Use the supplied key management utility. Refer to “Starting the key management utility (iKeyman)” on

page 1717. There are two options for creating a new certificate.

– Request that a CA generates the certificates on your behalf. The CA creates a new certificate,

digitally signs it, and delivers it to the requester. Popular Web browsers are preconfigured to trust

certificates that are signed by certain CAs. No further client configuration is necessary for a client to

connect to the server through an SSL connection. Therefore, CA signed certificates are useful where

configuration for each and every client that accesses the server is impractical. Refer to “Requesting

certificate authority-signed personal certificates” on page 1719, “Creating certificate signing requests”

on page 1719, “Receiving certificate authority-signed personal certificates” on page 1720, and

“Extracting public certificates for truststore files” on page 1720.

– Generate a self-signed certificate. This option might be the quickest and require the fewest details to

create the certificate. However, the certificate is not signed by a CA. Any client that connects to this

server over an SSL connection needs configuration to trust the signer of this certificate. Therefore,

self-signed certificates are only useful when you can configure each of the clients to trust the

certificate. It is possible in some cases to present a self-signed certificate to an untrusting client. In

some Web browsers, when the certificate is received and does not match any of those listed in the

client trust file, a prompt appears asking if the certificate should be trusted for the connection and

added to the trust file. Refer to “Creating a keystore file” on page 1717, “Creating truststore files” on

page 1721, “Adding keystore files” on page 1700, “Adding truststore files” on page 1700, “Creating

self-signed personal certificates” on page 1718, and ″Importing signer certificates.″

You must configure server-side options. The WebSphere Application Server stores the keystore

information in the repository and the keystore files are referred to in the security.xml file. Therefore,

complete all server-side configuration through the administration console. For Java clients, refer to

“Configuring Secure Sockets Layer for Java client authentication” on page 1698.

1714 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

v Use the command line Java utility called keytool. With keytool, you can create a private and public

self-signed certificate key pair. For this example, the first user is cn=rocaj.

 1. Specify RSA for the private key to ensure that the MD5 with RSA signature algorithm is used. Not

all Web browsers support the DSA cryptograph algorithm, which is the default when RSA is not

specified. Set a password of at least six characters to protect the private key. Finally, specify the

keystore file and keystore password (the option is storepass):

${WAS_HOME}/java/jre/bin/keytool -genkey -keyalg RSA -dname ″cn=rocaj, ou=users,

u=uk, DC=internetchaos, DC=com″ -alias rocaj -keypass websphere -keystore

testkeyring.jks -storepass websphere

The previous three lines of code belong on one line, but were split onto three lines due to the width

of the page.

 2. Create the second private and public self-signed certificate key pair in the same manner for the

user cn=amorv.

${WAS_HOME}/java/jre/bin/keytool -genkey -keyalg RSA -dname ″cn=amorv, ou=users,

ou=uk, DC=internetchaos, DC=com″ -alias amorv -keypass websphere -keystore

testkeyring.jks -storepass websphere

The previous three lines of code belong on one line, but were split onto three lines due to the width

of the page.

Now the keystore testkeyring.jks contains two self-signed certificates with the owner being the

same as the issuer for each certificate.

 3. Verify the integrity and authenticity of the certificates by getting each certificate signed by the

certificate authority.

a. Generate the Certificate Signing Request, CSR-1 (for the first user cn=rocaj).

${WAS_HOME}/java/jre/bin/keytool -v certreq -alias rocaj -file rocajReq.csr

-keypass

 websphere -keystore testkeyring.jks -storepass websphere

The previous two lines of code belong on one line, but were split onto two lines due to the

width of the page.

b. On UNIX-based platforms, remove the end of line characters (^M) from the certificate signing

request. To remove the end of line characters, type the following command:

cat rocajReq.csr |tr -d ″\r″

c. Generate the CSR-2 (for the second user cn=amorv).

${WAS_HOME}/java/jre/bin/keytool -v -certreq -alias amorv -file amorvReq.csr

-keypass websphere -keystore testkeyring.jks -storepass websphere

The previous two lines of code belong on one line, but were split onto two lines due to the

width of the page.

d. On UNIX-based platforms, remove the end of line characters (^M) from the certificate signing

request. To remove the end of line characters, type the following command:

cat amoryReq.csr |tr -d ″\r″

 4. Use the free Test SSL certificate program offered by Thawte Consulting to sign the Certificate

Signing Requests (CSRs) for this example. In each case, select the Custom Cert option and set

the certificate format to use the default for your kind of certificate. The example also selects the

Generate an X.509v3 Certificate option and saves the two resulting files as rocajRes.arm and

amorvRes.arm, respectively.

 5. Import the CA trusted root certificate into the keystore. Copy and paste the Thawte test root

certificate in BASE64-encoded ASCII data format to a file called ThawteTestCA.arm. Add the test

root CA certificate into the keystore file with the following command:

Chapter 8. Developing WebSphere applications 1715

${WAS_HOME}/java/jre/bin/keytool -import -alias ″Thawte Test CA Root″

 -file ThawteTestCA.arm -keystore testkeyring.jks -storepass websphere

The previous two lines of code belong on one line, but were split onto two lines due to the width of

the page.

 6. Import the two certificate responses from the CA into the keystore file using the same alias name

that was first given to the self-signed certificates. In this example, these alias names are rocaj and

amorv respectively. Using an alternative alias name generates a new signer certificate and not a

personal certificate chain.

– Import the certificate response -1 (for the first user cn=rocaj).

${WAS_HOME}/java/jre/bin/keytool -import -trustcacerts -alias rocaj

 -file rocajRec.arm -keystore testkeyring.jks -storepass websphere.

 Certificate reply was installed in keystore

The previous three lines of code belong on one line, but were split onto three lines due to the

width of the page.

– Import the certificate response -2 (for the second user cn=amorv).

${WAS_HOME}/java/jre/bin/keytool -import -trustcacerts -alias amorv

 -file amorvRec.arm -keystore testkeyring.jks -storepass websphere.

 Certificate reply was installed in keystore

The previous three lines of code belong on one line, but were split onto three lines due to the

width of the page.

 7. Launch the JSSE ikeyman utility, which supports the PKCS12 format and the private key exporting

associated with any certificate (the public key is also exported).

 8. Open the testkeyring.jks keystore file and select the first certificate from the Personal Certificates

menu.

 9. Click Export and name the file, rocajprivate.p12. Export the second personal certificate and name

it amorvprivate.p12.

10. Verify that the same root certificate of the authenticating CA is installed as a trusted authority in the

browser.

11. To install either of the personal certificates into Netscape Communicator, click Communicator >

Tools > Security Info > Certificates > Yours. Use the Import a Certificate option.

12. Enter a password or PIN for the communicator certificate database, when you attempt to import the

certificate. Enter the password used when first initializing your certificate database. Enter the

password protecting the PKCS#12 certificate file, as set when you exported the personal private

and public certificate key pair in iKeyman.

13. Click Verify to check integrity and validity of the certificate. If you did not install the root CA

certificate, your certificate fails the verification.

14. Verify that you modified your Web server to support client side certificate requests.

15. Go to the following URL: https://server_name/snoop; the Web browser prompts you to select a

personal certificate when accessing a resource protected by the SSLClientAuth directive.

16. Select the HTTPS information displayed by the snoop servlet; you see the certificate SubjectDN

matching the following: Subject: CN=amorv, OU=users, OU=uk, DC=internetchaos, DC=com.

v Refer to “Creating a Secure Sockets Layer repertoire configuration entry” on page 1708 to create a new

SSL definition entry for WebSphere Application Server using the administrative console. Once a

keystore file is configured, either by creating a self-signed certificate or by creating a certificate request

and importing the reply, you can configure WebSphere Application Server to use the certificates. The

product uses the certificates to establish a secure connection with a client through SSL.

v Set up the appropriate components to use the newly-defined SSL configuration. To ensure a secure

connection, configure some non-WebSphere components, such as a Web server. A digital certificate is

created for each component. The WebSphere Application Server owns a certificate and the Web server

owns another certificate.

1716 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Refer to “Configuring IBM HTTP Server for Secure Sockets Layer mutual authentication” on page 1692.

Setting up SSL communication between the Web browser and WebSphere Application Server. Using digital

signatures, you can communicate securely from the Web browser through the Web server to WebSphere

Application Server. Once you finish configuring security, perform the following steps to save, synchronize,

and restart the servers:

1. Click Save in the administrative console to save any modifications to the configuration.

2. Synchronize the configuration with all node agents (Network Deployment only).

3. Once synchronized, stop all servers and restart them.

Starting the key management utility (iKeyman):

It is recommended to read the documentation located in the

http://www.ibm.com/developerworks/java/jdk/security/iKeymanDocs.zip file for further information.

WebSphere Application Server provides a graphical tool, the key management utility (iKeyman), for

managing keys and certificates. With the key management utility, you can:

v Create a new key database

v Create a self-signed digital certificate

v Add certificate authority (CA) roots to the key database as a signer certificate

v Request and receive a digital certificate from a CA

To start the key management utility, complete the following steps:

1. Move to the install_root/bin directory.

2. Issue one of the following commands:

v On Windows systems, ikeyman.bat

v On UNIX systems, ikeyman.sh

A graphical user interface of the key management utility appears.

Creating a keystore file:

The keystore file is a key database file that contains both public keys and private keys. Public keys are

stored as signer certificates while private keys are stored in the personal certificates. The keys are used

for a variety of purposes, including authentication and data integrity. You can use both the key

management utility (iKeyman) and the keytool utility to create keystore files.

 Read the documentation located at http://www.ibm.com/developerworks/java/jdk/security/iKeymanDocs.zip

for further information.

1. Start the iKeyman utility, if it is not already running.

2. Open a new key database file by clicking Key Database File > New from the menu bar.

3. Select the Key Database Type: JKS (default), PKCS12, and JCEKS. This is the key file format (or the

value of com.ibm.ssl.keyStoreType property in the sas.client.props file) when you configure the SSL

setting for your application.

4. Type in the file name and location. The full path of this key database file is used as the key file name

(or the value of the com.ibm.ssl.keyStore property in the sas.client.props file) when you configure

the SSL setting for your application.

5. Click OK to continue.

6. Then, type in password to restrict access to the file. This password is used as the key file password

(or the value of com.ibm.ssl.keyStorePassword property in the sas.client.props file) when you

configure the SSL setting for your application. Do not set an expiration date on the password or save

the password to a file; you must then reset the password when it expires or protect the password file.

This password is used only to release the information stored by the key management utility during run

time.

Chapter 8. Developing WebSphere applications 1717

7. Click OK to continue. The tool displays all of the available default signer certificates. These certificates

are the public keys of the most common certificate authorities (CAs). You can add, view or delete

signer certificates from this panel.

A new SSL keystore file is created.

Prepare keystore files for an SSL connection.

Specify the keystore file in the configuration of WebSphere Application Server. Create a truststore if one

does not yet exist.

Creating self-signed personal certificates:

A self-signed personal certificate is a temporary digital certificate you issue to yourself, acting as the

certificate authority (CA). Creating a self-signed certificate creates a private key and a public key within the

key database file. The self-signed certificate is created in a keystore file and it is useful when you develop

and test your application. You can also create a self-signed personal certificate from your cryptographic

token device.

 If you want to create a self-signed certificate for a keystore, you must have already created the keystore

file. (Refer to “Creating a keystore file” on page 1717 for more information.) You can later extract the public

key and add the key as a signer certificate to other truststore files.

Read the documentation in the http://www.ibm.com/developerworks/java/jdk/security/iKeymanDocs.zip file

for further information about how to create a self-signed personal certificate within a key database file.

1. Start the key management utility, if it is not already running.

2. Click Key Database file > Open to select an existing file, or click Key Database file > New to select

a new file. Select ″CMS″ for Key database type, select ″key.kdb″ for file name, and enter a directory

for the file location.

3. Click New Self-Signed from the tool bar or click Create > New Self-Signed Certificate.

4. Select the X509 version and the key size that suits your application.

5. Enter the appropriate information for your self-signed certificate:

Key Label

Give the certificate a key label, which is used to uniquely identify the certificate within the

keystore file. If you have only one certificate in each keystore file, you can assign any value to

the label. However, it is good practice to use a unique label related to the server name.

Common Name

Enter the common name. This name is the primary, universal identity for the certificate; it

should uniquely identify the principal that it represents. In a WebSphere environment,

certificates frequently represent server principals, and the common convention is to use

common names of the form host_name and server_name. The common name must be valid in

the configured user registry for the secured WebSphere environment.

Organization

Enter the name of your organization.

Optional fields

Enter the organization unit (a department or division), location (city), state and province (if

applicable), zip code (if applicable), and select the two-letter identifier of the country in which

the server belongs. For a self-signed certificate, these fields are optional. However, commercial

CAs might require them.

Validity period

Specify the lifetime of the certificate in days, or accept the default.

6. Click OK.

Your key database file now contains a self-signed personal certificate.

1718 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

http://www.ibm.com/developerworks/java/jdk/security/iKeymanDocs.zip

Create a self-signed test certificate for testing purposes. If you need a test certificate signed by a

certificate authority, follow the procedure in Creating a certification request.

Requesting certificate authority-signed personal certificates:

In a production environment, use a personal certificate signed by a certificate authority (CA). The principal

or the owner of the CA-signed personal certificate is authenticated by a CA when the CA signs the

principal certificate. Since the certificate authorities (CAs) keep their private keys secure, the signed

certificate is more trustworthy than a self-signed certificate. Certificate authorities are entities that issue

valid certificates for other entities. Well-known CAs include VeriSign, Entrust, and GTE CyberTrust. You

can request a test certificate or a production certificate from some of the CAs like VeriSign.

 The authentication process by a CA can take time. Commercial CAs often require up to a week to

complete their authentication process. Even on-site CAs can take several minutes, if not hours, or even

days, to complete their authentication process. Therefore, you must plan for the certificates that you need.

Considering the following points when you plan for the CA-signed certificate:

v On the certificate signing request that you send to the CA, specify the common name for the certificate.

The common name is the primary, universal identity for the certificate. It should uniquely identify the

principal that it represents. Verify that the common name is valid in the configured user registry for the

WebSphere domain.

v Check the formatting of the address fields that your CA requires when planning the address for a

certificate request.

1. Create and send a certificate signing request (CSR) to the CA.

2. Visit the CA Web site and follow the instructions to request a test or production certificate.

Once the request is accepted, the certificate authority verifies your identity and finally issues a signed

certificate to you. The certificate is usually sent through e-mail.

Request a production certificate from a trusted CA for the production WebSphere Application Server

environment. Once you receive the e-mail from the CA, follow the instructions to store your signed

certificate as a file. Receive or store the certificate into the keystore file as a personal certificate.

Creating certificate signing requests:

To obtain a certificate from a certificate authority, submit a certificate signing request (CSR) using the key

management utility (iKeyman). You can request either production or test certificates from a CA with a CSR.

With the key management utility, generating a certificate signing request also generates a private key for

the application for which the certificate is requested. The private key remains in the application keystore

file, so it stays private. The public key is included in the certificate requested.

 For information on how to create a certificate signing request from a key database file, see the

http://www.ibm.com/developerworks/java/jdk/security/iKeymanDocs.zip file.

1. Start the key management utility, if it is not already running.

2. Open the key database file from which you want to generate the request.

3. Type the password and click OK.

4. Click Create > New Certificate Request. The Create New Key and Certificate Request window

displays.

5. Type a Key Label, a Common Name, and Organization; and select a Country. For the remaining

fields, accept the default value, type a value, or select new values. The common name must be valid

in the configured user registry for the secured WebSphere environment.

6. Type in a name for the file, such as certreq.arm.

7. Click OK to complete.

Chapter 8. Developing WebSphere applications 1719

http://www.ibm.com/developerworks/java/jdk/security/iKeymanDocs.zip

8. Optional: On UNIX-based platforms, remove the end of line characters (^M) from the certificate

signing request. To remove the end of line characters, type the following command:

cat certreq.arm |tr -d ″\r″ > new_certreq.arm

9. Send the certreq.arm file to the certificate authority (CA) following the instructions from the CA Web

site for requesting a new certificate.

The Personal Certificate Requests list shows the key label of the new digital certificate request you just

created. Send the file to a CA to request a new digital certificate, or cut and paste the request into the

request forms of the CA Web site.

You need to request a certificate authority-signed digital certificate for your secure WebSphere domain.

Once you submit the certificate signing request, wait for the CA to accept the request. After the CA has

verified your identity, it sends back the signed certificate usually through e-mail. Receive the signed

certificate back to the keystore file from which you generated the CSR.

Receiving certificate authority-signed personal certificates:

Once the certificate signing request (CSR) is accepted, a certificate authority (CA) processes the request

and verifies your identity. Once approved, the CA sends the signed certificate back through e-mail. Store

the signed certificate in a keystore database file. This procedure describes how to receive the CA-signed

certificate into a keystore file using the key management utility (iKeyman). You use this utility the same

way for both test certificates and production certificates. The primary difference between the two certificate

types is the amount of time it takes for the CA to authenticate the principal your certificate represents. Test

certificates are authenticated automatically based on some simple edit checks and returned to you within a

few hours. Production certificates may take several days or a week to authenticate and return to you. If the

CSR request is made for the cryptographic token, the certificate must be received into that token. If the

request is made for the secondary key database of the token, the certificate must be received into that

database.

 Receive the signed certificate from the CA through e-mail. Follow the instructions from the CA to store the

certificate into a file.

Read the http://www.ibm.com/developerworks/java/jdk/security/iKeymanDocs.zip file for further information

about how to receive a personal certificate into a key database file from the CA.

1. Start IKeyman, if it is not already running.

2. Open the key database file from which you generated the request.

3. Type the password and click OK.

4. Select Personal Certificates from the pull-down list.

5. Click Receive.

6. Click Data type and select the data type of the new digital certificate, such as Base64-encoded ASCII

data. Select the data type that matches the CA-signed certificate. If the CA sends the certificate as part

of an E-mail message, you may first need to cut and paste the certificate into a separate file.

7. Type the certificate file name and location for the new digital certificate, or click Browse to locate the

CA-signed certificate.

8. Click OK.

9. Type a label for the new digital certificate and click OK.

The personal certificate list now displays the label you just gave for the new CA-signed certificate.

Once the CA-signed certificate is successfully received, you can extract or export the public key of the

certificate to a file for distribution to the network.

Extracting public certificates for truststore files:

1720 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Use this procedure to extract a public certificate, which includes its public key, from a keystore file. If a

target truststore file already contains the signer certificate of the certificate authority (CA) that signed the

certificate, you do not need to extract and add the certificate to the target truststore file. However, in

general, you need to complete this procedure for a self-signed certificate.

 Extracting a certificate from one keystore file and adding it to a truststore file is not the same as exporting

the certificate and then importing it. Exporting a certificate copies all the certificate information, including its

private key, and is normally only used if you want to copy a personal certificate into another keystore file

as a personal certificate.

If a certificate is self-signed, extract the certificate and its public key from the keystore file and add it to the

target truststore file.

If a certificate is CA-signed, verify that the CA certificate used to sign the certificate is listed as a signer

certificate in the target truststore file. The keystore file must already exist and contain the certificate to be

extracted.

Read the http://www.ibm.com/developerworks/java/jdk/security/iKeymanDocs.zip file for further information

about how to extract a public certificate from a key database file.

1. Start the key management utility (iKeyman), if it is not already running.

2. Open the keystore file from which the public certificate will be extracted.

3. Select Personal Certificates.

4. Click Extract Certificate.

5. Click Base64-encoded ASCII data under Data type.

6. Enter the Certificate File Name and Location.

7. Click OK to export the public certificate into the specified file.

A certificate file that contains the public key of the signed personal certificate is now available for the target

truststore file.

Prepare truststore files for distributing the public keys to support the secure WebSphere domain using

Secure Sockets Layer (SSL). Once the keystore and truststore files are ready, make them accessible by

specifying them in your client and server configurations.

Creating truststore files:

A truststore file is a key database file that contains the public keys for target servers. The public key is

stored as a signer certificate. If the target uses a self-signed certificate, extract the public certificate from

the server keystore file. Add the extracted certificate into the truststore file as a signer certificate. For a

commercial certificate authority (CA), the CA root certificate is added. The truststore file can be a more

publicly accessible key database file that contains all the trusted certificates.

 Read the documentation located at http://www.ibm.com/developerworks/java/jdk/security/iKeymanDocs.zip

for further information.

1. Start the key management utility (iKeyman), if it is not already running.

2. Open a new key database file by clicking Key Database File > New from the menu bar.

3. Click the Key Database Type: JKS(Default), PKCS12, and JCEKS. The key database type is the trust

file format (or the value of the com.ibm.ssl.trustStoreType property in the sas.client.props file)

when you configure the SSL setting for your application.

4. Type in the file name and location. The full path of this key database file is used as the trust file name

(or the value of com.ibm.ssl.trustStore property in the sas.client.props) when you configure the

SSL setting for your application.

5. Click OK to continue.

Chapter 8. Developing WebSphere applications 1721

6. Type in a password to restrict access to the file. This password is used as the trust file password (or

the value of the com.ibm.ssl.trustStorePassword property in the sas.client.props file) when you

configure the SSL setting for your application. Do not set an expiration date on the password or save

the password to a file. You must reset the password when it expires or protect the password file. This

password is used only to release the information stored by the key management utility during run time.

7. Click OK to continue. The tool now displays all of the available default signer certificates. These are

the public keys of the most common CAs. You can add, view or delete signer certificates from this

screen.

A new SSL truststore file is created.

Prepare truststore files for an SSL connection. Specify the truststore file in the configuration of WebSphere

Application Server. Create a keystore file if one does not exist.

Importing signer certificates:

A signer certificate is the trusted certificate entry that is usually in a truststore file. You can import a

certificate authority (CA) root certificate from the CA, or a public certificate from the self-signed personal

certificate of the target into your truststore file, as a signer certificate.

 Read the documentation located in http://www.ibm.com/developerworks/java/jdk/security/iKeymanDocs.zip

file for further information.

 1. Start the key management utility (iKeyman), if it is not already running.

 2. Open the truststore file. The Password Prompt window displays.

 3. Type the password and click OK.

 4. Select Signer Certificates from the menu.

 5. Click Add.

 6. Click Data type and select a data type, such as Base64-encoded ASCII data. This data type must

match the data type of the importing certificate.

 7. Type a certificate file name and location for the CA root digital certificate or click Browse to select the

name and location.

 8. Click OK.

 9. Type a label for the importing certificate.

10. Click OK.

The Signer Certificates field now displays the label of the signer certificate you just added. Receive a CA

root certificate or the public key from your secure target.

Map certificates to users:

Client-side certificates support access to secured resources from Web or Java clients. A client presents an

X.509-compliant digital certificate to perform mutual authentication with a single sockets layer-enabled

server. The product security run time attempts to map the certificate to a known user in the associated

Lightweight Directory Access Protocol (LDAP) directory or the custom registry. If the certificate successfully

maps to a user, then the holder of the certificate is regarded as the user in the registry and is authorized

as this user. In the case of LocalOS registry, the DN is parsed and the name between the first equals (=)

and comma (,) is used as the mapped name. If the DN does not contain the ″=″, the complete name is

used. If there is no ″,″ in the DN, everything after the ″=″ is used as the name.

After the single sockets layer-enabled server gets the client certificate, the server needs to map the

certificate to a user. WebSphere Application Server supports two techniques for mapping certificates to

entries in LDAP registries:

v By exact distinguished name

1722 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

v By matching attributes in the certificate to attributes of LDAP entries

1. Map by exact distinguished name (DN).

This approach attempts to map the distinguished name (DN) associated with the Subject field in the

certificate to an entry in the LDAP directory. If the mapping is successful, the user is authenticated and

is authorized according to the privileges granted to the identity in the LDAP directory.

The mapping is case insensitive. For example, the following two DNs match on a case-insensitive

comparison:

"cn=Smith, ou=NewUnit, o=NewCompany, c=us"

"cn=smith, ou=newunit, o=NewCompany, c=US"

If a match is found, authentication succeeds; if no match is found, authentication fails.

2. Map by filtering certificate attributes.

This approach maps certificate attributes to attributes of entries in an LDAP directory. For example,

you can specify that the common name (CN) attribute of the Subject field in the certificate must match

the uid attribute of your LDAP entry. If the mapping is successful, the user is authenticated and is

authorized according to the privileges granted to the identity in the LDAP directory.

If you are matching the Subject CN field in the certificate to the uid attribute of the LDAP entry, a

certificate with the Subject DN ″cn=Smith, ou=NewUnit, o=NewCompany, c=us″ matches an LDAP user

entry with uid=Smith.

To use this mapping technique, you must request certificate mapping and set up the certificate filter in

the administrative console.

This specification extracts the CN field from the Subject attribute in the certificate (Smith) and creates a

filter (user ID = Smith) from it. The LDAP directory is searched for a user entry that matches the filter. If an

entry matches the filter, authentication succeeds.

Note: The search and match of the LDAP directory are based in part on how your LDAP directory is

configured.

Changes to IBM Developer Kit for Java Technology Edition Version 1.4.x: WebSphere Application

Server, Version 5.1 includes the IBM Developer Kit, Java Technology Edition Version 1.4.x, which contains

changes to the IBM Developer Kit, Java Technology Edition Version 1.3.x. This document is intended to

assist application developers and system administrators in understanding the changes.

Security packaging changes in IBM Developer Kit, Java Technology Edition Version 1.4.x

In IBM Developer Kit, Java Technology Edition Version 1.4.x, many of the security technologies have been

included in the core of the IBM Developer Kit, Java Technology Edition Version 1.4.x. Because of the

packaging changes, we are supporting specific java.security configurations for each platform. This

document discusses the impact these java.security configuration changes have on each platform.

Security providers for the Windows, Linux, and AIX platforms

The Windows, Linux, and AIX platforms use all of the IBM security provider implementations, which is

similar to how IBM Developer Kit, Java Technology Edition Version 1.3.x shipped. Because the security

technologies in IBM Developer Kit, Java Technology Edition Version 1.3.x, were not part of the core, these

technologies were shipped in the java/jre/lib/ext directory and provided more flexibility in implementing

the technologies. Only those JSSE providers configured by WebSphere Application Server are supported.

The following list shows the providers and sequence of how these providers are supported on the

Windows, Linux, and AIX platforms. Add any additional providers at the end of this list of providers. The

IBMJSSE, IBMJSSE2 and IBMJSSEFIPS providers are the only SSL providers supported on these

platforms. You must configure HTTP and JMS transports to use the IBMJSSE2 providers because they

use the channel framework (asynchronous network I/O (NIO) APIs from Java SDK 1.4.2). The NIO APIs

only work with the IBMJSSE2 provider and the channel framework.

Chapter 8. Developing WebSphere applications 1723

security.provider.1=com.ibm.crypto.provider.IBMJCE

security.provider.2=com.ibm.jsse.IBMJSSEProvider

security.provider.3=com.ibm.security.jgss.IBMJGSSProvider

security.provider.4=com.ibm.security.cert.IBMCertPath

security.provider.5=com.ibm.crypto.pkcs11.provider.IBMPKCS11

Security providers for the Sun Solaris environment

In the Sun Solaris environment, by default, we are using the IBM JSSE framework classes. These classes

enable you to plug-in the IBMJSSE, IBMJSSE2, and IBMJSSEFIPS providers. You must configure HTTP

and JMS transports to use the IBMJSSE2 providers because they use the channel framework

(asynchronous network I/O (NIO) APIs from Java SDK 1.4.2). The NIO APIs only work with the IBMJSSE2

provider and the channel framework.

The following list shows thee default provider lists for the Sun Solaris environment. Add any additional

providers to the end of this list.

security.provider.1=com.ibm.security.jgss.IBMJGSSProvider

security.provider.2=sun.security.provider.Sun

security.provider.3=com.ibm.crypto.provider.IBMJCE

security.provider.4=com.ibm.jsse.IBMJSSEProvider

security.provider.5=com.ibm.security.cert.IBMCertPath

security.provider.6=com.ibm.crypto.pkcs11.provider.IBMPKCS11

Note: You only need to uncomment the IBMPKCS11 provider when using IKeyMan to access a

cryptographic token device. The WAS runtime now uses the IBMPKCS11Impl provider for

cryptographic token access, instead of the IBMPKCS11 provider. To get more information on this

provider, please see ″Security: Resources for Learning″ for information on this provider.

Security providers for the HP-UX platform

In the HP-UX environment, by default, IBM JSSE framework classes are used. These classes enable you

to plug-in the IBMJSSE, IBMJSSE2 and IBMJSSEFIPS providers. You must configure HTTP and JMS

transports to use the IBMJSSE2 providers because they use the channel framework (asynchronous

network I/O (NIO) APIs from Java SDK 1.4.2). The NIO APIs only work with the IBMJSSE2 provider and

the channel framework.

security.provider.1=com.ibm.security.jgss.IBMJGSSProvider

security.provider.2=sun.security.provider.Sun

security.provider.3=com.ibm.crypto.provider.IBMJCE

security.provider.4=com.ibm.jsse.IBMJSSEProvider

security.provider.5=com.ibm.security.cert.IBMCertPath

security.provider.6=com.ibm.crypto.pkcs11.provider.IBMPKCS11

Note: You must uncomment the IBMPKCS11 provider when using IKeyMan to access a cryptographic

token device. The WAS runtime now uses the IBMPKCS11Impl provider for cryptographic token

access, instead of the IBMPKCS11 provider. To obtain more information about this provider, see the

″Security: Resources for Learning″ article.

Changes to the CertPath API package name

In IBM Developer Kit, Java Technology Edition Version 1.3.x, the package for CertPath APIs was

javax.security.cert.*. However, in IBM Developer Kit, Java Technology Edition Version 1.4.x, the package

has changed to java.security.cert.*. While your applications might still work using javax.security.cert.* due

to the oldcertpath.jar packaged in ${WAS_INSTALL_ROOT}/java/jre/lib/ext/oldcertpath.jar file, change

your applications to use the new package name for CertPath from this point forward. In this release, either

1724 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

package name should work, but it is recommended that you use the correct package, which is

java.security.cert.*.

Known problems with IBM Developer Kit, Java Technology Edition Version 1.4.x

For a list of known problems with the various platforms related to the IBM Developer Kit, Java Technology

Edition Version 1.4.x changes, please review the release notes for WebSphere Application Server, Version

5.1.

There are some known issues with the the IBMJSSE2 provider:

v When configuring a cryptographic token device, you must use the IBMJSSE2 provider. There is a

dependency on the new IBMPKCS11Impl provider for cryptographic token support. This provider can

only be initialized once in a JVM, and is done programmatically by the WebSphere Application Server

runtime when a cryptographic token device is configured. The user of the IBMPKCS11Impl provider in

applications is not supported unless the cryptographic token device is not configured for use by

WebSphere Application Server.

v FIPS support does not exist for the IBMJSSE2 provider because there currently is not an IBMJCEFIPS

that can be used with IBMJSSE2.

v Any transport using the channel framework, including HTTP and JMS, must use the IBMJSSE2

provider.

v Any transport using the channel framework, including HTTP and JMS, must use the IBMJSSE2

provider.

v To use AES_256 ciphers for IBMJSSE2, you must download the JCE Unlimited Strength Jurisdiction

Policy.

v IBMJSSE2 provider’s HTTPS protocol handler is ″com.ibm.net.ssl.www2.protocol.Handler″. The

package to add to the package handler property is ″com.ibm.net.ssl.www2.protocol″.

Cryptographic token support

A cryptographic token is a hardware or software device with a built-in keystore implementation. The

cryptographic device is used to manage certificates stored on the cryptographic tokens (also known as

smartcards).

Both cryptographic accelerators, where the cryptographic hardware device has no persistent key storage,

and secure cryptographic hardware, where a cryptographic token generates and securely stores the

private key used for Secure Sockets Layer (SSL) key exchange, are supported in the product.

Hardware cryptographic token support has changed providers in Version 6. In Version 5 and before,

WebSphere Application Server used com.ibm.crypto.pkcs11.provider.IBMPKCS11 provider for hardware

crypto support along with the old IBMJSSE provider for SSL. The IBMPKCS11 provider is still used when

accessing hardware using IKeyMan. The IBMJSSE provider can still be used, if necessary, for SSL.

Note: To use cryptographic token devices in the Solaris Operating Environment, you must edit the

${WAS_INSTALL_ROOT}/java/jre/lib/security/java.security file. Uncomment the line containing

com.ibm.crypto.pkcs11.provider.IBMPKCS11. By default, the line is commented out because the

algorithm MD4 is not present in the IBMPKCS11 provider.

The WebSphere Application Server runtime in Version 6 now uses the

com.ibm.crypto.pkcs11impl.provider.IBMPKCS11Impl provider for hardware crypto support and the

IBMJSSE2 provider for SSL. Both the IBMPKCS11Impl and IBMJSSE2 providers are initialized

programmatically. The IBMPKCS11Impl provider is only initialized when hardware crypto is configured in

one of the SSL repertoire configurations. Once IBMPKCS11Impl provider is configured, the IBMPKCS11

provider cannot be used in the system since only one provider can initialize a hardware crypto card in the

same process.

Chapter 8. Developing WebSphere applications 1725

Please see the following document for more information on the IBMPKCS11Impl provider:

http://www.ibm.com/developerworks/java/jdk/security/142/pkcs11implDocs.zip

Please see the following document for more information on the IBMJSSE2 provider:

http://www.ibm.com/developerworks/java/jdk/security/142/jsse2docs.zip

Opening a cryptographic token using the key management utility (iKeyman)

Verify that your cryptographic token device is installed and functions properly. Create a cryptographic

token, following the instructions provided by the manual of the cryptographic device.

From your cryptographic token device documentation, identify the token library. For example, the IBM 4758

PCI Cryptographic Card uses CRYPTOKI.DLL as the PKCS#11-type token library (see

http://www.ibm.com/security/cryptocards/html/library.shtml for details).

Read the documentation located in the

http://www.ibm.com/developerworks/java/jdk/security/142/ikmuserguide.pdf file for further information about

using the key management utility (iKeyman).

Important: To use iKeyMan for key management with a cryptographic token device, you must edit the

${WAS_INSTALL_ROOT}/java/jre/lib/security/java.security file. Uncomment the line containing

com.ibm.crypto.pkcs11.provider.IBMPKCS11.

You can use the key management utility to open a cryptographic token. Once opened, you can manage

your keys and certificates just like you do with keystore and truststore files:

v Create a self-signed digital certificate

v Extract or add both certificate authority (CA) roots and personal certificate signer certificates

v Request and receive a digital certificate from a CA

1. Start the key management utility, if it is not already running.

2. Click Key DataBase File > Open.

3. Click Cryptographic Token from the list of key database types.

4. Fill in the information for File Name and Location, or browse for the cryptographic device library.

5. Click OK to open the library.

6. Type in the slot number in the next panel. This is the number of the slot in which you previously

created the cryptographic token.

7. Enter the password. This is the password configured for the cryptographic token that you created.

All of the personal and signer certificates are stored on the cryptographic token card. With the token open,

you can create or request digital certificates and receive CA-signed certificates.

Use a cryptographic token device as a key database to manage keys and certificates for an SSL

connection. Once the cryptographic token is open, you can add or delete keys and certificates. Configure

the cryptographic token settings in WebSphere Application Server.

Configuring to use cryptographic tokens

You can configure cryptographic token support in both client and server configuration. To configure a Java

client application, use the sas.client.props configuration file. By default, the sas.client.props is located

in the install_root/profiles/profile_name/properties/ directory of your WebSphere Application Server

installation. To configure WebSphere Application Server, start the administrative console by specifying the

following URL: http://server_hostname:9060/ibm/console.

To understand how to make WebSphere Application Server (both the run time and the key management

utility) work correctly with any cryptographic token device, become familiar with the Java Secure Socket

Extension (JSSE) documentation available in the

1726 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

http://www.ibm.com/security/cryptocards/html/library.shtml

http://www.ibm.com/developerworks/java/jdk/security/142/jsse2docs.zip. and

http://www.ibm.com/developerworks/java/jdk/security/142/ikmuserguide.pdf files.

Follow the documentation that accompanies your device to install your cryptographic device. Installation

instructions for IBM cryptographic hardware devices can be found in the Administration section of

″Security: Resources for learning″ in the information center.

Note: You cannot use cryptographic token devices when you have Federal Information Processing

Standard (FIPS) enabled.

Important: To use iKeyMan for key management with a cryptographic token device, you must edit the

${WAS_INSTALL_ROOT}/java/jre/lib/security/java.security file. Uncomment the line

containing com.ibm.crypto.pkcs11.provider.IBMPKCS11.

WebSphere Application Server Version 6 and later runtime uses the IBMPKCS11Impl provider

instead of the IBMPKCS11 provider for hardware crypto support. See

http://www.ibm.com/developerworks/java/jdk/security/142/pkcs11implDocs.zip for more

information. Refer to the ″IBM Java PKCS 11 Implementation Provider.htm″ document located

in this zip file.

Note: To use cryptographic token devices in the Solaris Operating Environment, you must edit the

${WAS_INSTALL_ROOT}/java/jre/lib/security/java.security file. Uncomment the line containing

com.ibm.crypto.pkcs11.provider.IBMPKCS11. By default, the line is commented out because the

algorithm MD4 is not present in the IBMPKCS11 provider.

1. To configure a client to use a cryptographic token, edit the sas.client.props file and set the following

properties. Leave the KeyStore File Name, KeyStore File Password, TrustStore File Name,

TrustStore File Password fields in a Secure Sockets Layer (SSL) configuration blank (or comment

out the properties com.ibm.ssl.trustStore, com.ibm.ssl.trustStorePassword, com.ibm.ssl.keyStore, and

com.ibm.ssl.keyStorePassword, using a # in front of the property name) , if you want to use only

cryptographic tokens as your keystore.

com.ibm.ssl.tokenType

Specifies the type of built-in keystore file that is implemented in the cryptographic token. (For

example, com.ibm.ssl.tokenType=PKCS\#11). The valid values are: PKCS\#7, PKCS\#11,

PKCS\#12, and MSCAPI.

com.ibm.ssl.tokenLibraryFile

Specifies the token file name for PKCS#7 tokens, PKCS#12 tokens, and the library name for

PKCS#11, MSCAPI tokens. Make sure the cryptographic token device is installed and

functions properly with a cryptographic token created.

com.ibm.ssl.tokenPassword

Specifies the password to unlock the cryptographic token.

2. Configure your server to use the cryptographic device. Leave the KeyStore File Name, KeyStore File

Password, TrustStore File Name, TrustStore File Password fields in an SSL configuration blank, if

you want to use only cryptographic tokens as your keystore. You can modify an existing configuration if

you click Security > SSL > alias. You must specify an alias and select the Cryptographic token

option. The following directions explain how to configure WebSphere Application Server for a new

cryptographic device.

a. Specify http://server_hostname:9060/ibm/console to start the administrative console.

b. Click Security > SSL to open the SSL Configuration Repertoires panel. You must decide if you

want to modify existing SSL repertoire entries to convert them to use hardware cryptographic

devices, or create new SSL repertoire entries for the new configuration. The former is easiest as

this does not require you to change any of the alias references elsewhere in the configuration.

Each protocol picks up the new configuration since it’s already referencing these existing aliases.

The latter is a little more difficult as you might not change every location that needs to be

referenced by the new aliases. However, you have more control over which protocols actually use

the cryptographic token device. If you want a specific protocol to use the cryptographic token

Chapter 8. Developing WebSphere applications 1727

http://www.ibm.com/developerworks/java/jdk/security/142/jsse2docs.zip.
http://www.ibm.com/developerworks/java/jdk/security/142/ikmuserguide.pdf

device, it is best to create a new SSL repertoire for the cryptographic token device, then associate

the alias of the new SSL repertoire with the specific protocol’s SSL configuration.

c. Click New JSSE Repertoire to create a new SSL setting alias if you do not want to use the

default.

d. Specify an alias name in the alias field for the new cryptographic device. After you configure the

cryptographic device, the alias appears on the Secure Sockets Layer (SSL) configuration

repertoires panel. To access the panel, click Security > SSL.

e. Select Cryptographic token check box and click OK. This opens the Cryptographic token -

General Properties panel.

f. Complete the information for Token Type to specify the type of built-in keystore file that is

implemented in the cryptographic token. The valid values are: PKCS#7, PKCS#11, PKCS#12,or

MSCAPI.

g. Complete the information for Library File to specify the path to the cryptographic device driver.

Make sure the cryptographic token device is installed and functions properly with a new

cryptographic token.

h. Complete the information for Password to specify the password for unlocking the cryptographic

device.

i. Click OK. This returns you to the SSL configuration repertoires - General Properties panel for

this alias.

j. Optionally, to configure a specific Token Slot for the cryptographic token device, click Custom

Properties from the SSL configuration repertoires - General Properties panel. Add a new property

name, com.ibm.ssl.tokenSlot, and a property value with the slot number, for example: 0.

Optionally, to configure the selection of a specific inbound certificate alias (the alias selected for

server transports) within the configured slot, add a new property name,

com.ibm.ssl.keyStoreServerAlias, with a property value equal to the certificate alias name as it

appears when viewing the slot through iKeyMan. Optionally, to configure the selection of a specific

outbound certificate alias (the alias selected for client transports) within the configured slot, add a

new property name, com.ibm.ssl.keyStoreClientAlias, with a property value equal to the certificate

alias name as it appears when viewing the slot through iKeyMan, for example. Click OK to exit the

Custom Properties panel and return to the SSL configuration repertoires - General Properties panel.

k. Make sure the SSL configurations when associated with a transport have the appropriate signers

added to the truststore or cryptographic token device so that they can contact all servers for which

they are configured. For example, any CSIv2 outbound transport should have signers for all CSIv2

inbound transports that they are connecting to. This means that all CSIv2 inbound keystores (or

cryptographic token devices) must have the public key of personal certificates extracted, and added

as signers to the CSIv2 outbound truststores (or cryptographic token devices).

l. The following lists the locations of where SSL configuration repertoire aliases are used in the

WebSphere Application Server configuration:

For any transports that use the new NIO channel chains, including HTTP and JMS, you can modify

the aliases from the following location for each server:

v Click Server > Application server >server_name. Under Communications, click Ports. Locate a

transport chain where SSL is enabled and click View associated transports. Click

transport_channel_name. Under Transport Channels, click SSL Inbound Channel (SSL_2).

For the Object Request Broker (ORB) SSL transports, you can modify the SSL configuration

repertoire aliases in the following locations. These configurations are for the server-level for

WebSphere Application Server and WebSphere Application Server Express and the cell level for

WebSphere Application Server Network Deployment.

v Click Security > Global security. Under Authentication, click Authentication protocol > CSIv2

Inbound Transport.

v Click Security > Global security. Under Authentication, click Authentication protocol > CSIv2

Outbound Transport.

1728 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

v Click Security > Global security. Under Authentication, click Authentication protocol > SAS

Inbound Transport.

v Click Security > Global security. Under Authentication, click Authentication protocol > SAS

Outbound Transport.

For the Simple Object Access Protocol (SOAP) Java Management Extensions (JMX) administrative

transports, you can modify the SSL configurations repertoire aliases by clicking Servers >

Application servers >server_name. Under Server infrastructure, click Administration >

Administration services. Under Additional properties, click JMX connectors > SOAPConnector.

Under Additional properties, click Custom properties. If you want to point the sslConfig property to

a new alias, click sslConfig and select an alias in the Value field.

For the Lightweight Directory Access Protocol (LDAP) SSL transport, you can modify the SSL

configuration repertoire aliases by clicking Security > Global security. Under User registries, click

LDAP.

m. Finish configuring the SSL settings for this alias. When using hardware cryptographic tokens, you

must use a JSSE provider of type IBMJSSE2. The IBMPKCS11Impl provider only works with the

IBMJSSE2 provider.

3. Now that you have the aliases configured in the SSL configuration repertoires panel, you must

associate the aliases with each protocol that needs to use them. If you edited existing aliases, you do

not need to make any changes since they are already associated with SSL protocols. However, if you

created new aliases and want to rearrange this existing alias association, then proceed to the next

step.

4. Repeat steps a. through l. to edit existing or create new SSL configuration repertoires for creating a

cryptographic token configuration for use by the IBMJSSE2 provider.

5. Click OK to complete the editing of the SSL configuration repertoire for this alias.

The WebSphere Application Server configuration is configured to take advantage of a cryptographic token

device for cryptographic functions used by SSL This can improve the system performance over software

encryption when SSL is used to protect your data transferred over the network.

WebSphere Application Server uses the cryptographic token as a keystore file for and SSL connection.

If the server configuration has changed, restart the configured server.

Cryptographic token settings:

Use this page to configure cryptographic token settings. A cryptographic token is a hardware or software

device with a built-in key store implementation. The cryptographic device is used to manage certificates

stored on the cryptographic tokens. These devices are also known as smartcards.

 The following types of cryptographic accelerators are supported by WebSphere Application Server:

v A cryptographic hardware device that is without a persistent key storage.

v Secure cryptographic hardware, where a cryptographic token generates and securely stores the private

key used for Secure Sockets Layer (SSL) key exchange.

To view this administrative console page, click Security > SSL > alias_name. Under Additional Properties,

click Cryptographic token.

Token type:

Specifies the type of built-in keystore file that is implemented in the cryptographic token, such as

PKCS#11.

Chapter 8. Developing WebSphere applications 1729

The WebSphere Application Server uses an implementation of Java Secure Socket Extension (JSSE) to

support cryptographic token with Secure Sockets Layer (SSL). Different cryptographic devices are

supported. For an SSL server, the following devices are supported:

v IBM 4758-23

v nCipher nForce

v Rainbow Cryptoswift

For an SSL client, the following devices are supported:

v IBM 4758-23

v nCipher nForce

v Rainbow Cryptoswift

v IBM Security Kit Smartcard

v GemPlus Smartcards

v Rainbow iKey 1000/2000 (USB ″Smartcard″ device)

v Eracom CSA8000

Follow the documentation that accompanies your device to install your cryptographic token.

 Data type: String

Library file:

Specifies the dynamic link library (DLL) or shared object that implements the interface to the cryptographic

token device.

 Data type: String

Password:

Specifies the password for the cryptographic token device.

 Data type: String

Using Java Secure Socket Extension and Java Cryptography Extension with

Servlets and enterprise bean files

Java Secure Socket Extension

Java Secure Socket Extension (JSSE) provides the transport security for WebSphere Application Server. It

provides application programming interface (API) framework and the implementation of the APIs, for

Secure Sockets Layer (SSL) and Transport Layer Security (TLS) protocols, including functionality for data

encryption, message integrity and authentication.

JSSE APIs are integrated into the Java 2 SDK, Standard Edition (J2SDK), Version 1.4. The API package

for JSSE APIs is javax.net.ssl.*. Documentation for using JSSE APIs can be found in the J2SE 1.4.2

JavaDoc located at http://java.sun.com/j2se/1.4.2/docs/api/index.html.

Several JSSE providers ship with the J2SDK 1.4 that comes with WebSphere Application Server. The

IBMJSSE provider is used in previous WebSphere releases. Associated with the IBMJSSE provider is the

IBMJSSEFIPS provider, which is used when FIPS is enabled on the server. Both of these providers do not

work with the JMS and HTTP transports in WebSphere Application Server Version 6. These transports

take advantage of the J2SDK 1.4 network input/output (NIO) asynchronous channels.

The HTTP and JMS transports use a new IBMJSSE2 provider. All other transports in WebSphere

Application Server Version 6 currently use the IBMJSSE2 provider, but can be switched to the old

1730 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

IBMJSSE provider, if necessary (specified in the SSL repertoire configuraiton). You can specify the

IBMJSSEFIPS provider for all transports with the exception of JMS and HTTP.

For more information on the new IBMJSSE2 provider, please review the documentation located in

http://www.ibm.com/developerworks/java/jdk/security/142/jsse2docs.zip. Once unzipped, the JSSE2

Reference Guide can be found at jsse2Docs/JSSE2RefGuide.html, the JSSE2 API documentation can be

found at jsse2Docs/api/index.html and finally, the JSSE2 samples can be found at jsse2Docs/samples.

Customizing Java Secure Socket Extension

You can customize a number of aspects of JSSE by plugging in different implementations of Cryptography

Package Provider, X509Certificate and HTTPS protocols, or specifying different default keystore files, key

manager factories and trust manager factories. A provided table summarizes which aspects can be

customized, what the defaults are, and which mechanisms are used to provide customization. Some of the

key customizable aspects follow:

 Customizable item Default How to customize

X509Certificate X509Certificate

implementation from IBM

cert.provider.x509v1 security property

HTTPS protocol Implementation from IBM java.protocol.handler.pkgs system property

Cryptography Package Provider IBMJSSE A security.provider.n= line in security properties file.

See description.

Default keystore None * javax.net.ssl.keyStore system property

Default truststore jssecacerts, if it exists.

Otherwise, cacerts

* javax.net.ssl.trustStore system property

Default key manager factory IbmX509 ssl.KeyManagerFactory.algorithm security property

Default trust manager factory IbmX509 ssl.TrustManagerFactory.algorithm security property

For aspects that you can customize by setting a system property, statically set the system property by

using the -D option of the Java command (you can set the system property using the administrative

console), or set the system property dynamically by calling the java.lang.System.setProperty method in

your code: System.setProperty(propertyName,″propertyValue″).

For aspects that you can customize by setting a Java security property, statically specify a security

property value in the java.security properties file located in the install_root/java/jre/lib/security

directory. The security property is propertyName=propertyValue. Dynamically set the Java security property

by calling the java.security.Security.setProperty method in your code.

Application Programming Interface

The JSSE provides a standard application programming interface (API) available in packages of the

javax.net file, javax.net.ssl file, and the javax.security.cert file. The APIs cover:

v Sockets and SSL sockets

v Factories to create the sockets and SSL sockets

v Secure socket context that acts as a factory for secure socket factories

v Key and trust manager interfaces

v Secure HTTP URL connection classes

v Public key certificate API

You can find more information documented for the JSSE APIs if you download and unzip the

http://www.ibm.com/developerworks/java/jdk/security/142/jsse2Docs.zip and look at the

jsse2Docs/api/index.html file.

Chapter 8. Developing WebSphere applications 1731

Samples using Java Secure Socket Extension

The Java Secure Socket Extension (JSSE) also provides samples to demonstrate its functionality. The

Java Secure Socket Extension (JSSE) also provides samples to demonstrate its functionality. Download

and unzip the samples included in the

http://www.ibm.com/developerworks/java/jdk/security/142/jsse2Docs.zip file. Look in the

jsse2Docs/samples/ directory for the following files:

 Files Description

ClientJsse.java Demonstrates a simple client and server interaction using

JSSE. All enabled cipher suites are used.

OldServerJsse.java Back-level samples

ServerPKCS12Jsse.java Demonstrates a simple client and server interaction using

JSSE with the PKCS12 keystore file. All enabled cipher

suites are used.

ClientPKCS12Jsse.java Demonstrates a simple client and server interaction using

JSSE with the PKCS12 keystore file. All enabled cipher

suites are used.

UseHttps.java Demonstrates accessing an SSL or non-SSL Web server

using the Java protocol handler of

thecom.ibm.net.ssl.www.protocol class. The URL is

specified with the http or https prefix. The HTML

returned from this site displays.

See more instructions in the source code. Follow these instructions before you run the samples.

Permissions for Java 2 security

You might need the following permissions to run an application with JSSE: (This is a reference list only.)

v java.util.PropertyPermission ″java.protocol.handler.pkgs″, ″write″

v java.lang.RuntimePermission ″writeFileDescriptor″

v java.lang.RuntimePermission ″readFileDescriptor″

v java.lang.RuntimePermission ″accessClassInPackage.sun.security.x509″

v java.io.FilePermission ″${user.install.root}${/}etc${/}.keystore″, ″read″

v java.io.FilePermission ″${user.install.root}${/}etc${/}.truststore″, ″read″

For the IBMJSSE provider:

v java.security.SecurityPermission ″putProviderProperty.IBMJSSE″

v java.security.SecurityPermission ″insertProvider.IBMJSSE″

For the SUNJSSE provider:

v java.security.SecurityPermission ″putProviderProperty.SunJSSE″

v java.security.SecurityPermission ″insertProvider.SunJSSE″

Debugging

By configuring through the javax.net.debug system property, JSSE provides the following dynamic debug

tracing: -Djavax.net.debug=true.

A value of true turns on the trace facility, provided that the debug version of JSSE is installed.

Documentation

See the ″Security: Resources for learning″ article for documentation references to JSSE.

1732 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

JCE

Java Cryptography Extension (JCE) provides cryptographic, key and hash algorithms for WebSphere

Application Server. It provides a framework and implementations for encryption, key generation, key

agreement, and Message Authentication Code (MAC) algorithms. Support for encryption includes

symmetric, asymmetric, block and stream ciphers.

IBMJCE

The IBM version of the Java Cryptography Extension (IBMJCE) is an implementation of the JCE

cryptographic service provider that is used in WebSphere Application Server. The IBMJCE is similar to

SunJCE, except that the IBMJCE offers more algorithms:

v Cipher algorithm (AES, DES, TripleDES, PBEs, Blowfish, and so on)

v Signature algorithm (SHA1withRSA, MD5withRSA, SHA1withDSA)

v Message digest algorithm (MD5, MD2, SHA1, SHA-256, SHA-384, SHA-512)

v Message authentication code (HmacSHA1, HmacMD5)

v Key agreement algorithm (DiffieHellman)

v Random number generation algorithm (IBMSecureRandom, SHA1PRNG)

v Key store (JKS, JCEKS, PKCS12)

The IBMJCE belongs to the com.ibm.crypto.provider.* packages.

For further information, see the http://www.ibm.com/developerworks/java/jdk/security/142/jceDocs.zip

file.

IBMJCEFIPS

The IBM version of the Java Cryptography Extension Federal Information Processing Standard

(IBMJCEFIPS) is an implementation of the JCE cryptographic service provider that is used in WebSphere

Application Server. The IBMJCEFIPS service provider implements the following:

v Signature algorithms (SHA1withDSA, SHA1withRSA)

v Cipher algorithms (AES, TripleDES, RSA)

v Key agreement algorithm (DiffieHellman)

v Key (pair) generator (DSA, AES, TripleDES, HmacSHA1, RSA, DiffieHellman)

v Message authentication code (MAC) (HmacSHA1)

v Message digest (MD5, SHA-1, SHA-256, SHA-384, SHA-512)

v Algorithm parameter generator (DiffieHellman, DSA)

v Algorithm parameter (AES, DiffieHellman, DES, TripleDES, DSA)

v Key factory (DiffieHellman, DSA, RSA)

v Secret key factory (AES, TripleDES)

v Certificate (X.509)

v Secure random (IBMSecureRandom)

Application Programming Interface

Java Cryptography Extension (JCE) has a provider-based architecture. Providers can be plugged into the

JCE framework by implementing the APIs defined by the JCE. The JCE APIs covers:

v Symmetric bulk encryption, such as DES, RC2, and IDEA

v Symmetric stream encryption, such as RC4

v Asymmetric encryption, such as RSA

v Password-based encryption (PBE)

v Key Agreement

v Message Authentication Codes

Chapter 8. Developing WebSphere applications 1733

There is more information documented for the JCE APIs in the

http://www.ibm.com/developerworks/java/jdk/security/jceDocs.zip file.

Samples using Java Cryptography Extension

There are samples located in http://www.ibm.com/developerworks/java/jdk/security/142/jceDocs.zip

file. Unzip the file and locate the following samples in thejceDocs/samples directory:

 File Description

SampleDSASignature.java Demonstrates how to generate a pair of DSA keys (a

public key and a private key) and use the key to digitally

sign a message using the SHA1with DSA algorithm

SampleMarsCrypto.java Demonstrates how to generate a Mars secret key, and

how to do Mars encryption and decryption

SampleMessageDigests.java Demonstrates how to use the message digest for MD2

and MD5 algorithms

SampleRSACrypto.java Demonstrates how to generate an RSA key pair, and how

to do RSA encryption and decryption

SampleRSASignatures.java Demonstrates how to generate a pair of RSA keys (a

public key and a private key) and use the key to digitally

sign a message using the SHA1withRSA algorithm

SampleX509Verification.java Demonstrates how to verify X509 Certificates

Documentation

Refer to the ″Security: Resources for learning″ for documentation on JCE.

Java 2 security

Java 2 security provides a policy-based, fine-grain access control mechanism that increases overall

system integrity by checking for permissions before allowing access to certain protected system resources.

Java 2 security guards access to system resources such as file I/O, sockets, and properties. J2EE security

guards access to Web resources such as servlets, JavaServer Pages (JSP) files and EJB methods.

WebSphere global security includes J2EE role-based authorization, the Common Secure Interoperability

Version 2 (CSIv2) authentication protocol, and Secure Sockets Layer (SSL) configuration.

Since Java 2 security is relatively new, many existing or even new applications might not be prepared for

the very fine-grain access control programming model that Java 2 security is capable of enforcing.

Administrators should understand the possible consequences of enabling Java 2 security if applications

are not prepared for Java 2 security. Java 2 security places some new requirements on application

developers and administrators.

Java 2 security for deployers and administrators

Although Java 2 security is supported in WebSphere Application Server Version 5, it is disabled by default.

However, it is enabled automatically if you also enable global security when configuring security. Although

it becomes enabled automatically when you enable WebSphere global security, you can choose to disable

it. You can configure Java 2 security and global security independently of one another. Disabling global

security does not disable Java 2 security automatically. You need to explicitly disable it.

If your applications, or third-party libraries are not ready, having Java 2 security enabled causes problems.

You can identify these problems as Java 2 security AccessControlExceptions in the SystemOut.log file,

1734 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

SystemError.log file, or the trace log files. If you are unsure about the Java 2 security readiness of your

applications, disable Java 2 security initially to get your application installed and verify that it is working

properly.

There are implications if Java 2 Security is enabled; deployers or administrators are required to make sure

that all the applications are granted the required permissions, otherwise, applications might fail to run. By

default, applications are granted the permissions recommended in the J2EE 1.3 Specification. For details

of default permissions granted to applications in the product, refer to the following policy files:

v install_root/java/jre/lib/security/java.policy

v install_root/properties/server.policy

v install_root/config/cells/<cell name>/nodes/<node_name>/app.policy

Note: This policy embodied by these policy files cannot be made more restrictive because the product

might not have the necessary Java 2 security doPrivileged APIs in place. The restrictive policy is

the default policy. You can grant additional permissions, but you cannot make the default more

restrictive because AccessControlExceptions is generated from within WebSphere Application

Server. The product does not support a more restrictive policy than the default defined in the policy

files previously mentioned.

There are several policy files used to define the security policy for the Java process. These policy files are

static (code base is defined in the policy file) and they are in the default policy format provided by the IBM

Developer Kit, Java Technology Edition. For enterprise application resources and utility libraries,

WebSphere Application Server provides dynamic policy support. The code base is dynamically calculated

based on deployment information and permissions are granted based on template policy files during run

time. Refer to the article, Java 2 security policy files for more information.

Note: Syntax errors in the policy files cause the application server process to fail. Edit these policy files

carefully using the Policy Tool provided by the IBM Developer Kit, Java Technology Edition for

editing the policy files (install_root/java/jre/bin/policytool).

If an application is not prepared for Java 2 security, if the application provider does not provide a

was.policy file as part of the application, or if the application provider does not communicate the expected

permissions the application is likely to cause Java 2 security access control exceptions at run time. It

might not be obvious that an application is not prepared for Java 2 security. Several run-time debugging

aids help troubleshoot applications that might have access control exceptions. See the Java 2 security

debugging aids for more details. See Handling applications that are not Java 2 security ready for

information and strategies for dealing with such applications.

It is important to note that when Java 2 Security is enabled in the Global Security settings, the installed

SecurityManager does not currently check modifyThread and modifyThreadGroup permissions for

non-system threads. Allowing Web and EJB application code to create or modify a thread can have a

negative impact on other components of the container and can affect the capability of the container to

manage enterprise bean life cycles and transactions.

Java 2 security for application developers

Application developers must understand the permissions granted in the default WebSphere policy and the

permission requirements of the SDK APIs that their application calls to know whether additional

permissions are required. The ″Permissions in the Java 2 SDK″ reference in the resources section

describes which APIs require which permission.

Application providers can assume that applications have the permissions granted in the default policy

previously mentioned. Applications that access resources not covered by the default WebSphere policy are

required to grant the additional Java 2 security permissions to the application.

Chapter 8. Developing WebSphere applications 1735

While it is possible to grant the application additional permissions in one of the other dynamic WebSphere

policy files or in one of the more traditional static policy files, such as java.policy, the was.policy (which

is embedded in the EAR file) ensures the additional permissions are scoped to the exact application that

requires them. Scoping the permission beyond the application code that requires it can permit code that

normally does not have permission to access particular resources.

If an application component is being developed, like a library that might actually be included in more than

one .ear file, then the library developer should document the required Java 2 permissions needed by the

application assembler. There is no was.policy file for library type components. The developer must

communicate the required permissions through application programming interface (API) documentation or

some other external documentation.

If the component library is shared by multiple enterprise applications, the permissions can be granted to all

enterprise applications on the node in the app.policy file.

If the permission is only used internally by the component library and the application should never be

granted access to resources protected by the permission, then it might be necessary to mark the code as

privileged (inserting doPrivileged). Refer to the article, AccessControlException, for more details.

However, improperly inserting a doPrivileged might open up security holes. Understand the implication of

doPrivileged to make a correct judgement whether a doPrivileged should be inserted or not.

The section on Dynamic Policy describes how the permissions in the was.policy files are granted at run

time.

Developing an application with Java 2 security in mind might be a new skill and impose a security

awareness not previously required of application developers. Describing the Java 2 security model and the

implications on application development is beyond the scope of this section. The following URL can help

you get started: http://java.sun.com/j2se/1.3/docs/guide/security/index.html.

Debugging Aids

There are two primary aids, the WebSphere SystemOut.log file and the

com.ibm.websphere.java2secman.norethrow property.

The WebSphere SystemOut.log File

The AccessControl exception logged in the SystemOut.log file contains the permission violation that

causes the exception, the exception call stack, and the permissions granted to each stack frame. This

information is usually enough to determine the missing permission and the code requiring the permission.

The com.ibm.websphere.java2secman.norethrow Property

When Java 2 security is enabled in WebSphere Application Server, the security manager component

throws a java.security.AccessControl exception when a permission violation occurs. This exception, if not

handled, often causes a run-time failure. This exception is also logged in the SystemOut.log file.

However, when the JVM com.ibm.websphere.java2secman.norethrow property is set and has a value of

true, the security manager does not throw the AccessControl exception. This information is logged.

To set the com.ibm.websphere.java2secman.norethrow property for the server, go to the WebSphere

Application Server administrative console and click Servers > Application Servers. Under Additional

Properties, click Process Definition > Java Virtual Machine > Custom Properties > New. In the Name

field, type com.ibm.websphere.java2secman.norethrow. In the Value field, type true.

To set the com.ibm.websphere.java2secman.norethrow property for the node agent, go to the WebSphere

Application Server administrative console and click System Administration > Node Agents. Under

1736 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

http://java.sun.com/j2se/1.3/docs/guide/security/index.html

Additional Properties, click Process Definition > Java Virtual Machine > Custom Properties > New. In

the Name field, type com.ibm.websphere.java2secman.norethrow. In the Value field, type true.

Note: This property is intended for a sandbox or debug environment because it instructs the security

manager not to throw the AccessControl exception. Java 2 security is not enforced. This property

should not be used in a production environment where a relaxed Java 2 security environment

weakens the integrity that Java 2 security is intended to produce.

This property is valuable in a sandbox or test environment where the application can be thoroughly tested

and the where the SystemOut.log file can be inspected for AccessControl exceptions. Since this property

does not throw the AccessControl exception , it does not propagate the call stack and does not cause a

failure. Without this property, you have to find and fix AccessControl exceptions one at a time.

Handling applications that are not Java 2 security ready

If the increased system integrity that Java 2 security provides is important, then contact the application

provider to have the application support Java 2 security or at least communicate the required additional

permissions beyond the default WebSphere policy that must be granted.

The easiest way to deal with such applications is to disable Java 2 security in WebSphere Application

Server. The downside is that this solution applies to the entire system and the integrity of the system is not

as strong as it might be. Disabling Java 2 security might not be acceptable depending on the organization

security policies or risk tolerances.

Another approach is to leave Java 2 security enabled, but to grant either just enough additional

permissions or grant all permissions to just the problematic application. Granting permissions however,

might not be a trivial thing to do. If the application provider has not communicated the required

permissions in some way, there is no easy way to determine what the required permissions are and

granting all permissions might be the only choice. You minimize this risk by locating this application on a

different node, which might help isolate it from certain resources. Grant the java.security.AllPermission

permission in the was.policy file embedded in the application’s .ear file, for example:

grant codeBase ″file:${application}″ {

 permission java.security.AllPermission;

 };

install_root/properties/server.policy

This policy defines the policy for the WebSphere classes. At present, all the server processes on the same

installation share the same server.policy file. However, you can configure this file so that each server

process can have a separate server.policy file. Define the desired policy file as the value of the Java

system properties java.security.policy. For details of how to define Java system properties, Refer to the

Process definition section of the Manage application servers file.

The server.policy file is not a configuration file managed by the repository and the file replication service.

Changes to this file are local and do not get replicated to other machines. Use the server.policy file to

define Java 2 security policy for server resources. Use the app.policy file (per node) or was.policy file

(per enterprise application) to define Java 2 security policy for enterprise application resources.

WAS_HOME/java/jre/lib/security/java.policy

The file represents the default permissions granted to all classes. The policy of this file applies to all the

processes launched by the WebSphere Application Server JVM.

Chapter 8. Developing WebSphere applications 1737

Troubleshooting

Symptom:

Error message CWSCJ0314E: Current Java 2 security policy reported a potential violation of Java 2 security

permission. Refer to Problem Determination Guide for further

information.{0}Permission\:{1}Code\:{2}{3}Stack Trace\:{4}Code Base Location\:{5} Current Java 2 security

policy reported a potential violation of Java 2 Security Permission. Refer to Problem Determination Guide

for further information.{0}Permission\:{1}Code\:{2}{3}Stack Trace\:{4}Code Base Location\:{5}

Problem:

The Java security manager checkPermission() reported a SecurityException on the subject permission with

debugging information. The reported information can be different with respect to the system configuration.

This report is enabled by either configuring RAS trace into debug mode or specifying a Java property.

See ″Enabling tracing and logging″ in the information center for information on how to configure RAS trace

in debug mode.

Specify the following property in the JVM Settings panel from the administrative console:

java.security.debug. Valid values include:

access

Print all debug information including: required permission, code, stack, and code base location.

stack Print debug information including: required permission, code, and stack.

failure Print debug information including: required permission and code.

Recommended response:

The reported exception might be critical to the secure system. Turn on security trace to determine the

potential code that might have violated the security policy. Once the violating code is determined, verify if

the attempted operation is permitted with respect to Java 2 security, by examining all applicable Java 2

security policy files and the application code.

Note: If the application is running with Java Mail, this message might be benign. User can update the

was.policy file to grant the following permissions to the application.

permission java.io.FilePermission ″${user.home}${/}.mailcap″, ″read″;

permission java.io.FilePermission ″${user.home}${/}.mime.types″, ″read″;

permission java.io.FilePermission ″${java.home}${/}lib${/}mailcap″, ″read″;

permission java.io.FilePermission ″${java.home}${/}lib${/}mime.types″, ″read″;

Messages

 Message: CWSCJ0313E: Java 2 security manager debug message

flags are initialized\: TrDebug: {0}, Access: {1}, Stack: {2},

Failure: {3}

Problem: Configured values of the valid debug message flags for

security manager.

Recommended response: None.

 Message: CWSCJ0307E: Unexpected exception is caught when trying

to determine the code base location. Exception: {0}

Problem: An unexpected exception is caught when the code base

location is determined.

1738 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Recommended response: Contact an IBM representative.

Access control exception:

The Java 2 security behavior is specified by its security policy. The security policy is an access-control

matrix that specifies which system resources certain code bases can access and who must sign them. The

Java 2 security policy is declarative and it is enforced by the

java.security.AccessController.checkPermission method.

 The following example depicts the algorithm for the java.security.AccessController.checkPermission

method. For the complete algorithm, refer to the Java 2 security check permission algorithm in ″Resources

for learning″ in the Securing applications PDF.

i = m;

while (i > 0) {

 if (caller i’s domain does not have the permission)

 throw AccessControlException;

 else if (caller i is marked as privileged)

 return;

 i = i - 1;

};

The algorithm requires that all the classes or callers on the call stack have the permissions when a

java.security.AccessController.checkPermission method is performed or the request is denied and a

java.security.AccessControlException exception is created. However, if the caller is marked as privileged

and the class (caller) is granted these permissions, the algorithm returns and does not traverse the entire

call stack. Subsequent classes (callers) do not need the required permission granted.

A java.security.AccessControlException exception is created when certain classes on the call stack are

missing the required permissions during a java.security.AccessController.checkPermission method. Two

possible resolutions to the java.security.AccessControlException exception are as follows:

v If the application is calling a Java 2 security-protected API, grant the required permission to the

application Java 2 security policy. If the application is not calling a Java 2 security-protected API directly,

the required permission results from the side-effect of the third-party APIs accessing Java 2

security-protected resources.

v If the application is granted the required permission, it gains more access than it needs. In this case, it

is likely that the third party code that accesses the Java 2 security-protected resource is not properly

marked as privileged.

Example call stack

This example of a call stack indicates where application code is using a third-party API utility library to

update the password. The following example is presented to illustrate the point. The decision of where to

mark the code as privileged is application-specific and is unique in every situation. This decision requires

great depth of domain knowledge and security expertise to make the correct judgement. A number of well

written publications and books are available on this topic. Referencing these materials for more detailed

information is recommended.

Chapter 8. Developing WebSphere applications 1739

You can use the PasswordUtil utility to change the password of a user. The utility types in the old

password and the new password twice to ensure that the correct password is entered. If the old password

matches the one stored in the password file, the new password is stored and the password file updates.

Assume that none of the stack frame is marked as privileged. According to the

java.security.AccessController.checkPermission algorithm, the application fails unless all the classes on the

call stack are granted write permission to the password file. The client application does not have

permission to write to the password file directly and to update the password file at will.

However, if the PasswordUtil.updatePasswordFile method marks the code that accesses the password file

as privileged, then the check permission algorithm does not check for the required permission from

classes that call thePasswordUtil.updatePasswordFile method for the required permission as long as the

PasswordUtil class is granted the permission. The client application can successfully update a password

without granting the permission to write to the password file.

The ability to mark code privileged is very flexible and powerful. If this ability is used incorrectly, the overall

security of the system can be compromised and security holes can be exposed. Use the ability to mark

code privileged carefully.

Resolution to the java.security.AccessControlException exception

As described previously, you have two approaches to resolve a java.security.AccessControlException

exception. Judge these exceptions individually to decide which of the following resolutions is best:

1. Grant the missing permission to the application.

2. Mark some code as privileged, after considering the issues and risks.

Configuring Java 2 security

Java 2 security is a programming model that is very pervasive and has a huge impact on application

development. It is disabled by default, but is enabled automatically when global security is enabled.

However, Java 2 security is orthogonal to J2EE role-based security; you can disable or enable it

independently of Global Security.

However, it does provide an extra level of access control protection on top of the J2EE role-based

authorization. It particularly addresses the protection of system resources and APIs. Administrators should

need to consider the benefits against the risks of disabling Java 2 Security.

The following recommendations are provided to help enable Java 2 security in a test or production

environment:

AccessController.checkPermission()

SecurityManager..checkPermission()

SecurityManager..checkWrite()

java.io.FileOutputStream()

PasswordUtil.updatePasswordFile()

Client Code ...

PasswordUtil.getPassword()

System domain

Application domain

Utility library domain

1740 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

1. Make sure the application is developed with the Java 2 security programming model in mind.

Developers have to know whether or not the APIs used in the applications are protected by Java 2

security. It is very important that the required permissions for the APIs used are declared in the policy

file (was.policy), or the application fails to run when Java 2 security is enabled. Developers can

reference the Web site for Development Kit APIs that are protected by Java 2 security. See the

Programming model and decisions section of the ″Security: Resources for learning″ article in the

information center.

2. Make sure that migrated applications from previous releases are given the required permissions. Since

Java 2 security is not supported or partially supported in previous WebSphere Application Server

releases, applications developed prior to Version 5 most likely are not using the Java 2 security

programming model. There is no easy way to find out all the required permissions for the application.

Following are activities you can perform to determine the extra permissions required by an application:

v Code review and code inspection

v Application documentation review

v Sandbox testing of migrated enterprise applications with Java 2 security enabled in a pre-production

environment. Enable tracing in WebSphere Java 2 security manager to help determine the missing

permissions in the application policy file. The trace specification is

com.ibm.ws.security.core.SecurityManager=all=enabled.

v Use the com.ibm.websphere.java2secman.norethrow system property to aid debuggging. This

property should not be used in a production environment. Refer to “Java 2 security” on page 1734.

Note: The default permission set for applications is the recommended permission set defined in the J2EE

1.3 Specification. The default is declared in the

profiles/profile_name/config/cells/cell_name/nodes/node_name/app.policy policy file with

permissions defined in the Development Kit (JAVA_HOME/jre/lib/security/java.policy) policy file

that grant permissions to everyone. However, applications are denied permissions declared in the

profiles/profile_name/config/cells/cell_name/filter.policy filter policy file. Permissions

declared in the filter.policy file are filtered for applications during the permission check.

Note: Define the required permissions for an application in a was.policy file and embed the was.policy

file in the application enterprise archive (EAR) file as YOURAPP.ear/META-INF/was.policy (see

“Configuring Java 2 security policy files” on page 1747 for details).

The following steps describe how to enforce Java 2 security on the cell level for WebSphere Application

Server Network Deployment and the server level for WebSphere Application Server and WebSphere

Application Server Express:

1. Click Security > Global security. The Global security panel is displayed.

2. Select the Enforce Java 2 security option.

3. Click OK or Apply.

4. Click Save to save the changes.

5. Restart the server for the changes to take effect.

Java 2 security is enabled and enforced for the servers. Java 2 security permission is selected when a

Java 2 security protected API is called.

When to use Java 2 security

1. To enable protection on system resources. For example, when opening or listening to a socket

connection, reading or writing to operating system file systems, reading or writing Java Virtual Machine

system properties, and so on.

2. To prevent application code calling destructive APIs. For example, calling the System.exit() method

brings down the application server.

3. To prevent application code from obtaining privileged information (passwords) or gaining extra

privileges (obtaining server credentials).

Chapter 8. Developing WebSphere applications 1741

The WebSphere Java 2 security manager is enhanced to dump the Java 2 security permissions granted to

all classes on the call stack when an application is denied access to a resource (the

java.security.AccessControlException exception is thrown). However, this tracing capability is disabled

by default. You can enable it by specifying the server trace service with the

com.ibm.ws.security.core.SecurityManager=all=enabled trace specification. When the exception is

thrown, the trace dump provides hints to determine whether the application is missing permissions or the

product run time code or third party libraries used are not properly marked as privileged when accessing

Java 2 protected resources. See the ″Security components troubleshooting tips″ in the information center

for details.

Using PolicyTool to edit policy files:

Java 2 security uses several policy files to determine the granted permission for each Java program. See

Dynamic policy for the list of available policy files. The Java Development Kit provides policytool to edit

these policy files. This tool is recommended for editing any policy file to verify the syntax of its contents.

Syntax errors in the policy file cause an AccessControlException during application execution, including

the server start. Identifying the cause of this exception is not easy because the user might not be familiar

with the resource that has an access violation. Be careful when you edit these policy files.

1. Start policytool. Enter %{was.install.root}/java/jre/bin/policytool from a command prompt.

The policytool window opens. The policytool looks for the .java.policy file in your home directory. If it

does not exist, an Error message displays. Click OK.

2. Click File > Open.

3. Navigate the directory tree in the Open window to pick up the policy file that you need to update. After

selecting the policy file, click Open. The code base entries are listed in the window.

4. Create or modify the code base entry.

a. Modify the existing code base entry by double-clicking the code base, or click the code base and

click Edit Policy Entry. The Policy Entry window opens with the permission list defined for the

selected code base.

b. Create a new code base entry by clicking Add Policy Entry. The Policy Entry window opens. At

the code base column, enter the code base information as a URL format, for example,

/WebSphere/AppServer/InstalledApps/testcase.ear.

5. Modify or add the permission specification

a. Modify the permission specification by double-clicking the entry you want to modify, or by selecting

the permission and clicking Edit Permission. The Permissions window opens with the selected

permission information.

b. Add a new permission by clicking Add Permission. The Permissions window opens. In the

Permissions, window there are four rows for Permission, Target Name, Actions, and Signed By.

6. Select the permission from the Permission list. The selected permission displays. After a permission is

selected, the Target Name, Actions, and Signed By fields automatically show the valid choices or

they enable text input in the right text input area.

a. Select Target Name from the list, or enter the target name in the right text input area.

b. Select Actions from the list.

c. Input Signed By if it is needed.

Important: The Signed By keyword is not supported in the following policy files: app.policy,

spi.policy, library.policy, was.policy, and filter.policy files. However, the

Signed By keyword is supported in the following policy files:java.policy,

server.policy, and client.policy files. The Java Authentication and Authorization

Service (JAAS) is not supported in the app.policy, spi.policy, library.policy,

was.policy, and filter.policy files. However, the JAAS principal keyword is

supported in a JAAS policy file when it is specified by the Java Virtual Machine (JVM)

system property, java.security.auth.policy.

1742 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

7. Click OK to close the Permissions window. Modified permission entries of the specified code base

display.

8. Click Done to close the window. Modified code base entries are listed. Repeat steps 4 through 8 until

you complete editing.

9. Click File > Save after you finish editing the file.

A policy file is updated. If any policy files need editing, use the policytool. Do not edit the policy file

manually. Syntax errors in the policy files can potentially cause application servers or enterprise

applications to not start or function incorrectly. For the changes in the updated policy file to take effect,

restart the Java processes.

Java 2 security policy files:

The J2EE 1.3 specification has a well-defined programming model of responsibilities between the

container providers and the application code. Using Java 2 security manager to help enforce this

programming model is recommended. Certain operations are not supported in the application code

because such operations interfere with the behavior and operation of the containers. The Java 2 security

manager is used in the product to enforce responsibilities of the container and the application code.

 This product provides support for policy file management. A number of policy files in the product are either

static or dynamic. Dynamic policy is a template of permissions for a particular type of resource. No relative

code base is defined in the dynamic policy template. The code base is dynamically calculated from the

deployment and run-time data.

Static policy files

 Policy file Location

java.policy install_root/java/jre/lib/security/java.policy. Default permissions granted to all

classes. The policy of this file applies to all the processes launched by WebSphere Application

Server.

server.policy install_root/profiles/profile_name/properties/server.policy. Default permissions

granted to all the product servers.

client.policy install_root/profiles/profile_name/properties/client.policy. Default permissions for all

of the product client containers and applets on a node.

The static policy files are not managed by configuration and file replication services. Changes made in

these files are local and are not replicated to other nodes in the Network Deployment cell.

Dynamic policy files

 Policy file Location

spi.policy install_root/profiles/profile_name/config/cells/cell_name

/nodes/node_name/spi.policy

This template is for the Service Provider Interface (SPI) or the third-party resources that are

embedded in the product. Examples of SPI are the Java Message Service (JMS) in MQ

Series and JDBC drivers. The code base for the embedded resources are dynamically

determined from the configuration (resources.xml file) and run-time data, and permissions

that are defined in the spi.policy files are automatically applied to these resources and JAR

files specified in the class path of a ResourceAdapter. The default permission of the

spi.policy file is java.security.AllPermissions.

Chapter 8. Developing WebSphere applications 1743

Policy file Location

library.policy install_root/profiles/profile_name/config/cells/cell_name

/nodes/node_name/library.policy

This template is for the library (Java library classes). You can define a shared library to use in

multiple product applications. The default permission of the library.policy is empty.

app.policy install_root/profiles/profile_name/config/cells/cell_name

/nodes/node_name/app.policy

The app.policy file defines the default permissions that are granted to all the enterprise

applications running on node_name in cell_name.

was.policy install_root/config/cells/cell_name

/applications/ear_file_name/deployments/

application_name/META-INF/was.policy

This template is for application-specific permissions. The was.policy file is embedded in the

enterprise archive (EAR) file.

ra.xml rar_file_name/META-INF/was.policy.RAR.

This file can have a permission specification that is defined in the ra.xml file. The ra.xml file

is embedded in the RAR file.

Note: Grant entries that are specified in the app.policy and was.policy files must have a code base

defined. If grant entries are specified without a code base, the policy files are not loaded properly

and the application can fail. If the intent is to grant the permissions to all applications, use

file:${application} as a code base in the grant entry.

Syntax of the policy file

A policy file contains several policy entries. The following example depicts each policy entry format:

grant [codebase <Codebase>] {

permission <Permission>;

 permission <Permission>;

permission <Permission>;

};

<CodeBase>: A URL.

 For example, ″file:${java.home}/lib/tools.jar″

 When [codebase <Codebase>] is not specified, listed

 permissions are applied to everything.

 If URL ends with a JAR file name, only the classes in the

 JAR file belong to the codebase.

 If URL ends with ″/″, only the class files in the specified

 directory belong to the codebase.

 If URL ends with ″*″, all JAR and class files in the specified

 directory belong to the codebase.

 If URL ends with ″-″, all JAR and class files in the specified

 directory and its subdirectories belong to the codebase.

<Permissions>: Consists from

 Permission Type : class name of the permission

 Target Name : name specifying the target

 Actions : actions allowed on target

1744 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

For example,

 java.io.FilePermission ″/tmp/xxx″, ″read,write″

Refer to developer kit specifications for the details of each permission.

Syntax of dynamic policy

You can define permissions for specific types of resources in dynamic policy files for an enterprise

application. This action is achieved by using product-reserved symbols. The reserved symbol scope

depends on where it is defined. If you define the permissions in the app.policy file, the symbol applies to

all the resources on all of the enterprise applications that run on node_name. If you define the permissions

in the META-INF/was.policy file, the symbol applies only to the specific enterprise application. Valid

symbols for the code base are listed in the following table:

 Symbol Meaning

file:${application} Permissions apply to all resources within the application

file:${jars} Permissions apply to all utility Java archive (JAR) files

within the application

file:${ejbComponent} Permissions apply to Enterprise JavaBeans (EJB)

resources within the application

file:${webComponent} Permissions apply to Web resources within the

application

file:${connectorComponent} Permissions apply to connector resources within the

application

Other than these entries specified by the code base symbols, you can specify the module name for a

granular setting. For example:

grant codeBase ″file:DefaultWebApplication.war″ {

 permission java.security.SecurityPermission ″printIdentity″;

 };

grant codeBase ″file:IncCMP11.jar″ {

permission java.io.FilePermission

″${user.install.root}${/}bin${/}DefaultDB${/}-″,

″read,write,delete″;

};

The sixth and seventh lines in the previous code sample are one continuous line.

You can use a relative code base only in the META-INF/was.policy file.

Several product-reserved symbols are defined to associate the permission lists to a specific type of

resources.

 Symbol Meaning

file:${application} Permissions apply to all resources within the application

file:${jars} Permissions apply to all utility JAR files within the

application

file:${ejbComponent} Permissions apply to enterprise beans resources within

the application

Chapter 8. Developing WebSphere applications 1745

Symbol Meaning

file:${webComponent} Permissions apply to Web resources within the

application

file:${connectorComponent} Permissions apply to connector resources both within the

application and in stand-alone connector resources.

Five embedded symbols are provided to specify the path and the name for the java.io.FilePermission

permission. These symbols enable flexible permission specification. The absolute file path is fixed after the

installation of the application.

 Symbol Meaning

${app.installed.path} Path where the application is installed

${was.module.path} Path where the module is installed

${current.cell.name} Current cell name

${current.node.name} Current node name

${current.server.name} Current server name

Note: Do not use the ${was.module.path} in the ${application} entry.

Carefully determine where to add a new permission. An incorrectly specified permission causes an

AccessControlException exception. Because dynamic policy resolves the code base at run time,

determining which policy file has a problem is difficult. Add a permission only to the necessary resources.

For example, use ${ejbcomponent}, and etc instead of ${application}, and update the was.policy file

instead of the app.policy file, if possible.

Static policy filtering

Limited static policy filtering support exists. If the app.policy file and the was.policy file have permissions

that are defined in the filter.policy file with the keyword, filterMask, the run time removes the

permissions from the applications and an audit message is logged. However, if the permissions that are

defined in the app.policy and the was.policy files are compound permissions, for example,

java.security.AllPermission, the permission is not removed, but a warning message is written to the log

file. The policy filtering only supports Developer Kit permissions, (the permissions package name begins

with java or javax).

Run-time policy filtering support is provided to force stricter filtering. If the app.policy file and the

was.policy file have permissions that are defined in the filter.policy file with the keyword,

runtimeFilterMask, the run time removes the permissions from the applications no matter what

permissions are granted to the application. For example, even if a was.policy file has the

java.security.AllPermission permission granted to one of its modules, specified permissions such as

runtimeFilterMask are removed from the granted permission during run time.

If the Issue Permission Warning flag in the Global Security panel is enabled and if the app.policy file and

the was.policy file contain custom permissions (non-Developer Kit permissions, where the permissions

package name begins with java or javax), a warning message logs. The permission is not removed. If the

AllPermission permission is listed in the app.policy file and the was.policy file, a warning message logs.

Policy file editing

Using the policy tool that is provided by the Developer Kit (install_root/java/jre/bin/policytool), to

edit the previous policy files is recommended. For Network Deployment, extract the policy files from the

1746 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

repository before editing. After the policy file is extracted, use the policy tool to edit the file. Check the

modified policy files into the repository and synchronize them with other nodes.

If syntax errors exist in the policy files, the enterprise application or the server process might fail to start.

Be cautious when editing these policy files. For example, if a policy has a trailing space in the policy

permission target name, the policy fails to parse the permission properly in WebSphere Application Server,

Version 5.1 IBM Developer Kit, Java Technology Edition Version 1.4.x. In the following example, note the

space before the last quote: * \″*\″ ″

grant {

 permission javax.security.auth.PrivateCredentialPermission

 ″javax.resource.spi.security.PasswordCredential * \″*\″ ″,″read″;

};

If the permission is in a policy file loaded by the IBM Developer Kit, Java Technology Edition Version 1.4.x

policy tool, the following message might display:

Errors have occurred while opening the policy configuration.

View the warning log for more information.

or the following message might display in warning log:

Warning: Invalid argument(s) for constructor:

javax.security.auth.PrivateCredentialPermission.

To fix this problem, edit the permission and remove the trailing space. When the trailing space is removed,

the permission loads properly. The following code sample shows the corrected permission:

grant {

 permission javax.security.auth.PrivateCredentialPermission

 ″javax.resource.spi.security.PasswordCredential * \″*\″″,″read″;

}

Troubleshooting

To debug the dynamic policy, choose one of three ways to generate the detail report of the

AccessControlException exception.

v Trace (Configured by RAS trace). Enables traces with the trace specification:

 Attention: The following command is one continuous line

com.ibm.ws.security.policy.*=all=enabled:

com.ibm.ws.security.core.SecurityManager=all=enabled

v Trace (Configured by property). Specifies a Java java.security.debug property . Valid values for the

java.security.debug property are as follows:

– Access. Print all debug information including required permission, code, stack, and code base

location.

– Stack. Print debug information including, required permission, code, and stack.

– Failure. Print debug information including required permission and code.
v ffdc. Enable ffdc, modify the ffdcRun.properties file by changing Level=4and LAE=true. Look for an

Access Violation keyword in the log file.

Configuring Java 2 security policy files:

Java 2 security uses several policy files to determine the granted permissions for each Java programs.

See the “Java 2 security policy files” on page 1743 article for the list of available policy files supported by

WebSphere Application Server Version.

Chapter 8. Developing WebSphere applications 1747

There are two types of policy files supported by WebSphere Application Server: dynamic policy files and

static policy files. Static policy files provide the default permissions. Dynamic policy files provide application

permissions. There are six dynamic policy files:

 Policy file name Description

app.policy Contains default permissions for all of the enterprise applications in

the cell.

was.policy Contains application-specific permissions for an WebSphere

Application Server enterprise application. This file is packaged in

an enterprise archive (EAR) file.

ra.xml Contains connector application specific permissions for a

WebSphere Application Server enterprise application. This file is

packaged in a resource adapter archive (RAR) file.

spi.policy Contains permissions for Service Provider Interface (SPI) or

third-party resources embedded in WebSphere Application Server.

The default contents grant everything. Update this file carefully

when the cell requires more protection against SPI in the cell. This

file is applied to all of the SPIs defined in the resources.xml file.

library.policy Contains permissions for the shared library of enterprise

applications.

filter.policy Contains the list of permissions that require filtering from the

was.policy file and the app.policy file in the cell. This filtering

mechanism only applies to the was.policy and app.policy files.

In WebSphere Application Server, applications must have the appropriate thread permissions specified in

the was.policy or app.policy file. Without the thread permissions specified, the application cannot

manipulate threads and WebSphere Application Server throws a java.security.AccessControlException. The

app.policy file applies to a specified node. If you change the permissions in one app.policy file, you must

incorporate the new thread policy in the same file on the remaining nodes. Also, if you add the thread

permissions to the app.policy file, you must restart WebSphere Application Server to enforce the new

permissions. However, if you add the permissions to the was.policy file for a specific application, you do

not need to restart WebSphere Application Server. An administrator must add the following code to a

was.policy or app.policy file for an application to manipulate threads:

grant codeBase ″file:${application}″ {

permission java.lang.RuntimePermission ″stopThread″;

permission java.lang.RuntimePermission ″modifyThread″;

permission java.lang.RuntimePermission ″modifyThreadGroup″;

};

Important: The Signed By keyword is not supported in the following policy files: app.policy, spi.policy,

library.policy, was.policy, and filter.policy files. However, the Signed By keyword is

supported in the following policy files:java.policy, server.policy, and client.policy files.

The Java Authentication and Authorization Service (JAAS) is not supported in the app.policy,

spi.policy, library.policy, was.policy, and filter.policy files. However, the JAAS

principal keyword is supported in a JAAS policy file when it is specified by the Java Virtual

Machine (JVM) system property, java.security.auth.policy. You can statically set the

authorization policy files in java.security.auth.policy with auth.policy.url.n=URL where

URL is the location of the authorization policy.

1. Identify the policy file to update.

v If the permission is required by an application, update the static policy file. Refer to Configuring

static policy files.

v If the permission is required by all of the WebSphere Application Server enterprise applications in

the node, refer to Configuring spi.policy files.

1748 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

v If the permission is required only by specific WebSphere Application Server enterprise applications

and the permission is required only by connector, update the ra.xml file. Refer to ″Assembling

resource adapter (connector) modules″ in the information center. Otherwise, update the was.policy

file. Refer to ″Configuring was.policy files″ and ″Adding the was.policy file to applications″ in the

information centere .

v If the permission is required by shared libraries, refer to Configuring library.policy files.

v If the permission is required by SPI libraries, refer to Configuring spi.policy files.

Note: It is recommended to pick up the policy file with the smallest scope. You can avoid giving an

extra permission to the Java programs and protect the resources. You can update the ra.xml

file or the was.policy file rather than the app.policy file. Use specific component symbols

($(ejbcomponent), ${webComponent},${connectorComponent} and ${jars}) than ${application}

symbols. Update dynamic policy files than static policy files.

Add any permission that should never be granted to the WebSphere Application Server enterprise

application in the cell to the filter.policy file. Refer to Configuring filter.policy files.

2. Restart the WebSphere Application Server enterprise application.

The required permission is granted for the specified WebSphere Application Server enterprise application.

If an WebSphere Application Server enterprise application in a cell requires permissions, some of the

dynamic policy files need updating. The symptom of the missing permission is the exception,

java.security.AccessControlException. The missing permission is listed in the exception data, for example,

java.security.AccessControlException: access denied (java.io.FilePermission

C:\WebSphere\AppServer\java\jre\lib\ext\mail.jar read)

The previous two lines were split onto two lines because of the width of the page. However, the

permission should be on one line.

When a Java program receives this exception and adding this permission is justified, add a permission to

an adequate dynamic policy file, for example,

grant codeBase ″file:<user client installed location>″ {

permission java.io.FilePermission

″C:\WebSphere\AppServer\java\jre\lib\ext\mail.jar″, ″read″;

};

The previous two lines were split onto two lines because of the width of the page. However, the

permission should be on one line.

To decide whether to add a permission, refer to the article AccessControlException.

Configuring app.policy files:

Java 2 security uses several policy files to determine the granted permissions for each Java program. See

the Dynamic policy article for the list of available policy files supported by WebSphere Application Server.

The app.policy file is a default policy file shared by all of the WebSphere Application Server enterprise

applications. The union of the permissions contained in the following files is applied to the WebSphere

Application Server enterprise application:

v Any policy file that is specified in the policy.url.* properties in the java.security file.

v The app.policy files, which are managed by configuration and file replication services.

v The server.policy file.

v The java.policy file.

v The application was.policy file.

Chapter 8. Developing WebSphere applications 1749

v The permission specification of the ra.xml file.

v The shared library, which is the library.policy file.

In WebSphere Application Server, applications that manipulate threads must have the appropriate thread

permissions specified in the was.policy or app.policy file. Without the thread permissions specified, the

application cannot manipulate threads and WebSphere Application Server throws a

java.security.AccessControlException. If an administrator adds thread permissions to the app.policy file, the

permission change requires a restart of the WebSphere Application Server. An administrator must add the

following code to a was.policy or app.policy file for an application to manipulate threads:

grant codeBase ″file:${application}″ {

permission java.lang.RuntimePermission ″stopThread″;

permission java.lang.RuntimePermission ″modifyThread″;

 permission java.lang.RuntimePermission ″modifyThreadGroup″;

};

Important: The Signed By and the Java Authentication and Authorization Service (JAAS) principal

keywords are not supported in the app.policy file. However, the Signed By keyword is

supported in the following files: java.policy, server.policy, and the client.policy files. The

JAAS principal keyword is supported in a JAAS policy file when it is specified by the Java

Virtual Machine (JVM) system property, java.security.auth.policy. You can statically set the

authorization policy files in java.security.auth.policy with auth.policy.url.n=URL where

URL is the location of the authorization policy.

If the default permissions for enterprise applications (the union of the permissions defined in the

java.policy file, the server.policy file and the app.policy file) are enough, no action is required. The

default app.policy file is used automatically. If a specific change is required to all of the enterprise

applications in the cell, update the app.policy file. Syntax errors in the policy files cause start failures in

the application servers. Edit these policy files carefully.

Modify the app.policy file with the Policy Tool. Changes to the app.policy file are local for the node.

The default Java 2 security policies have been changed for the enterprise application.

Several product-reserved symbols are defined to associate the permission lists to a specific type of

resource.

 Symbol Meaning

file:${application} Permissions apply to all resources within the application

file:${jars} Permissions apply to all utility Java archive (JAR) files

within the application

file:${ejbComponent} Permissions apply to enterprise bean resources within the

application

file:${webComponent} Permissions apply to Web resources within the

application

file:${connectorComponent} Permissions apply to connector resources both within the

application and within stand-alone connector resources.

There are five embedded symbols provided to specify the path and name for java.io.FilePermission. These

symbols enable flexible permission specifications. The absolute file path is fixed after the installation of the

application.

1750 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Symbol Meaning

${app.installed.path} Path where the application is installed

${was.module.path} Path where the module is installed

${current.cell.name} Current cell name

${current.node.name} Current node name

${current.server.name} Current server name

Note: You cannot use the ${was.module.path} in the ${application} entry.

The app.policy file supplied by WebSphere Application Server resides at

install_root/profiles/profile_name/config/cells/cell_name/nodes/node_name/app.policy, which

contains the following default permissions:

Attention: In the following code sample, the first two lines related to permission java.io.FilePermission

were split into two lines each due to the width of the printed page.

grant codeBase ″file:${application}″ {

 // The following are required by Java mail

 permission java.io.FilePermission ″${was.install.root}${/}java${/}

 jre${/}lib${/}ext${/}mail.jar″, ″read″;

 permission java.io.FilePermission ″${was.install.root}${/}java${/}

 jre${/}lib${/}ext${/}activation.jar″, ″read″;

};

grant codeBase ″file:${jars}″ {

 permission java.net.SocketPermission ″*″, ″connect″;

 permission java.util.PropertyPermission ″*″, ″read″;

};

grant codeBase ″file:${connectorComponent}″ {

 permission java.net.SocketPermission ″*″, ″connect″;

 permission java.util.PropertyPermission ″*″, ″read″;

};

grant codeBase ″file:${webComponent}″ {

 permission java.io.FilePermission ″${was.module.path}${/}-″, ″read, write″;

 permission java.lang.RuntimePermission ″loadLibrary.*″;

 permission java.lang.RuntimePermission ″queuePrintJob″;

 permission java.net.SocketPermission ″*″, ″connect″;

 permission java.util.PropertyPermission ″*″, ″read″;

};

grant codeBase ″file:${ejbComponent}″ {

 permission java.lang.RuntimePermission ″queuePrintJob″;

 permission java.net.SocketPermission ″*″, ″connect″;

 permission java.util.PropertyPermission ″*″, ″read″;

};

If all of the WebSphere Application Server enterprise applications in a cell require permissions that are not

defined as defaults in the java.policy file, the server.policy file and the app.policy file, then update the

app.policy file. The symptom of a missing permission is the exception,

java.security.AccessControlException. The missing permission is listed in the exception data, for example,

java.security.AccessControlException: access denied (java.io.FilePermission

C:\WebSphere\AppServer\java\jre\lib\ext\mail.jar read).

Chapter 8. Developing WebSphere applications 1751

When a Java program receives this exception and adding this permission is justified, add a permission to

the server.policy file, for example:

grant codeBase ″file:<user client installed location>″ {

permission java.io.FilePermission

″C:\WebSphere\AppServer\java\jre\lib\ext\mail.jar″, ″read″; };

To decide whether to add a permission, refer to the article AccessControlException.

Restart all WebSphere Application Server enterprise applications to ensure that the updated app.policy

file takes effect.

Configuring filter.policy files:

Java 2 security uses several policy files to determine the granted permission for each Java program. Java

2 security policy filtering is only in effect when Java 2 security is enabled. Refer to Configuring Java 2

security. The filtering policy defined in the filter.policy file is cell wide. Refer to the article, Dynamic

policy, for the list of available policy files supported by WebSphere Application Server. The filter.policy

file is the only policy file used when restricting the permission instead of granting permission. The

permissions listed in the filter policy file are filtered out from the app.policy file and the was.policy file.

Permissions defined in the other policy files are not affected by the filter.policy file.

When a permission is filtered out, an audit message is logged. However, if the permissions defined in the

app.policy file and the was.policy file are compound permissions like java.security.AllPermission, for

example, the permission is not removed. A warning message is logged. If the Issue Permission Warning

flag is enabled (default) and if the app.policy file and the was.policy file contain custom permissions

(non-Java API permission, the permission package name begins with characters other than java or javax),

then a warning message is logged and the permission is not removed. You can change the value of the

Issue permission warning option on the Global Security panel. It is not recommended that you use

AllPermission for the enterprise application.

There are some default permissions defined in the filter.policy file. These permissions are the minimal

ones recommended by the product. If more permissions are added to the filter.policy file, certain

operations can fail for enterprise applications. Add permissions to the filter.policy file carefully.

An updated filter.policy file is applied to all of the WebSphere Application Server enterprise application

after the servers are restarted.

The filter.policy file is managed by configuration and file replication services. Changes made in the file

are replicated to other nodes in the Network Deployment cell.

The filter.policy file supplied by WebSphere Application Server resides at:

install_root/profiles/profile_name/config/cells/cell_name/filter.policy.

It contains these permissions as defaults:

filterMask {

permission java.lang.RuntimePermission ″exitVM″;

permission java.lang.RuntimePermission ″setSecurityManager″;

permission java.security.SecurityPermission ″setPolicy″;

permission javax.security.auth.AuthPermission ″setLoginConfiguration″; };

runtimeFilterMask {

permission java.lang.RuntimePermission ″exitVM″;

permission java.lang.RuntimePermission ″setSecurityManager″;

permission java.security.SecurityPermission ″setPolicy″;

permission javax.security.auth.AuthPermission ″setLoginConfiguration″; };

1752 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

The permissions defined in filterMask are for static policy filtering. The security run time tries to remove

the permissions from applications during application startup. Compound permissions are not removed but

are issued with a warning, and application deployment is stopped if applications contain permissions

defined in filterMask, and if scripting was used (wsadmin tool). The runtimeFilterMask defines

permissions used by the security run time to deny access to those permissions to application thread. Do

not add more permissions to the runtimeFilterMask. Application start failure or incorrect functioning might

result. Be careful when adding more permissions to the runtimeFilterMask. Usually, you only need to add

permissions to the filterMask stanza.

WebSphere Application Server relies on the filter policy file to restrict or disallow certain permissions that

could compromise the integrity of the system. For instance, WebSphere Application Server considers the

exitVM and setSecurityManager permissions as those permissions that most applications should never

have. If these permissions are granted, then the following scenarios are possible:

v exitVM -- A servlet, JSP file, enterprise bean, or other library used by the aforementioned could call the

System.exit() API and cause the entire WebSphere Application Server process to terminate.

v setSecurityManager -- An application could install its own SecurityManager that could either grant

more permissions or bypass the default policy the WebSphere Application Server SecurityManager

enforces.

For the updated filter.policy file to take effect, restart related Java processes.

Configuring the was.policy file:

Java 2 security uses several policy files to determine the granted permission for each Java program. See

“Java 2 security policy files” on page 1743 for the list of available policy files supported by WebSphere

Application Server Version 5. The was.policy file is an application-specific policy file for WebSphere

Application Server enterprise applications. It is embedded in the enterprise archive (EAR) file

(META-INF/was.policy). The was.policy file is located in:

install_root/profiles/profile_name/config/cells/cell_name/applications/

ear_file_name/deployments/application_name/META-INF/was.policy

The union of the permissions contained in the following files is applied to the WebSphere Application

Server enterprise application:

v Any policy file that is specified in the policy.url.* properties in the java.security file.

v The app.policy files, which are managed by configuration and file replication services.

v The server.policy file.

v The java.policy file.

v The application was.policy file.

v The permission specification of the ra.xml file.

v The shared library, which is the library.policy file.

Changes made in these files are replicated to other nodes in the Network Deployment cell.

Several product-reserved symbols are defined to associate the permission lists to a specific type of

resources.

 Symbol Definition

file:${application} file:${application}

file:${jars} Permissions apply to all utility Java archive (JAR) files

within the application

file:${ejbComponent} Permissions apply to enterprise bean resources within the

application

Chapter 8. Developing WebSphere applications 1753

Symbol Definition

file:${webComponent} Permissions apply to Web resources within the

application

file:${connectorComponent} Permissions apply to connector resources within the

application

In WebSphere Application Server, applications that manipulate threads must have the appropriate thread

permissions specified in the was.policy or app.policy file. Without the thread permissions specified, the

application cannot manipulate threads and WebSphere Application Server throws a

java.security.AccessControlException. If you add the permissions to the was.policy file for a specific

application, you do not need to restart WebSphere Application Server. An administrator must add the

following code to a was.policy or app.policy file for an application to manipulate threads:

grant codeBase ″file:${application}″ {

permission java.lang.RuntimePermission ″stopThread″;

permission java.lang.RuntimePermission ″modifyThread″;

permission java.lang.RuntimePermission ″modifyThreadGroup″;

};

An administrator can add the thread permissions to the app.policy file, but the permission change requires

a restart of the WebSphere Application Server.

Important: The Signed By and the Java Authentication and Authorization Service (JAAS) principal

keywords are not supported in the was.policy file. The Signed By keyword is supported in

the following policy files: java.policy, server.policy, and client.policy. The JAAS principal

keyword is supported in a JAAS policy file when it is specified by the Java Virtual Machine

(JVM) system property, java.security.auth.policy. You can statically set the authorization

policy files in java.security.auth.policy with auth.policy.url.n=URL where URL is the

location of the authorization policy.

Other than these blocks, you can specify the module name for granular settings. For example,

″file:DefaultWebApplication.war″ {

 permission java.security.SecurityPermission ″printIdentity″;

 };

grant codeBase ″file:IncCMP11.jar″ {

 permission java.io.FilePermission

 ″${user.install.root}${/}bin${/}DefaultDB${/}-″,

 ″read,write,delete″;

};

There are five embedded symbols provided to specify the path and name for the java.io.FilePermission.

These symbols enable flexible permission specification. The absolute file path is fixed after the application

is installed.

 Symbol Definition

${app.installed.path} Path where the application is installed

${was.module.path} Path where the module is installed

${current.cell.name} Current cell name

${current.node.name} Current node name

${current.server.name} Current server name

1754 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

If the default permissions for the enterprise application (union of the permissions defined in the

java.policy file, the server.policy file and the app.policy file) are enough, no action is required. If an

application has specific resources to access, update the was.policy file. The first two steps assume that

you are creating a new policy file.

Note: Syntax errors in the policy files cause the application server to fail. Use care when editing these

policy files.

1. Create or edit a new was.policy file using the Policy Tool. For more information, see “Using PolicyTool

to edit policy files” on page 1742.

2. Package the was.policy file into the enterprise archive (EAR) file.

For more information, see “Adding the was.policy file to applications” on page 1757.The following

instructions describe how to import a was.policy file.

a. Import the EAR file into an assembly tool. For more information, see ″Importing enterprise

applications″ in the information center.

b. Open the Project Navigator view.

c. Expand the EAR file and click META-INF. You might find a was.policy file in the META-INF

directory. If you want to delete the file, right-click the file name and select Delete.

d. At the bottom of the Project Navigator view, click J2EE Hierarchy.

e. Import the was.policy file by right-clicking the Modules directory within the deployment descriptor

and clicking Import > Import > File system.

f. Click Next.

g. Enter the path name to the was.policy file in the From directory field or click Browse to locate

the file.

h. Verify that the path directory listed in the Into directory field lists the correct META-INF directory.

i. Click Finish.

j. To validate the EAR file, right-click the EAR file, which contains the Modules directory, and click

Run Validation.

k. To save the new EAR file, right-click the EAR file, and click Export > Export EAR file. If you do

not save the revised EAR file, the EAR file will contain the new was.policy file. However, if the

workspace becomes corrupted, you might lose the revised EAR file.

l. To generate deployment code, right-click the EAR file and click Generate Deployment Code.

3. Update an existing installed application, if one already exists.

a. Modify the was.policy file with the Policy Tool. For more information, see “Using PolicyTool to edit

policy files” on page 1742.

The updated was.policy file is applied to the application after the application restarts.

If an application must access a specific resource that is not defined as a default in the java.policy file,

the server.policy file and the app.policy, then delete the was.policy file for that application. The

symptom of the missing permission is that the exception, java.security.AccessControlException. The

missing permission is listed in the exception data, java.security.AccessControlException: access

denied (java.io.FilePermission C:\WebSphere\AppServer\java\jre\lib\ext\mail.jar read).

When a Java program receives this exception and adding this permission is justified, add a permission to

the was.policy file: grant codeBase ″file:<user client installed location>″ { permission

java.io.FilePermission ″C:\WebSphere\AppServer\java\jre\lib\ext\mail.jar″, ″read″; };.

To determine whether to add a permission, refer to the article, “Access control exception” on page 1739.

Restart all applications for the updated app.policy file to take effect.

Configuring spi.policy files:

Chapter 8. Developing WebSphere applications 1755

Java 2 security uses several policy files to determine the granted permission for each Java program. See

“Java 2 security policy files” on page 1743 for the list of available policy files supported by WebSphere

Application Server Version 6.

Since the default permissions for Service Provider Interface (SPI) is AllPermission, the only reason to

update the spi.policy file is a restricted SPI permission. When a change in the spi.policy is required,

complete the following steps.

Syntax errors in the policy files cause the application server to fail. Edit these policy files carefully.

Important: Do not place the codebase keyword or any other keyword after the filterMask and

runtimeFilterMask keywords. The Signed By and the Java Authentication and Authorization

Service (JAAS) Principal keywords are not supported in the spi.policy file. The Signed By

keyword is supported in the following policy files: java.policy, server.policy, and

client.policy. The JAAS Principal keyword is supported in a JAAS policy file that is specified

by the Java Virtual Machine (JVM) system property, java.security.auth.policy. You can

statically set the authorization policy files in java.security.auth.policy with

auth.policy.url.n=URL where URL is the location of the authorization policy.

Modify the spi.policy file with the Policy Tool.

The updated spi.policy is applied to the SPI libraries after the Java process is restarted.

The spi.policy file is the template for SPIs (Service Provider Interface) or third-party resources embedded

in the product. Example of SPIs are Java Message Services (JMS) (MQSeries) and Java database

connectivity (JDBC) drivers. They are specified in the resources.xml file. The dynamic policy grants the

permissions defined in the spi.policy file to the class paths defined in the resources.xml file. The union

of the permission contained in the java.policy file and the spi.policy file are applied to the SPI libraries.

The spi.policy files are managed by configuration and file replication services. Changes made in these

files are replicated to other nodes in the Network Deployment cell.

The spi.policy file supplied by WebSphere Application Server resides at

install_root/profiles/profile_name/config/cells/cell_name/nodes/node_name/spi.policy. It contains

the following default permission:

grant {

 permission java.security.AllPermission;

};

Restart the related Java processes for the changes in the spi.policy file to become effective.

Configuring library.policy files:

Java 2 security uses several policy files to determine the granted permission for each Java program. See

“Java 2 security policy files” on page 1743 for the list of available policy files supported by WebSphere

Application Server Version 5. The library.policy file is the template for shared libraries (Java library

classes). Multiple enterprise applications can define and use shared libraries. Refer to Managing shared

libraries for information on how to define and manage the shared libraries.

If the default permissions for a shared library (union of the permissions defined in the java.policy file, the

app.policy file and the library.policy file) are enough, no action is required. The default library policy is

picked up automatically. If a specific change is required to share a library in the cell, update the

library.policy file.

Syntax errors in the policy files cause the application server to fail. Edit these policy files carefully.

1756 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Important: Do not place the codebase keyword or any other keyword after the grant keyword. The Signed

By keyword and the Java Authentication and Authorization Service (JAAS) Principal keyword

are not supported in the library.policy file. The Signed By keyword is supported in the

following policy files: java.policy, server.policy, and client.policy. The JAAS Principal

keyword is supported in a JAAS policy file when it is specified by the Java Virtual Machine

(JVM) system property, java.security.auth.policy. You can statically set the authorization

policy files in java.security.auth.policy with auth.policy.url.n=URL where URL is the

location of the authorization policy.

An updated library.policy is applied to shared libraries after the servers restart.

The union of the permission contained in the java.policy file, the app.policy file, and the library.policy

file are applied to the shared libraries. The library.policy file is managed by configuration and file

replication services. Changes made in the file are replicated to other nodes in the Network Deployment

cell.

The library.policy file supplied by WebSphere Application Server resides at:

install_root/config/cells/cell_name/nodes/node_name/library.policy, contains an empty permission

entry as a default. For example,

 grant {

 };

If the shared library in a cell requires permissions that are not defined as defaults in the java.policy file,

app.policy file and the library.policy file, update the library.policy file. The missing permission

causes the exception, java.security.AccessControlException. The missing permission is listed in the

exception data, for example:

 java.security.AccessControlException: access denied (java.io.FilePermission

C:\WebSphere\AppServer\java\jre\lib\ext\mail.jar read)

The previous lines are one continuous line.

When a Java program receives this exception and adding this permission is justified, add a permission to

the library.policy file, for example: grant codeBase ″file:<user client installed location>″ {

permission java.io.FilePermission ″C:\WebSphere\AppServer\java\jre\lib\ext\mail.jar″, ″read″; };

to decide whether to add a permission, refer to “Access control exception” on page 1739.

Restart the related Java processes for the changes in the library.policy file to become effective.

Adding the was.policy file to applications:

When Java 2 security is enabled for a WebSphere Application Server, all the applications that run on that

WebSphere Application Server undergo a security check before accessing system resources. An

application might need a was.policy file if it accesses resources that require more permissions than those

granted in the default app.policy file. By default, the product security reads an app.policy file that is

located in each node and grants the permissions in the app.policy file to all the applications. Include any

additional required permissions in the was.policy file. The was.policy file is only required if an application

requires additional permissions.

The default policy file for all applications is specified in the app.policy file. This file is provided by the

product security, is common to all applications, and should not be changed. Add any new permissions

required for an application in the was.policy file.

Chapter 8. Developing WebSphere applications 1757

The app.policy file is located in the install_root/config/cells/cell_name/nodes/node_name directory.

The contents of the app.policy file follow:

Attention: In the following code sample, the two permissions that are required by JavaMail were split into

two lines each due to the width of the printed page.

// The following permissions apply to all the components under the application.

grant codeBase ″file:${application}″ {

 // The following are required by JavaMail

 permission java.io.FilePermission ″

 ${was.install.root}${/}java${/}jre${/}lib${/}ext${/}mail.jar″, ″read″;

 permission java.io.FilePermission ″

 ${was.install.root}${/}java${/}jre${/}lib${/}ext${/}activation.jar″, ″read″;

};

 // The following permissions apply to all utility .jar files (other

 // than enterprise beans JAR files) in the application.

grant codeBase ″file:${jars}″ {

 permission java.net.SocketPermission ″*″, ″connect″;

 permission java.util.PropertyPermission ″*″, ″read″;

};

// The following permissions apply to connector resources within the application

grant codeBase ″file:${connectorComponent}″ {

 permission java.net.SocketPermission ″*″, ″connect″;

 permission java.util.PropertyPermission ″*″, ″read″;

};

// The following permissions apply to all the Web modules (.war files)

// within the application.

grant codeBase ″file:${webComponent}″ {

 permission java.io.FilePermission ″${was.module.path}${/}-″, ″read, write″;

 // where ″was.module.path″ is the path where the Web module is

 // installed. Refer to Dynamic policy concepts for other symbols.

 permission java.lang.RuntimePermission ″loadLibrary.*″;

 permission java.lang.RuntimePermission ″queuePrintJob″;

 permission java.net.SocketPermission ″*″, ″connect″;

 permission java.util.PropertyPermission ″*″, ″read″;

};

// The following permissions apply to all the EJB modules within the application.

grant codeBase ″file:${ejbComponent}″ {

 permission java.lang.RuntimePermission ″queuePrintJob″;

 permission java.net.SocketPermission ″*″, ″connect″;

 permission java.util.PropertyPermission ″*″, ″read″;

};

If additional permissions are required for an application or for one or more modules of an application, use

the was.policy file for that application. For example, use codeBase of ${application} and add required

permissions to grant additional permissions to the entire application. Similarly, use codeBase of

${webComponent} and ${ejbComponent} to grant additional permissions to all the Web modules and all

the enterprise bean (EJB) modules in the application. You can assign additional permissions to each

module (.war file or .jar file) as shown in the following example.

An example of adding extra permissions for an application in the was.policy file:

1758 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Attention: In the following code sample, the permission for the EJB module was split into two lines due to

the width of the printed page.

// grant additional permissions to a Web module

grant codeBase ″ file:aWebModule.war″ {

 permission java.security.SecurityPermission ″printIdentity″;

};

// grant additional permission to an EJB module

grant codeBase ″file:aEJBModule.jar″ {

 permission java.io.FilePermission ″

 ${user.install.root}${/}bin${/}DefaultDB${/}-″ .″read.write,delete″;

 // where, ${user.install.root} is the system property whose value is

 // located in the <install_root> directory.

 };

1. Create a was.policy file using the policy tool. For more information on using the policy tool, see “Using

PolicyTool to edit policy files” on page 1742

2. Add the required permissions in the was.policy file using the policy tool.

3. Place the was.policy file in the application enterprise archive (EAR) file under the META-INF directory.

Update the application EAR file with the newly created was.policy file by using the jar command.

4. Verify that the was.policy file is inserted, and start an assembly tool. For more information, see

″Starting an assembly tool″ in the information center.

a. Verify that the was.policy file in the application is syntactically correct. In an assembly tool,

right-click the enterprise application module and click Run Validation.

An application EAR file is now ready to run when Java 2 security is enabled.

This step is required for applications to run properly when Java 2 security is enabled. If the was.policy file

is not created and it does not contain required permissions, the application might not access system

resources.

The symptom of the missing permissions is the exception, java.security.AccessControlException. The

missing permission is listed in the exception data, for example:

java.security.AccessControlException: access denied (java.io.FilePermission

C:\WebSphere\AppServer\java\jre\lib\ext\mail.jar read)

The previous two lines are one continuous line.

When an application program receives this exception and adding this permission is justified, include the

permission in the was.policy file, for example,

grant codeBase ″file:${application}″ { permission java.io.FilePermission

″C:\WebSphere\AppServer\java\jre\lib\ext\mail.jar″, ″read″; };

The previous two lines are one continuous line.

Install the application.

Configuring static policy files:

Java 2 security uses several policy files to determine the granted permission for each Java program. See

the “Java 2 security policy files” on page 1743 article for the list of available policy files supported by

WebSphere Application Server Version 5.

Chapter 8. Developing WebSphere applications 1759

There are two types of policy files supported by WebSphere Application Server Version 5, dynamic policy

files and static policy files. Static policy files provide the default permissions. Dynamic policy files provide

application’s permissions.

 Policy file name Description

java.policy Contains default permissions for all of the Java programs

on the node. This file seldom changes.

server.policy Contains default permissions for all of the WebSphere

Application Server programs on the node. This files is

rarely updated.

client.policy Contains default permissions for all of the applets and

client containers on the node.

The static policy file is not a configuration file managed by the repository and the file replication service.

Changes to this file are local and do not get replicated to the other machine.

1. Identify the policy file to update.

v If the permission is required only by an application, update the dynamic policy file. Refer to

“Configuring Java 2 security policy files” on page 1747.

v If the permission is required only by applets and client containers, update the client.policy file.

Refer to “Configuring client.policy files” on page 1763.

v If the permission is required only by WebSphere Application Server (servers, agents, managers and

application servers), update the server.policy file. Refer to “Configuring server.policy files” on page

1762.

v If the permission is required by all of the Java programs running on the Java virtual machine (JVM),

update the java.policy file. Refer to “Configuring java.policy files.”

2. Stop and restart the WebSphere Application Server.

The required permission is granted for all of the Java programs running with the restarted JVM.

If Java programs on a node require permissions, the policy file needs updating. If the Java program that

required the permission is not part of an enterprise application, update the static policy file. The missing

permission causes the exception, java.security.AccessControlException. The missing permission is listed in

the exception data, for example:

java.security.AccessControlException: access denied (java.io.FilePermission

C:\WebSphere\AppServer\java\jre\lib\ext\mail.jar read)

When a Java program receives this exception and adding this permission is justified, add a permission to

an adequate policy file, for example:

grant codeBase ″file:<user client installed location>″ {

 permission java.io.FilePermission

 ″C:\WebSphere\AppServer\java\jre\lib\ext\mail.jar″,

 ″read″;

};

To decide whether to add a permission, refer to “Access control exception” on page 1739.

Configuring java.policy files:

Java 2 security uses several policy files to determine the granted permission for each Java program. See

“Java 2 security policy files” on page 1743 for the list of available policy files supported by WebSphere

1760 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Application Server Version 5.x or later. The java.policy file is a global default policy file shared by all of

the Java programs running in the Java Virtual Machine (JVM) on the node. Modifying this file is not

recommended.

If a specific change is required to some of the Java programs on a node and the java.policy file requires

updating, modify the java.policy file with policy tool. For more information, see “Using PolicyTool to edit

policy files” on page 1742. A change to the java.policy file is local for the node. The default Java policy is

picked up automatically. Syntax errors in the policy files cause the application server to fail. Edit these

policy files carefully.

An updated java.policy file is applied to all the Java programs running in all the JVMs on the local node.

Restart the programs for the updates to take effect

The java.policy file is not a configuration file managed by the repository and the file replication service.

Changes to this file are local and do not get replicated to the other machine. The java.policy file supplied

by WebSphere Application Server is located at install_root/java/jre/lib/security/java.policy. It

contains these default permissions.

// Standard extensions get all permissions by default

grant codeBase ″file:${java.home}/lib/ext/*″ {

 permission java.security.AllPermission;

};

// default permissions granted to all domains

grant {

 // Allows any thread to stop itself using the java.lang.Thread.stop()

 // method that takes no argument.

 // Note that this permission is granted by default only to remain

 // backwards compatible.

 // It is strongly recommended that you either remove this permission

 // from this policy file or further restrict it to code sources

 // that you specify, because Thread.stop() is potentially unsafe.

 // See ″http://java.sun.com/notes″ for more information.

 // permission java.lang.RuntimePermission ″stopThread″;

 // allows anyone to listen on un-privileged ports

 permission java.net.SocketPermission ″localhost:1024-″, ″listen″;

 // ″standard″ properties that can be read by anyone

 permission java.util.PropertyPermission ″java.version″, ″read″;

 permission java.util.PropertyPermission ″java.vendor″, ″read″;

 permission java.util.PropertyPermission ″java.vendor.url″, ″read″;

 permission java.util.PropertyPermission ″java.class.version″, ″read″;

 permission java.util.PropertyPermission ″os.name″, ″read″;

 permission java.util.PropertyPermission ″os.version″, ″read″;

 permission java.util.PropertyPermission ″os.arch″, ″read″;

 permission java.util.PropertyPermission ″file.separator″, ″read″;

 permission java.util.PropertyPermission ″path.separator″, ″read″;

 permission java.util.PropertyPermission ″line.separator″, ″read″;

 permission java.util.PropertyPermission ″java.specification.version″, ″read″;

 permission java.util.PropertyPermission ″java.specification.vendor″, ″read″;

 permission java.util.PropertyPermission ″java.specification.name″, ″read″;

 permission java.util.PropertyPermission ″java.vm.specification.version″,″read″;

 permission java.util.PropertyPermission ″java.vm.specification.vendor″,″read″;

Chapter 8. Developing WebSphere applications 1761

permission java.util.PropertyPermission ″java.vm.specification.name″, ″read″;

 permission java.util.PropertyPermission ″java.vm.version″, ″read″;

 permission java.util.PropertyPermission ″java.vm.vendor″, ″read″;

 permission java.util.PropertyPermission ″java.vm.name″, ″read″;

 };

If some Java programs on a node require permissions that are not defined as defaults in the java.policy

file, then consider updating the java.policy file. Most of the time, other policy files are updated instead of

the java.policy file. The missing permission causes the exception, java.security.AccessControlException.

The missing permission is listed in the exception data, for example:

java.security.AccessControlException: access denied (java.io.FilePermission

C:\WebSphere\AppServer\java\jre\lib\ext\mail.jar read)

The previous two lines are one continuous line.

When a Java program receives this exception and adding this permission is justified, add a permission to

the java.policyfile, for example:

grant codeBase ″file:<user client installed location>″ {

permission java.io.FilePermission

″C:\WebSphere\AppServer\java\jre\lib\ext\mail.jar″, ″read″; };

To decide whether to add a permission, refer to “Access control exception” on page 1739.

Restart all of the Java processes for the updated java.policy file to take effect.

Configuring server.policy files:

Java 2 security uses several policy files to determine the granted permission for each Java program. See

“Java 2 security policy files” on page 1743 for the list of available policy files supported by WebSphere

Application Server Version 5. The server.policy file is a default policy file shared by all of the WebSphere

servers on a node. The server.policy file is not a configuration file managed by the repository and the file

replication service. Changes to this file are local and do not replicate to the other machine.

If the default permissions for a server (the union of the permissions defined in the java.policy file and the

server.policy file) are enough, no action is required. The default server policy is picked up automatically.

If a specific change is required to some of the server programs on a node, update the server.policy file

with the Policy Tool. Refer to the “Using PolicyTool to edit policy files” on page 1742 article to edit policy

files. Changes to the server.policy file are local for the node. Syntax errors in the policy files cause the

application server to fail. Edit these policy files carefully.

An updated server.policy file is applied to all the server programs on the local node. Restart the servers

for the updates to take effect.

If you want to add permissions to an application, use the app.policy file and the was.policy file.

When you do need to modify the server.policy file, locate this file at:

install_root/properties/server.policy. This file contains these default permissions:

// Allow to use sun tools

grant codeBase ″file:${java.home}/../lib/tools.jar″ {

 permission java.security.AllPermission;

};

// WebSphere system classes

1762 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

grant codeBase ″file:${was.install.root}/lib/-″ {

 permission java.security.AllPermission;

};

grant codeBase ″file:${was.install.root}/classes/-″ {

 permission java.security.AllPermission;

};

// Allow the WebSphere deploy tool all permissions

grant codeBase ″file:${was.install.root}/deploytool/-″ {

 permission java.security.AllPermission;

};

If some server programs on a node require permissions that are not defined as defaults in the

server.policy file and the server.policy file, update the server.policy file. The missing permission

causes the exception, java.security.AccessControlException. The missing permission is listed in the

exception data, for example:

java.security.AccessControlException: access denied (java.io.FilePermission

C:\WebSphere\AppServer\java\jre\lib\ext\mail.jar read)

The previous two lines are one continuous line.

When a Java program receives this exception and adding this permission is justified, add a permission to

the server.policy file, for example:

grant codeBase ″file:<user client installed location>″ {

permission java.io.FilePermission

″C:\WebSphere\AppServer\java\jre\lib\ext\mail.jar″, ″read″; };

To decide whether to add a permission, refer to “Access control exception” on page 1739.

Restart all of the Java processes for the updated server.policy file to take effect.

Configuring client.policy files:

Java 2 security uses several policy files to determine the granted permission for each Java program. See

“Java 2 security policy files” on page 1743 for the list of available policy files supported by WebSphere

Application Server Version 5. The client.policy file is a default policy file shared by all of the WebSphere

Application Server client containers and applets on a node. The union of the permissions contained in the

java.policy file and the client.policy file are given to all of the WebSphere client containers and applets

running on the node. The client.policy file is not a configuration file managed by the repository and the

file replication service. Changes to this file are local and do not replicate to the other machine. The

client.policy file supplied by WebSphere Application Server is located at

install_root/profiles/profile_name/properties/client.policy. It contains these default permissions:

grant codeBase ″file:${java.home}/lib/ext/*″ {

 permission java.security.AllPermission;

};

// IBM Developer Kit, Java Technology Edition classes

grant codeBase ″file:${java.home}/lib/ext/-″ {

 permission java.security.AllPermission;

};

grant codeBase ″file:${java.home}/../lib/tools.jar″ {

 permission java.security.AllPermission;

};

// WebSphere system classes

Chapter 8. Developing WebSphere applications 1763

grant codeBase ″file:${was.install.root}/lib/-″ {

 permission java.security.AllPermission;

};

grant codeBase ″file:${was.install.root}/classes/-″ {

 permission java.security.AllPermission;

};

grant codeBase ″file:${was.install.root}/installedConnectors/-″ {

 permission java.security.AllPermission;

};

// J2EE 1.3 permissions for client container WAS applications

// in $WAS_HOME/installedApps

grant codeBase ″file:${was.install.root}/installedApps/-″ {

 //Application client permissions

 permission java.awt.AWTPermission ″accessClipboard″;

 permission java.awt.AWTPermission ″accessEventQueue″;

 permission java.awt.AWTPermission ″showWindowWithoutWarningBanner″;

 permission java.lang.RuntimePermission ″exitVM″;

 permission java.lang.RuntimePermission ″loadLibrary″;

 permission java.lang.RuntimePermission ″queuePrintJob″;

 permission java.net.SocketPermission ″*″, ″connect″;

 permission java.net.SocketPermission ″localhost:1024-″, ″accept,listen″;

 permission java.io.FilePermission ″*″, ″read,write″;

 permission java.util.PropertyPermission ″*″, ″read″;

};

// J2EE 1.3 permissions for client container - expanded ear file code base

grant codeBase ″file:${com.ibm.websphere.client.applicationclient.archivedir}/-″

 {

 permission java.awt.AWTPermission ″accessClipboard″;

 permission java.awt.AWTPermission ″accessEventQueue″;

 permission java.awt.AWTPermission ″showWindowWithoutWarningBanner″;

 permission java.lang.RuntimePermission ″exitVM″;

 permission java.lang.RuntimePermission ″loadLibrary″;

 permission java.lang.RuntimePermission ″queuePrintJob″;

 permission java.net.SocketPermission ″*″, ″connect″;

 permission java.net.SocketPermission ″localhost:1024-″, ″accept,listen″;

 permission java.io.FilePermission ″*″, ″read,write″;

 permission java.util.PropertyPermission ″*″, ″read″;

};

// For MQ Series

grant codeBase ″file:${mq.install.root}/java/*″ {

 permission java.security.AllPermission;

};

1. If the default permissions for a client (union of the permissions defined in the java.policy file and the

client.policy file) are enough, no action is required. The default client policy is picked up

automatically.

2. If a specific change is required to some of the client containers and applets on a node, modify the

client.policy file with the policy tool. Refer to ″Using PolicyTool to edit policy files″ in the information

center to edit policy files. Changes to the client.policy file are local for the node.

All of the client containers and applets on the local node are granted the updated permissions at the time

of execution.

1764 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

If some client containers or applets on a node require permissions that are not defined as defaults in the

java.policy file and the default client.policy file, update the client.policy file. The missing permission

causes the exception, java.security.AccessControlException. The missing permission is listed in the

exception data, for example,

java.security.AccessControlException: access denied (java.io.FilePermission

C:\WebSphere\AppServer\java\jre\lib\ext\mail.jar read)

The previous two lines of sample code are one continuous line, but extended beyond the width of the

page.

When a client program receives this exception and adding this permission is justified, add a permission to

the client.policy file, for example, grant codebase ″file:user_client_installed_location″ { permission

java.io.FilePermission ″C:\WebSphere\AppServer\java\jre\lib\ext\mail.ja″, ″read″; };.

To decide whether to add a permission, refer to “Access control exception” on page 1739.

Close and restart the browser. You also must restart the client application if you have one.

Migrating Java 2 security policy:

Previous WebSphere Application Server releases

Starting from Version 3.x, WebSphere Application Server installed a Java 2 security manager in the server

run time to prevent enterprise applications from calling the System.exit() and the

System.setSecurityManager() methods. These two Java APIs have undesirable consequences if called by

enterprise applications. The System.exit() API, for example, causes the Java virtual machine (application

server process) to exit prematurely, which is an undesirable operation for an application server.

However, Java 2 security was not a fully supported feature prior to Version 5. To support Java 2 security

properly, all the server run time must be marked as privileged (with doPrivileged() API calls inserted in

the correct places), and identify the default permission sets or policy. Application code is not privileged and

subject to the permissions defined in the policy files. The doPrivileged instrumentation is important and

necessary to support Java 2 security. Without it, the application code must be granted the permissions

required by the server run time. This is due to the design and algorithm used by Java 2 security to enforce

permission checks. Please refer to the Java 2 security check permission algorithm.

The following two permissions are enforced by the WebSphere Java 2 security manager (hard coded):

v java.lang.RuntimePermission(exitVM)

v java.lang.RuntimePermission(setSecurityManager)

Application code is denied access to these permissions regardless of what is in the Java 2 security policy.

However, the server run time is granted these permissions. All the other permission checks are not

enforced.

Partial support was introduced since the version 4.02 product release. Prior to version 4.0.2, Java 2

security was not supported. From version 4.02 and later, only two permissions are supported:

v java.net.SocketPermission

v java.net.NetPermission

However, not all the product server run time is properly marked as privileged. You must grant the

application code all the other permissions besides the two listed previously or the enterprise application

can potentially fail to run. This Java 2 security policy for enterprise applications is liberal.

What changed

Chapter 8. Developing WebSphere applications 1765

Java 2 Security is fully supported in version 5.x and later, which means all permissions are enforced. The

default Java 2 security policy for enterprise application is the recommended permission set defined by the

J2EE 1.4 specification. Refer to the

install_root/profiles/profile_name/config/cells/cell_name/nodes/node_name/app.policy file for the

default Java 2 security policy granted to enterprise applications. This is a much more stringent policy

compared to previous releases.

All policy is declarative. The product security manager honors all policy declared in the policy files. There

is an exception to this rule: enterprise applications are denied access to permissions declared in the

install_rootprofiles/profile_name/config/cells/cell_name/filter.policy file.

Note: Enterprise applications that run on Version 4.0.x with Java 2 security enabled are not guaranteed to

run successfully when migrating to Version 5 (when Java 2 security is enabled), even if the Java 2

security policy is migrated properly. The default Java 2 security policy for enterprise applications is

much more stringent and all permissions are enforced in Version 5. It might fail because the

application code does not have the necessary permissions granted where system resources (such

as file I/O for example) can be programmatically accessed and are now subject to the permission

checking.

Migrating system properties

The following system properties are used in previous releases in relation to Java 2 security:

v java.security.policy. The absolute path of the policy file (action required). It contains both system

permissions (permissions granted to the Java Virtual Machine (JVM) and the product server run time)

and enterprise application permissions. Migrate the Java 2 security policy of the enterprise application to

Version 5. For Java 2 security policy migration, see the steps for migrating Java 2 security policy.

v enableJava2Security. Used to enable Java 2 security enforcement (no action required). This is

deprecated; a flag in the WebSphere configuration application programming interface (API) is used to

control whether to enabled Java 2 security. Enable this option through the administrative console.

v was.home. Expanded to the installation directory of the WebSphere Application Server (action might be

required). This is deprecated; superseded by ${user.install.root} and ${was.install.root}

properties. If the directory contains instance specific data then ${user.install.root} is used; otherwise

${was.install.root} is used. Use these properties interchangeably for the WebSphere Application

Server or the Network Deployment environments. See the steps for migrating Java 2 security policy.

Migrating the Java 2 Security Policy

There is no easy way of migrating the Java policy file from Version 4.0.x automatically because there is a

mixture of system permissions and application permissions in the same policy file. Manually copy the Java

2 security policy for enterprise applications to a was.policy or app.policy file. However, migrating the

Java 2 security policy to a was.policy file is preferable because symbols or relative codebase is used

instead of absolute codebase. There are many advantages to this process. The permissions defined in the

was.policy file should only be granted to the specific enterprise application, while permissions in the

app.policy file apply to all the enterprise applications running on the node where the app.policy file

belongs. Refer to the “Java 2 security policy files” on page 1743 article for more details on policy

management.

The following example illustrates the migration of a Java 2 security policy from a previous release. The

contents include the Java 2 security policy file (the default is install_rootprofiles

profile_name/properties/java.policy) for the app1.ear enterprise application and the system

permissions (permissions granted to the JVM and product server run time). Default permissions are

omitted for clarity:

// For product Samples

 grant codeBase ″file:${install_root}/installedApps/app1.ear/-″ {

 permission java.security.SecurityPermission ″printIdentity″;

1766 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

permission java.io.FilePermission ″${install_root}${/}temp${/}somefile.txt″,

 ″read″;

 };

For clarity of illustration, all the permissions are migrated as the application level permissions in this

example. However, you can grant permissions at a more granular level at the component level (Web,

enterprise beans, connector or utility Java archive (JAR) component level) or you can grant permissions to

a particular component.

1. Ensure that Java 2 security is disabled on the application server.

2. Create a new was.policy file (if one is not present) or update the was.policy for migrated applications

in the configuration repository in

(profiles/profile_nameconfig/cells/cell_name/applications/app.ear/deployments/app/META-
INF/was.policy) with the following contents:

grant codeBase ″file:${application}″ {

 permission java.security.SecurityPermission ″printIdentity″;

 permission java.io.FilePermission ″

 ${user.install.root}${/}temp${/}somefile.txt″, ″read″;

 };

The third and fourth lines in the previous code sample are one continuous line, but extended beyond

the width of the page.

3. Use an assembly tool to attach the was.policy file to the enterprise archive (EAR) file. You also can

use an assembly tool to validate the contents of the was.policy file. For more information, see

“Configuring the was.policy file” on page 1753.

4. Validate that the enterprise application does not require additional permissions to the migrated Java 2

Security permissions and the default permissions set declared in the

${was.install.root}profiles/profile_name/config/cells/cell_name/nodes/node_name/app.policy

file. This requires code review, code inspection, application documentation review, and sandbox testing

of migrated enterprise applications with Java 2 security enabled in a pre-production environment. Refer

to developer kit APIs protected by Java 2 security for information about which APIs are protected by

Java 2 security. If you use third party libraries, consult the vendor documentation for APIs that are

protected by Java 2 security. Verify that the application is granted all the required permissions, or it

might fail to run when Java 2 security is enabled.

5. Perform pre-production testing of the migrated enterprise application with Java 2 security enabled.

Hint: Enable trace for the WebSphere Application Server Java 2 security manager in the

pre-production testing environment (with trace string:

com.ibm.ws.security.core.SecurityManager=all=enabled). This can be helpful in debugging the

AccessControlException exception thrown when an application is not granted the required permission

or some system code is not properly marked as privileged. The trace dumps the stack trace and

permissions granted to the classes on the call stack when the exception is thrown. For more

information, see “Access control exception” on page 1739.

Note: Because the Java 2 security policy is much more stringent compared with previous releases, it

is strongly advised that the administrator or deployer review their enterprise applications to see

if extra permissions are required before enabling Java 2 security. If the enterprise applications

are not granted the required permissions, they fail to run.

Deploying secured applications

Before you perform this task, verify that you have already designed, developed and assembled an

application with all the relevant security configurations. For more information on these tasks refer to the

″Developing secured applications″ and ″Assembling secured applications″ articles in the information

center. In this context, deploying and installing an application are considered the same task.

Chapter 8. Developing WebSphere applications 1767

Deploying applications that have security constraints (secured applications) is not much different than

deploying applications any security constraints. The only difference is that you might need to assign users

and groups to roles for a secured application, which requires that you have the correct active registry. To

deploy a newly secured application click Applications > Install New Application in the navigation panel

on the left and follow the prompts. If you are installing a secured application, roles would have been

defined in the application. If delegation was required in the application, RunAs roles also are defined.

One of the steps required to deploy secured applications is to assign users and groups to roles defined in

the application. This task is completed as part of the step titled Map security roles to users and groups.

This assignment might have already been done through an assembly tool. In that case you can confirm

the mapping by going through this step. You can add new users and groups and modify existing

information during this step.

If the applications support delegation, then a RunAs role is already defined in the application. If the

delegation policy is set to Specified Identity (during assembly) the intermediary invokes a method using

an identity setup during deployment. Use the RunAs role to specify the identity under which the

downstream invocations are made. For example, if the RunAs role is assigned user ″bob″ and the client

″alice″ is invoking a servlet, with delegation set, which in turn calls the enterprise beans, then the method

on the enterprise beans is invoked with ″bob″ as the identity. As part of the deployment process one of the

steps is to assign or modify users to the RunAs roles. This step is titled ″Map RunAs roles to users″. Use

this step to assign new users or modify existing users to RunAs roles when the delegation policy is set to

Specified Identity.

These steps are common for both installing an application and modifying an existing application. If the

application contains roles, you see the ″Map security roles to users and groups″ link during application

installation and also during managing applications, as a link in the Additional properties section.

1. Click Applications > Install New Application. Complete the steps (non-security related) required prior

to the step titled Map security roles to users and groups.

2. Assign users and groups to roles. For more information, see “Assigning users and groups to roles.”

3. Map users to RunAs roles if RunAs roles exist in the application. For more information, see “Assigning

users to RunAs roles” on page 1775.

4. Click Correct use of System Identity to specify RunAs roles if needed. Complete this action if the

application has delegation set to use System Identity (applicable to enterprise beans only). System

Identity uses the WebSphere Application Server security server ID to invoke downstream methods and

should be used with caution as this ID has more privileges than other identities in terms of accessing

WebSphere Application Server internal methods. This task is provided to make sure that the deployer

is aware that the methods listed in the panel have System Identity set up for delegation and to correct

them if necessary. If no changes are necessary, skip this task.

5. Complete the remaining (non-security related) steps to finish installing and deploying the application.

Once a secured application is deployed, verify that you can access the resources in the application with

the correct credentials. For example, if your application has a protected Web module, make sure only the

users that you assigned to the roles are able to use the application.

Assigning users and groups to roles

Before you perform this task:

v Secure the Web applications and EJB applications where new roles were created and assigned to Web

and EJB resources.

v Create all the roles in your application.

v Verify that you have properly configured the user registry that contains the users that you want to

assign. It is preferable to have security turned on with the user registry of your choice before beginning

this process.

1768 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

v Make sure that if you change anything in the security configuration (for example, enable security or

change the user registry) you save the configuration and restart the server before the changes become

effective.

Since the default active registry is LocalOS, it is not necessary, although it is recommended, that you

enable security if you want to use the LocalOS registry to assign users and groups to roles. You can

enable security once the users and groups are assigned in this case. The advantage of enabling security

with the appropriate registry before proceeding with this task is that you can validate the security setup

(which includes checking the user registry configuration) and avoid any problems using the registry.

These steps are common for both installing an application and modifying an existing application. If the

application contains roles, you see the Map security roles to users/groups link during application

installation and also during application management, as a link in the Additional properties section at the

bottom.

 1. Access the administrative console by typing http://localhost:9060/ibm/console in a Web browser.

 2. Click Applications > Enterprise applications >application_name.

 3. Under Additional properties, click Map security roles to users/groups. A list of all the roles that

belong to this application displays. If the roles already had users or special subjects (All

Authenticated, Everyone) assigned, they display here.

 4. To assign the special subjects, select either the Everyone or the All Authenticated check box for the

appropriate roles.

 5. Click Apply to save any changes and then continue working with user or group roles.

 6. To assign users or groups, select the role. You can select multiple roles at the same time, if the same

users or groups are assigned to all the roles.

 7. Click Look up users or Look up groups.

 8. Get the appropriate users and groups from the registry by completing the limit (number of items) and

the Search String fields and clicking Search. The limit field limits the number of users that are

obtained and displayed from the registry. The pattern is a searchable pattern matching one or more

users and groups. For example, user* lists users like user1, user2. A pattern of asterisk (*) indicates

all users or groups.

Use the limit and the search strings cautiously so as not to overwhelm the registry. When using large

registries (like Lightweight Directory Access Protocol (LDAP)) where information on thousands of

users and groups resides, a search for a large number of users or groups can make the system very

slow and can make it fail. When there are more entries than requests for entries, a message displays

on top of the panel. You can refine your search until you have the required list.

 9. Select the users and groups to include as members of these roles from the Available field and click

>> to add them to the roles.

10. To remove existing users and groups, select them from the Selected field and click <<. When

removing existing users and groups from roles use caution if those same roles are used as RunAs

roles.

For example, if user1 is assigned to RunAs role, role1, and you try to remove user1 from role1, the

administrative console validation does not delete the user since a user can only be a part of a RunAs

role if the user is already in a role (User1 should be in role1 in this case) either directly or indirectly

through a group. For more information on the validation checks that are performed between RunAs

role mapping and user and group mapping to roles, see the “Assigning users to RunAs roles” on

page 1775 section.

11. Click OK. If there are any validation problems between the role assignments and the RunAs role

assignments the changes are not committed and an error message indicating the problem displays at

the top of the panel. If there is a problem, make sure that the user in the RunAs role is also a

member of the regular role. If the regular role contains a group which contains the user in the RunAs

role, make sure that the group is assigned to the role using the administrative console. Follow steps 4

and 5. Avoid using the Application Server Toolkit or any other manual process where the complete

name of the group, host name, group name, or distinguished name (DN) is not used.

Chapter 8. Developing WebSphere applications 1769

The user and group information is added to the binding file in the application. This information is used later

for authorization purposes.

This task is required to assign users and groups to roles, which enables the correct users and groups to

access a secured application. If you are installing an application, complete your installation. Once the

application is installed and running you can access your resources according to the user and group

mapping you did in this task. If you are managing applications and have modified the users and groups to

role mapping, make sure you save, stop and restart the application so that the changes become effective.

Try accessing the J2EE resources in the application to verify that the changes are effective.

Security role to user and group mappings:

Use this page to map security roles to users. You can map roles to specific users, to specific groups, or to

different categories.

 To view this administrative console page, click Application > Install New Application. While running the

Application Installation Wizard, prompts appear to help you map security roles to users or groups. To

change role to user or group mappings for deployed applications, click Application > Enterprise

Application > deployed_application > Map security roles to users/groups.

Users:

Specifies the users for role mapping. Verify that the users are defined in your chosen user registry.

 To change the roles to users mapping, click Manage Application >application > Map security roles to

users.

 Data type: String

Groups:

Specifies the groups for role mapping. Verify that the groups are defined in your chosen user registry.

 To change the roles to users mapping, click Manage Application >application > Map security roles to

groups.

 Data type: String

Roles:

Specifies the roles to which you want to map users and groups. Role privileges give users and groups

permission to run as specified.

 Select the check boxes to choose a role or a set of roles. Click Look-up Users to map users to the roles

that you have selected. Click Look-up Groups to map groups to the selected roles. Use the check boxes

to map roles to EVERYONE or ALL AUTHENTICATED special subject.

 Data type: String

Everyone:

Specifies to map roles to everyone. Mapping a role to everyone means that anyone can access resources

protected by this role, and essentially, there is no security.

 Data type: Boolean

1770 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

All Authenticated:

Specifies to authenticate all users. Roles are mapped to all authenticated users, and all authenticated

users in the selected user registry are granted access to the role.

 Data type: Boolean

Security role to user and group selections:

Use this page to select users and groups for security roles.

 To view this administrative console page, click Application > Install New Application.

While using the Install New Application Wizard, prompts appear to help you map security roles to users.

You also can configure security roles to user mappings of deployed applications. Different roles can have

different security authorizations. Mapping users or groups to a role authorizes those users or groups to

access applications defined by the role. Users, groups and roles are defined when an application is

installed or configured.

You also can select role to user and group mappings while you are deploying applications. After

deployment in Additional Properties, click Map Security roles to users to change user and group

mappings to a role.

Look up users:

Specifies whether the server looks up selected users.

 Choose the role by selecting the check box beside the role and clicking Lookup users. Complete the

Limit and the Pattern fields. The Limit field contains the number of entries that the search function

returns. The Pattern field contains the search pattern used for searching entries. For example, bob*

searches all users or groups starting with bob. A limit of zero returns all the entries that match the pattern.

Use this value only when a small number of users or groups match this pattern in the registry. If the

registry contains more entries that match the pattern than requested, a message appears in the console to

indicate that there are more entries in the registry. You can either increase the limit or refine the search

pattern to get all the entries.

Look up groups:

Specifies whether the server looks up selected groups.

 Choose the role by selecting the check box beside the role and clicking Lookup groups. Complete the

Limit and the Pattern fields. The Limit field contains the number of entries that the search function

returns. The Pattern field contains the search pattern used for searching entries. For example, bob*

searches all users or groups starting with bob. A limit of zero returns all the entries that match the pattern.

Use this value only when a small number of users or groups match this pattern in the registry. If the

registry contains more entries that match the pattern than requested, a message appears in the console to

indicate that there are more entries in the registry. You can either increase the limit or refine the search

pattern to get all the entries.

Role:

Specifies user roles.

Chapter 8. Developing WebSphere applications 1771

A number of administrative roles are defined to provide degrees of authority needed to perform certain

WebSphere administrative functions from either the Web-based administrative console or the system

management scripting interface. The authorization policy is only enforced when global security is enabled.

The following roles are valid:

v Monitor--least privileged that basically allows a user to view the server configuration and current state

v Configurator--monitor privilege plus the ability to change the server configuration

v Operator--monitor privilege plus the ability to change the run time state, such as starting or stopping

services

v Administrator--operator plus configurator privilege

 Range Monitor, Configurator, Operator, Administrator

Everyone:

Specifies to authenticate everyone.

 Range Monitor, Configurator, Operator, Administrator

All authenticated:

 Range Monitor, Configurator, Operator, Administrator

Mapped users:

Mapped groups:

Look up users and groups settings:

Use this page to select users and groups for security roles.

 To view this administrative console page, click Applications > Enterprise Applications >

application_name > Map security roles to users/groups > Look up users or groups button.

Different roles can have different security authorizations. Mapping users or groups to a role authorizes

those users or groups to access applications defined by the role. Users, groups and roles are defined

when an application is installed or configured. Use the Search field to display users in the Available Users

list. Click the arrows to add users from the Available Users list to the Selected Users list.

Limit:

Specifies the maximum number of users/groups that can be returned when assigning users/groups to

roles.

 A value of 0 implies a return of all users/groups that match the pattern. You can either increase the limit or

refine the search pattern to get all the entries.

 Data type Integer

Units User name

Default 20

Range 0 or more

Pattern:

Indicates the search pattern used to search for the entries.

1772 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

The pattern field should contain the search pattern that should be used to search for the entries. For

example, bob* will search all users or groups starting with bob. A limit of 0 gets all the entries that match

the pattern and should be used only when a small number users/groups match that pattern in the registry.

If the registry contains more entries that match the pattern than requested for, a message shows in the

console to indicate that there are more entries in the registry.

 Data type String

Units Number of users

Default 20

Range A-Z with *

Delegations

Delegation is a process security identity propagation from a caller to a called object. As per the J2EE

specification, a servlet and enterprise beans can propagate either the client (remote user) identity when

invoking enterprise beans or they can use another specified identity as indicated in the corresponding

deployment descriptor.

The IBM extension supports Enterprise JavaBeans (EJB) to propagate to the server ID when invoking

other entity beans. There are three types of delegations:

v Delegate (RunAs) Client Identity

v Delegate (RunAs) Specified Identity

v Delegate (RunAs) System Identity

Delegate (RunAs) Client Identity

Delegate (RunAs) Specified Identity

ID=user1

Enterprise beans

or Web Client

RunAs client ID

Enterprise beans

or Servlet

Other

enterprise beans

ID=user1

Delegate Client Identity

ID=user1

Delegate Specified Identity

Other

enterprise beans

Run As specified role

mapped to user2

Enterprise beans

or Web client

Enterprise beans

or servlet

ID=user2

Chapter 8. Developing WebSphere applications 1773

Delegate (RunAs) System Identity

The EJB specification only supports delegation (RunAs) at the EJB level. But an IBM extension allows EJB

method level RunAs specification. Method EJB method level runAs specification allows one to specify a

different RunAs role for different methods within the same enterprise beans.

The RunAs specification is detailed in the deployment descriptor (the ejb-jar.xml file in the EJB module

and the web.xml file in the Web module). The IBM extension to the RunAs specification is included in the

ibm-ejb-jar-ext.xmi file.

There is also an IBM specific binding file for each application that contains a mapping from the RunAs role

to the user. This file is specified in the ibm-application-bnd.xmi file.

These specifications are read by the run time during application startup. The following figure illustrates the

delegation mechanism as implemented in the WebSphere Application Server security model.

Delegation Process

There are two tables that help in the delegation process:

v Resource to RunAs role mapping table

v RunAs role to user ID and password mapping table

ID=user1

RunAs system ID

ID=user1

Delegate System Identity

Enterprise beans

or Web servlet
Enterprise beans

Other

enterprise beans

server1

Java client

Delegation process

WebSphere Application Server

(1)

(1)

CSIV2/SAS, TCP/IP,

SSL

EJB

resource access

HTTP or HTTPS

Web resource access

Enterprise beans

collaborator

Web

authenticator
Web client

(2)

Resource

(2)

Resource

Delegation

Run As role to

credentials

Resource

to Run As role

(3)

(4)

(5)

(6)

(7)

(7)

(6)

Resource

Credentials

Run As roles

Run As roles

Run As
role

users and
passwords

Resource
Run As
roles

Delegate

module

Invoke credentials ORB

current

Enterprise

beans

Servlet

1774 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Use the Resource to RunAs role mapping table to get the role that is used by a servlet or by enterprise

beans to propagate to the next enterprise beans call.

Use the RunAsRole to User ID and Password mapping table to get the user ID that belongs to the RunAs

role and its password.

Delegation is performed after successful authentication and authorization. During this process, the

delegation module consults the Resource to RunAs role mapping table to get the RunAs role (3). The

delegation module consults the RunAs role to user ID and password mapping table to get the user that

belongs to the RunAs role (4). The user ID and password is used to create a new credential using the

authentication module, which is not shown in figure.The resulting credential is stored in the ORB Current

as an invocation credential (5). Servlet and enterprise beans when invoking other enterprise beans pick up

the invocation credential from the ORB Current (6) and call the next enterprise beans (7).

Assigning users to RunAs roles

Before you perform this task,

v Secure the Web applications and EJB applications where new RunAs roles were created and assigned

to Web and EJB resources.

v Create all the RunAs roles in your application. The user in the RunAs role can only be entered if that

user or a group to which that user belongs is already part of the regular role.

v Assign users and groups to security roles. Refer to “Assigning users and groups to roles” on page 1768

for more information.

v Verify that the user registry requirements are met. These requirements are the same as those discussed

in the same as in the case of “Assigning users and groups to roles” on page 1768 task. For example, if

role1 is a role that is also used as a RunAs role, then the user, user1, can be added to the RunAs role.

role1, if user1 or a group that user1 belongs to, already is assigned to role1. The administrative console

checks this logic when Apply or OK is clicked. If the check fails, the change is not made and an error

message displays at the top of the panel.

If the special subjects ″Everyone″ or ″All Authenticated″ are assigned to a role, then no check takes place

for that role.

The checking is done every time Apply in this panel is clicked or when OK is clicked in the Map security

roles to users/groups panel. The check verifies that all the users in all the RunAs roles do exist directly

or indirectly (through a group) in those roles in the Map security roles to users/groups panel. If a role is

assigned both a user and a group to which that user belongs, then either the user or the group (not both)

can be deleted from Map security roles to users/groups panel.

If the RunAs role user belongs to a group and if that group is assigned to that role, make sure that the

assignment of this group to the role is done through administrative console and not through an assembly

tool or any other method. When using the administrative console, the full name of the group is used (for

example, hostname\groupName in windows systems, and distinguished names (DN) in Lightweight Directory

Access Protocol (LDAP)). During the check, all the groups to which the RunAs role user belongs are

obtained from the registry. Since the list of groups obtained from the registry are the full names of the

groups, the check works correctly. If the short name of a group is entered using an assembly tool (for

example, group1 instead of CN=group1, o=myCompany.com) then this check fails.

These steps are common to both installing an application and modifying an existing application. If the

application contains RunAs roles, you see the Map RunAs roles to users link during application

installation and also during managing applications as a link in the Additional properties section at the

bottom.

1. Click Applications > Enterprise Applications >application_name.

2. Under Additional properties, click Map RunAs roles to users. A list of all the RunAs roles that belong

to this application displays. If the roles already had users assigned, they display here.

Chapter 8. Developing WebSphere applications 1775

3. To assign a user, select the role. You can select multiple roles at the same time if the same user is

assigned to all the roles.

4. Enter the user’s name and password in the designated fields. The user name entered can be either

the short name (preferred) or the full name (as seen when getting users and groups from the registry).

5. Click Apply. The user is authenticated using the active user registry. If authentication is successful, a

check is made to verify that this user or group is mapped to the role in the Map security roles to

users and groups panel. If authentication fails, verify that the user and password are correct and that

the active registry configuration is correct.

6. To remove a user from a RunAs role, select the roles and click Remove.

The RunAs role user is added to the binding file in the application. This file is used for delegation

purposes when accessing J2EE resources. This step is required to assign users to RunAs roles so that

during delegation the appropriate user is used to invoke the EJB methods.

If you are installing the application, complete installation. Once the application is installed and running you

can access your resources according to the RunAS role mapping. Save the configuration.

If you are managing applications and have modified the RunAs roles to users mapping, make sure you

save, stop and restart the application so that the changes become effective. Try accessing your J2EE

resources to verify that the new changes are in effect.

Unprotected EJB 2.0 methods protection settings:

Use this page to verify that unprotected EJB 2.0 methods have the correct level of protection before you

map users to roles.

 To view this administrative console page, click Application > Install New Application. While running the

Install New Application Wizard, prompts appear to help you map security roles to users.

Exclude:

Specifies that the method is completely protected.

 Data type: Check box

Default: Cleared

Uncheck:

Specifies that everyone can access the security method.

 Data type: Check box

Default: Uncheck

Specify role:

Specifies the EJB level of protection based on the security role.

 The roles listed in this menu are obtained from the application scope. If the selected role is not in the

module, then it is added to the modules or Java archive (JAR) files.

 Data type: String

Units: Role

Module name:

1776 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Specifies the name of the module.

 If a module name appears in this list, then the module contains unprotected EJB methods.

 Data type: String

Units: Module name

Protection:

Specifies the level of protection assigned to a particular module name.

 Data type: String

Default: Cleared

EJB 2.1 method protection level settings:

Use this page to verify that all unprotected EJB 2.1 methods have the correct level of protection before

you map users to roles.

 To view this administrative console page, click Applications > Install New Application. While running the

Install New Application Wizard, prompts appear to help you determine that all unprotected EJB 2.1

methods have the correct level of protection.

EJB Module:

Specifies the enterprise bean module name.

 Data Type: String

Units: EJB module name

Module URI:

Specifies the Java archive (JAR) file name.

 Data Type: String

Units: JAR file name

Method protection:

Specifies the level of protection assigned to the EJB module.

 A selected box means to Deny All and that the method is completely protected.

 Data Type: Check box

Default: Cleared

Range: Yes or No

RunAs roles to users mapping:

Use this page to map RunAs roles to users. You can change the RunAs settings after an application

deploys.

Chapter 8. Developing WebSphere applications 1777

To view this administrative console page, click Applications > Install New Application. While running the

application installation wizard, prompts appear to help you map RunAs roles to users. You can change the

RunAs roles to users mappings for deployed applications by completing the following steps:

1. Click Applications > Enterprise Applications >application_name.

2. Under Additional properties, click Map RunAs roles to users.

The enterprise beans you are installing contain predefined RunAs roles. RunAs roles are used by

enterprise beans that need to run as a particular role for recognition while interacting with another

enterprise bean.

User name:

Specifies a user name for the RunAs role user.

 This user already maps to the role specified in the Mapping users and groups to roles panel. You can map

the user to its appropriate role by either mapping the user to that role directly or mapping a group that

contains the user to that role.

 Data type: String

Password:

Specifies the password for the RunAs user.

 Data type: String

Confirm password:

Specifies the confirmed password of the administrative user.

 Data type String

Role:

Specifies administrative user roles.

 A number of administrative roles have been defined to provide degrees of authority needed to perform

certain WebSphere administrative functions from either the web based administrative console or the

system management scripting interface. The authorization policy is only enforced when global security is

enabled. The following roles are valid:

v Monitor--least privileged that basically allows a user to view the WebSphere configuration and current

state

v Configurator--monitor privilege plus the ability to change the WebSphere configuration

v Operator--monitor privilege plus the ability to change runtime state, such as starting or stopping

services for example

v Administrator--operator plus configurator privilege

Updating and redeploying secured applications

Before you perform this task, secure Web applications, secure EJB applications, and deploy them in

WebSphere Application Server. This section addresses the way to update existing applications.

1. Use the administrative console to modify the existing users and groups mapping to roles. For

information on the required steps, see “Assigning users and groups to roles” on page 1768.

1778 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

2. Use the administrative console to modify the users for the RunAs roles. For information on the required

steps, see “Assigning users to RunAs roles” on page 1775.

3. Complete the changes and save them.

4. Stop and restart the application for the changes to become effective.

5. Use the an assembly tool. For more information, see ″Assembling applications″ in the information

center.

6. Use an assembly tool to modify roles, method permissions, auth-constraints, data-constraints and so

on. For more information, see ″Assembling applications″ in the information center.

7. Save the Enterprise Archive (EAR) file, uninstall the old application, deploy the modified application

and start the application to make the changes effective.

The applications are modified and redeployed. This step is required to modify existing secured

applications.

If information about roles is modified make sure you update the user and group information using the

administrative console. Once the secured applications are modified and either restarted or redeployed,

make sure that the changes are effective by accessing the resources in the application.

Naming and directory

Using naming

Naming is used by clients of WebSphere Application Server applications most commonly to obtain

references to objects related to those applications, such as Enterprise JavaBeans (EJB) homes.

The Naming service is based on the Java Naming and Directory Interface (JNDI) 1.2.1 Specification and

the Object Management Group (OMG) Interoperable Naming (CosNaming) specifications Naming Service

Specification, Interoperable Naming Service revised chapters and Common Object Request Broker:

Architecture and Specification (CORBA).

1. Develop your application using either JNDI or CORBA CosNaming interfaces. Use these interfaces to

look up server application objects that are bound into the name space and obtain references to them.

Most Java developers use the JNDI interface. However, the CORBA CosNaming interface is also

available for performing Naming operations on WebSphere Application Server name servers or other

CosNaming name servers.

2. Assemble your application using an application assembly tool. See ″Assembling applications″ in the

information center. Application assembly is a packaging and configuration step that is a prerequisite to

application deployment. If the application you are assembling is a client to an application running in

another process, you should qualify the jndiName values in the deployment descriptors for the objects

related to the other application. Otherwise, you may need to override the names with qualified names

during application deployment. If the objects have fixed qualified names configured for them, you

should use them so that the jndiName values do not depend on the other application’s location within

the topology of the cell.

3. Deploy your application. Put your assembled application onto the application server. If the application

you are assembling is a client to an application running in another server process, be sure to qualify

the jndiName values for the other application’s server objects if they are not already qualified. For

more information on qualified names, refer to “Lookup names support in deployment descriptors and

thin clients” on page 1783.

4. Configure name space bindings. This step is necessary in these cases:

v Your deployed application is to be accessed by legacy client applications running on previous

versions of WebSphere Application Server. In this case, you must configure additional name

bindings for application objects relative to the default initial context for legacy clients. (Version 5

clients have a different initial context from legacy clients.)

v The application requires qualified name bindings for such reasons as:

Chapter 8. Developing WebSphere applications 1779

http://java.sun.com/products/jndi/1.2/javadoc/
http://www.omg.org/cgi-bin/doc?formal/2001-02-65
http://www.omg.org/cgi-bin/doc?formal/2001-02-65
http://www.omg.org/cgi-bin/doc?ptc/00-08-07
http://www.omg.org/cgi-bin/doc?formal/00-10-33
http://www.omg.org/cgi-bin/doc?formal/00-10-33

– It will be accessed by J2EE client applications or server applications running in another server

process.

– It will be accessed by thin client applications.

In this case, you can configure name bindings as additional bindings for application objects. The

qualified names for the configured bindings are fixed, meaning they do not contain elements of the

cell topology that can change if the application is moved to another server. Objects as bound into

the name space by the system can always be qualified with a topology-based name. You must

explicitly configure a name binding to use as a fixed qualified name.

For more information on qualified names, refer to “Lookup names support in deployment descriptors

and thin clients” on page 1783. For more information on configured name bindings, refer to

“Configured name bindings” on page 1786.

5. Troubleshoot any problems that develop. If a Naming operation is failing and you need to verify

whether certain name bindings exist, use the dumpNameSpace tool to generate a dump of the name

space. For details, refer to the Troubleshooting and support PDF.

Naming

Naming is used by clients of WebSphere Application Server applications to obtain references to objects

related to those applications, such as Enterprise JavaBeans (EJB) homes.

These objects are bound into a mostly hierarchical structure, referred to as a name space. In this

structure, all non-leaf objects are called contexts. Leaf objects can be contexts and other types of objects.

Naming operations, such as lookups and binds, are performed on contexts. All naming operations begin

with obtaining an initial context. You can view the initial context as a starting point in the name space.

The name space structure consists of a set of name bindings, each consisting of a name relative to a

specific context and the object bound with that name. For example, the name myApp/myEJB consists of one

non-leaf binding with the name myApp, which is a context. The name also includes one leaf binding with the

name myEJB, relative to myApp. The object bound with the name myEJB in this example happens to be an

EJB home reference. The whole name myApp/myEJB is relative to the initial context, which you can view as

a starting place when performing naming operations.

You can access and manipulate the name space through a name server. Users of a name server are

referred to as naming clients. Naming clients typically use the Java Naming and Directory Interface (JNDI)

to perform naming operations. Naming clients can also use the Common Object Request Broker

Architecture (CORBA) CosNaming interface.

Typically, objects bound to the name space are resources and objects associated with installed

applications. These objects are bound by the system, and client applications perform lookup operations to

obtain references to them. Occasionally, server and client applications bind objects to the name space. An

application can bind objects to transient or persistent partitions, depending on requirements.

In J2EE environments, some JNDI operations are performed with java: URL names. Names bound under

these names are bound to a completely different name space which is local to the calling process.

However, some lookups on the java: name space may trigger indirect lookups to the name server.

Name space logical view

The name space for the entire cell is federated among all servers in the cell. Every server process

contains a name server. All name servers provide the same logical view of the cell name space. The

various server roots and persistent partitions of the name space are interconnected by a system name

space. You can use the system name space structure to traverse to any context in a the cell’s name

space. A logical view of the name space is shown in the following diagram.

1780 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

The bindings in the preceding diagram appear with solid arrows, labeled in bold, and dashed arrows,

labeled in gray. Solid arrows represent primary bindings. A primary binding is formed when the associated

subcontext is created. Dashed arrows show linked bindings. A linked binding is formed when an existing

context is bound under an additional name. Linked bindings are added for convenience or interoperability

with previous WebSphere Application Server versions.

A cell name space is composed of contexts which reside in servers throughout the cell. All name servers

in the cell provide the same logical view of the cell name space. A name server constructs this view at

startup by reading configuration information. Each name server has its own local in-memory copy of the

name space and does not require another running server to function. There are, however, a few

exceptions. Server roots for other servers are not replicated among all the servers. The respective server

for a server root must be running to access that server root context.

Name space partitions

There are four major partitions in a cell name space:

v System name space partition

v Server roots partition

v Cell persistent partition

v Node persistent partition

System name space partition

The system name space contains a structure of contexts based on the cell topology. The system

structure supports traversal to all parts of a cell name space and to the cell root of other cells,

which are configured as foreign cells. The root of this structure is the cell root. In addition to the

cell root, the system structure contains a node root for each node in the cell. You can access other

contexts of interest specific to a node from the node root, such as the node persistent root and

server roots for servers configured in that node.

System Name Space

(Read Only)

Cell Persistent

(Read/Write)

Server Roots

(Read/Write Transient)

Node Persistent

(Read/Write)

X

Y

Z

X

Y

Z

L

M
N

A

B
C

A

B

C

nodes

cell root
of foreign cell

foreign cells

cell clusters

BS

user persistent
sub-ctxs & objs

user persistent
sub-ctxs & objs

node persistent
root

user transient
sub-ctxs & objs

A

B

C

system artifact
sub-ctxs & objs

BS

Server root

<user-created-bindings>

<physical-server-name>
<cluster-name>

<user-created-bindings>

<user-created-bindings> <system-artifacts>

<foreign-cell-names>

<node-name>

cell

domain nodeAgent

clusters

deploymentManager

legacyRoot

cells

domain

cell

nodes

Logical View of a Cell's Name Space

persistent

cell

X

Y
Z

node physical
servers

persistent

servers

cell

X
Y

Z

Node root
BS

cell persistent
root

BS

Cell root
BS

Figure 8. Name Space Logical View

Chapter 8. Developing WebSphere applications 1781

All contexts in the system name space are read-only. You cannot add, update, or remove any

bindings.

Server roots partition

Each server in a cell has a server root context. A server root is specific to a particular server. You

can view the server roots for all servers in a cell as being in a transient read/write partition of the

cell name space. System artifacts, such as EJB homes for server applications and resources, are

bound under the server root context of the associated server. A server application can also add

bindings under its server root. These bindings are transient. Therefore, the server application

creates all required bindings at application startup, so they exist anytime the application is running.

 A server cluster is composed of many servers that are logically equivalent. Each member of the

cluster has its own server root. These server roots are not replicated across the cluster. In other

words, adding a binding to the server root of one member does not propagate it to the server roots

of the other cluster members. To maintain the same view across the cluster, you should create all

user bindings under the server root by the server application at application startup so that the

bindings are present under the server root of each cluster member. Because of Workload

Management (WLM) behavior, a JNDI client outside a cluster has no control over which cluster

member’s server root context becomes the target of the JNDI operation. Therefore, you should

execute bind operations to the server root of a cluster member from within that cluster member

process only.

 Distributing application objects among many server roots is a departure from previous WebSphere

Application Server releases, where all system artifacts were bound under a single root. This

change can affect the names that clients use to look up these objects.

 Server-scoped bindings are relative to a server’s server root.

Cell persistent partition

The root context of the cell persistent partition is the cell persistent root. A binding created under

the cell persistent root is saved as part of the cell configuration and continues to exist until it is

explicitly removed. Applications that need to create additional persistent bindings of objects

generally associated with the cell can bind these objects under the cell persistent root.

 It is important to note that the cell persistent area is not designed for transient, rapidly changing

bindings. The bindings are more static in nature, such as part of an application setup or

configuration, and are not created at run time.

 An important role of the cell persistent root is as the initial context for clients running in previous

WebSphere Application Server versions. If you want to access an enterprise bean by WebSphere

Application Server v4.0.x and 3.5.x clients, you must ensure that a binding for it has been added

to the cell persistent root. You can configure these additional bindings as cell-scoped bindings.

Node persistent partition

The node persistent partition is similar to the cell partition except that each node has its own node

persistent root. A binding created under a node persistent root is saved as part of that node

configuration and continues to exist until it is explicitly removed.

 Applications that need to create additional persistent bindings of objects associated with a specific

node can bind those objects under that particular node’s node persistent root. As with the cell

persistent area, it is important to note that the node persistent area is not designed for transient,

rapidly changing bindings. These bindings are more static in nature, such as part of an application

setup or configuration, and are not created at run time.

 Unlike the cell persistent root, the node persistent root plays no special role in interoperability with

WebSphere Application Server clients of previous releases. Node-scoped bindings are relative to a

node’s node persistent root.

1782 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Initial context support

All naming operations begin with obtaining an initial context. You can view the initial context as a starting

point in the name space. Use the initial context to perform naming operations, such as looking up and

binding objects in the name space.

Initial contexts registered with the ORB as initial references

The server root, cell persistent root, cell root, and node root are registered with the name server’s ORB

and can be used as an initial context. An initial context is used by CORBA and enterprise bean

applications as a starting point for name space lookups. The keys for these roots as recognized by the

ORB are shown in the following table:

 Root Context Initial Reference Key

Server Root NameServiceServerRoot

Cell Persistent Root NameServiceCellPersistentRoot

Cell Root NameServiceCellRoot, NameService

Node Root NameServiceNodeRoot

A server root initial context is the server root context for the specific server you are accessing. Similarly, a

node root initial context is the node root for the server being accessed.

You can use the previously mentioned keys in CORBA INS object URLs (corbaloc and corbaname) and as

an argument to an ORB resolve_initial_references call. For examples, see CORBA and JNDI programming

examples, which show how to get an initial context.

Default initial contexts

The default initial context depends on the type of client. Different categories of clients and the

corresponding default initial context follow.

v WebSphere Application Server V5 JNDI interface implementation

The JNDI interface is used by EJB applications to perform name space lookups. WebSphere Application

Server clients by default use the WebSphere Application Server CosNaming JNDI plug-in

implementation. The default initial context for clients of this type is the server root of the server specified

by the provider URL. For more details, refer to the JNDI programming examples on getting initial

contexts.

v WebSphere Application Server JNDI interface implementation prior to V5

WebSphere Application Server clients running in releases prior to WebSphere Application Server V5 by

default use WebSphere Application Server’s v4.0 CosNaming JNDI plug-in implementation. The default

initial context for clients of this type is the cell persistent root, also known as the legacy root.

v Other JNDI implementation

Some applications can perform name space lookups with a non-WebSphere Application Server

CosNaming JNDI plug-in implementation. Assuming the key NamingContext is used to obtain the initial

context, the default initial context for clients of this type is the cell root.

v CORBA

The standard CORBA client obtains an initial org.omg.CosNaming.NamingContext reference with the

key NamingContext. The initial context in this case is the cell root.

Lookup names support in deployment descriptors and thin clients

Server objects, such as EJB homes, are bound relative to the server root context for the server in which

the application is installed. Other objects, such as resources, can also be bound to a specific server root.

The names used to look up these objects must be qualified so as to select the correct server root. This is

Chapter 8. Developing WebSphere applications 1783

a departure from previous versions of WebSphere Application Server, where these objects were all bound

under a single root context. This section discusses what relative and qualified names are, when they can

be used, and how you can construct them.

Relative names

All names are relative to a context. Therefore, a name that can be resolved from one context in the name

space cannot necessarily be resolved from another context in the name space. This point is significant

because the system binds objects with names relative to the server root context of the server in which the

application is installed. Each server has its own server root context. The initial JNDI context is by default

the server root context for the server identified by the provider URL used to obtain the initial context.

(Typically, the URL consists of a host and port.) For applications running in a server process, the default

initial JNDI context is the server root for that server. A relative name will resolve successfully when the

initial context is obtained from the server which contains the target object, but it will not resolve

successfully from an initial context obtained from another server.

If all clients of a server application run in the same server process as the application, all objects

associated with that application are bound to the same initial context as the clients’ initial context. In this

case, only names relative to the server’s server root context are required to access these server objects.

Frequently, however, a server application has clients that run outside the application’s server process. The

initial context for these clients can be different from the server application’s initial context, and lookups on

the relative names for server objects may fail. These clients need to use the qualified name for the server

objects. This point must be considered when setting up the jndiName values in a J2EE client application

deployment descriptors and when constructing lookup names in thin clients. Qualified names resolve

successfully from any initial context in the cell.

Qualified names

All names are relative to a context. Here, the term qualified name refers to names that can be resolved

from any initial context in a cell. This action is accomplished by using names that navigate to the same

context, the cell root. The rest of the qualified name is then relative to the cell root and uniquely identifies

an object throughout the cell. All initial contexts in a server (that is, all naming contexts in a server

registered with the ORB as an initial reference) contain a binding with the name cell, which links back to

the cell root context. All qualified names begin with the string cell/ to navigate from the current initial

context back to the cell root context.

A qualified name for an object is the same throughout the cell. The name can be topology-based, or some

fixed name bound under the cell persistent root. Topology-based names, described in more detail below,

navigate through the system name space to reach the target object. A fixed name bound under the cell

persistent root has the same qualified name throughout the cell and is independent of the topology.

Creating a fixed name under the cell persistent root for a server application object requires an extra step

when the server application is installed, but this step eliminates impacts to clients when the application is

moved to a different location in the cell topology. The process for creating a fixed name is described later

in this section.

Generally speaking, you must use qualified names for EJB jndiName values in a J2EE client application

deployment descriptors and for EJB lookup names in thin clients. The only exception is when the initial

context is obtained from the server in which the target object resides. For example, a session bean which

is a client to an entity bean can use a relative name if the two beans run in the same server. If the session

bean and entity beans run in different servers, the jndiName for the entity bean must be qualified in the

session bean’s deployment descriptors. The same requirement may be true for resources as well,

depending on the scope of the resource.

v Topology-based names

The system name space partition in a cell’s name space reflects the cell’s topology. This structure can

be navigated to reach any object bound into the cell’s name space. Topology-based qualified names

1784 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

include elements from the topology which reflect the object’s location within the cell. For a

system-bound object, such as an EJB home, the form for a topology-based qualified name depends on

whether the object is bound to a single server or cluster. Both forms are described below.

Single Server

An object bound in a single server has a topology-based qualified name of the following form:

cell/nodes/nodeName/servers/serverName/relativeJndiName

where nodeName and serverName are the node name and server name for the server where

the object is bound, and relativeJndiName is the unqualified name of the object; that is, the

object’s name relative to its server’s server root context.

Server Cluster

An object bound in a server cluster has a topology-based qualified name of the following form:

cell/clusters/clusterName/relativeJndiName

where clusterName is the name of the server cluster where the object is bound, and

relativeJndiName is the unqualified name of the object; that is, the object’s name relative to a

cluster member’s server root context.

v Fixed names

It is possible to create a fixed name for a server object so that the qualified name is independent of the

cell topology. This quality is desirable when clients of the application run in other server processes or as

pure clients. Fixed names have the advantage of not changing if the object is moved to another server.

The jndiName values in deployment descriptors for a J2EE client application can reference the qualified

fixed name for a server object regardless of the cell topology on which the client or server application is

being installed.

Defining a cell-wide fixed name for a server application object requires an extra step after the server

application is installed. That is, a binding for the object must be created under the cell persistent root. A

fixed name bound under the cell persistent root can be any name, but all names under the cell

persistent root must be unique within the cell because the cell persistent root is global to the entire cell.

A qualified fixed name has the form:

cell/persistent/fixedName

where fixedName is an arbitrary fixed name.

The binding can be created programmatically (for example, using JNDI). However, it is probably more

convenient to configure a cell-scoped binding for the server object.

You must keep the programmatic or configured binding up-to-date. Configured EJB bindings are based

on the location of the enterprise bean within the cell topology, and moving the EJB application to

another single server or to a server cluster, for example, requires the configured binding to be updated.

Similar changes affect an EJB home reference programmatically bound so that the fixed name would

need to be rebound with a current reference. However, for J2EE clients, the jndiName value for the

object, and for thin clients, the lookup name for the object, remains the same. In other words, clients

that access objects by fixed names are not affected by changes to the configuration of server

applications they access.

JNDI support in WebSphere Application Server

IBM WebSphere Application Server includes a name server to provide shared access to Java components,

and an implementation of the javax.naming JNDI package which supports user access to the WebSphere

Application Server name server through the JNDI naming interface.

WebSphere Application Server does not provide implementations for:

v javax.naming.directory or

v javax.naming.ldap packages

Also, WebSphere Application Server does not support interfaces defined in the javax.naming.event

package.

Chapter 8. Developing WebSphere applications 1785

However, to provide access to LDAP servers, the development kit shipped with WebSphere Application

Server supports Sun’s implementation of:

v javax.naming.ldap and

v com.sun.jndi.ldap.LdapCtxFactory

WebSphere Application Server’s JNDI implementation is based on version 1.2 of the JNDI interface, and

was tested with Version 1.2.1 of Sun’s JNDI Service Provider Interface (SPI).

The default behavior of this JNDI implementation is adequate for most users. However, users with specific

requirements can control certain aspects of JNDI behavior.

Configured name bindings

Administrators can configure bindings into the name space. A configured binding is different from a

programmatic binding in that the system creates the binding every time a server is started, even if the

target context is in a transient partition.

Administrators can add name bindings to the name space through the configuration. Name servers add

these configured bindings to the name space view, by reading the configuration data for the bindings.

Configuring bindings is an alternative to creating the bindings from a program. Configured bindings have

the advantage of being created each time a server starts, even when the binding is created in a transient

partition of the name space. Cell-scoped configured bindings provide interoperability with JNDI clients

running on previous versions of WebSphere Application Server. Additionally, you can configure cell-scoped

bindings to create a fixed qualified name for server objects.

Scope

You can configure a binding at one of the following three scopes: cell, node, or server. Cell-scoped

bindings are created under the cell persistent root context. Node-scoped bindings are created under the

node persistent root context for the specified node. Server-scoped bindings are created under the server

root context for the selected server. If the target server of a server-scoped binding is a cluster, the binding

is created under the server root context of each cluster member.

Note: The term server includes clusters and can be used interchangeably with the term cluster with

respect to configured bindings. When applied to a cluster, a server-scoped binding is created in the

server root for all member servers.

The scope you select for new bindings depends on how the binding is to be used. For example, if the

binding is not specific to any particular node or server, or if you do not want the binding to be associated

with any specific node or server, a cell-scoped binding is a suitable scope. Defining fixed names for

enterprise beans to create fixed qualified names is just such an application. If a binding is to be used only

by clients of an application running on a particular server, or if you want to configure a binding with the

same name on different servers which resolve to different objects, a server-scoped binding would be

appropriate. Note that two servers can have configured bindings with the same name but resolve to

different objects. At the cell scope, only one binding with a given name can exist.

Intermediate Contexts

Intermediate contexts created with configured bindings are read-only. For example, if an EJB home binding

is configured with the name some/compound/name/ejbHome, the intermediate contexts some, some/compound,

and some/compound/name will be created as read-only contexts. You cannot add, update, or remove any

read-only bindings.

The configured binding name cannot conflict with existing bindings. However, configured bindings can use

the same intermediate context names. Therefore, a configured binding with the name

some/compound/name2/ejbHome2 does not conflict with the previous example name.

1786 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Configured binding types

Types of objects that you can bind follow:

EJB: EJB home installed in some server in the cell

The following data is required to configure an EJB home binding:

v JNDI name of the EJB server or server cluster where the enterprise bean is deployed

v Target root for the configured binding (scope)

v The name of the configured binding, relative to the target root.

This type of binding is of special significance because you can use it to provide interoperability

with WebSphere Application Server v3.5.x and v4.0.x JNDI clients. The default initial context for

these earlier clients is the cell persistent root, which is different from the initial context of the

server root for WebSphere Application Server V5 JNDI clients. If you migrate an application to the

current release, you can configure an EJB binding at the cell scope so that the lookup names for

the enterprise bean do not change for clients still running in a earlier WebSphere Application

Server version.

 A cell-scoped EJB binding is also useful for creating a fixed lookup name for an enterprise bean

so that the qualified name is not dependent on the topology.

Note: In standalone servers, an EJB binding resolving to another server cannot be configured

because the name server does not read configuration data for other servers. That data is

required to construct the binding.

CORBA: CORBA object available from some CosNaming name server

You can identify any CORBA object bound into some INS compliant CosNaming server with a

corbaname URL. The referenced object does not have to be available until the binding is actually

referenced by some application.

 The following data is required in order to configure a CORBA object binding:

v The corbaname URL of the CORBA object

v An indicator if the bound object is a context or leaf node object (to set the correct CORBA

binding type of context or object)

v Target root for the configured binding

v The name of the configured binding, relative to the target root

Indirect: Any object bound in WebSphere Application Server name space accessible with JNDI

Besides CORBA objects, this includes javax.naming.Referenceable, javax.naming.Reference, and

java.io.Serializable objects. The target object itself is not bound to the name space. Only the

information required to look up the object is bound. Therefore, the referenced name server does

not have to be running until the binding is actually referenced by some application. The following

data is required in order to configure an indirect JNDI lookup binding:

v JNDI provider URL of name server where object resides

v JNDI lookup name of object

v Target root for the configured binding (scope)

v The name of the configured binding, relative to the target root.

A cell-scoped indirect binding is useful when creating a fixed lookup name for a resource so that

the qualified name is not dependent on the topology. You can also achieve this topology by

widening the scope of the resource definition.

Note: WebSphere Application Server v3.5.x clients cannot access this type of binding .

String: String constant

You can configure a binding of a string constant. The following data is required to configure a

string constant binding:

v String constant value

v Target root for the configured binding (scope)

v The name of the configured binding, relative to the target root

Chapter 8. Developing WebSphere applications 1787

Name space federation

Federating name spaces involves binding contexts from one name space into another name space.

For example, assume that a name space, Name Space 1, contains a context under the name a/b. Also

assume that a second name space, Name Space 2, contains a context under the name x/y. (See the

following illustration.) If context x/y in Name Space 2 is bound into context a/b in Name Space 1 under

the name f2, the two name spaces are federated. Binding f2 is a federated binding because the context

associated with that binding comes from another name space. From Name Space 1, a lookup of the name

a/b/f2 returns the context bound under the name x/y in Name Space 2. Furthermore, if context x/y

contains an Enterprise JavaBeans (EJB) home bound under the name ejb1, the EJB home could be

looked up from Name Space 1 with the lookup name a/b/f2/ejb1. Notice that the name crosses name

spaces. This fact is transparent to the naming client.

 In a WebSphere Application Server name space, you can create federated bindings with the following

restrictions:

v Federation is limited to CosNaming name servers. A WebSphere Application Server name server is a

Common Object Request Broker Architecture (CORBA) CosNaming implementation. You can create

federated bindings to other CosNaming contexts. You cannot, for example, bind contexts from an LDAP

name server implementation.

v If you use JNDI to federate the name space, you must use WebSphere Application Server’s initial

context factory to obtain the reference to the federated context. If you use some other initial context

factory implementation, you either may not be able to create the binding, or the level of transparency

may be reduced.

v A federated binding to a non-WebSphere Application Server naming context has the following functional

limitations:

– JNDI operations are restricted to the use of CORBA objects. For example, you can look up EJB

homes, but you cannot look up non-CORBA objects such as data sources.

– JNDI caching is not supported for non-WebSphere Application Server name spaces. This restriction

affects the performance of lookup operations only.

Initial Context

a

Local Context

Local Context

Federated

Context

(remote reference)

b

f2

Name Space 1

Initial Context

x

Local Context

Local Context

y

ejb1

Name Space 2

EJB

Federated Name Spaces

1788 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

– If security is enabled, WebSphere Application Server does not support federated bindings to

non-WebSphereApplication Server name spaces.
v Do not federate two WebSphere Application Server stand-alone server name spaces. Incorrect behavior

may result. If you want to federate WebSphere Application Server name spaces, you should use servers

running under the Network Deployment or Enterprise packages of WebSphere Application Server.

Name space bindings

Administrators can add name bindings to the name space through the configuration. Name servers add

these configured bindings to the name space view by reading the configuration data for the bindings.

Configuring bindings is an alternative to creating the bindings from a program.

Configured bindings are created each time a server starts, even when the binding is created in a transient

partition of the name space. One major use of configured bindings to provide interoperability with JNDI

clients running on previous versions of the WebSphere Application Server.

There are four different kinds of bindings that you can configure:

v Enterprise JavaBeans (EJB)

v CORBA object

v Indirect Lookup

v String

Naming and directories: Resources for learning

Use the following links to find relevant supplemental information about naming and directories. The

information resides on IBM and non-IBM Internet sites, whose sponsors control the technical accuracy of

the information.

The naming service provided with WebSphere Application Server Version 6 is the same as that provided

for Version 5, thus information on the Version 5 naming and directories applies to Version 6.

The following links are provided for convenience. Often, the information is not specific to the IBM

WebSphere Application Server product, but is useful all or in part for understanding the product. When

possible, links are provided to technical papers and Redbooks that supplement the broad coverage of the

release documentation with in-depth examinations of particular product areas.

Refer to the information center for links to information applicable to WebSphere Application Server

generally, such as lists of IBM technical papers, Redbooks and samples.

Programming instructions and examples

v Naming in WebSphere Application Server V5: Impact on Migration and Interoperability

Programming specifications

v Java Naming and Directory InterfaceTM 1.2.1 Specification

v Object Management Group (OMG) Interoperable Naming specifications

– Naming Service Specification

– Common Object Request Broker: Architecture and Specification

– Interoperable Naming Service revised chapters, which presents a consolidated view of all of the

elements that comprise interoperable naming

Configuring name servers

To configure a name server, complete the following:

1. In the administrative console, click Servers > Application Servers > Server Components > Name

Server.

2. Edit the fields as desired.

Chapter 8. Developing WebSphere applications 1789

http://www7b.software.ibm.com/webapp/dd/transform.wss?URL=/wsdd/library/techarticles/0305_weiner/weiner.xml&xslURL=/wsdd/xsl/document.xsl&format=one-column
http://java.sun.com/products/jndi/1.2/javadoc/
http://www.omg.org/cgi-bin/doc?formal/2001-02-65
http://www.omg.org/cgi-bin/doc?formal/00-10-33
http://www.omg.org/cgi-bin/doc?ptc/00-08-07

Note: All of these fields are mandatory.

3. To make other changes, click Custom Properties and configure a custom property.

4. Click OK to register your changes.

Name server settings

Use this page to configure Naming Service Provider settings for the application server.

To view this administrative console page, click Servers > Application Servers > server_name >

Administration > Server Components > Name Server.

To view this administrative console page, click one of the following paths:

v Servers > Application Servers > server_name > Administration > Server Components > Name

Server

v Servers > JMS Servers > server_name > Administration > Server Components > Name Server

Name:

Specifies the display name for the server.

 Data type String

Initial State:

Specifies the execution state. The options are: Started and Stopped.

 Data type String

Default Started

Configuring and viewing name space bindings

To view or configure an EJB, CORBA, Indirect lookup or string name space binding, complete the

following:

1. In the administrative console, click Environment > Manage Name Space Bindings.

2. Select the desired scope by entering in a node name for node-scoped bindings, or a node name and

server name for server-scoped bindings, and click Apply.

3. To create a new binding, click New and follow the instructions. To edit a previously created binding,

click the binding you want to edit and proceed to the next step.

4. Edit the Binding identifier, the Name in name space, and the String value fields as desired.

Note: All of these fields are required.

5. Click Finish to register the changes.

String binding settings

Use this page to configure a new string binding or to view or edit an existing string binding.

To view this administrative console page, click Environment > Naming > Name Space Bindings >

string_namespace_binding.

Scope:

Shows the scope of the configured binding. This value indicates the configuration location for the

namebindings.xml file. This field is for information purposes only and cannot be updated.

1790 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

If the configured binding is cell-scoped, the starting context is the cell persistent root context. If the

configured binding is node-scoped, the starting context is the node persistent root context. If the

configured binding is server-scoped, the starting context is the server’s server root context.

Binding Type:

Shows the type of binding configured. Possible choices are String, EJB, CORBA, and Indirect. This field is

for information purposes only and cannot be updated.

Binding Identifier:

Specifies the name that uniquely identifies this configured binding.

Name in Name Space:

Specifies the name used for this binding in the name space. This name can be a simple or compound

name depending on the portion of the name space where this binding is configured.

String Value:

Specifies the string to be bound into the name space.

CORBA object binding settings

Use this page to configure a new name binding of a CORBA object binding, or to view or edit an existing

CORBA object binding.

To view this administrative console page, click Environment > Naming > Name Space Bindings >

CORBA_namespace_binding.

Scope:

Shows the scope of the configured binding. This value indicates the configuration location for the

namebindings.xml file. This field is for information purposes only and cannot be updated.

 If the configured binding is cell-scoped, the starting context is the cell persistent root context. If the

configured binding is node-scoped, the starting context is the node persistent root context. If the

configured binding is server-scoped, the starting context is the server’s server root context.

Binding Type:

Shows the type of binding configured. Possible choices are String, EJB, CORBA, and Indirect. This field is

for information purposes only and cannot be updated.

Binding Identifier:

Specifies the name that uniquely identifies this configured binding.

Name in Name Space:

Specifies the name used for this binding in the name space. This name can be a simple or compound

name depending on the portion of the name space where this binding is configured.

Corbaname URL:

Specifies the CORBA name URL string identifying where the object is bound in a CosNaming server.

Federated Context:

Chapter 8. Developing WebSphere applications 1791

Specifies whether the target is a CosNaming context (true) or a leaf node object (false).

 true The target object is bound with a context CORBA binding

type. If the corbaname URL does not resolve to a

NamingContext, an error occurs when the binding is first

used (which is when the URL is first resolved).

false The target object is bound with an object CORBA binding

type.

Indirect lookup binding settings

Use this page to configure a new indirect lookup name binding, or to view or edit an existing indirect

lookup binding.

To view this administrative console page, click Environment > Naming > Name Space Bindings >

indirect_lookup_namespace_binding.

Scope:

Shows the scope of the configured binding. This value indicates the configuration location for the

namebindings.xml file. This field is for information purposes only and cannot be updated.

 If the configured binding is cell-scoped, the starting context is the cell persistent root context. If the

configured binding is node-scoped, the starting context is the node persistent root context. If the

configured binding is server-scoped, the starting context is the server’s server root context.

Binding Type:

Shows the type of binding configured. Possible choices are String, EJB, CORBA, and Indirect. This field is

for information purposes only and cannot be updated.

Binding Identifier:

Specifies the name that uniquely identifies this configured binding.

Name in Name Space:

Specifies the name used for this binding in the name space. This name can be a simple or compound

name depending on the portion of the name space where this binding is configured.

Provider URL:

Specifies the provider URL string needed to obtain a JNDI initial context.

JNDI Name:

Specifies the name used to look up the target object from the initial context.

EJB binding settings

Use this page to configure a new EJB binding, or to view or edit an existing EJB binding.

To view this administrative console page, click Environment > Naming > Name Space Bindings >

EJB_namespace_binding.

Scope:

1792 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Shows the scope of the configured binding. This value indicates the configuration location for the

namebindings.xml file. This field is for information purposes only and cannot be updated.

 If the configured binding is cell-scoped, the starting context is the cell persistent root context. If the

configured binding is node-scoped, the starting context is the node persistent root context. If the

configured binding is server-scoped, the starting context is the server’s server root context.

Binding Type:

Shows the type of binding configured. Possible choices are String, EJB, CORBA, and Indirect. This field is

for information purposes only and cannot be updated.

Binding Identifier:

Specifies the name that uniquely identifies this configured binding.

Name in Name Space:

Specifies the name used for this binding in the name space. This name can be a simple or compound

name depending on the portion of the name space where this binding is configured.

Enterprise Bean Location:

Specifies whether the enterprise bean is running in a server cluster or a single server. If Single Server is

specified, type the node name.

Server:

Specifies the name of the cluster or non-clustered server in which the enterprise bean is configured.

JNDI Name:

Specifies the JNDI name of the deployed enterprise bean (the bean’s JNDI name that is in the enterprise

bean bindings--not the java:comp name)

Name space binding collection

Use this page to configure a name binding of an EJB, a CORBA CosNaming NamingContext, a CORBA

leaf node object, an object that you can look up using JNDI, or a constant string value.

Binding information for configured bindings is stored in the configuration and applied upon startup of the

name server for each server within the scope of the binding.

To view the Name Space Bindings page, click Environment > Naming > Name Space Bindings.

Click the check boxes to select one or more of the users in your collection. Use the buttons to control the

selected users.

Name:

Shows the names given to uniquely identify these configured bindings.

Scope:

Shows the scope of the configured binding. This value indicates the configuration location for the

namebindings.xml file. This field is for information purposes only and cannot be updated.

Chapter 8. Developing WebSphere applications 1793

If the configured binding is cell-scoped, the starting context is the cell persistent root context. If the

configured binding is node-scoped, the starting context is the node persistent root context. If the

configured binding is server-scoped, the starting context is the server’s server root context.

Binding Type:

Shows the type of binding configured. Valid values are String, EJB, CORBA, and Indirect. This field is for

information purposes only and cannot be updated.

Developing applications that use JNDI

References to EJB homes and other artifacts such as data sources are bound to the WebSphere name

space. These objects can be obtained through the JNDI interface. Before you can perform any JNDI

operations, you need to get an initial context. You can use the initial context to look up objects bound to

the WebSphere name space.

These examples describe how to get an initial context and how to perform lookup operations.

v Getting the default initial context

v Getting an initial context by setting the provider URL property

v Setting the provider URL property to select a different root context as the initial context

v Looking up an EJB home with JNDI

v Looking up a JavaMail session with JNDI

In these examples, the default behavior of features specific to WebSphere’s JNDI Context implementation

is used.

WebSphere Application Server’s JNDI context implementation includes special features. JNDI caching

enhances performance of repeated lookup operations on the same objects. Name syntax options offer a

choice of a name syntaxes, one optimized for typical JNDI clients, and one optimized for interoperability

with CosNaming applications. Most of the time, the default behavior of these features is the preferred

behavior. However, sometimes you should modify the behavior for specific situations.

JNDI caching and name syntax options are associated with a javax.naming.InitialContext instance. To

select options for these features, set properties that are recognized by the WebSphere Application Server’s

initial context factory. To set JNDI caching or name syntax properties which will be visible to WebSphere

Application Server’s initial context factory, follow the following steps.

1. Optional: Configure JNDI caches JNDI caching can greatly increase performance of JNDI lookup

operations. By default, JNDI caching is enabled. In most situations, this default is the desired behavior.

However, in specific situations, use the other JNDI cache options.

Objects are cached locally as they are looked up. Subsequent lookups on cached objects are resolved

locally. However, cache contents can become stale. This situation is not usually a problem, since most

objects you look up do not change frequently. If you need to look up objects which change relatively

frequently, change your JNDI cache options.

JNDI clients can use several properties to control cache behavior.

You can set properties:

v From the command line by entering the actual string value. For example:

java -Dcom.ibm.websphere.naming.jndicache.maxentrylife=1440

v In a jndi.properties file by creating a file named jndi.properties as a text file with the desired

properties settings. For example:

...

com.ibm.websphere.naming.jndicache.cacheobject=none

...

Include the file as the beginning of the classpath, so that the class loader loads your copy of

jndi.properties before any other copies.

1794 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

v Within a Java program by using the PROPS.JNDI_CACHE* Java constants, defined in the

com.ibm.websphere.naming.PROPS file. The constant definitions follow:

public static final String JNDI_CACHE_OBJECT =

 "com.ibm.websphere.naming.jndicache.cacheobject";

public static final String JNDI_CACHE_OBJECT_NONE = "none";

public static final String JNDI_CACHE_OBJECT_POPULATED = "populated";

public static final String JNDI_CACHE_OBJECT_CLEARED = "cleared";

public static final String JNDI_CACHE_OBJECT_DEFAULT =

 JNDI_CACHE_OBJECT_POPULATED;

public static final String JNDI_CACHE_NAME =

 "com.ibm.websphere.naming.jndicache.cachename";

public static final String JNDI_CACHE_NAME_DEFAULT = "providerURL";

public static final String JNDI_CACHE_MAX_LIFE =

 "com.ibm.websphere.naming.jndicache.maxcachelife";

public static final int JNDI_CACHE_MAX_LIFE_DEFAULT = 0;

public static final String JNDI_CACHE_MAX_ENTRY_LIFE =

 "com.ibm.websphere.naming.jndicache.maxentrylife";

public static final int JNDI_CACHE_MAX_ENTRY_LIFE_DEFAULT = 0;

To use the previous properties in a Java program, add the property setting to a hashtable and pass

it to the InitialContext constructor as follows:

java.util.Hashtable env = new java.util.Hashtable();

...

// Disable caching

env.put(PROPS.JNDI_CACHE_OBJECT, PROPS.JNDI_CACHE_OBJECT_NONE); ...

javax.naming.Context initialContext = new javax.naming.InitialContext(env);

2. Optional: Specify the name syntax

Most WebSphere applications use JNDI to look up EJB objects and do not need to look up objects

bound by CORBA applications. Therefore, the default name syntax used for JNDI names is the most

convenient. If your application needs to look up objects bound by CORBA applications, you may need

to change your name syntax so that all CORBA CosNaming names can be represented.

JNDI clients can set the name syntax by setting a property. The property setting is applied by the initial

context factory when you instantiate a new java.naming.InitialContext object. Names specified in JNDI

operations on the initial context are parsed according to the specified name syntax.

You can set the property:

v From the command line by entering the actual string value. For example:

 java -Dcom.ibm.websphere.naming.name.syntax=ins

v In a jndi.properties file by creating a file named jndi.properties as a text file with the desired

properties settings. For example:

...

com.ibm.websphere.naming.name.syntax=ins

...

Include the file as the beginning of the classpath, so that the class loader loads your copy of

jndi.properties before any other copies.

v Within a Java program by using the PROPS.NAME_SYNTAX* Java constants, defined in the

com.ibm.websphere.naming.PROPS file. The constant definitions follow:

public static final String NAME_SYNTAX =

 "com.ibm.websphere.naming.name.syntax";

public static final String NAME_SYNTAX_JNDI = "jndi";

public static final String NAME_SYNTAX_INS = "ins";

To use the previous properties in a Java program, add the property setting to a hashtable and pass

it to the InitialContext constructor as follows:

Chapter 8. Developing WebSphere applications 1795

java.util.Hashtable env = new java.util.Hashtable();

...

env.put(PROPS.NAME_SYNTAX, PROPS.NAME_SYNTAX_INS); // Set name syntax to INS

...

javax.naming.Context initialContext = new javax.naming.InitialContext(env);

Example: Getting the default initial context

This example below gets the default initial context. That is, no provider URL is passed to the

javax.naming.InitialContext constructor. The following section explains the process of determining the

address of the bootstrap server to use to obtain the initial context.

...

import javax.naming.Context;

import javax.naming.InitialContext;

...

Context initialContext = new InitialContext();

...

The default initial context returned depends the runtime environment of the JNDI client. The initial context

returned in the various environments are listed below:

v Thin client: The server root context of the server running on the local host at port 2809.

v Pure client:

– The context specified by the java.naming.provider.url property passed to launchClient command with

the -CCD command line parameter. The context usually will be the server root context of the server

at the address specified in the URL, although it is possible to construct a corbaname or corbaloc

URL which resolves to some other context.

– If no provider URL was specified, the server root context of the server running on the host and port

specified by the -CCproviderURL, or -CCBootstrapHost and -CCBootstrapPort command line

parameters. The default host is the local host, and the default port is 2809.

v Server process: The server root context for that process.

Even though no provider URL is explicitly specified in the above example, the InitialContext constructor

might find a provider URL defined in other places that it searches for property settings.

Users of properties which affect ORB initialization should read the rest of this section for a deeper

understanding of exactly how initial contexts are obtained, which has changed from previous releases.

Determining which server is used to obtain the initial context

WebSphere Application Server name servers are CORBA CosNaming name servers, and WebSphere

Application Server provides a CosNaming JNDI plug-in implementation for JNDI clients to perform naming

operations on WebSphere Application Server name spaces. The WebSphere Application Server

CosNaming plug-in implementation is selected through a JNDI property that is passed to the InitialContext

constructor. This property is java.naming.factory.initial, and it specifies the initial context factory

implementation to use to obtain an initial context. The factory returns a javax.naming.Context instance,

which is part of its implementation.

The WebSphere Application Server initial context factory,

com.ibm.websphere.naming.WsnInitialContextFactory, is typically used by WebSphere Application Server

applications to perform JNDI operations. The WebSphere Application Server runtime environment is set up

to use this WebSphere Application Server initial context factory if one is not specified explicitly by the JNDI

client. When the initial context factory is invoked, an initial context is obtained. The following paragraphs

explain how the WebSphere Application Server initial context factory obtains the initial context in client and

server environments.

v Understanding the registration of initial references in server processes

Every WebSphere Application Server has an ORB used to receive and dispatch invocations on objects

running in that server. Services running in the server process can register initial references with the

1796 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

ORB. Each initial reference is registered under a key, which is a string value. An initial reference can be

any CORBA object. WebSphere Application Server name servers register several initial contexts as

initial references under predefined keys. Each name server initial reference is an instance of the

interface org.omg.CosNaming.NamingContext.

v Obtaining initial references in pure client processes

Pure JNDI clients, that is, JNDI clients which are not running in a WebSphere Application Server

process, also have an ORB instance. This client ORB instance can be passed to the InitialContext

constructor, but typically the initial context factory creates and initializes the client ORB instance

transparently. A client ORB can be initialized with initial references, but the initial references most likely

resolve to objects running in some server. The initial context factory does not define any default initial

references when it initializes an ORB. If the resolve_initial_references method is invoked on the client

ORB when no initial references have been configured, the method invocation fails. This condition is

typical for pure client processes. To obtain an initial NamingContext reference, the initial context factory

must invoke string_to_object with an IIOP type CORBA object URL, such as

corbaloc:iiop:myhost:2809. The URL specifies the address of the server from which to obtain the initial

context. The host and port information is extracted from the provider URL passed to the InitialContext

constructor. If no provider URL is defined, the WebSphere Application Server initial context factory uses

the default provider URL of corbaloc:iiop:localhost:2809. The string_to_object ORB method resolves

the URL and communicates with the target server ORB to obtain the initial reference.

v Obtaining initial references in server processes

If the JNDI client is running in a WebSphere Application Server process, the initial context factory

obtains a reference to the server ORB instance if the JNDI client does not provide an ORB instance.

Typically, JNDI clients running in server processes use the server ORB instance; that is, they do not

pass an ORB instance to the InitialContext constructor. The name server which is running in the server

process sets a provider URL as a java.lang.System property to serve as the default provider URL for all

JNDI clients in the process. This default provider URL is corbaloc:rir:/NameServiceServerRoot. This

URL resolves to the server root context for that server. (The URL is equivalent to invoking

resolve_initial_references on the ORB with a key of NameServiceServerRoot. The name server

registers the server root context as an initial reference under that key.)

v Understanding the legacy ORB protocol

Previous versions of WebSphere Application Server used a different ORB implementation, which used a

legacy protocol in contrast with the Interoperable Name Service (INS) protocol now used. This change

has affected the implementation of the WebSphere Application Server initial context factory. Certain

types of pure clients can experience different behavior when getting initial JNDI contexts as

compared to previous releases of WebSphere Application Server. This behavior is discussed in

more detail below.

The following ORB properties are used with the legacy ORB protocol for ORB initialization and are now

deprecated:

– com.ibm.CORBA.BootstrapHost

– com.ibm.CORBA.BootstrapPort

The new INS ORB is different in a major respect, in that it exhibits no default behavior if no initial

references are defined. In the legacy ORB, the bootstrap host and port values defaulted to localhost

and 900. All initial references were obtained from the server running on the bootstrap host and port. So,

if the ORB user provided no bootstrap host and port, all initial references are resolved from the server

running on the local host at port 900. The INS ORB has no concept of bootstrap host or bootstrap port.

All initial references are defined independently. That is, different initial references could resolve to

different servers. If ORB.resolve_initial_references is invoked with a key such that the ORB is not

initialized with an initial reference having that key, the call fails.

In previous releases of WebSphere Application Server, the initial context factory invoked

resolve_initial_references on the ORB in the absence of any provider URL. This action succeeded if a

name server at the default bootstrap host and port was running. Today, with the INS ORB, this would

fail. (Actually, the ORB would fall back to the legacy protocol during the deprecation period, but when

the legacy protocol is no longer supported, the operation would fail.) The initial context factory now uses

a default provider URL of corbaloc:iiop:localhost:2809, and invokes string_to_object with the provider

Chapter 8. Developing WebSphere applications 1797

URL. This operation preserves the behavior that pure clients in previous releases experienced when

they set no ORB bootstrap properties or provider URL. However, this different initial context factory

implementation changes the behavior experienced by certain legacy pure clients, which do not

specify a provider URL:

– Clients which set the ORB bootstrap properties listed above when getting an initial context.

– Clients which supply their own ORB instance to the InitialContext constructor.

There are two ways to circumvent this change of behavior:

– Always specify an IIOP type provider URL. This approach does not depend on the bootstrap host

and port properties and continues to work when support for the bootstrap host and port properties is

removed. For example, you can express bootstrap host and port property values of myHost and 2809,

respectively, as corbaloc:iiop:myHost:2809.

– Use an rir type provider URL:

- Specify corbaloc:rir:/NameServiceServerRoot if the ORB is initialized to use a WebSphere

Application Server 5 server as the bootstrap server.

- Specify corbaname:rir:/NameService#domain/legacyRoot if the ORB is initialized to use a

WebSphere Application Server 4.0.x server as the bootstrap server.

- Specify corbaloc:rir:/NameService if the ORB is initialized to use a server other than a

WebSphere Application Server 5 or 4.0.x server as the bootstrap server.

URLs of this type are equivalent to invoking resolve_initial_references on the ORB with the specified

key. If the bootstrap host and port properties are being used to initialize the ORB, this approach will

not work when the bootstrap and host properties are no longer supported.

v The InitialContext constructor search order for JNDI properties

If the code snippet shown at the beginning of this section is executed by an application, the bootstrap

server depends on the value of the property, java.naming.provider.url. If the property is not set (in server

processes the default value is set as a system property), the default host of localhost and default port

of 2809 are used as the address of the server from which to obtain the initial context. The JNDI

specification describes where the InitialContext constructor looks for java.naming.provider.url property

settings, but briefly, the property is picked up from the following places in the order shown:

1. The InitialContext constructor. This does not apply to the above example since the example uses

the empty InitalContext constructor.

2. System environment. You can add JNDI properties to the system environment as an option on the

Java command invocation and by program code. The recommended way to set the provider URL in

the system environment is as an option supplied to the Java command invocation. Setting the

provider URL in this manner is not temporal, so that getting a default initial context will always yield

the same result. It is generally recommended that program code not set the provider URL property

in the system environment because as a side-effect, this could adversely affect other, possibly

unrelated, code running elsewhere in the same process.

3. jndi.properties file. There may be many jndi.properties files that are within the scope of the

class loader in effect. All jndi.properties files are used for setting JNDI properties, but the provider

URL setting is determined by the first jndi.properties file returned by the class loader.

Example: Getting an initial context by setting the provider URL property

In general, JNDI clients should assume the correct environment is already configured so there is no need

to explicitly set property values and pass them to the InitialContext constructor. However, a JNDI client

may need to access a name space other than the one identified in its environment. In this case, it is

necessary to explicitly set the java.naming.provider.url (provider URL) property used by the

InitialContext constructor. A provider URL contains bootstrap server information that the initial context

factory can use to obtain an initial context. Any property values passed in directly to the InitialContext

constructor take precedence over settings of those same properties found elsewhere in the environment.

You can use two different provider URL forms with WebSphere Application Server’s initial context factory:

v A CORBA object URL (new for J2EE 1.3)

v An IIOP URL

1798 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

CORBA object URLs are more flexible than IIOP URLs and are the recommended URL format to use.

CORBA object URLs are part of the OMG CosNaming Interoperable Naming Specification. A corbaname

URL, for example, can include initial context and lookup name information and can be used as a lookup

name without the need to explicitly obtain another initial context.The IIOP URLs are the legacy JNDI

format, but are still supported by the WebSphere Application Server initial context factory.

The following examples illustrate the use of these URLs.

Using a CORBA object URL: This example shows a CORBA object URL.

...

import java.util.Hashtable;

import javax.naming.Context;

import javax.naming.InitialContext;

...

Hashtable env = new Hashtable();

env.put(Context.INITIAL_CONTEXT_FACTORY,

 "com.ibm.websphere.naming.WsnInitialContextFactory");

env.put(Context.PROVIDER_URL, "corbaloc:iiop:myhost.mycompany.com:2809");

Context initialContext = new InitialContext(env);

...

Using a CORBA object URL with multiple name server addresses: CORBA object URLs can contain

more than one bootstrap address. You can use this feature when attempting to obtain an initial context

from a server cluster. You can specify the bootstrap addresses for all servers in the cluster in the URL.

The operation succeeds if at least one of the servers is running, eliminating a single point of failure. There

is no guarantee of any particular order in which the address list will be processed. For example, the

second bootstrap address may be used to obtain the initial context even though the server at the first

bootstrap address in the list is available.

Multiple-address provider URLs should only contain the bootstrap addresses of members of the same

cluster. Otherwise, incorrect behavior may occur.

An example of a corbaloc URL with multiple addresses follows.

...

import java.util.Hashtable;

import javax.naming.Context;

import javax.naming.InitialContext;

...

Hashtable env = new Hashtable();

env.put(Context.INITIAL_CONTEXT_FACTORY,

 "com.ibm.websphere.naming.WsnInitialContextFactory");

// All of the servers in the provider URL below are members of

// the same cluster.

env.put(Context.PROVIDER_URL,

 "corbaloc::myhost1:9810,:myhost1:9811,:myhost2:9810");

Context initialContext = new InitialContext(env);

...

Using a CORBA object URL from an non-WebSphere Application Server JNDI implementation:

 Initial context factories for CosNaming JNDI plug-in implementations other than the WebSphere Application

Server initial context factory most likely obtain an initial context using the object key, NameService. When

you use such a context factory to obtain an initial context from a WebSphere Application Server name

server, the initial context is the cell root context. Since system artifacts such as EJB homes associated

with a server are bound under the server’s server root context, names used in JNDI operations must be

qualified. If you want to use relative names, ensure your initial context is the server root context under

which the target object is bound. In order to make the server root context the initial context, specify a

corbaloc provider URL with an object key of NameServiceServerRoot.

This example shows a CORBA object type URL from a non-WebSphere Application Server JNDI

implementation. This example assumes full CORBA object URL support by the non-WebSphere Application

Chapter 8. Developing WebSphere applications 1799

Server JNDI implementation. The object key of NameServiceServerRoot is specified so that the initial

context will be the specified server’s server root context.

...

import java.util.Hashtable;

import javax.naming.Context;

import javax.naming.InitialContext;

...

Hashtable env = new Hashtable();

env.put(Context.INITIAL_CONTEXT_FACTORY,

 "com.somecompany.naming.TheirInitialContextFactory");

env.put(Context.PROVIDER_URL,

 "corbaname:iiop:myhost.mycompany.com:9810/NameServiceServerRoot");

Context initialContext = new InitialContext(env);

...

If qualified names are used, you can use the default key of NameService.

Using an IIOP URL: The IIOP type of URL is a legacy format which is not as flexible as CORBA object

URLs. However, URLs of this type are still supported. The following example shows an IIOP type URL as

the provider URL.

...

import java.util.Hashtable;

import javax.naming.Context;

import javax.naming.InitialContext;

...

Hashtable env = new Hashtable();

env.put(Context.INITIAL_CONTEXT_FACTORY,

 "com.ibm.websphere.naming.WsnInitialContextFactory");

env.put(Context.PROVIDER_URL, "iiop://myhost.mycompany.com:2809");

Context initialContext = new InitialContext(env);

...

Example: Setting the provider URL property to select a different root context as

the initial context

Each server contains its own server root context, and, when bootstrapping to a server, the server root is

the default initial JNDI context. Most of the time, this default is the desired initial context, since system

artifacts such as EJB homes are bound there. However, other root contexts exist, which can contain

bindings of interest. It is possible to specify a provider URL to select other root contexts.

Selecting the initial root context with a CORBA object URL: There are several object keys registered

with the bootstrap server that you can use to select the root context for the initial context. To select a

particular root context with a CORBA object URL object key, set the object key to the corresponding value.

The default object key is NameService. Using JNDI yields the server root context. A table that lists the

different root contexts and their corresponding object key follows:

 Root Context CORBA Object URL Object Key

Server Root NameServiceServerRoot

Cell Persistent Root NameServiceCellPersistentRoot

Cell Root NameServiceCellRoot

Node Root NameServiceNodeRoot

The following example shows the use of a corbaloc URL with the object key set to select the cell

persistent root context as the initial context.

...

import java.util.Hashtable;

import javax.naming.Context;

import javax.naming.InitialContext;

...

1800 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Hashtable env = new Hashtable();

env.put(Context.INITIAL_CONTEXT_FACTORY,

 "com.ibm.websphere.naming.WsnInitialContextFactory");

env.put(Context.PROVIDER_URL,

 "corbaloc:iiop:myhost.mycompany.com:2809/NameServiceCellPersistentRoot");

Context initialContext = new InitialContext(env);

...

Selecting the initial root context with the name space root property: You can also select the initial

root context by passing a name space root property setting to the InitialContext constructor. Generally, the

object key setting described above is sufficient. Sometimes a property setting is preferable. For example,

you can set the root context property on the Java invocation to make which server root is being used as

the initial context transparent to the application. The default server root property setting is defaultroot,

which yields the server root context.

 Root Context Name Space Root Property Value

Server Root bootstrapserverroot

Cell Persistent Root cellpersistentroot

Cell Root cellroot

Node Root bootstrapnoderoot

The initial context factory ignores the name space root property if the provider URL contains an object key

other than NameService.

The following example shows use of the name space root property to select the cell persistent root context

as the initial context. Note that available constants are used instead of hard-coding the property name and

value.

...

import java.util.Hashtable;

import javax.naming.Context;

import javax.naming.InitialContext;

import com.ibm.websphere.naming.PROPS;

...

Hashtable env = new Hashtable();

env.put(Context.INITIAL_CONTEXT_FACTORY,

 "com.ibm.websphere.naming.WsnInitialContextFactory");

env.put(Context.PROVIDER_URL, "corbaloc:iiop:myhost.mycompany.com:2809");

env.put(PROPS.NAME_SPACE_ROOT, PROPS.NAME_SPACE_ROOT_CELL_PERSISTENT);

Context initialContext = new InitialContext(env);

...

Example: Looking up an EJB home with JNDI

Most applications which use JNDI run in a container. Some do not. The name used to look up an object

depends on whether or not the application is running in a container. The examples below show lookups

from each type of application. Sometimes it is more convenient for an application to use a corbaname URL

as the lookup name. Container-based JNDI clients and thin Java clients can use a corbaname URL. An

example of a lookup with a corbaname URL is also included in this section.

JNDI lookup from an application running in a container

Applications that run in a container can use java: lookup names. Lookup names of this form provide a

level of indirection such that the lookup name used to look up an object is not dependent on the object’s

name as it is bound in the name server’s name space. The deployment descriptors for the application

provide the mapping from the java: name and the name server lookup name. The container sets up the

java: name space based on the deployment descriptor information so that the java: name is correctly

mapped to the corresponding object.

Chapter 8. Developing WebSphere applications 1801

The following example shows a lookup of an EJB home. The actual home lookup name is determined by

the application’s deployment descriptors.

// Get the initial context as shown in a previous example

...

// Look up the home interface using the JNDI name

try {

 java.lang.Object ejbHome =

 initialContext.lookup(

 "java:comp/env/com/mycompany/accounting/AccountEJB");

 accountHome = (AccountHome)javax.rmi.PortableRemoteObject.narrow(

 (org.omg.CORBA.Object) ejbHome, AccountHome.class);

}

 catch (NamingException e) { // Error getting the home interface

 ...

}

JNDI lookup from an application that does not run in a container

Applications that do not run in a container cannot use java: lookup names because it is the container

which sets the java: name space up for the application. Instead, an application of this type must look the

object up directly from the name server. Each application server contains a name server. System artifacts

such as EJB homes are bound relative to the server root context in that name server. The various name

servers are federated by means of a system name space structure. The recommended way to look up

objects on different servers is to qualify the name so that the name resolves from any initial context in the

cell. If a relative name is used, the initial context must be the same server root context as the one under

which the object is bound. The form of the qualified name depends on whether the qualified name is a

topology-based name or a fixed name. A topology based name depends on whether the object resides in a

single server or a server cluster. Examples of each form of qualified name follow.

v Topology-based qualified names

Topology-based qualified names traverse through the system name space to the server root context

context under which the target object is bound. A topology-based qualified name resolves from any

initial context in the cell. The topology-based qualified name depends on whether the object resides on

a single server or server cluster. Examples of each lookup follow.

Single server

The following example shows a lookup of an EJB home that is running in the single server,

MyServer, configured in the node, Node1.

// Get the initial context as shown in a previous example

// Using the form of lookup name below, it doesn’t matter which

// server in the cell is used to obtain the initial context.

...

// Look up the home interface using the JNDI name

try {

 java.lang.Object ejbHome = initialContext.lookup(

 "cell/nodes/Node1/servers/MyServer/com/mycompany/accounting/AccountEJB");

 accountHome = (AccountHome)javax.rmi.PortableRemoteObject.narrow(

 (org.omg.CORBA.Object) ejbHome, AccountHome.class);

}

catch (NamingException e) { // Error getting the home interface

 ...

}

Server cluster

The example below shows a lookup of an EJB home which is running in the cluster, MyCluster.

The name can be resolved if any of the cluster members is running.

// Get the initial context as shown in a previous example

// Using the form of lookup name below, it doesn’t matter which

// server in the cell is used to obtain the initial context.

...

 // Look up the home interface using the JNDI name

try {

 java.lang.Object ejbHome = initialContext.lookup(

1802 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

"cell/clusters/MyCluster/com/mycompany/accounting/AccountEJB");

 accountHome = (AccountHome)javax.rmi.PortableRemoteObject.narrow(

 (org.omg.CORBA.Object) ejbHome, AccountHome.class);

}

catch (NamingException e) { // Error getting the home interface

 ...

}

v Fixed qualified names

If the target object has a cell-scoped fixed name defined for it, you can use its qualified form instead of

the topology-based qualified name. Even though the topology-based name works, the fixed name does

not change with the specific cell topology or with the movement of the target object to a different server.

An example lookup with a qualified fixed name is shown below.

// Get the initial context as shown in a previous example

// Using the form of lookup name below, it doesn’t matter which

// server in the cell is used to obtain the initial context.

...

// Look up the home interface using the JNDI name

try {

 java.lang.Object ejbHome = initialContext.lookup(

 "cell/persistent/com/mycompany/accounting/AccountEJB");

 accountHome = (AccountHome)javax.rmi.PortableRemoteObject.narrow(

 (org.omg.CORBA.Object) ejbHome, AccountHome.class);

 }

catch (NamingException e) { // Error getting the home interface

...

}

JNDI lookup with a corbaname URL

A corbaname can be useful at times as a lookup name. If, for example, the target object is not a member

of the federated name space and cannot be located with a qualifiied name, a corbaname can be a

convenient way to look up the object. A lookup with a corbaname URL follows.

// Get the initial context as shown in a previous example

...

// Look up the home interface using a corbaname URL

try {

 java.lang.Object ejbHome = initialContext.lookup(

 "corbaname:iiop:someHost:2809#com/mycompany/accounting/AccountEJB");

 accountHome = (AccountHome)javax.rmi.PortableRemoteObject.narrow(

 (org.omg.CORBA.Object) ejbHome, AccountHome.class);

}

catch (NamingException e) { // Error getting the home interface

 ...

}

Example: Looking up a JavaMail session with JNDI

The example below shows a lookup of a JavaMail resource. The actual lookup name is determined by the

application’s deployment descriptors.

// Get the initial context as shown above

...

Session session =

 (Session) initialContext.lookup("java:comp/env/mail/MailSession");

JNDI interoperability considerations

This section explains considerations to take into account when interoperating with WebSphere Application

Server V4.0 and with non-WebSphere Application Server JNDI clients. Also, the way resources from

MQSeries must be bound to the name space changed after V4.0 and is described below.

Chapter 8. Developing WebSphere applications 1803

Interoperability with WebSphere Application Server V4.0

v EJB clients running on WebSphere Application Server V4.0 accessing EJB applications running

on WebSphere Application Server V5 or V6

Applications migrated from previous versions of WebSphere Application Server may still have clients still

running in a previous release. The default initial JNDI context for EJB clients running on previous

versions of WebSphere Application Server is the cell persistent root (legacy root). The home for an

enterprise bean deployed in version 5 or 6 is bound to its server’s server root context. In order for the

EJB lookup name for down-level clients to remain unchanged, configure a binding for the EJB home

under the cell persistent root.

v EJB clients running on WebSphere Application Server V5 or V6 accessing EJB applications

running on WebSphere Application Server V4.0 servers

The default initial context for a WebSphere Application Server V4.0 server is the correct initial context.

Simply look up the JNDI name under which the EJB home is bound.

Note: To enable WebSphere Application Server V5 or V6 clients to access version 4.x servers, the

down-level installations must have e-fix PQ60074 installed.

EJB clients running in an environment other than WebSphere Application Server accessing EJB

applications running on WebSphere Application Server V5 or V6 servers

When an EJB application running in WebSphere Application Server V5 or V6 is accessed by a

non-WebSphere Application Server EJB client, the JNDI initial context factory is presumed to be a

non-WebSphere Application Server implementation. In this case, the default initial context will be the cell

root. If the JNDI service provider being used supports CORBA object URLs, the corbaname format can be

used to look up the EJB home. The construction of the stringified name depends on whether the object is

installed on a single server or cluster, as shown below.

v Single server

initialContext.lookup(

 "corbaname:iiop:myHost:2809#cell/nodes/node1/servers/server1/myEJB");

According to the URL above, the bootstrap host and port are myHost and 2809, and the enterprise

bean is installed in a server server1 in node node1 and bound in that server under the name myEJB.

v Server cluster

initialContext.lookup(

 "corbaname:iiop:myHost:2809#cell/clusters/myCluster/myEJB");

According to the URL above, the bootstrap host and port are myHost and 2809, and the enterprise

bean is installed in a server cluster named myCluster and bound in that cluster under the name

myEJB.

The above lookup will work with any name server bootstrap host and port configured in the same cell.

The above lookup will also work if the bootstrap host and port belongs to a member of the cluster itself.

To avoid a single point of failure, the bootstrap server host and port for each cluster member could be

listed in the URL as follows:

initialContext.lookup(

 "corbaname:iiop:host1:9810,host2:9810#cell/clusters/myCluster/myEJB");

The name prefix cell/clusters/myCluster/ is not necessary if boostrapping to the cluster itself, but it will

work. The prefix is needed, however, when looking up enterprise beans in other clusters. Name

bindings under the clusters context are implemented on the name server to resolve to the server root

of a running cluster member during a lookup; thus avoiding a single point of failure.

v Without CORBA object URL support

If the JNDI initial context factory being used does not support CORBA object URLs, the initial context

can be obtained from the server, and the lookup can be performed on the initial context as follows:

1804 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Hashtable env = new Hashtable();

env.put(CONTEXT.PROVIDER_URL, "iiop://myHost:2809");

Context ic = new InitialContext(env);

Object o = ic.lookup("cell/clusters/myCluster/myEJB");

Binding resources from MQSeries 5.2

In releases previous to WebSphere Application Server V5, the MQSeries jmsadmin tool could be used to

bind resources to the name space. When used with a WebSphere Application Server V5 or V6 name

space, the resource is bound within a transient partition in the name space and does not persist past the

life of the server process. Instead of binding the MQSeries resources with the jmsadmin tool, bind them

from the WebSphere Application Server administrative console, under Resources in the console

navigation tree.

JNDI caching

To increase the performance of JNDI operations, the WebSphere Application Server JNDI implementation

employs caching to reduce the number of remote calls to the name server for lookup operations. For most

cases, use the default cache setting.

When an InitialContext object is instantiated, an association is established between the InitialContext

instance and a cache. The initial context and any contexts returned directly or indirectly from a lookup on

the initial context are all associated with that same cache instance. By default, the association is based on

the provider URL, in particular, the host name and port. The caller can specify the cache name to override

this default behavior. A cache instance of a given name is shared by all instances of InitialContext

configured to use a cache of that name which were created with the same context class loader in effect.

Two EJB applications running in the same server will use their own cache instances, if they are using

different context class loaders, even if the cache names are the same.

After an association between an InitialContext instance and cache is established, the association does not

change. A javax.naming.Context object returned from a lookup operation inherits the cache association of

the Context object on which the lookup was performed. Changing cache property values with the

Context.addToEnvironment() or Context.removeFromEnvironment() method does not affect cache

behavior. You can change properties affecting a given cache instance with each InitialContext instantiation.

A cache is restricted to a process and does not persist past the life of that process. A cached object is

returned from lookup operations until either the maximum cache life for the cache is reached, or the

maximum entry life for the object’s cache entry is reached. After this time, a lookup on the object causes

the cache entry for the object to be refreshed. By default, caches and cache entries have unlimited

lifetimes.

Usually, cached objects are relatively static entities, and objects becoming stale is not a problem.

However, you can set timeout values on cache entries or on a cache so that cache contents are

periodically refreshed.

If a bind or rebind operation is executed on an object, the change is not reflected in any caches other than

the one associated with the context from which the bind or rebind was issued. This scenario is most likely

to happen when multiple processes are involved, since different processes do not share the same cache,

and context objects in all threads in a process typically share the same cache instance for a given name

service provider.

JNDI cache settings

Various cache property settings follow. Ensure that all property values are string values.

com.ibm.websphere.naming.jndicache.cachename:

The name of the cache to associate with an initial context instance can be specified with this property.

Chapter 8. Developing WebSphere applications 1805

It is possible to create multiple InitialContext instances, each operating on the name space of a different

name server. By default, objects from each bootstrap address are cached separately, since they each

involve independent name spaces and name collisions could occur if they used the same cache. The

provider URL specified when the initial context is created by default serves as the basis for the cache

name. With this property, a JNDI client can specify a cache name. Valid options for cache names follow:

 Valid options Resulting cache behavior

providerURL (default) Use the value for java.naming.provider.url property as the basis for the cache name.

Cache names are based on the bootstrap host and port specified in the URL. The

boostrap host is normalized to a fully qualfied name, if possible. For example,

″corbaname:iiop:server1:2809#some/starting/context″ and ″corbaloc:iiop://server1″ are

normalized to the same cache name. If no provider URL is specified, a default cache

name is used.

Any string Use the specified string as the cache name. You can use any arbitrary string with a

value other than ″providerURL″ as a cache name.

com.ibm.websphere.naming.jndicache.cacheobject:

Turn caching on or off and clear an existing cache with this property.

 By default, when an InitialContext is instantiated, it is associated with an existing cache or, if one does not

exist, a new one is created. An existing cache is used with its existing contents. In some circumstances,

this behavior is not desirable. For example, when objects that are looked up change frequently, they can

become stale in the cache. Other options are available. The following table lists these other options along

with the corresponding property value.

 Valid values Resulting cache behavior

populated (default) Use a cache with the specified name. If the cache already exists, leave existing cache

entries in the cache; otherwise, create a new cache.

cleared Use a cache with the specified name. If the cache already exists, clear all cache

entries from the cache; otherwise, create a new cache.

none Do not cache. If this option is specified, the cache name is irrelevant. Therefore, this

option will not disable a cache that is already associated with other InitialContext

instances. The InitialContext that is instantiated is not associated with any cache.

com.ibm.websphere.naming.jndicache.maxcachelife:

Impose a limit to the age of a cache with this property.

 By default, cached objects remain in the cache for the life of the process or until cleared with the

com.ibm.websphere.naming.jndicache.cacheobject property set to ″cleared″. This property enables a JNDI

client to set the maximum life of a cache. This property differs from the maxentrylife property (below) in

that the entire cache is cleared when the cache lifetime is reached. The table below lists the various

maxcachelife values and their affect on cache behavior:

 Valid options Resulting cache behavior

0 (default) Make the cache lifetime unlimited.

Positive integer Set the maximum lifetime of the entire cache, in minutes, to the specified value. When

the maximum lifetime for the cache is reached, the next attempt to read any entry from

the cache causes the cache to be cleared

com.ibm.websphere.naming.jndicache.maxentrylife:

1806 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Impose a limit to the age of individual cache entries with this property.

 By default, cached objects remain in the cache for the life of the process or until cleared with the

com.ibm.websphere.naming.jndicache.cacheobject property set to cleared. This property enables a JNDI

client to set the maximum lifetime of individual cache entries. This property differs from the maxcachelife

property in that individual entries are refreshed individually as their maximum lifetime reached. This might

avoid any noticeable change in performance that might occur if the whole cache is cleared at once. The

table below lists the various maxentrylife values and their effect on cache behavior:

 Valid options Resulting cache behavior

0 (default) Lifetime of cache entries is unlimited.

Positive integer Set the maximum lifetime of individual cache entries, in minutes, to the specified value.

When the maximum lifetime for an entry is reached, the next attempt to read the entry

from the cache causes the individual cache entry to refresh.

Example: Controlling JNDI cache behavior from a program

Following are examples that illustrate how you can use JNDI cache properties to achieve the desired

cache behavior. Cache properties take effect when an InitialContext object is constructed.

import java.util.Hashtable;

import javax.naming.InitialContext;

import javax.naming.Context;

import com.ibm.websphere.naming.PROPS;

/*****

 Caching discussed in this section pertains to the WebSphere Application

 Server initial context factory. Assume the property,

 java.naming.factory.initial, is set to

 "com.ibm.websphere.naming.WsnInitialContextFactory" as a

 java.lang.System property.

*****/

Hashtable env;

Context ctx;

// To clear a cache:

env = new Hashtable();

env.put(PROPS.JNDI_CACHE_OBJECT, PROPS.JNDI_CACHE_OBJECT_CLEARED);

ctx = new InitialContext(env);

// To set a cache’s maximum cache lifetime to 60 minutes:

env = new Hashtable();

env.put(PROPS.JNDI_CACHE_MAX_LIFE, "60");

ctx = new InitialContext(env);

// To turn caching off:

env = new Hashtable();

env.put(PROPS.JNDI_CACHE_OBJECT, PROPS.JNDI_CACHE_OBJECT_NONE);

ctx = new InitialContext(env);

// To use caching and no caching:

env = new Hashtable();

env.put(PROPS.JNDI_CACHE_OBJECT, PROPS.JNDI_CACHE_OBJECT_POPULATED);

ctx = new InitialContext(env);

env.put(PROPS.JNDI_CACHE_OBJECT, PROPS.JNDI_CACHE_OBJECT_NONE);

Context noCacheCtx = new InitialContext(env);

Object o;

Chapter 8. Developing WebSphere applications 1807

// Use caching to look up home, since the home should rarely change.

o = ctx.lookup("com/mycom/MyEJBHome");

// Narrow, etc. ...

// Do not use cache if data is volatile.

o = noCacheCtx.lookup("com/mycom/VolatileObject");

// ...

JNDI name syntax

JNDI name syntax is the default syntax and is suitable for typical JNDI clients.

This syntax includes the following special characters: forward slash (/) and backslash (\). Components in a

name are delimited by a forward slash. The backslash is used as the escape character. A forward slash is

interpreted literally if it is escaped, that is, preceded by a backslash. Similarly, a backslash is interpreted

literally if it is escaped.

INS name syntax

INS syntax is designed for JNDI clients that need to interoperate with CORBA applications.

The INS syntax allows a JNDI client to make the proper mapping to and from a CORBA name. INS syntax

is very similar to the JNDI syntax with the additional special character, dot (.). Dots are used to delimit the

id and kind fields in a name component. A dot is interpreted literally when it is escaped. Only one

unescaped dot is allowed in a name component. A name component with a non-empty id field and empty

kind field is represented with only the id field value and must not end with an unescaped dot. An empty

name component (empty id and empty kind field) is represented with a single unescaped dot. An empty

string is not a valid name component representation.

JNDI to CORBA name mapping considerations

WebSphere Application Server name servers are an implementation of the CORBA CosNaming interface.

WebSphere Application Server provides a JNDI implementation which you can use to access CosNaming

name servers through the JNDI interface. Issues can exist when mapping JNDI name strings to and from

CORBA names.

Each component in a CORBA name consists of an id and kind field, but a JNDI name component

consists of no such fields. Each component in a JNDI name is atomic. Typical JNDI clients do not need to

make a distinction between the id and kind fields of a name component, or know how JNDI name strings

map to CORBA names. JNDI clients of this sort can use the JNDI syntax described below. When a name

is parsed according to JNDI syntax, each name component is mapped to the id field of the corresponding

CORBA name component. The kind field always has an empty value. This basic syntax is the least

obtrusive to the JNDI client in that it has the fewest special characters. However, you cannot represent

with this syntax a CORBA name with a non-empty kind field. This restriction can prevent EJB applications

from interoperating with CORBA applications.

Some clients, however must interoperate with CORBA applications which use CORBA names with

non-empty kind fields. These JNDI clients must make a distinction between id and kind so that JNDI

names are correctly mapped to CORBA names, particularly when the CORBA names contain components

with non-empty kind fields. Such JNDI clients can use the INS name syntax. With its additional special

character, you can use INS to represent any CORBA name. Use of this syntax is not recommended unless

it is necessary, because this syntax is more restrictive from the JNDI client’s perspective in that the JNDI

client must be aware that name components with multiple unescaped dots are syntactically invalid. INS

name syntax is part of the OMG CosNaming Interoperable Naming Specification.

Example: Setting the syntax used to parse name strings

JNDI clients which must interoperate with CORBA applications may need to use INS name syntax to

represent names in string format. The name syntax property may be passed to the InitialContext

constructor through its parameter, in the System properties, or in a jndi.properties file. The initial context

and any contexts looked up from that initial context will parse name strings based on the specified syntax.

1808 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

The following example shows how to set the name syntax to make the initial context parse name strings

according to INS syntax.

...

import java.util.Hashtable;

import javax.naming.Context;

import javax.naming.InitialContext;

import com.ibm.websphere.naming.PROPS; // WebSphere naming constants

...

Hashtable env = new Hashtable();

env.put(Context.INITIAL_CONTEXT_FACTORY,

 "com.ibm.websphere.naming.WsnInitialContextFactory");

env.put(Context.PROVIDER_URL, ...);

env.put(PROPS.NAME_SYNTAX, PROPS.NAME_SYNTAX_INS);

Context initialContext = new InitialContext(env);

// The following name maps to a CORBA name component as follows:

// id = "a.name", kind = "in.INS.format"

// The unescaped dot is used as the delimiter.

// Escaped dots are interpreted literally.

java.lang.Object o = initialContext.lookup("a\.name.in\.INS\.format");

...

Developing applications that use CosNaming (CORBA Naming

interface)

CORBA clients can perform naming operations on WebSphere name servers through the CosNaming

interface. The following examples show how to obtain an ORB instance and an initial context as well as

how to look up an EJB home.

Note: To enable WebSphere Application Server Version 6 or 5.x clients to access Version 4.0.x servers,

the earlier installations must have e-fix PQ60074 installed.

1. Get an initial context.

2. Perform desired CosNaming operations.

Example: Getting an initial context with CosNaming

In the WebSphere Application Server, an initial context is obtained from a bootstrap server. The address

for the bootstrap server consists of a host and port. To get an initial context, you must know the host and

port for the server that is used as the bootstrap server.

Obtaining an initial context consists of two basic steps:

1. Obtain an ORB reference

2. Invoke a method on the ORB to obtain the initial reference

These steps are now explained in more detail.

Obtaining an ORB reference: Pure CosNaming clients, that is clients that are not running in a server

process, must create and initialize an ORB instance with which to obtain the initial context. CosNaming

clients which run in server processes can obtain a reference to the server ORB with a JNDI lookup. The

following examples illustrate how to create and initialize a client ORB and how to obtain a server ORB

reference.

Creating a client ORB instance

To create an ORB instance, invoke the static method, org.omg.CORBA.ORB.init. The init method requires

a property set to the name of the ORB class you want to instantiate. An ORB implementation with the

class name com.ibm.CORBA.iiop.ORB is included with the WebSphere Application Server. The

WebSphere Application Server ORB recognizes additional properties with which you can specify initial

references.

Chapter 8. Developing WebSphere applications 1809

The basic steps for creating an ORB are as follows:

1. Create a Properties object.

2. Set the ORB class property to WebSphere Application Server’s ORB class.

3. If the bootstrap server is INS-compliant, set the initial reference properties. If the bootstrap server is

not INS-compliant (meaning, WebSphere Application Server v4.0.x or earlier), set bootstrap host and

port for bootstrap server.

4. Invoke ORB.init, passing in the Properties object.

Usage scenario

...

import java.util.Properties;

import org.omg.CORBA.ORB;

...

Properties props = new Properties();

props.put("org.omg.CORBA.ORBClass", "com.ibm.CORBA.iiop.ORB");

props.put("com.ibm.CORBA.ORBInitRef.NameService",

 "corbaloc:iiop:myhost.mycompany.com:2809/NameService");

props.put("com.ibm.CORBA.ORBInitRef.NameServiceServerRoot",

 "corbaloc:iiop:myhost.mycompany.com:2809/NameServiceServerRoot");

ORB _orb = ORB.init((String[])null, props);

...

...

import java.util.Properties;

import org.omg.CORBA.ORB;

...

Properties props = new Properties();

props.put("org.omg.CORBA.ORBClass","com.ibm.ws390.orb.ORB");

props.put("com.ibm.CORBA.ORBInitRef.NameService",

 "corbaloc:iiop:myhost.mycompany.com:2809/NameService");

props.put("com.ibm.CORBA.ORBInitRef.NameServiceServerRoot",

 "corbaloc:iiop:myhost.mycompany.com:2809/NameServiceServerRoot");

ORB _orb = ORB.init((String[])null, props);

...

Notice the initial reference definitions for NameService and NameServiceServerRoot. The initial context

returned for NameService depends on the type of bootstrap server. The key NameServiceServerRoot is a

key introduced in WebSphere Application Server V5. For more information on initial contexts, see the

section Initial Contexts.

Note: The properties com.ibm.CORBA.BootstrapHost and com.ibm.CORBA.BootstrapPort are deprecated.

They are needed, however, to connect to WebSphere Application Servers of Version 4.0.x or earlier.

The default bootstrap host is the local host and the default port is 2809.

Obtaining a reference to the server ORB

CosNaming clients which run in a server process can obtain a reference to the server ORB with a JNDI

lookup on a java: name, shown as follows:

Usage scenario

...

import javax.naming.Context;

import javax.naming.InitialContext;

import org.omg.CORBA.ORB;

...

Context initialContext = new InitialContext();

ORB orb = (ORB) initialContext.lookup("java:comp/ORB");

...

Using an ORB reference to get an initial naming reference: There are two basic ways to get an initial

CosNaming context. Both ways involve an ORB method invocation. The first way is to invoke the

1810 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

resolve_initial_references method on the ORB with an initial reference key. For this call to work, the ORB

must be initialized with an initial reference for that key. The other way is to invoke the string_to_object

method on the ORB, passing in a CORBA object URL with the host and port of the bootstrap server. The

following examples illustrate both approaches.

Invoking resolve_initial_references

Once an ORB reference is obtained, invoke the resolve_initial_references method on the ORB to obtain a

reference to the initial context. The following code example invokes resolve_initial_reference on an ORB

reference.

Usage scenario

...

import org.omg.CORBA.ORB;

import org.omg.CosNaming.NamingContextExt;

import org.omg.CosNaming.NamingContextExtHelper;

...

// Obtain ORB reference as shown in examples earlier in this section

...

org.omg.CORBA.Object obj = _orb.resolve_initial_references("NameService");

NamingContextExt initCtx = NamingContextExtHelper.narrow(obj);

...

Note that the key NameService is passed to the resolve_initial_references method. Other initial context

keys are registered in WebSphere Application Servers. For example, NameServiceServerRoot can be

used to obtain a reference to the server root context in the bootstrap name server. For more information

on the initial contexts registered in server ORBs, see the section Initial Contexts.

Invoking string_to_object with a CORBA object URL

You can use an INS-compliant ORB to obtain an initial context even if the ORB is not initialized with any

initial references or bootstrap properties, or if those property settings are for a different server than the

name server from which you want to obtain the initial context. To obtain an initial context by explicitly

specifying the bootstrap name server, invoke the string_to_object method on the ORB, passing in a

CORBA object URL which contains the bootstrap server host and port.

The code in the example below invokes the string_to_object method on an existing ORB reference,

passing in a CORBA object URL which identifies the desired initial context.

Usage scenario

...

import org.omg.CORBA.ORB;

import org.omg.CosNaming.NamingContextExt;

import org.omg.CosNaming.NamingContextExtHelper;

...

// Obtain ORB reference as shown in examples earlier in this section

...

org.omg.CORBA.Object obj =

 orb.string_to_object("corbaloc:iiop:myhost.mycompany.com:2809/NameService");

NamingContextExt initCtx = NamingContextExtHelper.narrow(obj);

...

Note that the key NameService is used in the corbaloc URL. Other initial context keys are registered in

WebSphere Application Servers. For example, you can use NameServiceServerRoot to obtain a reference

to the server root context in the bootstrap name server.

Using an existing ORB and invoking string_to_object with a CORBA object URL with multiple name

server addresses to get an initial context: CORBA object URLs can contain more than one bootstrap

server address. Use this feature when attempting to obtain an initial context from a server cluster. You can

Chapter 8. Developing WebSphere applications 1811

specify the bootstrap server addresses for all servers in the cluster in the URL. The operation will succeed

if at least one of the servers is running, eliminating a single point of failure. There is no guarantee of any

particular order in which the address list will be processed. For example, the second bootstrap server

address may be used to obtain the initial context even though the first bootstrap server in the list is

available. An example of a corbaloc URL with multiple addresses follows.

...

import org.omg.CORBA.ORB;

import org.omg.CosNaming.NamingContextExt;

import org.omg.CosNaming.NamingContextExtHelper;

...

// Assume orb is an existing ORB instance

org.omg.CORBA.Object obj = orb.string_to_object(

 "corbaloc::myhost1:9810,:myhost1:9811,:myhost2:9810/NameService");

NamingContextExt initCtx = NamingContextExtHelper.narrow(obj);

...

Example: Looking up an EJB home with CosNaming

You can look up an EJB home or other CORBA object from a WebSphere Application Server name server

through the CORBA CosNaming interface. You can invoke resolve or resolve_str on the initial context, or

you can invoke string_to_object on the ORB. You can use a qualified name so that the name resolves

regardless of which name server the lookup is executed on, or use an unqualified name that only resolves

from the server root context on the name server that actually contains the object binding. (The qualified

name traverses the federated system name space to the specified server root context.)

Qualified and unqualified names

Each application server contains a name server. System artifacts such as EJB homes are bound in that

name server. The various name servers are federated by means of a system name space structure. The

recommended way to look up objects on different servers is to use a qualified name. A qualified name can

be a topology-based name, based on the name of the cluster or single server and node that contains the

object. You can define fixed qualified names for objects. With qualified names, you can look up objects

residing on different servers from the same initial context by traversing the system name space structure.

Alternatively, you can use an unqualified name, but an unqualified name will only resolve using the name

server associated with the object’s application server.

CosNaming.resolve (and resolve_str) vs. ORB.string_to_object

If you have an initial context from any name server in a WebSphere Application Server cell, you can look

up any CORBA object with a qualified name. You do not need additional host and port information for the

target object’s name server.

Alternatively, you can look up an object by invoking string_to_object on the ORB, passing in a corbaname

URL. Typically, an IIOP type URL is specified, so the bootstrap address information required for an initial

context must be contained in the URL. You can use a qualified or unqualified stringified name, but an

unqualifed name resolves only if the initial context is from the name server in which the object is bound.

The following examples show CosNaming resolve operations using qualified topology-based lookup names

and an unqualified lookup name.

CosNaming resolve operation using a qualified name: The topology-based qualified name for an

object depends on whether the object is bound in a single server or a server cluster. Examples of each

follow.

Single Server

The following example shows the lookup of an EJB home that is running in a single server. The enterprise

bean that is being looked up is running in the server, MyServer, on the node, Node1.

1812 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

// Get the initial context as shown in the previous example

// Using the form of lookup name below, it doesn’t matter which

// server in the cell is used to obtain the initial context.

...

// Look up the home interface using the name under which the EJB home is bound

org.omg.CORBA.Object ejbHome = initialContext.resolve_str(

 "cell/nodes/Node1/servers/MyServer/mycompany/accounting/AccountEJB");

accountHome =

 (AccountHome)javax.rmi.PortableRemoteObject.narrow(ejbHome, AccountHome.class);

Server Cluster

The following example shows a lookup of an EJB home that is running in a cluster. The enterprise bean

being that is looked up is running in the cluster, Cluster1. The name can be resolved if any of the cluster

members is running.

Usage scenario

// Get the initial context as shown in the previous example

// Using the form of lookup name below, it doesn’t matter which

// server in the cell is used to obtain the initial context.

...

// Look up the home interface using the name under which the EJB home is bound

org.omg.CORBA.Object ejbHome = initialContext.resolve_str(

 "cell/clusters/Cluster1/mycompany/accounting/AccountEJB");

accountHome =

 (AccountHome)javax.rmi.PortableRemoteObject.narrow(ejbHome, AccountHome.class);

ORB string_to_object operation using an unqualified stringified name: If the resolve operation is

being performed on the name server that contains the object, the system name space does not need to be

traversed, and you can use an unqualified lookup name. Note that this name does not resolve on other

name servers. If an unqualified name is provided, the object key must be NameServiceServerRoot so that

the correct initial context is selected. If a qualified name is provided, you can use the default key of

NameService.

The following example shows a lookup of an EJB home. The enterprise bean that is being looked up is

bound on the name server running on the host myHost on port 2809. Note the object key of

NameServiceServerRoot.

// Assume orb is an existing ORB instance

...

// Look up the home interface using the name under which the EJB home is bound

org.omg.CORBA.Object ejbHome = orb.string_to_object(

 "corbaname:iiop:myHost:2809/NameServiceServerRoot#mycompany/accounting");

accountHome =

 (AccountHome)javax.rmi.PortableRemoteObject.narrow(ejbHome, AccountHome.class);

Object Request Broker

Managing Object Request Brokers

Use this task to manage Object Request Brokers (ORB). An ORB manages the interaction between clients

and servers using the Internet InterORB Protocol (IIOP).

Default property values are set when the product starts and the Java Object Request Broker (ORB)

service is initialized. These properties control the run-time behavior of the ORB and can also affect the

behavior of product components that are tightly integrated with the ORB, such as security. It might be

necessary to modify some ORB settings under certain conditions.

Every request or response exchange consists of a client-side ORB and a server-side ORB. It is important

to set the ORB properties for both sides as necessary.

Chapter 8. Developing WebSphere applications 1813

After an ORB instance has been established in a process, changes to ORB properties do not affect the

behavior of the running ORB instance. The process must be stopped and restarted for the modified

properties to take effect.

A list of possible tasks for managing ORB follows:

v Adjust timeout settings to improve handling of network failures. See “Object Request Broker service

settings” on page 1816 for more information. Before making these adjustments, read “Object Request

Broker tuning guidelines” on page 1815.

v Adjust thread-pool settings used by the ORB for handling Internet InterORB Protocol (IIOP) connections.

See ″Thread pool settings″ in the information center.

v If problems with the ORB arise, see ″Object request broker component troubleshooting tips″ in the

information center.

For help in troubleshooting, see “Object Request Broker communications trace” on page 1824.

Object Request Brokers

An Object Request Broker (ORB) manages the interaction between clients and servers, using the Internet

InterORB Protocol (IIOP). It enables clients to make requests and receive responses from servers in a

network-distributed environment.

The ORB provides a framework for clients to locate objects in the network and to call operations on those

objects as if the remote objects are located in the same running process as the client, providing location

transparency. The client calls an operation on a local object, known as a stub. The stub forwards the

request to the remote object, where the operation runs and the results are returned to the client.

The client-side ORB is responsible for creating an IIOP request that contains the operation and required

parameters, and for sending the request on the network. The server-side ORB receives the IIOP request,

locates the target object, invokes the requested operation, and returns the results to the client. The

client-side ORB demarshals the returned results and passes the result to the stub, which, in turn, returns

to the client application, as if the operation had been run locally.

This product uses an ORB to manage communication between client applications and server applications

as well as communication among product components. During product installation, default property values

are set when the ORB is initialized. These properties control the run-time behavior of the ORB and can

also affect the behavior of product components that are tightly integrated with the ORB, such as security.

This product does not support the use of multiple ORB instances.

Logical pool distribution

The Logical pool distribution (LPD) thread pool mechanism implements a strategy for improving the

performance of requests that have shorter run times. Do not configure LPD unless you have already

configured it in a previous release of WebSphere Application Server.

The need for LPD is indicated by a mixture of Enterprise JavaBeans (EJB) requests where the run times

vary across the request types, and the ORB thread pool must be constrained for performance reasons. In

this case, longer run time requests might tend to prolong the response times for shorter requests by

denying them adequate access to threads in the thread pool. LPD provides a mechanism that allows

shorter requests greater access to the threads.

LPD divides the Object Request Broker (ORB) thread pool into logical pools, as configured by the

administrator using ORB custom properties starting that start with the following:

com.ibm.websphere.threadpool.strategy.*

The size of each pool is a percentage of the maximum number of ORB threads. The sum of the logical

pool percentages must equal 100.

1814 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

When LPD is active, incoming ORB requests are vectored, or pointed, to a pool based on historical run

time history for the request type. The request type is determined by the method, which is qualified

internally as unique across components. The LPD mechanism adjusts pool targets at runtime to optimize

the distribution of requests across logical pools.

The LPD mechanism can be tuned after it is enabled. Response time, throughput measurements, and

statistics produced by the LPD mechanism drive the tuning process.

Object Request Broker tuning guidelines

The following options exist for improving the performance of the Object Request Broker (ORB). Tuning

results vary among systems and applications.

v Logical pool distribution (LPD) mechanism

Do not configure LPD unless you have already configured it with a previous version of WebSphere

Application Server.

If you suspect that requests with longer completion times are elongating the response times for shorter

completion time requests by denying them adequate access to threads in the thread pool, LPD provides

a mechanism to allow the shorter requests greater access to execution threads.

For more information, see “Logical pool distribution” on page 1814

v ORB timeout

If Web clients that access Java applications running in the product environment are consistently

experiencing problems with their requests, and the problem cannot be traced to other sources and

addressed through other solutions, consider setting an ORB timeout value and adjusting it for your

environment. A list of timeout scenarios follows:

– Web browsers vary in their language for indicating that they have timed out. Usually, the problem is

announced as a connection failure or a no-path-to-server message.

– Set an ORB timeout value to less than the time after which a Web client eventually times out.

Because it can be difficult to tell how long Web clients wait before timing out, setting an ORB timeout

value requires experimentation. The ideal testing environment features some simulated network

failures for testing the proposed setting value.

– Empirical results from limited testing indicate that 30 seconds is a reasonable starting value. Ensure

that this setting is not too low. To fine tune the setting, find a value that is not too low. Gradually

decrease the setting until reaching the threshhold at which the value becomes too low. Set the value

a little higher than the threshold.

– When an ORB timeout value is set too low, the symptom is numerous CORBA ’NO_RESPONSE’

exceptions, which occur even for some valid requests. The value is likely to be too low if requests

that should have been successful, for example, the server is not down, are being lost or refused.

Timeout adjustments: Do not adjust an ORB timeout value unless you have a problem. Configuring a

value that is inappropriate for the environment can create a problem. An incorrect value can produce

results worse than the original problem.

You can adjust timeout intervals for the product Java ORB through the following administrative settings:

– Request timeout, the number of seconds to wait before timing out on most pending ORB requests if

the network fails

– Locate request timeout, the number of seconds to wait before timing out on a locate-request

message
v com.ibm.CORBA.ConnectTimeout system property

The com.ibm.CORBA.ConnectTimeout property specifies the maximum time in seconds that the client

ORB waits before timing out when establishing a new socket connection with a remote server ORB.

This property is intended for use by client applications. It is not used by the application server.

You can specify the com.ibm.CORBA.ConnectTimeout property in the orb.properties file, or you can

add the property when running the launchclient script. This example specifies a maximum timeout

value of ten seconds:

launchclient clientapp.ear -CCDcom.ibm.com.CORBA.ConnectTimeout=10...

You can begin by setting your timeout value to 20-30 seconds, but consider factors such as network

congestion and application server load and capacity. Lower values can provide better failover

Chapter 8. Developing WebSphere applications 1815

performance, but may result in exceptions if the remote server does not have enough time to complete

the connection.

 Valid Range 0-300 (seconds)

Default 0 (the client ORB waits indefinitely)

v com.ibm.CORBA.numJNIReaders system property

You can improve performance by setting the com.ibm.CORBA.numJNIReaders system property through a

command-line script. This property specifies the number of threads to be shared for request handling

when the native selector mechanism is enabled.

 Valid Range 0-2147483647

Default 2

v Determining the ORB message size

The ORB separates messages into fragments to send over the ORB connection. You can configure this

fragment size through the com.ibm.CORBA.FragmentSize parameter.

To determine the size of the messages that transfer over the ORB and the number of required

fragments:

1. In the administrative console, enable ORB tracing in the ORB Properties page. See “Object Request

Broker service settings” for more information.

2. Enable ORBRas tracing from the logging and tracing page.

3. Increase the trace file sizes because tracing can generate a lot of data.

4. Restart the server and run at least one iteration (preferably several) of the case that you are

measuring.

5. Look at the traceable file and do a search for Fragment to follow: Yes.

This indicates that the ORB transmitted a fragment, but it still has at least one remaining fragment to

send before the entire message has arrived. A Fragment to follow: No value indicates that the

particular fragment is the last in the entire message. This fragment can also be the first, if the

message fit entirely into one fragment.

If you go to the spot where Fragment to follow: Yes is located, you find a block that looks similar

to the following example:

 Fragment to follow: Yes

Message size: 4988 (0x137C)

--

Request ID: 1411

This example indicates that the amount of data in the fragment is 4988 bytes and the Request ID is

1411. If you search for all occurrences of Request ID: 1411, you can see the number of fragments

used to send that particular message. If you add all the associated message sizes, you have the

total size of the message that is being sent through the ORB.

Object Request Broker service settings

Use this page to configure the Java Object Request Broker (ORB) service.

To view this administrative console page, click Servers > Application servers > server_name >

Container services > ORB service .

Several settings are available for controlling internal Object Request Broker (ORB) processing. You can

use these settings to improve application performance in the case of applications that contain enterprise

beans. You can make changes to these settings for the default server or any application server that is

configured in the administrative domain.

Request timeout:

1816 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Specifies the number of seconds to wait before timing out on a request message.

 If you use command-line scripting, the full name of this system property is

com.ibm.CORBA.RequestTimeout.

 Data type int

Units Seconds

Default 180

Range 0 to 300

Request retries count:

Specifies the number of times that the ORB attempts to send a request if a server fails. Retrying

sometimes enables recovery from transient network failures.

 If you use command-line scripting, the full name of this system property is

com.ibm.CORBA.requestRetriesCount.

 Data type int

Default 1

Range 1 to 10

Request retries delay:

Specifies the number of milliseconds between request retries.

 If you use command-line scripting, the full name of this system property is

com.ibm.CORBA.requestRetriesDelay.

 Data type int

Units Milliseconds

Default 0

Range 0 to 60

Connection cache maximum:

Specifies the largest number of supported connections that can occupy the connection cache for the

service. If simultaneous clients connect to the server-side ORB, this parameter can be increased up to

1000 clients to support the heavy load.

 For use in command-line scripting, the full name of this system property is

com.ibm.CORBA.MaxOpenConnections.

 Data type Integer

Units Connections

Default 240

Range 0-255

Connection cache minimum:

Specifies the smallest number of connections to be kept in the connection cache for the ORB service.

 For use in command-line scripting, the full name of this system property is

com.ibm.CORBA.MinOpenConnections.

Chapter 8. Developing WebSphere applications 1817

Data type Integer

Units Connections

Default 100

Range 0-255

ORB tracing:

Enables the tracing of ORB General Inter-ORB Protocol (GIOP) messages.

 This setting affects two system properties: com.ibm.CORBA.Debug and com.ibm.CORBA.CommTrace. If

you set these properties through command-line scripting, you must set both properties to true to enable

the tracing of GIOP messages.

 Data type Boolean

Default Not enabled (false)

Locate request timeout:

Specifies the number of seconds to wait before timing out on a LocateRequest message.

 If you use command-line scripting, the full name of this system property is

com.ibm.CORBA.LocateRequestTimeout.

 Data type int

Units Seconds

Default 180

Range 0 to 300

Force tunneling:

Controls how the client ORB attempts to use HTTP tunneling.

 If you use command-line scripting, the full name of this system property is com.ibm.CORBA.ForceTunnel.

 Data type String

Default NEVER

Range Valid values are ALWAYS, NEVER, or WHENREQUIRED.

Considering the following information when choosing the valid value:

ALWAYS

Use HTTP tunneling immediately, without trying TCP connections first.

NEVER

Disable HTTP tunneling. If a TCP connection fails, a CORBA system exception (COMM_FAILURE)

occurs.

WHENREQUIRED

Use HTTP tunneling if TCP connections fail.

Tunnel agent URL:

Specifies the web address of the servlet to use in support of HTTP tunneling.

 This web address must be a proper format:

1818 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

http://w3.mycorp.com:81/servlet/com.ibm.CORBA.services.IIOPTunnelServlet

For applets: http://applethost:port/servlet/com.ibm.CORBA.services.IIOPTunnelServlet.

This field is required if HTTP tunneling is set. If you use command-line scripting, the full name of this

system property is com.ibm.CORBA.TunnelAgentURL.

Pass by reference:

Specifies how the ORB passes parameters. If enabled, the ORB passes parameters by reference instead

of by value, to avoid making an object copy. If you do not enable pass by reference, the parameters are

copied to the stack before every remote method call is made, which can be expensive.

 If the Enterprise JavaBeans (EJB) client and server are installed in the same WebSphere Application

Server instance, and the client and server use remote interfaces, enabling Pass by reference can improve

performance up to 50%. Pass by reference helps performance only where non-primitive object types are

passed as parameters. Therefore, int and floats are always copied, regardless of the call model.

Enable this property with caution, because unexpected behavior can occur. If an object reference is

modified by the remote method, the caller might change.

If you use command line scripting, the full name of this system property is

com.ibm.CORBA.iiop.noLocalCopies.

 Data type Boolean

Default Not enabled (false)

The use of this option for enterprise beans with remote interfaces violates EJB Specification, Version 2.0

(see section 5.4). Object references passed to EJB methods or to EJB home methods are not copied and

can be subject to corruption.

Consider the following example:

Iterator iterator = collection.iterator();

MyPrimaryKey pk = new MyPrimaryKey();

while (iterator.hasNext()) {

 pk.id = (String) iterator.next();

 MyEJB myEJB = myEJBHome.findByPrimaryKey(pk);

}

In this example, a reference to the same MyPrimaryKey object passes into WebSphere Application Server

with a different ID value each time. Running this code with Pass by reference enabled causes a problem

within the application server because multiple enterprise beans are referencing the same MyPrimaryKey

object. To avoid this problem, set the com.ibm.websphere.ejbcontainer.allowPrimaryKeyMutation system

property to true when Pass by reference is enabled. Setting Pass by reference to true causes the EJB

container to make a local copy of the PrimaryKey object. As a result, however, a small portion of the

performance advantage of setting Pass by reference is lost.

As a general rule, any application code that passes an object reference as a parameter to an enterprise

bean method or to an EJB home method must be scrutinized to determine if passing that object reference

results in loss of data integrity or in other problems.

Object Request Broker custom properties

Use the this page to set and monitor settings associated with the Java Object Request Broker (ORB)

service that do not appear on the main settings page by default.

Setting ORB properties through the administrative console

Chapter 8. Developing WebSphere applications 1819

1. In the administrative console, click Servers >Application servers > server_name >Container

services > ORB service >Custom properties .

2. To add properties to the page, click New and enter at least a name (case-sensitive) and a value for the

property. Then click Apply.

3. When you are finished entering properties, click OK.

Setting ORB Properties through the command line

If you use the java command, use the -D option, for example:

java -Dcom.ibm.CORBA.propname1=value1 -Dcom.ibm.CORBA.propname2=value2 ... application name

If you use the launchclient command, prefix the property with -CC, for example (shown on 2 lines for

publication):

launchclient yourapp.ear -CCDcom.ibm.CORBA.propname1=value1

 -CCDcom.ibm.CORBA.propname2=value2 ... optional application arguments

The Custom properties page might already include Secure Sockets Layer (SSL) properties that were

added during the product setup. A list of additional properties associated with the Java ORB service

follows:

com.ibm.CORBA.BootstrapHost:

Specifies the domain name service (DNS) host name or IP address of the machine on which initial server

contact for this client resides. This setting is deprecated and is scheduled for removal in a future release.

 For a command-line or programmatic alternative, see “Client-side programming tips for the Java Object

Request Broker service” on page 1827.

com.ibm.CORBA.BootstrapPort:

Specifies the port to which the ORB connects for bootstrapping, the port of the machine on which the

initial server contact for this client listens. This setting is deprecated and is scheduled for removal in a

future release.

 For a command-line or programmatic alternative, see “Client-side programming tips for the Java Object

Request Broker service” on page 1827.

 Default 2809

com.ibm.CORBA.FragmentSize:

Specifies the size of General Inter-ORB Protocol (GIOP) fragments used by the ORB. If the total size of a

request exceeds the set value, the ORB breaks up and sends multiple fragments until the entire request is

sent. Set this property on the client side with a -D system property if you use a stand-alone Java

application.

 Adjust the com.ibm.CORBA.FragmentSize property if the amount of data that is sent over Internet Inter-ORB

Protocol (IIOP) in most General Inter-ORB Protocol (GIOP) requests exceeds one kilobyte or if thread

dumps show that most client-side threads seem to be waiting while sending or receiving data. Adjust this

property so that most messages have few or no fragments.

If you want to instruct the ORB not to break up any of the requests or replies it sends, set this property to

0 (zero). However, setting the value to zero does not prevent the ORB from receiving GIOP fragments in

requests or replies sent by another existing ORB.

1820 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Units Bytes.

Default 1024

Range From 64 to the largest value of a Java integer type that is

divisible by 8

com.ibm.CORBA.ListenerPort:

Specifies the port on which this server listens for incoming requests. The setting of this property is valid for

client-side ORBs only.

 Default Next available system-assigned port number

Range 0 to 2147483647

com.ibm.CORBA.LocalHost:

Specifies the host name or IP address of the system on which the server ORB is running. The setting of

this property is valid only for client-side ORBs. Otherwise, the ORB obtains a value at run time by calling

InetAddress.getLocalHost().getHostAddress() method.

com.ibm.CORBA.ServerSocketQueueDepth:

Corresponds to the length of a TCP/IP stack listen queue and prevents WebSphere Application Server

from rejecting requests when space is not available in the listen queue. If several simultaneous clients

connect to the server-side ORB, you can increase this parameter to support up to 1000 clients.

 Default 50

Range From 50 to the largest value of the Java int type

com.ibm.CORBA.ShortExceptionDetails:

Specifies that the exception detail message that is returned whenever the server ORB encounters a

CORBA system exception contains a short description of the exception as returned by the toString method

of java.lang.Throwable class. Otherwise, the message contains the complete stack trace as returned by

the printStackTrace method of java.lang.Throwable class.

com.ibm.websphere.threadpool.strategy.implementation:

Specifies the logical pool distribution (LPD) thread pool strategy the next time you start the application

server, and is enabled if set to com.ibm.ws.threadpool.strategy.LogicalPoolDistribution.

Attention: Do not configure logical pool distribution unless you have already configured it with a

previous release of WebSphere Application Server.

Some requests have shorter start times than others. LPD is a mechanism for providing these shorter

requests greater access to start threads. For more information, see “Logical pool distribution” on page

1814.

com.ibm.websphere.threadpool.strategy.LogicalPoolDistribution.calcinterval:

Specifies how often the logical pool distribution (LPD) mechanism readjusts the pool start target times.

This property cannot be turned off after this support is installed.

Attention: Do not configure logical pool distribution unless you have already configured it with a

previous release of WebSphere Application Server.

Chapter 8. Developing WebSphere applications 1821

LPD must be enabled (see com.ibm.websphere.threadpool.strategy.implementation).

 Data type Integer

Units Milliseconds

Default 30

Range 20,000 minimum

com.ibm.websphere.threadpool.strategy.LogicalPoolDistribution.lruinterval:

Specifies how long the logical pool distribution internal data is kept for inactive requests. The mechanism

tracks several statistics for each request type that is received. Consider removing requests that have been

inactive for awhile.

Attention: Do not configure logical pool distribution unless you have already configured it with a

previous release of WebSphere Application Server.

LPD must be enabled (see com.ibm.websphere.threadpool.strategy.implementation).

 Data type Integer

Units Milliseconds

Default 300,000 (5 minutes)

Range 60,000 (1 minute) minimum

com.ibm.websphere.threadpool.strategy.LogicalPoolDistribution.outqueues:

Specifies how many pools are created and how many threads are allocated to each pool in the logical pool

distribution mechanism.

Attention: Do not configure logical pool distribution unless you have already configured it with a

previous release of WebSphere Application Server.

The ORB parameter for max threads controls the total number of threads. The outqueues parameter is

specified as a comma separated list of percentages that add up to 100. For example, the list 25,25,25,25

sets up 4 pools, each allocated 25% of the available ORB thread pool. The pools are indexed left to right

from 0 to n-1. Each outqueue is dynamically assigned a target start time by the calculation mechanism.

Target start times are assigned to outqueues in increasing order so pool 0 gets the requests with the least

start time and pool n-1 gets requests with the highest start times.

LPD must be enabled (see com.ibm.websphere.threadpool.strategy.implementation).

 Data type Integers in comma separated list

Default 25,25,25,25

Range Percentages in list must total 100 percent

com.ibm.websphere.threadpool.strategy.LogicalPoolDistribution.statsinterval:

Specifies that statistics are dumped to stdout after this interval expires, but only if requests are processed.

This process keeps the mechanism from filling the log files with redundant information. These statistics are

beneficial for tuning the logical pool distribution mechanism.

Attention: Do not configure logical pool distribution unless you have already configured it with a

previous release of WebSphere Application Server.

1822 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

LPD must be enabled (see com.ibm.websphere.threadpool.strategy.implementation).

 Data type Integer

Units Milliseconds

Default 0 (off)

Range 30,000 (30 seconds) minimum

com.ibm.websphere.threadpool.strategy.LogicalPoolDistribution.workqueue:

Specifies the size of a new queue where incoming requests wait for dispatch. Pertains to the logical pool

distribution mechanism.

Attention: Do not configure logical pool distribution unless you have already configured it with a

previous release of WebSphere Application Server.

LPD must be enabled (see com.ibm.websphere.threadpool.strategy.implementation).

 Data type Integer

Default 96

Range 10 minimum

com.ibm.CORBA.numJNIReaders:

You can improve performance by setting the com.ibm.CORBA.numJNIReaders system property through a

command-line script. This property specifies the number of threads to share for request handling when the

native selector mechanism is enabled.

 Valid Range 0-2147483647

Default 2

com.ibm.CORBA.ConnectTimeout:

The com.ibm.CORBA.ConnectTimeout property specifies the maximum time in seconds that the client

ORB waits before timing out when attempting to establish an IIOP connection with a remote server ORB.

Generally, client applications use this property. The property is not used by the application server by

default. However, if necessary, you can specify the property for each individual application server through

the administrative console.

 Client applications can specify the com.ibm.CORBA.ConnectTimeout property in one of two ways:

v By including it in the orb.properties file.

v By using the -CCD option to set the property with the launchclient script.

Begin by setting your timeout value to 20-30 seconds, but consider factors such as network congestion

and application server load and capacity. Lower values can provide better failover performance, but can

result in exceptions if the remote server does not have enough time to complete the connection.

 Valid Range 0-300 (seconds)

Default 0 (the client ORB waits indefinitely)

com.ibm.websphere.ObjectIDVersionCompatibility:

This property applies when you have a mixed release cluster that has V6 and V5.1.0 or earlier and you

are performing an incremental cell upgrade.

Chapter 8. Developing WebSphere applications 1823

In mixed release cells, the migration program sets this property to 1.

After all of the cluster members are upgraded to V6, you can improve performance by removing this

property or by setting the value to 2.

Setting the value to 1 indicates that the ORB runs using version 1 object identities, which is required to for

mixed cells that contain application servers with releases prior to V5.1.1. In V6, not setting the property or

changing the property value to 2 causes the ORB to run using version 2 object identities. Changing to

version 2 object identities results in improved performance.

For incremental cell upgrade instructions, see ″Migrating a V5.x managed node to a V6 managed node″

and ″Migrating Network Deployment, V5.x to a V6 deployment manager″ in the information center.

Object Request Broker communications trace

The Object Request Broker (ORB) communications trace, typically referred to as CommTrace, contains the

sequence of General InterORB Protocol (GIOP) messages sent and received by the ORB when the

application is running. It might be necessary to understand the low-level sequence of client-to-server or

server-to-server interactions during problem determination. This topic uses trace entries from log examples

to explain the contents of the log and help you understand the interaction sequence. It focuses only in the

GIOP messages and does not discuss in detail additional trace information that displays when intervening

with the GIOP-message boundaries.

Location

When ORB tracing is enabled, this information is placed in the install_root/logs/trace directory.

About the ORB trace file

The following are properties of the file that is created when ORB tracing is enabled.

v Read-only

v Updated by the administrative function

v Use this file to localize and resolve ORB-related problems.

How to interpret the output

The following sections refer to sample log output found later in this topic.

Identifying information

The start of a GIOP message is identified by a line that contains either OUT GOING: or IN

COMING: depending on whether the message is sent or received by the process.

 Following the identifying line entry is a series of items, formatted for convenience, with information

extracted from the raw message that identifies the endpoints in this particular message interaction.

See lines 3-13 in both examples. The formatted items include the following:

v GIOP message type (line 3)

v Date and time that the message was recorded (line 4)

v Information that is useful to identify the thread that is running when the message records, and

other thread-specific information (line 5)

v Local and remote TCP/IP ports used for the interaction (lines 6 through 9)

v GIOP version, byte order, an indication of whether the message is a fragment, and message

size (lines 10 through 13)
Request ID, response expected and reply status

Following the introductory message information, the request ID is an integer generated by the

ORB. It is used to identify and associate each request with its corresponding reply. This

association is necessary because the ORB can receive requests from multiple clients and must be

able to associate each reply with the corresponding originating request.

1824 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

v Lines 15-17 in the request example show the request ID, followed by an indication to the

receiving endpoint that a response is expected (CORBA supports sending one-way requests for

which a response is not expected.)

v Line 15 in the reply example shows the request ID; line 33 shows the reply status received after

completing the previously sent request.
Object Key

Lines 18-20 in the request example show the object key, the internal representation used by the

ORB to identify and locate the target object intended to receive the request message. Object keys

are not standardized.

Operation

Line 21 in the request example shows the name of the operation that the target object starts in the

receiving endpoint. In this example, the specific operation requested is named _get_value.

Service context information

The service contexts in the message are also formatted for convenience. Each GIOP message

might contain a sequence of service contexts sent and received by each endpoint. Service

contexts, identified uniquely with an ID, contain data used in the specific interaction, such as

security, character code set conversion, and ORB version information. The content of some of the

service contexts is standardized and specified by OMG, while other service contexts are

proprietary and specified by each vendor. IBM-specific service contexts are identified with IDs that

begin with 0x4942.

 Lines 22-41 in the request example illustrate typical service context entries. Three service contexts

are in the request message, as shown in line 22. The ID, length of data, and raw data for each

service context is printed next. Lines 23-25 show an IBM-proprietary context, as indicated by the

0x49424D12 ID. Lines 26-41 show two standard service contexts, identified by 0x6 ID (line 26) and

the 0x1 ID (line 39).

 Lines 16-32 in the reply example illustrate two service contexts, one IBM-proprietary (line 17) and

one standardized (line 20).

 For the definition of the standardized service contexts, see the CORBA specification. Service

context 0x1 (CORBA::IOP::CodeSets) is used to publish the character code sets supported by the

ORB in order to negotiate and determine the code set used to transmit character data. Service

context 0x6 (CORBA::IOP::SendingContextRunTime) is used by Remote Method Invocation over

the Internet Inter-ORB Protocol (RMI-IIOP) to provide the receiving endpoint with the IOR for the

SendingContextRuntime object. IBM service context 0x49424D12 is used to publish ORB

PartnerVersion information to support release-to-release interoperability between sending and

receiving ORBs.

Data offset

Line 42 in the request example shows the offset, relative to the beginning of the GIOP message,

where the remainder body of the request or reply message is located. This portion of the message

is specific to each operation and varies from operation to operation. Therefore, it is not formatted,

as the specific contents are not known by the ORB. The offset is printed as an aid to quickly

locating the operation-specific data in the raw GIOP message dump, which follows the data offset.

Raw GIOP message dump

Starting at line 45 in the request example and line 36 in the reply example, a raw dump of the

entire GIOP message is printed in hexadecimal format. Request messages contain the parameters

required by the given operation and reply messages contain the return values and content of

output parameters as required by the given operation. For brevity, not all of the raw data is in the

figures.

Sample Log Entry - GIOP Request

1. OUT GOING:

3. Request Message

4. Date: April 17, 2002 10:00:43 PM CDT

5. Thread Info: P=842115:O=1:CT

6. Local Port: 1243 (0x4DB)

Chapter 8. Developing WebSphere applications 1825

7. Local IP: jdoe.austin.ibm.com/192.168.1.101

8. Remote Port: 1242 (0x4DA)

9. Remote IP: jdoe.austin.ibm.com/192.168.1.101

10. GIOP Version: 1.2

11. Byte order: big endian

12. Fragment to follow: No

13. Message size: 268 (0x10C)

--

15. Request ID: 5

16. Response Flag: WITH_TARGET

17. Target Address: 0

18. Object Key: length = 24 (0x18)

 4B4D4249 00000010 BA4D6D34 000E0008

 00000000 00000000

21. Operation: _get_value

22. Service Context: length = 3 (0x3)

23. Context ID: 1229081874 (0x49424D12)

24. Context data: length = 8 (0x8)

 00000000 13100003

26. Context ID: 6 (0x6)

27. Context data: length = 164 (0xA4)

 00000000 00000028 49444C3A 6F6D672E

 6F72672F 53656E64 696E6743 6F6E7465

 78742F43 6F646542 6173653A 312E3000

 00000001 00000000 00000068 00010200

 0000000E 3139322E 3136382E 312E3130

 310004DC 00000018 4B4D4249 00000010

 BA4D6D69 000E0008 00000000 00000000

 00000002 00000001 00000018 00000000

 00010001 00000001 00010020 00010100

 00000000 49424D0A 00000008 00000000

 13100003

39. Context ID: 1 (0x1)

40. Context data: length = 12 (0xC)

 00000000 00010001 00010100

42. Data Offset: 118

45. 0000: 47494F50 01020000 0000010C 00000005 GIOP............

46. 0010: 03000000 00000000 00000018 4B4D4249 KMBI

47. 0020: [remainder of message body deleted for brevity]

Sample Log Entry - GIOP Reply

1. IN COMING:

3. Reply Message

4. Date: April 17, 2002 10:00:47 PM CDT

5. Thread Info: RT=0:P=842115:O=1:com.ibm.rmi.transport.TCPTransportConnection

5a (line 5 broken for publication). remoteHost=192.168.1.101 remotePort=1242 localPort=1243

6. Local Port: 1243 (0x4DB)

7. Local IP: jdoe.austin.ibm.com/192.168.1.101

8. Remote Port: 1242 (0x4DA)

9. Remote IP: jdoe.austin.ibm.com/192.168.1.101

10. GIOP Version: 1.2

11. Byte order: big endian

12. Fragment to follow: No

13. Message size: 208 (0xD0)

--

15. Request ID: 5

16. Service Context: length = 2 (0x2)

17. Context ID: 1229081874 (0x49424D12)

18. Context data: length = 8 (0x8)

 00000000 13100003

20. Context ID: 6 (0x6)

21. Context data: length = 164 (0xA4)

 00000000 00000028 49444C3A 6F6D672E

1826 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

6F72672F 53656E64 696E6743 6F6E7465

 78742F43 6F646542 6173653A 312E3000

 00000001 00000000 00000068 00010200

 0000000E 3139322E 3136382E 312E3130

 310004DA 00000018 4B4D4249 00000010

 BA4D6D34 000E0008 00000001 00000000

 00000002 00000001 00000018 00000000

 00010001 00000001 00010020 00010100

 00000000 49424D0A 00000008 00000000

 13100003

33. Reply Status: NO_EXCEPTION

36. 0000: 47494F50 01020001 000000D0 00000005 GIOP............

37. 0010: 00000000 00000002 49424D12 00000008 IBM.....

38. 0020: [remainder of message body deleted for brevity]

Client-side programming tips for the Java Object Request Broker service

This topic includes programming tips for applications that communicate with the client-side Object Request

Broker (ORB) that is part of the Java ORB service.

Resolution of initial references to services

Client applications can use the ORBInitRef and ORBDefaultInitRef properties to configure the network

location that the Java ORB service uses to find a service such as naming. When set, these properties are

included in the parameters that are used to initialize the ORB, as illustrated in the following example:

org.omg.CORBA.ORB.init(java.lang.String[] args,

 java.util.Properties props)

You can set these properties in client code or by command-line argument. It is possible to specify more

than one service location by using multiple ORBInitRef property settings (one for each service), but only a

single ORBDefaultInitRef value can be specified. For more information about the two properties and the

order of precedence that the ORB uses to locate services, read the CORBA/IIOP specification, cited in

“Object Request Brokers: Resources for learning” on page 1830.

For setting in client code, these properties are com.ibm.CORBA.ORBInitRef.service_name and

com.ibm.CORBA.ORBDefaultInitRef, respectively. For example, to specify that the naming service

(NameService) is located in sample.server.com at port 2809, set the

com.ibm.CORBA.ORBInitRef.NameService property to corbaloc::sample.server.com:2809/NameService.

For setting by command-line argument, these properties are -ORBInitRef and -ORBDefaultInitRef,

respectively. To locate the same naming service specified previously, use the following Java command

(split here for publication only):

java program -ORBInitRef

 NameService=corbaloc::sample.server.com:2809/NameService

After these properties are set for services supported by the ORB, Java 2 Platform, Enterprise Edition

(J2EE) applications obtain the initial reference to a given service by calling the resolve_initial_references

function on the ORB, as defined in the CORBA/IIOP specification.

Preferred API for obtaining an ORB instance

For J2EE applications, you can use either of the following approaches. However, it is strongly

recommended that you use the Java Naming and Directory Interface (JNDI) approach to ensure that the

same ORB instance is used throughout the client application; you avoid the unintended inconsistencies

that might occur when different ORB instances are used.

Chapter 8. Developing WebSphere applications 1827

JNDI approach: For J2EE applications (including enterprise beans, J2EE clients and servlets), you can

obtain an ORB instance by creating a JNDI InitialContext object and looking up the ORB under the

java:comp/ORB name , as illustrated in the following example:

javax.naming.Context ctx = new javax.naming.InitialContext();

org.omg.CORBA.ORB orb =

 (org.omg.CORBA.ORB)javax.rmi.PortableRemoteObject.narrow(ctx.lookup("java:comp/ORB"),

 org.omg.CORBA.ORB.class);

The ORB instance obtained using JNDI is a singleton object, shared by all the J2EE components that are

running in the same Java virtual machine process.

CORBA approach: Because thin-client applications do not run in a J2EE container, they cannot use JNDI

interfaces to look up the ORB. In this case, you can obtain an ORB instance by using CORBA

programming interfaces, as follows:

java.util.Properties props = new java.util.Properties();

java.lang.String[] args = new java.lang.String[0];

org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init(args, props);

In contrast to the JNDI approach, the CORBA specification requires that a new ORB instance be created

each time the ORB.init method is called. If necessary to change the ORB default settings, you can add

ORB property settings to the Properties object that is passed in the ORB.init method call.

The use of the com.ibm.ejs.oa.EJSORB.getORBinstance method, supported in previous releases of this

product is deprecated.

API restrictions with sharing an ORB instance among J2EE application components

For performance reasons, it often makes sense to share a single ORB instance among components in a

J2EE application. As required by the J2EE Specification, Version 1.3, all Web and EJB containers provide

an ORB instance in the JNDI namespace as java:comp/ORB. Each container can share this instance

among application components but is not required to. For proper isolation between application

components, application code must comply with the following restrictions:

v Do not call the ORB shutdown or destroy methods

v Do not call org.omg.CORBA_2_3.ORB methods register_value_factory or unregister_value_factory

In addition, do not share an ORB instance among application components in different J2EE applications.

Required use of rmic and idlj that ship with the IBM Developer Kit

The Java Runtime Environment (JRE) used by this product includes the rmic and idlj tools. You use the

tools to generate Java language bindings for the CORBA/IIOP protocol.

During product installation, the tools are installed in the installation_root/java/ibm_bin directory , where

installation_root is the installation directory for the product. Versions of these tools included with Java

development kits in the $JAVA_HOME/bin directory other than the IBM Developer Kit installed with this

product are incompatible with this product.

When you install this product, the installation_root/java/ibm_bin directory is included in the $PATH

search order to enable use of the rmic and idlj scripts provided by IBM. Because the scripts are in the

installation_root/java/ibm_bin directory instead of the JRE standard installation_root/java/bin

directory, it is unlikely that you can overwrite them when applying maintenance to a JRE not provided by

IBM.

1828 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

In addition to the rmic and idlj tools, the JRE also includes Interface Definition Language (IDL) files. The

files are based on those defined by the Object Management Group (OMG) and can be used by

applications that need an IDL definition of selected ORB interfaces. The files are placed in the

installation_root/java/ibm_lib directory.

Before using either the rmic or idlj tool, ensure that the installation_root/java/ibm_bin directory is

included in the proper PATH variable search order in the environment. If your application uses IDL files in

the installation_root/java/ibm_lib directory, also ensure that the directory is included in the PATH

variable.

Character code set conversion support for the Java Object Request Broker service

The CORBA/IIOP specification defines a framework for negotiation and conversion of character code sets

used by the Java Object Request Broker (ORB) service. This product supports the framework and

provides the following system properties for modifying the default settings:

com.ibm.CORBA.ORBCharEncoding

Specifies the name of the native code set that the ORB uses for character data (referred to as

NCS-C in the CORBA/IIOP specification). By default, the ORB uses UTF8. (In contrast, the default

value for versions 3.5.x and 4.0.x of this product was ISO8859_1, also known as Latin-1.) Valid

code set values for this property are shown in the table that follows this list; values that are valid

only for ORBWCharDefault are indicated.

com.ibm.CORBA.ORBWCharDefault

Specifies the default code set that the ORB uses for transmission of wide character data when no

code set for wide character data is found in the tagged component in the Interoperable Object

Reference (IOR) or in the GIOP service context. If no code set for wide character data is found

and this property is not set, the ORB raises an exception, as specified in the CORBA specification.

No default value is set for this property. The only valid code set values for this property are UCS2 or

UTF16.

The CORBA code set negotiation and conversion framework specifies the use of code set registry IDs as

defined in the Open Software Foundation (OSF) code set registry. The ORB translates the Java

file.encoding names shown in the following table to the corresponding OSF registry IDs. These IDs are

then used by the ORB in the IOR Code set tagged component and GIOP code set service context as

specified in the CORBA and IIOP specification.

 Java name OSF registry ID Comments

ASCII 0x00010020

ISO8859_1 0x00010001

ISO8859_2 0x00010002

ISO8859_3 0x00010003

ISO8859_4 0x00010004

ISO8859_5 0x00010005

ISO8859_6 0x00010006

ISO8859_7 0x00010007

ISO8859_8 0x00010008

ISO8859_9 0x00010009

ISO8859_15_FDIS 0x0001000F

Cp1250 0x100204E2

Cp1251 0x100204E3

Cp1252 0x100204E4

Cp1253 0x100204E5

Cp1254 0x100204E6

Chapter 8. Developing WebSphere applications 1829

Java name OSF registry ID Comments

Cp1255 0x100204E7

Cp1256 0x100204E8

Cp1257 0x100204E9

Cp943C 0x100203AF

Cp943 0x100203AF

Cp949C 0x100203B5

Cp949 0x100203B5

Cp1363C 0x10020553

Cp1363 0x10020553

Cp950 0x100203B6

Cp1381 0x10020565

Cp1386 0x1002056A

EUC_JP 0x00030010

EUC_KR 0x0004000A

EUC_TW 0x00050010

Cp964 0x100203C4

Cp970 0x100203CA

Cp1383 0x10020567

Cp33722C 0x100283BA

Cp33722 0x100283BA

Cp930 0x100203A2

Cp1047 0x10020417

UCS2 0x00010100 Valid only for the ORBWCharDefault

UTF8 0x05010001

UTF16 0x00010109 Valid only for the ORBWCharDefault

For more information, read the CORBA and IIOP specification, cited in “Object Request Brokers:

Resources for learning”

Object Request Brokers: Resources for learning

Use the following links to find relevant supplemental information about Object Request Brokers (ORBs).

The information resides on IBM and non-IBM Internet sites, whose sponsors control the technical accuracy

of the information.

These links are provided for convenience. Often, the information is not specific to this product but is useful

all or in part for understanding the product. When possible, links are provided to technical papers and

Redbooks that supplement the broad coverage of the release documentation with in-depth examinations of

particular product areas.

View links to additional information about:

v “Planning, business scenarios, and IT architecture” on page 1831

v “Administration” on page 1831

v “Programming specifications” on page 1831

1830 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Planning, business scenarios, and IT architecture

v CORBA FAQ

Getting started with Object Request Brokers and CORBA.

v WebSphere Application Server CORBA Interoperability

This document describes WebSphere CORBA interoperability for WebSphere Application Server

products.

v CORBA Interoperability Samples

These samples demonstrate the general principles by which WebSphere Application Server applications

can interoperate with CORBA applications.

Administration

v IANA Character Set Registry

This document contains a list of all valid character encoding schemes.

v developerWorks WebSphere

Programming specifications

v Catalog Of OMG CORBA/IIOP Specifications

This document provides a catalog of OMG CORBA/IIOP specifications.

Transactions

Configuring transaction properties for an application server

Use this task to change the transaction log properties, to move your transaction logs to a new location, or

to update the parameters for the server’s transaction logs.

Perhaps you want to move to your logs to a different storage device. Perform this task when you are

ready to move your transaction logs or when you need to make a change to the parameters. You must

restart the application server to make configuration changes take effect.

To configure the transaction properties for an application server, complete the following steps:

 1. Start the administrative console.

 2. In the navigation pane, select Servers-> Manage Application Servers-> your_app_server This

displays the properties of the application server, your_app_server, in the content pane.

 3. Under Container Settings, expand Container Services, then click Transaction Service to display the

properties page for the transaction service, as two notebook pages:

Configuration

The values of properties defined in the configuration file. If you change these properties, the

new values are applied when the application server next starts.

Runtime

The runtime values of properties. If you change these properties, the new values are applied

immediately, but are overwritten with the Configuration values when the application server

next starts.

 4. To review transaction-related configuration properties, ensure that the Configuration page is

displayed.

 5. Optional: If you want to change the directory in which transaction logs are written, type the full

pathname of the directory in the Transaction log directory field. You can check the current runtime

value of Transaction log directory, by clicking the Runtime tab.

When using WebSphere Application Server without High Availability support, you can leave the

recovery log configuration for persistent services (such as the transactions service) unset. The

application server assumes a default location within the appropriate profile directory. When High

Availability support is enabled, this default may not be visible from all servers in the cluster (for

Chapter 8. Developing WebSphere applications 1831

http://www.omg.org/gettingstarted/corbafaq.htm
http://www-1.ibm.com/support/docview.wss?uid=swg27004340
http://www-106.ibm.com/developerworks/websphere/library/samples/WASV501/corba.html
http://www.iana.org/assignments/character-sets
http://www.ibm.com/developer/websphere
http://www.omg.org/technology/documents/corba_spec_catalog.htm

example, if they are in different profiles or physical nodes.) As a result, it is recommended that the

recovery log location be configured for each server in the cluster before enabling High Availability.

You can also specify a size for the transaction logs, as described in the following step.

Note: If you change the transaction log directory, you should apply the change and restart the

application server as soon as possible, to minimize the risk of problems caused that might

occur before the application server is restarted. For example, if a problem causes the server to

fail (with in-flight transactions), the server next starts with the new log directory and is unable

to automatically resolve in-flight transactions that were recorded in the old log directory.

 6. Optional: If you want to change the default file size of transaction log files, modify the Transaction

log directory field to include a file size setting, in the following format:

directory_name;file_size

Where

v directory_name is the name of the transaction log directory

v file_size is the new default size specified in bytes. The nK or nM suffix can be used to indicate

kilobytes or megabytes. If you do not specify a file size value, the default value of 1M is used.

For example, c:\tranlogs;2M indicates the files are to be created with 2M bytes size and stored in

the directory c:\tranlogs.

In a non-production environment, you can use the transaction log directory value of ;0 to disable

transaction logging. (There must be no directory name element before the size element of 0.) You

should not disable transaction logging in a production environment, because this prevents recovery

after a system failure and, therefore, data integrity cannot be guaranteed.

 7. Optional: Review or change the value of transaction timeout properties:

Total transaction lifetime timeout

Type the number of seconds a transaction can remain inactive before it is ended by the

transaction service. A value of 0 (zero) indicates that there is no timeout limit.

Maximum transaction timeout

Type the number of seconds for which a transaction started by or propagated into this

application server can run before it is ended by the transaction service.

 A value of 0 (zero) indicates that there is no timeout limit.

Client inactivity timeout

Type the number of seconds after which a client is considered inactive and the transaction

service ends any transactions associated with that client. A value of 0 (zero) indicates that

there is no timeout limit.

 8. Optional: Review or change heuristic-related properties:

Heuristic retry limit

The number of times that the application server retries a completion signal, such as commit

or rollback, after a transient exception from a resource manager or remote partner.

Heuristic retry wait

The number of seconds that the application server waits before retrying a completion signal,

such as commit or rollback, after a transient exception from a resource manager or remote

partner.

Enable logging for heuristic reporting

Select this property to enable the application server to log ″about to commit one-phase

resource″ events from transactions that involve a one-phase commit resource and two-phase

commit resources.

Heuristic completion direction

Select the direction used to complete a transaction that has a heuristic outcome; either the

application server commits or rolls back the transaction, or depends on manual completion by

the administrator.

1832 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

9. Review or change other configuration properties, to suit your requirements. For more information

about the properties of the transaction service, see “Transaction service settings.”

10. Click OK and save.

11. Stop then restart the application server.

If you change the transaction log directory configuration property to an incorrect directory name, the

application server will restart but be unable to open the transaction logs. You should change the

configuration property to a valid directory name, then restart the application server.

If you are running the application server as non-root, modify the permissions on the new transaction

log location. If you want to use peer recovery of transactions on a shared device with non-root users,

make sure that your non-root users and groups have matching identification numbers across

machines

Transaction service settings

Use this page to modify transaction service settings.

To view this administrative console page, click Servers > Application Servers > server_name >

Container Services > Transaction Service.

Transaction log directory:

Specifies the name of a directory for this server where the transaction service stores log files for recovery.

 A blank value in the server configuration is expanded by the transaction service at startup as the directory

install_root/tranlog/cell_name/node_name/server_name.

When the application running on WebSphere Application Server accesses more than one resource,

Application Server stores transaction information to properly coordinate and manage the distributed

transaction. In a higher transaction load, this persistence slows down performance of the application server

due to its dependency on the operating system and the underlying storage systems.

To achieve better performance, move the transaction log files to a storage device with more physical disk

drives, or preferably RAID storage array disk drives. When the log files are moved to the file systems on

such disks, the task of writing data to the physical media is shared across the multiple disk drives. This

allows more concurrent access to persist transaction information and faster access to that data from the

logs.

This change is applicable only to the configuration where the application uses distributed resources or XA

transactions, for example, multiple databases and resources are accessed within a single transaction.

Consider setting this property when the application server shows one or more of following signs:

v CPU utilization remains low despite an increase in transactions

v Transactions fail with several timeouts

v Transaction rollbacks occur with unable to enlist transaction exception

v Application server hangs in middle of a run and requires the server to be restarted

v The disk on which an application server is running shows higher utilization

 Data type String

Default Initial value is the

install_root/tranlog/cell_name/node_name/server_name

directory and a default size of 1MB.

Chapter 8. Developing WebSphere applications 1833

Recommended Create a file system with at least 3-4 disk drives raided

together in a RAID-0 configuration. Then, create the

transaction log on this file system with the default size.

When the server is running under load, check the disk

input and output. If disk input and output time is more then

5%, consider adding more physical disks to lower the

value.

If you migrate a WebSphere Application Server Version 5 node to Version 6, the stored location of this

configuration property is moved from the server level to the node (server index) level to enable

high-availability support for transaction logging. If you have specified a non-default log directory for a

Version 5 application server, you are prompted to save the transaction service settings again, to confirm

that you want the log directory saved to the node level.

Total transaction lifetime timeout:

Specifies the maximum duration, in seconds, for transactions on this application server.

 Any transaction that is not requested to complete before this timeout is rolled back. If set to 0, only the

maximum transaction timeout configuration value applies.

 Data type Integer

Units Seconds

Default 120

Range 0 to 2 147 483 647

Client inactivity timeout:

Specifies the maximum duration, in seconds, between transactional requests from a remote client.

 Any period of client inactivity that exceeds this timeout results in the transaction rolling back in this

application server. If set to 0, there is no timeout limit.

 Data type Integer

Units Seconds

Default 60

Range 0 to 2 147 483 647

Maximum transaction timeout:

Specifies the maximum duration, in seconds, that transactions started by or propagated into this

application server are allowed to run.

 This value limits the upper bound of all other transaction related timeouts. For example, if a component

attempts to set a transaction timeout of 360 seconds, and the Maximum Transaction Timeout setting is 300

seconds, the Maximum Transaction Timeout setting of 300 seconds is used.

If set to 0, there is no limit and therefore the timeout specified by the Total transaction lifetime timeout

property or component timeout is used.

 Data type Integer

Units Seconds

Default 300

Range 0 to 2 147 040

1834 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Heuristic retry limit:

The number of times that the application server retries a completion signal, such as commit or rollback,

after a transient exception from a resource manager or remote partner.

 If the application server abandons the retries, then the resource manager or remote partner is responsible

for ensuring that the resource or partner‘s branch of the transaction is completed appropriately. The

application server raises (on behalf of the resource or partner) an XA exception that indicates a heuristic

hazard. If a commit was requested, the transaction originator receives an exception on the commit

operation; if the transaction is container-initiated, then the container returns a remote exception or EJB

exception to the EJB client.

 Data type Integer

Default 0

Range 0 to 2 147 483 647

A value of 0 (the default) means retry forever.

Heuristic retry wait:

The number of seconds that the application server waits before retrying a completion signal, such as

commit or rollback, after a transient exception from a resource manager or remote partner.

 Data type Integer

Default 0

Range 0 to 2 147 483 647

A value of 0 means that the application server determines

the retry wait; the server doubles the retry wait after every

10 failed retries.

Enable logging for heuristic reporting:

Select this property to enable the application server to log ″about to commit one-phase resource″ events

from transactions that involve a one-phase commit resource and two-phase commit resources.

 This property enables logging for heuristic reporting. If applications are configured to allow one-phase

commit resources to participate in two-phase commit transactions, reporting of heuristic outcomes that

occur at application server failure requires extra information to be written to the transaction log. If enabled,

one additional log write is performed for any transaction that involves both one- and two-phase commit

resources. No additional records are written for transactions that do not involve a one-phase commit

resource.

 Data type String

Default Cleared

Range

Cleared

The application server does not log ″about to

commit one-phase resource″ events from

transactions that involve a one-phase commit

resource and two-phase commit resources.

Selected

The application server does log ″about to commit

one-phase resource″ events from transactions

that involve a one-phase commit resource and

two-phase commit resources.

Chapter 8. Developing WebSphere applications 1835

Heuristic completion direction:

The direction used to complete a transaction that has a heuristic outcome; either the application server

commits or rolls back the transaction, or depends on manual completion by the administrator.

 Data type Enum

Default ROLLBACK

Range

COMMIT

The Application server heuristically commits the

transaction.

ROLLBACK

The Application server heuristically rolls back the

transaction.

MANUAL

The application server depends on an

administrator to manually complete or roll back

transactions with heuristic outcomes.

Manual transactions:

The number of transactions awaiting manual completion by an administrator.

 If there are transactions awaiting manual completion, you can click the Review link to display a list of

those transactions on the Transactions needing manual completion panel.

 Data type Integer

Default 0

Retry transactions:

The number of transactions with some resources being retried.

 If there are transactions with resources being retried, you can click the Review link to display a list of

those transactions on the Transactions retrying resources panel.

 Data type Integer

Default 0

Heuristic transactions:

The number of transactions that have completed heuristically.

 If there are transactions that have completed heuristically, you can click the Review link to display a list of

those transactions on the Transactions with heuristic outcome panel.

 Data type Integer

Default 0

Imported prepared transactions:

The number of transactions imported and prepared but not yet committed.

1836 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

If there are transactions that have been imported and prepared but not yet committed, you can click the

Review link to display a list of those transactions on the Transactions imported and prepared panel.

 Data type Integer

Default 0

Transactions needing manual completion:

Use this page to review transactions that need manual completion.

 It is unusual for transactions to require manual completion. A transaction needs manual completion in the

following circumstances:

1. An application was exploiting the last participant support to coordinate a single one-phase capable

resource and one or more two-phase capable resources.

2. A failure occurred during the commit of the one-phase capable resource.

3. The transaction service Heuristic completion direction is set to Manual.

An administrator reviewing transactions in this state can review the actual outcome of any one-phase

resources, using facilities provided by the specific resource manager, then use this page to complete the

transaction accordingly.

To view this administrative console page, click Servers → Application Servers → [Content pane]

server_name [Container Settings] Container Services → Transaction Service → Runtime → Manual

transactions - Review.

To list the resources used by a transaction, click the transaction local ID in the list displayed.

To act on one or more of the transactions listed, click the check boxes next to the transactions that you

want to act on, then use the buttons provided.

Local ID

The local identifier of the transaction.

Global ID

The global identifier of the transaction.

Buttons

Commit

Heuristically commit the selected transactions.

Rollback

Heuristically roll back the selected transactions.

Transactions retrying resources:

Use this page to review transactions with resources being retried.

 If the transaction manager has prepared resources, but has lost contact with the resource managers

before committing them or aborting them, then the transaction manager retries the commit or rollback

requests to the affected resource managers. The number of times and frequency that the transaction

manager retries such commit or rollback requests is configured on the Heuristic retry limit and Heuristic

retry wait properties of the Transaction service settings.

An administrator can use this page to make the transaction service abandon the retries of one or more

transactions. Any resource manager than cannot be contacted is left in an in-doubt (prepared) state that

needs to be resolved by the administrator using mechanisms specific to the resource manager.

Chapter 8. Developing WebSphere applications 1837

To view this administrative console page, click Servers → Application Servers [Content pane]

server_name [Container Settings] Container Services → Transaction Service → Runtime → Retry

transactions - Review.

To list the resources used by a transaction, click the transaction local ID in the list displayed.

To act on one or more of the transactions listed, click the check boxes next to the transactions that you

want to act on, then use the buttons provided.

Local ID

The local identifier of the transaction.

Status

The status of the transaction, shown as an integer value. The values correspond to the following

status:

0 - active

1 - marked for rollback

2 - prepared

3 - committed

4 - rolled back

5 - unknown

6 - none

7 - preparing

8 - committing

9 - rolling back

Global ID

The global identifier of the transaction.

Buttons

Finish Abandon retrying resources for the selected transactions.

Transactions with heuristic outcome:

Use this page to review transactions that completed with a heuristic outcome.

 The page is provided for information purposes only. After you have reviewed the information in this page,

then the only action required is to remove the transactions from the list. If you do not remove a transaction

from the list, it is kept in the list for three days or until the server is shut down, whichever occurs first.

To view this administrative console page, click Servers → Application Servers [Content pane]

server_name [Container Settings] Container Services → Transaction Service → Runtime → Heuristic

transactions - Review.

To list the resources used by a transaction, click the transaction local ID in the list displayed.

To act on one or more of the transactions listed, click the check boxes next to the transactions that you

want to act on, then use the buttons provided.

Local ID

The local identifier of the transaction.

Heuristic outcome

The outcome of the transaction.

Global ID

The global identifier of the transaction.

Buttons

1838 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Clear Remove the selected transactions from the list.

Transactions imported and prepared:

Use this page to review transactions that have been imported and prepared but not yet committed.

 Under normal circumstances no administrative action is required for any of the transactions listed on this

page. This page lists those transactions that are in a prepared state, but are being directed by an external

transaction manager (for example, another WebSphere application server) from a transaction context that

has been propagated.

An administrator can heuristically complete the transactions listed on this page independent of the external

transaction manager if, for example, the external transaction manager has become unavailable for an

unacceptable period of time. If the completion direction (commit or rollback) chosen administratively differs

from the eventual direction of the external transaction manager then the overall outcome of the transaction

is not atomic and data corruption can result.

To view this administrative console page, click Servers → Application Servers [Content pane]

server_name [Container Settings] Container Services → Transaction Service → Runtime → Imported

prepared transactions - Review.

To list the resources used by a transaction, click the transaction local ID in the list displayed.

To act on one or more of the transactions listed, click the check boxes next to the transactions that you

want to act on, then use the buttons provided.

Local ID

The local identifier of the transaction.

Global ID

The global identifier of the transaction.

Buttons

Commit

Heuristically commit the selected transactions.

Rollback

Heuristically roll back the selected transactions.

Transaction resources:

Use this page to review resources used by a transaction.

 To view this administrative console page, click Servers → Application Servers [Content pane]

server_name → [Container Settings] Container Services → Transaction Service → Runtime →

transaction_typelocal_ID.

Where:

v transaction_type is one of:

– Manual transactions - Review

– Retry transactions - Review

– Heuristic transactions - Review

– Imported prepared transactions - Review

v local_ID is the local ID of the transaction (as an active link in the list of transactions).

The details displayed depend on the resource provider.

Chapter 8. Developing WebSphere applications 1839

Using the transaction service

These topics provide information about using transactions with WebSphere applications

WebSphere applications can use transactions to coordinate multiple updates to resources as atomic units

(as indivisible units of work) such that all or none of the updates are made permanent.

In WebSphere Application Server, transactions are handled by three main components:

v A transaction manager that supports the enlistment of recoverable XAResources and ensures that each

such resource is driven to a consistent outcome either at the end of a transaction or after a failure and

restart of the application server.

v A container in which the J2EE application runs. The container manages the enlistment of XAResources

on behalf of the application when the application performs updates to transactional resource managers

(for example, databases). Optionally, the container can control the demarcation of transactions for

enterprise beans configured for container-managed transactions.

v An application programming interface (UserTransaction) that is available to bean-managed enterprise

beans and servlets. This allows such application components to control the demarcation of their own

transactions.

For more information about using transactions with WebSphere applications, see the following topics:

v Transaction support in WebSphere Application Server

v Using local transactions

v Developing a WebSphere application to use transactions

v Configuring transaction properties for an application server

v Managing active transactions

v Managing transaction logging for optimum server availability

v Interoperating transactionally between application servers

v Troubleshooting transactions

v Transaction service exceptions

v UserTransaction interface - methods available

v Coordinating access to 1-PC and 2-PC-capable resources within the same transaction

v Implementing WebSphere enterprise applications that use ActivitySessions

Transaction support in WebSphere Application Server

This topic provides conceptual information about the support for transactions provided by the Transaction

Service of WebSphere Application Server.

A transaction is unit of activity within which multiple updates to resources can be made atomic (as an

indivisible unit of work) such that all or none of the updates are made permanent. For example, multiple

SQL statements to a relational database are committed atomically by the database during the processing

of an SQL COMMIT statement. In this case, the transaction is contained entirely within the database

manager and can be thought of as a resource manager local transaction (RMLT). In some contexts, a

transaction is referred to as a logical unit of work (LUW). If a transaction involves multiple resource

managers, for example multiple database managers, then an external transaction manager is required to

coordinate the individual resource managers. A transaction that spans multiple resource managers are

referred to as a global transaction. WebSphere Application Server is a transaction manager that can

coordinate global transactions, be a participant in a received global transaction and also provides an

environment in which resource manager local transactions can run.

The way that applications use transactions depends on the type of application component, as follows:

v A session bean can either use container-managed transactions (where the bean delegates management

of transactions to the container) or bean-managed transactions (component-managed transactions

where the bean manages transactions itself).

v Entity beans use container-managed transactions.

v Web components (servlets) and application client components use component-managed transactions.

1840 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

WebSphere Application Server is a transaction manager that supports the coordination of resource

managers through their XAResource interface and participates in distributed global transactions with

transaction managers that support the CORBA Object Transaction Service (OTS) protocol (for example,

application servers) or Web Service Atomic Transaction (WS-AtomicTransaction) protocol. WebSphere

Application Server also participates in transactions imported through J2EE Connector 1.5 resource

adapters. WebSphere applications can also be configured interact with (or to direct the WebSphere

transaction service to interact with) databases, JMS queues, and JCA connectors through their local

transaction support when distributed transaction coordination is not required.

Resource managers that offer transaction support can be categorized into those that support two-phase

coordination (by offering an XAResource interface) and those that support only one-phase coordination (for

example through a LocalTransaction interface). The WebSphere Application Server transaction support

provides coordination, within a transaction, for any number of two-phase capable resource managers. It

also enables a single one-phase capable resource manager to be used within a transaction in the absence

of any other resource managers, although a WebSphere transaction is not necessary in this case.

Under normal circumstances you cannot mix one-phase commit capable resources and two-phase commit

capable resources in the same global transaction, because one-phase commit resources cannot support

the prepare phase of two-phase commit. There are some special circumstances where it is possible to

include mixed-capability resources in the same global transaction:

v In scenarios where there is only a single one-phase commit resource provider that participates in the

transaction and where all the two-phase commit resource-providers that participate in the transaction

are used in a read-only fashion. In this case, the two-phase commit resources all vote read-only during

the prepare phase of two-phase commit. Because the one-phase commit resource provider is the only

provider to actually perform any updates, the one-phase commit resource does not need to be

prepared.

v In scenarios where there is only a single one-phase commit resource provider that participates in the

transaction with one of more two-phase commit resource providers and where last participant support is

enabled. Last participant support enables the use of a single one-phase commit capable resource with

any number of two-phase commit capable resources in the same global transaction. For more

information about last participant support, see Using one-phase and two-phase commit resources in the

same transaction.

The ActivitySession service provides an alternative unit-of-work (UOW) scope to that provided by global

transaction contexts. It is a distributed context that can be used to coordinate multiple one-phase resource

managers. The WebSphere EJB container and deployment tooling support ActivitySessions as an

extension to the J2EE programming model. EJBs can be deployed with lifecycles that are influenced by

ActivitySession context, as an alternative to transaction context. An application can then interact with a

resource manager for the period of a client-scoped ActivitySession, rather than only the duration of an EJB

method, and have the resource manager’s local transaction outcome directed by the ActivitySession. For

more information about ActivitySessions, see Using the ActivitySession service.

Resource manager local transaction (RMLT):

A resource manager local transaction (RMLT) is a resource manager’s view of a local transaction; that is, it

represents a unit of recovery on a single connection that is managed by the resource manager.

 Resource managers include:

v Enterprise Information Systems that are accessed through a resource adapter, as described in the J2EE

Connector Architecture 1.0.

v Relational databases that are accessed through a JDBC datasource.

v JMS queue and topic destinations.

Chapter 8. Developing WebSphere applications 1841

http://www.omg.org/cgi-bin/doc?formal/2003-09-02
http://www.ibm.com/developerworks/webservices/library/ws-atomtran/
http://java.sun.com/j2ee/connector/
http://java.sun.com/j2ee/connector/
http://java.sun.com/j2ee/connector/index.html
http://java.sun.com/j2ee/connector/index.html

Resource managers offer specific interfaces to enable control of their RMLTs. J2EE connector resource

adapters that include support for local transactions provide a LocalTransaction interface to enable

applications to request that the resource adapter commit or rollback RMLTs. JDBC datasources provide a

Connection interface for the same purpose.

The boundary at which all RMLTs must be complete is defined in WebSphere Application Server by a local

transaction containment (LTC).

Global transactions:

If an application uses two or more resources, then an external transaction manager is needed to

coordinate the updates to both resource managers in a global tansaction.

 Global transaction support is available to web and enterprise bean J2EE components and, with some

limitation, to application client components. Enterprise bean components can be subdivided into beans that

exploit container-managed transactions (CMT) or bean-managed transactions (BMT).

BMT enterprise beans, application client components, and web components can use the Java Transaction

API (JTA) UserTransaction interface to define the demarcation of a global transaction. The

UserTransaction interface can be obtained by a JNDI lookup of java:comp/UserTransaction or from the

SessionContext object using the getUserTransaction method..

The UserTransaction is not available to the following components:

v CMT enterprise beans. Any attempt by such beans to obtain the interface results in an exception in

accordance with the EJB specification.

Ensure that programs that perform a JNDI lookup of the UserTransaction interface, use an InitialContext

that resolves to a local implementation of the interface. Also ensure that such programs use a JNDI

location appropriate for the EJB version.

Before the EJB 1.1 specification, the JNDI location of the UserTransaction interface was not specified.

Each EJB container implementor defined it in an implementation-specific manner. Earlier versions of

WebSphere Application Server, up to and including Version 3.5.x (without EJB 1.1), bind the

UserTransaction interface to a JNDI location of jta/usertransaction. WebSphere Application Server Version

4, and later releases, bind the UserTransaction interface at the location defined by EJB 1.1, which is

java:comp/UserTransaction. WebSphere Application Server, from Version 5 no longer provides the

jta/usertransaction binding within Web and EJB containers to applications at a J2EE level of 1.3 or later.

For example, from EJB 2.0 applications can use only the java:comp/UserTransaction location.

A web component or enterprise bean (CMT or BMT) can get the ExtendedJTATransaction interface

through a lookup of java:comp/websphere/ExtendedJTATransaction. This interface provides access to the

transaction identity and a mechanism to receive notification of transaction completion.

Local transaction containment (LTC):

A local transaction containment (LTC) is used to define the application server behavior in an unspecified

transaction context.

 (Unspecified transaction context is defined in the Enterprise JavaBeans 2.0 (or later) specification; for

example, at http://java.sun.com/products/ejb/2.0.html.)

A LTC is a bounded unit-of-work scope within which zero, one, or more resource manager local

transactions (RMLTs) can be accessed. The LTC defines the boundary at which all RMLTs must be

complete; any incomplete RMLTs are resolved, according to policy, by the container. An LTC is local to a

bean instance; it is not shared across beans even if those beans are managed by the same container.

LTCs are started by the container before dispatching a method on a J2EE component (such as an

1842 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

http://java.sun.com/products/ejb/2.0.html

enterprise bean or servlet) whenever the dispatch occurs in the absence of a global transaction context.

LTCs are completed by the container depending on the application-configured LTC boundary; for example

at the end of the method dispatch. There is no programmatic interface to the LTC support; rather LTCs are

managed exclusively by the container and configured by the application deployer through transaction

attributes in the application deployment descriptor.

A local transaction containment cannot exist concurrently with a global transaction. If application

component dispatch occurs in the absence of a global transaction, the container always establishes an

LTC for J2EE components at J2EE 1.3 or later. The only exceptions to this are as follows:

v Where application component dispatch occurs without container interposition; for example, for a

stateless session bean create or a servlet-initiated thread.

v J2EE 1.2 web components.

v J2EE 1.2 BMT enterprise beans.

A local transaction containment can be scoped to an ActivitySession context that lives longer than the

enterprise bean method in which it is started, as described in ActivitySessions and transaction contexts.

Local and global transaction considerations: Applications use resources, such as JDBC data sources

or connection factories, that are configured through the Resources view of the WebSphere Application

Server Administrative Console. How these resources participate in a global transaction depends on the

underlying transaction support of the resource provider. For example, most JDBC providers can provide

either XA or non-XA versions of a data source. A non-XA data source can support only resource manager

local transactions (RMLTs), but an XA data source can support two-phase commit coordination, as well as

local transactions.

If an application uses two or more resource providers that support only RMLTs, then atomicity cannot be

assured because of the one-phase nature of these resources. To ensure atomic behavior, the application

should use resources that support XA coordination and should access them within a global transaction.

If an application uses only one RMLT, the atomic behavior can be guaranteed by the resource manager,

which can be accessed under a local transaction containment context.

An application can also access a single resource manager under a global transaction context, even if that

resource manager does not support the XA coordination. An application can do this, because WebSphere

Application Server performs an “only resource optimization” and interacts with the resource manager under

a RMLT. Within a global transaction context, any attempt to use more than one resource provider that

supports only RMLTs causes the global transaction to be rolled back.

At any moment, an instance of an enterprise bean can have work outstanding in either a global transaction

context or a local transaction containment context, but never both. An instance of an enterprise bean can

change from running under one type of context to the other (in either direction), if all outstanding work in

the original context is complete. Any violation of this principle causes an exception to be thrown when the

enterprise bean tries to start the new context.

Client support for transactions:

This topic describes the support of application clients for the use of transactions.

 Application clients running in a J2EE client container can explicitly demarcate transaction boundaries as

described in ″Using component-managed transactions″ in the information center. Application clients cannot

perform, directly within the client container, transactional work in the context of any global transaction that

they start, because the client container is not a recoverable process.

Application clients can make requests to remote objects, such as enterprise beans, within the context of a

client-initiated transaction. Any transactional work performed in a remote, recoverable server process is

Chapter 8. Developing WebSphere applications 1843

coordinated as part of the client-initiated transaction. The transaction coordinator is created on the first

server process to which the client-initiated transaction is propagated.

A client can begin a transaction then, for example, access a JDBC data source directly in the client

process. In such cases, any work performed through the JDBC provider is not coordinated as part of the

global transaction. Instead, the work runs under a resource manager local transaction. The client container

process is non-recoverable and contains no transaction coordinator with which a resource manager can be

enlisted.

A client can begin a transaction then call a remote application component, such as an enterprise bean. In

such cases, the client-initiated transaction context is implicitly propagated to the remote application server

where a transaction coordinator is created. Any resource managers accessed on the recoverable

application server (or any other application server hosting application components invoked by the client)

are enlisted in the global transaction.

Client application components need to be aware that locally-accessed resource managers are not

coordinated by client-initiated transactions. Client applications acknowledge this through a deployment

option that enables access to the UserTransaction interface in the client container. By default, access to

the UserTransaction interface in the client container is not enabled. To enable UserTransaction

demarcation for an application client component, set the Allow JTA Demarcation extension property in

the client deployment descriptor. For information about editing the client deployment descriptor, see

″Editing deployment descriptors″ in the information center.

The effect of application server shutdown on active transactions and later recovery: When an

application server shuts down, any active transactions are rolled back. If all transactions are successfully

completed in this way, message WTRN0105I is logged, and on the next server restart no recovery activity

is needed. If message WTRN0105I is not logged for an application server shutdown, this does not indicate

that there has been a failure, only that recovery activity is required when the server restarts.

A clean shutdown of all application servers should be achieved before the product is uninstalled, to avoid

data integrity problems.

Extended JTA support: Extended JTA support provides application programming interfaces additional to

the UserTransaction interface that is defined in the JTA as part of the J2EE specification. Specifically, the

API extensions provide the following functionality:

v Access to global and local transaction identifiers associated with the thread.

The global id is based on the tid in CosTransactions::PropagationContext: and the local id identifies the

transaction uniquely within the local JVM.

v A transaction synchronization callback that enables any J2EE component to register an interest in

transaction completion.

This can be used by advanced applications to flush updates before transaction completion and clear up

state after transaction completion. J2EE (and related) specifications position this function generally as

the domain of the J2EE containers.

An application uses a JNDI lookup of java:comp/websphere/ExtendedJTATransaction to get an

ExtendedJTATransaction object, which it then uses as follows:

ExtendedJTATransaction exJTA = (ExtendedJTATransaction)ctx.lookup("

 java:comp/websphere/ExtendedJTATransaction");

SynchronizationCallback sync = new SynchronizationCallback();

exJTA.registerSynchronizationCallback(sync);

The ExtendedJTATransaction object supports the registration of one or more application-provided

SynchronizationCallbacks. Depending on how the callback is registered, each registered callback is called

at one of the following points:

v At the end of every transaction that runs on the application server (whether the transaction is started

locally or imported).

1844 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

v At the end of the transaction for which the callback was registered.

The following information provides an overview of the interfaces provided by the Extended JTA support.

For more detailed information, see the Javadoc.

SynchronizationCallback interface

An object implementing this interface is enlisted once through the ExtendedJTATransaction interface, and

receives notification of transaction completion.

Although an object implementing this interface can run in a J2EE server, there is no specific J2EE

component active when this object is called. So, the object has limited direct access to any J2EE

resources. Specifically, it has no access to the java: namespace or to any container-mediated resource.

Such an object can cache a reference to a J2EE component (for example, a stateless session bean) that it

delegates to. The object would then have all the normal access to J2EE resources and could be used, for

example, to acquire a JDBC connection and flush updates to a database during beforeCompletion.

ExtendedJTATransaction interface

A WebSphere programming model extension to the J2EE JTA support. An object implementing this

interface is bound, by WebSphere J2EE containers that support this interface, at

java:comp/websphere/ExtendedJTATransaction. Access to this object, when called from an EJB container,

is not restricted to component-managed transactions.

Web Services – Atomic Transaction for WebSphere Application Server:

The Web Services - Atomic Transaction for WebSphere Application Server provides transactional quality of

service to the Web services environment. This enables distributed Web service applications, and the

resources they use, to take part in distributed global transactions.

 The Web Services Atomic Transaction (WS-AT) support is an implementation of the following specifications

on WebSphere Application Server. These specifications define a set of Web services that enable Web

service applications to participate in global transactions distributed across the heterogeneous Web service

environment.

v Web Services Atomic Transaction (WS-AT), at http://www-
106.ibm.com/developerworks/webservices/library/ws-atomtran/

WS-AT is a specific coordination type that defines protocols for atomic transactions.

v Web Service Coordination (WS-COOR), at http://www-
106.ibm.com/developerworks/webservices/library/ws-coor/

WS-COOR specifies a CoordinationContext and a Registration service with which Participant web

services may enlist to take part in the protocols offered by specific coordination types.

The WS-AT support is an interoperability protocol that introduces no new programming interfaces for

transactional support. Global transaction demarcation is provided by standard J2EE use of the JTA

UserTransaction intreface. If a Web service request is made by an application component running under a

global transaction, then a WS-AT CoordinationContext is implicitly propagated to the target Web service,

but only if the appropriate application deployment descriptors have been set as described in Configuring

transactional deployment attributes.

If WebSphere Application Server is the system hosting the target endpoint for a Web service request that

contains a WS-AT CoordinationContext, then WebSphere automatically establishes a subordinate JTA

transaction in the target runtime environment that becomes the transactional context under which the

target Web service application executes.

Chapter 8. Developing WebSphere applications 1845

http://www-106.ibm.com/developerworks/webservices/library/ws-atomtran/
http://www-106.ibm.com/developerworks/webservices/library/ws-atomtran/
http://www-106.ibm.com/developerworks/webservices/library/ws-coor/
http://www-106.ibm.com/developerworks/webservices/library/ws-coor/

The following figure, Figure 9, shows a transaction context shared between two WebSphere application

servers for a Web service request that contains a WS-AT CoordinationContext.

 WS-AT support restrictions

In WebSphere Application Server version 6.0, WS-AT contexts cannot be propagated through firewalls and

cannot be started from a non-recoverable client process.

Application design considerations

WS-AT is a two-phase commit transaction protocol and is suitable for short duration transactions only.

Because the purpose of an atomic transaction is to coordinate resource managers that isolate

transactional updates by holding transactional locks on resources, it is generally not recommended that

WS-AT transactions be distributed across enterprise domains. Inter-enterprise transactions typically require

a looser semantic than two-phase commit and, in such scenarios, it can be more appropriate to use a

compensating business transaction, for example as part of a BPEL process.

WS-AT is most appropriate for distributing transaction context across Web services deployed within a

single enterprise. Only request-response message exchange patterns carry transaction context since the

originator (application or container) of a transaction needs to be sure that all business tasks executed

under that transaction have finished before requesting the completion of a transaction. Web services

invoked by a one-way request never run under the transaction of the requesting client.

Application development considerations

There are no specific development tasks required for Web service applications to take advantage of

WS-AT. There are some application deployment descriptors that need to be set appropriately, as described

in ″Configuring transactional deployment attributes″ in the information center.

Application developers do not need to explicitly register WS-AT participants. The WebSphere Application

Server runtime takes responsibility for the registration of WS-AT participants, in the same way as the

registration of XAResources in the JTA transaction to which the WS-AT transaction is federated. At

transaction completion time, all XAResources and WS-AT participants are atomically coordinated by the

WebSphere Application Server transaction service.

If a JTA transaction is active on the thread when a Web service Application request is made, the

transaction is propagated across on the Web service request and established in the target environment.

This is analogous to the distribution of transaction context over IIOP as described in the EJB specification.

Any transactional work performed in the target environment becomes part of the same global transaction.

Figure 9. Transaction context shared between two WebSphere application servers.

1846 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Using local transactions

Local transaction containment (LTC) support, and its configuration through local transaction extended

deployment descriptors, gives IBM WebSphere Application Server application programmers a number of

advantages. This topic describes those advantages and how they relate to the settings of the local

transaction extended deployment descriptors. This topic also describes points to consider to help you best

configure transaction support for some example scenarios that use local transactions.

Develop an enterprise bean or servlet that accesses one or more databases that are independent

and require no coordination.

If an enterprise bean does not need to use global transactions, it is often more efficient to deploy

the bean with the Container Transaction deployment descriptor Transaction attribute set to Not

supported instead of Required.

 With the extended local transaction support of IBM WebSphere Application Server, applications

can perform the same business logic in an unspecific transaction context as they can under a

global transaction. An enterprise bean, for example, runs under an unspecified transaction context

if it is deployed with a Transaction attribute of Not supported or Never.

 The extended local transaction support provides a container-managed, implicit local transaction

boundary within which application updates can be committed and their connections cleaned up by

the container. Applications can then be designed with a greater degree of independence from

deployment concerns. This makes using a Transaction attribute of Supports much simpler, for

example, when the business logic may be called either with or without a global transaction context.

 An application can follow a get-use-close pattern of connection usage regardless of whether or not

the application runs under a transaction. The application can depend on the close behaving in the

same way and not causing a rollback to occur on the connection if there is no global transaction.

 There are many scenarios where ACID coordination of multiple resource managers is not needed.

In such scenarios running business logic under a Transaction policy of Not supported performs

better than if it had been run under a Required policy. This benefit is exploited through the Local

Transactions - Resolution-control extended deployment setting of ContainerAtBoundary. With

this setting, application interactions with resource providers (such as databases) are managed

within implicit RMLTs that are both started and ended by the container. The RMLTs are committed

by the container at the configured Local Transactions - Boundary; for example at the end of a

method. If the application returns control to the container by an exception, the container rolls back

any RMLTs that it has started.

 This usage applies to both servlets and enterprise beans.

Use local transactions in a managed environment that guarantees clean-up.

Applications that want to control RMLTs, by starting and ending them explicitly, can use the default

Local Transactions - Resolution-control extended deployment setting of Application. In this

case, the container ensures connection cleanup at the boundary of the local transaction context.

 J2EE specifications that describe application use of local transactions do so in the manner

provided by the default setting of Local Transactions - Resolution-control=Application and

Local Transactions - Unresolved-action=Rollback. By configuring the Local Transactions -

Unresolved-action extended deployment setting to Commit, then any RMLTs started by the

application but not completed when the local transaction containment ends (for example, when the

method ends) are committed by the container. This usage applies to both servlets and enterprise

beans.

Extend the duration of a local transaction beyond the duration of an EJB component method.

The J2EE specifications restrict the use of RMLTs to single EJB methods. This restriction is

because the specifications have no scoping device, beyond a container-imposed method

boundary, to which an RMLT can be extended. You can exploit the Local Transactions -

Boundary extended deployment setting to give the following advantages:

v Significantly extend the use-cases of RMLTs

v Make conversational interactions with one-phase resource managers possible through

ActivitySession support.

Chapter 8. Developing WebSphere applications 1847

You can use an ActivitySession to provide a distributed context with a boundary that is longer than

a single method. You can extend the use of RMLTs over the longer ActivitySession boundary,

which can be controlled by a client. The ActivitySession boundary reduces the need to use

distributed transactions where ACID operations on multiple resources are not needed. This benefit

is exploited through the Local Transactions - Boundary extended deployment setting of

ActivitySession. Such extended RMLTs can remain under the control of the application or be

managed by the container depending on the use of the Local Transactions - Resolution-control

deployment descriptor setting.

Coordinate multiple one-phase resource managers.

For resource managers that do not support XA transaction coordination, a client can exploit

ActivitySession-bounded local transaction contexts. Such contexts give a client the same ability to

control the completion direction of the resource updates by the resource managers as the client

has for transactional resource managers. A client can start an ActivitySession and call its entity

beans under that context. Those beans can perform their RMLTs within the scope of that

ActivitySession and return without completing the RMLTs. The client can later complete the

ActivitySession in a commit or rollback direction and cause the container to drive the

ActivitySession-bounded RMLTs in that coordinated direction.

 To determine how best to configure the transaction support for an application, depending on what you

want to do with transactions, consider the following points.

General points

v You want to start and end global transactions explicitly in the application (BMT session beans

and servlets only).

For a session bean, set the Transaction type to Bean (to use bean-managed transactions) in

the component’s deployment descriptor. (You do not need to do this for servlets.)

v You want to access only one XA or non-XA resource in a method.

In the component’s deployment descriptor, set Local Transactions - Resolution-control to

ContainerAtBoundary. In the Container transaction deployment descriptor, set Transaction to

Supports.

v You want to access several XA resources atomically across one or more bean methods.

In the Container transaction deployment descriptor, set Transaction to Required, Requires new,

or Mandatory.

v You want to access several non-XA resource in a method without having to worry about

managing your own local transactions.

In the component’s deployment descriptor, set Local Transactions - Resolution-control to

ContainerAtBoundary. In the Container transaction deployment descriptor, set Transaction to

Not supported.

v You want to access several non-XA resources in a method and want to manage them

independently.

In the component’s deployment descriptor, set Local Transactions - Resolution-control to

Application and set Local Transactions - Unresolved-action to Rollback. In the Container

transaction deployment descriptor, set Transaction to Not supported.

v You want to access one of more non-XA resources across multiple EJB method calls without

having to worry about managing your own local transactions.

In the component’s deployment descriptor, set Local Transactions - Resolution-control to

ContainerAtBoundary, Local Transactions - Boundary to ActivitySession, and Bean Cache -

Activate at to ActivitySession. In the Container transaction deployment descriptor, set

Transaction to Not supported and set ActivitySession attribute to Required, Requires new, or

Mandatory.

v You want to access several non-XA resources across multiple EJB method calls and want to

manage them independently.

In the component’s deployment descriptor, set Local Transactions - Resolution-control to

Application, Local Transactions - Boundary to ActivitySession, and Bean Cache - Activate

1848 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

at to ActivitySession. In the Container Transaction deployment descriptor, set Transaction to

Not supported and set ActivitySession attribute to Required, Requires new, or Mandatory.

v You want to use a single non-XA resource and one or more XAResources.

Use the Last Participant Support.

Transaction service exceptions

This topic lists the exceptions that can be thrown by the WebSphere Application Server transaction

service. The exceptions are listed in the following groups:

v Standard exceptions

v Heuristic exceptions

If the EJB container catches a system exception from the business method of an enterprise bean, and the

method is running within a container-managed transaction, the container rolls back the transaction before

passing the exception on to the client. For more information about how the container handles the

exceptions thrown by the business methods for beans with container-managed transaction demarcation,

see the section Exception handling in the Enterprise JavaBeans 2.0 specification. That section specifies

the container’s action as a function of the condition under which the business method executes and the

exception thrown by the business method. It also illustrates the exception that the client receives and how

the client can recover from the exception.

Standard exceptions

The standard exceptions such as TransactionRequiredException, TransactionRolledbackException, and

InvalidTransactionException are defined in the Java Transaction API (JTA) 1.0.1 Specification.

InvalidTransactionException

This exception indicates that the request carried an invalid transaction context.

TransactionRequiredException exception

This exception indicates that a request carried a null transaction context, but the target object

requires an active transaction.

TransactionRolledbackException exception

This exception indicates that the transaction associated with processing of the request has been

rolled back, or marked for roll back. Thus the requested operation either could not be performed or

was not performed because further computation on behalf of the transaction would be fruitless.

Heuristic exceptions

A heuristic decision is a unilateral decision made by one or more participants in a transaction to commit or

rollback updates without first obtaining the consensus outcome determined by the Transaction Service.

Heuristic decisions are an issue only after the participant has been prepared and the second phase of

commit processing is underway. Heuristic decisions are normally made only in unusual circumstances,

such as repeated failures by the transaction manager to communicate with a resource manage during

two-phase commit. If a heuristic decision is taken, there is a risk that the decision differs from the

consensus outcome, resulting in a loss of data integrity.

The following list provides a summary of the heuristic exceptions. For more detail, see the Java

Transaction API (JTA) 1.0.1 Specification.

HeuristicRollback exception

This exception is raised on the commit operation to report that a heuristic decision was made and

that all relevant updates have been rolled back.

HeuristicMixed exception

This exception is raised on the commit operation to report that a heuristic decision was made and

that some relevant updates have been committed and others have been rolled back.

Chapter 8. Developing WebSphere applications 1849

http://java.sun.com/products/ejb/docs.html
http://java.sun.com/products/jta/
http://java.sun.com/products/jta/
http://java.sun.com/products/jta/

UserTransaction interface - methods available

For details about the methods available with the UserTransaction interface, see the WebSphere

Application Server application programming interface reference information (Javadoc) or the Java

Transaction API (JTA) 1.0.1 Specification.

Managing active and prepared transactions

Use this task to manage active and prepared transactions that might need administrator action.

Under normal circumstances, transactions should run and complete (commit or rollback) automatically,

without the need for intervention. However, in some circumstances, you may need to resolve a transaction

manually. For example, you may want to rollback a transaction that has become stuck polling a resource

manager that you know will not become available again within the desired timeframe.

Note: If you choose to complete a transaction on an application server, it is recorded as having completed

in the transaction service logs for that server, so will not be eligible for recovery during server start

up. If you complete a transaction, you are responsible for cleaning up any in-doubt transactions on

the resource managers affected.

You can use the administrative console to display a snapshot of all the transactions in an application

server that are in the following states:

Manual transactions

Transactions awaiting administrative completion. For each transaction, the local or globalid is

displayed. You can choose to display information on each resource (specifically, which resource

manager it is associated with) associated with the transaction. You can also choose to commit or

rollback transactions in this state.

Retry transactions

Transactions with some resources being retried. For each transaction, the local or globalid is

displayed, and whether the transaction is committing or rolling back. You can choose to display

information on each resource (specifically, which resource manager it is associated with)

associated with the transaction. You can also choose to finish (abandon retrying) transactions in

this state.

Heuristic transactions

Transactions that have completed heuristically. For each transaction, the local or globalid and the

heuristic outcome is displayed. You can choose to display information on each resource

(specifically, which resource manager it is associated with) associated with the transaction. You

can also choose to clear the transaction from the list.

Imported prepared transactions

Transactions that have been imported and prepared but not yet committed. For each transaction,

the local or globalid is displayed. You can choose to display information on each resource

(specifically, which resource manager it is associated with) associated with the transaction. You

can also choose to commit or rollback transactions in this state.

To manage the active and prepared transactions for an application server, use the administrative console

to complete the following steps:

1. Display the Transaction Service runtime page for application server:

a. In the navigation pane, click Servers-> Application Servers

b. In the content pane, click the name of the application server

c. In the content pane, click the Runtime tab.

d. Under Additional Properties, click Transaction Service

This displays values for the runtime properties of the transaction service, including the number of

transactions in the active and prepared states.

1850 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

http://java.sun.com/products/jta/
http://java.sun.com/products/jta/

2. To display a snapshot of the transactions in a specific state, click Review in the field label.

3. Optional: If you want to display information about the resources associated with a transaction, click

the name of the transaction.

4. Optional: If you want to act on a transaction, select the check box provided on the entry for the

transaction, then click one of the buttons provided. Alternatively, to act on all transactions, select the

check box in the header of the transactions table, then click a button.

Managing transaction logging for optimum server availability

This topic describes some considerations and actions that you can use to manage transaction logging to

help ensure that the availability of your application servers is optimized.

The transaction service writes information to the transaction log for every global transaction which involves

two or more resources or is distributed across multiple servers. The transaction log is stored on disk and is

used by the transaction service for recovery after a system or server crash. The transaction log for each

application server consists of multiple subdirectories and files held in a single directory. You can change

the directory that an application server uses to store the transaction log, as described in Configuring

transaction properties for an application server.

When a global transaction is completed, the information in the transaction log is not needed anymore so is

marked for deletion. Periodically, this redundant information is garbage collected and the space reused by

new transactions. The log files are created of fixed size at server startup, thus no further disk space

allocation is required during the lifetime of the server. The default allocation is suitable for around 4000

concurrent transactions.

If all the log space is in use when a transaction needs to save information, the transaction is rolled back

and the message WTRN0083W: The transaction log is full. Transaction rolled back. is reported to

the system error log. No more transactions can commit until more log space is made available when

existing active transactions complete.

You can monitor the number of concurrent global transactions by using the performance monitoring

counters for transactions. The “Global transaction commit time” counter is a measure of how long a

transaction takes to complete and, therefore, how long the log is in use by a transaction. If this value is

high, then transactions are taking a long time to complete, which can be due to resource manager or

network failures. If you ensure this value is low, the log is more efficiently used and unlikely to become full.

You can change the default size of log files by updating the transaction log settings as described in

Configuring transaction properties for an application server.

Configuring transaction aspects of servers for optimum availability

This topic describes some considerations and actions that you can take to configure transaction-related

aspects of application servers, to optimize the availability of those servers.

This helps your transactions to complete or recover more quickly. After changing transaction-related

properties of an application server, you must restart the server.

To configure transaction-related aspects of application servers for optimum availability, complete the

following steps:

1. Store the transaction log files on a fast disk in a highly-available file system, such as a RAID device.

The transaction log may need to be accessed by every global transaction and be used for transaction

recovery after a crash. Therefore, the disk the log files are being written to should be on a

highly-available file system, such as a RAID device.

The performance of the disk also directly affects the transaction performance. In general, a global

transaction makes two disk writes, one after the prepare phase when the outcome of the transaction is

Chapter 8. Developing WebSphere applications 1851

known (this information is forced to disk) and a further disk write at transaction completion. Therefore,

the transaction logs should be placed on the fastest disks available and not make use of network

mounted devices.

2. Mirror the transaction log files by using hardware disk mirroring or dual-ported disks. If log files have

been mirrored or can be recovered, they can be used when restarting a failed server or moved to an

another machine and another server started there to perform recovery.

Hardware disk mirroring or dual-ported disks can be used by specifiying the appropriate file system

directory for the transaction logs using the WebSphere Administrative Console.

3. Specify the optimum location of the transaction log directory for application servers. By default, an

application server places transaction log files in a subdirectory of the installed WebSphere Application

Server, where the subdirectory name is the same as the server name. For example, the default

directory for an application server named server1 on Windows is

c:\WebSphere\AppServer\profiles\profilename\tranlog\server1.

You can define a specific location for the transaction log directory for an application server by setting

the Transaction Log Directory property for the server. If the directory for the transaction logs has not

been created at application server start up, the directory structure is created for you.

Note: If you change the transaction log directory, you should apply the change and restart the

application server as soon as possible, to minimize the risk of problems caused that might occur

before the application server is restarted. For example, if a problem causes the server to fail

(with in-flight transactions), the server next starts with the new log directory and is unable to

automatically resolve in-flight transactions that were recorded in the old log directory.

4. Never allow more than one application server to concurrently use the same set of log files. Because

the transaction logs record the state of global transactions within a server, if the logs become lost or

corrupt, then transactions that are in the prepared state before failure can leave resources in an

in-doubt state and prevent further updates or access to the resources by other users or servers. These

transactions may need to be manually resolved by either committing or rolling back the transactions at

the affected resource managers. The failed server can then be cold-started, which creates new empty

transaction logs.

If log files have been mirrored or can be recovered, they can be used when restarting the failed server

or moved to an alternate server or machine and another server restarted to perform recovery, as

described in the related tasks.

Never allow more than one application server to concurrently use the same set of log files, because

each server will destroy the information recorded by the other, resulting in corrupt log files that are

unusable for future recovery purposes.

5. Configure application servers to always use the same listening port address at each startup. If you are

running distributed transactions between multiple application servers, the remote object references

saved in the transaction log need to be redirected to the originating server on recovery.

On WebSphere Application Server Network Deployment, the node agents automatically redirect such

remote object references to the appropriate application servers on recovery. However, if the distributed

transaction is between application servers that are not on WebSphere Application Server Network

Deployment, then you must handle the redirection of remote object references for transaction recovery

to complete. For example, you must do this is if an application server is deployed on WebSphere

Application Server (not the Network Deployment edition) and runs distributed transactions with

non-WebSphere EJB or Corba servers.

In particular, the default restart action of an application server not on Application Server Network

Deployment is to use a different listening port address to the port when the server shut down. This

prevents transaction recovery completing. To overcome this, you should always configure application

servers to always use the same listening port address at each startup (see the ORB property

com.ibm.CORBA.ListenerPort in ORB service settings that can be added to the administrative

console). You may need to make similar configuration changes to other application servers involved in

transactions, to be able to access those servers during recovery.

1852 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Moving a transaction log from one server to another

This topic describes some considerations and actions that you can take to move the transaction logs for

an application server to another server.

To move transaction logs from one application server to another, consider the following steps:

1. Move all the transaction log files for the application server. The transaction log directory for each

server contains a number of files and subdirectories. When moving transaction logs from one server to

another you must move all of the files and subdirectories together as a single unit; otherwise recovery

may not complete resulting in data inconsistency.

2. For a server configuration where there are no distributed transactions, move the transaction logs to

any server that has access to the same resource managers. For a single server or network-deployed

server configuration where it is known there are no distributed transactions present in the logs, the

transaction logs can be moved to any server (on any node) that has access to the same resource

managers as the original server. For example, the server needs communication and valid security

access to databases or message queues.

All the transaction log files for the original server need to be moved to a directory accessible by the

new server. This can be accomplished by either renaming the transaction log directory or copying all

thecontents to the new server’s transaction log directory before starting the new server.

Note: To complete transaction recovery, the application server uses the resource manager

configuration information in the transaction logs. However, for the application server to continue

to do new work with the same resource managers, the server must have an appropriate

resource manager configuration (as for the original server).

3. For a network-deployed server configuration where there are distributed transactions, move the

transaction logs to a server that has the same name and host IP address, and access to the same

resource managers. For a network-deployed server configuration, when it is known there are

distributed transactions present in the logs, there are more restrictions. Distributed transactions that

access multiple servers log information about each server involved in the transaction. This information

includes the server name and the IP address of the machine on which the server is running. When

recovery is taking place on server restart, the server uses this information to contact the distributed

servers and similarly, the distributed servers try to contact the server with the same original name. So,

if a server fails and the logs need to the recovered on an alternative server, that alternative server

needs to have the same name and host IP address as the original server. The alternative server also

needs to have access to the same resource managers as the original server. For example, the server

needs communication and valid security access to databases or message queues.

Note: All servers within a cell must have unique names.

Note: To complete transaction recovery, the application server uses the resource manager

configuration information in the transaction logs. However, for the application server to continue

to do new work with the same resource managers, the server must have an appropriate

resource manager configuration (as for the original server).

Restarting an application server on a different host

This topic describes some considerations and actions that you can take with transaction logs to restart an

application server on a different host.

Moving transactions logs to a different host is similar to moving logs from one server to another, as

described in Moving transaction logs from one server to another.

This involves moving an original application server on one host to an alternative server, which has access

to the same resource managers, on another host. For a network-deployed server configuration, the

alternative server must have the same name and host IP address as the original server.

Chapter 8. Developing WebSphere applications 1853

Note: To complete transaction recovery, the application server uses the resource manager configuration

information in the transaction logs. However, for the application server to continue to do new work

with the same resource managers, the server must have an appropriate resource manager

configuration (as for the original server).

To restart an application server on a different host, complete the following steps:

1. Ensure that the alternative application server is stopped.

2. Move all the transaction logs for the original server to the alternative application server, according to

the considerations described in Moving transaction logs from one server to another.

3. Restart the alternative application server.

Interoperating transactionally between application servers

This topic describes some considerations and actions that you can take to interoperate transactionally

between different types of application servers.

WebSphere Application Server is a transaction manager that supports transactional interoperation with

other transaction managers through either the CORBA Object Transaction Service (OTS) protocol (for

example, application servers) or, for JSR-109 compliant requests, Web Service Atomic Transaction

(WS-AtomicTransaction) protocol. This is in addition to its ability to coordinate XA resource managers and

to be coordinated by J2EE Connector 1.5 resource adapters.

To interoperate transactionally, using the OTS protocol, between WebSphere Application Server version 6

and versions of the WebSphere Application Server before version 5.0, you need to set the following

system properties on application servers that are before version 5.0:

com.ibm.ejs.jts.jts.ControlSet.nativeOnly=false

com.ibm.ejs.jts.jts.ControlSet.interoperabilityOnly=true

For example, if you want to interoperate between application servers at WebSphere Application Server

version 6 and WebSphere Application Server version 4.0.n, you need to set the system properties on the

version 4.0.n application servers.

Using one-phase and two-phase commit resources in the same

transaction

Use these topics to help you coordinate the use of a single one-phase commit capable resource with any

number of two-phase commit capable resources in the same global transaction.

You can coordinate the use of a single one-phase commit capable resource with any number of two-phase

commit capable resources in the same global transaction.

At transaction commit, the two-phase commit resources are prepared first using the two-phase commit

protocol, and if this is successful the one-phase commit-resource is then called to commit(one_phase).

The two-phase commit resources are then committed or rolled back depending on the response of the

one-phase commit resource.

For more information about using one-phase and two-phase commit resources within the same

transaction, see the following topics:

v Coordinating use of one-phase and two-phase commit resources within the same transaction

v Assembling an application to use one-phase and two-phase commit resources in the same transaction

v Configuring an application server to allow logging for heuristic reporting

Coordinating access to 1-PC and 2-PC-capable resources within the same

transaction

Last participant support enables the use of a single one-phase commit capable resource with any number

of two-phase commit capable resources in the same global transaction.

1854 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

http://www.omg.org/cgi-bin/doc?formal/2003-09-02
http://www.ibm.com/developerworks/webservices/library/ws-atomtran/
http://www.ibm.com/developerworks/webservices/library/ws-atomtran/
http://java.sun.com/j2ee/connector/

At transaction commit, the two-phase commit resources are prepared first using the two-phase commit

protocol, and if this is successful the one-phase commit-resource is then called to commit(one_phase).

The two-phase commit resources are then committed or rolled back depending on the response of the

one-phase commit resource.

Note: If the global transaction is distributed across multiple application servers that are all running at

WebSphere Application Server version 5.1 or later, you can coordinate access to one-phase and

two-phase commit capable resources within the same transaction.

Note: If the global transaction is distributed across multiple application servers that are all running at

WebSphere Application Server version 5.1 or later then you can exploit last participant support to

coordinate a one-phase commit capable resource and any number of two-phase commit capable

resources within the same transaction, in a limited number of scenarios.

v The main scenario is where the one-phase commit resource provider is accessed in the

application server process (the “transaction root” server) in which the transaction is started.

In this scenario, last participant support can coordinate a one-phase commit capable resource

and any number of two-phase commit capable resources within the same transaction.

v If the one-phase commit resource provider is accessed in a different application server (a

“transaction subordinate” server) from the one in which the transaction was started; for example,

as a result of a transactional invocation on a remote EJB interface where the EJB

implementation accesses a one-phase commit resource provider.

In this scenario, the transaction typically cannot be committed. To be able to commit (as part of a

global transaction) a one-phase commit resource enlisted on a transaction subordinate server,

the transaction service must delegate coordination responsibility from the transaction root to the

subordinate server. This occurs only if no other resources were registered with the transaction

root server.

Last participant support introduces an increased risk of an heuristic outcome to the transaction. That is,

the transaction manager cannot be sure that all resources were completed in the same direction (either

committed or rolled back). For this reason, to enable an application to coordinate access to one-phase and

two-phase commit capable resources within the same transaction, you configure the application to accept

the increased risk of an heuristic outcome.

An heuristic outcome occurs if the transaction service (JTS) receives no response from the commit

one-phase flow on the one-phase commit resource. In this situation the transaction service cannot

determine whether changes for the one-phase commit resource were committed or rolled back, so cannot

drive reliably the correct outcome of the global transaction on the other two-phase commit resources.

You can configure the transaction service for an application server to indicate whether or not to log that it

is about to commit the one-phase commit resource. This does not reduce the heuristic hazard, but ensures

that any failure, and subsequent recovery, of the application server during the one-phase commit phase

occurs with knowledge of whether or not the one-phase commit resource was asked to commit:

v If the one-phase commit resource was asked to commit, a heuristic outcome is reported to the activity

log.

v If the one-phase commit resource was not asked to commit, then the transaction is rolled back

consistently.

Assembling an application to use one-phase and two-phase commit resources in

the same transaction

Use this task to assemble an application to use one-phase and two-phase commit resources within the

same transaction.

To enable an application to use one-phase and two-phase commit capable resources within the same

transaction, you must configure the deployment attributes of the application to accept the increased risk of

an heuristic outcome.

Chapter 8. Developing WebSphere applications 1855

You can configure the deployment attributes of an application by using an assembly tool such as the

Application Server Toolkit (AST) or Rational Web Developer. See ″Assembly tools″ in the information

center.

This task description assumes that you have an EAR file for an application component, that can be

deployed in WebSphere Application Server. For more details about assembling applications, see

″Assembling applications″ in the information center.

To configure an application to indicate that you accept the increased risk of an heuristic outcome, complete

the following steps:

1. Start the assembly tool. See ″Starting an assembly tool″ in the information center.

2. Create or edit the application EAR file.

Note: Ensure that you set the target server as WebSphere Application Server version 6.

For example, to change attributes of an existing application, use the import wizard to import the EAR

file into the assembly tool. To start the import wizard:

a. Click File-> Import-> EAR file

b. Click Next, then select the EAR file.

c. In the Target server field, select WebSphere Application Server v6.0

d. Click Finish

3. In the J2EE Hierarchy view, right-click the Enterprise Application instance, then click Open With >

Deployment Descriptor Editor. A property dialog notebook for the component is displayed in the

property pane.

4. In the property pane, select the Extended Services tab.

5. In the Last Participant Support section, select the Last participant support check box.

6. Save your changes to the deployment descriptor.

a. Close the Deployment Descriptor Editor.

b. When prompted, click Yes to indicate that you want to save changes to the deployment descriptor.

7. Verify the archive files. See ″Verifying archive files″ in the information center

8. From the popup menu of the project, click Deploy to generate EJB deployment code.

9. Optional: Test your completed module on a WebSphere Application Server installation. Right-click a

module, click Run on Server, and follow the instructions in the displayed wizard. Note that Run on

Server works on the Windows, Linux/Intel, and AIX operating systems only; you cannot deploy

remotely from the Application Server Toolkit (AST) or Rational Web Developer to a WebSphere

Application Server installation on a UNIX operating system such as Solaris.

Important: Use Run On Server for unit testing only. The Application Server Toolkit (AST) or Rational

Web Developer controls the WebSphere Application Server installation and, when an

application is published remotely, the assembly tool overwrites the server configuration file

for that server. Do not use on production servers.

After assembling your application, use a systems management tool to deploy the EAR file onto the

application server that is to run the application; for example, using the administrative console as described

in Deploying and managing applications.

Last participant support extension settings:

Use this page to configure last participant support extensions.

 Last participant support is an extension to the transaction service to allow a single one-phase resource to

participate in a two-phase transaction with one or more two-phase resources.

1856 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

To view this administrative console page, click Applications application_name → Last Participant

Support Extension

Accept Heuristic Hazard:

Specifies whether the application accepts the possibility of an heuristic hazard occurring in a two-phase

transaction containing a one-phase resource.

 Default Cleared

Range Selected

The application accepts the increased risk of an

heuristic outcome.

Cleared

The application does not accept the increased

risk of an heuristic outcome.

Configuring an application server to log heuristic reporting

To enable an application server to log “about to commit one-phase resource” events from transactions that

involve a one-phase commit resource and two-phase commit resources, use the Administrative console to

complete the following steps:

1. Start the Administrative console

2. Select the Transaction Service tab, to display the properties page for the transaction service, as two

notebook pages:

Configuration

The values of properties defined in the configuration file. If you change these properties, the

new values are applied when the application server next starts.

Runtime

The runtime values of properties. If you change these properties, the new values are applied

immediately, but are overwritten with the Configuration values when the application server next

starts.

3. Select the Configuration tab, to display the transaction-related configuration properties.

4. Select the Enable logging for heuristic reporting checkbox.

5. Click OK.

6. Stop then restart the application server.

Exceptions thrown for transactions involving both single- and two-phase commit

resources

The exceptions that can be thrown by transactions that involve single- and two-phase commit resources

are the same as those that can be thrown by transactions involving only two-phase commit resources.

The exceptions that can be thrown are listed in the WebSphere Application Server application

programming interface reference information (Javadoc).

Last Participant Support: Resources for learning

Use the links in this topic to find relevant supplemental information about Last Participant Support. The

information resides on IBM and non-IBM Internet sites, whose sponsors control the technical accuracy of

the information.

These links are provided for convenience. Often, the information is not specific to the IBM WebSphere

Application Server product, but is useful all or in part for understanding the product. When possible, links

are provided to technical papers and Redbooks that supplement the broad coverage of the release

documentation with in-depth examinations of particular product areas.

View links to additional information about:

Chapter 8. Developing WebSphere applications 1857

v “Programming specifications”

v “Other”

Programming specifications

v J2EE Activity Service for Extended Transactions

v Java Transaction API (JTA) 1.0.1

Other

v WebSphere Application Server Enterprise Version 5 Overview: Advanced Transactional Connectivity

v Listing of PDF files to learn about WebSphere Application Server Version 5

v Listing of all IBM WebSphere Application Server Redbooks

v Listing of all IBM WebSphere Application Server Whitepapers

v WebSphere Application Server Enterprise Edition 4.0: A Programmer’s Guide

WebSphere programming extensions

Use this section as a starting point to investigate the WebSphere programming model extensions for

enhancing your application development and deployment.

See ″Learn about WebSphere applications: Overview and new features″ in the information center for an

introduction to each WebSphere extension.

ActivitySessions How do I?... Overview Samples

Application profiling How do I?... Overview Samples

Asynchronous beans How do I?... Overview Samples

Dynamic caching How do I?... Overview

Dynamic query How do I?... Overview Samples

Internationalization How do I?... Overview Samples

Object pools How do I?... Overview

Scheduler How do I?... Overview Samples

Startup beans How do I?... Overview

Work areas How do I?... Overview

ActivitySessions

Configuring the default ActivitySession timeout for an application server

Use this task to configure the default ActivitySession timeout for an application server, after which any

started ActivitySessions are completed automatically by the ActivitySession service.

The ActivitySession timeout is used to reset any ActivitySession whose remote client has failed to

complete the ActivitySession in a timely fashion. The initial default timeout can be configured separately for

each application server, and can be overridden programmatically by the setSessionTimeout method of the

UserActivitySession interface. If an ActivitySession that contains a transaction reaches the timeout, the

transaction’s timeout is accelerated so that it is timed out (and rolled back) immediately before the

ActivitySession is reset.

To configure the default ActivitySession timeout for an application server, use the WebSphere

Administrative console to complete the following steps:

1. Start the WebSphere Administrative console.

1858 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

http://www.jcp.org/jsr/detail/95.jsp
http://java.sun.com/products/jta/
http://www-3.ibm.com/software/info1/websphere/index.jsp?tab=products/appserv_enterprise#advanced
http://www-3.ibm.com/software/webservers/appserv/appserv_v5.html
http://publib-b.boulder.ibm.com/Redbooks.nsf/Portals/WebSphere
http://www-4.ibm.com/software/webservers/appserv/whitepapers.html
http://www.redbooks.ibm.com/redbooks/SG246504.html

2. In the navigation pane, click Servers → Application Servers This displays a list of the application

servers in the content pane.

3. In the Content pane, click the name of the application server that you want to configure. This displays

the properties for the application server in the content pane.

4. Under Container Settings, click Business Process Services → ActivitySession Service This displays

the ActivitySession service properties in the content pane.

5. Set the ActivitySession timeout property to the default timeout as an integer number of seconds.

v -1 indicates that ActivitySessions never timeout

v 0 indicates that the default timeout, 300 seconds, applies

v Other values are an integer number of seconds

6. Click OK.

7. Save your changes to the master configuration.

8. To have the changed configuration take effect, stop then restart the application server.

ActivitySession service settings:

Use this page to administer the runtime properties of the ActivitySession service.

 To view this administrative console page, click Servers → Application servers → server_name →

[Container Settings] Business Process Services → Activity session service.

Enable service at server startup:

Specifies whether the application server attempts to start the ActivitySession service when the server next

starts up.

 Default Selected

Range Selected

When the application server starts, it attempts to

start the ActivitySession service automatically.

Cleared

The server does not try to start the

ActivitySession service. If ActivitySessions are to

be used in applications that run on this server,

the system administrator must start the service

manually or select this property then restart the

server.

Default timeout:

The default timeout for an ActivitySession. A server resets an ActivitySession if a remote client has failed

to complete the ActivitySession within this time period.

 The Default ActivitySession timeout specifies the time after which an ActivitySession is completed

automatically by the ActivitySession service, if a remote client has failed to complete the ActivitySession

within the specified time. The initial default timeout can be configured separately for each application

server, and can be overridden programmatically by the UserActivitySession interface (setSessionTimeout).

 Data type Integer

Units Seconds

Default 300 (5 minutes)

Range -1 through 1000000000 seconds

v -1 indicates that ActivitySessions never timeout

v 0 indicates that the default timeout applies

v Other values are an integer number of seconds

Chapter 8. Developing WebSphere applications 1859

Using the ActivitySession service

These topics provide information about implementing WebSphere enterprise applications that use

ActivitySessions.

The ActivitySession service provides an alternative unit-of-work (UOW) scope to that provided by global

transaction contexts. ActivitySessions provide a scoping mechanism for units of work, and both an

ActivitySession and a transaction has the same following characteristics:

v It can be bean-managed or container-managed

v It can be distributed across application servers

v It can be used as the context for managing EJB activation policy and lifecycle

An ActivitySession differs significantly from a transaction in the manner of its interaction with resource

managers. An ActivitySession is used to scope or coordinate local transactions. That is, an ActivitySession

can be used to request multiple one-phase resource managers to come to an application- or

container-determined outcome. Unlike a transaction, an ActivitySession has no notion of a prepare phase

or any notion of recovery at a service level.

The WebSphere EJB container and deployment tools support ActivitySessions as an extension to the

J2EE programming model. Enterprise beans can be deployed with lifecycles that are influenced by

ActivitySession context, as an alternative to transaction context. An enterprise bean with an

ActivitySession-scoped lifecycle can participate in a resource manager local transaction (RMLT) that has a

duration of the ActivitySession rather than an individual method on the bean (which is all that is possible

under the standard J2EE model). Applications can then be composed of several enterprise beans with

ActivitySession-based activation, with each bean participating in extended local transactions with one or

more resource managers. At the end of the ActivitySession each of the local transactions can be directed

to a common outcome by the ActivitySession manager.

You can configure the WebSphere containers and deployable applications to support enterprise beans that

operate under application- or container-initiated ActivitySessions rather than, or in addition to, transactions.

For more information about implementing WebSphere enterprise applications that use ActivitySessions,

see the following topics:

v The ActivitySession service

– ActivitySessions and transaction contexts

– Using ActivitySessions with HTTP sessions
v The ActivitySession service programming interfaces

v Developing a J2EE application to use ActivitySessions

v ActivitySessions samples

v Setting Web module ActivitySession deployment attributes

v Setting Web module ActivitySession deployment attributes

v Disabling or enabling the ActivitySession service

v Configuring the default ActivitySession timeout

v Troubleshooting ActivitySessions

The ActivitySession service:

The ActivitySession service provides an alternative unit-of-work (UOW) scope to that provided by global

transaction contexts. An ActivitySession context can be longer-lived than a global transaction context and

can encapsulate global transactions.

 Support for the ActivitySession service is shown in the following figure:

1860 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Although the purpose of a global transaction is to coordinate multiple resource managers, global

transaction context is often used by J2EE applications as a “session” context through which to access EJB

instances. An ActivitySession context is such a session context, and can be used in preference to a global

transaction in cases where coordination of two-phase commit resource managers is not needed. Further,

an ActivitySession can be associated with an HttpSession to extend a “client session” to an HTTP client.

ActivitySession support is available to Web, EJB, and J2EE-client components. EJB components can be

divided into beans that exploit container-managed ActivitySessions and beans that use bean-managed

ActivitySessions.

The ActivitySession service provides a UserActivitySession application programming interface available to

J2EE components that use bean-managed ActivitySessions for application-managed demarcation of

ActivitySession context. The ActivitySession service also provides a system programming interface for

container-managed demarcation of ActivitySession context and for container-managed enlistment of

one-phase resources (RMLTs) in such contexts.

The UserActivitySession interface is obtained by a JNDI lookup of

java:comp/websphere/UserActivitySession. This interface is not available to enterprise beans that use

container-managed ActivitySessions, and any attempt by such beans to obtain the interface results in a

NotFound exceptions.

A common scenario is a J2EE application accessing one or more enterprise beans backed by

non-transactional (one-phase commit) resources. The application, or its container, uses the

UserActivitySession interface to define the demarcation boundaries within which operations against the

enterprise beans are grouped and to control whether those grouped operations should be checkpointed or

EJBObject

ActivitySession service

Enterprise application

EJB

Container

Bean

Local

transaction

Resource adapter

UserActivitySession

Application server

Figure 10. The ActivitySession service. This figure show the main components of the ActivitySession service within

WebSphere Application server. For an overview of these components, see the text that accompanies this figure.

Chapter 8. Developing WebSphere applications 1861

discarded. The business logic of the enterprise beans does not need to use any ActivitySession interfaces.

The container into which the enterprise beans are deployed ensures that updates to the underlying

one-phase resource managers are coordinated.

The application can checkpoint an ActivitySession to create a new point of consistency within the

ActivitySession without ending the ActivitySession. The application can also use a reset operation to return

work performed in the ActivitySession back to the last point of consistency. The application can end the

ActivitySession with an operation to either checkpoint or reset all resources.

Using ActivitySessions with HTTP sessions:

This topic describes how a web application that runs in the WebSphere Web container can participate in

an ActivitySession context.

 If the web application is designed such that several servlet invocations occur as part of the same logical

application, then the servlets can use the HttpSession to preserve state across servlet invocations. The

ActivitySession context is one state that can be suspended into the HttpSession and resumed on a future

invocation of a servlet that accesses the HttpSession.

An ActivitySession is associated automatically with an HttpSession, so can be used to extend access to

the ActivitySession over multiple HTTP invocations, over inclusion or forwarding of servlets, and to support

EJB activation periods that can be determined by the lifecycle of the web HTTP client. An ActivitySession

context stored in an HttpSession can also be used to relate work for the ActivitySession back to a specific

web HTTP client.

The Web container manages ActivitySessions based on deployment descriptor attributes associated with

servlets in the Web application module. The two usage models are:

v The Web container starts and ends ActivitySessions.

The Web application invokes a servlet that has been configured for container control of ActivitySessions.

– If an HttpSession exists then it has an associated ActivitySession.

– If an HttpSession does not exist, the servlet can start an HttpSession, which causes an

ActivitySession to be started automatically and associated with the HttpSession.

A servlet cannot start a new HttpSession until an existing HttpSession has been ended. Within an

HttpSession, the Web application can invoke other servlets that can use the associated ActivitySession

context. When the Web application invokes a servlet that ends the HttpSession, the ActivitySession is

ended automatically. This is shown in the following diagram:

v The Web application starts and ends ActivitySessions.

Web application

invokes servlet

Servlet starts

HttpSession

(ActivitySession started automatically)

ActivitySession

HttpSession

As1

Servlet invalidates

HttpSession

(ActivitySession checkpointed automatically)

1862 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

The Web application invokes a servlet that has been configured for application control of

ActivitySesions.

– If an HttpSession exists and has an associated ActivitySession, the servlet can use or end that

ActivitySession context.

– If an HttpSession does not exist, the servlet can start an HttpSession, but this does not automatically

start an ActivitySession.

– If an HttpSession exists but does not have an associated ActivitySession, the servlet can start a new

ActivitySession. This automatically associates the ActivitySession with the HttpSession. The

ActivitySession lasts either until the ActivitySession is specifically ended or until the HttpSession is

ended.

The servlet cannot start a new ActivitySession until an existing ActivitySession has been ended. The

servlet cannot start a new HttpSession until an existing HttpSession has been ended.

Within an HttpSession, the Web application can invoke other servlets that can use or end an existing

ActivitySession context or, if no ActivitySession exists start a new ActivitySession. When the Web

application invokes a servlet that ends the HttpSession, the ActivitySession is ended automatically. This

is shown in the following diagram:

A Web application can invoke servlets configured for either usage model.

The following points apply to both usage models:

v To end an HttpSession (and any associated ActivitySession), the Web application must invalidate that

session. This causes the ActivitySession to be checkpointed.

v Any downstream EJBs activated within the context of an ActivitySession can be held in memory rather

than passivated between servlet invocations, because the client effectively becomes the web HTTP

client.

v Web applications can be composed of many servlets, and each servlet in the Web application can be

configured with a value for ActivitySessionControl. ActivitySessionControl determines whether the servlet

or its container starts any ActivitySessions.

v An ActivitySession context that encapsulates an active transaction context cannot be associated with an

HttpSession, because a transaction can hold database locks and should be designed to be shortlived. If

an application moves an active transaction to an HttpSession, the transaction is rolled back and the

ActivitySession is suspended into the HTTPSession. In general, you should design applications to use

ActivitySessions or other constructs as the long-lived entities and ACID transactions as short-duration

entities within these.

v Only one ActivitySession can be associated with an HttpSession at any time, for the duration of the

ActivitySession. An ActivitySession associated with an HttpSession remains associated for the duration

Web application

invokes servlet

Servlet

starts

HttpSession

ActivitySession

HttpSession

As1

Servlet invalidates

HttpSession

(ActivitySession As2

checkpointed automatically)

Servlet starts and

ends ActivitySessions

specifically

As2

Chapter 8. Developing WebSphere applications 1863

of that ActivitySession, and cannot be replaced with another until the first ActivitySession is completed.

The ActivitySession can be accessed by multiple servlets if they have shared access to the

HttpSession.

v ActivitySessions are not persistent. If a persistent HttpSession exists longer than the server hosting it,

any cached ActivitySession is terminated when the hosting server ends.

v If the HttpSession times out before the associated ActivitySession has ended, then the ActivitySession is

reset3. This rolls back the ActivitySession resources to the last point of consistency:

– If the Web application invoked a servlet that has been configured for container control of

ActivitySessions, the ActivitySession resources are rolled back completely.

– If the Web application invoked a servlet that has been configured for application control of

ActivitySessions, the ActivitySession resources are rolled back to the last checkpoint taken by the

servlet, or completely if no checkpoint has been taken.
v If the ActivitySession times out, it is reset to the last point of consistency (see previous item), then the

HttpSession is ended.

ActivitySession and transaction contexts:

This topic describes the hierarchical relationship between transaction and ActivitySession context, This

relationship, defined by the ActivitySession service, requires that any transaction context be either wholly

inside or wholly outside an ActivitySession context.

 An ActivitySession context is very similar to a transaction context and extends the lifecycle choices for

activation of enterprise beans; it can encapsulate one or more transactions. The ActivitySession context is

a distributed context that, like the transaction context, can be bean- or container-managed. An

ActivitySession context is used mainly by a client to scope the lifecycle of an enterprise bean that it uses

either beyond or in the absence of individual transactions started by that client.

ActivitySessions have a lower overhead than transactions and can be used instead of transactions that are

only used to scope the lifecycle of a called enterprise bean. For a bean with an activation policy of

ActivitySession, the duration of any resource manager local transactions (RMLTs) started by that bean can

be bounded by the duration of the ActivitySession instead of the bean method in which the RMLT was

started. This provides flexibility and potential for using RMLTs in an enterprise bean beyond the scenarios

described in the J2EE specifications. The J2EE specifications define that RMLTs need to be completed

before the end of the bean method, because the bean method is the only containment boundary for local

transactions available in those specifications.

The following rules defines the relationship between transactions and ActivitySessions.

v The EJB or Web container always uses a local transaction containment (LTC) if there is no global

transaction present. An LTC can be method-scoped or ActivitySession-scoped.

v Before a method dispatch, the container ensures that there is always either an LTC or global transaction

context, but never both contexts.

v ActivitySessions cannot be nested within each other. Any attempt to start a nested ActivitySession

results in a com.ibm.websphere.ActivitySession.NotSupportedException on

UserActivitySession.beginSession().

v An ActivitySession can wholly encapsulate one or more global transactions.

v The application can end an ActivitySession with an operation to either checkpoint or reset all resources.

The endSession(EndModeCheckpoint) operation checkpoints the work coordinated under the

ActivitySession then ends the context. The endSession(EndModeReset) operation resets, to the last

point of consistency, the work coordinated under the ActivitySession then ends the context.

v An ActivitySession cannot be encapsulated by a global transaction nor should ActivitySession and global

transaction boundaries overlap. Any attempt to start an ActivitySession in the presence of a global

3. Resetting an ActivitySession causes all the resources involved in the current ActivitySession to be rolled back to the last point of

consistency, but allows further work within the ActivitySession. When the reset completes, the thread is associated with the same

ActivitySession as it was before the reset being called. The ActivitySession resources remain associated with the ActivitySession

although they cannot participate further in the ActivitySession

1864 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

transaction context results in a com.ibm.websphere.ActivitySession.NotSupportedException on

UserActivitySession.beginSession(). Any attempt to call endSession(EndModeCheckpoint) on an

ActivitySession that contains an incomplete global transaction results in a

com.ibm.websphere.ActivitySession.ContextPendingException. Neither the global transaction nor the

ActivitySession context are affected. If endSession(EndModeReset) is called then the ActivitySession is

reset and the global transactions marked rollback_only.

v Each global transaction wholly encapsulated by an ActivitySession is independent of every other global

transaction within that ActivitySession. A rollback of one global transaction does not affect any others or

the ActivitySession itself.

v ActivitySession and global transaction contexts can coexist with an ActivitySession encapsulating one or

more serially-executing global transactions.

Combining transaction and ActivitySession container policies:

This topic provides details about the relationship between the deployment descriptor properties that

determine how the container manages ActivitySession boundaries.

 If an enterprise bean uses ActivitySessions, how the EJB container manages ActivitySession boundaries

when delegating a method invocation depends on both the ActivitySession kind and Container

transaction type deployment descriptor attributes configured for the enterprise bean. The following table

lists the relationship between these two properties.

In each row, the final column describes the behavior that the EJB container takes with respect to global

transaction and ActivitySession context, based on the following abbreviations:

Sn An ActivitySession, where n indicates the ActivitySession instance.

Tn A transaction, where n indicates the transaction instance.

In every case where the container does not start or leave a global transaction context associated with the

thread, it starts (or obtains from the bean instance) a local transaction containment and associates that

with the thread. The duration of the local transaction containment is determined by a combination of the

local-transaction boundary descriptor (configured as part of the application deployment descriptor, and not

shown in the following table) and the presence or not of an ActivitySession context, as described in

ActivitySessions and transaction contexts.

The rows highlighted in bold are not allowed.

 Table 11. Container behavior for activitysession and transaction policies deployment settings

Bean ActivitySession

policy(ActivitySession

kind)

Bean transaction

policy(Container

transaction type)

Received contexts Container behavior

Required Required None Start S1, Start T1

S1 Start T1

T1 Suspend T1, Start S1, Start

T2

S1, T1 No Action

Requires new None Start S1, Start T1

S1 Start T1

T1 Suspend T1, Start S1, Start

T2

S1, T1 Suspend T1, Start T2

Supports None Start S1

S1 No Action

Chapter 8. Developing WebSphere applications 1865

Table 11. Container behavior for activitysession and transaction policies deployment settings (continued)

Bean ActivitySession

policy(ActivitySession

kind)

Bean transaction

policy(Container

transaction type)

Received contexts Container behavior

T1 Suspend T1, Start S1

S1, T1 No Action

Not supported None Start S1

S1 No Action

T1 Suspend T1, Start S1

S1, T1 Suspend T1

Mandatory None Exception

S1 Exception

T1 Exception

S1, T1 No action

Never None Start S1

S1 No Action

T1 Suspend T1, Start S1

S1, T1 Exception

Requires new Required None Start S1 + T1

S1 Suspend S1, Start S2 + T1

T1 Suspend T1, Start S1 + T2

S1 + T1 Suspend S1 + T1, Start S2

+ T2

Requires new None Start S1 + T1

S1 Suspend S1, Start S2 + T1

T1 Suspend T1, Start S1 + T2

S1 + T1 Suspend S1 + T1, Start S2

+ T2

Supports None Start S1

S1 Suspend S1, Start S2

T1 Suspend T1, Start S1

S1, T1 Suspend S1 + T1, Start S2

Not supported None Start S1

S1 Suspend S1, Start S2

T1 Suspend T1, Start S1

S1, T1 Suspend S1 + T1, Start S2

Mandatory None Exception

S1 Exception

T1 Exception

S1, T1 Exception

Never None Start S1

1866 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Table 11. Container behavior for activitysession and transaction policies deployment settings (continued)

Bean ActivitySession

policy(ActivitySession

kind)

Bean transaction

policy(Container

transaction type)

Received contexts Container behavior

S1 Suspend S1, Start S2

T1 Suspend T1, Start S1

S1, T1 Suspend S1 + T1, Start S2

Supports Required None Start T1

S1 Start T1

T1 No Action

S1, T1 No Action

Requires new None Start T1

S1 Start T1

T1 Suspend T1, Start T2

S1, T1 Suspend T1, Start T2

Supports None No Action

S1 No Action

T1 No Action

S1, T1 No Action

Not supported None No Action

S1 No Action

T1 Suspend T1

S1, T1 Suspend T1

Mandatory None Exception

S1 Exception

T1 No Action

S1, T1 No Action

Never None No Action

S1 No Action

T1 Exception

S1, T1 Exception

Not supported Required None Start T1

S1 Suspend S1, Start T1

T1 No Action

S1, T1 Suspend S1 + T1, Start T2

Requires new None Start T1

S1 Suspend S1, Start T1

T1 Suspend T1, Start T2

S1, T1 Suspend S1 + T1, Start T2

Supports None No Action

Chapter 8. Developing WebSphere applications 1867

Table 11. Container behavior for activitysession and transaction policies deployment settings (continued)

Bean ActivitySession

policy(ActivitySession

kind)

Bean transaction

policy(Container

transaction type)

Received contexts Container behavior

S1 Suspend S1

T1 No Action

S1, T1 Suspend S1 + T1

Not supported None No Action

S1 Suspend S1

T1 Suspend T1

S1, T1 Suspend S1 + T1

Mandatory None Exception

S1 Exception

T1 No Action

S1,T1 Exception

Never None No Action

S1 Suspend S1

T1 Exception

S1, T1 Suspend S1 + T1

Mandatory Required None Exception

S1 Start T1

T1 Exception

S1, T1 No Action

Requires new None Exception

S1 Start T1

T1 Exception

S1, T1 Suspend T1, Start T2

Supports None Exception

S1 No Action

T1 Exception

S1, T1 No Action

Not supported None Exception

S1 No Action

T1 Exception

S1, T1 Suspend T1

Mandatory None Exception

S1 Exception

T1 Exception

S1, T1 No Action

Never None Exception

1868 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Table 11. Container behavior for activitysession and transaction policies deployment settings (continued)

Bean ActivitySession

policy(ActivitySession

kind)

Bean transaction

policy(Container

transaction type)

Received contexts Container behavior

S1 No Action

T1 Exception

S1,T1 Exception

Never Required None Start T1

S1 Exception

T1 No Action

S1, T1 Exception

Requires new None Start T1

S1 Exception

T1 Suspend T1, Start T2

S1,T1 Exception

Supports None No Action

S1 Exception

T1 No Action

S1,T1 Exception

Not supported None No Action

S1 Exception

T1 Suspend T1

S1,T1 Exception

Mandatory None Exception

S1 Exception

T1 No Action

S1,T1 Exception

Never None No Action

S1 Exception

T1 Exception

S1,T1 Exception

Bean managed Bean managed None No Action

S1 Suspend S1

T1 Suspend T1

S1, T1 Suspend S1 + T1

The ActivitySession service application programming interfaces:

The ActivitySession service consists of an application programming interface available to Web applications,

session EJBs, and J2EE client applications for application-managed demarcation of ActivitySession

context.

Chapter 8. Developing WebSphere applications 1869

Applications use the UserActivitySession interface, which provides demarcation scope methods.

ActivitySession API

The ActivitySession service provides the UserActivitySession interface for use by EJB Session beans

using bean-managed context demarcation, Web application components configured with ActivitySession

control=Web Application, and J2EE client applications. This UserActivitySession interface defines the set

of ActivitySession operations available to an application component. An implementation of this interface is

obtained via a JNDI lookup of the URL ″java:comp/websphere/UserActivitySession″. It is used to begin

and end ActivitySessions and to query various attributes of the active ActivitySession associated with the

thread.

For more information about the ActivitySession API, see WebSphere Application Server application

programming interface reference information (Javadoc).

The ActivitySession API and the implementation of its interfaces is contained in the

com.ibm.websphere.ActivitySession package.

Programming Examples

The following code extract provides a basic example of using the UserActivitySession interface:

// Get initial context

 InitialContext ic = new InitialContext();

// Lookup UserActivitySession

 UserActivitySession uas = (UserActivitySession)ic.lookup("java:comp/websphere/UserActivitySession");

// Set the ActivitySession timeout to 60 seconds

 uas.setSessionTimeout(60);

// Start a new ActivitySession context

 uas.beginSession();

// Do some work under this context

 MyBeanA beanA.doSomething();

 ...

 MyBeanB beanB.doSomethingElse();

// End the context

 uas.endSession(EndModeCheckpoint);

Samples: ActivitySessions:

This topic describes the ActivitySession samples provided with WebSphere Application Server.

 MasterMind sample

This sample is based on the game MasterMind. It consists of the following components:

v A servlet, configured with ActivitySession contol set to Container, that accesses a stateful

session bean.

v A stateful session bean, configured with an activation policy of ActivitySession containing

transient state data.

The servlet begins an HttpSession at the start of each new game, and ends it at the end of each

game; therefore an ActivitySession lasts for the duration of each game. The ActivitySession

activation policy stops the bean from being passivated and therefore the transient data remains in

memory. This is to demonstrate HttpSession/ActivationSession association in the web container,

and an ActivitySession-scoped activation policy.

J2EE client container application and a CMP entity bean backed by a one-phase commit

datasource

In this sample, the entity bean is configured with the following properties:

v TX_NOT_SUPPORTED

v An ActivitySession container managed policy of REQUIRES

v An LTC boundary of ActivitySession

v An LTC Resolution Control of ContainerAtBoundary

1870 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

The client accesses the UserActivitySession, begins an ActivitySession, updates two instances of

the bean, then ends the ActivitySession. It does this twice using EndModeReset then

EndModeCheckpoint. This sample demonstrates the following functionality:

v Client access to the UserActivitySession interface

v Multiple RMLTs being scoped to the ActivitySession and automatically taking their completion

direction from that of the ActivitySession

The entity bean also holds a transient variable incremented by each method call (gets and sets for

the persistent data). This value is checked before the end of the ActivitySession to show that the

same bean instance is used. The client checks for the correct results.

A J2EE client container application and two session beans with different ActivitySession types

This sample consists of a J2EE client container application and the following session beans:

v SLB1, a stateless session bean configured with an ActivitySession Type of Bean.

v SFB2, a stateful session bean configured with ActivitySession Type of Requires, an LTC

boundary of ActivitySession, LTC Resolution Contol of APPLICATION, and an LTC Unresolved

Action of ROLLBACK.

Both beans are configured with TX_NOTSUPPORTED.

 This sample performs the following steps:

1. The client starts SLB1

2. SLB1 accesses the UserActivitySession interface, begins an ActivitySession, then calls a

method on SFB2

3. SFB2 accesses the UserActivitySession interface, begins an ActivitySession, calls a method on

SFB2

4. SFB2 gets a connection (setAutoCommit false) then uses JDBC to update a single-phase

datasource.

5. SLB1 then optionally calls a seperate method on SFB2 to finish the work either committing or

rolling-back the RMLT.

6. SLB1 then ends the ActivitySession with an EndModeCheckpoint.

This sample demonstrates the following functionality:

v The ActivitySession completion direction is unconnected to the direction of the RMLTs, although

the RMLTs containment is bound to the ActivitySession.

v The container using the unresolved action when an RMLT is not completed.

v A bean-managed ActivitySessions bean using the UserActivitySession interface.

The sample checks for correct results and reports them back to the client.

ActivitySession service: Resources for learning:

Use the links in this topic to find relevant supplemental information about ActivitySessions. The information

resides on IBM and non-IBM Internet sites, whose sponsors control the technical accuracy of the

information.

 These links are provided for convenience. Often, the information is not specific to the IBM WebSphere

Application Server product, but is useful all or in part for understanding the product. When possible, links

are provided to technical papers and Redbooks that supplement the broad coverage of the release

documentation with in-depth examinations of particular product areas.

View links to additional information about:

v “Programming model and decisions”

v “Programming specifications” on page 1872

v “Other” on page 1872

Programming model and decisions

v WebSphere Application Server application programming interface reference information (Javadoc)

Chapter 8. Developing WebSphere applications 1871

Programming specifications

v J2EE Activity Service for Extended Transactions

v Java Transaction API (JTA) 1.0.1

Other

v WebSphere Application Server Enterprise Version 5 Overview: Advanced Transactional Connectivity

v Listing of PDF files to learn about WebSphere Application Server Version 5

v Listing of all IBM WebSphere Application Server Redbooks

v Listing of all IBM WebSphere Application Server Whitepapers

v WebSphere Application Server Enterprise Edition 4.0: A Programmer’s Guide

Disabling or enabling the ActivitySession service

Use this task to disable or enable the ActivitySession service for an application server.

You can use the ActivitySession Startup property to specify whether or not the ActivitySession service is

started automatically for an application server.

To disable or enable the ActivitySession service for an application server, use the Administrative console to

configure the ActivitySession Startup property:

1. Start the Administrative console.

2. In the navigation pane, click Servers → Application Servers This displays a list of the application

servers in the content pane.

3. In the Content pane, click the name of the application server that you want to configure. This displays

the properties for the application server in the content pane.

4. Under Container Settings, click Business Process Services → ActivitySession Service This displays

the ActivitySession service properties in the content pane.

5. Select or clear the Startup property as needed:

Selected

[Default] The ActivitySession service is started when the application server is started. This

enables applications that specify use of ActivitySessions in their deployment descriptors to run

on such an application server.

Cleared

The ActivitySession service is not started when the application server is started. Applications

that specify use of ActivitySessions in their deployment descriptors cannot start on such an

application server.

 Any attempt to start an application that uses ActivitySessions is rejected and a message

issued:

WACS0043E: Error found starting an application. application_name specified an ActivitySession

 attribute that is not allowed when the ActivitySession service is not enabled

If this happens during server startup, the server continues to start without the application.

6. Click OK.

7. Save your changes to the master configuration.

8. To have the changed configuration take effect, stop then restart the application server.

Application profiling

Task overview: Application profiling

Application profiling enables you to configure multiple access intent policies on the same entity bean.

Application profiling reflects the fact that different units of work have different use patterns for enlisted

entities and can require different kinds of support from the server run time environment. For more

information, see Application Profiling: Overview.

1872 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

http://www.jcp.org/jsr/detail/95.jsp
http://java.sun.com/products/jta/
http://www-3.ibm.com/software/info1/websphere/index.jsp?tab=products/appserv_enterprise#advanced
http://www-3.ibm.com/software/webservers/appserv/appserv_v5.html
http://publib-b.boulder.ibm.com/Redbooks.nsf/Portals/WebSphere
http://www-4.ibm.com/software/webservers/appserv/whitepapers.html
http://www.redbooks.ibm.com/redbooks/SG246504.html

1. Assembling applications for application profiles. This topic describes how to configure tasks, create

application profiles, and configure tasks on profiles.

2. Manage application profiles. This topic describes how to add and remove tasks from application

profiles using the administrative console.

3. Use the TaskNameManager API. This topic describes how to programmatically set the current task

name, but you should use this technique sparingly. Wherever possible, use the declarative method

instead, which results in more portable function.

Application profiling: Overview: Application profiling enables you to identify particular units of work to

the WebSphere Application Server run time environment. The run time can tailor its support to the exact

requirements of that unit of work. Access intent is currently the only run time component that makes use of

the application profiling functionality. For example, you can configure one transaction to load an entity

bean with strong update locks and configure another transaction to load the same entity bean without

locks.

Application profiling introduces two new concepts in order to achieve this function: tasks and profiles.

Tasks A task is a configurable name for a unit of work. Unit of work in this case means either a

transaction or an ActivitySession. The task name is typically assigned declaratively on a J2EE

component that can initiate a unit of work. Most commonly, the task is configured on a method of

an Enterprise JavaBeans file that is declared either for container-managed transactions or

bean-managed transactions. Any unit of work that begins in the scope of a configured task is

associated with that task name. A unit of work can only be named when it is initiated, and the

name cannot change for the lifetime of that unit of work. A unit of work ignores any subsequent

task name configurations at any point after it has begun. The task is used for the duration of its

unit of work to identify configured policies specific to that unit of work.

Note: If you select the 5.x Compatibility Mode attribute on the Application Profile Service’s

console page, then tasks configured on J2EE 1.3 applications are not necessarily

associated with units of work and can arbitrarily be applied and overridden. This is not a

recommended mode of operation and can lead to unexpected deadlocks during database

access. Tasks are not communicated on requests between applications that are running

under the Application Profiling 5.x Compatibility Mode and applications that are not running

under the compatibility mode.

For a Version 6.0 client to interact with applications run under the Application Profiling 5.x

Compatibility Mode, you must set the appprofileCompatibility system property to true in the

client process. You can do this by specifying the -CCDappprofileCompatibility=true option

when invoking the launchClient command.

Profiles

A profile is simply a mapping of a task to a set of access intent policies that are configured on

entity beans. When an invocation on a bean (whether by a finder method, a CMR getter, or a

dynamic query) requires data to be retrieved from the back end system, the current task

associated with the request is used to determine the exact requirement of the transaction. The

same bean loads and behaves differently in the context of the task-to-profile mapping. Each profile

provides the developer an opportunity to reconfigure the application’s access intent. If a request is

operating in the absence of a task, the run time environment uses either a method-level access

intent (if any) or a bean-level default access intent.

Application profiles:

An application profile is the set of access intent policies that should be selectively applied for a particular

unit of work (a transaction or ActivitySession).

 Application profiling enables applications to run under different sets of policies depending on the active

task under which the application is operating.

Chapter 8. Developing WebSphere applications 1873

The active task depends upon the current unit of work mechanism. If the current unit of work is a global

transaction, then the task is the name associated with that transaction. If the global transaction was not

named when it was initiated, then there is no active task anywhere in the scope of that transaction.

If the current unit of work is a local transaction associated with an ActivitySession, then the task is the

name associated with that ActivitySession. If the ActivitySession was not named when it was initiated, then

there is no active task for any local transaction bound to that ActivitySession. If the current unit of work is

a local transaction that is not associated with an ActivitySession, then the task is the name associated with

that local transaction. If the local transaction was not associated with a task when the local transaction

was initiated, then there is no active task for the duration of that local transaction. In other words, the

active task is the task associated with the unit of work on the thread that is coordinating database

resources. If the controlling unit of work was not associated with a task when that unit of work was

initiated, then there is no active task in the scope of that unit of work.

Note: If you select the 5.x Compatibility Mode attribute on the Application Profile Service’s console page,

then tasks configured on J2EE 1.3 applications are not necessarily associated with units of work

and can arbitrarily be applied and overridden. This is not a recommended mode of operation and

can lead to unexpected deadlocks during database access. Tasks are not communicated on

requests between applications that are running under the Application Profiling 5.x Compatibility

Mode and applications that are not running under the compatibility mode.

For a Version 6.0 client to interact with applications run under the Application Profiling 5.x

Compatibility Mode, you must set the appprofileCompatibility system property to true in the client

process. You can do this by specifying the -CCDappprofileCompatibility=true option when invoking

the launchClient command.

Consider an application that centralizes the student records for a school district. These records are

frequently accessed by the school district’s central office in order to generate reports. The report

generation process would be optimized if it held no locks with the back end system, and if the records

could be read into memory with as few back end operations as possible. Occasionally, however, the

records are updated by the students’ instructors. Without the ability to distinguish between transactions,

the developer is forced to assume a worst-case scenario and, wishing to use pessimistic concurrency, lock

the records for all transactions.

Using the application profiling service, the developer can configure in as many ways as necessary the

access intent under which the students’ records are loaded. Under one profile, the records can be

configured with an exclusive pessimistic update intent, not only locking-out competing transactions but

ensuring that the student is not removed from the system before the transaction completes. Under another

profile, the records can be configured with an optimistic intent as part of an object graph that is read from

the back end system in a single database operation. The task represented by the pessimistic profile

receives the strong-locking semantics required for certain transactions, while the task represented by the

optimistic profile receives the performance benefits appropriate for other transactions.

Application profiling performance considerations: Application profiling enables assembly configuration

techniques that improve your application runtime, performance and scalability. You can configure tasks that

identify incoming requests, identify access intents determining concurrency and other data access

characteristics, and profiles that map the tasks to the access intents. The capability to configure the

application server can improve performance, efficiency and scalability, while reducing development and

maintenance costs. The application profiling service has no tuning parameters, other than a checkbox for

disabling the service if the service is not necessary. However, the overhead for the application profile

service is small and should not be disabled, or unpredictable results can occur.

Access intents enable you to specify data access characteristics. The WebSphere run-time environment

uses these hints to optimize the access to the data, by setting the appropriate isolation level and

concurrency. Various access intent hints can be grouped together in an access intent policy.

1874 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

In WebSphere Application Server, it is recommended that you configure bean level access intent for

loading a given bean. Application profiling enables you to configure multiple access intent policies on the

entity bean, if desired. Some callers can load a bean with the intent to read data, while others can load the

bean for update. The capability to configure the application server can improve performance, efficiency,

and scalability, while reducing development and maintenance costs.

Access intents enable the EJB container to be configured providing optimal performance based on the

specific type of enterprise bean used. Various access intent hints can be specified declaratively at

deployment time to indicate to WebSphere resources, such as the container and persistence manager, to

provide the appropriate access intent services for every EJB request.

The application profiling service improves overall entity bean performance and throughput by fine tuning

the runtime behavior. The application profiling service enables EJB optimizations to be customized for

multiple user access patterns without resorting to ″worst case″ choices, such as pessimistic update on a

bean accessed with the findByPrimaryKey method, regardless of whether the client needs it for read or for

an update.

Application profiling provides the capability to define the following hierarchy: Container-Managed Tasks >

Application Profiles > Access Intent Policies > Access Intent Overrides. Container-managed tasks

identify units of work (UOW) and are associated with a method or a set of methods. When a method

associated with the task is invoked, the task name is propagated with the request. For example, a UOW

refers to a unique path within the application that can correspond to a transaction or ActivitySession. The

name of the task is assigned declaratively to a J2EE client or servlet, or to the method of an enterprise

bean. The task name identifies the starting point of a call graph or subgraph; the task name flows from the

starting point of the graph downstream on all subsequent IIOP requests, identifying each subsequent

invocation along the graph as belonging to the configured task. As a best practice, wherever a UOW

starts, for example, a transaction or an ActivitySession, assign a task to that starting point.

The application profile service associates the propagated tasks with access intent policies. When a bean is

loaded and data is retrieved, the characteristics used for the retrieval of the data are dictated by the

application profile. The application profile configures the access intent policy and the overrides that should

be used to access data for a specific task.

Access intent policies determine how beans are loaded for specific tasks and how data is accessed during

the transaction. The access intent policy is a named group of access intent hints. The hints can be used,

depending on the characteristics of the database and resource manager. Various access intent hints

applied to the data access operation govern data integrity. The general rule is, the more data integrity, the

more overhead. More overhead causes lower throughput and the opportunity for simultaneous data access

from multiple clients.

If specified, access intent overrides provide further configuration for the access intent policy.

Best practices

Application profiling is effective in a variety of different scenarios. The following are example situations

where application profiling is useful

v The same bean is loaded with different data access patterns

The same bean or set of beans can be reused across applications, but each of those applications has

differing requirements for the bean or for beans within the invocation graph. One application can require

that beans be loaded for update, while another application requires beans be loaded for read only.

Application profiling enables deploy time configuration for beans to distinguish between EJB loading

requirements.

v Different clients have different data access requirements

The same bean or set of beans can be used for different types of client requests. When those clients

have different requirements for the bean, or for beans within the invocation graph, application profiling

Chapter 8. Developing WebSphere applications 1875

can be used to tailor the bean loading characteristics to the requirements of the client. One client can

require beans be loaded for update, while another client requires beans be loaded for read only.

Application profiling enables deploy time configuration for beans to distinguish between EJB loading

requirements.

Monitoring tools

You can use the Tivoli Performance Viewer, database and logs as monitoring tools.

You can use the Tivoli Performance Viewer to monitor various metrics associated with beans in an

application profiling configuration. The following sections describe at a high level the Tivoli Performance

Viewer metrics that reflect changes when access intents and application profiling are used:

v Collection scope

The enterprise beans group contains EJB life cycle information, either a cumulative value for a group of

beans, or for specific beans. You can monitor this information to determine the difference between using

the ActivitySession scope versus the transaction scope. For the transaction scope, depending on how

the container transactions are defined, activates and passivates can be associated with method

invocations. The application could use the ActivitySession scope to reduce the frequency of activates

and passivates. For more information, see ″Using the ActivitySession service.″

v Collection increment

The enterprise beans group contains EJB life cycle information, either a cumulative value for a group of

beans, or for specific beans. You can monitor Num Activates to watch the number of enterprise beans

activated for a particular findByPrimaryKey operation. For example, if the collection increment is set to

10, rather than the default 25, the Num Activates value shows 25 for the initial findByPrimaryKey, before

any result set iterator runs. If the number of activates rarely exceeds the collection increment, consider

reducing the collection increment setting.

v Resource manager prefetch increment

The resource manager prefetch increment is a hint acted upon by the database engine to depend upon

the database. The Tivoli Performance Viewer does not have a metric available to show the effect of the

resource manager prefetch increment setting.

v Read ahead hint

The enterprise beans group contains EJB life cycle information, either a cumulative value for a group of

beans, or for specific beans. You can monitor Num Activates to watch the number of enterprise beans

activated for a particular request. If a read ahead association is not in use, the Num Activates value

shows a lower initial number. If a read ahead association is in use, the Num Activates value represents

the number of activates for the entire call graph.

Database tools are helpful in monitoring the different bean loading characteristics that introduce

contention and concurrency issues. These issues can be solved by application profiling, or can be made

worse by the misapplication of access intent policies.

Database tools are useful for monitoring locking and contention characteristics, such as locks, deadlocks

and connections open. For example, for locks the DB2 Snapshot Monitor can show statistics for lock waits,

lock time-outs and lock escalations. If excessive lock waits and time-outs are occurring, application

profiling can define specific client tasks that require a more string level of locking, and other client tasks

that do not require locking. Or, a different access intent policy with less restrictive locking could be applied.

After applying this configuration change, the snapshot monitor shows less locking behavior. Refer to

information about the database you are using on how to monitor for locking and contention.

The application server logs can be monitored for information about rollbacks, deadlocks, and other data

access or transaction characteristics that can degrade performance or cause the application to fail.

Application profiling tasks:

1876 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Tasks are named units of work. They are the mechanism by which the run time environment determines

which access intent policies to apply when an entity bean’s data is loaded from the back end system.

 Application profiles enable developers to configure an entity bean with multiple access intent policies; if

there are n instances of profiles in a given application, each bean can be configured with as many as n

access intent policies.

A task is associated with a transaction or an ActivitySession at the initiation of the unit of work. The task,

which cannot change for the lifetime of the unit of work, is always available anywhere within the scope of

that unit of work to apply the access intent policy configured for that particular unit of work.

If an entity bean is loaded in a unit of work that is not associated with a task, or is associated with a task

that is unassociated with an application profile, the default bean-level access intent or the method-level

access intent configuration is applied. If a unit of work is associated with a task that is configured with an

application profile, the bean-level access intent configuration within the appropriate application profile is

applied.

The active task depends upon the current unit of work mechanism. If the current unit of work is a global

transaction, then the task is the name associated with that transaction. If the global transaction was not

named when it was initiated, then there is no active task anywhere in the scope of that transaction.

If the current unit of work is a local transaction associated with an ActivitySession, then the task is the

name associated with that ActivitySession. If the ActivitySession was not named when it was initiated, then

there is no active task for any local transaction bound to that ActivitySession. If the current unit of work is

a local transaction that is not associated with an ActivitySession, then the task is the name associated with

that local transaction. If the local transaction was not associated with a task when the local transaction

was initiated, then there is no active task for the duration of that local transaction. In other words, the

active task is the task associated with the unit of work on the thread that is coordinating database

resources. If the controlling unit of work was not associated with a task when that unit of work was

initiated, then there is no active task in the scope of that unit of work.

For example, consider a school district application that calls through a session bean in order to interact

with student records. One method on the session bean allows administrators to modify the students’

records; another method supports student requests to view their own records. Without application profiling,

the two tasks would operate anonymously and the run time environment would be unable to distinguish

work operating on behalf of one task or the other. To optimize the application, a developer can configure

one of the methods on the session bean with the task ″updateRecords″ and the other method on the

session bean with the task ″readRecords″. When registered with an application profile that has the student

bean configured with the appropriate locking access intent, the ″updateRecords″ task is assured that it is

not unnecessarily blocking transactions that need to only read the records.

Tasks can be configured to be managed by the container or to be programmatically established by the

application. Container managed tasks can be configured on servlets, JavaServer Pages (JSP) files,

application clients, and the methods of Enterprise JavaBeans (EJB). Configured container-managed tasks

are only associated with units of work that are initiated after the task name is set. Application managed

tasks are configured on all J2EE components.

Note: If you select the 5.x Compatibility Mode attribute on the Application Profile Service’s console page,

then tasks configured on J2EE 1.3 applications are not necessarily associated with units of work

and can arbitrarily be applied and overridden. This is not a recommended mode of operation and

can lead to unexpected deadlocks during database access. Tasks are not communicated on

requests between applications that are running under the Application Profiling 5.x Compatibility

Mode and applications that are not running under the compatibility mode.

Chapter 8. Developing WebSphere applications 1877

For a Version 6.0 client to interact with applications run under the Application Profiling 5.x

Compatibility Mode, you must set the appprofileCompatibility system property to true in the client

process. You can do this by specifying the -CCDappprofileCompatibility=true option when invoking

the launchClient command.

Application profiling interoperability:

The effect of 5.x Compatibility Mode

Application profiling supports forward compatibility. Application profiles created in previous versions of

WebSphere Application Server (Enterprise Edition 5.0 or WebSphere Business Integration Server

Foundation 5.1) can only run in WebSphere Application Server Version 6 if the Application Profiling 5.x

Compatibility Mode attribute is turned on. If the 5.x Compatibility Mode attribute is off, Version 5 application

profiles might display unexpected behavior. For information about the 5.x Compatibility Mode, see

″Application profiling service settings″ in the information center.

Similarly, application profiles that you create using WebSphere Application Server Version 6 are not

compatible with Version 5 or earlier versions. Even applications configured with application profiles run on

Version 6 servers with the Application Profiling 5.x Compatibility Mode attribute turned on cannot interact

with applications configured with profiles run on Version 5 servers.

Note: If you select the 5.x Compatibility Mode attribute on the Application Profile Service‘s console page,

then tasks configured on J2EE 1.3 applications are not necessarily associated with units of work

and can arbitrarily be applied and overridden. This is not a recommended mode of operation and

can lead to unexpected deadlocks during database access. Tasks are not communicated on

requests between applications that are running under the Application Profiling 5.x Compatibility

Mode and applications that are not running under the compatibility mode.

For a Version 6.0 client to interact with applications run under the Application Profiling 5.x Compatibility

Mode, you must set the appprofileCompatibility system property to true in the client process. You can do

this by specifying the -CCDappprofileCompatibility=true option when invoking the launchClient command.

Considerations for a clustered environment

In a clustered environment with mixed WebSphere Application Server product versions and mixed

platforms, applications configured with application profiles might exhibit unexpected behavior because

previous versions of server members cannot support the application profiling of Version 6.

If a clustered environment contains both Version 5.x and 6.0 server members, and if any applications are

configured with application profiles, the Application Profiling 5.x Compatibility Mode attribute must be

turned on in Version 6 server members. Still, this cluster can only support Version 5 application profiling

behavior. To support applications configured with Version 6 application profiles in a cluster environment, all

server members in the cluster must be at the Version 6 level.

WebSphere Application Server Enterprise Edition Version 5.0.2

If you use WebSphere Application Server Enterprise Edition 5.0.2, you must apply WebSphere Application

Server Version 5 service pack 7 or later service pack to enable Application Profiling interoperability.

Managing application profiles

Manage your application profiles using the administrative console. From the console, you can add tasks to,

and remove tasks from, application profiles.

1. Start the administrative console.

2. Select Applications > Enterprise Applications > application_name > Application Profiles

>profile_name > Tasks.

1878 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

3. On the Tasks collection page, you can add new tasks to the profile, delete tasks, edit current task

settings, and so on.

Note that, within the scope of an application, no task can be configured on more than one application

profile. In such a situation, your application cannot be restarted until you correct the configuration.

4. Save your configuration.

5. Restart the application in order for your changes to take affect.

Using the TaskNameManager interface:

You can declaratively configure container managed tasks for Java 2 platform, Enterprise Edition (J2EE)

web components, application clients, and Enterprise JavaBeans (EJB). On rare occasions, you might find

it necessary to programmatically set the current task name. Application profiling supports this requirement

with a simple interface that enables both overriding of the current task associated with the thread of

execution, and resetting of the current task with the original task. Except for J2EE 1.3 applications that are

executing on a server where the 5.x Compatibility Mode attribute is selected, this interface cannot be used

within Enterprise JavaBeans that are configured for container-managed transactions or container-managed

ActivitySessions because units of work can only be associated with a task at the exact time that the unit of

work is initiated. The call to set the task name must therefore be invoked before the unit of work is begun.

Units of work cannot be named after they are begun. Calls on this interface during the execution of a

container-managed unit of work are simply ignored.

Application profiling does not support queries of the task that is in operation at run time. Instead,

applications interact with logical task names that are declaratively configured as application managed

tasks. Logical references enable the actual task name to be changed without having to recompile

applications.

Wherever possible, avoid setting tasks programmatically. The declarative method results in more portable

function that can be easily adjusted without requiring redevelopment and recompilation.

Note: If you select the 5.x Compatibility Mode attribute on the Application Profile Service’s console page,

then tasks configured on J2EE 1.3 applications are not necessarily associated with units of work

and can arbitrarily be applied and overridden. This is not a recommended mode of operation and

can lead to unexpected deadlocks during database access. Tasks are not communicated on

requests between applications that are running under the Application Profiling 5.x Compatibility

Mode and applications that are not running under the compatibility mode.

For a Version 6.0 client to interact with applications run under the Application Profiling 5.x

Compatibility Mode, you must set the appprofileCompatibility system property to true in the client

process. You can do this by specifying the -CCDappprofileCompatibility=true option when invoking

the launchClient command.

1. Configure application-managed tasks. Application profiling requires that a task name reference be

declared for any task that is to be set programmatically. Task name references introduce a level of

indirection so that the actual task set at run time can be adjusted by reassembly without requiring

recoding or recompilation. Any attempt to set a task name that is undeclared as a task reference

results in the raising of an exception. . If a unit of work has already begun when a task name is set,

then that existing unit of work is not associated with the task name. Only units of work that are begun

after the task name is set are associated with the task.

Configure application-managed tasks as described in the following topics in the information center:

v Configuring application managed tasks for web components.

v Configuring application managed tasks for application clients.

v Configuring application managed tasks for Enterprise JavaBeans.

2. Perform a Java Naming and Directory Interface (JNDI) lookup on the TaskNameManager interface:

Chapter 8. Developing WebSphere applications 1879

InitialContext ic = new InitialContext();

TaskNameManager tnManager = ic.lookup

("java:comp/websphere/AppProfile/TaskNameManager");

The TaskNameManager interface is not bound into the namespace if the application profiling service is

disabled.

3. Set the task name:

try {

tnManager.setTaskName("updateAccount");

}

catch (IllegalTaskNameException e) {

// task name reference not configured. Handle error.

}

// . . .

//

Resetting the task name has no effect unless called by a J2EE 1.3 application executing on a server

for which the 5.x Compatibility Mode attribute is selected on the Application Profile Service’s console

page. This is not a recommended mode of operation and can lead to unexpected deadlocks during

database access. A call to resetTask() should only be used by J2EE 1.3 applications when the 5.x

Compatibility mode is set to undo the effects of any setTaskName() method operations and reestablish

whatever task name was current when the component began execution. If the setTaskName() method

has not been called, the resetTaskName() method has no effect.

TaskNameManager interface: The TaskNameManager is the programmatic interface to the application

profiling function. Application profiling enables you to identify particular units of work to the WebSphere

Application Server run time environment. The run time can tailor its support to the exact requirements of

that unit of work. Access intent is currently the only run time component that makes use of the application

profiling functionality. For example, you can configure one transaction to load an entity bean with strong

update locks and configure another transaction to load the same entity bean without locks.

Application profiling introduces two concepts in order to achieve this function: tasks and profiles.

A task is a configurable name for a unit of work. Unit of work in this case means either a transaction or an

ActivitySession.

A profile is simply a mapping of a task to a set of access intent policies that are configured on entity

beans. When an invocation on a bean (whether by a finder method, a container managed relationship

(CMR) getter, or a dynamic query) requires data to be retrieved from the back end system, the task of the

active unit of work associated with the request is used to determine the exact requirement of the

transaction. The same bean loads and behaves differently in the context of the task-to-profile mapping.

Each profile provides the developer an opportunity to reconfigure the application’s access intent.

Programmers can declaratively configure container managed tasks for Java 2 platform, Enterprise Edition

(J2EE) web components, application clients, and Enterprise JavaBeans (EJB). On rare occasions, it may

be necessary to programmatically set the current task name. Application profiling supports this requirement

with the TaskNameManager interface that enables both overriding of the current task associated with the

thread of execution, and resetting of the current task with the original task.

Except for J2EE 1.3 applications that are executing on a server where the 5.x Compatibility Mode attribute

is selected, this interface cannot be used within Enterprise JavaBeans that are configured for

container-managed transactions or container-managed ActivitySessions because units of work can only be

associated with a task at the exact time that the unit of work is initiated. The call to set the task name

must therefore be started before the unit of work is begun. Units of work cannot be named after they are

begun. Calls on this interface during the execution of a container-managed unit of work are simply ignored.

1880 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

The TaskNameManager interface is available to all J2EE components using the following Java Naming

and Directory Interface (JNDI) lookup:

java:comp/websphere/AppProfile/TaskNameManager

package com.ibm.websphere.appprofile;

/**

* The TaskNameManager is the programmatic interface

* to the application profiling function. Using this interface,

* programmers can set the current task name on the

* thread of execution. The task name must have been

* configured in the deployment descriptors as a task

* reference associated with a task. The set task

* name’s scope is the duration of the method

* invocation in the EJB and Web components and for

* the duration of the client process, or until the

* resetTaskName() method is invoked.

*/

public interface TaskNameManager {

/**

* Set the thread’s current task name to the specified

* parameter. The task name must have been configured as

* a task reference with a corresponding task or the

* IllegalTaskName exception is thrown.

*/

public void setTaskName(String taskName) throws IllegalTaskNameException;

/**

* Sets the thread’s task name to the value that was set

* at, or imported into, the beginning of the method

* invocation (for EJB and Web components) or process

* (for J2EE clients).

*/

public void resetTaskName();

}

Application profiling exceptions: The following exceptions are thrown in response to various illegal

actions related to application profiling:

com.ibm.ws.exception.RuntimeWarning

This exception is thrown when the application is started, if the application is configured incorrectly.

The startup is consequently terminated. Some examples of bad configurations include:

v A task configured on two different application profiles.

v A method configured with two different task run-as policies .
com.ibm.websphere.appprofile.IllegalTaskNameException

This exception is raised if an application attempts to programmatically set a task when that task

has not been configured as a task name reference.

Application profiling service settings:

Use this page to enable or disable the application profiling service.

 Applications that are configured to use the application profiling service do not start successfully unless the

application profiling service is enabled.

To view this administrative console page, click Servers > Application Servers > server_name >

Container Services> Application Profiling Service.

Enable service at server startup:

Specifies whether the server attempts to start the application profiling service.

Chapter 8. Developing WebSphere applications 1881

Default Selected

Range Selected

When the application server starts, it attempts to

start the application profiling service

automatically.

Cleared

The application profiling service is not enabled

when an application server starts. Applications

configured with application profiling cannot be

started on servers that do not enable the

application profiling service.

5.x Compatibility Mode:

When selected, J2EE 1.3 applications that use application profiling execute exactly as they did in the 5.x

releases of WebSphere Application Server.

 For a Version 6.0 client to interact with applications run under the Application Profiling 5.x Compatibility

Mode, you must set the appprofileCompatibility system property to true in the client process. You can do

this by specifying the -CCDappprofileCompatibility=true option when invoking the launchClient command.

Operation in this mode can lead to unexpected deadlocks during database access. Also, tasks do not

propagate on remote invocations between J2EE 1.3 and J2EE 1.4 applications, possibly resulting in the

use of unexpected access intent policies. This mode also results in performance degradation if

applications configured with application profiling are installed on the server.

Support for J2EE 1.3 applications operating with 5.x Compatibility Mode = true is deprecated as of

WebSphere Application Server Version 6.0. When cleared, J2EE 1.3 applications that use application

profiling execute with the same constraints as J2EE 1.4 applications. In this mode, tasks are established

only when a new unit of work begins. This means the complete unit of work executes under at most one

task.

 Default Selected

Range Selected

J2EE 1.3 applications that are dependent on the

behavior of application profiling service for

Version 5.x can run with the same behavior in

Version 6.0.

Cleared

Tasks are established only when a new global

unit of work begins.

Application profile collection:

Use this page to view application profiles and manage tasks associated with application profiles.

 An application profile is a set of policies that are to be applied during the execution of an enterprise bean

and a set of tasks that are associated with that profile. Mapping tasks to application profiles will control

which access intent policies are applied at run time for the units of work that correspond to a particular

task.

You can use the assembly tools such as Application Server Toolkit (AST) or Rational Web Developer to

add or delete application profiles. The AST is shipped with WebSphere Application Server version 6.0 as

free tool.

1882 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

To view this administrative console page, click Applications > Enterprise Applications >

application_name > Application Profiles.

Name:

The name of the application profile.

 The name must be unique; multiple profiles cannot share the same name.

 Data type String

Description:

A description of the application profile.

 Data type String

Application profile settings:

Use this page to modify application profile settings.

 To view this administrative console page, click Applications > Enterprise Applications >

application_name > Application Profiles > application_profile_name.

Name:

The name of the application profile.

 The name must be unique; multiple profiles cannot share the same name.

 Data type String

Description:

A description of the application profile.

 Data type String

Task collection:

Use this page to manage tasks.

 Requests associated with any of the configured tasks operate under the access-intent policies that are

configured with the profile. A task can be configured on only one application profile.

To view this administrative console page, click Applications > Enterprise Applications >

application_name > Application Profiles > application_profile_name > Tasks.

Name:

The name of the task.

Chapter 8. Developing WebSphere applications 1883

The task name must be unique among the set of application profiles.

 Data type String

Description:

A description of the task.

 Data type String

Task settings:

Use this page to modify task settings.

 To view this administrative console page, click Applications > Enterprise Applications >

application_name > Application Profiles > application_profile_name > Tasks > task_name.

Name:

The name of the task.

 The task name must be unique among the set of application profiles.

 Data type String

Description:

A description of the task.

 Data type String

Asynchronous beans

Using asynchronous beans

The asynchronous beans feature adds a new set of APIs that enable Java 2 Platform Enterprise Edition

J2EE applications to run asynchronously inside an Integration Server. This topic provides a brief overview

of the tasks involved in using asynchronous beans. For a more detailed description of the asynchronous

beans model, review the conceptual topic Asynchronous beans. For detailed information on the

programming model for supported asynchronous beans interfaces, see the topic Work managers.

1. Configure work managers.

2. Configure timer managers.

3. Assemble applications that use asynchronous beans work managers.

4. Develop work objects to run code in parallel.

5. Develop event listeners.

6. Develop asynchronous scopes.

Asynchronous beans:

An asynchronous bean is a Java object or enterprise bean that can be executed asynchronously by a

Java 2 Platform Enterprise Edition (J2EE) application, using the J2EE context of the asynchronous bean

creator.

1884 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Asynchronous beans can improve performance by enabling a J2EE program to decompose operations into

parallel tasks. Asynchronous beans support the construction of stateful, active J2EE applications. These

applications address a segment of the application space that J2EE has not previously addressed (that is,

advanced applications that require application threading, active agents within a server application, or

distributed monitoring capabilities).

Asynchronous beans can run using the J2EE security context of the creator J2EE component. These

beans also can run with copies of other J2EE contexts, such as:

v Internationalization context

v Application profiles. (Support for application profiling context is deprecated.)

v Work areas

Asynchronous bean interfaces

Three types of asynchronous beans exist:

Work object

There are two work interfaces that essentially accomplish the same goal. The legacy

Asynchronous Beans work interface is com.ibm.websphere.asynchbeans.Work, and the CommonJ

work interface is commonj.work.Work. A work object runs parallel to its caller using the work

manager startWork or schedule method (startWork for legacy Asynchronous Beans and schedule

for CommonJ). Applications implement work objects to run code blocks asynchronously. For more

information on the Work interface, see the Javadoc.

Timer listener

This interface is an object that implements the commonj\timers\TimerListener interface. Timer

listeners are called when a high-speed transaction timer expires. For more information on the

TimerListener interface, see the Javadoc.

Alarm listener

An alarm listener is an object that implements the com.ibm.websphere.asynchbeans.AlarmListener

interface. Alarm listeners are called when a high-speed transient alarm expires. For more

information on the AlarmListener interface, see the Javadoc.

Event listener

An event listener can implement any interface. An event listener is a lightweight, asynchronous

notification mechanism for asynchronous events within a single Java virtual machine (JVM). An

event listener typically enables J2EE components within a single application to notify each other

about various asynchronous events.

Supporting interfaces

Work manager

Work managers are thread pools that administrators create for J2EE applications. The

administrator specifies the properties of the thread pool and a policy that determines which J2EE

contexts the asynchronous bean inherits.

CommonJ Work manager

The CommonJ work manager is similar to the work manager. The difference between the two is

that the CommonJ work manager contains a subset of the asynchronous beans work manager

methods. Although CommonJ work manager functions in a J2EE 1.4 environment, each JNDI

lookup of a work manager does not return a new instance of the WorkManager. All the JNDI

lookup of work managers within a scope have the same instance.

Timer manager

Timer managers implement the commonj.timers.TimerManager interface, which enables J2EE

applications, including servlets, EJB applications, and JCA Resource Adapters, to schedule future

timer notifications and receive timer notifications. The timer manager for Application Servers

specification provides an application-server supported alternative to using the J2SE

java.util.Timer class, which is inappropriate for managed environments.

Event source

An event source implements the com.ibm.websphere.asynchbeans.EventSource interface. An

event source is a system-provided object that supports a generic, type-safe asynchronous

Chapter 8. Developing WebSphere applications 1885

notification server within a single JVM. The event source enables event listener objects, which

implement any interface to be registered. For more information on the EventSource interface, see

the Javadoc.

Event source events

Every event source can generate its own events, such as listener count changed. An application

can register an event listener object that implements the class

com.ibm.websphere.asynchbeans.EventSourceEvents. This action enables the application to catch

events such as listeners being added or removed, or a listener throwing an unexpected exception.

For more information on the EventSourceEvents class, see the Javadoc.

Additional interfaces, including alarms and subsystem monitors, are introduced in the topic ″Developing

asynchronous scopes″, which discusses some of the advanced applications of asynchronous beans.

Transactions

Every asynchronous bean method is called using its own transaction, much like container-managed

transactions in typical enterprise beans. It is very similar to the situation when an Enterprise Java Beans

(EJB) method is called with TX_NOT_SUPPORTED. The run-time environment starts a local transaction

before invoking the method. The asynchronous bean method is free to start its own global transaction if

this transaction is possible for the calling J2EE component. For example, if an enterprise bean creates the

component, the method that creates the asynchronous bean must be TX_BEAN_MANAGED.

When you call an entity bean from within an asynchronous bean, for example, you must have a global

transactional context available on the current thread. Because asynchronous bean objects start local

transactional contexts, you can encapsulate all entity bean logic in a session bean that has a method

marked as TX_REQUIRES or equivalent. This process establishes a global transactional context from

which you can access one or more entity bean methods.

If the asynchronous bean method throws an exception, any local transactions are rolled back. If the

method returns normally, any incomplete local transactions are completed according to the unresolved

action policy configured for the bean. EJB methods can configure this policy using their deployment

descriptor. If the asynchronous bean method starts its own global transaction and does not commit this

global transaction, the transaction is rolled back when the method returns.

Access to J2EE component metadata

If an asynchronous bean is a J2EE component, such as a session bean, its own metadata is active when

a method is called. If an asynchronous bean is a simple Java object, the J2EE component metadata of the

creating component is available to the bean. Like its creator, the asynchronous bean can look up the

java:comp namespace. This look up enables the bean to access connection factories and enterprise

beans, just as it would if it were any other J2EE component. The environment properties of the creating

component also are available to the asynchronous bean.

The java:comp namespace is identical to the one available for the creating component; the same

restrictions apply. For example, if the enterprise bean or servlet has an EJB reference of

java:comp/env/ejb/MyEJB, this EJB reference is available to the asynchronous bean. In addition, all of the

connection factories use the same resource-sharing scope as the creating component.

Connection management

An asynchronous bean method can use the connections that its creating J2EE component obtained using

java:comp resource references. (For more information on resource references, see ″References″ in the

information center). However, the bean method must access those connections using a get, use or close

pattern. There is no connection caching between method calls on an asynchronous bean. The connection

factories or datasources can be cached, but the connections must be retrieved on every method call,

1886 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

used, and then closed. While the asynchronous bean method can look up connection factories using a

global Java Naming and Directory Interface (JNDI) name, this is not recommended for the following

reasons:

v The JNDI name is hard coded in the application (for example, as a property or string literal).

v The connection factories are not shared because there is no way to specify a sharing scope.

For code examples that demonstrate both the correct and the incorrect ways to access connections from

asynchronous bean methods, see the topic Example: Asynchronous bean connection management.

Deferred start of Asynchronous Beans

Asynchronous beans support deferred start by allowing serialization of J2EE service context information.

The WorkWithExecutionContext createWorkWithExecutionContext(Work r) method on the WorkManager

interface will create a snapshot of the J2EE service contexts enabled on the WorkManager. The resulting

WorkWithExecutionContext object can then be serialized and stored in a database or file. This is useful

when it is necessary to store J2EE service contexts such as the current security identity or Locale and

later inflate them and execute some work within this context. The WorkWithExecutionContext object can be

executed using the startWork() and doWork() methods on the WorkManager interface.

All WorkWithExecutionContext objects must be deserialized by the same application that serialized it. All

EJBs and classes must be present in order for Java to successfully inflate the objects contained within.

Deferred start and security

The asynchronous beans security service context might require Common Secure Interoperability Version 2

(CSIv2) identity assertion to be enabled. Identity assertion is required when a WorkWithExecutionContext

object is deserialized and executed to Java Authentication and Authorization Service (JAAS) subject

identity credential assignment. Review the following topics to better understand if you need to enable

identity assertion, when using a WorkWithExecutionContext object:

v Configuring Common Secure Interoperability Version 2 and Security Authentication Service

authentication protocol

v Identity Assertion

There are also issues with interoperating with WorkWithExecutionContext objects from different versions of

the product. See ″Interoperating with asynchronous beans″ in the information center.

Work managers:

A work manager is a thread pool created for J2EE applications that use asynchronous beans.

 Using the administrative console, an administrator can configure any number of work managers. The

administrator specifies the properties of the work manager, including the J2EE context inheritance policy

for any asynchronous beans that use the work manager. The administrator binds each work manager to a

unique place in Java Naming and Directory Interface (JNDI). You can use work manager objects in any

one of the following interfaces:

v Asynchronous beans

v CommonJ work manager (For details, see the CommonJ work manager section in this article.)

The selected type of interface is resolved during the JNDI lookup time. The interface type is the value that

you specify in the ResourceRef, rather than the interface type specified in the configuration object. For

example, you can have one ResourceRef for each interface per configuration object, and each

ResourceRef lookup returns that appropriate type of instance.

The work managers provide a programming model for the J2EE 1.4 applications. For more information,

see the Programming model section in this topic.

Chapter 8. Developing WebSphere applications 1887

When writing a Web or EJB component that uses asynchronous beans, the developer should include a

resource reference in each component that needs access to a work manager. For more information on

resource references, see the topic ″References″ in the information center. The component looks up a work

manager using a logical name in the component, java:comp namespace, just as it looks up a data source,

enterprise bean, or connection factory.

The deployer binds physical work managers to logical work managers when the application is deployed.

For example, if a developer needs three thread pools to partition work between bronze, silver, and gold

levels, the developer writes the component to pick a logical pool based on an attribute in the client

application profile. The deployer has the flexibility to decide how to map this request for three thread pools.

The deployer might decide to use a single thread pool on a small machine. In this case, the deployer

binds all three resource references to the same work manager instance (that is, the same JNDI name). A

larger machine might support three thread pools, so the deployer binds each resource reference to a

different work manager. Work managers can be shared between multiple J2EE applications installed on

the same server.

An application developer can use as many logical work managers as necessary. The deployer chooses

whether to map one physical work manager or several to the logical work manager defined in the

application.

All J2EE components that need to share asynchronous scope objects must use the same work manager.

These scope objects have an affinity with a single work manager. An application that uses asynchronous

scopes should verify that all of the components using scope objects use the same work manager.

When multiple work managers are defined, the underlying thread pools are created in a JVM only if an

application within that Java virtual machine (JVM) looks up the work manager. For example, there might

be ten thread pools (work managers) defined, but none are actually created until an application looks

these pools up.

CommonJ Work Manager

The CommonJ work manager is similar to the work manager. The difference between the two is that the

CommonJ work manager contains a subset of the asynchronous beans work manager methods. Although

CommonJ work manager functions in a J2EE 1.4 environment, the interface does not return a new

instance for each JNDI naming lookup, since this specification is not included in the J2EE specification.

Remote start of work. Any work manager that implements the java.io.Serializable does not have the

remote start capability.

How to look up a work manager

An application can look up a work manager as follows. Here, the component contains a resource

reference named wm/myWorkManager, which was bound to a physical work manager when the component

was deployed:

InitialContext ic = new InitialContext();

WorkManager wm = (WorkManager)ic.lookup("java:comp/env/wm/myWorkManager");

Inheritance J2EE contexts

Asynchronous beans can inherit the following J2EE contexts.

Internationalization context

When this option is selected and the internationalization service is enabled, and the

internationalization context that exists on the scheduling thread is available on the target thread.

1888 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Work area

When this option is selected, the work area context for every work area partition that exists on the

scheduling thread is available on the target thread.

Application profile (deprecated)

When this option is selected, the application profile service is enabled, and the application profile

service property, 5.x compatibility mode, is selected. The application profile task that is

associated with the scheduling thread is available on the target thread for J2EE 1.3 applications.

For J2EE 1.4 applications, the application profile task is a property of its associated unit of work,

rather than a thread. This option has no effect on the behavior of the task in J2EE 1.4

applications. The scheduled work that runs in a J2EE 1.4 application does not receive the

application profiling task of the scheduling thread.

Security

The asynchronous bean can be run as anonymous or as the client authenticated on the thread

that created it. This behavior is useful because the asynchronous bean can do only what the caller

can do. This action is more useful than a RUN_AS mechanism, for example, which prevents this

kind of behavior. When you select the Security option, the JAAS subject that exists on the

scheduling thread is available on the target thread. If not selected, the thread runs anonymously.

Component metadata

Component metadata is relevant only when the asynchronous bean is a simple Java object. If the

bean is a J2EE component, such as an enterprise bean, the component metadata is active.

The contexts that can be inherited depends on the work manager used by the application that creates the

asynchronous bean. Using the administrative console, the administrator defines the sticky context policy of

a work manager by selecting the services on which the work manager is to be made available.

Programming model

Work managers support the following programming models.

v CommonJ Specification. The Application Server Version 6.0 CommonJ programming model uses the

WorkManager and TimerManager to manage threads and timers asynchronously in the J2EE 1.4

environment.

v Asynchronous beans and CommonJ specification extensions. The current asynchronous beans

Event Source, asynchronous scopes, subsystem monitors and J2EEContext interfaces are a part of the

CommonJ extension.

The following table describes the method mapping between the CommonJ and Asynchronous beans APIs.

You can change the current asynchronous beans interfaces to use the CommonJ interface, while

maintaining the same functions.

 CommonJ package API Asynchronous

beans package

API

Work manager Work manager

Asynchronous beans Field - IMMEDIATE (long) Field - IMMEDIATE (int)

Field - INDEFINITE Field - INDEFINITE

schedule(Work) throws

WorkException,

IllegalArgumentException

startWork(Work) throws

WorkException,

IllegalArgumentException

Chapter 8. Developing WebSphere applications 1889

schedule(Work, WorkListener) throws

WorkException,

IllegalArgumentException

Note: Configure the work manager

work timeout property to the value

you previously specified as

timeout_ms on startWork. The default

timeout value is INDEFINITE.

startWork(Work, timeout_ms,

WorkListener) throws

WorkException,

IllegalArgumentException

waitForAll(workItems, timeout_ms) join(workItems, JOIN_AND,

timeout_ms)

waitForAny(workItems, timeout_ms) join(workItems, JOIN_OR,

timeout_ms)

WorkItem WorkItem

getResult getResult

getStatus getStatus

WorkListener WorkListener

workAccepted(WorkEvent) workAccepted(WorkEvent)

workCompleted(WorkEvent) workCompleted(WorkEvent)

workRejected(WorkEvent) workRejected(WorkEvent)

workStarted(WorkEvent) workStarted(WorkEvent)

WorkEvent WorkEvent

Field - WORK_ACCEPTED Field - WORK_ACCEPTED

Field - WORK_COMPLETED Field - WORK_COMPLETED

Field - WORK_REJECTED Field - WORK_REJECTED

Field - WORK_STARTED Field - WORK_STARTED

getException getException

getType getType

getWorkItem().getResult()

Note: This API is valid only after the

work is complete.

getWork

Work (extends Runnable) Work (Extends Runnable)

isDaemon *

release release

RemoteWorkItem Not in this release. Use Distributed

WorkManager in XD or future release

NA

TimerManager AlarmManager

resume *

schedule(Listener, Date) create(Listener, context, time) **

need to convert the parameters

schedule(Listener, Date, period)

schedule(Listener, delay, period)

scheduleAtFixedRate(Listener, Date,

period)

scheduleAtFixedRate(Listener, delay,

period)

stop

1890 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

suspend

Timer Alarm

cancel cancel

getPeriod

getTimerListener getAlarmListener

scheduledExecutionTime

TimerListener AlarmListener

timerExpired(timer) fired(alarm)

StopTimerListener Not applicable

timerStop(timer)

CancelTimerListener Not applicable

timerCancel(timer)

WorkException (Extends Exception) WorkException (Extends WsException)

WorkCompleted-

Exception

(Extends WorkException) WorkCompleted-

Exception

(Extends WorkException)

WorkRejected-

Exception

(Extends WorkException) WorkRejected-

Exception

(Extends WorkException)

For more information on work manager APIs, refer to the Javadoc.

Work manager examples

 Table 12. Look up work manager

Asynchronous beans CommonJ

InitialContext ctx = new InitialContext();

com.ibm.websphere.asynchbeans.WorkManager wm =

(com.ibm.websphere.asynchbeans.WorkManager)

 ctx.lookup(“java:comp/env/wm/MyWorkMgr”);

InitialContext ctx = new InitialContext();

commonj.work.WorkManager wm =

 (commonj.work.WorkManager)

 ctx.lookup(“java:comp/env/wm/MyWorkMgr”);

 Table 13. Create your work using MyWork

Asynchronous beans CommonJ

public class MyWork implements

com.ibm.websphere.asynchbeans.Work {

public void release() {

 }

 public void run() {

 System.out.println(“Running.....”);

 }

public class MyWork implements

commonj.work.Work{

 public boolean isDaemon() {

 return false;

 }

 public void release () {

 }

 public void run () {

 System.out.println(“Running.....”);

 }

 Table 14. Submit the work

Asynchronous beans CommonJ

Chapter 8. Developing WebSphere applications 1891

Table 14. Submit the work (continued)

MyWork work1 =

 new MyWork(new URI(“http://www.example./com/1”);

MyWork work2 =

 new MyWork(new URI(“http://www.example./com/2”);

WorkItem item1;

WorkItem item2;

Item1=wm.startWork(work1);

Item2=wm.startWork(work2);

// case 1: block until all items are done

ArrayList col1 = new ArrayList();

Col1.add(item1);

Col1.add(item2);

wm.join(col1, WorkManager.JOIN_AND,

 (long)WorkManager.IMMEDIATE);

// when the works are done

System.out.println(“work1 data=”+work1.getData());

System.out.println(“work2 data=”+work2.getData());

// case 2: wait for any of the items to complete.

Boolean ret = wm.join(col1,

 WorkManager.JOIN_OR, 1000);

MyWork work1 =

 new MyWork(new URI(“http://www.example./com/1”);

MyWork work2 =

 new MyWork(new URI(“http://www.example./com/2”);

WorkItem item1;

WorkItem item2;

Item1=wm.schedule(work1);

Item2=wm.schedule(work2);

// case 1: block until all items are done

Collection col1 = new ArrayList();

col1.add(item1);

col1.add(item2);

wm.waitForAll(col1, WorkManager.IMMEDIATE);

// when the works are done

System.out.println(“work1 data=”+work1.getData());

System.out.println(“work2 data=”+work2.getData());

// case 2: wait for any of the items to complete.

Collection finished = wm.waitForAny(col1,1000);

// check the workItems status

if (finished != null) {

 Iterator I = finished.iterator();

 if (i.hasNext()) {

 WorkItem wi = (WorkItem) i.next();

 if (wi.equals(item1)) {

 System.out.println(“work1 = “+ work1.getData());

 } else if (wi.equals(item2)) {

 System.out.println(“work1 = “+ work1.getData());

 }

 }

}

Timer manager examples

 Table 15. Create a timer manager

Asynchronous beans CommonJ

InitialContext ctx = new InitialContext();

com.ibm.websphere.asynchbeans.WorkManager wm =

 (com.ibm.websphere.asynchbeans.WorkManager)

 ctx.lookup(“java:comp/env/wm/MyWorkMgr”);

AsynchScope ascope;

 try {

 Ascope = wm.createAsynchScope(“ABScope”);

 } Catch (DuplicateKeyException ex)

 {

 Ascope = wm.findAsynchScope(“ABScope”);

 ex.printStackTrace();

 }

 // get an AlarmManager

 AlarmManager aMgr= ascope.getAlarmManager();

InitialContext ctx = new InitialContext();

Commonj.timers.TimerManager tm =

 (commonj.timers.TimerManager)

 ctx.lookup(“java:comp/env/tm/MyTimerManager”);

 Table 16. Fire the timer

Asynchronous beans CommonJ

1892 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Table 16. Fire the timer (continued)

// create alarm

ABAlarmListener listener = new ABAlarmListener();

Alarm am =

 aMgr.create(listener, “SomeContext”, 1000*60);

// create Timer

TimerListener listener =

 new StockQuoteTimerListener(

 “qqq”, “johndoe@example.com”);

Timer timer = tm.schedule(listener, 1000*60);

// Fixed-delay: schedule timer to expire in 60 seconds

// from now and repeat every hour thereafter.

Timer timer = tm.schedule(listener, 1000*60, 1000*30);

// Fixed-rate: schedule timer to expire in 60 seconds

// from now and repeat every hour thereafter

Timer timer =

 tm.scheduleAtFixedRate(listener, 1000*60, 1000*30);

Timer managers: The timer manager combines the functions of the asynchronous beans alarm manager

and asynchronous scope. So, when a timer manager is created, it internally uses an asynchronous scope

to provide the timer manager life cycle functions. You can look up the timer manager in the JNDI name

space. This capability is different from the alarm manager that is retrieved through the asynchronous

beans scope. Each lookup of the timer manager returns a new logical timer manager that can be

destroyed independently of all other timer managers.

A timer manager can be configured with a number of thread pools through the administrative console. For

deployment you can bind this timer manager to a resource reference at assembly time, so the resource

reference can be used by the application to look up the timer manager.

The Java code to look up the timer manager is:

 InitialContext ic = new InitialContext();

 TimerManager tm = (TimerManager)ic.lookup(“java:comp/env/tm/TimerManager”);

The programming model for setting up the alarm listener and the timer listener is different. The following

code example shows that difference.

 Table 17. Set up the timer listener

Asynchronous beans CommonJ

public class ABAlarmListener

 implements AlarmListener {

 public void fired(Alarm alarm) {

 System.out.println(

 “Alarm fired. Context =”

 +alarm.getContext());

 }

}

public class StockQuoteTimerListener implements TimerListener {

 String context;

 String url;

 public StockQuoteTimerListener(String context, String url){

 this.context = context;

 this.url = url;

 }

 public void timerExpired(Timer timer) {

 System.out.println(“Timer fired. Context =”+

((StockQuoteTimerListener)timer.getTimerListener()).getContext());

 }

 public String getContext() {

 return context;

 }

}

Example: Asynchronous bean connection management:

An asynchronous bean method can use the connections that its creating Java 2 Platform Enterprise

Edition (J2EE) component obtained using java:comp resource references. (For more information on

resource references, see the topic References in the information center.) The following is an example of

an asynchronous bean that uses connections correctly:

Chapter 8. Developing WebSphere applications 1893

class GoodAsynchBean

{

 DataSource ds;

 public GoodAsynchBean()

 throws NamingException

 {

 // ok to cache a connection factory or datasource

 // as class instance data.

 InitialContext ic = new InitialContext();

 // it is assumed that the created J2EE component has this

 // resource reference defined in its deployment descriptor.

 ds = (DataSource)ic.lookup("java:comp/env/jdbc/myDataSource");

 }

 // When the asynchronous bean method is called, get a connection,

 // use it, then close it.

 void anEventListener()

 {

 Connection c = null;

 try

 {

 c = ds.getConnection();

 // use the connection now...

 }

 finally

 {

 if(c != null) c.close();

 }

 }

}

The following example of an asynchronous bean that uses connections incorrectly:

class BadAsynchBean

{

 DataSource ds;

 // Do not do this. You cannot cache connections across asynch method calls.

 Connection c;

 public BadAsynchBean()

 throws NamingException

 {

 // ok to cache a connection factory or datasource as

 // class instance data.

 InitialContext ic = new InitialContext();

 ds = (DataSource)ic.lookup("java:comp/env/jdbc/myDataSource");

 // here, you broke the rules...

 c = ds.getConnection();

 }

 // Now when the asynch method is called, illegally use the cached connection

 // and you likely see J2C related exceptions at run time.

 // close it.

 void someAsynchMethod()

 {

 // use the connection now...

 }

}

Configuring timer managers

If you are not familiar with timer managers, review the conceptual section, Timer managers, in the

Asynchronous beans topic.

A timer manager acts as a thread pool for application components that use asynchronous beans. Use the

administrative console to configure timer managers. The timer manager service is enabled by default.

1894 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

You can define multiple timer managers for each cell. Each timer manager is bound to a unique place in

Java Naming and Directory Interface (JNDI).

Note: The timer manager service is only supported from within the Enterprise Java Beans (EJB) container

or Web container. Looking up and using a configured timer manager from a J2EE application client

container is not supported.

1. Start the administrative console.

2. Select Resources > Asynchronous beans > Timer managers.

3. Click New.

4. Specify the following required properties:

Name The display name for the timer manager.

JNDI Name

The JNDI name for the timer manager. This name is used by asynchronous beans that need to

look up the timer manager. Each timer manager must have a unique JNDI name within the

cell.

Number of Timer Threads

The maximum number of threads that are used for timers.

5. [Optional] Specify a Description and a Category for the timer manager.

6. [Optional] Select the Service Names (J2EE contexts) on which you want this timer manager to be

made available. Any asynchronous beans that use this timer manager then inherit the selected J2EE

contexts from the component that creates the bean. The list of selected services also is known as the

″sticky″ context policy for the timer manager. Selecting more services than are actually required might

impede performance.

7. Save your configuration.

The timer manager is now configured and ready for access by application components that need to

manage the start of asynchronous code.

Timer manager collection:

Use this page to view the configuration properties of timer managers.

 A timer manager contains a pool of threads bound into JNDI.

To view this administrative console page, click Resources > Asynchronous beans < Timer managers.

Name:

The name by which the timer manager is known for administrative purposes.

 Data type String

JNDI Name:

The JNDI name used to look up the timer manager in the name space.

 Data type String

Description:

A description of this timer manager for administrative purposes.

 Data type String

Chapter 8. Developing WebSphere applications 1895

Category:

A string that can be used to classify or group this timer manager.

 Data type String

Timer manager settings:

Use this page to modify timer manager settings.

 A timer manager contains a pool of threads bound into JNDI.

To view this administrative console page, click Resources > Asynchronous beans > Timer managers

timermanager_name.

Scope:

Specifies the scope of the configured resource. This value indicates the configuration location for the

configuration file.

Name:

The name by which the timer manager is known for administrative purposes.

 Data type String

JNDI Name:

The JNDI name used to look up the timer manager in the namespace.

 Data type String

Description:

A description of this timer manager for administrative purposes.

 Data type String

Category:

A string that can be used to classify or group this timer manager.

 Data type String

Service Names:

A list of service names on which this timer manager is made available.

 Asynchronous beans can inherit J2EE context information by enabling one or more J2EE service contexts

on the timer manager resource in the WebSphere administration console or by setting the serviceNames

attribute of the TimerManagerInfo configuration object. When specifying the serviceNames attribute each

enabled service should be separated by a semicolon. For example:

security;UserWorkArea;com.ibm.ws.i18n. When a J2EE service context is enabled, it propagates the

context from the scheduling thread to the target thread. If not enabled, the target thread does not inherit

1896 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

the context of the scheduling thread and a default context is applied. Any related J2EE context that is

already present on the thread is suspended before any new J2EE context is applied.

The context information of each selected service is propagated to each timer that is created using this

timer manager. Selecting services that are not needed can negatively impact performance.

 Work area Use the administrative console or the UserWorkArea

service name to enable work area partitions. When

enabled, the work area context for every work area

partition that exists on the scheduling thread is available

on the target thread. This feature is optional.

Security Use the administrative console or the security service

name to enable the Java Authentication and Authorization

Service (JAAS) subject. When this feature and global

security are enabled, the JAAS subject that is present on

the scheduling thread is applied to the target thread. If not

enabled, the target thread is run anonymously without a

JAAS subject on the thread. This feature is optional.

Internationalization Use the administrative console or the com.ibm.ws.i18n

service name to enable the internationalization context

information. When the internationalization context and the

Internationalization service is enabled, the

internationalization context that exists on the scheduling

thread is available on the target thread. This feature is

optional.

Number of Timer Threads:

The maximum number of threads that are used for timers.

 Data type Integer

Configuring work managers

If you are not familiar with work managers, review the conceptual topic, Work managers.

A work manager acts as a thread pool for application components that use asynchronous beans. Use the

administrative console to configure work managers. The work manager service is always enabled. In

previous versions of the product, the work manager service could be disabled using the administration

console or configuration service. The work manager service configuration objects are still present in the

configuration service, but the enabled attribute is ignored.

You can define multiple work managers for each cell. Each work manager is bound to a unique place in

Java Naming and Directory Interface (JNDI).

Note: The work manager service is only supported from within the Enterprise Java Beans (EJB) Container

or Web Container. Looking up and using a configured work manager from a J2EE application client

container is not supported.

1. Start the administrative console.

2. Select Resources > Asynchronous beans > Work managers.

3. Click New.

4. Specify the required properties for work manager settings.

Name The display name for the work manager.

Chapter 8. Developing WebSphere applications 1897

JNDI Name

The JNDI name for the work manager. This name is used by asynchronous beans that need to

look up the work manager. Each work manager must have a unique JNDI name within the cell.

Number of Alarm Threads

The maximum number of threads to use for processing alarms. A single thread is used to

monitor pending alarms and dispatch them. An additional pool of threads is used for

dispatching the threads. All alarm managers on the asynchronous beans associated with this

work manager share this set of threads. A single alarm thread pool exists for each work

manager, and all of the asynchronous beans associated with the work manager share this pool

of threads.

Minimum Number Of Threads

The initial number of threads to be created in the thread pool.

Maximum Number Of Threads

The maximum number of threads to be created in the thread pool. The maximum number of

threads can be exceeded temporarily if the Growable check box is selected. These additional

threads are discarded when the work on the thread completes.

Thread Priority

The order of the priority for threads available in the thread pool.

5. [Optional] Specify a Description and a Category for the work manager.

6. [Optional] Select the Service Names (J2EE contexts) on which you want this work manager to be

made available. Any asynchronous beans that use this work manager then inherit the selected J2EE

contexts from the component that creates the bean. The list of selected services also is known as the

″sticky″ context policy for the work manager. Selecting more services than are actually required might

impede performance.

Other optional fields include:

Work timeout

Specifies the number of milliseconds to wait before a scheduled work object is released. If a

value is not specified, then the timeout is disabled.

Work request queue size

Specifies the maximum number of scheduled work objects in this work request queue. The

default value is 0.

Work request queue full action

Specifies the action taken when the thread pool is exhausted, and the work request queue is

full. This action starts when you submit non-daemon work to the work manager. If set to FAIL,

the work manager API methods creates an exception instead of blocking.

7. Save your configuration.

The work manager is now configured and ready for access by application components that need to

manage the start of asynchronous code.

Work manager collection:

Use this page to view the collection properties of work managers.

 A work manager contains a pool of threads bound into the Java Naming and Directory Interface.

To view this administrative console page, click Resources > Asynchronous beans > Work managers.

Name:

Specifies the name by which the work manager is known for administrative purposes.

JNDI Name:

1898 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Specifies the Java Naming and Directory Interface (JNDI) name used to look up the work manager in the

namespace.

 Data type String

Description:

Specifies the description of this work manager for administrative purposes.

Category:

Specifies a category name that is used to classify or group this work manager.

Work manager settings:

Use this page to modify work manager settings.

 A work manager contains a pool of threads bound into the Java Naming and Directory Interface.

To view this administrative console page, click Resources > Asynchronous beans > Work managers >

workmanager_name.

Scope:

Specifies the scope of the configured resource. This value indicates the configuration location for the

configuration file.

Name:

Specifies the name by which the work manager is known for administrative purposes.

JNDI Name:

Specifies the Java Naming and Directory Interface (JNDI) name used to look up the work manager in the

namespace.

Description:

Specifies the description of this work manager for administrative purposes.

Category:

Specifies a string that you can use to classify or group this work manager.

Work timeout:

Specifies the number of milliseconds to wait before a scheduled work object is released. If a value is not

specified, then the timeout is disabled.

 Default 0

Work request queue size:

Specifies the size of the work request queue. The work request queue is a buffer that holds scheduled

work objects. The thread pool gets work from this queue. If you do not specify a value, the queue size is

managed automatically. Large values can consume significant system resources.

Chapter 8. Developing WebSphere applications 1899

Default 0

Work request queue full action:

Specifies the action taken when the thread pool is exhausted, and the work request queue is full. This

action starts when you submit non-daemon work to the work manager.

 If set to FAIL, the work manager API methods creates an exception instead of blocking.

 Default BLOCK

Range FAIL

Service names:

Specifies a list of service names on which this work manager is made available.

 Asynchronous beans can inherit J2EE context information by enabling one or more J2EE service contexts

on the work manager resource in the WebSphere administration console or by setting the serviceNames

attribute of the WorkManagerInfo configuration object. When specifying the serviceNames attribute each

enabled service should be separated by a semicolon. For example:

security;UserWorkArea;com.ibm.ws.i18n. When a J2EE service context is enabled, it propagates the

context from the scheduling thread to the target thread. If not enabled, the target thread does not inherit

the context of the scheduling thread and a default context is applied. Any related J2EE context that is

already present on the thread is suspended before any new J2EE context is applied.

The context information of each selected service is propagated to each work or alarm that is created using

this work manager. Selecting services that are not needed can negatively impact performance.

 Application profile (deprecated) Use the administrative console or the AppProfileService

service name to enable the application profile tasks. This

J2EE context is deprecated and is only available when

Application Profile Service 5.x Compatibility Mode is

enabled and both the scheduling thread and target thread

are J2EE 1.3 applications. When enabled, all application

profile tasks that are available on the scheduling thread is

available on the target thread. The scheduled work that

runs in a J2EE 1.4 application does not get the application

profiling task of the scheduling thread. This feature is

optional.

Work area Use the administrative console or the UserWorkArea

service name to enable work area partitions. When

enabled, the work area context for every work area

partition that exists on the scheduling thread is available

on the target thread. This feature is optional.

Security Use the administrative console or the security service

name to enable the Java Authentication and Authorization

Service (JAAS) subject. When this feature and global

security are enabled, the JAAS subject that is present on

the scheduling thread is applied to the target thread. If not

enabled, the target thread is run anonymously without a

JAAS subject on the thread. This feature is optional.

1900 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Internationalization Use the administrative console or the com.ibm.ws.i18n

service name to enable the internationalization context

information. When the internationalization context and the

Internationalization service is enabled, the

internationalization context that exists on the scheduling

thread is available on the target thread. This feature is

optional.

Thread pool properties:

 Number of alarm threads Specifies the number of alarm threads available to the

work manager for running work. The default value is 2.

Minimum number of threads Specifies the minimum number of threads available in this

work manager for running work.

Maximum number of threads Specifies the maximum number of threads available in this

work manager for running work.

Thread priority Specifies the priority of the threads available in this work

manager.

Growable Specifies whether the number of threads in this work

manager can be increased.

Dynamic cache

Task overview: Using the dynamic cache service to improve performance

Use the dynamic cache to improve application performance by caching the output of servlets, commands,

and JavaServer Pages (JSP) files.

On distributed platforms, WebSphere Application Server, Version 4.0, supported the configuration of

dynamic servlet caching through the servletcache.xml file. To utilize the new and improved functionality of

the dynamic cache service, configure your cache policy using the cachespec.xml format. See ″Configuring

cacheable objects with the cachespec.xml file″ for more information.

The dynamic cache service works within an application server Java virtual machine (JVM), intercepting

calls to cacheable objects. For example, it intercepts calls through a servlet service method or a command

execute method, and either stores the output of the object to the cache or serves the content of the object

from the dynamic cache.

1. Enable the dynamic cache service globally. To use the features associated with dynamic caching, you

must enable the service in the administrative console. See ″Enabling the dynamic cache service″ in

the information center.

2. Configure the type of caching that you are using.

v Configure servlet caching.

v Configure Edge Side Include caching.

v Configure command caching.

v “Example: Caching Web services” on page 1902.

v Configure the Web services client cache.

3. You can monitor the results of your configuration using the dynamic cache monitor. For more

information, see ″Displaying cache information″ in the information center.

4. If you have any problems with your configuration, see ″Troubleshooting the dynamic cache service″ in

the information center.

To use the DistributedMap and DistributedObjectCache interfaces for the dynamic cache, see “Using the

DistributedMap and DistributedObjectCache interfaces for the dynamic cache” on page 1936.

Chapter 8. Developing WebSphere applications 1901

Dynamic cache:

Caching the output of servlets, commands, and JavaServer Pages (JSP) improves application

performance. WebSphere Application Server consolidates several caching activities including servlets,

Web services, and WebSphere commands into one service called the dynamic cache. These caching

activities work together to improve application performance, and share many configuration parameters that

are set in the dynamic cache service of an application server.

 You can use the dynamic cache to improve the performance of servlet and JSP files by serving requests

from an in-memory cache. Cache entries contain servlet output, the results of servlet after it runs, and

metadata.

Example: Caching Web services: The following is a example of building a set of cache policies for a

simple Web services application. The application in this example stores stock quotes, and has operations

to read, update the price of, and buy a given stock symbol.

Following are two SOAP message examples that the application can receive, with accompanying HTTP

Request headers.

The first message sample contains a Simple Object Access Protocol (SOAP) message for a GetQuote

operation, requesting a quote for IBM. This is a read-only operation that gets its data from the back end,

and is a good candidate for caching. In this example the SOAP message is cached and a timeout is

placed on its entries to guarantee the quotes it returns are current.

Message example 1

POST /soap/servlet/soaprouter

HTTP/1.1

Host: www.myhost.com

Content-Type: text/xml; charset="utf-8"

SOAPAction: urn:stockquote-lookup

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

<SOAP-ENV:Body>

<m:getQuote xmlns:m="urn:stockquote">

<symbol>IBM</symbol>

</m:getQuote>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

The SOAPAction HTTP header in the request is defined in the SOAP specification and is used by HTTP

proxy servers to dispatch requests to particular HTTP servers. WebSphere Application Server dynamic

cache can use this header in its cache policies to build IDs without having to parse the SOAP message.

Message example 2 illustrates a SOAP message for a BuyQuote operation. While message 1 is

cacheable, this message is not, because it updates the back end database.

Message example 2

POST /soap/servlet/soaprouter

HTTP/1.1

Host: www.myhost.com

Content-Type: text/xml; charset="utf-8"

SOAPAction: urn:stockquote-update

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

<SOAP-ENV:Body>

<m:buyStock xmlns:m="urn:stockquote">

<symbol>IBM</symbol>

</m:buyStock>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

1902 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

The graphic illustrates how to invoke methods with the SOAP messages. In Web services terms,

especially Web Service Definition Language (WSDL), a service is a collection of operations such as

getQuote and buyStock. A body element namespace (urn:stockquote in the example) defines a service,

and the name of the first body element indicates the operation.

buyStock

getQuote

SOAP Router

Servlet

Another

Service

StockQuote

Service

SOAP/HTTP

The following is an example of WSDL for the getQuote operation:

<?xml version="1.0"?>

<definitions name="StockQuoteService-interface"

targetNamespace="http://www.getquote.com/StockQuoteService-interface"

xmlns:tns="http://www.getquote.com/StockQuoteService-interface"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns=soap="http://schemas.xmlsoap.org/wsdl/soap/"

xmlns="http://schemas.xmlsoap.org/wsdl/"

<message name="SymbolRequest">

<part name="return" type="xsd:string"/>

</message>

<portType name="StockQuoteService">

<operation name="getQuote">

<input message="tns:SymbolRequest"/>

<output message="tns:QuoteResponse"/>

</operation>

</portType>

<binding name="StockQuoteServiceBinding"

type="tns:StockQuoteService">

<soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>

<operation name="getQuote">

<soap:operation soapAction="urn:stockquote-lookup"/>

<input>

<soap:body use="encoded" namespace="urn:stockquote"

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

</input>

<output>

<soap:body use="encoded" namespace="urn:stockquotes"

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

</output>

</operation>

</binding>

</definition>

To build a set of cache policies for a Web services application configure WebSphere Application Server

dynamic cache to recognize cacheable service operation of the operation.

WebSphere Application Server inspects the HTTP request to determine whether or not an incoming

message can be cached based on the cache policies defined for an application. In this example, buyStock

and stock-update are not cached, but stockquote-lookup is cached. In the cachespec.xml file for this Web

application, the cache policies need defining for these services so that the dynamic cache can handle both

SOAPAction and service operation.

Chapter 8. Developing WebSphere applications 1903

WebSphere Application Server uses the operation and the message body in Web services cache IDs,

each of which has a component associated with them. Therefore, each Web services <cache-id> rule

contains only two components. The first is for the operation. Because you can perform the

stockquote-lookup operation by either using a SOAPAction header or a service operation in the body, you

must define two different <cache-id> elements, one for each method. The second component is of type

″body″, and defines how WebSphere Application Server should incorporate the message body into the

cache ID. You can use a hash of the body, although it is legal to use the literal incoming message in the

ID.

The incoming HTTP request is analyzed by WebSphere Application Server to determine which of the

<cache-id> rules match. Then, the rules are applied to form cache or invalidation IDs.

The following is sample code of a cachespec.xml file defining SOAPAction and servicesOperation rules:

<cache>

<cache-entry>

<class>webservice</class>

<name>/soap/servlet/soaprouter</name>

<sharing-policy>not-shared</sharing-policy>

<cache-id>

<component id="" type="SOAPAction">

<value>urn:stockquote-lookup</value>

</component>

<component id="Hash" type="SOAPEnvelope"/>

<timeout>3600</timeout>

<priority>1<priority>

</cache-id>

<cache-id>

<component id="" type="serviceOperation">

<value>urn:stockquote:getQuote</value>

</component>

<component id="Hash" type="SOAPEnvelope"/>

<timeout>3600</timeout>

<priority>1</priority>

</cache-id>

</cache-entry>

</cache>

Example: Configuring the dynamic cache: This example puts all the steps together for configuring the

dynamic cache with the cachespec.xml file, showing the use of the cache ID generation rules, dependency

IDs, and invalidation rules.

Suppose that a servlet is used to manage a simple news site. This servlet uses the query parameter

″action″ to determine if the request is being used to ″view″ news or ″update″ news (used by the

administrator). Another query parameter ″category″ is used to select the news category. Suppose that this

site supports an optional customized layout that is stored in the user’s session using the attribute name

″layout″. Here are example URL requests to this servlet:

http://yourhost/yourwebapp/newscontroller?action=view&category=sports (Returns a news page for the

sports category)

http://yourhost/yourwebapp/newscontroller?action=view&category=money (Returns a news page for the

money category)

http://yourhost/yourwebapp/newscontroller?action=update&category=fashion (Allows the administrator to

update news in the fashion category)

Here are the steps for configuring dynamic cache for this example with the cachespec.xml file:

1. Define the <cache-entry> elements necessary to identify the servlet. In this case, the servlet’s URI is

″newscontroller″ so this is the cache-entry’s <name> element. Because this example caches a servlet

or JavaServer Pages (JSP) file, the cache entry class is ″servlet″.

1904 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

<cache-entry>

<name> /newscontroller </name>

<class>servlet </class>

 </cache-entry>

2. Define cache ID generation rules. This servlet is cached only when action=view, so one component of

the cache ID is the parameter ″action″ when the value equals ″view″. The news category is also an

essential part of the cache ID. Finally, the optional session attribute for the user’s layout is included in

the cache ID. The cache entry now is :

<cache-entry>

 <name> /newscontroller </name>

 <class>servlet </class>

 <cache-id>

 <component id="action" type="parameter">

 <value>view</value>

 <required>true</required>

 </component>

 <component id="category" type="parameter">

 <required>true</required>

 </component>

 <component id="layout" type="session">

 <required>false</required>

 </component>

 </cache-id>

</cache-entry>

3. Define dependency ID rules. For this servlet, a dependency ID is added for the category. Later, when

the category is invalidated due to an update event, all views of that news category are invalidated.

Following is an example of the cache entry after adding the dependency-id:

<cache-entry>

 <name>newscontroller </name>

 <class>servlet </class>

 <cache-id>

 <component id="action" type="parameter">

 <value>view</value>

 <required>true</required>

 </component>

 <component id="category" type="parameter">

 <required>true</required>

 </component>

 <component id="layout" type="session">

 <required>false</required>

 </component>

 </cache-id>

 <dependency-id>category

 <component id="category" type="parameter">

 <required>true</required>

 </component>

 </dependency-id>

</cache-entry>

4. Define invalidation rules. Since a category dependency ID is already defined, define an invalidation

rule to invalidate the category when action=update. To incorporate the conditional logic, we will add

″ignore-value″ components into the invalidation rule. These components do not add to the output of the

invalidation ID, but only determine whether or not the invalidation ID is created and run. The final

cache-entry now looks like this:

<cache-entry>

 <name>newscontroller </name>

 <class>servlet </class>

 <cache-id>

 <component id="action" type="parameter">

 <value>view</value>

 <required>true</required>

 </component>

 <component id="category" type="parameter">

 <required>true</required>

 </component>

Chapter 8. Developing WebSphere applications 1905

<component id="layout" type="session">

 <required>false</required>

 </component>

 </cache-id>

 <dependency-id>category

 <component id="category" type="parameter">

 <required>true</required>

 </component>

 </dependency-id>

 <invalidation>category

 <component id="action" type="parameter" ignore-value="true">

 <value>update</value>

 <required>true</required>

 </component>

 <component id="category" type="parameter">

 <required>true</required>

 </component>

 </invalidation>

</cache-entry>

Enabling the dynamic cache service

Enable the dynamic cache service to improve application performance by caching the output of servlets,

Web services, and WebSphere commands into memory.

Develop a cache policy for your application. The cache policy defines rules for what responses to cache

and the amount of time the responses should be held in the cache. See ″Configuring cacheable objects

with the cachespec.xml file″ for more information.

The dynamic cache service is enabled by default. However, you can enable or disable the service through

the administrative console.

1. Open the administrative console.

2. In the administrative console, click Servers > Application servers > server_name> Container

services > Dynamic cache service.

3. Select Enable service at server startup .

4. Click Apply or OK.

5. Restart WebSphere Application Server. You might want to enable servlet caching before restarting

WebSphere Application Server. See “Configuring servlet caching” on page 1908 for more information.

The dynamic cache service caches content for requests that have cache policies configured.

You might want to enable dynamic cache disk offload. This option moves cache entries that are expired

from memory to disk for potential future access. See “Configuring dynamic cache disk offload” on page

1909 for more information.

Dynamic cache service settings:

Use this page to configure and manage the dynamic cache service settings.

 To view this administrative console page, click Servers > Application servers > server_name >

Container services > Dynamic cache service.

 Related concepts

 “Dynamic cache” on page 1902
Caching the output of servlets, commands, and JavaServer Pages (JSP) improves application

performance. WebSphere Application Server consolidates several caching activities including servlets,

Web services, and WebSphere commands into one service called the dynamic cache. These caching

activities work together to improve application performance, and share many configuration parameters

that are set in the dynamic cache service of an application server.

1906 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Enable service at server startup:

Specifies whether the dynamic cache is enabled when the server starts.

Cache size:

Specifies a positive integer as the value for the maximum number of entries the cache holds.

 Enter the cache size value in this field between the range of 100 through 200,000.

Default priority:

Specifies the default priority for cache entries, determining how long an entry stays in a full cache.

 Default 1

Range 1 to 255

Enable disk offload:

Specifies whether disk offload is enabled.

 By default, the dynamic cache maintains the number of entries configured in memory. If new entries are

created while the cache is full, the priorities configured for each cache entry and a least recently used

algorithm, are used to remove entries from the cache. In addition to having a cache entry removed from

memory when the cache is full, you can enable disk offload to have a cache entry copied to the file

system (the location is configurable). Later, if that cache entry is needed, it is moved back to memory from

the file system.

Offload location:

Specifies the location on the disk to save cache entries when disk offload is enabled.

Flush to disk:

Specifies if in-memory cached objects are saved to disk when the server is stopped. This value is ignored

if Enable disk offload is not selected.

 Default false

Enable cache replication:

Use cache replication to have cache entries copied to multiple application servers that are configured in

the same replication domain.

 Full group replication domain:

Specifies a replication domain from which your data is replicated.

 Choose from any replication domains that have been defined. If there are no replication domains listed,

you must create one during cluster creation or manually in the administrative console by clicking

Environment > Internal replication domains > New. The replication domain you choose to use with the

dynamic cache service must be using a Full group replica. Do not share replication domains between

replication consumers. Dynamic cache should use a different replication domain from session manager or

stateful session beans.

Chapter 8. Developing WebSphere applications 1907

Replication type:

Specifies the global sharing policy for this application server.

 The following settings are available:

v Both push and pull sends the cache ID of newly updated content to other servers in the replication

domain. Then, if one of the other servers requests the content, and that server has the ID of the cache

entry for the previously updated content, it will retrieve the content from the publishing server. On the

other hand, if a request is made for an ID which has not been previously published, the server assumes

it does not exist in the cluster and creates a new entry.

v Push only sends the cache ID and cache content of new content to all other servers in the replication

domain.

v The sharing policy of Not Shared results in the cache ID and cache content not being shared with other

servers in the replication domain.

The default setting for an environment without clustering is Not Shared. When enabling replication, the

default value is Push only.

Push frequency:

Specifies the time in seconds to wait before pushing new or modified cache entries to other servers.

 A value of 0 (zero) means send the cache entries immediately. Setting this property to a value greater than

0 (zero) causes a ″batch″ push of all cache entries that are created or modified during the time period.

The default is 0 (zero).

Configuring servlet caching:

Configure servlet caching to save the output of servlets to the dynamic cache.

 To enable servlet caching, you must complete “Enabling the dynamic cache service” on page 1906.

1. In the administrative console, click Servers > Application servers >server_name > Web Container

Settings > Web container in the console navigation tree.

2. Select Enable servlet caching under the Configuration tab.

3. Click Apply or OK.

4. Restart WebSphere Application Server. See “Managing application servers” on page 113 for more

information.

Define the cache policy for your servlets by configuring cacheable objects with the cachespec.xml file.

Servlet caching:

After a servlet is invoked and completes generating the output to cache, a cache entry is created

containing the output and the side effects of the servlet. These side effects can include calls to other

servlets or JavaServer Pages (JSP) files or metadata about the entry, including timeout and entry priority

information.

 Unique entries are distinguished by an ID string that is generated from the HttpServletRequest object each

time the servlet runs. You can then base servlet caching on:

v Request parameters and attributes the URI used to invoke the servlet

v Session information

v Other options, including cookies

1908 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Because JavaServer Pages files are compiled into servlets, the dynamic cache function treats JavaServer

Pages files the same as servlets, except in specifically documented situations.

To enable servlet caching see ″Configuring servlet caching″ in the information center. To configure cache

policies for your servlets, see ″Configuring cacheable objects with the cachespec.xml file.″

Configuring dynamic cache disk offload:

Use this task to configure dynamic cache disk offload, which saves cache entries that are deleted from the

memory cache to disk.

 By default, when the number of cache entries reaches the configured limit for a given application server,

cache entries are removed from the memory cache, allowing newer entries to be stored in the cache. Use

disk offload to copy the cache entries that are being removed from the memory cache to disk for potential

future access.

1. In the administrative console, click Servers > Application servers >server_name > Container

services > Dynamic cache service.

2. Select Enable disk offload. After you enable the disk offload, you can set the disk offload location.

The disk offload location specifies where to save the cache entries on the disk.

3. Click Apply or OK.

4. Restart WebSphere Application Server.

Application servers must have different disk offload locations

When you have two or more application servers with servlet caching enabled and the application servers

specify the same disk offload location for their caches through the dynamic cache service, the following

exceptions might occur:

java.lang.NullPointerException

 at com.ibm.ws.cache.CacheOnDisk.readTemplate(CacheOnDisk.java:686)

 at com.ibm.ws.cache.Cache.internalInvalidateByTemplate(Cache.java:828)

or:

java.lang.NullPointerException

 at com.ibm.ws.cache.CacheOnDisk.readCacheEntry(CacheOnDisk.java:600)

 at com.ibm.ws.cache.Cache.getCacheEntry(Cache.java:341)

If one server is run as root and the other servers are run as nonroot, this problem could occur. For

example, if server1 runs as root and server2 runs as wasuser or wasgroup, the cache files in the disk

offload location might be created with root permissions. This situation causes the applications running on

the nonroot servers to crash when they try to read or write to the cache.

On distributed platforms, the disk offload location must be unique for servers defined on the same node. If

you have multiple servers defined on the same node, make sure the disk offload location is different for

each server. Change the disk offload location by clicking Servers > Application servers >server_name >

Container services > Dynamic cache service in the administrative console.

Java virtual machine custom properties for tuning the disk cache:

Use this page to set Java virtual machine (JVM) custom properties to maintain cache entries that are

saved to disk.

 Steps for this task

You can set the custom properties globally to affect all cache instances, or you can set the custom

property on a single cache instance. In most cases, set the properties on the individual cache instances. If

Chapter 8. Developing WebSphere applications 1909

you want to set the custom properties on the default cache instance, however, you must use global option.

If you set the same property both globally and on a cache instance, the value that is set on the cache

instance overrides the global value.

To configure the custom properties on a single object cache instance or servlet cache instance, perform

the following steps:

1. In the administrative console, click one of the following paths:

v To configure a servlet cache instance, click Resources > Cache instances > Servlet cache

instances > servlet_cache_instance_name > Custom properties > New.

v To configure an object cache instance, click Resources > Cache instances > Object cache

instances > object_cache_instance_name > Custom properties > New.

2. Type the name of the custom property. When configuring these custom properties on a single cache

instance, you do not use the full property path. For example, type htodCleanupFrequency to configure

the com.ibm.ws.cache.CacheConfig.htodCleanupFrequency custom property.

3. Type a valid value for the property in the Value field.

4. Save the property and restart WebSphere Application Server.

To configure the custom property globally across all configured cache instances, perform the following

steps:

1. In the administrative console, click Servers > Application servers > server_name > Java and

process management > Process definition > Java virtual machine > Custom properties > New.

2. Type the name of the custom property (for example,

com.ibm.ws.cache.CacheConfig.htodCleanupFrequency) in the Name field.

3. Type a valid value for the property in the Value field.

4. Save the property and restart WebSphere Application Server.

com.ibm.ws.cache.CacheConfig.htodCleanupFrequency

Use this property to change the amount of time between disk cache cleanup.

By default, the disk cache cleanup is scheduled to run at midnight to remove expired cache entries and

cache entries that have not been accessed in the past 24 hours. However, if you have thousands of cache

entries that might expire within one or two hours, the files that are in the disk cache can grow large and

become unmanageable. Use the com.ibm.ws.cache.CacheConfig.htodCleanupFrequency custom

property to change the time interval between disk cache cleanup.

 Units minutes

For example, a value of 60 means 60 minutes between

each disk cache cleanup.

Default 0

The disk cache cleanup occurs at midnight every 24

hours.

Tune the delay offload function

Use these properties to tune the delay offload function for the disk cache. The delay offload function uses

extra memory buffers for dependency IDs and templates to delay the disk offload and minimize the input

and output operations. However, if most of your cache IDs are longer than 100 bytes, the delay offload

function might use too much memory. Use any combination of the following properties to tune your

configuration:

1910 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

v To increase or decrease the in-memory limit of cache IDs for dependency ID and template buffers, use

the com.ibm.ws.cache.CacheConfig.htodDelayOffloadEntriesLimit custom property.

v To disable the disk cache delay offload function, use the

com.ibm.ws.cache.CacheConfig.htodDelayOffload custom property. Disabling this property saves all

cache entries to disk immediately after removing them from the memory cache.

com.ibm.ws.cache.CacheConfig.htodDelayOffloadEntriesLimit

Specifies the number of different cache IDs that can be saved in memory for the dependency ID and

template buffers. Consider increasing this value if you have a lot of memory in your server and you want

to increase the performance of your disk cache.

 Units number of cache IDs

For example, a value of 1000 means that each

dependency ID or template ID can have up to 1000

different cache IDs in memory.

Default 1000

Minimum 100

com.ibm.ws.cache.CacheConfig.htodDelayOffload

Specifies if extra memory buffers are used in memory for dependency IDs and templates to delay disk

offload and to minimize input and output operations to the disk. This property is enabled by default,

however, consider disabling it if your cache IDs are larger than 100 bytes because this option might use

too much memory when it buffers your data. If you set this property to false, all the cache entries are

copied to disk immediately after they are removed from the memory cache.

 Default true

Configuring Edge Side Include caching:

Edge Side Include (ESI) is configured through the plugin-cfg.xml file.

The Web server plug-in contains a built-in ESI processor. The ESI processor can cache whole pages, as

well as fragments, providing a higher cache hit ratio. The cache implemented by the ESI processor is an

in-memory cache, not a disk cache, therefore, the cache entries are not saved when the Web server is

restarted.

When a request is received by the Web server plug-in, it is sent to the ESI processor, unless the ESI

processor is disabled. It is enabled by default. If a cache miss occurs, a Surrogate-Capabilities header is

added to the request and the request is forwarded to the WebSphere Application Server. If servlet caching

is enabled in the application server, and the response is edge cacheable, the application server returns a

Surrogate-Control header in response to the WebSphere Application Server plug-in.

The value of the Surrogate-Control response header contains the list of rules that are used by the ESI

processor to generate the cache ID. The response is then stored in the ESI cache, using the cache ID as

the key. For each ESI include tag in the body of the response, a new request is processed so that each

nested include results in either a cache hit or another request that forwards to the application server.

When all nested includes have been processed, the page is assembled and returned to the client.

The ESI processor is configurable through the WebSphere Web server plug-in configuration file

plugin-cfg.xml. The following is an example of the beginning of this file, which illustrates the ESI

configuration options.

Chapter 8. Developing WebSphere applications 1911

<?xml version-"1.0"?>

<Config>

 <Property Name="esiEnable" Value="true"/>

 <Property Name="esiMaxCacheSize" Value="1024"/>

 <Property Name="esiInvalidationMonitor" Value="false"/>

The first option, esiEnable, can be used to disable the ESI processor by setting the value to false. ESI is

enabled by default. If ESI is disabled, then the other ESI options are ignored.

The second option, esiMaxCacheSize, is the maximum size of the cache in 1K byte units. The default

maximum size of the cache is 1 megabyte. If the cache is full, the first entry to be evicted from the cache

is the entry that is closest to expiration.

The third option, esiInvalidationMonitor, specifies if the ESI processor should receive invalidations from the

application server. ESI works well when the Web servers following a threading model are used, and only

one process is started. When multiple processes are started, each process caches the responses

independently and the cache is not shared. This could lead to a situation where, the system’s memory is

fully used up by ESI processor. There are three methods by which entries are removed from the ESI

cache: first, an entry expiration timeout occurs; second, an entry is purged to make room for newer

entries; or third, the application server sends an explicit invalidation for a group of entries. For the third

mechanism to be enabled, the esiInvalidationMonitor property must be set to true and the DynaCacheEsi

application must be installed on the application server. The DynaCacheEsi application is located in the

installableApps directory and is named DynaCacheEsi.ear. If the ESIInvalidationMonitor property is set to

true but the DynaCacheEsi application is not installed, then errors occur in the Web server plug-in and the

request fails.

On distributed platforms, the ESI processor’s cache can be monitored through the CacheMonitor

application. In order for ESI processor’s cache to be visible in the CacheMonitor, the DynaCacheEsi

application must be installed as described above and the ESIInvalidationMonitor property must be set to

true in the plugin-cfg.xml file.

When WebSphere Application Server is used to serve static data, such as images and HTML on the

application server, the URLs are also cached in the ESI processor. This data has a default timeout of 300

seconds. You can change the timeout value by adding the property com.ibm.servlet.file.esi.timeOut to the

Java virtual machine (JVM) command line parameters. The following example shows how to set a one

minute timeout on static data cached in the plug-in:

-Dcom.ibm.servlet.file.esi.timeOut=60

For information about configuring alternate URL, see ″“Configuring alternate URL.”″

Configuring alternate URL:

Alternate URL is a method for edge caching JavaServer Pages (JSP) files and servlet responses that you

can not request externally. Dynamic cache provides support to recognize the presence of an Edge Side

Include (ESI) processor and to generate ESI include tags and appropriate cache policies for edge

cacheable fragments. However, for a fragment to be edge cacheable, you must be able to externally

request it from the application server. In other words, if a user types the URL in their browser with the

appropriate parameters and cookies for the fragment, WebSphere Application Server must return the

content for that fragment.

One of the standard Java 2 Platform, Enterprise Edition (J2EE) programming architectures is the

model-view-controller (MVC) architecture, where a call to a controller servlet might include one or more

child JSP files to construct the view. When using the MVC programming model, the child JSP files are

edge cacheable only if you can request these JSP files externally, which is not usually the case. For

example, if a child JSP file uses one or more request attributes that are determined and set by the

controller servlet, you cannot cache that JSP file on the edge. You can use alternate URL support to

overcome this limitation by providing an alternate controller servlet URL used to invoke the JSP file.

1912 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

The alternate URL for a JSP file or a servlet is set in the cachespec.xml file as a property with the name

alternate_url. You can set the alternate URL either on a per cache-entry basis or on a per cache-id

basis. It is valid only if the EdgeCacheable property is also set for that entry. If the EdgeCacheable property

is not set, the alternate_url property is ignored. The following is a sample cache policy using the

alternate_url property:

<cache-entry>

 <class>servlet</class>

 <name>/AltUrlTest2.jsp</name>

 <property name=″EdgeCacheable″>true</property>

 <property name=″alternate_url″>/alturlcontroller2</property>

 <cache-id>

 <timeout>600</timeout>

 <priority>2</priority>

 </cache-id>

</cache-entry>

For more information on the cachespec.xml file, see ″Cachespec.xml file″ in the information center.

Configuring external cache groups:

The dynamic cache can control caches outside of the application server, such as the Edge server, an IBM

HTTP Server for distributed platforms, or an HTTP Server ESI Fragment Processor plug-in for distributed

platforms. When external cache groups are defined, the dynamic cache matches externally cacheable

cache entries with those groups, and pushes cache entries and invalidations out to those groups. This

allows WebSphere Application Server to manage dynamic content beyond the application server. The

content can then be served from the external cache, instead of the application server, improving savings in

performance.

1. Open the administrative console.

2. Enable the dynamic cache.

a. In the administrative console, click Servers > Application servers > server_name > Container

services > Dynamic cache service.

b. Select Enable service at server startup to enable the dynamic cache each time the application

server starts.

3. Define the external cache group that WebSphere Application Server should control.

a. In the administrative console, click Servers > Application servers > server_name > Container

services > Dynamic cache service >External cache groups.

b. Click New or choose an external cache group from the list.

4. Configure cache group members.

a. Click External cache groups from the dynamic cache administrative console page. Then click

New or choose an external cache group from the list.

b. Click External cache group members > New or choose an external cache group member from

the list.

c. Type the configuration string in the Address field.

d. Type the adapter bean name in the Adapter Bean Name field.

e. Save the configuration.

f. Click Apply or OK.

External cache group collection:

Use this page to define sets of external caches controlled by WebSphere Application Server on web

servers such as IBM Edge Server and IBM HTTP Server.

Chapter 8. Developing WebSphere applications 1913

To view this administrative console page, click Servers > Application servers > server_name >

Container services > Dynamic cache service > External cache groups.

Name:

Specifies the external cache group name.

 The external cache group name needs to match the ExternalCache property as defined in the servlet or

JavaServer Pages file cachespec.xml file.

When external caching is enabled, the cache matches pages with its URIs and pushes matching pages to

the external cache. The entries can then be served from the external cache, instead of the application

server.

Type:

Specifies the external cache group type.

External cache group settings:

Use this page to configure sets of external caches controlled by WebSphere Application Server on Web

servers, such as IBM Edge Server and IBM HTTP Server.

 To view this administrative console page, click Servers > Application servers > server_name >

Container services > Dynamic cache service > External cache groups > external_cache_group.

Name:

Specifies the external cache group name.

 The external cache group name must match the ExternalCache property as defined in the servlet or Java

Server Pages (JSP) cachespec.xml file.

When external caching is enabled, the cache matches pages with its Universal Resource Identifiers (URIs)

and pushes matching pages to the external cache. The entries can then be served from the external

cache, instead of the application server. This ability creates a significant savings in performance.

External cache group member collection:

Use this page to define specific caches that are members of a cache group.

 To view this administrative console page, click Servers > Application servers > server_name >

Container services > Dynamic cache service > External cache groups > external_cache_group >

External cache group members.

Address:

Specifies a configuration string used by external cache adapter bean to connect to the external cache.

AdapterBeanName:

Specifies the adapter bean name.

 Example adapter bean names supported in WebSphere Application Server are:

 AFPA

1914 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

AdapterBeanName: com.ibm.ws.cache.servlet.Afpa

Address: Port on which afpa listens

ESI

AdapterBeanName: com.ibm.websphere.servlet.cache.ESIInvalidatorServlet

Address: local host

WTE

AdapterBeanName: com.ibm.websphere.edge.dynacache.WteAdapter

Address: hostname:port (host name and port on which WTE is listening)

External cache group member settings:

Use this page to configure specific caches that are members of a cache group.

 To view this administrative console page, click Servers > Application servers > server_name >

Container services > Dynamic cache service > External cache groups > external_cache_group >

External cache group members > external_cache_group_member.

Address:

Specifies a configuration string used by external cache adapter bean to connect to the external cache.

AdapterBeanName:

Specifies the adapter bean name.

 Example adapter bean names supported in WebSphere Application Server are:

 AFPA

AdapterBeanName: com.ibm.ws.cache.servlet.Afpa

Address: Port on which afpa listens

ESI

AdapterBeanName: com.ibm.websphere.servlet.cache.ESIInvalidatorServlet

Address: local host

WTE

AdapterBeanName: com.ibm.websphere.edge.dynacache.WteAdapter

Address: hostname:port (host name and port on which WTE is listening)

Configuring high-speed external caching through the Web server:

IBM HTTP Server for Windows NT and Windows 2000 operating systems contains a high-speed cache

referred to as the Fast Response Cache Accelerator, or cache accelerator.

The Fast Response Cache Accelerator is available on Windows NT and Windows 2000 operating systems

and AIX platforms. However, support to cache dynamic content is only available on Windows NT and

Windows 2000 operating systems.

You can enable cache accelerator to cache static and dynamic content. To enable cache accelerator for

caching static content, add the following directives to the http.conf configuration file, in the IBM HTTP

Server conf directory:

Chapter 8. Developing WebSphere applications 1915

v AfpaEnable

v AfpaCache on

v AfpaLogFile ″install_root\IBMHttpServer\logs\afpalog″ V-ECLF

To enable cache accelerator for caching dynamic content, such as servlets and JavaServer Pages (JSP)

files, configure the WebSphere Application Server and the IBM HTTP Server for distributed platforms:

1. Configure WebSphere Application Server to enable Fast Response Cache Accelerator. It is important

to follow all the steps for every application server in the cluster.

a. On distributed platforms, turn on servlet caching for each application server that uses the cache

accelerator.

b. Configure an external cache group on the application server:

1) Click Servers > Application servers > server_name > Container services > Dynamic cache

service > External cache groups.

2) Click New on the External cache group administrative console page to define an external

cache group named afpa for each application server that uses the cache accelerator.

3) In the External cache group field, type afpa and apply the changes.

c. Add a member to the group with an adapter bean name of com.ibm.ws.cache.servlet.Afpa.

1) Click Afpa > External cache group members.

2) Click New on the External cache group members administrative console page.

3) In the AdapterBean name field, type com.ibm.ws.cache.servlet.Afpa.

4) In the Address field, enter an unused port number.

d. Add a cache policy in the cachespec.xml file for the servlet or JSP file you want to cache. Add the

following property to the cache policy:

<property name="ExternalCache">afpa</property>

2. Enable cache accelerator on the IBM HTTP Server for distributed platforms:

a. Add the following directives to the end of the httpd.conf file:

v AfpaEnable

v AfpaCache on

v AfpaLogFile ″install_root\IBMHttpServer\logs\afpalog″ V-ECLF

v LoadModule afpaplugin_module install_root/bin/afpaplugin.dll

v AfpaPluginHost WAS_Hostname:port, where WAS_Hostname is the host name of the application

server and port is the port you specified in the Address field while configuring the external

cache group member

The LoadModule directive loads the IBM HTTP Server plug-in that connects the Fast Response Cache

Accelerator to the WebSphere Application Server fragment cache. If multiple IBM HTTP Servers are

routing requests to a single application server, add the directives above to the http.conf file of each of

these IBM HTTP Servers for distributed platforms. If one IBM HTTP Server is routing requests to a

cluster of application servers, add the AfpaPluginHost WAS_Hostname:port directive to the http.conf

file for each application server in the cluster. For example, if there are three application servers in the

cluster, add the following directives to the http.conf file:

v LoadModule afpaplugin_module install_root/bin/afpaplugin.dll

v AfpaPluginHost WAS1_Hostname:port1

v AfpaPluginHost WAS2_Hostname:port2

v AfpaPluginHost WAS3_Hostname:port3

Configuring fast response cache accelerator cache size through a distributed platforms Web server:

In the default IBM HTTP Server for distributed platforms configuration, the maximum fast cache

accelerator dynamic cache size is calculated as 1/8 of physical pin-able memory. On a machine with 384

megabytes of RAM, it allows a maximum of approximately 50 megabytes for the Fast Cache Accelerator

dynamic cache. When this limit is reached, the cache accelerator deletes older entries to cache new

entries.

1916 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Using the IBM HTTP Server for distributed platforms AfpaDynaCacheMax directive, tune the maximum

allowed cache size:

1. Place the directive in the global server configuration scope, along with the other default Fast Cache

Accelerator directives.

2. Enable fast cache accelerator. To enable the fast cache accelerator, update the following directives in

this IBM HTTP Server’s http.conf file:

AfpaEnable

AfpaCache on

AfpaLogFile "c:/Program Files/IBM HTTP Server/logs/afpalog" V-ECLF

AfpaDynaCacheMax 10

These above settings limit the dynamic cache size to 10 megabytes. If you use these directives to

increase cache size, do not make the cache so large that all the physical memory is consumed.

Determine how much memory is available when all applications are running, by using the Windows

Task Manager.

Assign no more than 50% of available physical memory to the dynamic cache. Specifying too large a

cache not only decreases the performance of other applications, but also puts you at a risk for

completely running out of memory.

The default configuration does not include the AfpaDynaCacheMax directive where the cache size is

automatically calculated as 1/8 of physical memory.

Configuring cacheable objects with the cachespec.xml file

Enable the dynamic cache. See ″Enabling the dynamic cache service″ in the information center.

Use this task to define cacheable objects inside the cachespec.xml, found inside the Web module WEB-INF

or enterprise bean META-INF directory.

You can save a global cachespec.xml in the application server properties directory, but the recommended

method is to place the cache configuration file with the deployment module. The root element of the

cachespec.xml file is <cache>, which contains <cache-entry> elements.

The <cache-entry> element can be nested within the <cache> element or a <cache-instance> element.

The <cache-entry> elements that are nested within the <cache> element are cached in the default cache

instance. Any <cache-entry> elements that are in the <cache-instance> element are cached in the

instance that is specified in the name attribute on the <cache-instance> element.

Within a <cache-entry> element are parameters that allow you to complete the following tasks to enable

the dynamic cache with the cachespec.xml file:

1. Develop a cachespec.xml file.

a. Create a caching configuration file.

In the <install_root>/properties directory, locate the cachespec.sample.xml file.

b. Copy the cachespec.sample.xml file to cachespec.xml in Web module WEB-INF or enterprise bean

META-INF directory.

2. Define the cache-entry elements necessary to identify the cacheable objects. See the topic

“Cachespec.xml file” on page 1919 for a list of elements.

3. Develop cache ID rules.

To cache an object, WebSphere Application Server must know how to generate unique IDs for different

invocations of that object. The <cache-id> element performs that task. Each cache entry can have

multiple cache-ID rules that run in order until either a rule returns cache-ID that is not empty or no

more rules remain to run. If no cache-ID generation rules produce a valid cache ID, then the object is

not cached. Develop the cache IDs in one of two ways:

v Use the <component> element defined in the cache policy of a cache entry (recommended).

v Write custom Java code to build the ID from input variables and system state.

Chapter 8. Developing WebSphere applications 1917

To configure the cache entry to use the ID generator, specify your IdGenerator in the XML file by using

the <idgenerator> tag, for example:

<cache-entry>

 <class>servlet</class>

 <name>/servlet/CommandProcessor</name>

 <cache-id>

 <idgenerator>com.mycompany.SampleIdGeneratorImpl</idgenerator>

 <timeout>60</timeout>

 </cache-id>

</cache-entry>

4. Specify dependency ID rules. Use dependency ID elements to specify additional cache group

identifiers that associate multiple cache entries to the same group identifier.

The dependency ID is generated by concatenating the dependency ID base string with the values

returned by its component elements. If a required component returns a null value, then the entire

dependency ID does not generate and is not used. You can validate the dependency IDs explicitly

through the dynamic cache API, or use another cache-entry <invalidation> element. Multiple

dependency ID rules can exist per cache entry. All dependency ID rules run separately. See

“Cachespec.xml file” on page 1919 for a list of <component> elements.

5. Invalidate other cache entries as a side effect of this object start, if relevant. You can define

invalidation rules in exactly the same manner as dependency IDs. However, the IDs that are generated

by invalidation rules are used to invalidate cache entries that have those same dependency IDs.

The invalidation ID is generated by concatenating the invalidation ID base string with the values

returned by its component element. If a required component returns a null value, then the entire

invalidation ID is not generated and no invalidation occurs. Multiple invalidation rules can exist per

cache-entry. All invalidation rules run separately.

6. Ensure your cache policy is working correctly. You can modify the policies within the cachespec.xml file

while your application is running. The dynamic cache reloads the updated file automatically. If you are

caching static content and you are adding the cache policy to an application for the first time, you must

restart the application. You do not need to restart the application server to activate the new cache

policy. See “Verifying the cacheable page” for more information.

Typically you declare several <cache-entry> elements inside a cachespec.xml file.

When new versions of the cachespec.xml are detected, the old policies are replaced. Objects that cached

through the old policy file are not automatically invalidated from the cache; they are either reused with the

new policy or eliminated from the cache through its replacement algorithm.

For each of the three IDs (cache, dependency, invalidation) generated by cache entries, a <cache-entry>

can contain multiple elements. The dynamic cache runs the <cache-id> rules in order, and the first one

that successfully generates an ID is used to cache that output. If the object is to be cached, each one of

the <dependency-id> elements is run to build a set of dependency IDs for that cache entry. Finally, each of

the <invalidation> elements are run, building a list of IDs that the dynamic cache invalidates, whether or

not this object is cached.

Verifying the cacheable page:

Use this task to verify that the dynamic cache service has its cache policies configured correctly and is

serving cached content.

 The dynamic cache service should be enabled. You should have a cache policy developed for your

application. See ″Configuring cacheable objects with the cachespec.xml file″ in the information center. You

must have servlet caching enabled in the web container. See ″Configuring servlet caching″ in the

information center.

You can verify the cacheable page by invoking the snoop servlet in the default application. If the dynamic

cache is working correctly, refreshing the servlet repeatedly results in viewing cached content.

1918 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

1. View the snoop servlet in the default application by accessing the URI: /snoop

2. Invoke and reload the URI several times using a different Web browser or using different parameters.

This action returns the same output for the snoop servlet. The snoop servlet is now operating

incorrectly, because it displays the request information from its first invocation rather than from the

current request.

3. Inspect the entry in the cache with the dynamic cache monitor. See ″Displaying cache information″ in

the information center.

Cachespec.xml file: The cache parses the cachespec.xml file when the server starts, and extracts a set

of configuration parameters from each <cache-entry> element. Every time a new servlet or other

cacheable object initializes, the cache attempts to match each of the <cache-entry> elements to find the

configuration information for that object. The <cache-entry> elements can be inside the root <cache>

element or inside a <cache-instance> element. Cache entries that are in the <root> element are cached

with the default cache instance. Cache entries that are in the <cache-instance> element are cached in that

particular cache instance. Different cacheable objects have different <class> elements. You can define the

specific object a cache policy refers to using the <name> element.

Location

Place thecachespec.xml file with the deployment module. Use an assembly tool to define the cacheable

objects. See ″Assembling applications″ in the information center for more information. You can also place

a global cachespec.xml file in the application server properties directory.

The cachespec.dtd file is available in the application server properties directory. The cachespec.dtd file

defines the legal structure and the elements that can be in your cachespec.xml file.

Usage notes

Cachespec.xml elements

The root element of the cachespec.xml file is <cache> and contains <cache-instance> and <cache-entry>

elements. The <cache-entry> elements can also be placed inside of <cache-instance> elements to make

that cache entry a part of a cache instance that is other than the default.

cache-instance

<cache-instance name=″cache_instance_name″></cache-instance>

The name attribute is the Java Naming and Directory Interface (JNDI) name of the cache instance that is

set in the administrative console.

Each <cache-instance> element must contain at least one <cache-entry> element. A cache entry that is

matched within a <cache-instance> element is cached in the servlet cache instance that is specified by the

name attribute. If identical <cache-entry> elements exist across <cache-instance> elements then the first

<cache-entry> element that is matched is used.

cache-entry

Each cache entry must specify certain basic information that the dynamic cache uses to process that

entry. This section explains the function of each cache entry element of the cachespec.xml file including:

v class

v name

v sharing-policy

v property

v cache-id

Chapter 8. Developing WebSphere applications 1919

class

<class>command | servlet | webservice | JAXRPCClient | static</class>

This element is required and specifies how the application server interprets the remaining cache policy

definition. The value servlet refers to servlets and JavaServer Pages (JSP) files that are deployed in the

WebSphere Application Server servlet engine. The webservice class extends the servlet with special

component types for Web services requests. The JAXRPCClient is used to define a cache entry for the

Web services client cache. The value command refers to classes using the WebSphere command

programming model. The value static refers to files that serve static content. The following examples

illustrate the class element:

<class>command</class>

<class>servlet</class>

<class>webservice</class>

<class>JAXRPCClient</class>

<class>static</class>

name

<name>name</name>

where name is the fully qualified class name of the command, servlet, or Web service.

There are two ways to use <name> to specify a cacheable object:

v For commands, this required element must include the package name, if any, and class name, including

a trailing .class, of the configured object.

v For Web services, include the Universal Resource Identifier (URI) of the Simple Object Access Protocol

(SOAP) router associated with the Web service that you want to cache.

v For Web services client cache, the name is the target end point of the cacheable Web service or the

URI of the SOAP router that is associated with the cacheable Web service. You can use the SOAP

address location in the WSDL file to define the name for the Web services client cache.

v For servlets and JSP files, if the cachespec.xml file is in the WebSphere Application Server properties

directory, this required element must include the full URI of the JSP file or servlet to cache. For servlets

and JSP files, if the cachespec.xml file is in the Web application, this required element can be relative to

the specific Web application context root.

v For static files, if the cachespec.xml file is in the WebSphere Application Server properties directory, this

required element must include the full URI of the file to cache. If the cachespec.xml file is in the Web

application, this required element can be relative to the specific Web application context root. For a Web

application with a context root, the cache policy for files using the static class must be specified in the

Web application, and not in the properties directory.

Note: The preferred location of the cachespec.xml file is in the Web application, not the properties

directory.

You can specify multiple <name> elements within a <cache-entry> if you have different mappings that refer

to the same servlet.

The following examples illustrate the name element:

<name>com.mycompany.MyCommand.class</name>

<name>default_host:/servlet/snoop</name>

<name>com.mycompany.beans.MyJavaBean</name>

<name>mywebapp/myjsp.jsp</name>

<name>/soap/servlet/soaprouter</name>

<name>http://remotecompany.com:9080/service/getquote</name>

<name>mywebapp/myLogo.gif</name>

sharing-policy

1920 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

<sharing-policy> not-shared | shared-push | shared-pull | shared-push-pull</sharing-policy>

When working within a cluster with a distributed cache, these values determine the sharing characteristics

of entries created from this object. If this element is not present, a not-shared value is assumed. In single

server environments, not-shared is the only valid value. When enabling replication, the default value is

shared-push only. This property does not affect distribution to Edge Side Include processors through the

Edge fragment caching property.

 Value Description

not-shared Cache entries for this object are not shared among different application servers. These entries

can contain non-serializable data. For example, a cached servlet can place non-serializable

objects into the request attributes, if the <class> type supports it.

shared-push Cache entries for this object are automatically distributed to the dynamic caches in other

application servers or cooperating Java Virtual Machines (JVMs). Each cache has a copy of the

entry at the time it is created. These entries cannot store non-serializable data.

shared-pull Cache entries for this object are shared between application servers on demand. If an

application server gets a cache miss for this object, it queries the cooperating application

servers to see if they have the object. If no application server has a cached copy of the object,

the original application server executes the request and generates the object. These entries

cannot store non-serializable data. This mode of sharing is not recommended.

shared-push-pull Cache entries for this object are shared between application servers on demand. When an

application server generates a cache entry, it broadcasts the cache ID of the created entry to all

cooperating application servers. Each server then knows whether an entry exists for any given

cache ID. On a given request for that entry, the application server knows whether to generate

the entry or pull it from somewhere else. These entries cannot store non-serializable data.

The following example shows a sharing policy:

<sharing-policy>not-shared</sharing-policy>

property

<property name=″key″>value</property>

where key is the name of the property for this cache entry element, and value is the corresponding value.

You can set optional properties on a cacheable object, such as a description of the configured servlet. The

class determines valid properties of the cache entry. At this time, the following properties are defined:

 Property Valid classes Value

ApplicationName All Overrides the J2EEName application ID so that multiple

applications can share a common cache ID namespace.

EdgeCacheable Servlet True or false. Default is false. If the property is true, then the

given servlet or JSP file is externally requested from an Edge

Side Include processor. Whether or not the servlet or JSP file is

cacheable depends on the rest of the cache specification.

ExternalCache Servlet Specifies the external cache name. The external cache name

needs to match the external cache group name.

Chapter 8. Developing WebSphere applications 1921

consume-subfragments Servlet or Web service True or false. Default is false. When a servlet is cached, only

the content of that servlet is stored, and includes placeholders

for any other fragments to which it includes or forwards.

Consume-subfragments (CSF) tells the cache not to stop

saving content when it includes a child servlet. The parent

entry, the one marked CSF, includes all the content from all

fragments in its cache entry, resulting in one big cache entry

that has no includes or forwards, but the content from the

whole tree of entries. This can save a significant amount of

application server processing, but is typically only useful when

the external HTTP request contains all the information needed

to determine the entire tree of included fragments.

do-not-consume Servlet or Web service True or false. Default is false. When a fragment parent has the

consume-subfragment property set to true the child fragment

content is saved in the cache entry of the parent.

Do-not-consume (DNC) tells the cache to stop saving the

content for this fragment in the parent cache-entry and create a

placeholder instead for the include or forward.

alternate_url Servlet Specifies the alternate URL used to invoke the servlet or JSP

file. The property is valid only if the EdgeCacheable property

also is set for the cache entry.

persist-to-disk All True or false. Default is true. When this property is set to false,

the cache entry is not written to the disk when overflow or

server stopping occurs.

save-attributes Servlet True or false. Default is true. When this property is set to false,

the request attributes are not saved with the cache entry.

Use the <exclude> element to specify the request attributes

that do not apply to the save-attributes property. For example,

to save only the attr1 attribute with the cache entry:

<property name="save-attributes">false

<exclude>attr1</exclude>

</property>

To save all attributes except the attr1 attribute in the cache

entry, set the property to true in the preceding sample. If you

do not use the <exclude> element, either all or no request

attributes are saved with the cache entry.

delay-invalidations command True or false. When this property is set to true, the commands

that are invalidating cached objects based on the invalidation

rules in this cache entry invalidate the cache entries after

running. By default, the invalidation occurs before the command

runs.

cache-id

To cache an object, the application server must know how to generate a unique ID for different invocations

of that object. These IDs are built either from user-written custom Java code or from rules defined in the

cache policy of each cache entry. Each cache entry can have multiple cache ID rules that are executed in

order until either:

v A rule returns a non-empty cache ID, or

v No more rules are left to execute.

If none of the cache ID generation rules produce a valid cache ID, the object is not cached.

1922 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Each cache-id element defines a rule for caching an object and is composed of the sub-elements

component, timeout, inactivity, priority, property, idgenerator, and metadatagenerator. The following

example illustrates a cache-id:

<cache-id>component*| timeout? | inactivity? | priority? | property* | idgenerator?

 | metadatagenerator?</cache-id>

component sub-element

Use the component sub-element to generate a portion of the cache ID. The component sub-element

consists of the attributes id, type, and ignore-value, and the elements index,method, field, required,

value, and not-value.

v Use the id attribute to identify the component.

v Use the type attribute to identify the type of component. The following table lists the values for the type.

 Type Valid classes Meaning

method command Calls the indicated method on the

command or object

field command Retrieves the named field in the

command or object

parameter servlet Retrieves the named parameter value

from the request object

parameter-list servlet Retrieves a list of values for the

named parameter

session servlet Retrieves the named value from the

HTTP Session

cookie servlet Retrieves the named cookie value

attribute servlet Retrieves the named request attribute

header servlet and Web service Retrieves the named request header

pathInfo servlet Retrieves the pathInfo from the

request

servletpath servlet Retrieves the servlet path

locale servlet Retrieves the request locale

requestType servlet Retrieves the HTTP request method

from the request.

SOAPEnvelope Web service and Web services client

cache

Retrieves the SOAPEnvelope from a

Web services request. An ID attribute

of Hash uses a Hash of the

SOAPEnvelope, while Literal uses

the SOAPEnvelope as received.

SOAPAction Web service Retrieves the SOAPAction header, (if

available), for a Web services

request.

serviceOperation Web service Retrieves the service operation for a

Web services request

serviceOperationParameter Web service Retrieves the specified parameter

from a Web services request

Chapter 8. Developing WebSphere applications 1923

Type Valid classes Meaning

operation Web services client cache An operation type in the Web

Services Description Language

(WSDL) file. The id attribute is

ignored and the value is the operation

or method name. If the namespace of

the operation is specified, the value

should be formatted as

namespaceOfOperation:name

OfOperation

part Web services client cache An input message part of in the

WSDL file or a request parameter. Its

id attribute is the part or parameter

name, and the value is the part or

parameter value.

SOAPHeaderEntry Web services client cache Retrieves special information in the

Simple Object Access Protocol

(SOAP) header of the Web services

request. The id attribute specifies the

name of the entry. In addition, the

entry of the SOAP header in the

SOAP request must have the ″actor″

attribute which contains

com.ibm.websphere.cache. For

example:

<soapenv:Header>

 <getQuote soapenv:actor=

"com.ibm.websphere.cache"

>IBM</getQuote>

</soapenv:Header>

v Use the ignore-value attribute to specify whether or not to use the value returned by this component in

cache ID formation. This is an optional attribute with a default value of false. If the value is true, only the

ID of the component is used when creating a cache ID, or no output is used when creating a

dependency or invalidation ID.

v Use the method element to call a void method on a returned object. You can infinitely nest method and

field objects in any combination. The method must be public and is not valid for edge-cacheable

components. For example:

<component id="getUser" type="method"><method>getUserInfo

<method>getName</method></method></component>

This method is equivalent to getUser().getUserInfo().getName()

For component types attribute, method or field that can return an object, when the object returned is a

collection or array, the ID is created with a comma separated list of the elements in the collection or

array. For example, if the request attribute users returns an array [a, b] and the cache entry is defined

like the following example:

<cache-entry>

 <class>servlet</class>

 <name>xxx.jsp</name>

 <cache-id>

 .

 .

 <component id="users" type="attribute">

 <required>true</required>

 </component>

 .

 .

 </cache-id>

 <dependency-id>dep

 <component id="users" type="attribute">

1924 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

<required>true</required>

 </component>

 </dependency-id>

</cache-entry>

The cache id contains the string users: a,b. The dependency id is dep: a,b.

Use the multipleIDs attribute with the component types to specify that multiple dependency IDs (or

invalidation IDs) should be generated based on the items in the collection or array. For example:

<cache-entry>

 <class>servlet</class>

 <name>xxx.jsp</name>

 <cache-id>

 .

 .

 <component id="users" type="attribute">

 <required>true</required>

 </component>

 .

 .

 </cache-id>

 <dependency-id>dep

 <component id="users" type="attribute" multipleIDs="true">

 <required>true</required>

 </component>

 </dependency-id>

</cache-entry>

The cache policy will generates the following dependency IDs:

– dep:a,b

– dep:a

– dep:b

Use the index element with the above component type to add only the value of the element at the

specified index position in the collection or array, to the ID that is being created.

<cache-entry>

 <class>servlet</class>

 <name>xxx.jsp</name>

 <cache-id>

 .

 .

 <component id="users" type="attribute">

 <required>true</required>

 <index>1</index>

 </component>

 .

 .

 </cache-id>

 <dependency-id>dep

 <component id="users" type="attribute" multipleIDs="true">

 <required>true</required>

 </component>

 </dependency-id>

</cache-entry>

The above cache policy generates the following component to be used in the cache ID: users: b. Use

the <method> element to call a void method on a returned object.

v Use the field element to access a field in a returned object. You can infinitely nest method and field

objects in any combination. The field must be public. Not valid for edge-cacheable components. For

example:

<component id="getUser" type="method"><method>getUserInfo

<field>name</field></method></component>

This method is equivalent to getUser().getUserInfo().name

v Use the required element to specify whether or not this component must return a non-null value for this

cache ID for it to represent a valid cache. If set to true, this component must return a non-null value for

Chapter 8. Developing WebSphere applications 1925

this cache ID to represent a valid cache ID. If set to false, the default, a non-null value is used in the

formation of the cache ID and a null value means that this component is not used at all in the ID

formation. For example:

<required>true</required>

v Use the value element to specify values that must match to use this component in cache ID formation.

For example:

<component id="getUser" type="method"><value>blue</value>

<value>red</value> </component>

v Use the not-value element to specify values that must not match to use this component in cache ID

formation. This method is similar to <value>, but instead prescribes the defined values from caching.

You can use multiple <not-value> elements when there is more than one invalid value. For example:

<component id="getUser" type="method">

<required>true</required>

<not-value>blue</not-value>

<not-value>red</not-value></component>

The component element can have either a method and a field element, a value element, or a not-value

element. The method and field elements apply only to commands. The following example illustrates the

attributes of a component element:

<component id="isValid" type="method" ignore-value="true"><component>

timeout sub-element

The timeout sub-element is used to specify an absolute time-to-live (TTL) value for the cache entry. For

example,

<timeout>value</timeout>

where value is the amount of time, in seconds, to keep the cache entry. If 0, or a negative value is

specified, the cache entry is kept indefinitely.

inactivity sub-element

The inactivity sub-element is used to specify a time-to-live (TTL) value for the cache entry based on the

last time the cache entry was accessed. It is a sub-element of <cache-id>.

<inactivity>value</inactivity>

where value is the amount of time, in seconds, to keep the cache entry in the cache after the last cache

hit.

priority sub-element

Use the priority sub-element to specify the priority of a cache entry in a cache. The priority weighting is

used by the least recently used (LRU) algorithm, of the cache to decide which entries to remove from the

cache if the cache runs out of storage space. For example,

<priority>value</priority>

where value is a positive integer between 1 and 255 inclusive.

Samples

The following sample keeps the cache entry in the cache for a minimum of 35 seconds and a maximum of

180 seconds. If the cache entry is accessed within each 35 second inactivity period, the inactivity period is

extended for another 35 seconds. However, because the <timeout> element is also configured, the cache

entry is always invalidated after 180 seconds. If the cache entry is not accessed within the 35 second

period, it is removed from the cache.

1926 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

<cache-id>

 <component id="timeout" type="parameter">

 <required>true</required>

 </component>

 <timeout>180</timeout>

 <inactivity>35</inactivity>

 <priority>1</priority>

</cache-id>

The following sample keeps the cache entry in the cache for a minimum of 600 seconds. If the cache

entry is accessed within each 600 second period, the inactivity period is extended for another 600

seconds. If the cache entry is not accessed within the 600 second period, the cache entry is removed from

the cache.

<cache-id>

 <component id="timeout" type="parameter">

 <required>true</required>

 </component>

 <inactivity>600</inactivity>

 <priority>1</priority>

</cache-id>

In the following sample, the value for inactivity has no meaning because the timeout period is less than the

inactivity period. The cache entry is always invalidated after 180 seconds no matter how often the cache

entry is accessed.

<cache-id>

 <component id="timeout" type="parameter">

 <required>true</required>

 </component>

 <timeout>180</timeout>

 <inactivity>600</inactivity>

 <priority>1</priority>

</cache-id>

property sub-element

Use the property sub-element to specify generic properties for the cache entry. For example,

<property name="key">value</property>

where key is the name of the property to define, and value is the corresponding value.

For example:

<property name="description">The Snoop Servlet</property>

 Property Valid classes Meaning

sharing-policy/timeout/priority All Overrides the settings for the containing cache entry

when the request matches this cache ID.

EdgeCacheable servlet Overrides the settings for the containing cache entry

when the request matches this cache ID.

idgenerator and metadatagenerator sub-elements

Use the idgenerator element to specify the class name loaded for the generation of the cache ID. The

IdGenerator element must implement the com.ibm.websphere.servlet.cache.IdGenerator interface for a

servlet or the com.ibm.websphere.webservices.IdGenerator interface for the Web services client cache. An

example of the idgenerator element follows:

<idgenerator> classname </idgenerator>

Chapter 8. Developing WebSphere applications 1927

Classname is the fully qualified name of the class to use. Define this generator class in a shared library.

Use the metadatagenerator element inside the cache-id element to specify the class name loaded for the

metadata generation. The MetadataGenerator class must implement the

com.ibm.websphere.servlet.cache.MetaDataGenerator interface for a servlet or the

com.ibm.websphere.cache.webservices.MetaDataGenerator interface for Web services client cache. The

MetadataGenerator defines properties like timeout, inactivity, external caching properties or dependencies.

An example of the metadatagenerator element follows:

<metadatagenerator> classname </metadatagenerator>

In this example, classname is the fully qualified name of the class to use. Define this generator class in a

shared library.

dependency-id element

Use the dependency-id element to specify additional cache identifiers that associate multiple cache entries

to the same group identifier.

The value of the dependency-id element is generated by concatenating the dependency ID base string

with the values returned by its component elements. If a required component returns a null value, the

entire dependency does not generate and is not used. Validate the dependency IDs explicitly through the

dynamic cache API, or use the invalidation element. Multiple dependency ID rules can exist in one

cache-entry element. All dependency rules execute separately.

invalidation element

To invalidate cached objects, the application server must generate unique invalidation IDs. Build

invalidation IDs by writing custom Java code or through rules defined in the cache policy of each cache

entry. The following illustrates an invalidation in the cache policy:

<invalidation>component* | invalidationgenerator? </invalidation>

invalidationgenerator sub-element

The invalidationgenerator element is used with the Web Services client cache only. Use the

invalidationgenerator element to specify the class name to load for generating invalidation IDs. The

InvalidationGenerator class must implement the

com.ibm.websphere.cache.webservices.InvalidationGenerator interface. An example of the

invalidationgenerator element follows:

<invalidationgenerator>classname</invalidationgenerator>

In this example, classname is the fully qualified name of the class that implements the

com.ibm.websphere.cache.webservices.InvalidationGenerator interface. Define this generator class in a

shared library.

Configuring command caching

Cacheable commands are stored in the cache for reuse with a similar mechanism for servlets and

JavaServer Pages (JSP) files. However, in this case, the unique cache IDs are generated based on

methods and fields present in the command as input parameters. For example, a GetStockQuote

command can have a symbol as its input parameter.

A unique cache ID can generate from the name of the command, plus the value of the symbol.

To use command caching you must:

Create a command.

1928 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

1. Define an interface. The Command interface specifies the most basic aspects of a command.

You must define the interface that extends one or more of the interfaces in the command package. The

command package consists of three interfaces:

v TargetableCommand

v CompensableCommand

v CacheableCommand

In practice, most commands implement the TargetableCommand interface, which allows the command

to run remotely. The code structure of a command interface for a targetable command follows:

...

import com.ibm.websphere.command.*;

public interface MyCommand extends TargetableCommand {

 // Declare application methods here

}

2. Provide an implementation class for the interface. Write an interface that extends the

CacheableCommandImpl class and implements your command interface. This class contains the code

for the methods in your interface, the methods inherited from extended interfaces like the

CacheableCommand interface, and the required or abstract methods in the CacheableCommandImpl

class.

You can also override the default implementations of other methods provided in the

CacheableCommandImpl class.

Command class: To write a command interface, extend one or more of the three interfaces included in

the command package. The base interface for all commands is the Command interface. This interface

provides only the client-side interface for generic commands and declares three basic methods:

v isReadyToCallExecute. This method is called on the client side before the command runs on server.

v execute. This method passes the command to the target and returns any data.

v reset. This method reverts any output properties to the values they had before the execute method was

called so that you can reuse the object.

The implementation class for your interface must contain implementations for the isReadyToCallExecute

and reset methods.

CacheableCommandImpl class: Commands are implemented by extending the class

CacheableCommandImpl, which implements the CacheableCommand interface.

The CacheableCommandImpl class is an abstract class that provides implementations for some of the

methods in the CacheableCommand interface, for example, setting return values. This class declares

additional methods that the application must implement, for example, how to run the command.

The code structure of an implementation class for the CacheableCommand interface follows:

...

import com.ibm.websphere.command.*;

public class MyCommandImpl extends CacheableCommandImpl

implements MyCommand {

// Set instance variables here ...

// Implement methods in the MyCommand interface ...

// Implement abstract methods in the CacheableCommandImpl class

...

}

Example: Caching a command object:

This example of command caching is a simple stock quote command.

The following is a stock quote command bean. It accepts a ticker as an input parameter and produces a

price as its output parameter.

Chapter 8. Developing WebSphere applications 1929

public class QuoteCommand extends CacheableCommandImpl

{

 private String ticker;

 private double price;

 // called to validate that command input parameters have been set

 public boolean isReadyToCallExecute() {

 return (ticker!=null);

 }

 // called by a cache-hit to copy output properties to this object

 public void setOutputProperties(TargetableCommand fromCommand) {

 QuoteCommand f = (QuoteCommand)fromCommand;

 this.price = f.price;

 }

 // business logic method called when the stock price must be retrieved

 public void performExecute()throws Exception {...}

 //input parameters for the command

 public void setTicker(String ticker) { this.ticker=ticker;}

 public String getTicker() { return ticker;}

 //output parameters for the command

 public double getPrice() { return price;};

}

To cache the above command object using the stock ticker as the cache key and using a 60 second

time-to-live, use the following cache policy:

<cache>

 <cache-entry>

 <class>command</class>

 <sharing-policy>not-shared</sharing-policy>

 <name>QuoteCommand</name>

 <cache-id>

 <component type="method" id="getTicker">

 <required>true</required>

 </component>

 <priority>3</priority>

 <timeout>60</timeout>

 </cache-id>

 </cache-entry>

</cache>

Configuring the Web services client cache

Configuring the Web services client cache can improve the performance of your application server by

caching the responses from remote Web services for a specified amount of time.

You should have the dynamic cache service enabled. To enable the dynamic cache service, see “Task

overview: Using the dynamic cache service to improve performance” on page 1901. Before attempting to

configure the Web services client cache, you should understand how to create basic cache policies. See

″Configuring cacheable objects with the cachespec.xml file″ for more information.

Enabling the Web services client cache is an option to improve the performance of your system by using

the dynamic cache service to save responses from remote Web services for a specified amount of time.

For more information about the Web Services client cache, see “Web services client cache” on page 1936.

1. Locate the Web Services Description Language (WSDL) file for the remote service. Portions of the

WSDL file contain information that you will use in writing your cache policy. For more information about

WSDL files, see the information center. Following is an example of portions of a WSDL file that

contains values that are used for the purpose of demonstration.

<definitions targetNamespace="http://TradeSample.com/"

 xmlns:tns="http://TradeSample.com/"

 xmlns="http://schemas.xmlsoap.org/wsdl/"

 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

1930 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <message name="getQuoteRequest">

 <part name="symbol" type="xsd:string"/>

 </message>

.....

.....

<binding name="SoapBinding" type="tns:GetQuote">

 <soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>

 <operation name="getQuote">

 <soap:operation soapAction=""/>

 <input name="getQuoteRequest">

 <soap:body namespace="http://TradeSample.com/"

 use="encoded"

 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

 </input>

 </operation>

</binding>

<service name="GetQuoteService">

 <port binding="tns:SoapBinding" name="SoapPort">

 <soap:address location="http://TradeSample.com:9080/service/getquote"/>

 </port>

</service>

</definitions>

The highlighted text indicates values that are used in writing your cache policy.

2. Choose how you plan to generate the cache id for your Web services client caching. You can build

your cache id rules by using one of four options:

v By calculating a hash of the SOAPEnvelope

v By using SOAPHeader entries

v By using operation and part parameters

v By using custom Java code to build the cache id from input SOAP message content

Using SOAPHeader entries is the best option if you can include information for building cache keys as

part of the SOAP header. This method creates easy to read cache keys and can be built without

parsing the SOAP body. Use custom Java code to generate a specific cache id based on the SOAP

message. If you cannot include the header information, you can calculate the hash of the

SOAPEnvelope for performance or parse the SOAP Body for user-friendly cache keys.

3. Develop your cache policy.

All Web services client cache policies must have the class JAXRPCClient. The name element in each

cache entry is the target endpoint location that is defined in the WSDL file. You can find this address in

the WSDL file by finding the <soap:address location=″..″/> tag located in the port element. In the

WSDL file for this sample, the address is http://TradeSample.com:9080/service/getquote. Develop

the rest of your cache policy by using one of the following options:

v Calculate a hash of the SOAPEnvelope to identify the request

<cache>

 <cache-entry>

 <class>JAXRPCClient</class>

 <name>http://TradeSample.com:9080/service/getquote</name>

 <cache-id>

 <component id="hash" type="SOAPEnvelope"/>

 <timeout>60</timeout>

 </cache-id>

 </cache-entry>

</cache>

Note the component attributes to create a cache id based on a hash calculation of the

SOAPEnvelope. The cache id for this sample is generated as

http://TradeSample.com:9080/service/getquote:Hash=xxxHashSoapEnvelope.

v Use the SoapHeader to identify the request

Chapter 8. Developing WebSphere applications 1931

<cache>

 <cache-entry>

 <class>JAXRPCClient</class>

 <name>http://TradeSample.com:9080/service/getquote</name>

 <cache-id>

 <component id="urn:stock:getQuote" type="SOAPHeaderEntry"/>

 </cache-id>

 </cache-entry>

</cache>

This cache id is built by using special information in the SOAP header to identify requests for entries

in the cache. Specify the type as SOAPHeaderEntry and the id as the operation name located in the

binding element in the WSDL file. The cache id for this sample is generated as

http://TradeSample.com:9080/service/getquote:urn:stock:getQuote=IBM.

An example of a SOAP request generated by the client using SOAP Header:

Note that the soapenv:actor attribute must contain com.ibm.websphere.cache.

POST /wsgwsoap1/soaprpcrouther HTTP/1.1

SOAPAction: ""

Context-Type: text/xml; charset=utf-8

User-Agent: Java/1.4.1

Host: localhost

Accept: text/html, image/gif, image/jpeg, *; q=.2, */*; q=.2

Connection: keep-alive

Content-Length: 645

<?xml version="1.0" encoding="UTF-8"?>

<soapenv:Envelope

xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

 xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<soapenv:Header>

 <getQuote soapenv:actor="com.ibm.websphere.cache" xmlns="urn:stock">IBM</getQuote>

</soapenv:Header>

<soapenv:Body

soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding">

 <getQuote xmlns="urn:ibmwsgw#GetQuoteSample">

 <symbol xsi:type="xsd:string">IBM</symbol>

 </getQuote>

</soapenv:Body>

</soapenv:Envelope>

v Use operation and part to identify the request

<cache>

 <cache-entry>

 <class>JAXRPCClient</class>

 <name>http://TradeSample.com:9080/service/getquote</name>

 <cache-id>

 <component id="" type="operation">

 <value>http://TradeSample.com/:getQuote</value>

 </component>

 <component id="symbol" type="part"/>

 </cache-id>

 </cache-entry>

</cache>

This example uses operation and request parameters. The operation can be a method name in the

WSDL file located in the binding element or a method name in the Document/Literal Invocation

(DII). If the namespace of the operation is defined, the value should be formatted as

namespaceOfOperation:nameOfOperation. The part type can be defined in the message element of

the WSDL file, as a request parameter, or as a request parameter of the DII invocation. Its id

attribute is the part or parameter name, and the value is the part or parameter value. The cache id

generated from using operation and request parameters is

http://TradeSample.com:9080/service/getquote:operation=

http://TradeSample.com/:getQuote/symbol=IBM.

1932 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

An example of the SOAP request generated by the client using operation and part:

POST /wsgwsoap1/soaprpcrouter HTTP/1.1

SOAPAction:""

Content-Type: text/xml/charset=utf-8

User-Agent: Java/1.4.1

Host: localhost

Accept: text/html, image/gif, image/jpeg, *; q=.2, */*; q=.2

Connection: keep-alive

Current-Length: 645

<?xml version="1.0" encoding="UTF-8"?>

<soapenv:Envelope

xmlns: soapenv="http://schemas.xmlsoap.org/soap/envelope/"

 xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<soapenv:Body

 soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

 <getQuote xmlns="urn:ibmwsgw#GetQuoteSample">

 <symbol xsi:type="xsd:string">IBM</symbol>

 </getQuote>

</soapenv:Body>

</soapenv:Envelope>

v Use custom Java code to build the cache id from input SOAP message content

If you use custom Java code to build the cache id, create an ID generator Java class that

implements the IdGenerator interface defined in the

com.ibm.websphere.cache.webservices.IdGenerator package and add a reference to the class you

create in the cachespec.xml file by using the idgenerator tag.

You can also implement the com.ibm.websphere.cache.webservices.MetaDataGenerator package to

assign cache metadata such as timeout, priority, and dependency ids to cache entries using the

metadatagenerator tag.

Implement the com.ibm.websphere.cache.webservices.InvalidationGenerator interface and use the

invalidationgenerator tag in the cachespec.xml file to generate cache ids and to invalidate entries

in the cache. The id generated by the invalidation generator can be a cache id or a dependency id.

For example, if you develop an ID generator class named SampleIdGeneratorImpl, a metadata

generator class named SampleMetaDataGeneratorImpl, and an invalidation generator class named

SampleInvalidationGeneratorImpl, your cachespec.xml file might contain the following:

<cache-entry>

 <class>JAXRPCClient</class>

 <name>http://TradeSample.com:9080/service/getquote</name>

 <cache-id>

 <idgenerator>com.mycompany.SampleIdGeneratorImpl</idgenerator>

 <metadatagenerator>com.mycompany.SampleMetaDataAndInvalidationGeneratorImpl

 </metadatagenerator>

 <timeout>60</timeout>

 </cache-id>

 <invalidation>http://TradeSample.com:9080/service/GetQuote

 <invalidationgenerator>com.mycompany.SampleMetaDataAndInvalidationGeneratorImpl

 </invalidationgenerator>

 </invalidation>

</cache-entry>

The SampleIdGeneratorImpl class is a custom Java class that implements the

com.websphere.cache.webservices.IdGenerator interface. The SampleIdGeneratorImpl class

contains the getID method:

String getId(javax.xml.rpc.handler.soap.SOAPMessageContext messageContext)

The following is an example of the SampleIdGeneratorImpl.java class.

public class SampleIdGeneratorImpl implements IdGenerator {

//The SampleIdGenerator class builds cache keys using SOAP header entries

 public String getId(javax.xml.rpc.handler.soap.SOAPMessageContext

 messageContext) {

Chapter 8. Developing WebSphere applications 1933

....

 // retrieve SOAP header entries from SOAPMessage

 SOAPHeader sh = soapEnvelope.getHeader();

 if (sh != null) {

 Iterator it = sh.examineHeaderElements("com.mycompany.actor");

 while (it.hasNext()) {

 SOAPHeaderElement element =

 (SOAPHeaderElement)it.next();

 Name name = element.getElementName();

 String headerEntryName = name.getLocalName();

 if (headerEntryName.equals("getQuote")){

 String sNamespace = element.getNamespaceURI("");

 if (sNamespace != null && !sNamespace.equals("")) {

 headerEntryName = sNamespace + ":" + headerEntryName;

 String quotes = element.getValue();

 }

 ...

 ...

 // create a method "parseAndSort" to parse and sort quotes

 // By parsing and sorting quotes, you avoid duplicate cache

 // entries.

 // quotes e.g. IBM,CSCO,MSFT,INTC

 // to return a cache key "urn:stock:getQuote=CSCO,IBM,INTC,MSFT"

 String sortQuotes = parseAndSort(quotes);

 cacheKey = headerEntryName + "=" + sortQuotes;

 }

 }

 return cacheKey;

 }

 }

The cache id for this sample is generated as

http://TradeSample.com:9080/service/getquote:urn:stock:symbol=CSCO,IBM,INTC,MSFT.

The SampleMetaDataAndInvalidationGeneratorImpl class is a custom Java class that implements

the com.websphere.cache.webservices.MetaDataGenerator interface and the

com.websphere.cache.webservices.InvalidationGenerator interface. The

SampleMetaDataAndInvalidationGeneratorImpl class contains the setMetaData method and the

getInvalidationIds method. You can also set up two smaller classes instead of this one large class.

For example, create one class for the metadata generator and a different class for the invalidation

generator. The following are method prototypes for the setMetaData method and the

getInvalidationIds method:

void setMetaData (javax.xml.rpc.handler.soap.SOAPMessageContext messageContext,

 com.ibm.websphere.cache.webservices.JAXRPCEntryInfo entryInfo)

String[] getInvalidationIds (javax.xml.rpc.handler.soap.SOAPMessageContext messageContext)

An example of the SampleMetaDataAndInvalidationGeneratorImpl.java class follows:

public class SampleMetaDataAndInvalidationGeneratorImpl implements MetaDataGenerator,

 InvalidationGenerator {

 //assigns time limit, and priority metadata

 public void setMetadata(javax.xml.rpc.handler.soap.SOAPMessageContext

 messageContext, com.ibm.websphere.cache.webservices.JAXRPCEntryInfo entryInfo) {

 // retrieve SOAP header entries from SOAPMessage

 SOAPHeader sh = soapEnvelope.getHeader();

 if (sh != null) {

 Iterator it = sh.examineHeaderElements("com.mycompany.actor");

 while (it.hasNext()) {

 SOAPHeaderElement element =

 (SOAPHeaderElement)it.next();

 Name name = element.getElementName();

 String headerEntryName = name.getLocalName();

 if (headerEntryName.equals(“metadata”)) {

 // retrieve each metadata element and set metadata

 entryInfo.setTimeLimit(timeLimit);

1934 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

entryInfo.setPriority(priority);

 }

 }

 }

 //builds invalidation ids using SOAP header.

 public String[] getInvalidationIds(javax.xml.rpc.handler.soap.SOAPMessageContext

 messageContext) {

 // retrieve SOAP header entries from SOAPMessage

 String[] invalidationIds = new String[1];

 SOAPHeader sh = soapEnvelope.getHeader();

 if (sh != null) {

 Iterator it = sh.examineHeaderElements("com.mycompany.actor");

 while (it.hasNext()) {

 SOAPHeaderElement element =

 (SOAPHeaderElement)it.next();

 Name name = element.getElementName();

 String headerEntryName = name.getLocalName();

 if (headerEntryName.equals("invalidation")) {

 String sNamespace = element.getNamespaceURI("");

 if (sNamespace != null && !sNamespace.equals("")) {

 headerEntryName = sNamespace + ":symbol";

 String quotes = element.getValue();

 }

 ...

 ...

 // create a method "parseAndSort" to parse and sort quotes

 // By parsing and sorting quotes, you avoid duplicate cache

 // entries.

 // quotes e.g. SUNW,NT

 // to return a cache key "urn:stock:symbol=NT,SUNW"

 String sortQuotes = parseAndSort(quotes);

 invalidationIds[0] = headerEntryName + "=" sortQuotes;

 }

 }

 return invalidationIds;

 }

}

The invalidation id for this sample is generated as:

http://TradeSample.com:9080/service/getquote:urn:stock:symbol=NT,SUNW

An example of the SOAP request generated by the client when using custom Java code follows:

POST /wsgwsoap1/soaprpcrouter HTTP/1.1

SOAPAction: ""

Context-type: text/xml, charset=utf-8

User-Agent: Java/1.4.1

Host: localhost

Accept: text/html, image/gif, image/jpeg, *; q=.2, */*; q=.2

Connection: keep-alive

Content-Length:645

<?xml version="1.0" encoding="UTF-8"?>

<soapenv:Envelope

xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

 xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<soapenv:Header>

 <getQuote soapenv:actor="com.mycompany.actor"

 xmlns="urn:stock">IBM,CSCO,MSFT,INTC</getQuote>

 <metaData soapenv:actor="com.mycompany.actor" xmlns="urn:stock">

 <priority>10</priority>

 <timeLimit>30000</timeLimit>

 </metaData>

 <invalidation soapenv:actor="com.mycompany.actor"

 xmlns="urn:stock">SUNW, NT</invalidation>

Chapter 8. Developing WebSphere applications 1935

</soapenv:Header>

<soapenv:Body

soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding">

<getQuote xmlns="urn:ibmwsgw#GetQuoteSample">

 <symbol xsi:type="xsd:string">IBM,CSCO,MSFT,INTC</symbol>

</getQuote>

</soapenv:Body>

</soapenv:Envelope>

4. Save the cache policy to the appropriate directory.

v If you are using the Web Services Gateway on SOAP channel 1, the directory is:

<install_root>\installedApps\wsgwsoap1.servername.nodename.ear/wsgwsoap.war/WEB-INF

v If you are using a simple JAX-RPC client in your application to invoke remote Web services, save

your cache policy in the Web module WEB-INF of your JAX-RPC application.

You can monitor the results of your Web services client cache policy by using the dynamic cache monitor.

See ″Displaying cache information″ in the information center.

Web services client cache:

The Web services client cache is a part of the dynamic cache service that is used to increase the

performance of Web services clients by caching responses from remote Web services.

 After a response is returned from a remote Web service, the response is saved in the client cache on the

application server. Any identical requests that are made to the same remote Web service are then

responded to from the cache for a specified period of time. The Web services client cache relies primarily

on time-based invalidations because the target web service can be outside of your enterprise network and

unaware of your client caching. Therefore, you can specify the amount of time in the cache and the rules

to build cache entry IDs in the cache in your client application.

The Web services client cache is provided as a JAX-RPC handler on your application server. This

JAX-RPC cache handler intercepts the SOAP requests that flow through it from application clients. It then

identifies a cache policy based on the target Web service. After a policy is found, all the cache id rules are

evaluated one by one until a valid rule is detected.

You can build cache id rules for Web services in three ways:

v By calculating a hash of the SOAPEnvelope

v By using SOAP header entries

v By using operation and part parameters

v By using custom Java code to build the cache id from an input SOAP message

Building the cache id rules using the SOAP header is faster because it does not have to parse the entire

body of the SOAP document. For more information about building the cache policies for the Web services

client cache, see Configuring the Web services client cache″ in the information center.

Using the DistributedMap and DistributedObjectCache interfaces for the dynamic

cache

By using the DistributedMap or DistributedObjectCache interfaces, Java 2 platform, Enterprise Edition

(J2EE) applications and system components can cache and share Java objects by storing a reference to

the object in the cache.

Enable the dynamic cache service. See ″Enabling the dynamic cache service″ in the information center for

more information.

The DistributedMap and DistributedObjectCache interfaces are a simple interfaces for the dynamic cache.

Using these interfaces, J2EE applications and system components can cache and share Java objects by

storing a reference to the object in the cache. The default dynamic cache instance is created if the

1936 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

dynamic cache service is enabled in the administrative console. This default instance is bound to the

global Java Naming and Directory Interface (JNDI) namespace using the name

services/cache/distributedmap.

Multiple instances of the DistributedMap and DistributedObjectCache interfaces on the same Java virtual

machine (JVM) enable applications to separately configure cache instances as needed. Each instance of

the DistributedMap interface has its own properties that can be set using “Object cache instance settings”

on page 1939.There are three methods for configuring and using cache instances.

Note: For more information about the DistributedMap and DistributedObjectCache interfaces, see the API

documentation for the com.ibm.websphere.cache package. See Javadoc for more information.

v Method 1 - Administrative console You can create additional cache instances using the administrative

console.

1. In the administrative console, select Resources > Object cache instances and create a new object

cache instance.

If you defined two object cache instances in the administrative console with JNDI names of

services/cache/instance_one and services/cache/instance_two, you can use the following code to

look up the cache instances:

 InitialContext ic = new InitialContext();

DistributedMap dm1 = (DistributedMap)ic.lookup("services/cache/instance_one");

DistributedMap dm2 = (DistributedMap)ic.lookup("services/cache/instance_two");

// or

InitialContext ic = new InitialContext();

DistributedObjectCache dm1 = (DistributedObjectCache)ic.lookup("services/cache/instance_one");

DistributedObjectCache dm2 = (DistributedObjectCache)ic.lookup("services/cache/instance_two");

v Method 2 - Properties file You can create cache instances using the cacheinstances.properties file

and package the file in your Enterprise Archive (EAR) file.

Following is an example of how you can create additional cache instances using the

cacheinstances.properties file:

cache.instance.0=/services/cache/instance_one

cache.instance.0.cacheSize=1000

cache.instance.0.enableDiskOffload=true

cache.instance.0.diskOffloadLocation=${WAS_INSTALL_ROOT}/diskOffload

cache.instance.0.flushToDiskOnStop=true

cache.instance.0.useListenerContext=true

cache.instance.0.enableCacheReplication=false

cache.instance.0.disableDependencyId=false

cache.instance.0.htodCleanupFrequency=60

cache.instance.1=/services/cache/instance_two

cache.instance.1.cacheSize=1500

cache.instance.1.enableDiskOffload=false

cache.instance.1.flushToDiskOnStop=false

cache.instance.1.useListenerContext=false

Chapter 8. Developing WebSphere applications 1937

cache.instance.1.enableCacheReplication=true

cache.instance.1.replicationDomain=DynaCacheCluster

cache.instance.1.disableDependencyId=true

The preceding example creates two cache instances named instance_one and instance_two.

instance_one has a cache entry size of 1,000 and instance_two has a cache entry size of 1,500. Disk

offload is enabled in instance_one and disabled in instance_two. Use listener context is enabled in

instance_one and disabled in instance_two. Flush to disk on stop is enabled in instance_one and

disabled in instance_two. Cache replication is enabled in instance_two and disabled in instance_one.

The name of the data replication domain for instance_two is DynaCacheCluster. Dependency ID

support is disabled in instance_two.

You must place the cacheinstances.properties file in either your application server or application class

path. For example, you can use your application WAR file, WEB-INF\classes directory, or

was_root\classes directory. The first entry in the properties file (cache.instance.0) specifies the JNDI

name for the cache instance in the global namespace. You can use the following code to look up the

cache instance:

 InitialContext ic = new InitialContext();

 DistributedMap dm1 = (DistributedMap)ic.lookup("services/cache/instance_one");

 DistributedMap dm2 = (DistributedMap)ic.lookup("services/cache/instance_two");

For more information about the DistributedMap and DistributedObjectCache interfaces, see the API

documentation for the com.ibm.websphere.cache package.

v Method 3 - Resource references

Note: Method three is an extension to method one or method two, listed above. First use either method

one or method two.

Define a resource-ref in your module deployment descriptor (web.xml and ibm-web-bnd.xmi files) and

look up the cache using the java:comp namespace.

Resource-ref example:

File: web.xml

<resource-ref id="ResourceRef_1">

 <res-ref-name>dmap/LayoutCache</res-ref-name>

 <res-type>com.ibm.websphere.cache.DistributedMap</res-type>

 <res-auth>Container</res-auth>

 <res-sharing-scope>Shareable</res-sharing-scope>

</resource-ref>

<resource-ref id="ResourceRef_2">

 <res-ref-name>dmap/UserCache</res-ref-name>

 <res-type>com.ibm.websphere.cache.DistributedMap</res-type>

 <res-auth>Container</res-auth>

 <res-sharing-scope>Shareable</res-sharing-scope>

</resource-ref>

File: ibm-web-bnd.xmi

<?xml version="1.0" encoding="UTF-8"?>

<webappbnd:WebAppBinding xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"

xmlns:webappbnd="webappbnd.xmi"

xmlns:webapplication="webapplication.xmi" xmlns:commonbnd="commonbnd.xmi"

xmlns:common="common.xmi"

xmi:id="WebApp_ID_Bnd" virtualHostName="default_host">

 <webapp href="WEB-INF/web.xml#WebApp_ID"/>

 <resRefBindings xmi:id="ResourceRefBinding_1" jndiName="services/cache/instance_one">

 <bindingResourceRef href="WEB-INF/web.xml#ResourceRef_1"/>

 </resRefBindings>

 <resRefBindings xmi:id="ResourceRefBinding_2" jndiName="services/cache/instance_two">

 <bindingResourceRef href="WEB-INF/web.xml#ResourceRef_2"/>

 </resRefBindings>

</webappbnd:WebAppBinding>

The following example shows how to look up the resource-ref:

1938 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

InitialContext ic = new InitialContext();

 DistributedMap dm1a =(DistributedMap)ic.lookup("java:comp/env/dmap/LayoutCache");

 DistributedMap dm2a =(DistributedMap)ic.lookup("java:comp/env/dmap/UserCache");

// or

 DistributedObjectCache dm1a =(DistributedObjectCache)ic.lookup("java:comp/env/dmap/LayoutCache");

 DistributedObjectCache dm2a =(DistributedObjectCache)ic.lookup("java:comp/env/dmap/UserCache");

The previous resource-ref example maps java:comp/env/dmap/LayoutCache to

/services/cache/instance_one and java:comp/env/dmap/UserCache to /services/cache/instance_two.

In the examples, DistributedMap dm1 and dm1a are the same object. DistributedMap dm2 and dm2a are

the same object.

Note: DistributedMap and DistributedObjectCache do not have authorization or access control

associated with the cache entries.

Object cache instance settings:

An object cache instance is a location, in addition to the default shared dynamic cache, where any Java 2

Platform, Enterprise Edition (J2EE) application can store, distribute, and share data. This gives

applications greater flexibility and better tuning of the cache resources. Use the DistributedMap

programming interface to access this cache instance. See the API documentation for more information.

 To view this administrative console page, click Resources > Cache instances > Object cache instances

> cache_instance_name.

Name:

Specifies the required display name for the resource.

JNDI name:

Specifies the Java Naming and Directory Interface (JNDI) name for the resource. Use this name when

looking up a reference to this cache instance. The results return a DistributedMap object.

Description:

Specifies a description for the resource. This field is optional.

Category:

Specifies a category string to classify or group the resource. This field is optional.

Cache size:

Specifies a positive integer for the maximum number of entries the cache holds. The cache size is usually

in the thousands.

 Default 2000

Range 100 - no set maximum value

Default priority:

Specifies the default priority for servlets that can be cached. This value determines how long an entry

stays in a full cache.

 The recommended value is one.

Chapter 8. Developing WebSphere applications 1939

Disk offload:

Specifies if disk offloading is enabled.

 If you have disk offload disabled, when a new entry is created while the cache is full, the priorities are

configured for each entry and the least recently used algorithm are used to remove the entry from the

cache in memory. If you enable disk offload, the entry that would be removed from the cache is copied to

the local file system. The location of the file is specified by the disk offload location.

 Default false

Disk offload location:

Specifies the directory that is used for disk offload.

 If disk offload location is not specified, the default location,

$install_root/temp/node/servername/_dynacache/cacheJNDIname is used. If disk offload location is

specified, the node, server name, and cache instance name are appended. For example,

$install_root/diskoffload generates the location as

$install_root/diskoffload/node/servername/cacheJNDIname. This value is ignored if enableDiskOffload is

false.

Flush to disk:

Specifies if in-memory cached objects are saved to disk when the server is stopped. This value is ignored

if Enable Disk Offload is not selected.

 Default false

Dependency ID support:

Specifies that the dynamic cache service, supports cache entry dependency IDs. Disable this option if you

do not need to use dependency IDs. Dependency IDs specify additional cache group identifiers that

associate multiple cache entries to the same group identifier in your cache policy.

 This option might not be available for cache instances that were created with a previous version of

WebSphere Application Server.

 Default true

Use listener context:

Set this value to true to have invalidation events sent to registered invalidation listeners using the Java 2

Platform, Enterprise Edition (J2EE) context of the listener. If you want to use listener J2EE context for

callback, set this value to true. If you want to use the caller thread context for callback, set this to false.

Cache replication:

Use cache replication to enable sharing of cache IDs, cache entries, and cache invalidations with other

servers in the same replication domain.

 This option might not be available for cache instances that were created with a previous version of

WebSphere Application Server.

1940 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Replication settings:

Click Replication settings to go to the replication settings panel to configure data replication for this

cache instance.

Object cache instance collection:

Use this page to configure and manage object cache instances, which in addition to the default shared

dynamic cache, can store, distribute, and share data for Java 2 Platform, Enterprise Edition (J2EE)

applications. Use cache instances to give applications better flexibility and tuning of the cache resources.

 To view this administrative console page, click Resources > Cache instances > Object cache

instances.

Use the DistributedObjectCache programming interface to access the cache instances. For more

information about the DistributedObjectCache application programming interface, see the API

documentation.

Scope:

Specify CELL SCOPE to view and configure cache instances that are available to all servers within the

cell. Specify NODE SCOPE to view and configure cache instances that are available to all servers with the

particular node. Specify SERVER SCOPE to view and configure cache instances that are available only on

the specific server.

Name:

Specifies the required display name for the resource.

JNDI name:

Specifies the Java Naming and Directory Interface (JNDI) name for the resource. Use this name when

looking up a reference to this cache instance. The results return a DistributedMap object.

Cache size:

Specifies a positive integer for the maximum number of entries the cache holds. The cache size is usually

in the thousands. The default is 2000.

 The minimum value is 100, with no set maximum value.

Invalidation listeners:

Invalidation listener mechanism uses Java events for alerting applications when contents are removed

from the cache.

 Applications implement the InvalidationListener interface (defined in the com.ibm.websphere.cache

package) and register it to the cache using the DistributedMap interface. Listeners receive

InvalidationEvents (defined in the com.ibm.websphere.cache package) when entries from the cache are

removed, due to an explicit user invalidation, timeout, least recently used (LRU) eviction, cache clear, or

disk timeout. Applications can immediately recalculate the invalidated data and prime the cache before the

next user request.

Enable listener support in DistributedMap before registering listeners. DistributedMap can also be

configured to use the invalidation listener Java 2 Platform, Enterprise Edition (J2EE) context from

Chapter 8. Developing WebSphere applications 1941

registration time during callbacks. Setting the value of the custom property useListenerContext to true

enables the invalidation listener J2EE context for callbacks. See Cache instance settings for more

information.

The following example shows how to set up an invalidation listener:

dmap.enableListener(true); // Enable cache invalidation listener.

InvalidationListener listener = new MyListenerImpl(); //Create invalidation listener object.

dmap.addInvalidationListener(listener); //Add invalidation listener.

 :

 :

 :

dmap.removeInvalidationListener(listener); //Remove the invalidation listener.

//This increases performance.

dmap.enableListener(false); // Disable cache invalidation listener.

//This increases performance.

For more information about invalidation listeners, see Javadoc for the com.ibm.websphere.cache package.

Displaying cache information

Use this task to monitor the activity of the dynamic cache service.

The dynamic cache monitor is an installable web application that displays simple cache statistics, cache

entries, and cache policy information for servlet cache instances.

1. Use the administrative console to install the cache monitor application from the

install_root/installableApps directory. The application is named CacheMonitor.ear. For more

information about installing applications, see “Installing application files with the console” on page 709.

Install the cache monitor onto the application server you are trying to monitor. Installing the cache

monitor on the admin_host (port 906x) is more secure than installing it on the default_host (908x), and

so it is preferable to install it onto the admin_host.

2. Configure the web container transport chain and host alias for the server with cache monitor installed.

a. If you installed the cache monitor on the admin_host (port 906x), check if a web container transport

chain has been created. Click Application servers >server_name > Web Container settings >

Web container transport chains. If a web container transport chain (port 906x) does not exist you

must create a web container transport chain in the admin_host for this server. If you are using

server1, a web container transport chain is installed by default for admin port 9060.

b. Add a host alias for the port your server is using. Click Environment > Virtual hosts >host_type >

Host aliases and create a new Host name and Port to add to the list.

c. You can then access the cache monitor using

http://your_host_name:your_port_number/cachemonitor.

Tip: You can find the port number in the SystemOut.log file. Look for message TCPC0001I or

SRVE0171I.

3. Access the cache monitor using a Web browser and the URL http://your host_name:your

port_number/cachemonitor, where your port_number is the port associated with the host on which you

installed the cache monitor application.

4. Verify the list of cache instances that are shown. For each cache instance, you can perform the

following actions:

Tip: You must select the servlet cache instance that you want to monitor. If you do not use servlet

cache instances by using <cache-instance> tags in your cachespec.xml file, all the content is in

the baseCache instance.

v View the Statistics page and verify the cache configuration and cache data. Click Reset Statistics

to reset the counters.

v View the Cache Policies page to see which cache policies are currently loaded in the dynamic

cache. Click on a template to view the cache ID rules for the template.

1942 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

v View the Cache Contents page to examine the contents that are currently cached in memory.

v View the Edge Statistics page to view data about the current ESI processors configured for caching.

Click Refresh Statistics to see the latest statistics or content from the ESI processors. Click Reset

Statistics to reset the counters.

v View the Disk Offload page to view content that is currently off-loaded from memory to disk.

When you are viewing contents on memory or disk, click on a template to view all entries for that

template, click on a dependency ID to view all entries for the ID, or click on the cache ID to view all

the data that is cached for that entry.

5. Use the cache monitor to perform basic operations on data in a cache instance.

Remove an entry from cache

Click Invalidate when viewing a cache entry.

Remove all entries for a certain dependency ID

Click Invalidate when viewing entries for a dependency ID.

Remove all entries for a certain template

Click Invalidate when viewing entries for a template.

Move an entry to the front of the Least Recently Used queue to avoid eviction

Click Refresh when viewing a cache entry.

Move an entry from disk to cache

Click Send to Memory when viewing a cache entry on disk.

Clear the entire contents of the cache

Click Clear Cache while viewing statistics or contents.

Clear the contents on the ESI processors

Click Clear Cache while viewing ESI statistics or contents.

Clear the contents of the disk cache

Click Clear Disk while viewing disk contents.

Cache monitor:

Cache monitor is an installable Web application that provides a real-time view of the current state of

dynamic cache. You use it to help verify that dynamic cache is operating as expected. The only way to

manipulate the data in the cache is by using the cache monitor. It provides a GUI interface to manually

change data.

 Cache monitor provides a way to:

v Verify the configuration of dynamic cache

After you create multiple servlet cache instances in the administrative console, you can configure

properties, including the maximum size of the cache and disk offload location on each cache instance,

as well as advanced features such as controlling external caches. You can verify the configuration of the

dynamic cache by viewing of the configured features and properties in the cache monitor.

v Verify the cache policies

To cache an object, unique IDs must be generated for different invocations of that object. To create

unique IDs for each object, provide rules for each cacheable object in the cachespec.xml file, found

inside the Web module WEB-INF or enterprise bean META-INF directory. See ″Cachespec.xml file″ in the

information center. Each cacheable object can have multiple cache ID rules that run in sequence until

either a rule returns a cache ID or no more rules remain. If none of the cache ID generation rules

produce a valid cache ID, then the object is not cached. There can be multiple cachespec.xml files with

multiple cache ID rules. With cache monitor, you can verify the policies of each object. You can also

view all of the cache polices for each cache instance that is currently loaded in dynamic cache. This

view is also convenient to verify that the cachespec.xml file was read by the dynamic cache without

errors.

v Monitor cache statistics

You can view the essential cache data, such as number of cache hits, cache misses, and number of

entries in each cache instance. With this data, you can tune the cache configuration to improve the

Chapter 8. Developing WebSphere applications 1943

dynamic cache performance. For example, if the number of used entries is often high, and entries are

being removed and recreated, consider increasing the maximum size of the cache or enabling disk

offload.

v Monitor the data flowing through the cache

Once a cacheable object is invoked, dynamic cache creates a cache entry for it that contains the output

of the actions that are performed and metadata, such as time to live, sharing policy, and so on. Entries

are distinguished by a unique ID string that is based on the rules specified in the cachespec.xml file for

the particular object name. Objects with the same name might generate multiple cache IDs for different

invocations, based on request parameters and attributes for each invocation. You can view of all the

cache entries that are in the cache instance, based on the unique ID. You can also view the group of

cache entries that share a common name (also known as template). Cache entries can also be grouped

together by a dependency ID, which is used to invalidate the entire group of entries dependent on a

common entity. Therefore, cache monitor also provides a view of the group of cache entries that share

a common dependency ID.

For each entry, cache monitor also displays metadata, such as time to live, priority and sharing-policy,

and provides a view of the output that has been cached. This helps the customer to verify which pages

have been cached, that the pages have been cached in the correct cache instance with the right

attributes such as time to live, priority, and that the pages have the right content.

v Monitor the data in the edge cache

Dynamic cache provides support to recognize the presence of an Edge Side Include (ESI) processor

and to generate ESI include tags and appropriate cache policies for edge cacheable fragments. With

the ESI processor, you can cache whole pages, as well as fragments, providing a higher cache hit ratio.

There can be multiple ESI processors running on multiple hosts configured for caching.

You can view a list of all ESI processes and their hosts that are enabled for caching. Select a host or a

processor, and view its edge cache statistics and the current cache entries.

v View the data offloaded to the disk

By default, when the number of cache entries reaches the configured limit for a given server, cache

entries are removed, allowing new entries to enter the cache service. With disk offload the removed

cache entries are copied disk for future access. You can view of the content that is copied to disk that

corresponds to the view of contents cached in memory for each cache instance.

v Manage the data in the cache

You can perform the following basic operations on the data in the cache:

– Remove an entry from a cache instance

– Remove all entries for a certain dependency ID

– Remove all entries for a certain name (template)

– Move an entry to the front of the least recently used queue to avoid removal of the cache entry

– Move an entry from the disk to the memory within a cache instance

– Clear the entire contents of the cache instance

– Clear the contents of the disk for the cache instance

With these operations, you can manually change the state of the cache without having to restart the

server.

Edge cache statistics:

Cache monitor provides a view of the edge cache statistics.

 The following statistics are available:

v ESI Processors. Number of processes configured as edge caches.

v Number of Edge Cached Entries. Number of entries currently cached on all edge servers and

processes.

v Cache Hits. Number of requests that match entries on edge servers.

v Cache Misses By URL. A cache policy does not exist on the edge server, for the requested template.

Note:

1944 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

– The initial ESI request for a template that has a cache policy on WebSphere Application

Server results in a miss.

– Every request for a template that does not have a cache policy on WebSphere Application

Server results in a miss by URL on the edge server.
v Cache Misses By Cache ID. The policy for the requested template exists on the edge server, and a

cache ID is created, based on the ID rules and the request attributes, but the cache entry for this ID

does not exist.

Note: If the policy exists on the edge server for the requested template, but a cache ID match is not

found, based on the ID rules and the request attributes, it is not treated as a cache miss.

v Cache Timeouts. Number of entries removed from the edge cache, based on the timeout value.

v Evictions. Number of entries removed from the edge cache, due to invalidations received from

WebSphere Application Server.

Using servlet cache instances

Use this task to configure servlet cache instances.

Before you begin, enable the dynamic cache service. See ″Enabling the dynamic cache service″ in the

information center.

Perform this task so that your application can access dynamic cache servlet cache instances. Using

servlet cache instances can improve the performance of your application because you can store the output

and the side effects of an invoked servlet. Servlet cache instances also give you the necessary control

over the cache for multiple applications that are running in an application server. See “Cache instances” on

page 1153 for more information.

1. Enable servlet caching. See ″Configuring servlet caching″ for more information.

2. Configure one or more cache instances.

a. In the administrative console, click Resources > Cache instances > Servlet cache instances.

b. Specify the scope of the cache instance. Specify a scope of cell to make the cache instance

available to all the servers that are in the cell. Node scope makes the cache instance available to

all servers in a node. Server scope makes the cache instance available to the selected server only.

If necessary, you can mix the scopes.

c. Click Apply to save the scope.

d. Specify the settings for the cache instance. The Name and Java Naming and Directory interface

(JNDI) name fields are required. The JNDI name is the name attribute that is specified in the

<cache-instance> element in the cachepec.xml file. An example of a JNDI name that is specified in

the cachespec.xml file follows:

<cache-instance name="services/cache/instance_one">

In this example, specify services/cache/instance_one as the JNDI name.

3. Update your application. To use a servlet cache instance, you must specify a <cache-instance>

element that has a name that is equal to the JNDI Name for this cache instance.

Servlet cache instance collection:

A servlet cache instance is a location, in addition to the default shared dynamic cache, where dynamic

cache can store, distribute, and share data. By using servlet cache instances, your applications have

greater flexibility and better tuning of the cache resources. The Java Naming and Directory Interface

(JNDI) name specified for the cache instance is mapped to the name attribute in the <cache-instance> tag

in the cachespec.xml configuration file.

 To view this administrative console page, click Resources > Cache instances > Servlet cache

instances.

Chapter 8. Developing WebSphere applications 1945

Scope:

Specify CELL SCOPE to view and configure cache instances that are available to all servers within the

cell. Specify NODE SCOPE to view and configure cache instances that are available to all servers with the

particular node. Specify SERVER SCOPE to view and configure cache instances that are available only on

the specific server.

Name:

Specifies the required display name for the resource.

JNDI name:

Specifies the Java Naming and Directory Interface (JNDI) name for the resource. Specify this name in the

name attribute field in the <cache-instance> tag in the cachespec.xml configuration file. This tag is used to

find the particular cache instance in which to store cache entries.

Cache size:

Specifies a positive integer for the maximum number of entries the cache holds. The cache size is usually

in the thousands. The default is 2000.

 The minimum value is 100, with no set maximum value.

Servlet cache instance settings:

A servlet cache instance is a location, in addition to the default shared dynamic cache, where dynamic

cache can store, distribute, and share data. By using servlet cache instances, your applications have

greater flexibility and better tuning of the cache resources. The Java Naming and Directory Interface

(JNDI) name specified for the cache instance is mapped to the name attribute in the <cache-instance> tag

in the cachespec.xml configuration file.

 To view this administrative console page, click Resources > Cache instances > Servlet cache instances

> cache_instance_name.

Name:

Specifies the required display name for the resource.

JNDI name:

Specifies the Java Naming and Directory Interface (JNDI) name for the resource. Specify this name in the

name attribute field in the <cache-instance> tag in the cachespec.xml configuration file. This tag is used to

find the particular cache instance in which to store cache entries.

Description:

Specifies a description for the resource. This field is optional.

Category:

Specifies a category string to classify or group the resource. This field is optional.

Cache size:

Specifies a positive integer for the maximum number of entries the cache holds. The cache size is usually

in the thousands.

1946 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Default 2000

Range 100 - no set maximum value

Default priority:

Specifies the default priority for servlets that can be cached. This value determines how long an entry

stays in a full cache.

 The recommended value is one.

Disk offload:

Specifies if disk offloading is enabled.

 If you have disk offload disabled, when a new entry is created while the cache is full, the priorities are

configured for each entry and the least recently used algorithm are used to remove the entry from the

cache in memory. If you enable disk offload, the entry that would be removed from the cache is copied to

the local file system. The location of the file is specified by the disk offload location.

 Default false

Disk offload location:

Specifies the directory used for disk offload.

 If disk offload location is not specified, the default location,

$install_root/temp/node/servername/_dynacache/cacheJNDIname will be used. If disk offload location is

specified, the node, server name, and cache instance name are appended. For example,

$install_root/diskoffload generates the location as

$install_root/diskoffload/node/servername/cacheJNDIname. This value is ignored if disk offload is not

enabled.

Flush to disk:

Specifies if in-memory cached objects are saved to disk when the server is stopped. This value is ignored

if Enable Disk Offload is not selected.

 Default false

Use listener context:

Set this value to true to have invalidation events sent to registered invalidation listeners using the Java 2

Platform, Enterprise Edition (J2EE) context of the listener. If you want to use listener J2EE context for

callback, set this value to true. If you want to use the caller thread context for callback, set this to false.

Dependency ID support: Specifies that the dynamic cache service, supports cache entry dependency IDs.

Disable this option if you do not need to use dependency IDs. Dependency IDs specify additional cache

group identifiers that associate multiple cache entries to the same group identifier in your cache policy.

This option might not be available for cache instances that were created with a previous version of

WebSphere Application Server.

 Default true

Chapter 8. Developing WebSphere applications 1947

Enable cache replication:

Use cache replication to enable sharing of cache IDs, cache entries, and cache invalidations with other

servers in the same replication domain.

 This option might be unavailable for cache instances created with a previous version of WebSphere

Application Server.

Replication domain:

Specifies a replication domain from which your data is replicated.

 Specifies a replication domain from which your data is replicated. Choose from any replication domains

that have been defined. If there are no replication domains listed, you must create one during cluster

creation or manually in the administrative console by clicking Environment > Internal replication

domains > New. The replication domain you choose to use with the dynamic cache service must be using

a Full group replica. Do not share replication domains between replication consumers. Dynamic cache

should use a different replication domain from session manager or stateful session beans.

Replication type:

Specifies the global sharing policy for this application server.

 The following settings are available:

v Both push and pull sends the cache ID of newly updated content to other servers in the replication

domain. Then, if one of the other servers requests the content, and that server has the ID of the cache

entry for the previously updated content, it will retrieve the content from the publishing server. If a

request is made for an ID which has not been previously published, the server assumes it does not

exist in the cluster and creates a new entry.

v Push only sends the cache ID and cache content of new content to all other servers in the replication

domain.

v The sharing policy of Not Shared results in the cache ID and cache content not being shared with other

servers in the replication domain.

The default setting for a an environment without clustering is Not Shared. When enabling replication, the

default value is Push only.

Push frequency:

Specifies the time in seconds to wait before pushing new or modified cache entries to other servers.

 A value of 0 (zero) means send the cache entries immediately. Setting this property to a value greater than

0 (zero) causes a ″batch″ push of all cache entries that are created or modified during the time period.

The default is 0 (zero).

Using the DynamicContentProvider interface for dynamic cache:

Use this task to configure the DynamicContentProvider interface for cached servlets and JavaServer

Pages (JSP) files.

 The dynamic cache service should be enabled and you should be using servlet caching. See ″Enabling

the dynamic cache service″ and ″Configuring servlet caching″ in the information center.

1948 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

A cacheable servlet or JavaServer Pages (JSP) file might contain a state in the response that does not

belong to the fragment for that servlet or JSP. When the state changes, the cached servlet or JSP is not

valid for caching. Use the com.ibm.websphere.servlet.cache.DynamicContentProvider interface to make

the fragment cacheable.

Servlets or JSP files that implement the DynamicContentProvider interface can add user exits in fragments

that are cacheable by calling the addDynamicContentProvider(DCP) method on the wrapper response

object. When the dynamic cache renders the page, it identifies the user exit and calls the dynamic content

provider to add the dynamic content to the rendered page.

1. Provide an implementation class of the com.ibm.websphere.servlet.cache.DynamicContentProvider

interface. An example of an implementation follows:

class DynamicContentProviderImpl implements com.ibm.websphere.servlet.cache.DynamicContentProvider {

 DynamicContentProviderImpl() {}

 public void provideDynamicContent(HttpServletRequest request, OutputStream streamWriter) throws

 IOException {

 String dynamicContent = System.currentTimeMillis();

 streamWriter.write(dynamicContent.getBytes());

 }

 public void provideDynamicContent(HttpServletRequest request, Writer streamWriter) throws

 IOException {

 String dynamicContent = System.currentTimeMillis();

 streamWriter.write(dynamicContent.toCharArray());

 }

 }

2. Add user exits to your servlet or JSP file by calling the addDynamicContentProvider(DCP) method on

the wrapper response object. An example follows:

public class DCPServlet extends CacheTestCase {

 public void performTest(HttpServletRequest request, HttpServletResponse

 response) throws IOException, ServletException {

 out.println(“Testing the DCP feature begin ”+System.currentTimeMillis());

 DynamicContentProvider dcp = new DynamicContentProviderImpl();

 ServletCacheResponse scr = (ServletCacheResponse)(response);

 scr.addDynamicContentProvider(dcp);

 out.println("Testing the DCP feature end”+System.currentTimeMillis());

 }

 }

See “Task overview: Using the dynamic cache service to improve performance” on page 1901 for more

information about the other tasks that you can perform with the dynamic cache.

Dynamic query

Using EJB query

The EJB query language is used to specify a query over container-managed entity beans. The language is

similar to SQL. An EJB query is independent of the bean’s mapping to a persistent store.

An EJB query can be used in three situations:

v To define a finder method of an EJB entity bean.

v To define a select method of an EJB entity bean.

v To dynamically specify a query using the executeQuery() dynamic API.

Finder and select queries are specified in the bean’s deployment descriptor using the <ejb-ql> tag; they

are compiled into SQL during deployment. Dynamic queries are included within the application code itself.

WebSphere’s EJB query language is compliant with the EJB QL defined in Sun’s EJB 2.1 specification and

has additional capabilities as listed in the topic Comparison of EJB 2.x specification and WebSphere

Query Language.

Chapter 8. Developing WebSphere applications 1949

For your WebSphere application, you can define an EJB query in the following ways:

v Application Server Toolkit. When defining an EJB 2.1 entity bean in an EJB deployment descriptor

editor, on the Beans page click Add under Queries and, in the Add Finder Descriptor wizard, define a

find or ejbSelect method. See the online Application Server Toolkit information for documentation

on wizard options.

v Rational Application Developer. When defining an entity bean, specify the <ejb-ql> tag for the finder

or select method.

v Dynamic query service. Add the executeQuery() method to your application.

Before using EJB query, familiarize yourself with query language concepts, starting with the topic, EJB

Query Language.

See the topic Example: EJB queries.

EJB query language: An EJB query is a string that contains the following elements:

v a SELECT clause that specifies the enterprise beans or values to return;

v a FROM clause that names the bean collections;

v an optional WHERE clause that contains search predicates over the collections;

v an optional GROUP BY and HAVING clause (see Aggregation functions);

v an optional ORDER BY clause that specifies the ordering of the result collection.

The SELECT clause is optional in order to maintain compatibility with WebSphere Application Server

Version 4.

Collections of entity beans are identified in EJB queries through the use of their abstract schema name in

the query FROM clause.

The elements of EJB query language are discussed in more detail in the following related topics.

Example: EJB queries:

Here is an example EJB schema, followed by a set of example queries:

 Table 18. DeptBean schema

Entity bean name (EJB name) DeptEJB (not used in query)

Abstract schema name DeptBean

Implementation class com.acme.hr.deptBean (not used in query)

Persistent attributes (cmp fields) v deptno - Integer (key)

v name - String

v budget - BigDecimal

Relationships v emps - 1:Many with EmpEJB

v mgr - Many:1 with EmpEJB

 Table 19. EmpBean schema

Entity bean name (EJB name) EmpEJB (not used in query)

Abstract schema name EmpBean

Implementation class com.acme.hr.empBean (not used in query)

1950 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Table 19. EmpBean schema (continued)

Persistent attributes (cmp fields) v empid - Integer (key)

v name - String

v salary - BigDecimal

v bonus - BigDecimal

v hireDate - java.sql.Date

v birthDate - java.util.Calendar

v address - com.acme.hr.Address

Relationships v dept - Many:1 with DeptEJB

v manages - 1:Many with DeptEJB

Address is a serializable object used as cmp field in EmpBean. The definition of address is as follows:

 public class com.acme.hr.Address extends Object implements Serializable {

 public String street;

 public String state;

 public String city;

 public Integer zip;

 public double distance (String start_location) { ... } ;

 public String format () { ... } ;

 }

The following query returns all departments:

SELECT OBJECT(d) FROM DeptBean d

The following query returns departments whose name begins with the letters ″Web″. Sort the result by

name:

SELECT OBJECT(d) FROM DeptBean d WHERE d.name LIKE ’Web%’ ORDER BY d.name

The keywords SELECT and FROM are shown in uppercase in the examples but are case insensitive. If a

name used in a query is a reserved word, the name must be enclosed in double quotes to be used in the

query. You can find a list of reserved words in “EJB query: Reserved words” on page 1969. Identifiers

enclosed in double quotes are case sensitive. This example shows how to use a cmp field that is a

reserved word:

SELECT OBJECT(d) FROM DeptBean d WHERE d."select" > 5

The following query returns all employees who are managed by Bob. This example shows how to navigate

relationships using a path expression:

SELECT OBJECT (e) FROM EmpBean e WHERE e.dept.mgr.name=’Bob’

A query can contain a parameter which refers to the corresponding value of the finder or select method.

Query parameters are numbered starting with 1:

SELECT OBJECT (e) FROM EmpBean e WHERE e.dept.mgr.name= ?1

This query shows navigation of a multivalued relationship and returns all departments that have an

employee that earns at least 50000 but not more than 90000:

SELECT OBJECT(d) FROM DeptBean d, IN (d.emps) AS e

WHERE e.salary BETWEEN 50000 and 90000

There is a join operation implied in this query between each department object and its related collection of

employees. If a department has no employees, the department does not appear in the result. If a

department has more than one employee that earns more than 50000, that department appears multiple

times in the result.

The following query eliminates the duplicate departments:

SELECT DISTINCT OBJECT(d) from DeptBean d, IN (d.emps) AS e WHERE e.salary > 50000

Chapter 8. Developing WebSphere applications 1951

Find employees whose bonus is more than 40% of their salary:

SELECT OBJECT(e) FROM EmpBean e where e.bonus > 0.40 * e.salary

Find departments where the sum of salary and bonus of employees in the department exceeds the

department budget:

SELECT OBJECT(d) FROM DeptBean d where d.budget <

(SELECT SUM(e.salary+e.bonus) FROM IN(d.emps) AS e)

A query can contain DB2 style date-time arithmetic expressions if you use java.sql.* datatypes as CMP

fields and your datastore is DB2. Find all employees who have worked at least 20 years as of January 1st,

2000:

SELECT OBJECT(e) FROM EmpBean e where year(’2000-01-01’ - e.hireDate) >= 20

If the datastore is not DB2 or if you prefer to use java.util.Calendar as the CMP field, then you can use the

java millsecond value in queries. The following query finds all employees born before Jan 1, 1990:

SELECT OBJECT(e) FROM EmpBean e WHERE e.birthDate < 631180800232

Find departments with no employees:

SELECT OBJECT(d) from DeptBean d where d.emps IS EMPTY

Find all employees whose earn more than Bob:

SELECT OBJECT(e) FROM EmpBean e, EmpBean b

WHERE b.name = ’Bob’ AND e.salary + e.bonus > b.salary + b.bonus

Find the employee with the largest bonus:

SELECT OBJECT(e) from EmpBean e WHERE e.bonus =

(SELECT MAX(e1.bonus) from EmpBean e1)

The above queries all return EJB objects. A finder method query must always return an EJB Object for the

home. A select method query can in addition return CMP fields or other EJB Objects not belonging to the

home.

The following would be valid select method queries for EmpBean. Return the manager for each

department:

SELECT d.mgr FROM DeptBean d

Return department 42 manager’s name:

SELECT d.mgr.name FROM DeptBean d WHERE d.deptno = 42

Return the names of employees in department 42:

SELECT e.name FROM EmpBean e WHERE e.dept.deptno=42

Another way to write the same query is:

SELECT e.name from DeptBean d, IN (d.emps) AS e WHERE d.deptno=42

Finder and select queries allow only a single CMP field or EJBObject in the SELECT clause. A select

query can return aggregate values in Enterprise JavaBeans 2.1 using SUM, MIN, MAX, AVG and COUNT.

SELECT max(e.salary) FROM EmpBean e WHERE e.dept.deptno=42

The dynamic query api allows multiple expressions in the SELECT clause. The following query would be a

valid dynamic query, but not a valid select or finder query:

SELECT e.name, e.salary+e.bonus as total_pay , object(e), e.dept.mgr

FROM EmpBean e

ORDER BY 2

1952 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

The following dynamic query returns the number of employees in each department:

SELECT e.dept.deptno as department_number , count(*) as employee_count

FROM EmpBean e

GROUP BY by e.dept.deptno

ORDER BY 1

The dynamic query api allows queries that contain bean or value object methods:

SELECT object(e), e.address.format()

FROM EmpBean e EmpBean e

FROM clause: The FROM clause specifies the collections of objects to which the query is to be applied.

Each collection is identified either by an abstract schema name and an identification variable, called a

range variable, or by a collection member declaration that identifies a multivalued relationship and an

identification variable.

Conceptually, the semantics of the query is to first form a temporary collection of tuples R. Tuples are

composed of elements from the collections identified in the FROM clause. Each tuple contains one

element from each of the collections in the FROM clause. All possible combinations are formed subject to

the constraints imposed by the collection member declarations. If any schema name identifies a collection

for which there are no records in the persistent store, then the temporary collection R will be empty.

Example: FROM clause

DeptBean contains records 10, 20 and 30 in the persistent store. EmpBean contains records 1, 2 and 3 that

are related to department 10 and records 4, 5 that are related to department 20. Department 30 has no

related employees.

FROM DeptBean d, EmpBean e

This forms a temporary collection R that contains 15 tuples.

FROM DeptBean d, DeptBean d1

This forms a temporary collection R that contains 9 tuples.

FROM DeptBean d, IN (d.emps) AS e

This forms a temporary collection R that contains 5 tuples. Department 30 because it contains no

employees will not be in R. Department 10 will be contained in R three times and department 20 will be

contained in R twice.

After forming the temporary collection the search conditions of the WHERE clause will be applied to R and

this will yield a new temporary collection R1. The ORDER BY and SELECT clauses are applied to R1 to

yield the final result set.

An identification variable is a variable declared in the FROM clause using the operator IN or the optional

AS.

FROM DeptBean AS d, IN (d.emps) AS e

is equivalent to:

FROM DeptBean d, IN (d.emps) e

An identification variable that is declared to be an abstract schema name is called a range variable. In the

query above ″d″ is a range variable. An identification variable that is declared to be a multivalued path

expression is called a collection member declaration. ″d″ and ″e″ in the example above are collection

member declarations.

Note that the following path expression is illegal as a collection member declaration because it is not

multivalued:

Chapter 8. Developing WebSphere applications 1953

e.dept.mgr

Inheritance in EJB query: If an EJB inheritance hierarchy has been defined for an abstract schema, using

the abstract schema name in a query statement implies the collection of objects for that abstract schema

as well as all subtypes.

Example: Inheritance

Suppose that bean ManagerBean is defined as a subtype of EmpBean and ExecutiveBean is a subtype of

ManagerBean in an EJB inheritance hierarchy. The following query returns employees as well as managers

and executives:

SELECT OBJECT(e) FROM EmpBean e

Path expressions: An identification variable followed by the navigation operator (.) and a cmp or

relationship name is a path expression.

A path expression that leads to a cmr field can be further navigated if the cmr field is single-valued. If the

path expression leads to a multi-valued relationship, then the path expression is terminal and cannot be

further navigated. If the path expression leads to a cmp field whose type is a value object, it is possible to

navigate to attributes of the value object.

Example: Value object

Assume that address is a cmp field for EmpBean, which is a value object.

SELECT object(e) FROM EmpBean e

WHERE e.address.distance(’San Jose’) < 10 and e.address.zip = 95037

It is best to use the composer pattern to map value object attributes to relational columns if you intend to

search on value attributes. If you store value objects in serialized format, then each value object must be

retrieved from the database and deserialized. Value object methods can only be done in dynamic queries.

A path expression can also navigate to a bean method. The method must be defined on either the remote

or local bean interface. Methods can only be used in dynamic queries. You cannot mix both remote and

local methods in a single query statement.

If the query contains remote methods, the dynamic query must be executed using the query remote

interface. Using the query remote interface causes the query service to activate beans and create

instances of the remote bean interface

Likewise, a query statement with local bean methods must be executed with the query local interface. This

causes the query service to activate beans and local interface instances.

Do not use get methods to access cmp and cmr fields of a bean.

If a method has overloaded definitions, the overloaded methods must have different number of

parameters.

Methods must have non-void return types and method arguments and return types must be either primitive

types byte, short, int, long, float, double, boolean, char or wrapper types from the following list:

Byte, Short, Integer, Long, Float, Double, BigDecimal, String, Boolean, Character, java.util.Calendar,

java.sql.Date, java.sql.Time, java.sql.Timestamp, java.util.Date

If any input argument to a method is NULL, it is assumed the method returns a NULL value and the

method is not invoked.

1954 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

A collection valued path expression can be used in the FROM clause as a collection member declaration,

and with the IS EMPTY, MEMBER OF, and EXISTS predicates in the WHERE clause.

 FROM EmpBean e WHERE e.dept.mgr.name=’Bob’ OK

FROM EmpBean e WHERE e.dept.emps.name=’BOB’ INVALID -- cannot navigate through emps because it is

multivalued

FROM EmpBean e, IN (e.dept.emps) e1

WHERE e1.name=’BOB’

OK

FROM EmpBean e WHERE e.dept.emps IS EMPTY OK

WHERE clause: The WHERE clause contains search conditions composed of the following:

v literal values

v input parameters

v expressions

v basic predicates

v quantified predicates

v BETWEEN predicate

v IN predicate

v LIKE predicate

v NULL predicate

v EMPTY collection predicate

v MEMBER OF predicate

v EXISTS predicate

v IS OF TYPE predicate

If the search condition evaluates to TRUE, the tuple is added to the result set.

Literals: A string literal is enclosed in single quotes. A single quote that occurs within a string literal is

represented by two single quotes; For example: ’Tom’’s’. A string literal cannot exceed the maximum length

that is supported by the underlying persistent datastore.

A numeric literal can be any of the following:

v an exact value such as 57, -957, +66

v any value supported by Java long

v a decimal literal such as 57.5, -47.02

v an approximate numeric value such as 7E3, -57.4E-2

A decimal or approximate numeric value must be in the range supported by the underlying persistent

datastore.

A boolean literal can be the keyword TRUE or FALSE and is case insensitive.

Input parameters: Input parameters are designated by the question mark followed by a number; For

example: ?2

Input parameters are numbered starting at 1 and correspond to the arguments of the finder or select

method; therefore, a query must not contain an input parameter that exceeds the number of input

arguments.

An input parameter can be a primitive type of byte, short, int, long, float, double, boolean, char or wrapper

types of Byte, Short, Integer, Long, Float, Double, BigDecimal, String, Boolean, Char, java.util.Calendar,

java.util.Date, java.sql.Date, java.sql.Time, java.sql.Timestamp, an EJBObject, or a binary data string in the

form of Java byte[].

Chapter 8. Developing WebSphere applications 1955

An input parameter must not have a NULL value. To search for the occurrence of a NULL value the NULL

predicate should be used.

Expressions: Conditional expressions can consist of comparison operators and logical operators (AND,

OR, NOT).

Arithmetic expressions can be used in comparison expressions and can be composed of arithmetic

operations and functions, path expressions that evaluate to a numeric value and numeric literals and

numeric input parameters.

String expressions can be used in comparison expressions and can be composed of string functions, path

expressions that evaluate to a string value and string literals and string input parameters. A cmp field of

type char is handled as if it were a string of length 1.

Binary expressions can be used in comparison expressions and can be composed of path expressions

that evaluate to the Java byte[] type as well as input parameters of type byte[].

Boolean expressions can be used with = and <> comparison and can be composed of path expressions

that evaluate to a boolean value and TRUE and FALSE keywords and boolean input parameters.

Reference expressions can be used with = and <> comparison and can be composed of path expressions

that evaluate to a cmr field, an identification variable and an input parameter whose type is an EJB

reference

Four different expression types are supported for working with date-time types. For portability the

java.util.Calendar type should be used. DB2 style date, time and timestamp expressions are supported if

the datastore is DB2 and the CMP field is of type java.util.Date, java.sql.Date, java.sql.Time or

java.sql.Timestamp.

A Calendar type can be compared to another Calendar type, an exact numeric literal or input parameter of

type long whose value is the standard Java long millisecond value.

The following query finds all employees born before Jan 1, 1990:

SELECT OBJECT(e) FROM EmpBean e WHERE e.birthDate < 631180800232

Date expressions can be used in comparison expressions and can be composed of operators + - , date

duration expressions and date functions, path expressions that evaluate to a date value, string

representation of a date and date input parameters.

Time expressions can be used in comparison expressions and can be composed of operators + - , time

duration expressions and time functions, path expressions that evaluate to a time value, string

representation of time and time input parameters.

Timestamp expressions can be used in comparison expressions and can be composed of operators + - ,

timestamp duration expressions and timestamp functions, path expressions that evaluate to a timestamp

value, string representation of a timestamp and timestamp input parameters.

Standard bracketing () for ordering expression evaluation is supported.

The operators and their precedence order from highest to lowest are:

v Navigation operator (.)

v Arithmetic operators in precedence order:

– + - unary

– * / multiply, divide

– + - add, subtract
v Comparison operators: =, >, <, >=, <=, <>(not equal)

1956 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

v Logical operator NOT

v Logical operator AND

v Logical operator OR

Null value semantics: The following describe the semantics of NULL values:

v Comparison or arithmetic operations with an unknown (NULL) value yield an unknown value

v In a Java 2 platform, Enterprise Edition (J2EE) version 1.3 application, a path expression uses an

outer-join semantic where a NULL field or cmr value evaluates to NULL. In J2EE version 1.4, the path

expression uses an inner-join semantic.

v The IS NULL and IS NOT NULL operators can be applied to path expressions and return TRUE or

FALSE. Boolean operators AND, OR and NOT use three valued logic.

 AND True False Unknown

True True False Unknown

False False False False

Unknown Unknown False Unknown

 OR True False Unknown

True True True True

False True False Unknown

Unknown True Unknown Unknown

 NOT

True False

False True

Unknown Unknown

Example: Null value semantics

select object(e) from EmpBean where e.salary > 10 and e.dept.budget > 100

If salary is NULL the evaluation of e.salary > 10 returns unknown and the employee object is not

returned. If the cmr field dept or budget is NULL evaluation of e.dept.budget > 100 returns unknown and

the employee object is not returned.

select object(e) from EmpBean where e.dept.budget is null

In J2EE 1.3 if dept or budget is NULL evaluation of e.dept.budget is null returns TRUE and the employee

object is returned. In J2EE 1.4 the employee object is returned only if budget is NULL.

select object(e) from EmpBean e , in (e.dept.emps) e1 where e1.salary > 10

If dept is NULL, then the multivalued path expression e.dept.emps results in an empty collection (not a

collection that contains a NULL value). An employee with a null dept value will not be returned.

select object(e) from EmpBean e where e.dept.emps is empty

If dept is NULL the evaluation of the predicate in unknown and the employee object is not returned.

select object(e) from EmpBean e , EmpBean e1 where e member of e1.dept.emps

If dept is NULL evaluation of the member of predicate returns unknown and the employee is not returned.

Chapter 8. Developing WebSphere applications 1957

Date time arithmetic and comparisons: DATE, TIME and TIMESTAMP values may be compared with

another value of the same type. Comparisons are chronological. Date time values can also be

incremented, decremented, and subtracted.

If the datastore is DB2, then DB2 string representation of DATE, TIME and TIMESTAMP types can also be

used. A string representation of a date or time can use ISO, USA, EUR or JIS format. A string

representation of a timestamp uses ISO format.

 Format Date format Date examples Time format Time examples

ISO yyyy-mm-dd 1987-02-24 1987-2-24 hh.mm.ss 13.50.00 13.50

USA mm/dd/yyyy 2/24/1987 hh:mm AM or PM 1:50 pm 02:10 AM

EUR dd.mm.yyyy 24.02.1987 24.2.1987 hh.mm.ss 13.50.00 13.55

JIS yyyy-mm-dd 1987-02-24 hh:mm:ss 13:50 13:50:05

Example 1: Date time arithmetic comparisons

e.hiredate > ’1990-02-24’

The timestamp of February 24th, 1990 1:50 pm can be represented as follows:

’1990-02-24-13.50.00.000000’ or

’1990-02-24-13.50.00’

If the datastore is DB2, DB2 decimal durations can be used in expressions and comparisons. A date

duration is a decimal(8,0) number that represents the difference between two dates in the format

YYYYMMDD. A time duration is a decimal(6,0) number that represents the difference between two time

values as HHMMSS. A timestamp duration is a decimal(20,6) number representing the differences

between two timestamp values as YYYYMMDDHHMMSS.ZZZZZZ (ZZZZZZ is the number of

microseconds and is to the right of the decimal point) .

Two date values (or time values or timestamp values) can be subtracted to yield a duration. If the second

operand is greater than the first the duration is a negative decimal number. A duration can be added or

subtracted from a datetime value to yield a new datetime value.

Example 2: Date time arithmetic comparisons

DATE(’3/15/2000’) - ’12/31/1999’ results in a decimal number 215 which is a duration of 0 years, 2

months and 15 days.

Durations are really decimal numbers and can be used in arithmetic expressions and comparisons.

(DATE(’3/15/2000’) - ’12/31/1999’) + 14 > 215 evaluates to TRUE.

DATE(’12/31/1999’) + DECIMAL(215,8,0) results in a date value 3/15/2000.

TIME(’11:02:26’) - ’00:32:56’ results in a decimal number 102930 which is a time duration of 10 hours,

29 minutes and 30 seconds.

TIME(’00:32:56’) + DECIMAL(102930,6,0) results in a time value of 11:02:26.

TIME(’00:00:59’) + DECIMAL(240000,6,0) results in a time value of 00:00:59.

e.hiredate + DECIMAL(500,8,0) > ’2000-10-01’ means compare the hiredate plus 5 months to the date

10/01/2000.

Basic predicates: Basic predicates can be of two forms

1958 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

expression-1 comparison-operator expression-2

expression-3 comparison-operator (subselect)

The subselect must not return more than one value and the subselect can not return a type of an EJB

reference. Boolean types and reference types only support = and <> comparisons.

Example: Basic predicates

d.name=’Java Development’

e.salary > 20000

e.salary > (select avg(e.salary) from EmpBean e)

Quantified predicates: A quantified predicate compares a value with a set of values produced by a

subselect.

expression comparison-operator SOME | ANY | ALL (subselect)

The expression must not evaluate to a reference type.

When SOME or ANY is specified the result of the predicate is as follows:

v TRUE if the comparison is true for at least one value returned by the subselect.

v FALSE if the subselect is empty or if the comparison is false for every value returned by the subselect.

v UNKNOWN if the comparison is not true for all of the values returned by the subselect and at least one

of the comparisons is unknown because of a null value.

When ALL is specified the result of the predicate is as follows:

v TRUE if the subselect returns empty or if the comparison is true to every value returned by the

subselect.

v FALSE if the comparison is false for at least one value returned by the subselect.

v UNKNOWN if the comparison is not false for all values returned by the subselect and at least one

comparison is unknown because of a null value.

BETWEEN predicate: The BETWEEN predicate determines whether a given value lies between two other

given values.

expression [NOT] BETWEEN expression-2 AND expression-3

Example: BETWEEN predicate

e.salary BETWEEN 50000 AND 60000

is equivalent to:

e.salary >= 50000 AND e.salary <= 60000

e.name NOT BETWEEN ’A’ AND ’B’

is equivalent to:

e.name < ’A’ OR e.name > ’B’

IN predicate: The IN predicate compares a value to a set of values and can have one of two forms:

expression [NOT] IN (subselect)

expression [NOT] IN (value1, value2, )

ValueN can either be a literal value or an input parameter. The expression can not evaluate to a reference

type.

Example: IN predicate

e.salary IN (10000, 15000)

is equivalent to

Chapter 8. Developing WebSphere applications 1959

(e.salary = 10000 OR e.salary = 15000)

e.salary IN (select e1.salary from EmpBean e1 where e1.dept.deptno = 10)

is equivalent to

e.salary = ANY (select e1.salary from EmpBean e1 where e1.dept.deptno = 10)

e.salary NOT IN (select e1.salary from EmpBean e1 where e1.dept.deptno = 10)

is equivalent to

e.salary <> ALL (select e1.salary from EmpBean e1 where e1.dept.deptno = 10)

LIKE predicate: The LIKE predicate searches a string value for a certain pattern.

string-expression [NOT] LIKE pattern [ESCAPE escape-character]

The pattern value is a string literal or parameter marker of type string in which the underscore (_) stands

for any single character and percent (%) stands for any sequence of characters (including empty

sequence). Any other character stands for itself. The escape character can be used to search for

character _ and %. The escape character can be specified as a string literal or an input parameter.

If the string-expression is null, then the result is unknown.

If both string-expression and pattern are empty, then the result is true.

Example: LIKE predicate

v ’’ LIKE ’’ is true

v ’’ LIKE ’%’ is true

v e.name LIKE ’12%3’ is true for ’123’ ’12993’ and false for ’1234’

v e.name LIKE ’s_me’ is true for ’some’ and ’same’, false for ’soome’

v e.name LIKE ’/_foo’ escape ’/’ is true for ’_foo’, false for ’afoo’

v e.name LIKE ’//_foo’ escape ’/’ is true for ’/afoo’ and for ’/bfoo’

v e.name LIKE ’///_foo’ escape ’/’ is true for ’/_foo’ but false for ’/afoo’

NULL predicate: The NULL predicate tests for null values.

single-valued-path-expression IS [NOT] NULL

Example: NULL predicate

e.name IS NULL

e.dept.name IS NOT NULL

e.dept IS NOT NULL

EMPTY collection predicate: To test if a multivalued relationship is empty, use the following syntax:

collection-valued-path-expression IS [NOT] EMPTY

Example: Empty collection predicate

To find all departments with no employees:

SELECT OBJECT(d) FROM DeptBean d WHERE d.emps IS EMPTY

MEMBER OF predicate: This expression tests whether the object reference specified by the single valued

path expression or input parameter is a member of the designated collection. If the collection valued path

expression designates an empty collection the value of the MEMBER OF expression is FALSE.

{ single-valued-path-expression | input_parameter } [NOT] MEMBER [OF]

 collection-valued-path-expression

1960 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Example: MEMBER OF predicate

Find employees that are not members of a given department number:

SELECT OBJECT(e) FROM EmpBean e , DeptBean d

WHERE e NOT MEMBER OF d.emps AND d.deptno = ?1

Find employees whose manager is a member of a given department number:

SELECT OBJECT(e) FROM EmpBean e, DeptBean d

WHERE e.dept.mgr MEMBER OF d.emps and d.deptno=?1

EXISTS predicate: The exists predicate tests for the presence or absence of a condition specified by a

subselect.

EXISTS (subselect)

EXISTS collection-valued-path-expression

The result of EXISTS is true if the subselect returns at least one value or the path expression evaluates to

a nonempty collection, otherwise the result is false.

To negate an EXISTS predicate, precede it with the logical operator NOT.

Example: EXISTS predicate

Return departments that have at least one employee earning more than 1000000:

SELECT OBJECT(d) FROM DeptBean d

WHERE EXISTS (SELECT 1 FROM IN (d.emps) e WHERE e.salary > 1000000)

Return departments that have no employees:

SELECT OBJECT(d) FROM DeptBean d

WHERE NOT EXISTS (SELECT 1 FROM IN (d.emps) e)

The above query can also be written as follows:

SELECT OBJECT(d) FROM DeptBean d WHERE NOT EXISTS d.emps

IS OF TYPE predicate: The IS OF TYPE predicate is used to test the type of an EJB reference. It is

similar in function to the Java instance of operator. IS OF TYPE is used when several abstract beans have

been grouped into an EJB inheritance hierarchy. The type names specified in the predicate are the bean

abstract names. The ONLY option can be used to specify that the reference must be exactly this type and

not a subtype.

identification-variable IS OF TYPE ([ONLY] type-1, [ONLY] type-2, )

Example: IS OF TYPE predicate

Suppose that bean ManagerBean is defined as a subtype of EmpBean and ExecutiveBean is a subtype of

ManagerBean in an EJB inheritance hierarchy.

The following query returns employees as well as managers and executives:

SELECT OBJECT(e) FROM EmpBean e

If you are interested in objects which are employees and not managers and not executives:

SELECT OBJECT(e) FROM EmpBean e WHERE e IS OF TYPE(ONLY EmpBean)

If you are interested in object which are managers or executives:

SELECT OBJECT(e) FROM EmpBean e WHERE e IS OF TYPE(ManagerBean)

The above query is equivalent to the following query:

Chapter 8. Developing WebSphere applications 1961

SELECT OBJECT(e) FROM ManagerBean e

If you are interested in managers only and not executives:

SELECT OBJECT(e) FROM EmpBean e WHERE e IS OF TYPE(ONLY ManagerBean)

or:

SELECT OBJECT(e) FROM ManagerBean e

WHERE e IS OF TYPE (ONLY ManagerBean)

Scalar functions: EJB query contains scalar functions for doing type conversions, string manipulation, and

for manipulating date-time values. The list of scalar functions is documented in the topic EJB query: Scalar

functions.

Example: Scalar functions

Find employees hired in 1999:

SELECT OBJECT(e) FROM EmpBean e where YEAR(e.hireDate) = 1999

The only scalar functions that are guaranteed to be portable across backend datastore vendors are the

following:

v ABS

v MOD

v SQRT

v CONCAT

v LENGTH

v LOCATE

v SUBSTRING

v UCASE

v LCASE

The other scalar functions should be used only when DB2 is the backend datastore.

EJB query: Scalar functions: EJB query contains scalar built-in functions, as listed below, for doing type

conversions, string manipulation, and for manipulating date-time values.

Numeric functions

ABS (< any numeric datatype >) -> < any numeric datatype >

MOD (<int>, <int>) -> int

SQRT (< any numeric datatype >) -> Double

Type conversion functions

CHAR (< any numeric datatype >) -> string

CHAR (< string >) -> string

CHAR (< any datetime datatype > [, Keyword k]) -> string

Datetime datatype is converted to its string representation in a format specified by the keyword k. The

valid keywords values are ISO, USA, EUR or JIS. If k is not specified the default is ISO.

BIGINT (< any numeric datatype >) -> Long

BIGINT (< string >) -> Long

The function in the second line of the following code converts the argument to an integer n by truncation,

and returns the date that is n-1 days after January 1, 0001:

DATE (< date string >) -> Date

DATE (< any numeric datatype>) -> Date

The following function returns date portion of a timestamp:

1962 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

DATE(timestamp) -> Date

DATE (< timestamp-string >) -> Date

The following function converts number to decimal with optional precision p and scale s.

DECIMAL (< any numeric datatype > [, p [,s]]) -> Decimal

The following function converts string to decimal with optional precision p and scale s.

DECIMAL (< string > [, p [, s]]) -> Decimal

DOUBLE (< any numeric datatype >) -> Double

DOUBLE (< string >) -> Double

FLOAT (< any numeric datatype >) -> Double

FLOAT (< string >) -> Double

Float is a synonym for DOUBLE.

INTEGER (< any numeric datatype >) -> Integer

INTEGER (< string >) -> Integer

REAL (< any numeric datatype >) -> Float

SMALLINT (< any numeric datatype) -> Short

SMALLINT (< string >) -> Short

TIME (< time >) -> Time

TIME (< time-string >) -> Time

TIME (< timestamp >) -> Time

TIME (< timestamp-string >) -> Time

TIMESTAMP (< timestamp >) -> Timestamp

TIMESTAMP (< timestamp-string >) -> Timestamp

String functions

CONCAT (<string>, <string>) -> String

The following function returns a character string representing absolute value of the argument not including

its sign or decimal point. For example, digits(-42.35) is ″4235″.

DIGITS (Decimal d) -> String

The following function returns the length of the argument in bytes. If the argument is a numeric or datetime

type, it returns the length of internal representation.

LENGTH (< string >) -> Integer

The following function returns a copy of the argument string where all upper case characters have been

converted to lower case.

LCASE (< string >) -> String

The following function returns the starting position of the first occurrence of argument 1 inside argument 2

with optional start position. If not found, it returns 0.

LOCATE (String s1 , String s2 [, Integer start]) -> Integer

The following function returns a substring of s beginning at character m and containing n characters. If n is

omitted, the substring contains the remainder of string s. The result string is padded with blanks if needed

to make a string of length n.

SUBSTRING (String s , Integer m [, Integer n]) -> String

The following function returns a copy of the argument string where all lower case characters have been

converted to upper case.

UCASE (< string >) -> String

Chapter 8. Developing WebSphere applications 1963

Date - time functions

The following function returns the day portion of its argument. For a duration, the return value can be -99

to 99.

DAY (Date) -> Integer

DAY (< date-string >) -> Integer

DAY (< date-duration >) -> Integer

DAY (Timestamp) -> Integer

DAY (< timestamp-string >) -> Integer

DAY (< timestamp-duration >) -> Integer

The following function returns one more than number of days from January 1, 0001 to its argument.

DAYS (Date) -> Integer

DAYS (< Date-string >) -> Integer

DAYS (Timestamp) -> Integer

DAYS (< timestamp-string >) -> Integer

The following function returns the hour part of its argument. For a duration, the return value can be -99 to

99.

HOUR (Time) -> Integer

HOUR (< time-string >) -> Integer

HOUR (< time-duration >) -> Integer

HOUR (Timestamp) -> Integer

HOUR (< timestamp-string >) -> Integer

HOUR (< timestamp-duration >) -> Integer

The following function returns the microsecond part of its argument.

MICROSECOND (Timestamp) -> Integer

MICROSECOND (< timestamp-string >) -> Integer

MICROSECOND (< timestamp-duration >) -> Integer

The following function returns the minute part of its argument. For a duration, the return value can be -99

to 99.

MINUTE (Time) -> Integer

MINUTE (< time-string >) -> Integer

MINUTE (< time-duration >) -> Integer

MINUTE (Timestamp) -> Integer

MINUTE (< timestamp-string >) -> Integer

MINUTE (< timestamp-duration >) -> Integer

The following function returns the month portion of its argument. For a duration, the return value can be

-99 to 99.

MONTH (Date) -> Integer

MONTH (< date-string >) -> Integer

MONTH (< date-duration >) -> Integer

MONTH (Timestamp) -> Integer

MONTH (< timestamp-string >) -> Integer

MONTH (< timestamp-duration >) -> Integer

The following function returns the second part of its argument. For a duration, the return value can be -99

to 99.

SECOND (Time) -> Integer

SECOND (< time-string >) -> Integer

SECOND (< time-duration >) -> Integer

SECOND (Timestamp) -> Integer

SECOND (< timestamp-string >) -> Integer

SECOND (< timestamp-duration >) -> Integer

The following function returns the year portion of its argument. For a duration, the return value can be

-9999 to 9999.

1964 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

YEAR (Date) -> Integer

YEAR (< date-string >) -> Integer

YEAR (< date-duration >) -> Integer

YEAR (Timestamp) -> Integer

YEAR (< timestamp-string >) -> Integer

YEAR (< timestamp-duration >) -> Integer

Aggregation functions: Aggregation functions operate on a set of values to return a single scalar value.

You can use these functions in the select and subselect methods. The following example illustrates an

aggregation:

SELECT SUM (e.salary) FROM EmpBean e WHERE e.dept.deptno =20

This aggregation computes the total salary for department 20.

The aggregation functions are AVG, COUNT, MAX, MIN, and SUM. The syntax of an aggregation function

is illustrated in the following example:

aggregation-function ([ALL | DISTINCT] expression)

or:

COUNT([ALL | DISTINCT] identification-variable)

or:

COUNT(*)

The DISTINCT option eliminates duplicate values before applying the function. ALL is the default option

and does not eliminate duplicates. Null values are ignored in computing the aggregate function except in

the cases of COUNT(*) and COUNT(identification-variable), which return a count of all the elements in the

set.

If your datastore is Informix, you must limit the expression argument to a single valued path expression

when using the COUNT function or the DISTINCT forms of the functions SUM, AVG, MIN, and MAX.

Defining return type

For a select method using an aggregation function, you can define the return type as a primitive type or a

wrapper type. The return type must be compatible with the return type from the datastore. The MAX and

MIN functions can apply to any numeric, string or datetime datatype and return the corresponding

datatype. The SUM and AVG functions take a numeric type as input, and return the same numeric type

that is used in the datastore. The COUNT function can take any datatype, and returns an integer.

When applied to an empty set, the SUM, AVG, MAX, and MIN functions can return a null value. The

COUNT function returns zero (0) when it is applied to an empty set. Use wrapper types if the return value

might be NULL; otherwise, the container displays an ObjectNotFound exception.

Using GROUP BY and HAVING

The set of values that is used for the aggregate function is determined by the collection that results from

the FROM and WHERE clause of the query. You can divide the set into groups and apply the aggregation

function to each group. To perform this action, use a GROUP BY clause in the query. The GROUP BY

clause defines grouping members, which comprise a list of path expressions. Each path expression

specifies a field that is a primitive type of byte, short, int, long, float, double, boolean, char, or a wrapper

type of Byte, Short, Integer, Long, Float, Double, BigDecimal, String, Boolean, Character,

java.util.Calendar, java.util.Date, java.sql.Date, java.sql.Time or java.sql.Timestamp.

The following example illustrates the use of the GROUP BY clause in a query that computes the average

salary for each department:

Chapter 8. Developing WebSphere applications 1965

SELECT e.dept.deptno, AVG (e.salary) FROM EmpBean e GROUP BY e.dept.deptno

In division of a set into groups, a NULL value is considered equal to another NULL value.

Just as the WHERE clause filters tuples (that is, records of the return collection values) from the FROM

clause, the groups can be filtered using a HAVING clause that tests group properties involving aggregate

functions or grouping members:

SELECT e.dept.deptno, AVG (e.salary) FROM EmpBean e

GROUP BY e.dept.deptno

HAVING COUNT(*) > 3 AND e.dept.deptno > 5

This query returns the average salary for departments that have more than three employees and the

department number is greater than five.

It is possible to use a HAVING clause without a GROUP BY clause, in which case the entire set is treated

as a single group, to which the HAVING clause is applied.

SELECT clause: For finder and select queries, the syntax of the SELECT clause is illustrated in the

following example:

SELECT [ALL | DISTINCT]

 { single-valued-path-expression | aggregation expression | OBJECT (identification-variable) }

The SELECT clause consists of either a single identification variable that is defined in the FROM clause,

or a single valued path expression that evaluates to a object reference or CMP value. You can use the

DISTINCT keyword to eliminate duplicate references.

For a query that defines a finder method, the query must return an object type consistent with the home

that is associated with the finder method. For example, a finder method for a department home can not

return employee objects.

A scalar-subselect is a subselect that returns a single value.

Example: SELECT clause

Find all employees that earn more than John:

SELECT OBJECT(e) FROM EmpBean ej, EmpBean e

WHERE ej.name = ’John’ and e.salary > ej.salary

Find all departments that have one or more employees who earn less than 20000:

SELECT DISTINCT e.dept FROM EmpBean e where e.salary < 20000

A select method query can have a path expression that evaluates to an arbitrary value:

SELECT e.dept.name FROM EmpBean e where e.salary < 2000

The previous query returns a collection of name values for those departments having employees earning

less than 20000.

A select method query can return an aggregate value:

SELECT avg(e.salary) FROM EmpBean e

ORDER BY clause: The ORDER BY clause specifies an ordering of the objects in the result collection:

ORDER BY [order_element ,]* order_element

order_element ::= { path-expression | integer } [ASC | DESC]

1966 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

The path expression must specify a single valued field that is a primitive type of byte, short, int, long, float,

double, char or a wrapper type of Byte, Short, Integer, Long, Float, Double, BigDecimal, String, Character,

java.util.Calendar, java.util.Date, java.sql.Date, java.sql.Time, java.sql.Timestamp.

ASC specifies ascending order and is the default. DESC specifies descending order.

Integer refers to a selection expression in the SELECT clause.

Example: ORDER BY clause

Return department objects in decreasing deptno order:

SELECT OBJECT(d) FROM DeptBean d ORDER BY d.deptno DESC

Return employee objects sorted by department number and name:

SELECT OBJECT(e) FROM EmpBean e ORDER BY e.dept.deptno ASC, e.name DESC

Subqueries: A subquery can be used in quantified predicates, EXISTS predicate or IN predicate. A

subquery should only specify a single element in the SELECT clause. When a path expression appears in

a subquery, the identification variable of the path expression must be defined either in the subquery, in one

of the containing subqueries, or in the outer query. A scalar subquery is a subquery that returns one value.

A scalar subquery can be used in a basic predicate and in the SELECT clause of a dynamic query.

Example: Subqueries

SELECT OBJECT(e) FROM EmpBean e

WHERE e.salary > (SELECT AVG(e1.salary) FROM EmpBean e1)

The above query returns employees who earn more than average salary of all employees.

SELECT OBJECT(e) FROM EmpBean e WHERE e.salary >

(SELECT AVG(e1.salary) FROM IN (e.dept.emps) e1)

The above query returns employees who earn more than average salary of their department.

SELECT OBJECT(e) FROM EmpBean e WHERE e.salary =

(SELECT MAX(e1.salary) FROM IN (e.dept.emps) e1)

The above query returns employees who earn the most in their department.

 SELECT OBJECT(e) FROM EmpBean e

WHERE e.salary > (SELECT AVG(e.salary) FROM EmpBean e1

WHERE YEAR(e1.hireDate) = YEAR(e.hireDate))

The above query returns employees who earn more than the average of employees hired in same year.

EJB query compatibility issues with SQL: Because an Enterprise JavaBeans query is compiled into SQL,

you must be aware of compatibility issues between the Java language and SQL. The two languages differ

along the following points that can be critical to correct EJB query formulation:

v The comparison semantics of SQL strings do not exactly match those of the Java language. For

example: ’A’ (the letter A) and’A ’ (the letter A plus a blank space) are considered equal in SQL, but not

in the Java language.

v Comparisons and collating order depend on the underlying database. For example, if you are using DB2

with an EBCDIC code page, the collating order is not the same as doing the sort in a Java program.

Some databases sort the NULL value low while others sort the NULL value high.

v An arithmetic overflow causes an exception in SQL, but not in the Java language.

v SQL databases have differing minimum and maximum ranges for floating point values, which can differ

from floating point value ranges in the Java language. Values near the range limits of Java Double may

fail to translate into SQL.

v Java methods do not translate into SQL; therefore standard EJB queries cannot include Java methods.

Chapter 8. Developing WebSphere applications 1967

Note: Only with the dynamic EJB query service can you use functions that do not translate into SQL.

Such functions include Java methods and converters or composers that are used in mapping

enterprise beans to relational databases (RDBs). A standard finder or select query that uses any

of these functions fails at deployment time with the message ″Cannot push down query″. (You

can resolve this problem by changing either the query or the mapping.) The dynamic query run

time, however, processes the query by performing the operation involving the function in the

application server.

Database restrictions for EJB query: General database restriction

All of the enterprise beans involved in a given query must map to the same data source. The EJB query

does not support cross-data source join operations.

Specific database restrictions

Different database products place different restrictions on elements that can be included in EJB query

statements. Following is a list of those restrictions; check with your database administrator to see if any

apply in your environment:

v Certain functions are used in queries that run against DB2 only, because these functions are not

supported by other databases. These functions include date and time arithmetic expressions, certain

scalar functions (those not listed as portable across vendors), and implied scalar functions when used

for mapping certain CMP fields. For example, consider mapping an int numeric type to a decimal (5,2)

type field. When deployed against a database other than DB2, a finder or select query that contains a

CMP field with this particular mapping fails, producing a Cannot push down query error message.

v A CMP of type String, when mapped to a character large object (CLOB) in the database, cannot be

used in comparison operations because the database does not support CLOB comparisons.

v Databases can impose limits on the length of string values that are used either as literals or input

parameters with comparison operators. These limits can hinder query performance. For example: For

DB2 on the z/OS platform, the search ″name = ?1″ can fail if the value of ?1 at run time is greater than

255 in length.

v Mapping a numeric CMP type to a column that contains a dissimilar type can cause unexpected results.

For example, consider the case of mapping the int numeric type to a column of type decimal (5,2). This

scenario does not preserve an exact decimal value (for example, the value 12.25) over the course of

transfer from the database to the enterprise bean CMP field, and back again to the database. This

mapping causes replacement of the initial value with a whole number (in this case, 12). Consequently,

you want to avoid using the CMP field in comparison operations when the CMP field uses a mapping of

this nature.

v Some databases do not support a datatype that corresponds to the semantics of java.sql.Time. For

example: If a CMP field of type java.sql.Time is mapped to an Oracle DATE column, comparisons on

time might not produce the expected result because the year-month-day portion of the column value is

truncated in the mapping.

v Some databases treat a zero length string value (’’) as a null value; this approach can affect the query

results. For the sake of portability, avoid the use of zero length string values.

v Some databases perform division between two integer values using integer arithmetic rules, while

others use non-integer rules. This discrepancy might not be desirable in environments that use both

kinds of databases. For the sake of portability, avoid the division of integer values in an EJB query.

Rules for data type manipulation in EJB query: Rules on CMP field type

You can use a CMP field of any type in a SELECT clause. You must, however, use fields of only the

following types in search conditions and in grouping or ordering operations:

v Primitive types: byte, short, int, long, float, double, boolean, char

v Object types: Byte, Short, Integer, Long, Float, Double, BigDecimal, String, Boolean, Character,

java.util.Calendar, java.util.Date

1968 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

v JDBC types: java.sql.Date, java.sql.Time, java.sql.Timestamp

v Binary string: byte[]

Converters and basic types

If ALL of the following conditions occur:

v a CMP field of one of the basic types listed previously is mapped to an SQL column using a converter

v the CMP field appears in the left hand side of a basic predicate

v the right hand side of the predicate is a literal or input parameter

then the toData() method of the converter is used to compute the SQL search value.

For example, given a converter that maps the integer value 10 to the string value ″Ten,″ the following EJB

query:

e.cmp = 10

is translated into the following SQL query:

column = ’Ten’

If you include a more complicated predicate, such as in the following example:

e.cmp * 10 > e.salary

in a finder or select query, you receive the Cannot push down query error message. Use the dynamic EJB

query service for such multi-function queries; the dynamic query run time processes the predicate in the

application server.

Overall, converters preserve equality, collating sequence, and NULL values. If a converter does not meet

these requirements, avoid using it for CMP field comparison operations.

User types, converters, and composers

A user type cannot be used in a comparison operation or expression. You can, however, use subfields of

the user type in a path expression. For example, consider the CMP addr field with the type

com.exam.Address, and street, city, and state subfields. The following syntax for a query on this CMP field

is not valid:

e.addr = ?1

However, a query that designates one of the subfields is valid:

e.addr.street = ?1

A CMP field can be mapped to an SQL column using Java serialization. Using the CMP field in predicates

or expressions for deployment queries usually results in the Cannot push down query error message. The

dynamic query run time processes the expression by reading and deserializing all instances of the user

type in the application server.

However, this expensive process sacrifices performance. You can maintain performance by using a

composer in a deployment EJB query. In the previous example, if you want to map the addr field to a

binary type, you use a composer to map each subfield to a binary column in the database.

EJB query: Reserved words:

The following words are reserved in WebSphere EJB query:

all, as, distinct, empty, false, from, group, having, in, is, like, select, true, union, where

Chapter 8. Developing WebSphere applications 1969

Avoid using identifiers that start with underscore (for example, _integer) as these are also reserved.

EJB query: BNF syntax:

EJB QL ::= [select_clause] from_clause [where_clause] [order_by_clause]

DYNAMIC EJB QL :=select_clause_dynamic from_clause [where_clause]

 [group_by_clause] [having_clause] [order_by_clause]

from_clause::=FROM identification_variable_declaration

 [,identification_variable_declaration]*

identification_variable_declaration::=collection_member_declaration |

 range_variable_declaration

collection_member_declaration::=

 IN (collection_valued_path_expression) [AS] identifier

range_variable_declaration::=abstract_schema_name [AS] identifier

single_valued_path_expression ::=

 {single_valued_navigation | identification_variable}. (cmp_field |

 method | cmp_field.value_object_attribute | cmp_field.value_object_method)

 | single_valued_navigation

single_valued_navigation::=

 identification_variable.[single_valued_cmr_field.]*

 single_valued_cmr_field

collection_valued_path_expression ::=

 identification_variable.[single_valued_cmr_field.]*

 collection_valued_cmr_field

select_clause::= SELECT { ALL | DISTINCT } {single_valued_path_expression |

 identification_variable | OBJECT (identification_variable) |

 aggregate_functions }

select_clause_dynamic ::= SELECT { ALL | DISTINCT } [selection ,]* selection

selection ::= { expression | subselect } [[AS] id]

order_by_clause::= ORDER BY [{single_valued_path_expression | integer} [ASC|DESC],]*

 {single_valued_path_expression | integer}[ASC|DESC]

where_clause::= WHERE conditional_expression

conditional_expression ::= conditional_term |

 conditional_expression OR conditional_term

conditional_term ::= conditional_factor |

 conditional_term AND conditional_factor

conditional_factor ::= [NOT] conditional_primary

conditional_primary::=simple_cond_expression | (conditional_expression)

simple_cond_expression ::= comparison_expression | between_expression |

 like_expression | in_expression | null_comparison_expression |

 empty_collection_comparison_expression | quantified_expression |

 exists_expression | is_of_type_expression | collection_member_expression

between_expression ::= expression [NOT] BETWEEN expression AND expression

in_expression ::= single_valued_path_expression [NOT] IN

 { (subselect) | (atom ,]* atom) }

atom = { string-literal | numeric-constant | input-parameter }

like_expression ::= expression [NOT] LIKE

 {string_literal | input_parameter}

 [ESCAPE {string_literal | input_parameter}]

null_comparison_expression ::=

 single_valued_path_expression IS [NOT] NULL

empty_collection_comparison_expression ::=

 collection_valued_path_expression IS [NOT] EMPTY

collection_member_expression ::=

 { single_valued_path_expression | input_paramter } [NOT] MEMBER [OF]

 collection_valued_path_expression

1970 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

quantified_expression ::=

 expression comparison_operator {SOME | ANY | ALL} (subselect)

exists_expression ::= EXISTS {collection_valued_path_expression | (subselect)}

subselect ::= SELECT [{ ALL | DISTINCT }] expression from_clause [where_clause]

 [group_by_clause] [having_clause]

group_by_clause::= GROUP BY [single_valued_path_expression,]*

 single_valued_path_expression

having_clause ::= HAVING conditional_expression

is_of_type_expression ::= identifier IS OF TYPE

 ([[ONLY] abstract_schema_name,]* [ONLY] abstract_schema_name)

comparison_expression ::= expression comparison_operator { expression | (subquery) }

comparison_operator ::= = | > | >= | < | <= | <>

method ::= method_name([[expression ,]* expression])

expression ::= term | expression {+|-} term

term ::= factor | term {*|/} factor

factor ::= {+|-} primary

primary ::= single_valued_path_expression | literal |

 (expression) | input_parameter | functions | aggregate_functions

aggregate_functions :=

 AVG([ALL|DISTINCT] expression) |

 COUNT({[ALL|DISTINCT] expression |*| identification_variable }) |

 MAX([ALL|DISTINCT] expression) |

 MIN([ALL|DISTINCT] expression) |

 SUM([ALL|DISTINCT] expression) |

functions ::=

 ABS(expression) |

 AVG([ALL|DISTINCT] expression) |

 BIGINT(expression) |

 CHAR({expression [,{ISO|USA|EUR|JIS}]) |

 CONCAT (expression , expression) |

 COUNT({[ALL|DISTINCT] expression | *}) |

 DATE(expression) |

 DAY({expression) |

 DAYS(expression) |

 DECIMAL(expression [,integer[,integer]])

 DIGITS(expression) |

 DOUBLE(expression) |

 FLOAT(expression) |

 HOUR (expression) |

 INTEGER(expression) |

 LCASE (expression) |

 LENGTH(expression) |

 LOCATE(expression, expression [, expression]) |

 MAX([ALL|DISTINCT] expression) |

 MICROSECOND(expression) |

 MIN([ALL|DISTINCT] expression) |

 MINUTE (expression) |

 MOD (expression, expression) |

 MONTH(expression) |

 REAL(expression) |

 SECOND(expression) |

 SMALLINT(expression) |

 SQRT (expression) |

 SUBSTRING(expression, expression[, expression]) |

 SUM([ALL|DISTINCT] expression) |

 TIME(expression) |

 TIMESTAMP(expression) |

 UCASE (expression) |

 YEAR(expression)

Chapter 8. Developing WebSphere applications 1971

Comparison of EJB 2.1 specification and WebSphere query language: WebSphere Application Server

Version 6.0 supports the following extensions to the Enterprise JavaBeans Query Language.

 Item

Delimited identifiers

Dependent Value object attributes used in path

expressions

EJB Inheritance

EXISTS predicate

Java methods: EJB bean methods or value object

methods

dynamic query only

Multiple element select clauses dynamic query only

SQL Date/time expressions

Subqueries, group by, and having clauses

Using the dynamic query service

Following are common reasons for using the dynamic query service rather than the regular EJB query

service (which can be referred to as deployment query):

v You need to programmatically define a query at application run time, rather than at deployment.

v You need to return multiple CMP or CMR fields from a query. (Deployment queries allow only a single

element to be specified in the SELECT clause.) For more information, see the Example: EJB queries

article.

v You want to return a computed expression in the query.

v You want to use value object methods or bean methods in the query statement. For more information,

see Path expressions.

v You want to interactively test an EJB query during development, but do not want to repeatedly deploy

your application each time you update a finder or select query.

The dynamic query API is a stateless session bean; using it is similar to using any other J2EE EJB

application bean. You can consult the API specifications in Javadoc (the section for package

com.ibm.websphere.ejbquery).

The dynamic query bean has both a remote and a local interface. If you want to return remote EJB

references from the query, or if the query statement contains remote methods, you must use the query

remote interface:

remote interface = com.ibm.websphere.ejbquery.Query

remote home interface = com.ibm.websphere.ejbquery.QueryHome

If you want to return local EJB references from the query, or if the query statement contains local methods,

you must use the query local interface:

local interface = com.ibm.websphere.ejbquery.QueryLocal

local home interface = com.ibm.websphere.ejbquery.QueryLocalHome

Because it uses less application server memory, the local interface ensures better overall EJB

performance than the remote.

1. Verify that the query.ear application file is installed on the application server on which your application

is to run, if that server is different from the default application server created during installation of the

product.

1972 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

The query.ear file is located in the <WAS_HOME>/installableApps directory, where <WAS_HOME> is the

location of the WebSphere Application Server. The product installation program installs the query.ear

file on the default application server using a JNDI name of

com/ibm/websphere/ejbquery/Query

(You or the system administrator can change this name.)

2. Set up authorization for the methods executeQuery(), prepareQuery(), and executePlan() in the remote

and local dynamic query interfaces to control access to sensitive data. (This step is necessary only if

your application requires security.)

Because you cannot control which ASN names, CMP fields, or CMR fields can be used in a dynamic

EJB query, you or your system administrator must place restrictions on use of the methods. If, for

example, a user is permitted to run the executeQuery method, he or she can run any valid dynamic

query. In a production environment, you certainly want to restrict access to the remote query interface

methods.

3. Write the dynamic query as part of your application client code. You can consult the following

examples as query models; they illustrate which import statements to use, and so on:

v Remote interface dynamic query example

v Local interface dynamic query example

4. If the CMP you want to query is on a different module, you should:

a. do a remote lookup on ejbbean.ear

b. map the ejbbean.ear file to the server that the queried CMP bean is installed on.

5. Compile and run your client program with the file qryclient.jar in the classpath.

Example: Dynamic query remote interface:

When you run a dynamic EJB query using the remote interface, you are calling the executeQuery method

on the Query interface. The executeQuery method has a transaction attribute of REQUIRED for this

interface; therefore you do not need to explicitly establish a transaction context for the query to run.

Begin with the following import statements:

import com.ibm.websphere.ejbquery.QueryHome;

import com.ibm.websphere.ejbquery.Query;

import com.ibm.websphere.ejbquery.QueryIterator;

import com.ibm.websphere.ejbquery.IQueryTuple;

import com.ibm.websphere.ejbquery.QueryException;

Next, write your query statement in the form of a string, as in the following example that retrieves the

names and ejb-references for underpaid employees:

String query =

"select e.name as name , object(e) as emp from EmpBean e where e.salary < 50000";

Create a Query object by obtaining a reference from the QueryHome class. (This class defines the

executeQuery method.) Note that for the sake of simplicity, the following example uses the dynamic query

JNDI name for the Query object:

InitialContext ic = new InitialContext();

Object obj = ic.lookup("com/ibm/websphere/ejbquery/Query");

QueryHome qh =

 (QueryHome) javax.rmi.PortableRemoteObject.narrow(obj, QueryHome.class);

Query qb = qh.create();

You then must specify a maximum size for the query result set, which is defined in the QueryIterator

object. (See Class QueryIterator in Javadoc for more details.) This example sets the maximum size of the

result set to 99:

QueryIterator it = qb.executeQuery(query, null, null ,0, 99);

Chapter 8. Developing WebSphere applications 1973

The iterator contains a collection of IQueryTuple objects, which are records of the return collection values.

(See Class IQueryTuple in Javadoc for more details.) Corresponding to the criteria of our example query

statement, each tuple in this scenario contains one value of name and one value of object(e). To display

the contents of this query result, use the following code:

while (it.hasNext()) {

 IQueryTuple tuple = (IQueryTuple) it.next();

 System.out.print(it.getFieldName(1));

 String s = (String) tuple.getObject(1);

 System.out.println(s);

 System.out.println(it.getFieldName(2));

 Emp e = (Emp) javax.rmi.PortableRemoteObject.narrow(tuple.getObject(2), Emp.class);

 System.out.println(e.getPrimaryKey().toString());

}

The output from the program might look something like the following:

name Bob

emp 1001

name Dave

emp 298003

...

Finally, catch and process any exceptions. An exception might occur because of a syntax error in the

query statement or a run-time processing error. The following example catches and processes these

exceptions:

} catch (QueryException qe) {

 System.out.println("Query Exception "+ qe.getMessage());

}

Handling large result collections for the remote interface query

If you intend your query to return a large collection, you have the option of programming it to return results

in multiple smaller, more manageable quantities. Use the skipRow and maxRow parameters on the remote

executeQuery method to retrieve the answer in chunks. For example:

int skipRow=0;

int maxRow=100;

QueryIterator it = null;

do {

 it = qb.executeQuery(query, null, null ,skipRow, maxRow);

 while (it.hasNext()) {

 // display result

 skipRow = skipRow + maxRow;

}

} while (! it.isComplete()) ;

Example: Dynamic query local interface:

When you run a dynamic EJB query using the local interface, you are calling the executeQuery method on

the QueryLocal interface. This interface does not initiate a transaction for the method; therefore you must

explicitly establish a transaction context for the query to run.

Note: To establish a transaction context, the following example calls the begin() and commit() methods.

An alternative to using these methods is simply embedding your query code within an EJB method

that runs within a transaction context.

Begin your query code with the following import statements:

import com.ibm.websphere.ejbquery.QueryLocalHome;

import com.ibm.websphere.ejbquery.QueryLocal;

import com.ibm.websphere.ejbquery.QueryLocalIterator;

import com.ibm.websphere.ejbquery.IQueryTuple;

import com.ibm.websphere.ejbquery.QueryException;

1974 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Next, write your query statement in the form of a string, as in the following example that retrieves the

names and ejb-references for underpaid employees:

String query =

"select e.name, object(e) from EmpBean e where e.salary < 50000 ";

Create a QueryLocal object by obtaining a reference from the QueryLocalHome class. (This class defines

the executeQuery method.) Note that in the following example, ejb/query is used as a local EJB reference

pointing to the dynamic query JNDI name (com/ibm/websphere/ejbquery/Query):

InitialContext ic = new InitialContext();

 QueryLocalHome qh = (LocalQueryHome) ic.lookup("java:comp/env/ejb/query");

QueryLocal qb = qh.create();

The last portion of code initiates a transaction, calls the executeQuery method, and displays the query

results. The QueryLocalIterator class is instantiated because it defines the query result set. (See Class

QueryIterator in Javadoc for more details.) Keep in mind that the iterator loses validity at the end of the

transaction; you must use the iterator in the same transaction scope as the executeQuery call.

userTransaction.begin();

QueryLocalIterator it = qb.executeQuery(query, null, null);

while (it.hasNext()) {

 IQueryTuple tuple = (IQueryTuple) it.next();

 System.out.print(it.getFieldName(1));

 String s = (String) tuple.getObject(1);

 System.out.println(s);

 System.out.println(it.getFieldName(2));

 EmpLocal e = (EmpLocal) tuple.getObject(2);

 System.out.println(e.getPrimaryKey().toString());

}

userTransaction.commit();

In most situations, the QueryLocalIterator object is demand-driven. That is, it causes data to be returned

incrementally: for each record retrieval from the database, the next() method must be called on the iterator.

(Situations can exist in which the iterator is not demand-driven. For more information, consult the ″Local

query interfaces″ subsection of the Dynamic query performance considerations topic.)

Because the full query result set materializes incrementally in the application server memory, you can

easily control its size. During a test run, for example, you may decide that return of only a few tuples of

the query result is necessary. In that case you should use a call of the close() method on the

QueryLocalIterator object to close the query loop. Doing so frees SQL resources that the iterator uses.

Otherwise, these resources are not freed until the full result set accumulates in memory, or the transaction

ends.

Dynamic query performance considerations: General performance considerations

Use of the following elements in your dynamic query can diminish application performance somewhat:

v Datatype converters and Java methods

Why: In general, query operations and predicates are translated into SQL so that the database server

can perform them. If your query includes datatype converters (for EJB to RDB mapping, for example) or

Java methods, however, the associated predicates and operations of your query must be performed in

the memory of the application server.

v EJB methods and criteria that call for the return of EJB references

Why: Queries that incorporate these elements trigger full activation of EJBs in the memory of the

application server. (Returning a list of CMP fields from a query does not cause an EJB to be activated.)

When assessing application performance, you should also be aware that dynamic queries share

connections with the persistence manager. Consequently, an application that includes a mixture of finder

methods, CMR navigation, and dynamic queries relies on a single shared connection between the

persistence manager and the dynamic query service to perform these tasks.

Chapter 8. Developing WebSphere applications 1975

Limiting the return collection size

v Remote interface queries: The QueryIterator class of the remote interface mandates that all of your

query results materialize in application server memory over the course of one method call. The SQL

cursor(s) used to run the EJB query are closed upon completion of that call. Because this requirement

poses a high risk for creating bottlenecks within the database server, you need to limit the size of any

potentially large result collections.

v Local interface queries: In most situations, the QueryLocalIterator object behaves as a wrapper

around an SQL cursor. It is demand-driven; it causes data to be returned incrementally. For each record

retrieval from the database, the next() method must be called on the iterator.

Use of certain operations in local interface queries, however, overrides the demand-driven behavior. In

these cases, the query results fully materialize in memory just as do the result collections of remote

interface queries. An example of such a case is:

select e.myBusinessMethod() from EmpBean e

 where e.salary < 50000 order by 1 desc

This query requires performance of an EJB method to produce the final result collection. Consequently,

the full dataset from the database must be returned in one collection to application server memory,

where the EJB method can be run on the dataset in its entirety. For that reason, local interface query

operations that invoke EJB methods are generally not demand-driven. You cannot control the return

collection size for such queries.

Because they are demand-driven, all other local interface queries allow you to control the size of return

collections. You can use a call of the close() method on the QueryLocalIterator object to close the query

loop after the desired number of return values has been fetched from the datastore. Otherwise, the SQL

cursor(s) used to run the EJB query are not closed until the full result set accumulates in memory, or

the transaction ends.

Access intent implications for dynamic query: WebSphere Application Server gives you the option to

set access intent policies for your entity enterprise beans as a way of managing their transfer of data with

the underlying datastore. An access intent policy controls the isolation level used on the data source

connection, as well as the database locks used during data retrieval. By manipulating these elements, you

can maximize the efficiency of your application’s data flow. To learn more, begin with the topics “Access

intent policies” on page 822 and “Concurrency control” on page 822.

When formulating dynamic queries, keep in mind the following considerations concerning their interaction

with access intent policies:

v A dynamic query uses the first ASN name in the FROM clause to determine access intent.

v The collection increment attribute of an access intent policy is not used in processing a dynamic query.

v When performed on entity beans that have a pessimistic-Update access intent policy, your dynamic

queries must return updateable collections. Therefore you need to formulate your query statements to

return only collections of entity beans, not collections of CMP fields. For example, the statement select

object(c) from Customer is valid for a dynamic query performed under the constraint of a

pessimistic-Update policy. The statement select c.name from Customer c, however, is not a valid

dynamic query under this constraint.

v Using pessimistic-Update policy places restrictions on the types of query expressions. The restrictions

depend on the back end database type and release. Refer to the topic ″Access intent -- isolation levels

and update locks″ in the information center for details.

Dynamic query API: prepareQuery() and executePlan() methods:

Use these methods to more efficiently allocate the overhead associated with dynamic query. They are

equivalent in function to the prepareStatement() and executeQuery() methods of the JDBC API.

To perform a dynamic EJB query, the application server must parse the query string into SQL at run time.

You can, of course, eliminate run-time overhead by choosing to perform a standard EJB query instead of a

1976 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

dynamic query. Sometimes referred to as deployment queries, standard queries are parsed and built at

deployment, then performed by a finder or select method.

Another option is to write code that redistributes dynamic query overhead for better application

performance. Begin by calling the prepareQuery() method in place of the executeQuery() method. The

prepareQuery() method parses and translates your query, and returns a string called a query plan. The

plan contains the SQL statement produced by parsing and translation, as well as other information needed

by the dynamic query API. Save this string in your application and call the executePlan() method with the

string to run your query. (You also might want to use the prepareQuery() method simply to see the SQL

translation product; just call the method and display the return value.)

Pass the parameters of your query as an array of type Object on the prepareQuery() and the

executePlan() method calls. Ensure that you pass appropriate data types, because the application server

validates your query according to parameter type (rather than actual values) when it processes the

prepareQuery() method call.

Example code

Note: In the example code that follows, the first executePlan() method call substitutes parms[0] for ?1.

Hence the first query performed is functionally equivalent to the following query statement:

 select e.name as name, object(e) as emp from EmpBean e where e.salary < 50000

The second call runs a query that is functionally equivalent to this statement:

 select e.name as name, object(e) as emp from EmpBean e where e.salary < 60000

The example:

String query =

"select e.name as name , object(e) as emp from EmpBean e where e.salary < ?1";

QueryIterator it = null;

Integer[] parms = new Integer[1];

parms[0] = new Integer(0);

In the call to prepareQuery(), pass any Integer value. Doing so defines ?1 as an Integer type, as in the

following:

String queryPlan= qb.prepareQuery(query, parms, null);

 parms[0] = new Integer(50000);

Next you run the query with a real value of Integer(50000) for ?1:

select e.name as name, object(e) as emp from EmpBean e

 where e.salary < 50000it = qb.executePlan(queryPlan, parms, 0, 99);

parms[0] = new Integer(60000);

Run the query again with a different value of Integer(60000) for ?1:

it = qb.executePlan(queryPlan, parms, 0, 99);

Comparison of the dynamic and deployment EJB query services: You can use the dynamic query

service to build and execute queries against entity beans constructed dynamically at runtime, rather than

defining them at deployment time. By using dynamic query you gain the flexibility of queries defined at

runtime and utilize the power of EJB-Query Language (QL). Apart from supporting all of the capabilities of

an EJB-QL query, dynamic query adds functionality not available to standard static query. Two examples

are the ability to select multiple data fields directly from the bean itself (static queries currently only allow

one) and executing business methods directly in the query.

You can effectively create more efficient and less resource intensive applications with dynamic query. For

example, two data fields are required from the results of a query. Because a standard EJB-QL query can

Chapter 8. Developing WebSphere applications 1977

only select one data field, it is necessary to select the entire EJB object and extract the needed data from

the returned results through data access methods, possibly traversing Container Managed Relationships

(CMR) boundaries in the process. However, when using dynamic query, you can get both pieces of data

directly from the query without additional CMR traversal or accessor methods. This principle is the key to

evaluating whether or not dynamic query can be used for performance gain. You should review the amount

of data that must be retrieved, in addition to the amount of business logic needed to retrieve it, for

example, CMR traversal or accessor methods.

Using parameters in the query rather than literal values is another performance consideration. Under most

circumstances, it is better to define conditional values as parameters in the query and then pass those

parameters through the appropriate mechanisms. By using this method, you have a greater chance of

matching a cached query plan, and you eliminate the need to parse and build the plan from scratch. For

example, ″SELECT Object(o) FROM schemaname AS o WHERE o.fieldname LIKE foo″, is more

appropriately expressed as ″SELECT Object(o) FROM schemaname AS o WHERE o.fieldname LIKE ?1″

with the value foo passed as a parameter to the executeQuery method. The result is that any subsequent

execution of a dynamic query structure that is the same, except for different string literal conditions, is

registered as a plan cache hit (which delivers better ″observed″ performance).

When used as a direct replacement for an equivalent static query, dynamic query is approximately 25%

slower than the static variation. This slowdown is due to the need for parsing and building a plan for the

query, in addition to executing it. In the static variation, these costs are paid at deploy time. Despite this,

the added functionality gained through the use of dynamic query, specifically the ability to select multiple

data fields in a single query even across CMRs, creates opportunities to utilize dynamic query for the sake

of performance improvement.

Internationalization

Task overview: Internationalizing applications

An application that can present information to users according to regional cultural conventions is said to be

internationalized: The application can be configured to interact with users from different localities in

culturally appropriate ways. In an internationalized application, a user in one region sees error messages,

output, and interface elements in the requested language. Date and time formats, as well as currencies,

are presented appropriately for users in the specified region. A user in another region sees output in the

conventional language or format for that region.

This product supports internationalization through use of its localizable-text API and internationalization

service.

v Implement message catalogs in your application by using the localizable-text API.

This product supports the maintenance and deployment of centralized message catalogs for the output

of properly formatted, language-specific (localized) interface strings.

For more information about the localizable-text API, see “Task overview: Internationalizing interface

strings (localizable-text API)” on page 1981.

v Implement more extensive locale support by using the internationalization service.

With the internationalization service, you can manage the distribution of the internationalization

information, or internationalization context, that is necessary to perform localizations within Java 2

Platform, Enterprise Edition (J2EE) application components. Supported application components also

include Web service client environments and Web service-enabled enterprise beans.

For more information about the internationalization service, see “Task overview: Internationalizing

application components (internationalization service)” on page 1982.

Internationalization:

1978 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

An application that can present information to users according to regional cultural conventions is said to be

internationalized: The application can be configured to interact with users from different localities in

culturally appropriate ways. In an internationalized application, a user in one region sees error messages,

output, and interface elements in the requested language. Date and time formats, as well as currencies,

are presented appropriately for users in the specified region. A user in another region sees output in the

conventional language or format for that region.

 Historically, the creation of internationalized applications has been restricted to large corporations writing

complex systems. However, given the rise in distributed computing and in the use of the World Wide Web,

application developers are pressured to internationalize a much wider variety of applications. This trend

requires making internationalization techniques much more accessible to application developers.

Internationalization of an application is driven by two variables, the time zone and the locale. The time

zone indicates how to compute the local time as an offset from a standard time like Greenwich Mean

Time. The locale is a collection of information about language, currency, and the conventions for

presenting information like dates. A time zone can cover many locales, and a single locale can span time

zones. With both time zone and locale, the date, time, currency, and language for users in a specific

region can be determined.

A first step: Localization of interface strings

In an application that is not internationalized, the user interface is unalterably written into the application

code. Internationalizing a user interface adds a layer of abstraction into the design of an application. The

additional layer of abstraction enables you to localize the application for each locale that must be

supported by the application.

In a localized application, the locale determines the message catalog from which the application retrieves

message strings. Instead of printing an error message, the application represents the error message with

some language-neutral information; in the simplest case, each error condition corresponds to a key. To

print a usable error message, the application looks up the key in a message catalog. Each message

catalog is a list of keys with associated strings. Different message catalogs provide strings for the different

languages that are supported. The application looks up the key in the appropriate catalog, retrieves the

corresponding error message in the requested language, and prints the string for the user.

Localization of text can be used for far more than translating error messages. For example, by using keys

to represent each element in a graphical user interface (GUI) and by providing the appropriate message

catalogs, the GUI (buttons, menus, and so on) can support multiple languages. Extending support to

additional languages requires that you provide message catalogs for those languages; in many cases, the

application needs no further modification.

The localizable-text package is a set of Java classes and interfaces that can be used to localize the

strings in distributed applications easily. Language-specific string catalogs can be stored centrally so that

they can be maintained efficiently.

Internationalization challenges in distributed applications

With the advent of Internet-based business computational models, applications increasingly consist of

clients and servers that operate in different geographical regions. These differences introduce the following

challenges to the task of designing a solid client-server infrastructure:

Clients and servers can run on computers that have different endian architectures or code sets

 Clients and servers can reside in computers that have different endian architectures: A client can

reside in a little-endian CPU, while the server code runs in a big-endian one. A client might want to

call a business method on a server running in a code set different from that of the client.

Chapter 8. Developing WebSphere applications 1979

A client-server infrastructure must define precise endian and code-set tracking and conversion

rules. The Java platform has nearly eliminated these problems in a unique way by relying on its

Java virtual machine (JVM), which encodes all of the string data in UCS-2 format and externalizes

everything in big-endian format. The JVM uses a set of platform-specific programs for interfacing

with the native platform. These programs perform any necessary code set conversions between

UCS-2 and the native code set of a platform.

Clients and servers can run on computers with different locale settings

 Client and server processes can use different locale settings. For example, a Spanish client might

call a business method upon an object that resides on an American English server. Some

business methods are locale-sensitive in nature; for example, given a business method that

returns a sorted list of strings, the Spanish client expects that list to be sorted according to the

Spanish collating sequence, not in the English collating sequence of the server. Because data

retrieval and sorting procedures run on the server, the locale of the client must be available to

perform a legitimate sort.

 A similar consideration applies in instances where the server has to return strings containing date,

time, currency, exception messages, and so on, that are formatted according to the cultural

expectations of the client.

Clients and servers can reside in different time zones

 Client and server processes can run in different time zones. To date, all internationalization

literature and resources concentrate mainly on code set and locale-related issues. They have

generally ignored the time zone issue, even though business methods can be sensitive to time

zone as well as to locale.

 For example, suppose that a vendor makes the claim that orders received before 2:00 PM are

processed by 5:00 PM the same day. The times given, of course, are in the time zone of the

server that is processing the order. It is important to know the time zone of the client to give

customers in other time zones the correct times for same-day processing.

 Other time zone-sensitive operations include time stamping messages logged to a server, and

accessing file or database resources. The concept of Daylight Savings Time further complicates

the time zone issue.

Java 2 Platform, Enterprise Edition (J2EE) provides support for application components that run on

computers with differing endian architecture and code sets. It does not provide dedicated support for

application components that run on computers with different locales or time zones.

The conventional method for solving locale and time zone mismatches across remote application

components is to pass one or more extra parameters on all business methods needed to convey the

client-side locale or time zone to the server. Although simple, this technique has the following limitations

when used in Enterprise JavaBeans (EJB) applications:

v It is intrusive because it requires that one or more parameters be added to all bean methods in the call

chain to locale-sensitive or time zone-sensitive methods.

v It is inherently error-prone.

v It is impracticable within applications that do not support modification, such as legacy applications.

The internationalization service addresses the challenges posed by locale and time zone mismatch without

incurring the limitations of conventional techniques. The service systematically manages the distribution of

internationalization contexts across the various components of EJB applications, including client

applications, enterprise beans, and servlets. For more information, see “Task overview: Internationalizing

application components (internationalization service)” on page 1982.

Internationalization: Resources for learning: Use the following links to find relevant supplemental

information about internationalization. The information resides on IBM and non-IBM Internet sites, whose

sponsors control the technical accuracy of the information.

1980 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

These links are provided for convenience. Often, the information is not specific to this product but is useful

all or in part for understanding the product. When possible, links are provided to technical papers and

Redbooks that supplement the broad coverage of the release documentation with in-depth examinations of

particular product areas.

View links to additional information about:

v “Programming instructions and examples”

v “Programming specifications”

Programming instructions and examples

v Java internationalization tutorial

An online tutorial that explains how to use the Java 2 SDK Internationalization API.

v International Components for Unicode for Java

The portal site for IBM’s open-source API to extend basic Unicode support in Java application

components.

Programming specifications

v Java 2 SDK, Standard Edition Documentation: Internationalization

The Java internationalization documentation from Sun Microsystems, including a list of supported

locales and encodings.

v Java Specification Request 150, Internationalization Service for J2EE

The specification of the J2EE internationalization service that is currently being developed through the

Java Community Process.

v W3C, Web Services Internationalization Task Force

The task force of the W3C’s Internationalization Working Group responsible for investigating the

internationalization of Web services, in particular, the dependence of Web services on language, culture,

region, and locale-related contexts.

v Making the WWW truly World Wide

The W3C effort to make World Wide Web technology work with the many writing systems, languages,

and cultural conventions of the global community:

Task overview: Internationalizing interface strings (localizable-text API)

This product supports the maintenance and deployment of centralized message catalogs for the output of

properly formatted, language-specific (localized) interface strings.

This topic summarizes the steps involved in implementing message catalogs through the localizable-text

API.

1. Identify localizable text in your application. See ″Identifying localizable text″ in the information center.

2. Create the message catalogs that are necessary for the locales to be supported by your application.

See ″Creating message catalogs″ in the information center.

3. In your application code, compose the language-specific strings for output. See ″Composing

language-specific strings″ in the information center.

4. Using an assembly tool, assemble your application code as one or more application components. See

″Assembling applications″ and ″Assembly tools″ in the information center.

5. Prepare the localizable-text package for deployment with your localized application. See ″Prepare the

localizable-text package for deployment″ in the information center. In this step, you create a

deployment Java archive (JAR) file.

6. Assemble the application modules and the deployment JAR file into a Java 2 Platform, Enterprise

Edition (J2EE) application.

7. Deploy and manage the application.

Your application is deployed with localized text.

Chapter 8. Developing WebSphere applications 1981

http://java.sun.com/docs/books/tutorial/i18n/index.html
http://oss.software.ibm.com/icu4j/
http://java.sun.com/j2se/1.4.2/docs/guide/intl/
http://www.jcp.org/en/jsr/detail?id=150
http://www.w3.org/2002/05/i18n-recharter/WG-charter.html#web-services
http://www.w3.org/International/

Task overview: Internationalizing application components (internationalization

service)

With the internationalization service, you can manage the distribution of the internationalization information,

or internationalization context, that is necessary to perform localizations within Java 2 Platform, Enterprise

Edition (J2EE) application components. Supported application components also include Web service client

environments and Web service-enabled enterprise beans.

This topic summarizes the steps involved in using the internationalization service.

1. If you have an application that uses the WebSphere Application Server Version 4.0 internationalization

service, migrate your application as needed.

2. Use the internationalization context API within application components to obtain or manage

internationalization context. See ″Using the internationalization context API″ in the information center.

Servlet and enterprise bean business methods can use internationalization context to perform locale-

and time zone-sensitive localizations. Enterprise JavaBeans (EJB) client applications, and server

components that are configured to manage internationalization context must use the

internationalization context API to set the context elements scoped to their invocations.

You use the internationalization context API within Web service-enabled J2EE client programs and

stateless session beans in the same manner that you would use conventional J2EE components, with

one exception. Internationalization context propagated over Web service requests contains a time zone

ID, whereas conventional Remote Method Invocation/ Internet Inter-ORB Protocol (RMI/IIOP) requests

propagate complete time zone information, including the raw offset, Daylight Savings Time information,

and so on.

3. Assemble internationalized applications.

See ″Assembling internationalized applications″ in the information center for additional information. The

internationalization type specifies the internationalization policy that applies to a servlet or an enterprise

bean and, in particular, indicates whether the application component or its hosting J2EE container

manages internationalization context. Container internationalization attributes can be specified for

container-managed servlet and enterprise bean business methods. These attributes tailor a policy by

indicating which context the container scopes to an invocation. Configuring internationalization policies

declaratively prescribes, by means of the application deployment descriptor, the distribution and

management of context throughout an application.

As you edit the deployment descriptor for assembly, you can also set the internationalization type and

configure any container internationalization attributes for the servlets and enterprise beans in your

application.

You configure internationalization type and container internationalization attributes for Web

service-enabled stateless session beans in the same manner as you do for conventional beans.

4. Manage the internationalization service. Use the administrative console to enable the service on all

application servers.

By default, the service is enabled within J2EE client environments but is disabled on application

servers. You must enable the service on all application servers hosting your servlets and enterprise

beans to use internationalization context.

5. Troubleshoot the internationalization service as needed. Use the administrative console to enable the

trace service to log internationalization service messages when debugging your applications.

The trace strings for internationalization follow; use both:

com.ibm.ws.i18n.context.*=all=enabled:com.ibm.websphere.i18n.context.*=all=enabled

Internationalization service: In a distributed client-server environment, application processes can run on

different machines, configured for different locales, corresponding to different cultural conventions; they

can also be located across geographical boundaries. For an understanding of how these differences

impact application development, read “Internationalization” on page 1978.

1982 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Java 2 Platform, Enterprise Edition (J2EE) provides support for application components that run on

computers with differing endian architecture and code sets. It does not provide dedicated support for

application components that run on computers with different locales or time zones.

The internationalization service addresses the challenges posed by locale and time zone mismatch without

incurring the limitations of conventional techniques. The service systematically manages the distribution of

internationalization contexts across the various components of EJB applications, including client

applications, enterprise beans, and servlets.

The service works by associating an internationalization context with every service request within an

application. When a client-side component calls a business method, the internationalization service

interposes by obtaining the internationalization context associated with the current client-side process and

by attaching that context to the outgoing request. On the server side, the internationalization service again

interposes by detaching the context from the incoming request and associating it with the server-side

process on which the business method will run, effectively scoping the context to the business method.

For HTTP requests, the caller context is constructed from the HTTP attributes and default values. The

service propagates internationalization context on subsequent business method invocations in the same

manner, which distributes the context of the originating request over the entire chain of business method

invocations.

This basic operation of scoping and propagation is defined precisely by internationalization context

management policies. Internationalization policies specify whether an application component or its hosting

J2EE container are to manage internationalization context. For container-managed components, the policy

indicates which internationalization context the container scopes to invocations on that component. Server

components configured to manage internationalization context, as well as EJB clients, must use the

internationalization context API to manage the internationalization context elements scoped to their

invocations.

Every application component has a default policy, which can be overridden and tailored for servlets and

enterprise beans at assembly time.

At run time, application components can use the internationalization context API to get any element of the

internationalization contexts scoped to an invocation. To programmatically access context elements,

application components first resolve an internationalization context API reference, then call the appropriate

API method to access the various context elements, such as the caller locale or the invocation time zone.

These elements can be used in calls to Java 2 SDK internationalization API methods; for example, to

perform localizations such as formatting messages, configuring dates, or comparing strings.

Administering the internationalization service

To use internationalization context in an Enterprise JavaBeans (EJB) application, the internationalization

service must be enabled in the run-time environments for all server-side components (servlets and

enterprise beans, including session beans enabled for Web service usage) as well as all client-side

components (EJB client applications and Web service clients).

If you do not require the internationalization service, disable the service on all Java 2 Platform, Enterprise

Edition (J2EE) clients. (By default, the service is disabled for server-side components.) Disabling the

service eliminates any possible performance degradation incurred by the implicit distribution of

internationalization resources.

The internationalization service cannot be enabled for HTTP clients, because support for

internationalization in that case is provided by the browser, not by the application server.

v Enable or disable the internationalization service for servlets and enterprise beans. The service is

disabled by default within WebSphere application servers. You enable the service by using either the

administrative console or the wsadmin tool.

Chapter 8. Developing WebSphere applications 1983

v Enable or disable the internationalization service for EJB clients. The service is enabled by default

within the WebSphere Application Server client container.

Enabling the internationalization service for servlets and enterprise beans:

Any servlet or enterprise bean can use internationalization context if the internationalization service is

enabled within the hosting WebSphere Application Server instance.

1. Start the administrative console.

2. Click Servers > Application servers > server_name > Container services > Internationalization

service.

3. Enable the internationalization service.

a. If not already selected, select the Enable service at server startup check box.

b. Click OK.

When you select the Enable service at server startup setting, the application server automatically

initializes and starts the internationalization service whenever the server starts. If you change this setting,

be sure to restart the application server for the new setting to take effect.

To disable the service, clear the Enable service at server startup check box. In this case, the

internationalization service is initialized but not started when the application server starts.

Administration through scripting

Alternatively, the internationalization service can be enabled from the command line by using the wsadmin

tool. Start the wsadmin tool and enter the following commands:

set x [$AdminConfig list I18NService]

$AdminConfig modify $x { { enable true } }

$AdminConfig save

exit

If you enable or disable the internationalization service, be sure to stop and then restart the application

server for the new setting to take effect.

Enabling the internationalization service for EJB clients:

By default, the internationalization service is enabled for use within Enterprise JavaBeans (EJB) client

applications whenever the i18nctx.jar file is in the CLASSPATH setting that is constructed by the

launchClient tool. The internationalization service is also enabled for Web service-enabled clients.

When invoking a Java client application, the launchClient tool sets the CLASSPATH to include the

i18nctx.jar file and then activates the client container, which initializes, starts, and enables the service

before delegating to the specified application.

To disable the service for all application server instances in your installation, remove thei18nctx.jar file from

the install_root/lib directory. This action prevents the file from inadvertently being included in the

CLASSPATH setting constructed by the launchClient tool.

To selectively disable the service, include the argument -CCDI18NService.enable=false or

-CCDI18NService.enable=no when invoking the launchClient tool.

Internationalization service settings:

Use this page to enable or disable the internationalization service. The internationalization service

manages the implicit propagation and scoping of locale and time zone information, called

internationalization context, within application components. When the service is enabled, application

1984 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

components can use the internationalization context API to programmatically manage locale and time zone

information, or to use this information with the Java 2 Platform, Standard Edition (J2SE)

Internationalization API to perform localizations. If internationalization support is not required on the server,

disabling the service can improve performance.

 To view this administrative console page, click Servers > Application servers > server_name >

Container services > Internationalization service.

Enable service at server startup:

Specifies whether the server attempts to start the internationalization service.

 Default Cleared

Range Valid values are Selected or Cleared

More information about valid values follows:

Selected

When the application server starts, it attempts to start the internationalization service automatically.

Cleared

The server does not try to start the internationalization service.

 To enable the internationalization service for applications on this server, the system administrator must

select this property and then restart the server.

Internationalization service errors: The internationalization service issues one exception:

java.lang.IllegalStateException. This exception indicates one of the following things:

v An application component attempted an operation that is not supported by the internationalization

programming model.

The IllegalStateException exception is issued whenever a server application component whose

internationalization type is set to container-managed internationalization (CMI) attempts to set invocation

context. This behavior is a violation of the CMI policy, under which servlets and enterprise beans cannot

modify their invocation internationalization context.

v An anomaly occurred that disabled the service.

For instance, if the internationalization service is not properly initialized, the Java Naming and Directory

Interface (JNDI) lookup on the UserInternationalization URL attribute issues a

javax.naming.NameNotFoundException exception that contains an IllegalStateException instance.

The following conditions can occur while your internationalized application is running. These conditions

might cause the internationalization service not to start, to issue IllegalStateException exceptions, or to

exercise default behaviors:

v “The service is disabled ” on page 1986

v “The service is not started” on page 1986

v “Invalid context element” on page 1987

v “Missing context element” on page 1987

v “Invalid policy” on page 1987

v “Missing policy” on page 1987

If you encounter unexpected or exceptional behavior, the problem is likely related to one of these

conditions. You need to examine the trace log to investigate these conditions, which requires that you

configure the diagnostic trace service to generate messages about internationalization service function. To

get started with logging and tracing, see the Troubleshooting and support PDF for information on tracing

and logging.

The trace strings for internationalization follow; use both:

com.ibm.ws.i18n.context.*=all=enabled:com.ibm.websphere.i18n.context.*=all=enabled

Chapter 8. Developing WebSphere applications 1985

The service is disabled

The internationalization service is not initialized when the startup setting is cleared. The service generates

a message that indicates whether it is enabled or disabled. Applications cannot access the

internationalization API when the service is disabled. If an application attempts a JNDI lookup to obtain the

UserInternationalization reference, the lookup fails with a NamingException exception, indicating that the

reference cannot be found. In addition, the service does not scope (propagate) internationalization context

on incoming (outgoing) business method calls.

The service is not started

The internationalization service is operational whenever it is in the STARTED state. For example, if an

application attempts to access internationalization context and the service is not started, the API issues an

IllegalStateException exception. In addition, the service does not provide run-time support for servlets and

enterprise beans.

As an application server progresses through its life cycle, it initializes, starts, stops, and terminates

(destroys) the internationalization service. If an anomaly occurs during initialization, the service does not

start. After the service is started, its state can change to BLOCKED in the event that a serious error

occurs. The service generates a message for every state change.

If a trace message indicates that the service is not STARTED, examine previous messages to determine

the problem. For instance, the internationalization service does not start if the activity service is

unavailable and a message is displayed to that effect during initialization of the internationalization service.

During startup, the following messages indicate potential configuration or run-time problems:

No ORB support

The service cannot obtain an instance of the object request broker (ORB). This condition is a fatal

error. Examine the logs for information.

No TCM support

The service cannot obtain an instance of its thread context manager (TCM). This condition is a

fatal error. Examine the logs for information.

No IIOP (activity service) support

The service cannot register with the activity service. This condition is a fatal error. The

internationalization service cannot propagate or receive context on Internet Inter-ORB Protocol

(IIOP) requests without activity service support. Review the logs for error conditions related to the

activity service.

No AsynchBeans support

The service cannot register into the asynchronous beans environment. This warning indicates that

the asynchronous beans environment cannot support internationalization context. If the application

server is supposed to support asynchronous beans, verify that the asynchbeans.jar and

asynchbeansimpl.jar files exist in the class path, and review the trace log for any error conditions

related to asynchronous beans.

No EJB container support

The service cannot register with the Enterprise JavaBeans (EJB) container. This warning indicates

that the internationalization service cannot support enterprise beans. Without EJB container

support, internationalization contexts do not scope properly to EJB business methods. Review the

trace log for any EJB container-related error conditions.

No Web container support

The service cannot register with the Web container. This warning indicates that the

internationalization service cannot support servlets and JavaServer Page (JSP) files. Without Web

container support, internationalization contexts do not scope properly to servlet service methods.

Review the trace log for any Web container-related error conditions.

No Meta-data support

The service cannot register with the meta-data service. This warning indicates that the

internationalization service cannot process the internationalization policies within application

1986 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

deployment descriptors. Without meta-data support, the service associates the default

internationalization context management policy, [CMI, RunAsCaller], to every servlet lifecycle

method and enterprise bean business method invocation. Review the trace log for any meta-data

service-related error conditions.

No JNDI (Naming service) support

The service cannot bind the UserInternationalization object into the namespace. This condition is a

fatal error. Application components are unable to access internationalization context API

references, and are therefore unable to access internationalization context elements. Review the

trace log for any Naming (JNDI) service-related error conditions.

No API support

The service cannot obtain an instance of an internationalization context API object. This condition

is a fatal error. Application components are unable to access internationalization context API

references, and are therefore unable to access internationalization context elements.

Invalid context element

The service detected an invalid internationalization context element. For example, the internationalization

service does not support TimeZone instances of a type other than java.util.SimpleTimeZone. If the service

encounters an unusable element, it logs a message and substitutes the corresponding default element of

the JVM.

Missing context element

The service detected a missing internationalization context element. Incoming requests (for example, from

application servers that do not support the internationalization service) lack internationalization context.

When the service attempts to access a caller internationalization context element (which does not exist in

this case), the service logs a message and substitutes the corresponding default element of the Java

virtual machine (JVM).

Whenever possible, enable the internationalization service within all clients and hosting application servers

that comprise an internationalized enterprise application. For more information see “Administering the

internationalization service” on page 1983.

Invalid policy

The internationalization service detected a malformed internationalization policy in the application

deployment descriptor. The service replaces the malformed attribute with the appropriate default. For

instance, if the internationalization type for an entity bean is set to Application during the run of a servlet

or EJB business method call, the service logs the inconsistency and enforces the Container setting

instead.

Also, AMI application components do have an implicit container internationalization attribute. By default

they run as server. The service silently enforces the implicit policy, [AMI, RunAsServer], and logs

messages to this effect.

Invalid container internationalization attributes are likely to occur when specifying the Locales and Time

zone ID fields. When encountering invalid locales and time zone IDs within attributes, the service replaces

each value with the corresponding default element of the JVM. Be sure to follow the guidelines provided in

″Assembling internationalized applications″ in the information center.

Missing policy

The service detected a missing internationalization policy. The service replaces the missing policy with the

appropriate default. For instance, if the internationalization type is missing for a servlet or enterprise bean,

the service sets the attribute to Container.

Chapter 8. Developing WebSphere applications 1987

Container internationalization attributes are not mandatory for CMI application components. In the event

that a CMI servlet or EJB business method lacks a container internationalization attribute, the service

silently enforces the implicit policy [CMI, RunAsCaller].

When an application lacks internationalization policies in its deployment descriptor, or meta-data support is

unavailable, the service logs a message and applies the policy [CMI, RunAsCaller] on every servlet

service method and EJB business method invocation.

For more information, see the following topics:

v Assembling internationalized applications

v Container internationalization attributes

v Internationalization type

v Migrating internationalized applications

Object pools

Using object pools

An object pool helps an application avoid creating new Java objects repeatedly. Most objects can be

created once, used and then reused. An object pool supports the pooling of objects waiting to be reused.

These object pools are not meant to be used for pooling JDBC connections or Java Message Service

(JMS) connections and sessions. WebSphere Application Server provides specialized mechanisms for

dealing with those types of objects. These object pools are intended for pooling application-defined objects

or basic Developer Kit types.

To use an object pool, the product administrator must define an object pool manager using the

administrative console. Multiple object pool managers can be created in an Application Server cell.

Note: The Object pool manager service is only supported from within the EJB container or Web container.

Looking up and using a configured object pool manager from a Java 2 Platform Enterprise Edition

(J2EE) application client container is not supported.

1. Start the administrative console.

2. Click Resources > Object Pools.

3. Define the name of the object pool manager. This name can be up to 30 ASCII characters long.

4. Assign the object pool manager a Java Naming and Directory Interface (JNDI) name.

5. Provide a description of this object pool manager.

6. Categorize the object pool manager.

After you have completed these steps, applications can find the object pool manager by doing a JNDI

lookup using the specified JNDI name.

The following code illustrates how an application can find an object pool manager object:

InitialContext ic = new InitialContext();

ObjectPoolManager opm = (ObjectPoolManager)ic.lookup("java:comp/env/pool");

When the application has an ObjectPoolManager, it can cache an object pool for classes of the types it

wants to use. The following is an example:

ObjectPool arrayListPool = null;

ObjectPool vectorPool = null;

try

{

 arrayListPool = opm.getPool(ArrayList.class);

 vectorPool = opm.getPool(Vector.class);

}

catch(InstantiationException e)

{

1988 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

// problem creating pool

}

catch(IllegalAccessException e)

{

 // problem creating pool

}

When the application has the pools, the application can use them as in the following example:

ArrayList list = null;

try

{

 list = (ArrayList)arrayListPool.getObject();

 list.clear(); // just in case

 for(int i = 0; i < 10; ++i)

 {

 list.add("" + I);

 }

 // do what ever we need with the ArrayList

}

finally

{

 if(list != null) arrayListPool.returnObject(list);

}

This example presents the basic pattern for using object pooling. If the application does not return the

object, then the only adverse effect is that the object cannot be reused.

Object pool managers:

Object pool managers control the reuse of application objects and Developer Kit objects, such as Vectors

and HashMaps.

 Multiple object pool managers can be created in an Application Server cell. Each object pool manager has

a unique cell-wide Java Naming and Directory Interface (JNDI) name. Applications can find a specific

object pool manager by doing a JNDI lookup using the specific JNDI name.

The object pool manager and its associated objects implement the following interfaces:

public interface ObjectPoolManager

{

 ObjectPool getPool(Class aClass)

 throws InstantiationException, IllegalAccessException;

 ObjectPool createFastPool(Class aClass)

 throws InstantiationException, IllegalAccessException;

}

public interface ObjectPool

{

 Object getObject();

 void returnObject(Object o);

}

Each object pool manager can be used to pool any Java object with the following characteristics:

v The object must be a public class with a public default constructor.

v If the object implements the java.util.Collection interface, it must support the optional clear() method.

Each pooled object class must have its own object pool. In addition, an application gets an object pool for

a specific object using either the ObjectPoolManager.getPool() method or the

Chapter 8. Developing WebSphere applications 1989

ObjectPoolManager.createFastPool() method. The difference between these methods is that the getPool()

method returns a pool that can be shared across multiple threads. The createFastPool() method returns a

pool that can only be used by a single thread.

If in a Java virtual machine (JVM), the getPool() method is called multiple times for a single class, the

same pool is returned. A new pool is returned for each call when the createFastPool() method is called.

Basically, the getPool() method returns a pool that is thread-synchronized.

The pool for use by multiple threads is slightly slower than a fast pool because of the need to handle

thread synchronization. However, extreme care must be taken when using a fast pool. Consider the

following interface:

public interface PoolableObject

{

 void init();

 void returned();

}

If the objects placed in the pool implement this interface and the ObjectPool.getObject() method is called,

the object that the pool distributes has the init() method called on it. When the ObjectPool.returnObject()

method is called, the PoolableObject.returned() method is called on the object before it is returned to the

object pool. Using this method objects can be pre-initialized or cleaned up.

It is not always possible for an object to implement PoolableObject. For example, an application might

want to pool ArrayList objects. The ArrayList object needs clearing each time the application reuses it. The

application might extend the ArrayList object and have the ArrayList object implement a poolable object.

For example, consider the following:

public class PooledArrayList extends ArrayList implements PoolableObject

{

 public PooledArrayList()

 {

 }

 public void init() {

 }

 public void returned()

 {

 clear();

 }

}

If the application uses this object, in place of a true ArrayList object, the ArrayList object is cleared

automatically when it is returned to the pool.

Clearing an ArrayList object simply marks it as empty and the array backing the ArrayList object is not

freed. Therefore, as the application reuses the ArrayList, the backing array expands until it is big enough

for all of the application requirements. When this point is reached, the application stops allocating and

copying new backing arrays and achieves the best performance.

It might not be possible or desirable to use the previous procedure. An alternative is to implement a

custom object pool and register this pool with the object pool manager as the pool to use for classes of

that type. The class is registered by the WebSphere administrator when the object pool manager is

defined in the cell. Take care that these classes are packaged in Java Archive (JAR) files available on all

of the nodes in the cell where they might be used.

Object pool managers collection:

An object pool manages a pool of arbitrary objects and helps applications avoid creating new Java objects

repeatedly. Most objects can be created once, used and then reused. An object pool supports the pooling

1990 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

of objects waiting to be reused. These object pools are not meant to be used for pooling Java Database

Connectivity connections or Java Messaging Service (JMS) connections and sessions. WebSphere

Application Server provides specialized mechanisms for dealing with those types of objects. These object

pools are intended for pooling application-defined objects or basic Developer Kit types.

 To view this administrative console page, click Resources > Object pool managers.

To use an object pool, the product administrator must define an object pool manager using the

administrative console. Multiple object pool managers can be created in an Application Server cell.

Name:

The name by which the object pool manager is known for administrative purposes.

 Data type String

Range 1 through 30 ASCII characters

JNDI Name:

The Java Naming and Directory Interface (JNDI) name for the object pool manager.

 Data type String

Description:

A description of the object pool manager.

 Data type String

Category:

A category name used to classify or group this object pool manager.

 Data type String

Object pool managers settings:

An object pool manages a pool of arbitrary objects and helps applications avoid creating new Java objects

repeatedly. Most objects can be created once, used and then reused. An object pool supports the pooling

of objects waiting to be reused. These object pools are not meant to be used for pooling Java Database

Connectivity connections or Java Message Service (JMS) connections and sessions. WebSphere

Application Server provides specialized mechanisms for dealing with those types of objects. These object

pools are intended for pooling application-defined objects or basic Developer Kit types.

 To view this administrative console page, click Resources > Object pool managers >

objectpoolmanager_name

To use an object pool, the product administrator must define an object pool manager using the

administrative console. Multiple object pool managers can be created in an Application Server cell.

Name:

The name by which the object pool manager is known for administrative purposes.

Chapter 8. Developing WebSphere applications 1991

Data type String

Range 1 through 30 ASCII characters

JNDI Name:

The Java Naming and Directory Interface (JNDI) name for the object pool manager.

 Data type String

Description:

A description of the object pool manager.

 Data type String

Category:

A category name used to classify or to group this object pool manager.

 Data type String

Custom object pool managers collection:

An object pool manages a pool of arbitrary objects and helps applications avoid creating new Java objects

repeatedly. Most objects can be created once, used and then reused. An object pool supports the pooling

of objects waiting to be reused. These object pools are not meant to be used for pooling Java Database

Connectivity connections or Java Message Service (JMS) connections and sessions. WebSphere

Application Server provides specialized mechanisms for dealing with those types of objects. These object

pools are intended for pooling application-defined objects or basic Developer Kit types.

 To view this administrative console page, click Resources > Object pool managers >

objectpoolmanager_name > Custom object pools.

Use custom object pools to insert additional logic around the following mechanisms:

v Constructing an object pool (A list of properties can be set)

v Flushing the object pool

v Getting objects from the pool

v Returning objects from the pool

These features allow for actions such as, clearing the state of an object when returning it to the pool,

configuring the state of an object when retrieving it from the pool, or configuring generic pools and sending

instructions on how to behave using custom properties.

To use an object pool the product administrator must define an object pool manager using the

administrative console. You can create multiple object pool managers in an Application Server cell.

Pool class name:

The fully qualified class name of the objects that are stored in the object pool.

 Data type String

1992 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Pool implementation class name:

The fully qualified class name of the CustomObjectPool implementation class for this object pool.

 Data type String

Custom object pool settings:

An object pool manages a pool of arbitrary objects and helps applications avoid creating new Java objects

repeatedly. Most objects can be created once, used and then reused. An object pool supports the pooling

of objects waiting to be reused. These object pools are not meant to be used for pooling Java Database

Connectivity connections or Java Message Service (JMS) connections and sessions. WebSphere

Application Server provides specialized mechanisms for dealing with those types of objects. These object

pools are intended for pooling application-defined objects or basic Developer Kit types.

 To view this administrative console page, click Resources > Object pool managers >

objectpoolmanager_name > Custom object pools > objectpool_name.

Use custom object pools to insert additional logic around the following mechanisms:

v Constructing an object pool (A list of properties can be set)

v Flushing the object pool

v Getting objects from the pool

v Returning objects from the pool

These features allow for actions such as, clearing the state of an object when returning it to the pool,

configuring the state of an object when retrieving it from the pool, or configuring generic pools and sending

instructions on how to behave using custom properties.

To use an object pool, the product administrator must define an object pool manager using the

administrative console. Multiple object pool managers can be created in an Application Server cell.

Pool Class Name:

The fully qualified class name of the objects that are stored in the object pool.

 Data type String

Pool Impl Class Name:

The fully qualified class name of the CustomObjectPool implementation class for this object pool.

 Data type String

Object pool service settings:

Use this page to enable or disable the object pool service, which manages object pool resources used by

the server.

 To view this administrative console page, click Servers > Application Servers > server_name > Container

services > Object Pool Service.

Enable service at server startup:

Specifies whether the server attempts to start the object pool service.

Chapter 8. Developing WebSphere applications 1993

Default Selected

Range Selected

When the application server starts, it attempts to

start the object pool service automatically.

Cleared

The server does not try to start the object pool

service. If object pool resources are used on this

server, then the system administrator must start

the object pool service manually or select this

property, and then restart the server.

Object pools: Resources for learning: Use the following links to find relevant supplemental information

about object pools. The information resides on IBM and non-IBM Internet sites, whose sponsors control

the technical accuracy of the information.

These links are provided for convenience. Often, the information is not specific to the IBM WebSphere

Application Server product, but is useful all or in part for understanding the product. When possible, links

are provided to technical papers and Redbooks that supplement the broad coverage of the release

documentation with in-depth examinations of particular product areas.

Furthermore, these links provide guidance on using object pools. Since object pooling is a general topic

and the WebSphere Application Server product implementation is only one way to use it, you must

understand when object pooling is necessary. These articles help you make that decision.

Programming model and decisions

v Build your own ObjectPool in Java to boost application speed

v Improve the robustness and performance of your ObjectPool

v Recycle broken objects in resource pools

Scheduler

Using schedulers

Schedulers enable J2EE application tasks to run at a requested time. You can schedule the following

types of tasks:

v Invoke a session bean method

v Send a Java Message Service (JMS) message to a queue or topic

Schedulers also enable application developers to create their own stateless session EJB components to

receive event notifications during a task life cycle, allowing the plugging-in of custom logging utilities or

workflow applications. Stateless session EJB components are also used to provide generic calendaring.

Developers can either use the supplied calendar bean or create their own for their existing business

calendars. For example, one of your business processes might involve invoicing for services. With the

scheduler’s use of stateless EJB components, you can schedule when periodic email distributions are to

be sent to your customers who have received invoices. The scheduler service performs these tasks,

repeating as necessary, according to the metadata for that task.

A scheduler is the mechanism by which the timer service for Enterprise Java Beans 2.1 runs. You can

configure the EJB timer service to use many of the features that schedulers provide. See the timer service

for Enterprise Java Beans 2.1 documentation for more details.

Use the following table to determine which persistent timer service is best for you:

 Schedulers EJB timers

1994 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

http://www.javaworld.com/jw-06-1998/jw-06-object-pool.html
http://www.javaworld.com/jw-08-1998/jw-08-object-pool.html
http://www.javaworld.com/javaworld/javatips/jw-javatip78.html

Run stateless session EJB components and sends JMS

messages

Run all EJB types except for stateful session beans

Persistent, transactional and highly available. Persistent, transactional and highly available.

Tasks guaranteed to run only once Timers guaranteed to run only once, if the timer EJB uses

a container-managed global transaction

Run repeating tasks using any calculation rules Run repeating tasks using a repeating interval defined in

milliseconds

Uses a modified fixed-delay time calculation to determine

repeating intervals (next run time based on the start-time

of the previous task)

Uses a fixed-rate time calculation to determine repeating

intervals (time of the next task is based on the original

scheduled time).

Programmatic task monitoring capability with the use of

the NotificationSink stateless session EJB

No programmatic timer monitoring

Abort late or time-sensitive tasks from running Abort late or time-sensitive tasks from running (achieved

through manual detection within the

javax.ejb.TimedObject implementation).

Manage any task lifecycle (find, suspend, resume, cancel

and purge tasks programmatically and through Java

Management Extensions (JMX)).

Find and cancel its timers programmatically.

Administrators find and cancel timers using a

command-line utility.

Store a limited amount of text with the data, like a Name

(arbitrary data stored externally.)

Store arbitrary data with a timer

This task demonstrates how to manage, develop and interoperate with schedulers and subsequent tasks.

1. Manage the scheduler service. This article includes instructions for creating and configuring

schedulers, creating and configuring a database for schedulers and administering schedulers.

2. Develop and schedule tasks. This article includes instructions for developing various types of tasks,

receiving notifications from a task, submitting tasks to a scheduler, and managing tasks.

Note: Creating and manipulating scheduled tasks through the Scheduler API interface is only

supported from within the Enterprise Java Beans (EJB) container or Web container (JavaServer

Pages or servlets). Looking up and using a configured scheduler from a Java 2 Platform

Enterprise Edition (J2EE) application client container is not supported.

3. Interoperate with schedulers. This article explains how to manage scheduler in a clustered environment

with mixed WebSphere Application Server product versions and mixed platforms.

Scheduler daemon:

A scheduler daemon is a background thread that searches for tasks to run in the database.

 A scheduler daemon is started for each scheduler defined on each server. If Scheduler 1 is configured on

server1, then only one scheduler daemon runs on server1 unless it is cloned. If Scheduler 1 is defined at

the node scope level, then the scheduler will run on each server within that node.

The poll interval determines the frequency at which the persistent store is queried. By default, this value is

set to 30 seconds. When a task is found that is scheduled to run within the current poll interval, an

asynchronous beans alarm is set. The task then runs as close to this time as possible using an alarm

thread from the scheduler’s associated work manager. Thus, the number of alarm threads configured on

the work manager determines how many concurrent tasks are executed. No tasks are lost. If we reach this

limit, then new tasks are simply queued to be executed when an alarm thread becomes available. The

actual firing time is dictated by server load and availability of free threads in the alarm thread pool of the

associated work manager.

Chapter 8. Developing WebSphere applications 1995

Scheduler daemons in a cluster

When multiple schedulers are configured to use the same tables (as is the case in a clustered

environment), any of the daemons can find a task and set the alarm in its Java virtual machine (JVM). The

task is executed in the virtual machine where the scheduler daemon first runs, until the daemon is stopped

and another daemon starts. If an application on server1 schedules a task to run and server2 was started

before server1, then the task runs on server2.

Example: Stopping and starting scheduler daemons using Java Management Extensions API:

This example JACL script can be invoked using the wsadmin scripting tool. It will attempt to stop and start

a Scheduler daemon.

Example JACL Script to restart a Scheduler Daemon

set schedJNDIName sched/MyScheduler

Find the WASScheduler MBean

regsub -all {/} $schedJNDIName "." schedJNDIName

set mbeanName Scheduler_$schedJNDIName

puts "Looking up Scheduler MBean $mbeanName"

set sched [$AdminControl queryNames WebSphere:*,type=WASScheduler,name=$mbeanName]

Invoke the stopDaemon operation.

puts "Stopping the daemon..."

$AdminControl invoke $sched stopDaemon

puts "The daemon has stopped."

Invoke the startDaemon operation.

puts "Starting the daemon..."

$AdminControl invoke $sched startDaemon 0

puts "The daemon has started."

Example: Dynamically changing scheduler daemon poll intervals using Java Management Extensions

API:

To dynamically change scheduler daemon poll intervals, use the wsadmin scripting tool to invoke this

example JACL script. Invoking this example sets the poll interval of the scheduler daemon to 60 seconds.

Example JACL Script to set the Scheduler daemon’s poll interval

set schedJNDIName sched/MyScheduler

Find the WASScheduler MBean

regsub -all {/} $schedJNDIName "." schedJNDIName

set mbeanName Scheduler_$schedJNDIName

puts "Looking-up Scheduler MBean $mbeanName"

set sched [$AdminControl queryNames WebSphere:*,type=WASScheduler,name=$mbeanName]

Set the poll interval to 60 seconds (60000 ms)

$AdminControl setAttribute $sched pollInterval 60000

puts "Poll interval set."

Managing schedulers

Schedulers are configured using the administrative console, configuration service or scripting and are

available to all servers on which a scheduler is visible. You can create multiple schedulers within a single

server, cluster, node or cell. Each configured scheduler is an independent task scheduling engine that has

a unique Java Naming and Directory Interface (JNDI) name, persistent storage device and daemon.

1. Configure schedulers.

2. Create the database for schedulers.

Configuring schedulers:

1996 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Before your application can make use of the scheduler service, you must configure a scheduler using the

administrative console, configuration service or scripting. Conceptually, a scheduler is similar to a data

source in that you must specify various configuration attributes, including a JNDI name where the instance

is bound. Once defined, an application using the Scheduler API or WASScheduler MBean can look up the

scheduler object and call various methods to manage tasks.

The scheduler service is always enabled. In previous versions of the product, the scheduler service could

be disabled using the administrative console or configuration service. Scheduler service configuration

objects are present in the configuration service, but the enabled attribute is ignored.

To achieve high availability, you can configure a duplicate scheduler on each server in a cluster, or create

a scheduler at the cluster scope. For example, each server that contains a scheduler with the JNDI name

sched/MyScheduler, with the same database configuration parameters (data source and table prefix)

behaves as a single clustered scheduler. Each server in the scheduler cluster has a running scheduler

instance, which increases the number of poll daemons and allows automatic failover. For more information

on creating clusters for high availability, see the article, ″WebSphere Enterprise Scheduler planning and

administration guide.″

Typically, create schedulers at the server or cluster scope. Scheduler poll daemons run in each server

within the configured scope, which means that if you create a scheduler at the node or cell scope, the

scheduler poll daemon can attempt to run tasks on any of the servers in the node or cell. If applications

are not mapped uniformly over each server in that scope, the scheduler might not run tasks correctly.

Since applications are mapped to servers and clusters, there is less chance for error and less competition

between daemons to run tasks.

Depending on your preferred method of configuration, select one of the following steps to configure

schedulers.

1. Configuring schedulers using the administrative console.

2. Configuring schedulers using Java Management Extensions API (JMX).

A scheduler is configured and ready to use.

Configuring schedulers using the administrative console:

Schedulers can be created or configured using the administrative console.

1. Start the administrative console.

2. Select Resources > Schedulers.

3. Click New.

4. Specify configuration settings. Fields marked with an asterisk (*) are required. The settings are

described in detail in the topic ″Scheduler settings″ in the information center.

5. Click OK or Apply to save the changes.

6. Save the changes to the configuration repository.

A scheduler is now configured and ready to use for newly installed applications. If the scheduler JNDI

name is not yet visible to your application, reinstalling the application or restarting the application server

will allow the scheduler to be seen.

When schedulers are created for the first time, the poll daemon will not automatically start and must be

started manually and will only start automatically the next time the server is started. To start the poll

daemon manually, see the scheduler daemons topic.

Note: Changes to existing scheduler configurations will not take affect until after the application server is

restarted.

Chapter 8. Developing WebSphere applications 1997

http://www-106.ibm.com/developerworks/websphere/techjournal/0404_johnson/0404_johnson.html
http://www-106.ibm.com/developerworks/websphere/techjournal/0404_johnson/0404_johnson.html

Schedulers collection:

Use this page to manage scheduler configurations.

 To view this administrative console page, click Resources > Schedulers.

Name:

The name by which this scheduler is known for administrative purposes.

 Data type String

JNDI name:

The JNDI name for the scheduler.

 The JNDI name specifies where this scheduler instance is bound in the name space. Clients can look this

name up directly, although the use of resource references is recommended.

 Data type String

Data source JNDI name:

Data source where persistent tasks will be stored.

 Any data source available in the name space can be used with a scheduler. Multiple schedulers can share

a single data source while using different tables by specifying a table prefix.

 Data type String

Table prefix:

The prefix to apply to all of the scheduler tables and indices. This can optionally include a schema name if

the database requires one.

 Multiple independent schedulers can share the same database if each instance specifies a different prefix

string.

 Data type String

Poll interval:

The interval at which the scheduler daemon polls the database.

 Each poll operation can be expensive. If the interval is extremely small and there are many scheduled

tasks, polling can consume a large portion of system resources.

 Data type Integer

Units Seconds

Default 30

Range Any positive long integer

Work managers:

1998 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Specifies work managers used by this scheduler.

 The work manager is a server object that serves as a logical thread pool for the scheduler. Each repeating

task that is created using this scheduler will use the ″Number Of Alarm Threads″ specified in the work

manager, which affects the number tasks that can run concurrently. Use the work manager ″Service

Names″ property to limit the amount of context information that is propagated to the task when it runs.

When a task runs, the task is run in the work manager associated with the scheduler instance. Configuring

a scheduler with a specific work manager enables you to control how many tasks are actively running at a

given time.

Verify tables:

Validates that scheduler data sources, table prefixes, security authentication information and tables are

configured correctly.

 You can use this verification method in production and development environments without altering

database properties.

Create tables:

Creates the necessary tables and indices required for a scheduler to operate.

 This method of creating scheduler tables is designed for simple topologies and development environments.

Use the supplied scheduler data definition language files for advanced or production environments and for

databases that do not support this feature. For details, see the topic ″Creating Scheduler tables using the

administrative console.″

Drop tables:

Specifies the removal of tables and indices required for schedulers to operate.

 This method of removing scheduler tables and indices is recommended for development environments and

does not delete previously scheduled tasks.

Schedulers settings:

Use this page to modify scheduler settings.

 To view this administrative console page, click Resources > Schedulers > scheduler_name.

Name:

The name by which this scheduler is known for administrative purposes.

 Data type String

JNDI name:

The JNDI name for the scheduler.

 The JNDI name specifies where this scheduler instance is bound in the namespace. Clients can look this

name up directly, although the use of resource references is recommended.

 Data type String

Chapter 8. Developing WebSphere applications 1999

Description:

A description of this scheduler for administrative purposes.

 Data type String

Category:

A string that can be used to classify or group this scheduler.

 Data type String

Data source JNDI name:

Datasource where persistent tasks will be stored.

 Any data source available in the name space can be used with a scheduler. Multiple schedulers can share

a single data source while using different tables by specifying a table prefix.

 Data type String

Data source alias:

Alias to a user name and password used to access the data source.

 Data type String

Table prefix:

The prefix to apply to all of the scheduler tables and indices. This can optionally include a schema name if

the database requires one.

 Multiple independent schedulers can share the same database if each instance specifies a different prefix

string.

 Data type String

Poll interval:

The interval at which the scheduler daemon polls the database.

 Each poll operation can be expensive. If the interval is extremely small and there are many scheduled

tasks, polling can consume a large portion of system resources.

 Data type Integer

Units Seconds

Default 30

Range Any positive long integer

Work managers:

Specifies work managers used by this scheduler.

2000 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

The work manager is a server object that serves as a logical thread pool for the scheduler. Each repeating

task that is created using this scheduler uses the Number of alarm threads specified in the work

manager, which affect the number tasks that can run concurrently. Use the work manager Service Names

property to limit the amount of context information that is propagated to the task when it runs.

When a task runs, the task is run in the work manager associated with the scheduler instance. You can

control the number of actively running tasks at a given time by configuring schedulers with a specific work

manager. The number of tasks that can run concurrently is governed by the Number of alarm threads

parameter on the work manager.

Note: Although work managers and scheduler instances are configured at different scopes, schedulers

must reference a work manager in the same scope. For example, a scheduler instance configured

at the server1 scope must use a work manager also configured at the server1 scope.

Use administration roles:

Specifies whether to use the define scheduler roles.

 Schedulers require several user roles to plan for, develop, administer and operate the scheduler service:

administrator, developer and operator. If checked, and global security is enabled, then administration roles

are enforced when using scheduler JMX or APIs to create and modify tasks. If this option is not enabled,

then all users can create and modify tasks.

 Data type check box

Default unchecked

Range v Operator--Calls any of the scheduler MBean or API

methods and run any of the scheduler administrative

console functions.

v Monitor--Calls the scheduler MBean or API methods,

but cannot create tasks or modify the state of any

tasks. Only read-only methods and properties are

accepted.

Configuring schedulers using Java Management Extensions:

Schedulers can be created or configured using the Java Management Extensions (JMX) API using one of

several scripting languages or Java. In order to run with Java, two JAR files need to be present in the

program class path: wsexception.jar and wasjmx.jar.

Complete these steps when using Java programs that utilize JMX.

1. Look up the host and get an administration client handle.

2. Get a configuration service handle.

3. Update the resource-pme.xml file using the configuration service, as desired.

a. Find the SchedulerProvider for a given scope.

b. Create a SchedulerConfiguration and specify all required parameters identifying the

SchedulerProvider as the parent object.

4. Reload the resource-pme.xml file to bind the newly created scheduler into the JNDI namespace.

Perform this step if you want to use the newly created scheduler immediately, without restarting the

application server.

a. Locate the DataSourceConfigHelper MBean using the name.

b. Invoke the reload() operation.

Chapter 8. Developing WebSphere applications 2001

A scheduler is now configured and ready to use for newly installed applications. If the scheduler JNDI

name is not yet visible to your application, reinstalling the application or restarting the application server

will allow the scheduler to be seen.

When schedulers are created for the first time, the poll daemon does not automatically start, and you must

start it manually. When you restart the server, the poll daemon starts automatically. To start the poll

daemon manually, see the scheduler daemons topic.

Note: Changes to existing scheduler configurations will not take affect until after the application server is

restarted.

Example: Using scripting to create and configure schedulers:

The following Jacl example script can be invoked using the wsadmin scripting tool, which creates a

SchedulerConfiguration resource using the DefaultWorkManager at the server scope.

Example JACL Script to create a SchedulerConfiguration

at the server scope

Change the cell, node and server to match your environment

set cellName MyCell

set nodeName MyNode

set serverName server1

We can just grab the first provider, since there is only one at the

server scope level.

set schedProv [$AdminConfig getid /Cell:$cellName/Node:$nodeName/Server:$serverName/SchedulerProvider:

SchedulerProvider]

if {$schedProv == ""} {

 puts "Unable to find SchedulerProvider for server: $serverName. Aborting."

 exit

}

puts "Found a SchedulerProvider"

Find our WorkManagerInfo object.

If we don’t have a DefaultWorkManager at the server scope,

copy the one from the Node scope.

set wrkMgrProv [$AdminConfig getid /Cell:$cellName/Node:$nodeName/Server:$serverName/WorkManagerProvider:

WorkManagerProvider/]

if {$wrkMgrProv == ""} {

 puts "Unable to find the WorkManagerProvider for server: $serverName. Aborting."

 exit

}

set wrkMgrInfo [$AdminConfig getid /Cell:$cellName/Node:$nodeName/Server:$serverName/WorkManagerProvider:

WorkManagerProvider/WorkManagerInfo:DefaultWorkManager/]

if {$wrkMgrInfo == ""} {

 puts "Unable to find the DefaultWorkManager for server: $serverName. Creating one."

 set wrkMgrInfo [$AdminConfig getid /Cell:$cellName/Node:$nodeName/WorkManagerProvider:

WorkManagerProvider/WorkManagerInfo:DefaultWorkManager/]

 if {$wrkMgrInfo == ""} {

 puts "Unable to find the DefaultWorkManager for node: $nodeName. Aborting."

 exit

 }

 # Setup our DefaultWorkManager attributes

 set createAttrs [subst { \

 {category "[$AdminConfig showAttribute $wrkMgrInfo category]"} \

 {description "[$AdminConfig showAttribute $wrkMgrInfo description]"} \

 {isGrowable [$AdminConfig showAttribute $wrkMgrInfo isGrowable]} \

 {jndiName [$AdminConfig showAttribute $wrkMgrInfo jndiName]} \

 {maxThreads [$AdminConfig showAttribute $wrkMgrInfo maxThreads]} \

 {minThreads [$AdminConfig showAttribute $wrkMgrInfo minThreads]} \

 {name "[$AdminConfig showAttribute $wrkMgrInfo name]"} \

 {numAlarmThreads [$AdminConfig showAttribute $wrkMgrInfo numAlarmThreads]} \

2002 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

{serviceNames "[$AdminConfig showAttribute $wrkMgrInfo serviceNames]"} \

 {threadPriority [$AdminConfig showAttribute $wrkMgrInfo threadPriority]} }]

 set wrkMgrInfo [$AdminConfig create WorkManagerInfo $wrkMgrProv $createAttrs]

 puts "Created a DefaultWorkManager"

}

puts "Found a WorkManagerInfo"

Setup our SchedulerConfiguration attributes

set schedulerName MyScheduler

set schedulerJNDIName sched/MyScheduler

set datasourceJNDIName jdbc/MySchedulerDatasource

set datasourceAlias MySchedulerAlias

set pollInterval 30

set tablePrefix MSCD

set useAdminRoles true

set createAttrs [subst { \

 {name $schedulerName} \

 {datasourceJNDIName $datasourceJNDIName} \

 {datasourceAlias $datasourceAlias} \

 {jndiName $schedulerJNDIName} \

 {pollInterval $pollInterval} \

 {tablePrefix $tablePrefix} \

 {useAdminRoles true} \

 {workManagerInfo $wrkMgrInfo}}]

Create the Scheduler

$AdminConfig create SchedulerConfiguration $schedProv $createAttrs

puts "Scheduler created"

Save the configuration

$AdminConfig save

Reload the configuration

set dshelper [$AdminControl queryNames type=DataSourceCfgHelper,process=$serverName,*]

$AdminControl invoke $dshelper reload

Creating a scheduler resource reference:

When you define schedulers in the server configuration, the object instance is bound into the global name

space under the configured Java Naming Directory Interface (JNDI) name. You can use a resource

reference to avoid manually coding this JNDI name into your application. Using a resource reference

allows administrators to map applications to the appropriate schedulers.

You can alternatively create a scheduler resource reference by editing the XML directly. A Scheduler

resource reference is a Java 2 Platform Enterprise Edition (J2EE) compliant resource that uses the class

com.ibm.websphere.scheduler.Scheduler as the object type. For information regarding the XML file format,

see the J2EE Specification.

 1. Start an assembly tool, such as Application Server Toolkit or Rational Web Developer.

 2. Open the J2EE perspective.

 3. Open your EJB or Web module with the Deployment Descriptor Editor.

 4. Click the Reference tab at the bottom of the window.

 5. Click Add.

 6. Select the Resource reference option.

 7. Click Next.

 8. Complete the Reference fields as shown in the following properties:

Name The reference name, for example, sched/MyScheduler. According to this example, the name

you choose has a local reference name of java:comp/env/sched/MyScheduler.

Chapter 8. Developing WebSphere applications 2003

Type Select com.ibm.websphere.scheduler.Scheduler, and click OK.

Authentication

Select container.

Description

Any relevant description.

 9. Click finish.

10. (Optional) Enter a global JNDI name of a configured scheduler in the JNDI name field in the

Bindings section of the Reference window. You can specify or override this value when you install

the application.

11. Save your changes to the deployment descriptor.

A scheduler resource reference is now available to use within your application

Creating the database for schedulers:

Each scheduler requires a database in which to store its persistent information. The choice of database

and location should be determined by the application developer and server administrator.

Schedulers use this database for storing tasks and then running them. Scheduler performance is ultimately

limited by database performance. If you need more tasks per second, you can run the scheduler daemons

on larger systems, use clusters for the session beans used by the tasks or partition the tasks by using

multiple schedulers. Eventually, however, the scheduler database becomes saturated, and a larger or

better-tuned database system is needed. For detailed information on scheduler topologies see the

technical paper, ″WebSphere Enterprise Scheduler planning and administration guide″.

Multiple schedulers can share a database when you specify unique table prefix values in each scheduler

configuration. This sharing can lower the cost of administering scheduler databases.

Complete the following steps to create scheduler databases.

1. Create a database. To create the database for a scheduler or to determine if an existing database is

adequate for a scheduler, review the topic, ″Create scheduler databases″.

2. Create the scheduler tables. There are three methods for creating the tables for a scheduler:

a. Create tables for schedulers using the administrative console. Use the administrative console to

add, delete and verify database tables through your Web browser. This method is ideal for

developers and simple scheduler topologies.

b. Create tables for schedulers using JMX or scripting.

Use JMX to add, delete and verify database tables programmatically with Java or scripting. This

method is ideal for automating scheduler configurations for simple scheduler topologies.

c. Create tables for schedulers using DDL files. Manually edit the DDL files through your favorite text

editor, and verify that mapping between the table names and the scheduler resources and data

sources is correct.

Creating scheduler databases:

Your database system must be installed and available.

It is important to know that the scheduler uses this database for storing and running tasks. The

performance of schedulers is ultimately limited by the performance of the database. If you need more

tasks per second, you can run the scheduler daemons on larger systems or you can use clusters for the

session beans used by the tasks. Eventually, however, the task database becomes saturated and you then

need a larger or better-tuned database system.

Multiple applications can share a scheduler database. This sharing can lower the cost of administering

scheduler databases.

2004 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

http://www-106.ibm.com/developerworks/websphere/techjournal/0404_johnson/0404_johnson.html

The scheduler requires a database, a JDBC provider, and a data source.

1. Create the database according to the description for your database system:

v Creating a Cloudscape database for schedulers.

v Creating a DB2 database for schedulers.

v Creating a DB2 database for z/OS for schedulers.

v Creating an Informix database for schedulers.

v Creating a Microsoft SQL Server database for schedulers.

v Creating an Oracle database for schedulers.

v Creating a Sybase database for schedulers.

2. If the database is not on the same machine as your IBM WebSphere Application Server, verify that you

can access the database from your application server machine.

3. Configure your JDBC provider and data source. For details, see the topic Creating and configuring a

JDBC provider and data source.

The database is created and ready for you to create scheduler tables.

Creating Cloudscape databases for schedulers:

This topic describes how to create Cloudscape databases for schedulers using data definition language

(DDL) or structured query language (SQL) files.

1. Open a command-line window.

2. Verify that you have administrator rights for the database system.

3. Verify that the database supports Unicode (UTF-8). Otherwise, the database does not store all

characters that can be handled in Java code, which results in code page conversion problems when a

client uses an incompatible code page.

4. Use the Cloudview utility supplied with the Cloudscape system to create the database. For example,

use the database name, scheddb. The embedded version of Cloudscape supports only one local

connection. If Application Server product is running and accessing a Cloudscape database, then any

attempts to open a second connection to the database from the command line are rejected.

5. Exit the Cloudview utility.

The Cloudscape database for the scheduler service exists.

Creating DB2 databases for schedulers:

This topic describes how to create DB2 databases for scheduler, using data definition language (DDL) or

structured query language (SQL) files.

1. Open a DB2 command-line window.

2. Make sure that you have administrator rights for the database system.

3. Verify that the database supports Unicode (UTF-8). Otherwise, it cannot store all the characters that

can be handled in Java code, which might result in code page conversion problems, when a client

uses an incompatible code page.

To avoid deadlocks, be sure that the DB2 isolation level is set to ″read stability″. If necessary, enter the

command

db2set DB2_RR_TO_RS=YES

then restart the DB2 instance to activate the change.

4. In the DB2 command line processor, enter this command to create the database with an example

name, scheddb:

db2 CREATE DATABASE scheddb USING CODESET UTF-8 TERRITORY en-us

A DB2 database named scheddb has been created.

Chapter 8. Developing WebSphere applications 2005

The DB2 database for the scheduler exists.

Creating DB2 for z/OS databases for schedulers:

This topic describes how to create DB2 for z/OS databases for schedulers using data definition language

(DDL) or structured query language (SQL) files.

1. You must have already installed on a UNIX or Windows machine.

2. On the z/OS machine that hosts the database:

a. Log on to the native z/OS environment.

b. If multiple DB2 systems are installed, then decide which subsystem you want to use.

c. Create a storage group and note the name.

d. Decide which user ID is used to connect to the database from the remote machine running the

product. Normally, for security reasons, this user ID is not the one you used to create the

database.

e. Grant the user ID the rights to access the database and storage group. The user ID must also

have permission to create new tables for the database.

3. On the server machine:

a. Change to the Scheduler subdirectory in the application server installation root directory.

b. Edit the createTablespaceDB2ZOS.ddl script. Replace @STG@ with the storage group name. Replace

@DBNAME@ with the database name (not the subsystem name), and replace

@SCHED_TABLESPACE@ with the name of a valid tablespace.

c. Run your customized version of createTablespaceDB2ZOS.ddl, as described in the header of the

script.

d. To avoid deadlocks, verify that the DB2_RR_TO_RS DB2 flag is set to YES. If necessary, restart

the DB2 instance to activate the change.

The DB2 for z/OS database for the scheduler service is created.

Creating Informix databases for schedulers:

This topic describes how to create Informix databases for schedulers, using data definition language (DDL)

or structured query language (SQL) files.

1. Open a command-line window.

2. Verify that you have administrator rights for the database system.

3. Verify that the database supports Unicode (UTF-8). Otherwise, the database does not store all

characters that can be handled in the Java code, which results in code page conversion problems,

when a client uses an incompatible code page.

4. If you want to create a new database named scheddb, for example, enter the command:

dbaccess CREATE DATABASE scheddb with log

The Informix database for scheduler exists.

Creating Microsoft SQL Server databases for schedulers:

This topic describes how to create Microsoft SQL Server databases for schedulers, using data definition

language (DDL) or structured query language (SQL) files.

1. Make sure that you are using a user ID that has administrator rights for the database system.

2. In the Enterprise Manager, expand a server group, then expand a server. A Microsoft SQL Server

database named scheddb is created.

3. Right-click Databases, then click New Database.

2006 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

4. Verify that the database supports Unicode (UTF-8). Otherwise, the database does not store all

characters that can be handled in the Java code, which results in code page conversion problems,

when a client uses an incompatible codepage.

5. Type the name scheddb.

6. Modify any default values, and save your changes. The Microsoft SQL Server database, scheddb, is

created.

The Microsoft SQL Server database for scheduler exists.

Creating Oracle databases for schedulers:

This topic describes how to create Oracle databases for schedulers, using data definition language (DDL)

or structured query language (SQL) files.

1. Open a command-line window.

2. Make sure that you have administrator rights for the database system.

3. Verify that the database supports Unicode (UTF-8). Otherwise, the database does not store all

characters that can be handled in the Java code, which results in code page conversion problems,

when a client uses an incompatible code page.

4. Use the Database Configuration Assistant to create the database, scheddb, for example. Verify that you

select the JServer option for the database. Use a Unicode code page when creating the database.

The text data you pass to the APIs must be compatible with the selected code page.

The Oracle database for scheduler exists.

Creating Sybase databases for schedulers:

This topic describes how to create Sybase databases for schedulers, using data definition language (DDL)

or structured query language (SQL) files.

1. Open a command-line window.

2. Make sure that you have administrator rights for the database system.

3. Make sure that you have the DTM option for Sybase ASE installed.

4. Verify that the database supports Unicode (UTF-8). Otherwise, the database does not store all

characters that can be handled in the Java code, which results in code page conversion problems,

when a client uses an incompatible code page.

5. Use the Sybase isql utility to create the database, scheddb, for example. See your Sybase product

documentation for details.

The Sybase database for the scheduler exists.

Scheduler table management functions:

The administration console and the WASSchedulerConfiguration MBeans provide simplified methods for

creating scheduler tables and schema, verifying that the scheduler tables and schema are setup properly

and are accessible and removing scheduler tables and schema.

When connecting to a deployment manager or node agent, the operation attempts to verify, create or drop

the tables based on the most granular scope where the scheduler and associated data source is located.

For example, if a scheduler is configured at the server scope, the data source at the node scope, and the

verify tables operation is being run from a deployment manager, the deployment manager attempts to

connect to server1 and run the operation there. If the server is unavailable, then it attempts to verify at the

node agent level, and then at the deployment manager level.

Chapter 8. Developing WebSphere applications 2007

Note: There are limitations when running the table management functions relating to data source access.

See the Verifying a connection topic for details on these limitations. If a connection cannot be

verified successfully, the scheduler table management functions will fail.

Verify tables

Validates that scheduler data sources, table prefixes, security authentication information and tables are

configured correctly. You can use this verification method in production and development environments

without altering database properties.

Create tables

Creates the necessary tables and indices required for schedulers to operate. This method of creating

scheduler tables is designed for simple topologies and development environments. Use the supplied

scheduler data definition language files for advanced or production environments and for databases that

do not support this feature. For details, see the topic Creating scheduler tables using the administrative

console.

Drop tables

Specifies the removal of tables and indices required for schedulers to operate. This method of removing

scheduler tables and indices is recommended for development environments. When you drop tables, the

action removes all previously scheduled tasks, and the scheduler no longer operates successfully, until the

tables are recreated.

Scheduler table definition:

Each scheduler requires several database tables and indices to operate. Each table name and index

described in this topic requires a table prefix. For example, if the scheduler is configured with a table prefix

value, SCHED_, the table with the name, TASK, would be named SCHED_TASK. See Scheduler settings

for details on the table prefix.

To create the tables, see ″Creating the database for schedulers″ in the information center. To see the

exact schema definition such as field sizes and types, see ″Creating scheduler tables using DDL files″ in

the information center. This section references the location where the DDL or SQL statements are stored.

These statements create the table schema.

Note: The information in this topic is provided for problem determination. Do not alter the scheduler table

names, field names or index names. The data content format might change without notice. Be

aware of this factor when accessing the tables directly. Modifying data in the tables without using

the Scheduler API might cause failures.

TASK

The TASK table contains the tasks that have been scheduled, but not yet purged. The primary key for this

table is the TASKID which equates to the getTaskID() method on the

com.ibm.websphere.scheduler.TaskStatus interface.

Since there is one row in this table for each task, it is important that the database and table support

row-locking. Using page, or table locks, inhibits the scheduler from running tasks concurrently.

 Field name Purpose and notes

2008 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

TASKID Contains all of the tasks that have been scheduled, but not yet purged. The

primary key for this table is TASKID which equates to the getTaskID() method on

the com.ibm.websphere.scheduler.TaskStatus interface.

Since there is one row in this table for each task, it is important that the database

and table support row-locking. Using page, or table locks, will inhibit the scheduler

from running tasks concurrently.

VERSION Internal version ID of this row format.

ROW_VERSION The version of this row. Used for optimistic locking.

TASKTYPE The type of task: 1=BeanTaskInfo, 2=MessageTaskInfo

TASKSUSPENDED The value, 1, if the task is suspended.

CANCELLED The value, 1, if the task is cancelled.

NEXTFIRETIME The date in milliseconds using java.util.Date.getTime() when the task is scheduled

to run next.

STARTBYINTERVAL The start-by-interval of the task.

STARTBYTIME Reserved.

VALIDFROMTIME The task start time.

VALIDTOTIME Reserved.

REPEATINTERVAL The task repeat interval.

MAXREPEATS The number of times to run the task.

REPEATSLEFT The number of times the task has yet to run.

TASKINFO Internal binary data.

NAME The task name.

AUTOPURGE The value, 1, if the task is to automatically purge upon completion.

FAILUREACTION Reserved.

MAXATTEMPTS Reserved.

QOS Reserved.

PARTITIONID Reserved.

OWNERTOKEN The task owner.

CREATETIME The time in milliseconds using java.util.Date.getTime() when the task was created.

The TASK table also has the following indices that are required to allow the scheduler to run and access

tasks concurrently:

v TASK_IDX1 – Used to access individual tasks using the Scheduler API.

v TASK_IDX2 – Used by the poll daemon to load expiring tasks.

TREG

The TREG table is used to store scheduler information that is shared between redundant schedulers. This

table is not highly used.

 Field name Purpose and notes

REGKEY The registry key. This is the primary key of the table.

REGVALUE The registry value.

Chapter 8. Developing WebSphere applications 2009

LMGR

The LMGR table is used to track the leases that redundant schedulers use. This table is not highly used.

 Field name Purpose and notes

LEASENAME The name of the lease. This is the scheduler JNDI name and is the primary key.

LEASEOWNER The owner of the lease. The format is Cell/Node/Server.

LEASE_EXPIRE_TIME The time in milliseconds using java.util.Date.getTime() when the lease for the

scheduler expires.

DISABLED Reserved.

LMPR

The LMPR table is used to store arbitrary properties for the lease. This table is not highly utilized.

 Field name Purpose and notes

LEASENAME The name of the lease. See the LMGR table.

NAME The name of the property.

VALUE The value of the property.

The LMPR table also has the following index:

v LMPR_IDX1 – Used to retrieve properties for a given lease.

Creating scheduler tables using the administrative console:

The scheduler requires a database, a Java DataBase Connectivity (JDBC) provider and a data source.

Note: Limitations for Oracle XA databases

Oracle XA prohibits required schema operations in a global transaction environment. Local

transactions are not supported. If you have schedulers that use an Oracle XA data source, either

temporarily change the scheduler configuration to use a non-XA Oracle data source, or create the

tables manually using the supplied DDL files. If you use the administrative console to create or drop

scheduler tables for a scheduler configured to use an Oracle XA data source, then you receive a

SchedulerDataStoreException error message, and the operation fails.

Note: Limitations for DB2 z/OS databases

Creating and dropping tables using the administrative console is not supported for DB2 z/OS databases. A

database administrator is typically involved with defining and managing databases on DB2 z/OS systems.

The administration interface is targeted for the non-database administrator or developer who does not

want to know the specifics of setting up the scheduler database. The scheduler has DDL files available for

the database administrator to create the required tables.

1. Verify that the database to be used for this scheduler is available and accessible by the application

server. Review the Creating scheduler databases and tables topic for instructions on creating a

database. The remaining steps describe how to create scheduler tables in an existing database.

2. Start the administrative console.

3. Create a JDBC data source that refers to the scheduler database.

4. Test the data source connection.

2010 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

5. Create a scheduler. This configuration object contains the desired table prefix and the JNDI name of

the JDBC data source. Verify that you save the new Scheduler to the configuration repository before

you proceed to the next step.

6. Click Resources > Schedulers to view all defined schedulers.

7. Select one or more schedulers.

8. Click Create Tables to create the tables for the selected schedulers in their associated database. The

tables and indices you created reflect the table prefixes and data sources specified in each scheduler

configuration.

9. Restart the server or start the poll daemon to run scheduler tasks.

Scheduler tables and schema are created.

Creating scheduler tables using scripting and Java Management Extensions:

The scheduler requires a database, a JDBC provider, and a data source.

Note: Limitations for Oracle XA databases

Oracle XA prohibits required schema operations in a global transaction environment. Local

transactions are not supported. If you have schedulers that use an Oracle XA data source, either

temporarily change the scheduler configuration to use a non-XA Oracle data source, or create the

tables manually using the supplied DDL files. If you use the administrative console to create or drop

scheduler tables for a scheduler configured to use an Oracle XA data source, then you receive a

SchedulerDataStoreException error message, and the operation fails.

Note: Limitations for DB2 z/OS databases

Creating and dropping tables using the administrative console is not supported for DB2 z/OS databases. A

database administrator is typically involved with defining and managing databases on DB2 z/OS systems.

The administration interface is targeted for the non-database administrator or developer who does not

want to know the specifics of setting up the scheduler database. The scheduler has DDL files available for

the database administrator to create the required tables.

1. Verify that the database to be used for this Scheduler is available and accessible by the application

server. Review the Creating scheduler databases and tables topic for instructions on creating a

database. The remainder of these steps describe how to create scheduler tables in an existing

database.

2. Launch the wsadmin tool and connect to a Deployment Manager or Application Server. This process

requires an active server to be available and fails, if you are disconnected from the server.

3. Create a JDBC data source that refers to the scheduler database.

4. Test the data source connection.

5. Create a scheduler. This configuration object contains the desired table prefix and the JNDI name of

the JDBC data source. Verify that you save the new Scheduler to the configuration before you proceed

to the next step.

6. Run the createTables MBean operation.

a. Look up the SchedulerConfiguration object or use the object you created in a previous step.

b. Locate the WASSchedulerConfiguration MBean.

c. Run one of the createTables MBean operation on the WASSchedulerConfiguration object to

create the tables for the specified SchedulerConfiguration object in its associated database. The

tables and indices that you created reflect the table prefix and data source specified in the

scheduler configuration.

7. Restart the server or start the poll daemon to run scheduler tasks.

Scheduler tables and schema are created.

Chapter 8. Developing WebSphere applications 2011

Example: Using scripting to verify scheduler tables:

The following Jacl example script can be invoked using the wsadmin scripting tool, which verifies that the

tables and indices are created correctly for a scheduler. See the “Configuring Schedulers” topic in the

information center for details on how a scheduler is created.

Example JACL Script to verify the scheduler tables

The name of the scheduler to verify

set schedName "My Scheduler"

puts ""

puts "Looking-up Scheduler Configuration Helper MBean"

puts ""

set schedHelper [$AdminControl queryNames WebSphere:*,type=WASSchedulerCfgHelper]

#Access the configuration object.

set myScheduler [$AdminConfig getid /SchedulerConfiguration:$schedName/]

if {$myScheduler == ""} {

 puts ""

 puts "Error: Scheduler $schedName could not be found."

 puts ""

 exit

}

Invoke the verifyTables method on the helper MBean.

puts ""

puts "Verifying tables for:"

puts "$myScheduler"

puts ""

if { [catch {$AdminControl invoke $schedHelper verifyTables $myScheduler} errorInfo] } {

 puts ""

 puts "Error verifying tables: $errorInfo"

 puts ""

} else {

 puts ""

 puts "Tables verified successfully."

 puts ""

}

Example: Using scripting to create scheduler tables:

The following Jacl example script can be invoked using the wsadmin scripting tool, which creates the

scheduler tables for a configured scheduler. See the “Configuring Schedulers” topic in the information

center for details on how to create a scheduler.

Example JACL Script to create the scheduler tables

The name of the scheduler to create tables for

set schedName "My Scheduler"

puts ""

puts "Looking-up Scheduler Configuration Helper MBean"

puts ""

set schedHelper [$AdminControl queryNames WebSphere:*,type=WASSchedulerCfgHelper]

#Access the configuration object.

set myScheduler [$AdminConfig getid /SchedulerConfiguration:$schedName/]

if {$myScheduler == ""} {

 puts ""

 puts "Error: Scheduler with name: $schedName could not be found."

 puts ""

2012 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

exit

}

Invoke the createTables method on the helper MBean.

puts ""

puts "Creating tables for:"

puts "$myScheduler"

puts ""

if {[catch {

 set result [$AdminControl invoke $schedHelper createTables $myScheduler]

 if {$result} {

 puts ""

 puts "Successfully created the tables."

 puts ""

 } else {

 puts ""

 puts "The tables were already created."

 puts ""

 }

 } errorInfo] } {

 puts ""

 puts $errorInfo

 puts ""

}

Example: Using scripting to drop scheduler tables:

The following Jacl example script can be invoked using the wsadmin scripting tool, which removes the

scheduler tables for a configured scheduler. See the “Configuring Schedulers” topic in the information

center for details on how a scheduler is created

Example JACL Script to drop the scheduler tables

The name of the scheduler to drop the tables for

set schedName "My Scheduler"

puts ""

puts "Looking-up Scheduler Configuration Helper MBean"

puts ""

set schedHelper [$AdminControl queryNames WebSphere:*,type=WASSchedulerCfgHelper]

#Access the configuration object.

set myScheduler [$AdminConfig getid /SchedulerConfiguration:$schedName/]

if {$myScheduler == ""} {

 puts ""

 puts "Error: Scheduler with name: $schedName could not be found."

 puts ""

 exit

}

Invoke the dropTables method on the helper MBean.

puts ""

puts "Dropping tables for:"

puts "$myScheduler"

puts ""

if {[catch {

 set result [$AdminControl invoke $schedHelper dropTables $myScheduler]

 if {$result} {

 puts ""

 puts "Successfully dropped the tables."

 puts ""

 } else {

Chapter 8. Developing WebSphere applications 2013

puts ""

 puts "The tables were already dropped."

 puts ""

 }

 } errorInfo] } {

 puts ""

 puts $errorInfo

 puts ""

}

Creating scheduler tables using DDL files:

Your database system must be installed and available.

The scheduler requires a database, a JDBC provider, and a data source.

Complete the following steps to create scheduler tables using DDL files.

1. Verify that your database is created. See the topic ″Creating scheduler databases.″

2. Create the database tables according to the instructions for your database system.

v Creating Cloudscape tables for schedulers.

v Creating DB2 tables for schedulers.

v Creating DB2 tables for z/OS for schedulers.

v Creating Informix tables for schedulers.

v Creating Microsoft SQL Server tables for schedulers.

v Creating Oracle tables for schedulers.

v Creating Sybase tables for schedulers.

Creating Cloudscape tables for schedulers:

This task requires you to configure a database and make it available. See the ″Creating Cloudscape

databases for schedulers″ topic, for more information.

This topic describes how to create tables for schedulers on Cloudscape databases, using data definition

language (DDL) or structured query language (SQL) files.

1. Open a command-line window.

2. Create the schema.

a. Using a text editor, edit the script, %install_root%\Scheduler\createSchemaCloudscape.ddl,

according to the instructions at the top of the file.

Note: When setting the table prefix, capitalize all characters.

b. Enter one of the following commands.

Note: Cloudscape provides both an embedded and network server version. This example is for the

embedded version of Cloudscape. See the Cloudscape product documentation for more

details on running DDL scripts.
On Windows systems (using the example name, scheddb):

%install_root%\cloudscape\bin\embedded\ij.bat %install_root%\Scheduler\createSchemaCloudscape.ddl

On UNIX systems (using the example name, scheddb):

%install_root%/cloudscape/bin/embedded/ij.sh %install_root%/Scheduler/createSchemaCloudscape.ddl

The Cloudscape tables and schema for the scheduler exist.

Creating DB2 tables for schedulers:

2014 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

This task requires you to configure a database and make it available. See the ″Creating DB2 databases

for schedulers″ topic for more information.

This topic describes how to create tables for scheduler on DB2 databases, using data definition language

(DDL) or structured query language (SQL) files.

1. Open a DB2 command-line window.

2. Verify that you have administrator rights for the database system.

3. Create the table space and schema.

a. Analyze the results of your experiences during development and system testing. The size of your

database depends on many factors. If possible, distribute table space containers across different

logical disks, and implement an appropriate security policy. Consider the performance implications

of your choices for buffer pools and log file settings.

b. Using a text editor, edit the following scripts according to the instruction at the top of each file.

Note: When setting the table prefix, capitalize all characters.
%WAS_HOME%\Scheduler\createTablespaceDB2.ddl, %WAS_HOME%\Scheduler\createSchemaDB2.ddl,

%WAS_HOME%\Scheduler\dropSchemaDB2.ddl, and %WAS_HOME%\Scheduler\dropTablespaceDB2.ddl.

c. Verify that you are attached to the correct instance. Check the environment variable

DB2INSTANCE.

d. To connect to the database, scheddb, for example, and enter the command:

db2 connect to scheddb

e. Create the table space. Enter the following command:

db2 -tf createTablespaceDB2.ddl

Verify that the script output contains no errors. If there were any errors, you can drop the table

space using the following script:

dropTablespaceDB2.ddl

f. To create the schema (tables and indices), in the DB2 command line processor, enter the command

db2 -tf createSchemaDB2.ddl. Verify that the script output contains no errors. If there were any

errors, you can use the following file to drop the schema:

dropSchemaDB2.ddl

g. Verify that the DB2_RR_TO_RS DB2 flag is set to YES to avoid deadlocks. Restart the DB2

instance to activate the change, if needed.

The DB2 tables and schema for the scheduler exist.

Creating DB2 for z/OS tables for schedulers:

This task requires that you configure a database and make it available. See the ″Creating DB2 for z/OS

databases for schedulers″ topic for more information.

In addition, you must have the following two machines:

1. The z/OS machine that is hosting the database

2. The WebSphere Application Server machine that is running the scheduler

This topic describes how to create tables for a scheduler on a DB2 for z/OS database using data definition

language (DDL) or structured query language (SQL) files.

1. Work with the z/OS machine that hosts the database to:

a. Log on to the native z/OS environment.

b. Decide which subsystem you want to use, if multiple DB2 systems are installed.

c. Note of the Internet Protocol (IP) port to which the DB2 subsystem is listening.

Chapter 8. Developing WebSphere applications 2015

d. Use the DB2 administration menu to create a new database named, for example, SCHEDDB. Note

the database name.

e. Create a storage group and note the name.

f. Decide which user ID is used to connect to the database from the remote machine running the

product. Normally, for security reasons, this user ID is not the one you used to create the database.

g. Grant the user ID the rights to access the database and storage group. The user ID must also

have permission to create new tables for the database.

2. Work with the Application Server machine to:

a. Verify that you have DB2 Connect Gateway (Version 8.1 fix pack 3 or higher) installed. This

component is part of the DB2 UDB ESE package; however, you can also install it separately.

b. Catalog the remote database using the following commands, either in a script or in a DB2

command line window:

catalog tcpip node zosnode remote hostname server IP_port ostype mvs;

catalog database subsystem as subsystem at node zosnode authentication dcs;

catalog dcs database subsystem as subsystem parms ’,,INTERRUPT_ENABLED’

An important difference exists between DB2 UDB and DB2 for z/OS. DB2 UDB does not have the

concept of a subsystem, but DB2 for z/OS does have subsystems. To avoid confusion between

Database name and Subsystem name, remember that because DB2 for z/OS runs in a subsystem,

the catalog node and catalog database commands must identify the appropriate subsystem. On

DB2 UDB, the subsystem name is not a known concept, and the database name to which it

connects is actually the name of the DB2 for z/OS subsystem.

c. Verify that you can establish a connection to the remote subsystem by entering the following

command:

db2 connect to subsystem user userid using password

d. Change to the scheduler subdirectory in the application server installation root directory.

e. Edit the createTablespaceDB2ZOS.ddl script. Replace @STG@ with the storage group name. Replace

@DBNAME@ with the database name (not the subsystem name), and replace @SCHED_TABLESPACE@ with

the name of a valid table space. After you replace the database name, place it into an existing JCL

and run the job.

f. Run your customized version of createTablespaceDB2ZOS.ddl, as described in the header of the

script. If this script does not work, or if you want to remove the table space, edit and run the

dropTablespaceDB2ZOS.ddl script.

g. Edit the createSchemaDB2ZOS.ddl script. Replace @STG@ with the storage group name. Replace

@DBNAME@ with the database name (not the subsystem name). Replace @TABLE_PREFIX@ with the

Table Prefix in the configured scheduler resource, and replace @SCHED_TABLESPACE@ with a valid

table space that was created by the createTablespaceDB2ZOS.ddl script.

Note: When setting the table prefix, capitalize all characters.

h. Run your customized version of the createSchemaDB2ZOS.ddl script, as described in the header of

the script. If this script does not work, or if you want to remove the tables and views, use

dropSchemaDB2ZOS.ddl to drop the schema.

i. To avoid deadlocks, verify that the DB2_RR_TO_RS DB2 flag is set to YES. If necessary, restart

the DB2 instance to activate the change. In addition, verify that the table space was created with

the LOCKSIZE ROW statement.

The DB2 for z/OS tables and schema for the scheduler exist.

Creating Informix tables for schedulers:

This task requires that you configure a database and make it available. See the ″Creating Informix

databases for schedulers″ topic for more information.

2016 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

This topic describes how to create tables for schedulers on Informix databases, using data definition

language (DDL) or structured query language (SQL) files.

1. Open a command-line window.

2. Verify that you have administrator rights for the database system.

3. Create the schema.

a. Using a text editor, edit the script %WAS_HOME%\Scheduler\createSchemaInformix.sql according to

the instruction at the top of the file.

Note: When setting the table prefix, capitalize all characters.

b. Enter the following command, using the database, scheddb, for example:

 dbaccess scheddb createSchemaInformix.sql

The Informix tables and schema for the scheduler exist.

Creating Microsoft SQL Server tables for schedulers:

This task requires you to configure a database and make it available. See the ″Creating Microsoft SQL

Server databases for schedulers″ topic for more information.

This topic describes how to create tables for schedulers on Microsoft SQL Server databases, using data

definition language (DDL) or structured query language (SQL) files.

1. Open a command-line window.

2. Change to the directory where the configuration scripts for scheduler are located. This is the Scheduler

subdirectory of the IBM WebSphere Application Server installation directory.

On Windows systems, enter:

cd %install_root%\Scheduler

On UNIX systems, enter:

cd $install_root/Scheduler

3. Use a text editor to edit the schema creation script, createSchemaMSSQL.sql, according to the

instructions at the beginning of the file.

Note: When setting the table prefix, capitalize all characters.

4. Create the schema:

a. Verify that you have administrator rights for the database system. The user ID you use to create

the schema must be the one that you configure WebSphere Application Server to use when

accessing the database.

b. Run the following script to create the schema (tables and views) :

isql -S <servername> -U<userid> -P<password> -D<databaseName> -i<script name>

The Microsoft SQL Server tables and schema for scheduler exist.

Creating Oracle tables for schedulers:

This task requires you to configure a database and make it available. See the ″Creating Oracle databases

for schedulers″ topic for more information.

This topic describes how to create tables for schedulers on Oracle databases, using data definition

language (DDL) or structured query language (SQL) files.

1. Open a command-line window.

2. Make sure that you have administrator rights for the database system.

3. Create the table space and schema.

Chapter 8. Developing WebSphere applications 2017

a. Using a text editor, edit the following scripts according to the instructions at the top of the files.

Note: When setting the table prefix, capitalize all characters.
%install_root%\Scheduler\createTablespaceOracle.ddl and %install_root%\Scheduler\

 createSchemaOracle.ddl

b. Set the environment variable ORACLE_SID, if you do not want the schema to be created in the

default instance.

c. Run the script, createTablespaceOracle.ddl, to create the table space.

For test purposes, use the same location for all table spaces and pass the path as a command line

argument to the script. For example, on Windows systems, the user ID is scheduser, password is

schedpwd, database name is scheddb, and table space path is d:\mydb\ts. Enter the command:

sqlplus scheduser/schedpwd@scheddb @createTablespaceOracle.ddl d:\mydb\ts If you get any

errors creating the table space, you can use dropTablespaceOracle.ddl to drop the table space.

d. Run the script, createSchemaOracle.ddl, to create the schema. For example, on Windows systems,

enter the following script:

sqlplus scheduser/schedpwd@scheddb @createSchemaOracle.ddl

If you see any errors creating the schema (tables and views), you can drop the schema by running

script:

dropSchemaOracle.ddl

The Oracle tables and schema for scheduler exist.

Creating Sybase tables for schedulers:

This task requires you to configure a database and make it available. See the ″Creating Sybase

databases for schedulers″ topic for more information.

This topic describes how to create tables for schedulers on Sybase databases, using data definition

language (DDL) or structured query language (SQL) files.

1. Open a command-line window.

2. Make sure that you have administrator rights for the database system.

3. Make sure that you have the Distributed Transaction Management (DTM) option for Sybase ASE

installed.

a. Set enable DTM to 1 in the Sybase server configuration.

b. Set enable xact coordination to 1 in the Sybase server configuration.

c. Add the dtm_tm_role role to the Sybase administration user ID. For example, enter the user ID sa.

d. Restart the Sybase server.

4. Use the Sybase isql utility to create a database. For example, enter the database name scheddb. See

your Sybase product documentation for details.

5. Create the schema:

a. Using a text editor, edit the following script according to the instructions located at the top of the

file.

Note: When setting the table prefix, capitalize all characters.
<install_root>\Scheduler\createSchemaSybase12.ddl

b. Enter the following command:

isql -S <servername> -U <userid> -P <password> -D scheddb -i createSchemaSybase12.ddl

The Sybase tables and schema for scheduler exist.

2018 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Startup beans

Using startup beans

A startup bean is a session bean that is loaded when an application starts. Startup beans enable Java 2

Platform Enterprise Edition (J2EE) applications to run business logic automatically, whenever an

application starts or stops normally.

Startup beans are especially useful when used with asynchronous bean features. For example, a startup

bean might create an alarm object that uses the Java Message Service (JMS) to periodically publish

heartbeat messages on a well-known topic. This enables clients or other server applications to determine

whether the application is available.

1. Use the home interface, com.ibm.websphere.startupservice.AppStartUpHome, to designate a bean as

a startup bean.

2. Use the remote interface, com.ibm.websphere.startupservice.AppStartUp, to define start() and stop()

methods on the bean.

The startup bean start() method is called when the application starts and contains business logic to be

run at application start time.

The start() method returns a boolean value. True indicates that the business logic within the start()

method ran successfully. Conversely, False indicates that the business logic within the start() method

failed to run completely. A return value of False also indicates to the Application server that application

startup is aborted.

The startup bean stop() method is called when the application stops and contains business logic to be

run at application stop time. Any exception thrown by a stop() method is logged only. No other action is

taken.

The start() and stop() methods must never use the TX_MANDATORY transaction attribute. A global

transaction does not exist on the thread when the start() or stop() methods are invoked. Any other

TX_* attribute can be used. If TX_MANDATORY is used, an exception is logged, and the application

start is aborted.

The start() and stop() methods on the remote interface use Run-As mode. Run-As mode specifies the

credential information to be used by the security service to determine the permissions that a principal

has on various resources. If security is on, the Run-As mode needs to be defined on all of the

methods called. The identity of the bean without this setting is undefined. .

There are no restrictions on what code the start() and stop() methods can run, since the full Application

Server programming model is available to these methods.

3. Use an optional environment property integer, wasStartupPriority, to specify the start order of multiple

startup beans in the same Java Archive (JAR) file. If the environment property is found and is the

wrong type, application startup is aborted. If no priority value is specified, a default priority of 0 is used.

It is recommended that you specify the priority property. Beans that have specified a priority are sorted

using this property. Beans with numerically lower priorities are run first. Beans that have the same

priority are run in an undefined order. All priorities must be positive integers. Beans are stopped in the

opposite order to their start priority.

View the startup beans service settings.

Startup beans service settings:

Use this page to enable or disable startup beans on all applications within an Application Server. A startup

bean is a special session bean with start() and stop() methods containing business logic that is run at

application start time and application stop time. Startup beans are especially useful when used with

asynchronous beans.

 To view this administrative console page, click Servers > Application servers >server_name > Container

services > Startup beans service.

Chapter 8. Developing WebSphere applications 2019

Enable service at server startup:

Specifies whether the server attempts to initiate the startup beans service.

 Default Cleared

Range Selected

When the application server starts, it attempts to

initiate the startup bean service automatically.

Cleared

The server does not try to initiate the startup

beans service. All startup beans do not start or

stop with the application. If you use startup beans

on this server, then the system administrator

must start the startup beans service manually or

select this property, and then restart the server.

Enabling startup beans in the administrative console

Use the following steps to enable startup beans in the administrative console. This action enables Java 2

Platform Enterprise Edition (J2EE) applications to run business logic automatically, whenever an

application starts or stops normally.

1. Start the administrative console.

2. Select Servers > Application Servers > server_name > Container Services > Startup beans

service.

3. Select the Enable service at server startup check box.

4. Click Apply to save the configuration.

View the startup beans service settings.

Work area

Task overview: Implementing shared work areas

The work area service enables application developers to implicitly propagate information beyond the

information passed in remote calls. Applications can create a work area, insert information into it, and

make remote invocations. The work area is propagated with each remote method invocation, eliminating

the need to explicitly include an appropriate argument in the definition of each method. The methods on

the server side can use or ignore the information in the work area as appropriate.

Before proceeding with the steps to implement work areas, as described below, review the topic Work

area service: Overview.

1. Developing applications that use work areas. Applications interact with the work area service by

implementing the UserWorkArea interface. Refer to the information center or to the Administering

applications and their environment PDF for details.

2. Managing work areas. The work area service is managed using the administrative console. . Refer to

the information center or to the Administering applications and their environment PDF for details.

Work area service - Overview: One of the foundations of distributed computing is the ability to pass

information, typically in the form of arguments to remote methods, from one process to another. When

application-level software is written over middleware services, many of the services rely on information

beyond that passed in the application’s remote calls. Such services often make use of the implicit

propagation of private information in addition to the arguments passed in remote requests; two typical

users of such a feature are security and transaction services. Security certificates or transaction contexts

are passed without the knowledge or intervention of the user or application developer. The implicit

propagation of such information means that application developers do not have to manually pass the

2020 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

information in method invocations, which makes development less error-prone, and the services requiring

the information do not have to expose it to application developers. Information such as security credentials

can remain secret.

The work area service gives application developers a similar facility. Applications can create a work area,

insert information into it, and make remote invocations. The work area is propagated with each remote

method invocation, eliminating the need to explicitly include an appropriate argument in the definition of

every method. The methods on the server side can use or ignore the information in the work area as

appropriate. If methods in a server receive a work area from a client and subsequently invoke other

remote methods, the work area is transparently propagated with the remote requests. When the creating

application is done with the work area, it terminates it.

There are two prime considerations in deciding whether to pass information explicitly as an argument or

implicitly by using a work area. These considerations are:

v Pervasiveness: Is the information used in a majority of the methods in an application?

v Size: Is it reasonable to send the information even when it is not used?

When information is sufficiently pervasive that it is easiest and most efficient to make it available

everywhere, application programmers can use the work area service to simplify programming and

maintenance of code. The argument does not need to go onto every argument list. It is much easier to put

the value into a work area and propagate it automatically. This is especially true for methods that simply

pass the value on but do nothing with it. Methods that make no use of the propagated information simply

ignore it.

Work areas can hold any kind of information, and they can hold an arbitrary number of individual pieces of

data, each stored as a property.

Work area property modes: The information in a work area consists of a set of properties; a property

consists of a key-value-mode triple. The key-value pair represents the information contained in the

property; the key is a name by which the associated value is retrieved. The mode determines whether the

property can be removed or modified.

Property modes

There are four possible mode values for properties, as shown in the following code example:

Code example: The PropertyModeType definition

public final class PropertyModeType {

 public static final PropertyModeType normal;

 public static final PropertyModeType read_only;

 public static final PropertyModeType fixed_normal;

 public static final PropertyModeType fixed_readonly;

};

A property’s mode determines three things:

v Whether the value associated with the key can be modified

v Whether the property can be deleted

v Whether the mode associated with the key-value pair can be modified

The two read-only modes forbid changes to the information in the property; the two fixed modes forbid

deletion of the property.

The work area service does not provide methods specifically for the purpose of modifying the value of a

key or the mode associated with a property. To change information in a property, applications simply

rewrite the information in the property; this has the same effect as updating the information in the property.

The mode of a property governs the changes that can be made. Modifying key-value pairs describes the

Chapter 8. Developing WebSphere applications 2021

restrictions each mode places on modifying the value and deleting the property. Changing modes

describes the restrictions on changing the mode.

Changing modes

The mode associated with a property can be changed only according to the restrictions of the original

mode. The read-only and fixed read-only properties do not permit modification of the value or the mode.

The fixed normal and fixed read-only modes do not allow the property to be deleted. This set of

restrictions leads to the following permissible ways to change the mode of a property within the lifetime of

a work area:

v If the current mode is normal, it can be changed to any of the other three modes: fixed normal,

read-only, fixed read-only.

v If the current mode is fixed normal, it can be changed only to fixed read-only.

v If the current mode is read-only, it can be changed only by deleting the property and re-creating it with

the desired mode.

v If the current mode is fixed read-only, it cannot be changed.

v If the current mode is not normal, it cannot be changed to normal. If a property is set as fixed normal

and then reset as normal, the value is updated but the mode remains fixed normal. If a property is set

as fixed normal and then reset as either read-only or fixed read-only, the value is updated and the mode

is changed to fixed read-only.

Note: The key, value, and mode of any property can be effectively changed by terminating (completing)

the work area in which the property was created and creating a new work area. Applications can

then insert new properties into the work area. This is not precisely the same as changing the value

in the original work area, but some applications can use it as an equivalent mechanism.

Nested work areas: Applications can nest work areas. When an application creates a work area, a work

area context is associated with the creating thread. If the application thread creates another work area, the

new work area is nested within the existing work area and becomes the current work area. Nested work

areas allow applications to define and scope properties for specific tasks without having to make them

available to all parts of the application. All properties defined in the original, enclosing work area are visible

to the nested work area. The application can set additional properties within the nested work area that are

not part of the enclosing work area.

An application working with a nested work area does not actually see the nesting of enclosing work areas.

The current work area appears as a flat set of properties that includes those from enclosing work areas. In

the figure below, the enclosing work area holds several properties and the nested work area holds

additional properties. From the outermost work area, the properties set in the nested work area are not

visible. From the nested work area, the properties in both work areas are visible.

2022 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Nesting can also affect the apparent settings of the properties. Properties can be deleted from or directly

modified only within the work areas in which they were set, but nested work areas can also be used to

temporarily override information in the property without having to modify the property. Depending on the

modes associated with the properties in the enclosing work area, the modes and the values of keys in the

enclosing work area can be overridden within the nested work area.

The mode associated with a property when it is created determines whether nested work areas can

override the property. From the perspective of a nested work area, the property modes used in enclosing

work areas can be grouped as follows:

v Modes that permit a nested work area to override the mode or the value of a key locally. The modes

that permit overriding are:

– Normal

– Fixed normal
v Modes that do not permit a nested work area to override the mode or the value of a key locally. The

modes that do not permit overriding are:

– Read-only

– Fixed read-only

If an enclosing work area defines a property with one of the modes that can be overridden, a nested work

area can specify a new value for the key or a new mode for the property. The new value or mode

becomes the value or mode seen by subsequently nested work areas. Changes to the mode are governed

by the restrictions described in Changing modes. If an enclosing work area defines a property with one of

the modes that cannot be overridden, no nested work area can specify a new value for the key.

A nested work area can delete properties from enclosing work areas, but the changes persist only for the

duration of the nested work area. When the nested work area is completed, any properties that were

added in the nested area vanish and any properties that were deleted from the nested area are restored.

The following figure illustrates the overriding of properties from an enclosing work area. The nested work

area redefines two of the properties set in the enclosing work area. The other two cannot be overridden.

The nested work area also defines two new properties. From the outermost work area, the properties set

key1

key5

key2

key6

key3

key7

key4

key8

A

E

B

F

C

G

D

H

normal

normal

fixed normal

fixed normal

read-only

read-only

fixed read-only

fixed read-only

key value mode

Work Area 1.1

key value mode

Work Area 1
Visible to Work Area 1

key1 = A

key2 = B

key3 = C

key4 = D

Visible to Work Area 1.1

key1 = A

key2 = B

key3 = C

key4 = D

key5 = E

key6 = F

key7 = G

key8 = H

Figure 11. Defining new properties in nested work areas

Chapter 8. Developing WebSphere applications 2023

or redefined in the nested work are not visible. From the nested work area, the properties in both work

areas are visible, but the values seen for the redefined properties are those set in the nested work area.

Distributed work areas: The propagation of work area context operates differently depending on whether

a work area partition is defined as bidirectional or not. In either case all work area context propagates to a

target object on a remote invocation. However, whether the context propagates from a target object back

to the originator depends on whether a partition is defined as bidirectional.

Non-bidirectional work area partitions (UserWorkArea partition)

If a remote invocation is issued from a thread associated with a work area, a copy of the work area is

automatically propagated to the target object, which can use or ignore the information in the work area as

necessary. If the calling application has a nested work area associated with it, a copy of the nested work

area and all its ancestors is propagated to the target. The target application can locally modify the

information, as allowed by the property modes, by creating additional nested work areas; this information

is propagated to any remote objects it invokes. However, no changes made to a nested work area on a

target object are propagated back to the calling object. The caller’s work area is unaffected by changes

made in the remote method.

Bidirectional work area partitions

If a remote invocation is issued from a thread associated with a work area, a copy of the work area is

automatically propagated to the target object, which can use or ignore the information in the work area as

necessary. If the calling application has a nested work area associated with it, a copy of the nested work

area and all its ancestors is propagated to the target. The target application can locally modify the

information, as allowed by the property modes, this information is propagated to any remote objects it

invokes. In a partition that is not defined as bidirectional, a target application must begin a nested work

area before making changes to the imported work area. However, if a partition is defined as bidirectional, a

target application need not begin a nested work area before operating on an imported work area. By not

beginning a nested work area, any new context set into the work area, or any context changes made by

the target application, is not only propagated on future remote invocations but is also propagated back to

key1

key1

key2

key2

key3

key5

key4

key6

A

X

B

Y

C

E

D

F

normal

normal

fixed normal

fixed normal

read-only

normal

fixed read-only

fixed

key value mode

Work Area 2.1

key value mode

Work Area 2
Visible to Work Area 2

key1 = A

key2 = B

key3 = C

key4 = D

Visible to Work Area 2.1

key1 = X (overridden in 2.1)

key2 = Y (overridden in 2.1)

key3 = C

key4 = D

key5 = E

key6 = F

Figure 12. Redefining existing properties in nested work areas

2024 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

the originating application (that is, the one who initiated the remote invocation) thus allowing bidirectional

propagation of work area context. If the target application does not want new or changed context to

propagate back to the originating application, then the target application must begin a nested work area to

scope the context to its process. However, the new or changed context in the nested work area

propagates on any future remote invocation the target application may make.

WorkArea service: Special considerations: Developers who use work areas should consider the following

issues that could potentially cause problems: interoperability between the EJB and CORBA programming

models; and the use of work areas with Java’s Abstract Windowing Toolkit.

EJB and CORBA interoperability

Although the WorkArea service can be used across the EJB and CORBA programming models, many

composed data types cannot be successfully used across those boundaries. For example, if a

SimpleSampleCompany instance is passed from the WebSphere environment into a CORBA environment,

the CORBA application can retrieve the SimpleSampleCompany object encapsulated within a CORBA Any

object from the work area, but it cannot extract the value from it. Likewise, an IDL-defined struct defined

within a CORBA application and set into a work area is not readable by an application using the

UserWorkArea class. Applications can avoid this incompatibility by directly setting only primitive types, like

integers and strings, as values in work areas, or by implementing complex values with structures designed

to be compatible, like CORBA valuetypes. Also, CORBA Anys that contains either the tk_null or tk_void

typecode can be set into the work area by using the CORBA interface, but the work-area specification

cannot allow the Java 2 Platform, Enterprise Edition (J2EE) implementation to return null on a lookup that

retrieves these CORBA-set properties without incorrectly implying that there is no value set for the

corresponding key. If a J2EE application tries to retrieve CORBA-set properties that are non-serializable,

or contain CORBA nulls or void references, the com.ibm.websphere.workarea.IncompatibleValue exception

is raised.

Using work areas with Java’s Abstract Windowing Toolkit (AWT)

Work areas must be used cautiously in applications that use Java’s Abstract Windowing Toolkit (AWT).

The AWT implementation is multithreaded, and work areas begun on one thread are not available on

another. For example, if a program begins a work area in response to an AWT event, such as pressing a

button, the work area might not be available to any other part of the application after the execution of the

event completes.

Work area service performance considerations: The work area service is designed to address complex

data passing patterns that can quickly grow beyond convenient maintenance. A work area is a note pad

that is accessible to any client that is capable of looking up Java Naming Directory Interface (JNDI). After

a work area is established, data can be placed there for future use in any subsequent method calls to both

remote and local resources.

You can utilize a work area when a large number of methods require common information or if information

is only needed by a method that is significantly further down the call graph. The former avoids the need for

complex parameter passing models where the number of arguments passed becomes excessive and hard

to maintain. You can improve application function by placing the information in a work area and

subsequently accessing it independently in each method, eliminating the need to pass these parameters

from method to method. The latter case also avoids unnecessary parameter passing and helps to improve

performance by reducing the cost of marshalling and de-marshalling these parameters over the Object

Request Broker (ORB) when they are only needed occasionally throughout the call graph.

When attempting to maximize performance by using a work area, cache the UserWorkArea partition that is

retrieved from JNDI wherever it is accessed. You can reduce the time spent looking up information in JNDI

by retrieving it once and keeping a reference for the future. JNDI lookup takes time and can be costly.

Chapter 8. Developing WebSphere applications 2025

Additional caching mechanisms available to a user-defined partition are defined by the configuration

property, ″Deferred Attribute Serialization″. This mechanism attempts to minimize the number of

serialization and deserialization calls. See ″Work area partition service″ in the information center for further

explanation of this configuration attribute.

The maxSendSize and maxReceiveSize configuration parameters can affect the performance of the work

area. Setting these two values to 0 (zero) effectively turns off the policing of the size of context that can be

sent in a work area. This action can enhance performance, depending on the number of nested work

areas an application uses. In applications that use only one work area, the performance enhancement

might be negligible. In applications that have a large number of nested work areas, there might be a

performance enhancement. However, a user must note that by turning off this policing it is possible that an

extremely large amount of data might be sent to a server.

Performance is degraded if you use a work area as a direct replacement to passing a single parameter

over a single method call. The reason is that you incur more overhead than just passing that parameter

between method calls. Although the degradation is usually within acceptable tolerances and scales

similarly to passing parameters with regard to object size, consider degradation a potential problem before

utilizing the service. As with most functional services, intelligent use of the work areas yields the best

results.

The work area service is a tool to simplify the job of passing information from resource to resource, and in

some cases can improve performance by reducing the overhead that is associated with a parameter

passing when the information is only sparsely accessed within the call graph. Caching the instance

retrieved from JNDI is important to effectively maximize performance during runtime.

Developing applications that use work areas

Applications interact with the work area service by using the UserWorkArea interface and its

implementation. This interface defines all of the methods used to create, manipulate, and complete work

areas:

1. Access the partition by either:

v “Accessing the work area service” on page 2028, to access the UserWorkArea partition.

v “Accessing a user defined work area partition” on page 2044, to access a user defined work area.

The following steps use the UserWorkArea partition as an example, however a user defined partition

can be used in the same way.

2. Beginning a work area.

3. Setting properties in a work area.

4. Using a work area to manage local work.

5. Completing a work area.

An example application, the Work area SimpleSample application, is used throughout this documentation

to illustrate these tasks

UserWorkArea interface: Applications interact with the work area service by implementing the

UserWorkArea interface. This interface, shown below, defines all of the methods used to create,

manipulate, and terminate work areas:

package com.ibm.websphere.workarea;

public interface UserWorkArea {

 void begin(String name);

 void complete() throws NoWorkArea, NotOriginator;

 String getName();

 String[] retrieveAllKeys();

 void set(String key, java.io.Serializable value)

2026 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

throws NoWorkArea, NotOriginator, PropertyReadOnly;

 void set(String key, java.io.Serializable value, PropertyModeType mode)

 throws NoWorkArea, NotOriginator, PropertyReadOnly;

 java.io.Serializable get(String key);

 PropertyModeType getMode(String key);

 void remove(String key)

 throws NoWorkArea, NotOriginator, PropertyFixed;

}

Note: Enterprise JavaBeans (EJB) applications can use the UserWorkArea interface only within the

implementation of methods in the remote interface; likewise, servlets can use the interface only

within the service method of the HTTPServlet class. Use of work areas within any life cycle method

of a servlet or enterprise bean is considered a deviation from the work area programming model

and is not supported.

Exceptions

The work area service defines the following exceptions for use with the UserWorkArea interface:

NoWorkArea

Raised when a request requires an associated work area but none is present.

NotOriginator

Raised when a request attempts to manipulate the contents of an imported work area.

PropertyReadOnly

Raised when a request attempts to modify a read-only or fixed read-only property.

PropertyFixed

Raised by the remove method when the designated property has one of the fixed modes.

Example: WorkArea SimpleSample application: In this example, the client creates a work area and

inserts two properties into the work area: a site identifier and a priority. The site-identifier is set as a

read-only property; the client does not allow recipients of the work area to override the site identifier. This

property consists of the key company and a static instance of a SimpleSampleCompany object. The

priority property consists of the key priority and a static instance of a SimpleSamplePriority object. The

object types are defined as shown in the following code example

public static final class SimpleSampleCompany {

 public static final SimpleSampleCompany Main;

 public static final SimpleSampleCompany NewYork_Sales;

 public static final SimpleSampleCompany NewYork_Development;

 public static final SimpleSampleCompany London_Sales;

 public static final SimpleSampleCompany London_Development;

}

public static final class SimpleSamplePriority {

 public static final SimpleSamplePriority Platinum;

 public static final SimpleSamplePriority Gold;

 public static final SimpleSamplePriority Silver;

 public static final SimpleSamplePriority Bronze;

 public static final SimpleSamplePriority Tin;

}

The client then makes an invocation on a remote object. The work area is automatically propagated; none

of the methods on the remote object take a work area argument. On the remote side, the request is first

handled by the SimpleSampleBean; the bean first reads the site identifier and priority properties from the

work area. The bean then intentionally attempts, and fails, both to write directly into the imported work

area and to override the read-only site-identifier property.

The SimpleSampleBean successfully begins a nested work area, in which it overrides the client’s priority,

then calls another bean, the SimpleSampleBackendBean. The SimpleSampleBackendBean reads the

Chapter 8. Developing WebSphere applications 2027

properties from the work area, which contains the site identifier set in the client and priority set in the

SimpleSampleBean. Finally, the SimpleSampleBean completes its nested work area, writes out a message

based on the site-identifier property, and returns.

The implementation of this application is discussed in the topic, ″Developing applications that use work

areas″ in the information center.

Accessing the work area service:

The work area service provides a JNDI binding to an implementation of the UserWorkArea interface under

the name java:comp/websphere/UserWorkArea. Applications that need to access the service can perform

a lookup on that JNDI name, as shown in the following code example:

import com.ibm.websphere.workarea.*;

import javax.naming.*;

public class SimpleSampleServlet {

 ...

 InitialContext jndi = null;

 UserWorkArea userWorkArea = null;

 try {

 jndi = new InitialContext();

 userWorkArea = (UserWorkArea)jndi.lookup(

 "java:comp/websphere/UserWorkArea");

 }

 catch (NamingException e) { ... }

}

The next step is to use the begin method to create a new work area and associate it with the calling

thread, as described in the topic, ″Beginning a new work area″ in the information center.

Beginning a new work area:

Be sure that your client has a reference to the UserWorkArea interface, as described in the topic

Accessing the work area service or a reference to a user defined partition as defined in “Accessing a user

defined work area partition” on page 2044. The following steps use the UserWorkArea partition as an

illustration. However a user defined partition can be used in the exact same way.

Use the begin method to create a new work area and associate it with the calling thread. A work area is

scoped to the thread that began the work area and is not accessible by multiple threads. The begin

method takes a string as an argument; the string is used to name the work area. The argument must not

be null, which causes the java.lang.NullPointer exception to be raised. In the following code example, the

application begins a new work area with the name SimpleSampleServlet:

public class SimpleSampleServlet {

...

 try {

 ...

 userWorkArea = (UserWorkArea)jndi.lookup(

 "java:comp/websphere/UserWorkArea");

 }

 ...

 userWorkArea.begin("SimpleSampleServlet");

 ...

}

The begin method is also used to create nested work areas; if a work area is associated with a thread

when the begin method is called, the method creates a new work area nested within the existing work

area.

2028 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

The work area service makes no use of the names associated with work areas; You can name work areas

in any way that you choose. Names are not required to be unique, but the usefulness of the names for

debugging is enhanced if the names are distinct and meaningful within the application. Applications can

use the getName method to return the name associated with a work area by the begin method.

Using a work area

Setting properties in a work area:

An application with a current work area can insert properties into the work area and retrieve the properties

from the work area. The UserWorkArea interface provides two set methods for setting properties and a get

method for retrieving properties. The two-argument set method inserts the property with the property mode

of normal. The three-argument set method takes a property mode as the third argument. (See ″Setting

property modes″, later in this topic.)

Both set methods take the key and the value as arguments. The key is a String; the value is an object of

the type java.io.Serializable. None of the arguments can be null, which causes the java.lang.NullPointer

exception to be raised.

The “Example: WorkArea SimpleSample application” on page 2027 uses objects of two classes, the

SimpleSampleCompany class and the SimpleSampleProperty class, as values for properties. The

SimpleSampleCompany class is used for the site identifier, and the SimpleSamplePriority class is used for

the priority. These classes are shown in following code example:

public class SimpleSampleServlet {

 ...

 userWorkArea.begin("SimpleSampleServlet");

 try {

 // Set the site-identifier (default is Main).

 userWorkArea.set("company",

 SimpleSampleCompany.Main, PropertyModeType.read_only);

 // Set the priority.

 userWorkArea.set("priority", SimpleSamplePriority.Silver);

 }

 catch (PropertyReadOnly e) {

 // The company was previously set with the read-only or

 // fixed read-only mode.

 ...

 }

 catch (NotOriginator e) {

 // The work area originated in another process,

 // so it can’t be modified here.

 ...

 }

 catch (NoWorkArea e) {

 // There is no work area begun on this thread.

 ...

 }

 // Do application work.

 ...

}

The get method takes the key as an argument and returns a Java Serializable object as the value

associated with the key. For example, to retrieve the value of the company key from the work area, the

code example above uses the get method on the work area to retrieve the value.

Chapter 8. Developing WebSphere applications 2029

Setting property modes. The two-argument set method on the UserWorkArea interface takes a key and

a value as arguments and inserts the property with the default property mode of normal. To set a property

with a different mode, applications must use the three-argument set method, which takes a property mode

as the third argument. The values used to request the property modes are as follows:

v Normal: PropertyModeType.normal

v Fixed normal: PropertyModeType.fixed_normal

v Read-only: PropertyModeType.read_only

v Fixed read-only: PropertyModeType.fixed_readonly

Using a work area to manage local work:

Be sure that your client has a reference to the UserWorkArea interface, as described in the topic

“Accessing the work area service” on page 2028 or a reference to a user defined partition as defined in

“Accessing a user defined work area partition” on page 2044. The following steps use the UserWorkArea

partition as an illustration. However a user defined partition can be used in the exact same way.

In a business application that uses work areas, server objects typically retrieve the work area properties

and use them to guide local work.

1. Retrieving the name of the active work area This step determines whether the calling thread is

associated with a work area.

2. Overriding work area properties. Server objects can override client work area properties by creating

their own, nested work area.

3. Retrieving properties from a work area

4. Retrieving a list of all keys in a work area

5. Querying the mode of a work area property

6. Deleting a work area property

7. Completing a work area

The server side of the “Example: WorkArea SimpleSample application” on page 2027 accepts remote

invocations from clients. With each remote call, the server also gets a work area from the client if the client

has created one. The work area is propagated transparently. None of the remote methods includes the

work area on its argument list.

In the example application, the server objects use the work area interface for demonstration purposes only.

For example, the SimpleSampleBean intentionally attempts to write directly to an imported work area,

which creates the NotOriginator exception. Likewise, the bean intentionally attempts to mask the read only

SimpleSampleCompany, which triggers the PropertyReadOnly exception. The SimpleSampleBean also

nests a work area and successfully overrides the priority property before invoking the

SimpleSampleBackendBean. A true business application would extract the work area properties and use

them to guide the local work. The SimpleSampleBean mimics this by writing a message that function is

denied when a request emanates from a sales environment.

Retrieving the name of the active work area:

Applications use the getName method on the UserWorkArea interface to retrieve the name of the current

work area. This is the recommended method for determining whether the thread is associated with a work

area; if the thread is not associated with a work area, the getName method returns null. In the following

code example, the name of the work area corresponds to the name of the class in which the work area

was begun.

public class SimpleSampleBeanImpl implements SessionBean {

 ...

 public String [] test() {

 // Get the work-area reference from JNDI.

2030 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

...

 // Retrieve the name of the work area. In this example,

 // the name is used to identify the class in which the

 // work area was begun.

 String invoker = userWorkArea.getName();

 ...

 }

}

Overriding work area properties:

Work areas are inherently associated with the process that creates them. In the sample application, the

client begins a work area and sets into it the site-identifier and priority properties. This work area is

propagated to the server when the client makes a remote invocation.

Applications nest work areas in order to temporarily override properties imported from a client process.

The nesting mechanism is automatic; invoking begin on the UserWorkArea interface from within the scope

of an existing work area creates a nested work area that inherits the properties from the enclosing work

area. Properties set into the nested work area are strictly associated with the process in which the work

area was begun; the nested work area must be completed within the process that created them. If a work

area is not completed by the creating process, the work-area facility terminates the work area when the

process exits. After a nested work area is completed, the original view of the enclosing work area is

restored. However, the view of the complete set of work areas associated with a thread cannot be

decomposed by downstream processes.

Applications set properties into a work area using property modes in ensure that a particular property is

fixed (not removable) or read-only (not overrideable) within the scope of the given work area.

In the following code example, the server-side sample bean attempts to write directly to the imported work

area; because the UserWorkArea partition is not defined to be bidirectional, this action is not permitted,

and the NotOriginator exception is thrown. When the UserWorkArea partition is not defined as

bidirectional, the sample bean must begin its own work area in order to override any imported properties,

as shown in the second code example. If a work area in a user defined partition is used and is defined as

bidirectional, this bean can set context into the work area before beginning another work area. This

context set in the bidirectional case propagates back to the caller. See “Bidirectional propagation” on page

2043for additional information.

public class SimpleSampleBeanImpl implements SessionBean {

 public String [] test() {

 ...

 String invoker = userWorkArea.getName();

 try {

 userWorkArea.set("key", "value");

 }

 catch (NotOriginator e) {

 }

 ...

 }

}

The following code example demonstrates beginning a nested work area, using the name of the creating

class to identify the nested work area.

public class SimpleSampleBeanImpl implements SessionBean {

 public String [] test() {

 ...

 String invoker = userWorkArea.getName();

 try {

Chapter 8. Developing WebSphere applications 2031

userWorkArea.set("key", "value");

 }

 catch (NotOriginator e) {

 }

 // Begin a nested work area. By using the name of the creating

 // class as the name of the work area, we can avoid having

 // to explicitly set the name of the creating class in

 // the work area.

 userWorkArea.begin("SimpleSampleBean");

 ...

 }

}

In the example application, the client sets the site-identifier property as read-only; that guarantees that the

request is always associated with the client’s company identity. A server cannot override that value in a

nested work area. In the following code example, the SimpleSampleBean attempts to change the value of

the site-identifier property in the nested work area it created.

public class SimpleSampleBeanImpl implements SessionBean {

 public String [] test() {

 ...

 String invoker = userWorkArea.getName();

 try {

 userWorkArea.set("key", "value");

 }

 catch (NotOriginator e) {

 }

 // Begin a nested work area.

 userWorkArea.begin("SimpleSampleBean");

 try {

 userWorkArea.set("company",

 SimpleSampleCompany.London_Development);

 }

 catch (NotOriginator e) {

 }

 ...

 }

}

Retrieving work area properties:

Properties can be retrieved from a work area by using the get method. This method is intentionally

lightweight; there are no declared exceptions to handle. If there is no active work area, or if there is no

such property set in the current work area, the get method returns null.

Note: The get method can raise a NotSerializableError in the relatively rare scenario in which CORBA

clients set composed data types and invoke enterprise-bean interfaces.

The following example shows the retrieval of the site-identifier and priority properties by the

SimpleSampleBean. Recall that one property was set into an outer work area by the client, and the other

property was set into the nested work area by the server-side bean; the nesting is transparent to the

retrieval of the properties.

public class SimpleSampleBeanImpl implements SessionBean {

 public String [] test() {

 ...

 // Begin a nested work area.

2032 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

userWorkArea.begin("SimpleSampleBean");

 try {

 userWorkArea.set("company",

 SimpleSampleCompany.London_Development);

 }

 catch (NotOriginator e) {

 }

 SimpleSampleCompany company =

 (SimpleSampleCompany) userWorkArea.get("company");

 SimpleSamplePriority priority =

 (SimpleSamplePriority) userWorkArea.get("priority");

 ...

 }

}

Retrieving a list of all keys in a work area:

The UserWorkArea interface provides the retrieveAllKeys method for retrieving a list of all the keys visible

from a work area. This method takes no arguments and returns an array of strings. This method returns

null if there is no work area associated with the thread. If there is an associated work area containing no

properties, the method returns an array of size 0.

Querying the mode of a work area property:

The UserWorkArea interface provides the getMode method for determining the mode of a specific

property. This method takes the property’s key as an argument and returns the mode as a

PropertyModeType object. (See Setting property modes for more information on names of mode types.) If

the specified key does not exist in the work area, the method returns PropertyModeType.normal, indicating

that the property can be set and removed without error.

Deleting a work area property:

The UserWorkArea interface provides the remove method for deleting a property from the current scope of

a work area. If the property was initially set in the current scope, removing it deletes the property. If the

property was initially set in an enclosing work area, removing it deletes the property until the current scope

is completed. When the current work area is completed, the deleted property is restored.

The remove method takes the property’s key as an argument. Only properties with the modes normal and

read-only can be removed. Attempting to remove a fixed property creates the PropertyFixed exception.

Attempting to remove properties in work areas that originated in other processes creates the NotOriginator

exception.

Completing a work area:

After an application has finished using a work area, it must complete the work area by calling the complete

method on the UserWorkArea interface. This terminates the association with the calling thread and

destroys the work area. If the complete method is called on a nested work area, the nested work area is

terminated and the parent work area becomes the current work area. If there is no work area associated

with the calling thread, a NoWorkArea exception is created.

Every work area must be completed, and work areas can be completed only by the originating process.

For example, if a server attempts to call the complete method on a work area that originated in a client, a

NotOriginator exception is created. Work areas created in a server process are never propagated back to

an invoking client process.

Chapter 8. Developing WebSphere applications 2033

Note: The work area service claims full local-remote transparency. Even if two beans happen to be

deployed in the same server, and therefore the same JVM and process, a work area begun on an

invocation from another is completed and the bean in which the request originated is always in the

same state after any remote call.

The following code example shows the completion of the work area created in the client application.

public class SimpleSampleServlet {

 ...

 userWorkArea.begin("SimpleSampleServlet");

 userWorkArea.set("company",

 SimpleSampleCompany.Main, PropertyModeType.read_only);

 userWorkArea.set("priority", SimpleSamplePriority.Silver);

 ...

 // Do application work.

 ...

 // Terminate the work area.

 try {

 userWorkArea.complete();

 }

 catch (NoWorkArea e) {

 // There is no work area associated with this thread.

 ...

 }

 catch (NotOriginator e) {

 // The work area was imported into this process.

 ...

 }

 ...

}

The following code example shows the sample application completing the nested work area it created

earlier in the remote invocation.

public class SimpleSampleBeanImpl implements SessionBean {

 public String [] test() {

 ...

 // Begin a nested work area.

 userWorkArea.begin("SimpleSampleBean");

 try {

 userWorkArea.set("company",

 SimpleSampleCompany.London_Development);

 }

 catch (NotOriginator e) {

 }

 SimpleSampleCompany company =

 (SimpleSampleCompany) userWorkArea.get("company");

 SimpleSamplePriority priority =

 (SimpleSamplePriority) userWorkArea.get("priority");

 // Complete all nested work areas before returning.

 try {

 userWorkArea.complete();

 }

 catch (NoWorkArea e) {

 }

 catch (NotOriginator e) {

 }

 }

}

2034 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Managing the work area service

The work area service is managed using the administrative console. There are two administrative tasks

associated with work areas:

v Enabling the work area service. The work area service is disabled by default on servers but enabled by

default on the client

v Managing the size of work areas. Applications can set maximum sizes on each work area to be sent

and to be accepted.

Refer to the information center or to the Administering applications and their environment PDF for details.

Enabling the work area service:

For an application to take advantage of work areas, the work area service must be enabled for both clients

and servers. On a server the service is disabled by default. On the client the service the service is enabled

by default.

1. Enable (or disable) the use of work areas on a server:

a. Start the administrative console.

b. Select Servers > Application servers >server_name > Business Process Services> Work area

service.

c. Select or clear the Startup check box. This specifies whether or not the server should

automatically start the work area service when the server starts.

2. Enable (or disable) the use of work areas on a client: Set the com.ibm.websphere.workarea.enabled

property to TRUE or FALSE before starting the client. For example, to disable the work area service,

when invoking the launchClient script found in the $WAS_HOME/bin directory, add the following system

property to the launchClient invocation:

-CCDcom.ibm.websphere.workarea.enabled=false

3. Enter a new value in the Maximum send size field to modify the size of the work area that this server

can send, or enter a new value in the Maximum receive size field to modify the size of the work area

that this server can accept.

Work area service settings:

Use this page to manage the work area service.

 The work area service manages the scope and implicit propagation of application context.

To view this administrative console page, click Servers > Application servers > server_name > Business

process services> Work area service .

Enable service at server startup:

Specifies whether the server attempts to start the work area service.

 Selected

When the application server starts, it attempts to start the work area service automatically.

Cleared

The server does not try to start the work area service. If work areas are used on this application server, the

system administrator must start the service manually or select this property and then restart the server.

Maximum send size:

Specifies the maximum size of data that can be sent within a single work area.

Chapter 8. Developing WebSphere applications 2035

Data type Integer

Units Bytes

Default 10000

Range -1 to no limit

The following values are also used to define the maximum send size.

 -1 Default.

0 No limit.

Maximum receive size:

Specifies the maximum size of data that a single work area can receive.

 Data type Integer

Units Bytes

Default 10000

Range -1 to no limit

The following values are also used to define the maximum receive size.

 -1 Default.

0 No limit.

Managing the size of work areas:

Applications can set maximum sizes on each work area that is sent or received. By default, the maximum

size of a work area that is sent by a client and received, then possibly resent, by a server is 32,768 bytes.

You can change this size as described in this topic.

1. Change the size of the work area that can be sent or received by a server:

a. Start the administrative console.

b. Select Servers > Application servers >server_name > Business Process Services > Work area

service.

c. Enter a new value in the Maximum send size field to modify the size of the work area that this

server can send, or enter a new value in the Maximum receive size field to modify the size of the

work area that this server can accept.

2. Change the size of the work area that can be sent by a client: Set the

com.ibm.websphere.workarea.maxSendSize property to the desired number of bytes before starting

the client. You can do this in several ways. For example, to set the maximum size to 10,000 bytes,

when invoking the launchClient script found in the $WAS_HOME/bin directory, add the following system

property to the launchClient invocation:

-CCDcom.ibm.websphere.workarea.maxSendSize=10000

The maximum size that you can specify is determined by the maximum value expressible in the Java

Integer data type, 2,147,483,647. The smallest maximum size that you can specify is 1. Using a maximum

size of 1 byte effectively means that no requests associated with the work area can leave the system or

enter another system. A value of 0 means that no limit is imposed. A value of -1 means that the default

value is to be honored. The default value is also used if an invalid value or a malformed property is

specified.

2036 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Configuring work area partitions on the server

The work area partition service extends the work area service by allowing the creation of multiple work

areas with more configuration options. Follow these steps to create and configure a work area partition:

1. Start the administrative console.

2. Click Servers > Application servers >server_name > Business process services> Work area

partition service.

3. Click New.

4. On the settings page for work area partitions, specify values such as the partition name, maxSendSize

and maxReceiveSize, then click OK.

5. Save the new configuration and restart the server to apply the new configuration

You have created a work area partition

Retrieve the partition through the work area partition manager interface and use it as defined by the work

area service and the work area service interface. See the topic, “Example: Work area partition manager”

on page 2040, for an example.

Work area partition service:

The work area partition service is an extension of the work area service that allows the creation of multiple

custom work areas. The work area partition service is an optional service to users. Any user that currently

uses the work area service and the UserWorkArea partition can continue using it in the same manner. The

UserWorkArea partition is created automatically (if it has not been disabled) by the work area partition

service. By allowing a user the option to create their own work area partition through the work area

partition service, they can have more control over configuration and access to their partition.

 Unlike the UserWorkArea partition, which is publicly known, work areas created by the work area partition

service are accessible to, and known only by the creator. However, the work area partition service does

not strictly enforce that a partition is accessed and/or operated on exclusively by the partition creator.

There are no limitations should the creator want to publish their work area partition and make it publicly

available by binding their partition reference in java naming or by other means. However, the work area

partition service does try to hide a partition as much as possible should a user not want others to know

about a certain partition. The work area partition service does not allow a person to determine, or query

the names of all the partitions that have been created; however, it does not restrict the partitions from

being accessed by users other than the creator of that partition. The context of a partition, such as the

UserWorkArea partition or a user defined partition, is scoped to a single thread and is not accessible by

multiple threads.

The work area partition reference that is returned to a user implements javax.naming.Referenceable, as

well as com.ibm.websphere.UserWorkArea, therefore a user can bind their partition into a name to make

their partition publicly available. An alternative to using Java naming to bind and access the partition is to

use the work area partition manager interface. Anyone can access the work area partition manager

interface; therefore, if a user wants to make their partition publicly available, they simply need to publish

their partition name. Other users can then call the getWorkAreaPartition method on the work area partition

manager interface with the published name.

The WorkAreaPartitionManager.createWorkAreaPartition method can only be used from a Java 2 Platform,

Enterprise Edition (J2EE) client. To create a work area partition on the server side, one must use the

administrative console. On the server side a work area partition must be created during server startup

because each partition needs to be register with the appropriate Web and Enterprise JavaBeans (EJB)

collaborators before the server has started. Custom work area partitions are created by the work area

partition service and defined by the UserWorkArea interface.

Chapter 8. Developing WebSphere applications 2037

The work area partition service also allows a user to configure partitions with additional properties that are

not available on the UserWorkArea partition, such as bidirectional propagation of work area partition

context and deferred attribute serialization. These properties are available as configuration properties when

creating a partition. The properties are defined as follows:

Bidirectional propagation of work area context

If a remote invocation is issued from a thread associated with a work area, a copy of the work area is

automatically propagated to the target object, which can use or ignore the information in the work area as

necessary. If the calling application has a nested work area associated with it, a copy of the nested work

area and all its ancestors are propagated to the target application. The target application can locally

modify the information, as allowed by the property modes, by creating additional nested work areas; this

information is propagated to any remote objects that it invokes.

Whether context changes propagate back to a calling application from a remote application depends on

the configuration of the work area partition. If a user creates a partition to be bidirectional (selects the

Bidirectional property during creation), changes made by a remote application propagates back to the

calling application, meaning that changes made to the work area context by a downstream process will

propagate back up stream. The UserWorkArea partition is not configured (and can never be configured) to

be bidirectional; therefore context changes only flow to downstream processes and do not propagate back

upstream. See “Bidirectional propagation” on page 2043 for further explanation.

Deferred attribute serialization of work area context

By default, on each set operation the attribute set into a work area is automatically serialized by the work

area service. On each subsequent get operation on that same attribute it is deserialized and returned to

the requester. This gives the work area service complete control of the attribute such that any changes to

a mutable object are not reflected in the work area’s copy of the attribute unless a user specifically resets

the attribute into the work area. However, this can potentially lead to excessive serialization and

deserialization.

Excessive serialization and deserialization can result in observable performance degradation under heavy

load. The deferred attribute serialization configuration property is a caching feature that reduces

serialization and deserialization operations. When deferred attribute serialization is enabled in a client or

server process, by selecting the Deferred Attribute Serialization field during the creation of the work area,

attributes set into the work area service are not automatically serialized during the set operation. Rather, a

reference to the attribute is stored in the work area. If the attribute is mutable, then changes to the object

are reflected in the work area’s reference to that attribute. When a get operation is performed on that

attribute, the reference to that object is returned and no deserialization is performed.

Attributes are not actually serialized until the thread with which the attribute is associated makes a remote

IIOP invocation. At that point the attribute is serialized and the serialized form of the attribute is cached. If

the attribute is not reset into the work area, changes to the original attribute are still reflected within the

attribute contained within the work area because the work area still holds a cached reference to the

original object. However, if the work area has not been told that the attribute has changed by resetting the

attribute into the work area, subsequent remote requests continues to use the cached serialized version of

the attribute and direct changes to the mutable attribute are not propagated. This is an important

distinction between enabling and not enabling the deferred attribute serialization configuration property and

a user must pay close attention to this difference and how mutable objects are handled when enabling

deferred attribute serialization. The work area service releases cached references and cached serialized

versions of attributes when any of the following occur:

v An attribute is reset or removed.

v The work area is explicitly completed by the application.

v Server component ends execution of the request during which the work area was begun.

v Client process which began the work area terminates.

2038 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Partition context propagation across process boundaries

Work area context automatically propagates from client to server when a client makes a remote call to a

server. If a client is configured with, for example, three different work area partitions when it makes a

remote call to a server, server1; the context associated with each partition on the client thread propagates

to server1. If the same three partitions reside (have been created) on server1, the context is demarshaled

to the appropriate partition. However, if none or only a few of the three partitions have been created on

server1, only the context associated with a partition that is resident on both the client and server is

demarshalled. The context associated with a partition that is not resident on server1 is still resident on

server1 but will not be accessible. The context associated with partitions that are not resident on server1

must remain resident on server1 in case another remote call is made to a different server. Going one step

further, if server1 makes a call to yet another server, server2 and assume server2 has created all the

same partitions that the client has, server2 receives the context for the partitions that were not resident on

server1. Any partitions that reside on server1 that did not reside on the client, now have its context

propagated to server2.

The Work area partition manager interface:

Applications interact with the work area partition service by using the work area partition manager

interface. A user can retrieve an instance of the work area partition manager interface out of naming and

use the methods that are defined in the following section. An implementation of the work area partition

manager interface is bound in Java naming at java:comp/websphere/WorkAreaPartitionManager. This

interface is responsible for creating, retrieving, and manipulating work area partitions:

package com.ibm.websphere.workarea;

import com.ibm.websphere.workarea.UserWorkArea;

import com.ibm.websphere.workarea.PartitionAlreadyExistsException;

import com.ibm.websphere.workarea.NoSuchPartitionException;

import java.util.Properties;

public interface WorkAreaPartitionManager {

 public UserWorkArea getWorkAreaPartition(String partitionName) throws NoSuchPartitionException;

 public UserWorkArea createWorkAreaPartition(String partitionName, Properties props) throws

 PartitionAlreadyExistsException, java.lang.IllegalAccessException;

 }

EJB applications can use the work area partition manager interface only within the implementation of

methods in the remote interface; likewise, servlets can use the interface only within the service method of

the HTTPServlet class. Use of work areas within any life cycle method of a servlet or enterprise bean is

considered a deviation from the work area programming model and is not supported.

Programmatically creating a work area partition through the createWorkAreaPartition method is only

available on the Java 2 platform, Enterprise Edition (J2EE) client. To create a work area partition on the

server, use the WebSphere administrative console. All partitions in a server process must be created

before server startup is complete so that the work area service can register with the appropriate container

collaborators. Therefore, calling the createWorkAreaPartition method in a server process after the server

starts results in a java.lang.IllegalAccessException exception. The createWorkAreaPartition method can be

called in a J2EE process at any time.

Exceptions

The work area partition service defines the following exceptions for use with the work area partition

manager interface:

Chapter 8. Developing WebSphere applications 2039

PartitionAlreadyExistsException

This exception is raised by the createWorkAreaPartition method on the WorkAreaPartitionManager

implementation if a user tries to create a work area partition with a partition name that already

exists. Partition names must be unique.

NoSuchPartitionException

This exception is raised by the getWorkAreaPartition method on the WorkAreaPartitionManager

implementation if a user requests a work area partition with a partition name that does not exist.

java.lang.IllegalAccessException

This exception is raised by the createWorkAreaPartition method on the WorkAreaPartitionManager

implementation if a user tries to create a work area partition during run time on a server process.

This method can only be used on a J2EE client process. In the server process, a partition must be

created using the administrative console.

Example: Work area partition manager:

The example below demonstrates the use of the work area partition manager interface. The sample

illustrates how to create and retrieve a work area partition programmatically`. Please note that

programmatically creating a work area partition is only available on the Java 2 platform, Enterprise Edition

(J2EE) client. To create a work area partition on the server one must use the administrative console. See

″Work area partition service″ in the information center for configuration parameters available to configure a

partition.

import com.ibm.websphere.workarea.WorkAreaPartitionManager;

import com.ibm.websphere.workarea.UserWorkArea;

import com.ibm.websphere.workarea.PartitionAlreadyExistsException;

import com.ibm.websphere.workarea.NoSuchPartitionException;

import java.lang.IllegalAccessError;

import java.util.Properties;

import javax.naming.InitialContext;

//This sample demonstrates how to retrieve an instance of the

//WorkAreaPartitionManager implementation and how to use that

//instance to create a WorkArea partition and retrieve a partition.

//NOTE: Creating a partition in the way listed below is only available

//on a J2EE client. To create a partition on the server use the

//WebSphere administrative console. Retrieving a WorkArea

//partition is performed in the same way on both client and server.

public class Example {

 //The name of the partition to create/retrieve

 String partitionName = "myPartitionName";

 //The name in java naming the WorkAreaPartitionManager instance is bound to

 String jndiName = "java:comp/websphere/WorkAreaPartitionManager";

 //On a J2EE client a user would create a partition as follows:

 public UserWorkArea myCreate(){

 //Variable to hold our WorkAreaPartitionManager reference

 WorkAreaPartitionManager partitionManager = null;

 //Get an instance of the WorkAreaPartitionManager implementation

 try {

 InitialContext initialContext = new InitialContext();

 partitionManager = (WorkAreaPartitionManager) initialContext.lookup(jndiName);

 } catch (Exception e) { }

 //Set the properties to configure our WorkArea partition

 Properties props = new Properties();

 props.put("maxSendSize","12345");

 props.put("maxReceiveSize","54321");

 props.put("Bidirectional","true");

 props.put("DeferredAttributeSerialization","true");

 //Variable used to hold the newly created WorkArea Partition

 UserWorkArea myPartition = null;

2040 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

try{

 //This is the way to create a partition on the J2EE client. Use the

 //WebSphere Administrative Console to create a WorkArea Partition

 //on the server.

 myPartition = partitionManager.createWorkAreaPartition(partitionName,props);

 }

 catch (PartitionAlreadyExistsException e){ }

 catch (IllegalAccessException e){ }

 return myPartition;

 }

 //. . . .

 //In order to retrieve a WorkArea partition at some time later or

 //from some other class, do the following (from client or server):

 public UserWorkArea myGet(){

 //Variable to hold our WorkAreaPartitionManager reference

 WorkAreaPartitionManager partitionManager = null;

 //Get an instance of the WorkAreaPartitionManager implementation

 try {

 InitialContext initialContext = new InitialContext();

 partitionManager = (WorkAreaPartitionManager) initialContext.lookup(jndiName);

 } catch (Exception e) { }

 //Variable used to hold the retrieved WorkArea partition

 UserWorkArea myPartition = null;

 try{

 myPartition = partitionManager.getWorkAreaPartition(partitionName);

 }catch(NoSuchPartitionException e){ }

 return myPartition;

 }

}

Work area partition collection:

Use this page to manage the work area service.

 The work area partition service supports the definition of custom work area partitions.

To view this administrative console page, click Servers > Application servers > server_name > Business

process services> Work area partition service.

Name:

Specifies the name of the work area partition that is used to retrieve the partition. This name must be

unique.

Description:

Specifies the description of the work area partition.

Enable service at server startup:

Specifies whether the server attempts to start the specified service when the server starts.

Bidirectional:

Permits applications to modify the context of a work area that is imported by a J2EE request; modified

properties are propagated back to the requestor environment. This option is disabled by default.

Chapter 8. Developing WebSphere applications 2041

Maximum send size:

Specifies the maximum size of data that can be sent within a single work area. (0 = no limit; -1 = default)

Maximum receive size:

Specifies the maximum size of data that can be received within a single work area. (0 = no limit; -1 =

default)

Deferred attribute serialization:

Specifies whether attribute serialization is deferred until the work area is propagated on a remote

invocation.

Work area partition settings:

Use this page to modify the work area service settings.

 The work area partition service supports the definition of custom work area partitions.

To view this administrative console page, click Servers > Application servers > server_name > Business

process services > Work area partition service >work_area_partion_name.

Name:

Specifies the name of the work area partition that is used to retrieve the partition. This name must be

unique.

Description:

Specifies the description of the work area partition.

Enable service at server startup:

Specifies whether the server attempts to start the specified service when the server starts.

Bidirectional:

Permits applications to modify the context of a work area that is imported by a J2EE request; modified

properties are propagated back to the requestor environment. This option is disabled by default.

Maximum send size:

Specifies the maximum size of data that can be sent within a single work area. (0 = no limit; -1 = default)

 Data type Integer

Units Bytes

Default 32768

Range -1, 0 (no limit) and 1 to 2147483647

Maximum receive size:

Specifies the maximum size of data that can be received within a single work area. (0 = no limit; -1 =

default)

 Data type Integer

2042 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Units Bytes

Default 32768

Range -1, 0 (no limit) and 1 to 2147483647

Deferred attribute serialization:

Specifies whether attribute serialization is deferred until the work area is propagated on a remote

invocation. This option is disabled by default.

Bidirectional propagation:

Example: Bidirectional propagation of work area context

Whether context changes propagate back to a calling application from a remote application depends on

the configuration of the work area partition. If a user creates a bidirectional partition, changes made by a

remote application propagate back to the calling application. In other words, changes made to the work

area context by a downstream process propagate back up stream. Figure 1 illustrates distribution of work

area context on a remote call when the partition containing the given work area is configured for

bidirectional propagation of its work area context. For this illustration, the client and server must have

created a partition with the same name.

As Figure 1 shows, when the client makes a remote call to the server, the server receives the context set

by the client process. The server then can make changes to this context or add to it. In this illustration, the

server overwrites the value at key1, removes the property at key2, and adds two new properties at key5

and key6. When the server application returns to the client, the work area context is propagated back to

the client and demarshalled. The current work area is then updated with the new context. Note, that if the

partition is not configured as bidirectional, and the server tries to change or remove context in work area,

Context deleted

by the server

Context added

by the server

Process Boundary

Client Server

Work Area 1

Key

key1

key2

key3

key4

Value

A

B

C

D

Mode

normal

read-only

fixed, normal

fixed, read-only

Work Area 1

Key

key3

key4

key1

key5

key6

key2

Value

C

D

G

E

F

B

Mode

fixed normal

fixed read-only

normal

fixed normal

normal

read-only

Work Area 1

Key

key3

key4

key1

key5

key6

key2

Value

C

D

G

E

F

B

Mode

fixed normal

fixed read-only

normal

fixed normal

normal

read-only

Context visible to

Work Area 1

key3 = C

key4 = D

key1 = G

key5 = E

key6 = F

after remote call:

Deleted context

Added context

Context visible to

Work Area 1

key1 = A

key2 = B

key3 = C

key4 = D

before remote call:

Figure 13. Figure 1

Chapter 8. Developing WebSphere applications 2043

″Work Area 1″, it will receive a com.ibm.websphere.workarea.NotOriginator exception since the client was

the originator of the work area. The server can retrieve the context in ″Work Area 1″. This is the main

distinction between bidirectional propagation of context and non-bidirectional propagation.

Bidirectional propagation of nested work area context

If a remote application needs to add context to a work area that is only used by itself or any other remote

objects, the remote application should begin another work area. By beginning a new work area, the new

context added is scoped to that application and does not flow back to the calling application. The major

benefit of nesting work areas is that nesting work areas allows an application to scope work area context

to a given application. Taking the above illustration one step further, if the server has begun a work area

before overwriting the value at key1, removing the property at key2, or adding new properties at key5 and

key6; those changes would not have propagated back to the client. This is shown in Figure 2. You can

also see from this figure that the client does not receive the context from the nested work area started by

the server.

Accessing a user defined work area partition:

The work area partition service provides a Java Naming and Directory Interface (JNDI) binding to an

implementation of the work area partition manager interface under the name

java:comp/websphere/WorkAreaPartitionManager. Applications that need to access their partition can

perform a lookup on that JNDI name and then use the getWorkAreaPartition method on the work area

partition manager, as shown in the following code example:

import com.ibm.websphere.workarea.*;

import javax.naming.*;

public class SimpleSampleServlet {

 ...

Process Boundary

Client Server

Work Area 1

Key

key1

key2

key3

key4

Value

A

B

C

D

Mode

normal

read-only

fixed, normal

fixed, read-only

Work Area 1

Key

key1

key2

key3

key4

Value

A

B

C

D

Mode

normal

read-only

fixed, normal

fixed, read-only

Work Area 1

Context from Work Area 1

Context added to

Work Area 1.1

Deleted context

Added content

Context visible to

Work Area 1

key1 = A

key2 = B

key3 = C

key4 = D

before remote call:

Context visible to

Work Area 1

key1 = A

key2 = B

key3 = C

key4 = D

after remote call:

Work Area 1.1

Key

key1

key3

key2

key5

key6

key4

Value

A

C

D

B

E

F

Mode

normal

fixed normal

fixed r

read only

read only

fixed normal

ead-only

Figure 14. Figure 2

2044 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

//Variable to hold our WorkAreaPartitionManager implementation

 WorkAreaPartitionManager partitionManager = null;

 try {

 InitialContext initialContext = new InitialContext();

 partitionManager = (WorkAreaPartitionManager)

 initialContext.lookup("java:comp/websphere/WorkAreaPartitionManager");

 } catch (Exception e) {...}

 //Variable used to hold the retrieved WorkArea Partition

 UserWorkArea myPartition = null;

 try{

 myPartition = partitionManager.getWorkAreaPartition(partitionName);

 }catch(NoSuchPartitionException e){...}

}

The next step is to use the begin method to create a new work area and associate it with the calling

thread, as described in the topic ″Beginning a new work area″ in the information center.

Chapter 8. Developing WebSphere applications 2045

2046 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Chapter 9. Troubleshooting deployment

v Select the problem you are having with deploying or installing developed code for WebSphere

Application Server.

– Errors or problems deploying, installing, or promoting applications and databases

v If you did not solve the problem, prepare to contact IBM support.

If you do not see a problem that resembles yours, or if the information provided does not solve your

problem, see ″Obtaining help from IBM″ in the information center.

For current information available from IBM Support on known problems and their resolution, see the

IBM Support page.

IBM Support has documents that can save you time gathering information needed to resolve this

problem. Before opening a PMR, see the IBM Support page.

Errors or problems deploying, installing, or promoting applications

This article describes problems that you might encounter when deploying, installing, or promoting

applications and suggests ways to resolve the problems.

What kind of problem are you having?

v I installed my application using the wsadmin tool, but the application does not display under Applications

> Enterprise Applications.

v I get a java.lang.RuntimeException: Failed_saving_bytes_to_wor_ERROR_ in the assembly tool,

administrative console or wsadmin tool

v I get a WASX7015E error running the wsadmin command $AdminApp installInteractive or $AdminApp

install.

v A data definition language (DDL) generated by an assembly tool throws an SQL error on the target

platform.

v The error ADMA0004E: Validation error in task Specifying the Default Datasource for EJB

Modules occurs when installing application in administrative console or the wsadmin tool.

v The error No valid target is specified in ObjectName object for module module occurs from

installation.

v The addNode -includeapps option does not appear to upload all applications to the deployment

manager.

v ″Timeout!!!″ error displays when attempting to install an enterprise application in the administrative

console.

v I get a NameNotFoundException message when deploying an application that contains an EJB module

v During application installation, the call to EJB deploy throws an exception

v I get compilation errors and EJB deploy fails when installing an EJB JAR file generated for Version 5.x

or earlier

v While uploading documents, addNode -includeapps fails with an OutOfMemoryError exception

Check the following first:

v Verify that the logical name that you have specified to appear on the console for your application,

enterprise bean module or other resource does not contain invalid characters such as these: - / \ : * ? ″

< > |.

v If the application was installed using the wsadmin $AdminApp install command with the -local flag,

restart the server or rerun the command without the -local flag.

If you do not see a problem that resembles yours, or if the information provided does not solve your

problem, check to see if the problem is identified and documented by looking at available online support

including hints and tips, technotes, and fixes. If the problem has not been identified, see ″Obtaining help

from IBM″ in the information center.

© Copyright IBM Corp. 2004 2047

http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCR4XA
http://www-1.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCR4XA&q=mustgather

I installed my application using the wsadmin tool, but the application does not display under

Applications > Enterprise Applications

The application might be installed but you have not saved the configuration:

1. Verify that the application subdirectory is located under the install_dir/installedApps directory.

2. Run the $AdminApp list command and verify that the application is not among those displayed.

v In the bin directory, run the wsadmin.bat or wsadmin.sh command.

v From the wsadmin prompt, enter $AdminApp list and verify that the problem application is not

among the items that display.
3. Reinstall your application using the wsadmin tool. Run the $AdminConfigsave command in the

wsadmin tool before exiting.

I get a java.lang.RuntimeException: Failed_saving_bytes_to_wor_ERROR_ error in the assembly tool,

administrative console or the wsadmin tool.

If you see this error when attempting to generate deployed code in an assembly tool, installing an

application or module in the administrative console, or using the wsadmin tool to install an application or

module, the file path length of the temporary system file might be exceeded. This situation is typically an

issue only on Windows platforms.

To verify this problem, check the TEMP and TMP environment variables for your system. Long environment

variables add path length to the file names accessed by the EJBDeploy tool.

To resolve the problem:

1. Stop all WebSphere Application Server processes and close all DOS prompts.

2. Set the TMP and TEMP environment variables to something short, for example C:\TMP and C:\TEMP.

3. Reinstall the application.

Otherwise, try rebooting and redeploying or reinstalling the application.

WASX7015E error running wsadmin command "$AdminApp installInteractive" or "$AdminApp

install"

This problem has two possible causes:

v If the full text of the error is similar to:

WASX7015E: Exception running command: "$AdminApp installInteractive C:/Documents and Settings/

myUserName/Desktop/MyApp/myapp.ear"; exception information:

com.ibm.bsf.BSFException: error while

eval’ing Jacl expression: can’t find method "installInteractive"

with 3 argument(s) for class

"com.ibm.ws.scripting.AdminAppClient"

The file and path name are incorrectly specified. In this case, since the path included spaces, it was

interpreted as multiple parameters by the wsadmin program.

Enter the path of the .ear file correctly. In this case, by enclosing it in double quotes:

$AdminApp installInteractive "C:\Documents

and Settings\myUserName\Desktop\MyApps\myapp.ear"

v If the full text of the error is similar to:

WASX7015E: Exception running command: "$AdminApp installInteractive c:\MyApps\myapp.ear ";

exception information: com.ibm.ws.scripting.ScriptingException: WASX7115E:

Cannot read input file

"c:\WebSphere\AppServer\bin\MyAppsmyapp.ear"

The application path is incorrectly specified. In this case, you must use UNIX-style ″forward-slash″ (/)

separators in the path.

2048 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Data definition language (DDL) generated by an assembly tool throws SQL error on target platform

If you receive SQL errors in attempting to execute data definition language (DDL) statements generated by

an assembly tool on a different platform, for example if you are deploying a container-managed

persistence (CMP) enterprise bean designed on Windows onto a UNIX operating system server, try the

following actions:

v Browse the DDL statements for dependencies on specific user IDs and passwords, and correct as

necessary.

v Browse the DDL statements for dependencies on specific server names, and correct as necessary.

v Refer to the message reference of the vendor for causes and suggested actions regarding specific SQL

errors. For IBM DB2, you can view the message references online at http://www.ibm.com/cgi-
bin/db2www/data/db2/udb/winos2unix/support/ index.d2w/report.

If you receive the following error after executing a DDL file created on Windows operating system on a

UNIX platform, the problem might come from a difference in file formats:

SQL0104N An unexpected token "CREATE TABLE AGENT (COMM DOUBLE, PERCENT DOUBLE, P"

was found following " ". Expected tokens may include: " ".

SQLSTATE=42601

To resolve this problem:

v For UNIX platforms other than Linux, edit the DDL in the vi editor, removing the Ctl-M character at the

beginning of each line.

v For Linux systems, regenerate the deployment code for the application EAR file on a Linux platform.

Error message ADMA0004E: Validation error in task Specifying the Default Datasource for EJB

Modules returned when installing application using the administrative console or the wsadmin tool

If you see the following error when trying to install an application through the administrative console or the

wsadmin command prompt:

AppDeploymentException: [ADMA0014E: Validation failed.

ADMA0004E: Validation error in task Specifying the Default Datasource for

EJB Modules JNDI name is not

specified for module beannameBean Jar with URI filename.jar,META-INF/ejb-jar.xml.

You have not specified the

data source for each CMP bean belonging to this module. Either specify the data

source for each CMP beans or

specify the default data source for the entire module.]

one possible cause is that in WebSphere Application Server Version 4.0, it was mandatory to have a data

source defined for each CMP bean in each JAR. In Version 5, you can specify either a data source for a

container-managed persistence (CMP) bean or a default data source for all CMP beans in the JAR file.

Thus during installation interaction, such as the installation wizard in the administrative console, the data

source fields are optional, but the validation performed at the end of the installation checks to see that at

least one data source is specified.

To correct this problem, step through the installation again, and specify either a default data source or a

data source for each CMP-type enterprise bean. If you are using the wsadmin tool, either:

v Use the $AdminApp installInteractive filename command to receive prompts for data sources during

installation, or to provide them in a response file.

v Specify data sources as an option to the $AdminApp install command. For details on the syntax, see

″Installing applications with the wsadmin tool″ in the information center.

Error message No valid target is specified in ObjectName anObject for module module_name from

installation

This error can occur in a clustered environment if the target cell, node, server or cluster into which the

application is to be installed is incorrectly specified. For example, it can occur if the target is misspelled.

Chapter 9. Troubleshooting deployment 2049

http://www.ibm.com/cgi-bin/db2www/data/db2/udb/winos2unix/support/index.d2w/report
http://www.ibm.com/cgi-bin/db2www/data/db2/udb/winos2unix/support/index.d2w/report

To correct this problem, check the target names against the actual WebSphere Application Server topology

and reenter them with corrections.

addNode -includeapps option does not appear to upload all applications to the Deployment

Manager

This error can occur when some or all applications on the target node are already uploaded to the

deployment manager. The addNode program detects which applications are already installed and does not

upload them again.

Use the administrative console to browse the deployment manager configuration and see the applications

that are already installed.

"Timeout!!!" error displays when attempting to install an enterprise application in the

administrative console

This error can occur if you attempt to install an enterprise application that has not been deployed.

To correct this problem:

v Open the file_name.ear file in an assembly tool and then click Deploy. This action creates a file with a

name like Deployed_file_name.ear.

v In the administrative console, install the deployed .ear file.

I get a NameNotFoundException message when deploying an application that contains an EJB

module

If you specify that EJB deploy be run during application installation and the installation fails with a

NameNotFoundException message, ensure that the input JAR or EAR file does not contain source files. If

there are source files in the input JAR or EAR file, the EJB deployment tools runs a rebuild before

generating the deployment code.

To work around this problem, either remove the source files or include all dependent classes and resource

files on the class path. Otherwise, the source files or the lack of access to dependent classes and

resource files might cause problems during rebuilding of your application on the server.

During application installation, the call to EJB deploy throws an exception

When you specify that EJB deploy be run during application installation and if installation fails with the

error command line too long, the problem is that the deployment command generated during installation

exceeds the character limit for a command line on the Windows platform. This problem occurs only on

Windows platforms.

To work around this problem, you can reduce the length of the EAR file name, reduce the length of the

JAR file name within the EAR file, reduce the class path or other options specified for deployment, or

change the %TEMP% location of the Windows system to make its path shorter.

I get compilation errors and EJB deploy fails when installing an EJB JAR file generated for Version

5.x or earlier

When installing an old application that uses EJB modules that were built to run on WebSphere Application

Server Version 5.x or earlier, compilation errors result and EJB deploy fails. The EJB JAR file contains

Java source for the old generated code. The old Java source was generated for Version 5.x or before but,

when deployed to a WebSphere Application Server Version 6.x product, it is compiled using the Version

6.x run-time JAR files.

2050 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

To work around this problem, remove all .java files from the application .ear file. After the Java source

files are removed, you can deploy the application onto a server successfully.

While uploading documents, addNode -includeapps fails with an OutOfMemoryError exception

This error can occur when you use addNode -includeapps while you are installing applications with large

EAR files. To correct this problem:

v If you are using addNode to add a node from the base server, modify the addNode script to include the

following parameter:

-Xmxsize

v If you are adding a node from the administrative console, increase the maximumHeapSize in the Java

virtual machine settings of the Deployment Manager, then restart the Deployment Manager. See ″Java

virtual machine settings″ in the information center for details.

For example, the addNode.bat file that follows sets a maximum heap size of 512 MB on a Windows

platform:

"%JAVA_HOME%\bin\java" -Xmx512m %DEBUG% %WAS_TRACE% %CONSOLE_ENCODING%

"%CLIENTSOAP%" "%CLIENTSAS%" "-classpath" "%WAS_CLASSPATH%"

"-Dws.ext.dirs=%WAS_EXT_DIRS%" %USER_INSTALL_PROP%

-Dwas.install.root=%WAS_HOME%" "com.ibm.ws.bootstrap.WSLauncher"

"com.ibm.ws.management.tools.NodeFederationUtility" "%CONFIG_ROOT%" "%WAS_CELL%"

"%WAS_NODE%" %*

Troubleshooting testing and first time run problems

Select the problem you are having with testing or the first run of deployed code for WebSphere Application

Server:

v ″The server process does not start or starts with errors″ in the information center.

v “The application does not start or starts with errors” on page 2056.

v “A web resource does not display” on page 2057.

v ″Cannot access a data source″ in the information center.

v ″Cannot access an enterprise bean from a servlet, a JSP file, a stand-alone program, or another client″

in the information center.

v ″Cannot look up an object hosted by WebSphere Application Server from a servlet, JSP file, or other

client″ in the information center.

v ″Access problems after enabling security″ in the information center.

v ″Errors after enabling security″ in the information center.

v ″Errors after configuring or enabling Secure Sockets Layer″ in the information center.

v ″Errors in messaging″ in the information center.

v ″Errors returned to a client sending a SOAP request″ in the information center.

v ″A client program does not work″ in the information center.

v ″Errors connecting to WebSphere MQ and creating WebSphere MQ queue connection factory″ in the

information center.

If you do not see a problem that resembles yours, or if the information provided does not solve your

problem, see ″Obtaining help from IBM″ in the information center.

For current information available from IBM Support on known problems and their resolution, see the IBM

Support page.

IBM Support has documents that can save you time gathering information needed to resolve this problem.

Before opening a PMR, see the IBM Support page.

Chapter 9. Troubleshooting deployment 2051

http://www-1.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCMPDF&q=mustgather
http://www-1.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCMPDF&q=mustgather
http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCMPEP

Errors starting an application

What kind of error do you see when you start an application?

v HTTP server and Application Server are working separately, but requests are not passing from HTTP

server to Application Server

v File serving problems

v Graphics do not appear on the JavaServer Pages (JSP) file or servlet output

v SRVE0026E: [Servlet Error]-[Unable to compile class for JSP error on JSP]

v After modifying and saving a JSP file, the change does not show up in the browser (the old JSP file

displays)

v Message similar to ″Message: /jspname.jsp(9,0) Include: Mandatory attribute page missing″ displays

when trying to access JSP file

v The Java source generated from a JSP file is not retained in the temp directory (only the class file is

found)

v The JSP batch compiler fails with the message ″Enterprise Application [application name you typed in]

not found″

v There is a translation problem with non-English browser input

v Scroll bars do not appear around items in the browser window

v A ″Page cannot be displayed... server not found or DNS error″ error displays when attempting to

browse a JavaServer Pages (JSP) file using Internet Explorer

HTTP server and Application Server are working separately, but requests are not passing from

HTTP server to Application Server

If your HTTP server appears to be functioning correctly, and the Application Server also works on its own,

but browser requests sent to the HTTP server for pages are not being served, a problem exists in the

WebSphere Application Server plug-in.

In this case:

1. Determine whether the HTTP server is attempting to serve the requested resource itself, rather than

forwarding it to the WebSphere Application Server.

a. Browse the HTTP server access log (IHS install root/logs/access.log for IBM HTTP Server). It

might indicate that it could not find the file in its own document root directory.

b. browse the plug-in log file as described below.
2. Refresh the install_dir/config/plugin-cfg.xml file that determines which requests sent to the HTTP server

are forwarded to the WebSphere Application Server, and to which Application Server. You might need

to refresh this file:

v In the WebSphere Application Server administrative console, expand the Environment tree control.

v Click Update WebSphere Plugin.

v Stop and restart the HTTP server and retry the Web request.
3. Browse the plugin_install_root/logs/web_server_name/http_plugin.log file for clues to the problem.

Make sure the timestamps with the most recent plug-in information stanza, which is printed out when

the plug-in is loaded, correspond to the time the Web server started.

4. Turn on plug-in tracing by setting the LogLevel attribute in the install_dir/config/plugin-cfg.xml file to

Trace and reloading the request. Browse the

plugin_install_root/logs/web_server_name/http_plugin.log file. You should be able to see the plug-in

attempting to match the request URI with the various URI definitions for the routes in the

plugin-cfg.xml. Check which rules the plug-in is not matching against and then figure out if you need

to add additional ones. If you just recently installed the application you might need to manually

regenerate the plug-in configuration to pick up the new URIs related to the new application.

5. For further details on troubleshooting plug-in-related problems, see the topic ″Troubleshooting the

HTTP plug-in component″ in the information center.

2052 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

File serving problems

If text output appears on your JSP- or servlet-supported Web page, but image files do not:

v Verify that your files are in the right place: the document root directory of your Web application

WebSphere Application Server follows the J2EE standard, which means that the document root is the

Web_module_name.war directory of your deployed Web application. Typically this directory will be found

in the installation_root/installedApps/nodename/appname.ear directory or

installation_root/installedApps/nodename/appnameNetwork.ear directory.

If the files are in a subdirectory of the document root, verify that the reference to the file reflects that.

That is, if the invoices.html file is stored in Windows directory Web_module_name.war\invoices, then

links from other pages in the Web application to display it should read ″invoices\invoices.html″, not

″invoices.html″.

v Verify that your Web application is configured to enable file serving (in other words, that it is enabled to

display static resources like image and .html files):

1. View the file serving property of the hosting Web module by browsing the source .war file in an

assembly tool. See ″Assembling applications″ in the information center. If necessary, update the

property and redeploy the module.

2. Edit the fileServingEnabled property in the deployed Web application ibm-web-ext.xmi

configuration file, typically found in the install_root/config/cells/nodename or

nodenameNetwork/applications/application name/deployments/application name/Webmodule

name/web-inf directory.

Graphics do not appear in the JSP file or servlet output

If text output appears on your JSP- or -servlet-supported Web page, but image files do not:

v Verify that your graphic files are in the right place: the document root directory of your Web application

WebSphere Application Server Version 5 follows the J2EE standard, which means that the document

root is theWeb_module_name.war directory of your deployed Web application. Typically this directory is

found in the installation_root/installedApps/nodename/appname.ear directory or

installation_root/installedApps/nodename/appnameNetwork.ear directory.

If the graphics files are in a subdirectory of the document root, verify that the reference to the graphic

reflects that; for example, if the banner.gif file is stored in Windows directory

Web_module_name.war/images, the tag to display it should read: , not

.

v Verify that your Web application is configured to enable file serving (that is, display of static resources

like image and .html files).

1. View the file serving property of the hosting Web module by browsing the source .war file in an

assembly too.. If necessary, update the property and re-deploy the module.

2. Edit the fileServingEnabled property in the deployed Web application ibm-web-ext.xmi

configuration file, typically found in the install_root/config/cells/nodename or

nodenameNetwork/applications/application name/deployments/application name/Webmodule

name/web-inf directory.

3. After following the previous steps:

– In the administrative console, expand the Environment tree control .

– Click Update WebSphere Plugin.

– Stop and restart the HTTP server and retry the Web request.

SRVE0026E: [Servlet Error]-[Unable to compile class for JSP file

If this error appears in a browser when trying to access a new or modified .jsp file for the first time, the

most likely cause is that the JSP file Java source failed (was incorrect) during thejavac compilation phase.

Check the Syst emErr.log file for a compiler error message, such as:

Chapter 9. Troubleshooting deployment 2053

C:\WASROOT\temp\ ... test.war_myJsp.java:14: \Duplicate variable declaration: int myInt was int myInt

int myInt = 122;

String myString = "number is 122";

static int myStaticInt=22;

int myInt=121;

 ^

Fix the problem in the JSP source file, save the source and request the JSP file again.

If this error occurs when trying to serve a JSP file that was copied from another system where it ran

successfully, then there is something different about the new server environment that prevents the JSP file

from running. Browse the text of the error for a statement like:

 Undefined variable or class name: MyClass

This error indicates that a supporting class or jar file is not copied to the target server, or is not on the

class path. Find the MyClass.class file, and place it on the Web module WEB-INF/classes directory, or

place its containing .jar file in the Web module WEB-INF/lib directory.

Verify that the URL used to access the resource is correct by completing the following steps:

v For a JSP file, html file, or image file: http://host_name/Web_module_context_root/subdir under doc

root, if any/filename.ext. The document root for a Web application is the application_name.WAR

directory of the installed application.

– For example, to access the myJsp.jsp file, located in

c:\WebSphere\ApplicationServer\installedApps\myEntApp.ear\myWebApp.war\invoices on

myhost.mydomain.com, and assuming the context root for the myWebApp Web module is myApp,

the URL is http://myhost.mydomain.com/myApp/invoices/myJsp.jsp.

– JSP serving is enabled by default. File serving for HTML and image files must be enabled as a

property of the Web module, in an assembly tool, or by setting the fileServingEnabled property to

true in the ibm-web-ext.xmi file of the installed Web application and restarting the application.
v For servlets served by class name, the URL is

http://hostname/Web_module_context_root/servlet/packageName.className.

– For example, to access myCom.myServlet.class, located in

c:\WebSphere\ApplicationServer\installedApps\ myEntApp.ear\myWebApp.war\WEB-INF\classes, and

assuming the context root for the myWebApp module is ″myApp″, the URL would be

http://myhost.mydomain.com/myApp/servlet/myCom.MyServlet.
v Serving servlets by class name must be enabled as a property of the Web module, and is enabled by

default. File serving for HTML and image files must be enabled as a property of the Web application, in

an assembly tool, or by setting the fileServingEnabled property to true in the ibm-web-ext.xmi file of

the installed Web application and restarting the application.

Correct the URL in the ″from″ HTML file, servlet or JSP file. An HREF with no leading slash (/) inherits the

calling resource context. For example:

v an HREF in http://[hostname]/myapp/servlet/MyServlet to ″ServletB″ resolves to

″http://hostname/myapp/servlet/ServletB″

v an HREF in http://[hostname]/myapp/servlet/MyServlet to ″servlet/ServletB″ resolves to

″http://hostname/myapp/servlet/servlet/ServletB″ (an error)

v an HREF in http://[hostname]/myapp/servlet/MyServlet to ″/ServletB″ resolves to

″http://hostname/ServletB″ (an error, if ServletB requires the same context root as MyServlet)

After modifying and saving a JSP file, the change does not show up in the browser (the old JSP

file displays)

It is probable that the Web application is not configured for servlet reloading, or the reload interval is too

high.

2054 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

To correct this problem, in an assembly tool, check the Reloading Enabled flag and the Reload Interval

value in the IBM Extensions for the Web module in question. Turn Reloading on, or if it is already on, then

set the Reload Interval lower.

Message like "Message: /jspname.jsp(9,0) Include: Mandatory attribute page missing" appears

when attempting to browse JSP file

It is probable that the JSP file failed during the translation to Java phase. Specifically, a JSPdirective, in

this case an Include statement, was incorrect or referred to a file that could not be found.

To correct this problem, fix the problem in the JSP source, save the source and request the JSP file again.

The Java source generated from a JSP file is not retained in the temp directory (only the class file

is found)

It is probable that the JSP processor is not configured to keep generated Java source.

In an assembly tool, check the JSP Attributes under Assembly Property Extensions for the Web

module in question. Make sure the keepgenerated attribute is there and is set to true. If not, set this

attribute and restart the Web application. To see the results of this operation, delete the class file from the

temp directory to force the JSP processor to translate the JSP source into Java source again.

The JSP Batch Compiler fails with the message "Enterprise Application [application name you

typed in] not found."

It is probable that the full enterprise application path and name, starting with the .ear subdirectory that

resides in the install_root\config\cells\node_nameNetwork\applications directory is expected as an

argument to the JspBatchCompiler tool, not just the display name. For example:

v ″JspBatchCompiler -enterpriseapp.name sampleApp.ear/deployments/sampleApp″ is correct, as

opposed to

v ″JspBatchCompiler -enterpriseapp.name sampleApp″, which is incorrect.

There is a translation problem with non-English browser input.

If non-English-character-set browser input cannot be translated after being read by a servlet or JSP file,

ensure that the request parameters are encoded according to the expected character set before reading.

For example, if the site is Chinese, the target .jsp file should have a line:

 req.setCharacterEncoding("gb2312");

before any req.getParameter() calls.

This problem affects servlets and jsp files ported from earlier versions of WebSphere Application Server,

which converted characters automatically based upon the locale of the WebSphere Application Server.

Scroll bars do not appear around items in the browser window

In some browsers, tree or list type items that extend beyond their allotted windows do not have scroll bars

to permit viewing of the entire list.

To correct this problem, right-click on the browser window and click Reload from the menu.

Error "Page cannot be displayed... server not found or DNS error" appears when attempting to

browse a JavaServer Pages (JSP) file using Internet Explorer

This error can occur when an HTTP timeout causes the servant to be brought down and restarted. To

correct this problem, increase the ConnectionIOTimeout . value:

Chapter 9. Troubleshooting deployment 2055

1. From the administrative console select System Administration > DeploymentManager >

Administration Services > Custom Properties

2. Select ConnectionIOTimeout

3. Increase the ConnectionIOTimeout value

4. Click OK.

The application does not start or starts with errors

What kind of error do you see when you start an application?

v Ajava.lang.ClassNotFoundException: classname Bean_AdderServiceHome_04f0e027Bean error occurs

v A ConnectionFac E J2CA0102E: Invalid EJB component: Cannot use an EJB module with version 1.1

using The Relational Resource Adapter error occurs

v NMSV0605E: A Reference object looked up from the context...error when starting an application.

v Other name server (″NMSV...″) errors.

If none of these errors match the error you see:

v Browse the log files of the application server for this application looking for clues. By default, these files

are: install_dir/logs/server_name/SystemErr.log and SystemOut.log.

v Look up any error or warning messages in the message reference table by clicking the Reference view

and expanding the ″Messages″ heading.

If you do not see a problem that resembles yours, or if the information provided does not solve your

problem, see ″Obtaining help from IBM″ in the information center.

java.lang.ClassNotFoundException: classname Bean_AdderServiceHome_04f0e027Bean

An similar exception occurs when you try to start an undeployed application containing enterprise beans,

or containing undeployed enterprise bean modules.

Enterprise JavaBeans modules created in an assembly tool intentionally have incomplete configuration

information. Deploying these modules completes the configuration by reading the module’s deployment

descriptor and completing platform- or installation-dependent settings and adding related classes to the

Enterprise JavaBeans JAR file.

To avoid this problem, do the following:

v Use an assembly tool and administrative console to generate deployment code and install the

application or Enterprise JavaBeans module onto a server.

1. Uninstall the application or Enterprise JavaBeans module in the administrative console.

2. Configure your assembly tool so the target server is a WebSphere Application Server installation

such as WebSphere Application Server v6.0. See ″Configuring an assembly tool″ in the

information center for additional information. If you do not have access to the target server, you can

specify a false location such as c:\temp. Specifying a false location enables you to assemble and

generate deployment code for the enterprise bean.

3. In the Project Explorer view of an assembly tool, right-click the enterprise bean (Enterprise

JavaBeans) in the undeployed .ear file containing the Enterprise JavaBeans module or the

standalone undeployed Enterprise JavaBeans JAR file, and click Deploy. If your assembly tool can

access the WebSphere Application Server target server, deployment code is generated for the

Enterprise JavaBeans and the assembly tool attempts to install the application or module onto the

target server. If your assembly tool cannot access the WebSphere Application Server target server

or the installation fails, use the deployment code that is generated for the next step.

4. Use the administrative console to install the deployed version created by the assembly tool.
v If you are using the wsadmin $AdminApp install command, uninstall it and then reinstall using the

-EJBDeploy option. Follow the install command with the $AdminConfig save command.

2056 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

ConnectionFac E J2CA0102E: Invalid EJB component: Cannot use an EJB module with version 1.1

using The Relational Resource Adapter

This error occurs when an enterprise bean developed to the Enterprise JavaBeans 1.1 specification is

deployed with a WebSphere Application Server V5 J2C-compliant data source, which is the default data

source. By default, persistent enterprise beans created under WebSphere Application Server V4.0’s using

the Assembly Toolkit to fulfill the Enterprise JavaBeans 1.1 specification. To run on WebSphere Application

Server V5, these enterprise beans must be associated with a WebSphere Application Server V4.0-type

data source.

Either modify the mapping in the application of enterprise beans to associate 1.x container managed

persistence (CMP) beans to associate them with a V4.0 data source or delete the existing data source and

create a V4.0 data source with the same name.

To modify the mapping in the application of enterprise beans, in the WebSphere Application Server

administrative console, select the properties for the problem application and use map resource

references to resources or Map data sources for all 1.x CMP beans to switch the data source the

enterprise bean uses. Save the configuration and restart the application.

To delete the existing data source and create a V4.0 data source with the same name:

1. In the administrative console, click Resources>Manage JDBC Providers>JDBC_provider_name>Data

sources.

2. Delete the data source associated with the Enterprise JavaBeans 1.1 module.

3. Click Resources>Manage JDBC Providers>JDBC_provider_name>Data sources (Version 4).

4. Create the data source for the Enterprise JavaBeans 1.1 module.

5. Save the configuration and restart the application.

NMSV0605E: "A Reference object looked up from the context..." error when starting an application

If the full text of the error is similar to:

[7/17/02 15:20:52:093 CDT] 5ae5a5e2 UrlContextHel W NMSV0605E: A Reference object looked up from the

context"java:" with the name "comp/PM/WebSphereCMPConnectionFactory" was sent to the

JNDI Naming Manager and an exception resulted. Reference data follows:

 Reference Factory Class Name: com.ibm.ws.naming.util.IndirectJndiLookupObjectFactory

 Reference Factory Class Location URLs:

 Reference Class Name: java.lang.Object

 Type: JndiLookupInfo

 Content: JndiLookupInfo: ; jndiName="eis/jdbc/MyDatasource_CMP"; providerURL="";

 initialContextFactory=""

then the problem might be that the data source intended to support a CMP enterprise bean is not correctly

associated with the enterprise bean.

To resolve this problem:

1. Select the Use this Data Source in container managed persistence (CMP) check box in the data

source ″General Properties″ panel of the administrative console.

2. Verify that the JNDI Name given in administrative console under Resources-> Manage JDBC

Provider > DataSource > JNDI Name for DataSource matches the JNDI Name given for CMP or

BMP Resource Bindings at the time of Assembling the application in an assembly tool, or

3. Check the JNDI Name for CMP or BMP resource bindings specified in the code by J2EE Application

Developer. Open the deployed .ear folder in an assembly tool, and look for the JNDI Name for your

entity beans under CMP or BMP resource bindings. Verify that the names match.

A web resource does not display

If you are not able to display a resource in your browser, follow these steps:

Chapter 9. Troubleshooting deployment 2057

1. Verify that your HTTP server is healthy by accessing the URLhttp://server_name from a browser and

seeing whether the Welcome page appears. This action indicates whether the HTTP server is up and

running, regardless of the state of WebSphere Application Server.

2. If the HTTP server Welcome page does not appear, that is, if you get a browser message like page

cannot be displayed or something similar, try to diagnose your Web server problem.

3. If the HTTP server appears to function, the Application Server might not be serving the target resource.

Try accessing the resource directly through the Application Server instead of through the HTTP server.

If you cannot access the resource directly through the Application Server, Verify that the URL used to

access the resource is correct.

If the URL is incorrect and it is created as a link from another JSP file, servlet, or HTML file, try

correcting it in the browser URL field and reloading, to confirm that the problem is a malformed URL.

Correct the URL in the ″from″ HTML file, servlet or jsp file.

If the URL appears to be correct, but you cannot access the resource directly through the Application

Server, verify the health of the hosting Application Server and Web module:

a. View the hosting Application Server and Web module in the administrative console to verify that

they are up and running.

b. Copy a simple HTML or JSP file (such as SimpleJsp.jsp in the WebSphere Application Server

directory structure) to your Web module document root, and try to access it. If successful, the

problem is with your resource. View the JVM log of your Application Server to find out why your

resource cannot be found or served
4. If you can access the resource directly through the Application Server, but not through an HTTP server,

the problem lies with the HTTP plug-in -- the component that communicates between the HTTP server

and the WebSphere Application Server.

5. If the JSP file and the servlet output are served, but not static resources such as .html and image

files, see the steps for enabling file serving.

6. If some kinds of resources display correctly, but you cannot display a servlet by its class name:

v Verify that the servlet is in a directory in the Web module class path, such as in the

/Web_module_name.war/WEB-INF/classes directory.

v Verify that you specify the full class name of the servlet, including its package name, in the URL.

v Verify that ″/servlet″ precedes the class name in the URL. For example, if the root context of a

Web module is ″myapp″, and the servlet is com.mycom.welcomeServlet, then the URL reads:

http://hostname/myapp/servlet/com.mycom.welcomeServlet

v Verify that serving the servlets by class name is enabled for the hosting Web module by opening the

source Web module in an assembly tool, see ″Assembling applications″ in the information center for

additional information, and browse the serve servlets by classname setting in the IBM Extensions

property page. If necessary, enable this flag and redeploy the Web module.

v For servlets or other resources served by mapped URLs, the URL is http://hostname/web module

context root/mappedURL.

If none of these steps fixes your problem, see if the problem has been identified and documented by

looking at available online support (hints and tips, technotes, and fixes). If you do not find your problem

listed there, see ″Obtaining help from IBM″ in the information center.

Diagnosing Web server problems

If you are unable to view the welcome page of your HTTP server, determine if the server is operating

properly.

On Windows systems, look in the Services panel for the service corresponding to your HTTP server, and

verify that the state is Started. If not, start it. If the service does not start, try starting it manually from the

command prompt. If you are using IBM HTTP Server, the command is IHS_install_dir\apache .

On UNIX systems, execute the ps -ef | grep httpd command. There should be several processes running

with a name of ″httpd″. If not, start your HTTP server manually. If you are using IBM HTTP Server, the

command is IHS_install_dir/bin/apachectl start.

2058 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

If the HTTP server does not start:

v Examine the HTTP server error log for clues.

v Try restoring the HTTP server to its configuration prior to installing WebSphere Application Server and

restarting it. If you are using IBM HTTP Server:

– Rename the file IHS_install_dir\httpd.conf.

– Copy the httpd.conf.default file to the httpd.conf directory.

– If Apache is running, stop and restart it.
v For the Sun ONE (iPlanet) Web server, restore the obj.conf configuration file for Sun ONE V4.1 and

both obj.conf and magnus.conf files for Sun ONE V6.0 and later.

v For the Microsoft Internet Information Server (IIS), remove the WebSphere Application Server plug-in

through the IIS administrative GUI.

If restoring the HTTP server default configuration file works, manually review the configuration file that has

WebSphere Application Server updates to verify directory and file names for WebSphere Application

Server files. If you cannot manually correct the configuration, you can uninstall and reinstall WebSphere

Application Server to create a clean HTTP configuration file.

If restoring the default configuration file does not help, contact technical support for the Web server you

are using. If you are using IBM HTTP Server with WebSphere Application Server, check available online

support (hints and tips, technotes, and fixes). If you do not find your problem listed there, see ″Obtaining

help from IBM″ in the information center

Accessing a Web resource through the application server and bypassing the HTTP server

Starting with WebSphere Application Server Version 4.0, you can bypass the HTTP server and access a

web resource through the application server. It is not recommended to serve a production Web site in this

way, but it provides a good diagnostic tool when it is not clear whether a problem resides in the HTTP

server, WebSphere Application Server, or the HTTP plug-in.

To access a Web resource through the Application Server:

1. Determine the port of the HTTP service in the target Application Server.

a. In the WebSphere administrative console, click Servers>Manage Application Servers.

b. Select the target server, then under Additional Properties click Web Container.

c. Under the Additional Properties of the Web Container, click HTTP Transports. You see the ports

listed for virtual hosts served by the Application Server.

d. There can be more than one port listed. In the default Application Server (server1), for example,

9060 is the port reserved for administrative requests, 9443 and 9043 are used for SSL-encrypted

requests. To test the sample ″snoop″ servlet, for example, use the default application port 9080,

unless it changes.
2. Use the HTTP transport port number of the Application Server to access the resource from a browser.

For example, if the port is 9080, the URL is http://hostname:9080/myAppContext/myJSP.jsp.

3. If you are still unable to access the resource, verify that the HTTP transport port is in the ″Host Alias″

list:

a. Click Application Servers > Your_ApplicationServer > Web Container > HTTP Transports to

check the Default virtual host and the HTTP transport ports used by this Application Server.

b. Click Environment > Manage Virtual Hosts > default host > Host Aliases to check if the HTTP

transport port exists. Add an entry if necessary. For example, if the HTTP port for your application

is server is 9080, add a host alias of *:9082.

Cannot uninstall an application or remove a node or application server

What kind of problem are you having?

v After uninstalling an application through wsadmin tool, the application continues to run and throws

″DocumentIOException″

v The removeNode command does not remove the installed application from the deployment manager

Chapter 9. Troubleshooting deployment 2059

v I cannot display the syntax for the removeNode command.

If none of these steps fixes your problem:

v Make sure that the application and its Web and EJB modules, are in a stopped state before uninstalling.

v If you are uninstalling or installing an application using wsadmin, make sure that you are using the

-conntype NONE option to invoke wsadmin and enable local mode. To use the -conntype NONE option,

stop the hosting application server before uninstalling the application.

v Check to see if the problem has been identified and documented by looking at the available online

support (hints and tips, technotes, and fixes).

v If you don’t find your problem listed there contact IBM support

After uninstalling application through the wsadmin tool, the application throws

"DocumentIOException"

If this exception occurs after the application was uninstalled using wsadmin with the -conntype NONE

option:

v Restart the server or,

v Rerun the uninstall command without the -conntype NONE option.

The removeNode command does not remove the installed application from the deployment

manager

If the applications were installed indirectly using the addNode program with the -includeapps option, then

removeNode will not uninstall them, since they may be in use by other nodes. These applications must be

explicitly uninstalled, for example through the administrative console.

I cannot display the syntax for the removeNode command

Unlike the addNode command, the removeNode command is valid with no parameters, so executing it will

execute the operation, that is, remove the node, without displaying the command syntax.

To see the valid options for removeNode, execute removeNode -? or removeNode -help.

2060 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Chapter 10. Troubleshooting administration

v Select the problem you are experiencing.

– I have problems bringing up or using the administrative console.

– I have problems starting or using the wsadmin command prompt.

– My Web module or application server dies or hangs.

– I get errors trying to configure and enable security.

– I cannot uninstall or remove a node or application server.

– I have problems creating or using HTTP sessions.

– I have problems using tracing, logging, log files, or other troubleshooting features.

– I get errors connecting to the administrative console from a Netscape browser.

– The stopServer.sh (base and ND) hangs and creates a Java core dump (Red Hat Linux).

– A and cannot be recovered.

v If you did not solve the problem, prepare to contact IBM support.

If you do not see a problem that resembles yours, or if the information provided does not solve your

problem, contact IBM support for further assistance.

For current information available from IBM Support on known problems and their resolution, see the

IBM Support page.

IBM Support has documents that can save you time gathering information needed to resolve this

problem. Before opening a PMR, see the IBM Support page.

Administration and administrative console troubleshooting tips

In WebSphere Application Server products, administrative functions are supported by:

v The application server (such as server1) process

v The deployment manager (dmgr) process in the Network Deployment product

The process must be running to use the administrative console. The wsadmin command line utility has a

local mode that you can use to perform some administrative functions, even when the server process is

not running.

When starting or stopping a server using a wsadmin interactive scripting session, you receive an exception

indicating read timed out, for example:

WASX7015E: Exception running command: "$AdminControl startServer server1 Node1";

exception information: com.ibm.websphere.management.exception.ConnectorException

org.apache.soap.SOAPException: [SOAPException: faultCode=SOAP-ENV:Client; msg=Read

timed out; targetException=java.net.SocketTimeoutException: Read timed out]

This exception occurs because the timeout value is too small. To fix this, increase the timeout value

specified by the com.ibm.SOAP.requestTimeout property in the soap.client.props file in the

install_root/profiles/profile_name/properties directory for a single server edition. The value you

should choose depends on a number of factors such as the size and the number of the applications

installed on the server, the speed of your machine, and the level of usage of your machine. The default

value of the com.ibm.SOAP.requestTimeout property is 180 seconds.

If you have problems starting or using the administrative console or wsadmin utility, verify that the

supporting server process is started and that it is healthy.

v For the application server process, look at these files:

– install_root/profiles/profile_name/logs/server_name/startServer.log for the message that

indicates that the server started successfully: ADMU3000I: Server server1 open for e-business;

process id is nnnn..

– install_root/profiles/profile_name/logs/server_name/SystemOut.log for the message that

indicates that the server started successfully: WSVR0001I: Server server open for e-business.
v For the Network Deployment product, look at these files:

© Copyright IBM Corp. 2004 2061

http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCMPDF
http://www-1.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCMPDF&q=mustgather

– install_root/profiles/profile_name/logs/dmgr/startServer.log for the message that indicates

that the server started successfully: ADMU3000I: Server dmgr open for e-business; process id is

nnnn..

– install_root/profiles/profile_name/logs/dmgr/SystemOut.log for the message that indicates that

the server started successfully: ADMU3000I: Server dmgr open for e-business; process id is

nnnn.
v Look up any error messages in these files in the message reference table. Select the Reference view

in the information center navigation, then click Messages.

v A message like WASX7213I: This scripting client is not connected to a server process when trying

to start wsadmin indicates that either the server process is not running, the host machine where it is

running is not accessible, or that the port or server name used by wsadmin is incorrect.

v Verify that you are using the right port number to communicate with the administrative console or

wsadmin server using the following steps:

– Look in the SystemOut.log file.

– The line ADMC0013I: SOAP connector available at port nnnn indicates the port that the server is

using to listen for wsadmin functions.

– The property com.ibm.ws.scripting.port in the

install_root/profiles/profile_name/properties/wsadmin.properties file controls the port used by

wsadmin to send requests to the server. If it is different from the value shown in the SystemOut.log

file , either change the port number in the wsadmin.properties file, or specify the correct port number

when starting wsadmin by using the -port port_number property on the command line.

– The message SRVE0171I: Transport http is listening on port nnnn (default 9060) indicates the

port the server uses to listen for administrative console requests. If it is different than the one

specified in the URL for the administrative console, change the URL in the browser to the correct

value. The default value is http://localhost:9060/ibm/console.
v Use the telnet command to test that the host name where the application server is running, is

reachable from the system where the browser or wsadmin program are being used. If you are able to

ping the host name, this indicates that there are no firewall or connectivity issues.

v If the host where the application server is running is remote to the machine from which the client

browser or wsadmin command is running, ensure that the appropriate host name parameter is correct:

– The host name in the browser URL for the console.

– The -host host name option of the wsadmin command that is used to direct wsadmin to the right

server
v ″Tracing the administrative component: WebSphere Application Server technical support might ask you

to trace the administrative component for detailed problem determination. The trace specification for this

component is com.ibm.websphere.management.*=all=enabled:com.ibm.ws.management.*=all=enabled″.

See ″Tracing the administrative component″ in the information center.

If none of these steps solves the problem, see if the specific problem you are having is addressed in the

Installation completes but the administrative console does not start topic. Check to see if the problem has

been identified and documented using the links in the ″Diagnosing and fixing problems: Resources for

learning″ topic. If you do not see a problem that resembles yours, or if the information provided does not

solve your problem, contact IBM support for further assistance.

For current information available from IBM Support on known problems and their resolution, see the

following topics on the IBM support page:

v Administrative Console

v Administrative Scripting Tools

v System management

IBM Support has documents that can save you time gathering information needed to resolve this problem.

Before opening a PMR, see the following topics on information gathering on the IBM support page:

v Administrative Console

v Administrative Scripting Tools

2062 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCPPRK
http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCPPRL
http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCMPDZ
http://www-1.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCPPRK&q=mustgather
http://www-1.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCPPRL&q=mustgather

v System management

Installation completes but the administrative console does not start

Administrative console problems

What kind of problem are you having?

v An ″Internal Server Error″, ″Page cannot be found″, 404, or similar error occurs trying to view the

administrative console.

v An ″Unable to process login. Check user ID and password and try again. ″ error occurs when trying to

access console page.

v The directory paths in the console contain strange characters.

If you can bring up the browser page, but the console behavior is inconsistent, error prone, or

unresponsive, try upgrading your browser. Older browsers might not support all the features of the

administrative console.

If none of these steps solves the problem, see if the problem has been identified and documented by

using the links in ″Diagnosing and fixing problems: Resources for learning″ in the information center. If you

do not see a problem that resembles yours, or if the information provided does not solve your problem,

see ″Obtaining help from IBM″ in the information center.

An "Internal Server Error", "Page cannot be found", 404, or similar error occurs trying to view the

administrative console

Here are some steps to try if you are unable to view the administrative console:

v Verify that the application server that supports the administrative console is up and running. For a base

configuration, the administrative console is deployed by default on server1. Before viewing the

administrative console, you must take one of the following actions:

– Run the startServer server1 command for the Windows platform or ./startServer.sh server1

command for a UNIX platform from a command prompt in the install_dir\bindirectory

– Click the Start application server link from the first steps panel

– Start WebSphere Application Server as a service or from the Start menu, if you are using a Windows

operating system.
v If you are using the deployment manager for a multi-node configuration, run the startManager

command from the Network_Deployment_install_dir\bin directory.

v View the SystemOut.log file for the application server or the deployment manager to verify that the

server supporting the administrative console has started. See ″Viewing the JVM logs″ in the information

center.

v Check the URL you use to view the console. By default, it is http://server_name:9060/ibm/console,

where server_name is the host name.

v If you are browsing the console from a remote machine, try to eliminate connection, address and

firewall issues by pinging the server machine from a command prompt, using the server name in the

URL.

v If you have never been able to access the administrative console see ″Troubleshooting installation″ in

the information center..

An "Unable to process login. Check user ID and password and try again. " error occurs when

trying to access console page

This error indicates that security is enabled for WebSphere Application Server, and that the user ID or

password supplied is either invalid or not authorized to access the console.

To access the console:

v If you are the administrator, use the ID defined as the security administrative ID. This ID is stored in the

WebSphere Application Server file security.xml.

Chapter 10. Troubleshooting administration 2063

http://www-1.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCMPDZ&q=mustgather

v If you are not the administrator, ask the administrator to enable your ID for the administrative console.

The directory paths in the console contain strange characters

Directory paths used for class paths or resources specified in an assembly tool, configuration files, or

elsewhere that contain strange characters when they are viewed in the administrative console might result

from the Java run time interpreting a backslash (\) as a control character.

To resolve, modify Windows-style class paths by replacing occurrences of single back slashes to two. For

example, change c:\MyFiles\MyJsp.jsp to c:\\MyFiles\\MyJsp.jsp.

Errors connecting to the administrative console from a browser

This topic describes problems that you can have when logging into the administrative console from a

browser.

Review the following information to resolve your browser problem.

If you are able to bring up the browser page, but the console behavior is inconsistent, error-prone, or

unresponsive, try upgrading the browser you are using. Older browsers may not support the administrative

console’s features. For a listing of supported Web browsers, see

http://www.ibm.com/software/webservers/appserv/doc/latest/prereq.html.

Check to see if the problem has been identified and documented using the links in ″Diagnosing and fixing

problems: Resources for learning″ in the information center. If you do not see a problem that resembles

yours, or if the information provided does not solve your problem, contact IBM support for further

assistance.

Check the following list for your problem and how to solve it:

v When a single user that uses multiple instances of the Mozilla browser logs into the administrative

console, the first user ID that logs into the administrative console is the current user.

v A user on Mozilla browser Version 1.4 selects a check box on a collection table, presses Enter, and

receives an error.

v A user on Mozilla browser Version 1.4 enters an invalid ID or password, presses Enter, and receives an

error message

When a single user that uses multiple instances of the Mozilla browser

logs into the administrative console, the first user ID that logs into the

administrative console is the current user.

When a single user logged into an operating system tries to use multiple instances of the Mozilla browser,

the first user ID that logs into the administrative console is the current user. This situation occurs because

the browser windows share a single process.

To resolve the problem, do one of the following actions:

v Have single users logged into an operating system use a single instance of the Mozilla browser to log

into the administrative console.

v If the operating system allows multiple users on an operating system, have each user log into the

operating system with a different user ID and bring up a single instance of the Mozilla browser.

A user on Mozilla browser Version 1.4 selects a check box on a

collection table, presses Enter, and receives an error.

A user on Mozilla browser Version 1.4 selects a check box on a collection table, presses Enter, and

receives an error.

2064 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

http://www.ibm.com/software/webservers/appserv/doc/latest/prereq.html

To resolve the problem, do one of the following actions:

v Explicitly select a button of interest on the administrative console panel instead of pressing Enter.

v Use a later version of a supported Mozilla browser.

v Use a supported version of the Microsoft Internet Explorer browser.

A user on Mozilla browser Version 1.4 enters an invalid ID or

password, presses Enter, and receives an error message

A user on Mozilla browser Version 1.4 enters an invalid user ID or password, presses Enter, and receives

an error message. Clicking OK fails to refresh the administrative login screen

To resolve the problem, do one of the following actions:

v Use a later version of a supported Mozilla browser.

v Use a supported version of the Microsoft Internet Explorer browser.

Web server plug-in troubleshooting tips

If you are having problems using a Web server plug-in, try these steps:

v Review the file plugin_install_root/logs/web_server_name/http_plugin.log for clues. Look up any

error or warning messages in the message table.

v Review your Web server’s error and access logs to see if the Web server is having a problem:

– IBM HTTP Server and Apache: access.log and error.log.

– Domino Web server: httpd-log and httpd-error.

– Sun Java System: access and error.

– Microsoft IIS: timedatestamp.log.

If these files don’t reveal the cause of the problem, follow these additional steps.

Plug-in Problem Determination Steps

The plug-in provides very readable tracing which can be beneficial in helping to figure out the problem. By

setting the LogLevel attribute in the config/plugin-cfg.xml file to Trace, you can follow the request

processing to see what is going wrong. At a high level:

1. The plug-in gets a request.

2. The plug-in checks the routes defined in the plugin-cfg.xml file.

3. It finds the server group.

4. It finds the server.

5. It picks the transport protocol, HTTP or HTTPS.

6. It sends the request.

7. It reads the response.

8. It writes it back to the client.

You can see this very clearly by reading through the trace for a single request:

v The first step is to determine if the plug-in has successfully loaded into the Web server.

– Check to make sure thehttp_plugin.log has been created.

– If it has, look in it to see if any error messages indicate some sort of failure that took place during

plug-in initialization. If no errors are found look for the following stanza, which indicates that the

plug-in started normally. Ensure that the timestamps for the messages correspond to the time you

started the Web server:

[Thu Jul 11 10:59:15 2002] 0000009e 000000b1 - PLUGIN: ------------System Information----------

[Thu Jul 11 10:59:15 2002] 0000009e 000000b1 - PLUGIN: Bld date: Jul 3 2002, 15:35:09

[Thu Jul 11 10:59:15 2002] 0000009e 000000b1 - PLUGIN: Web server: IIS

[Thu Jul 11 10:59:15 2002] 0000009e 000000b1 - PLUGIN: Hostname = SWEETTJ05

[Thu Jul 11 10:59:15 2002] 0000009e 000000b1 - PLUGIN: OS version 4.0, build 1381, ’Service Pack 6’

[Thu Jul 11 10:59:15 2002] 0000009e 000000b1 - PLUGIN: --

– Some common errors are:

Chapter 10. Troubleshooting administration 2065

lib_security: loadSecurityLibrary: Failed to load gsk library

The GSKit did not get installed or the installation is corrupt. If the GSKit did not get installed

you can determine this by searching for the file gsk7ssl.dll on all drives for Win32 or see if

there are any libgsk7*.so files in /usr/lib on UNIX. Try reinstalling the plug-in to see if you

can get the GSKit to install in order to fix this.

ws_transport: transportInitializeSecurity: Keyring wasn’t set

The HTTPS transport defined in the configuration file was prematurely terminated and did

not contain the Property definitions for the keyring and stashfile. Check your XML syntax for

the line number given in the error messages that follow this one to make sure the Transport

element contains definitions for the keyring and stashfiles before it is terminated.
– If thehttp_plugin.log is not created, check the Web server error log to see if any plug-in related

error messages have been logged there that indicate why the plug-in is failing to load. Typical

causes of this can include failing to correctly configure the plug-in with the Web server environment.

Check the documentation for configuring the Web server you are trying to use with the Web server

plug-in.
v Determine whether there are network connection problems with the plug-in and the various application

servers defined in the configuration. Typically you will see the following message when this is the case:

ws_common: websphereGetStream: Failed to connect to app server, OS err=%d

Where %d is an OS specific error code related to why the connect() call failed. This can happen for a

variety of reasons.

– Ping the machines to make sure they are properly connected to the network. If the machines can’t

be pinged then there is no way the plug-in will be able to contact them. Possible reasons for this

include:

- Firewall policies limiting the traffic from the plug-in to the app server.

- The machines are not on the same network.
– If you are able to ping the machines then the likely cause of the problem is that the port is not active.

This could be because the application server or cluster has not been started or the application server

has gone down for some reason. You can test this by hand by trying to telnet into the port that the

connect is failing on. If you cannot telnet into the port the application server is not up and that

problem needs to be resolved before the plug-in will be able to connect successfully.
v Determine whether other activity on the machines where the servers are installed is impairing the

server’s ability to service a request. Check the processor utilization as measured by the task manager,

processor ID, or some other outside tool to see if it:

– Is not what was expected.

– Is erratic rather than a constant.

– Shows that a newly added member of the cluster is not being utilized.

– Shows that a failing member that has been fixed is not being utilized.
v Check the administrative console to ensure that the application server is started. View the administrative

console for error messages or look in the JVM logs.

v In the administrative console, select the problem application server and view its installed applications to

verify that they are started.

If none of these steps solves the problem:

v For specific problems that can cause web pages and their contents not to display, seeWeb resource

(JSP file, servlet, html file, image, etc) will not display in the information center.

v Check to see if the problem has been identified and documented using the links in ″Diagnosing and

fixing problems: Resources for learning″ in the information center.

v If you do not see a problem that resembles yours, or if the information provided does not solve your

problem, contact IBM support for further assistance.

For current information available from IBM Support on known problems and their resolution, see the

following topics on the IBM support page:

v HTTP transport

v HTTP plug-in

v HTTP plug-in remote install

2066 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCMPBD
http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCC2GP
http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCMPDA

IBM Support has documents that can save you time gathering information needed to resolve this problem.

Before opening a PMR, see the following topics on the IBM support page:

v HTTP transport

v HTTP plug-in

v HTTP plug-in remote install

The server process does not start or starts with errors

If the WebSphere Application Server installation program completes successfully, but the

Application Server does not start, or starts with errors

v Browse the Application Server log files for clues. See ″Viewing the JVM logs″ in the information center.

The log files are located by default in:

–

install_root\ profiles\ profile_name\ logs\ server_name\ SystemErr.log and

SystemOut.log

–

install_root/ profiles/ profile_name/ logs/ server_name/ SystemErr.log and SystemOut.log

Several applications deployed on an Application Server or node can take time to start. Browse the

SystemOut.log periodically and look at the most recent updates to see if the server is still starting up.

v

The tail -f install_root/ profiles/ profile_name/ logs/ server_name/ SystemOut.log

is a convenient way to watch the progress of the server.

v Look for any errors or warnings relating to specific resources with the module, such as Web modules,

enterprise beans and messaging resources. If you find any, examine the Application Server

configuration file for the configuration settings of that resource. For example, in a base or

non-distributed configuration on Windows systems, browse install_root/ profiles/ profile_name/ config/

cells/ ApplicationServerCell/ nodes/ node_name/ servers/ server_name/server.xml, and examine the

XML tags for the properties of that resource. Change its initialState value from START to STOP. Then

restart the server to see if this component causes the problem.

v Look up any error or warning messages in the message reference table by clicking the Reference view

of the information center navigation and expanding Messages in the navigation tree.

v Verify that the logical name that you specified to appear on the console for your Application Server does

not contain invalid characters like: - / \ : * ? ″ < > and leading or trailing spaces.

v If you are using IBM Cloudscape and receive an ERROR XSDB6: Another instance of Cloudscape may

have already booted the database databaseName error when starting the Application Server, see

″Cannot access a data source″ in the information center for additional information.

v When using a non-root user ID to run Application Servers, verify that:

– The non-root user has write access to the install_root/temp directory.

– The JVM has write access to install_root/config/plugin-cfg.xml file.

– The non-root user has access to the logs directory.

Message ″The socket bind failed for host hostname and port portnumber. The port may already be in

use.″ occurs when restarting an Application Server.

The following error message might appear in the SystemOut.log after restarting the Application Server:

The socket bind failed for host hostname and port portnumber. The port may already be in use.

This problem might occur if the network is slow, and the port listed in the message text did not finish

listening when the application was stopped and restarted.

To verify that this is the problem, check the port status.

To correct this problem, wait for a few minutes after stopping the server:

1. Verify that no ports are listening. Use the command: ’netstat -a.

2. Restart the server

Chapter 10. Troubleshooting administration 2067

http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCMPBD&q=mustgather
http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCC2GP&q=mustgather
http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCMPDA&q=mustgather

If you do not see a problem that resembles yours, or if the information provided does not solve your

problem, see ″Obtaining help from IBM″ in the information center..

The stopServer.sh hangs and creates a Java core dump (Red Hat

Linux)

When you run the stopServer.sh script on Red Hat Linux Advanced Server Version 2.1 with the latest

operating system patches, it creates a Java core dump and hangs the terminal. To fix this problem:

v kill all Java and MQ processes

v uninstall the latest version of GNU Standard C++ Library

– run the command rpm -e --nodeps libstdc++-2.96-116.7.2

v Reinstall the older version from Redhat Advanced Server V2.1 CD

– run the command rpm -ihv libstdc++-2.96-108.1.rpm

Problems starting or using the wsadmin command

What kind of problem are you having?

v ″WASX7023E: Error creating ″SOAP″ connection to host″ or similar error trying to launch wsadmin

command line utility.

v ″com.ibm.bsf.BSFException: error while eval’ing Jacl expression: no such method ″<command name>″

in class com.ibm.ws.scripting.AdminConfigClient″ returned from wsadmin command.

v WASX7022E returned from running ″wsadmin -c ...″ command, indicating invalid command.

v com.ibm.ws.scripting.ScriptingException: WASX7025E: String ″″ is malformed; cannot create

ObjectName.

v ″The input line is too long″ error returned from the wsadmin command on a Windows platform.

v WASX701E: Exception received while running file ″scriptName.jacl″; exception information:

com.ibm.bsf.BSFException: error while evaluating Jacl expression: missing close-bracket

If you do not see your problem here:

v If you are not able to enter wsadmin command mode, try running wsadmin -c ″$Help wsadmin″ for

help in verifying that you are entering the command correctly.

v If you can get the wsadmin command prompt, enter $Help help to verify that you are using specific

commands correctly.

v wsadmin commands are a superset of Jacl (Java Command Language), which is in turn a Java-based

implementation of the Tcl command language. For details on Jacl syntax beyond wsadmin commands,

refere to the Tcl developers’ site, http://www.tcl.tk. For specific details relating to the Java

implementation of Tcl, refer to http://www.tcl.tk/software/java.

v Browse the install_dir/profiles/profile_name/logs/wsadmin.traceout file for clues.

– Keep in mind that wsadmin.traceout is refreshed (existing log records are deleted) whenever a new

wsadmin session is started.

– If the error returned by wsadmin does not seem to apply to the command you entered, for example,

you receive WASX7023E, stating that a connection could not be created to host ″myhost,″ but you

did not specify ″-host myhost″ on the command line, examine the properties files used by wsadmin

to determine what properties are specified. If you do not know what properties files were loaded, look

for the WASX7326I messages in the wsadmin.traceout file; there will be one of these messages for

each properties file loaded.

If none of these steps fixes your problem, check to see if the problem has been identified and documented

by looking at the available online support (hints and tips, technotes, and fixes). If you don’t find your

problem listed there contact IBM support.

2068 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

http://www.tcl.tk
http://www.tcl.tk/software/java

"WASX7023E: Error creating "SOAP" connection to host" or similar error trying to launch wsadmin

command line utility

By default, the wsadmin utility attempts to connect to an application server at startup. This is because

some commands act upon running application servers. This error indicates that no connection could be

established.

To resolve this problem:

v If you are not sure whether an application server is running, start it by entering startserver servername

from the command prompt. If the server is already running, you will see an error similar to

″ADMU3027E: An instance of the server is already running″.

v If you are running a Network Deployment configuration, you will first need to start the deployment

manager by running ″startManager″ or ″startManager.sh″ from the install_dir/bin directory. Then you can

launch wsadmin immediately to connect to the deployment manager, or start a node and application

server to connect to.

v If an application server is running and you still get this error:

– If you are running remotely (that is, on a different machine from the one running WebSphere

Application Server), you must use the -host hostname option to the wsadmin command to direct

wsadmin to the right physical server.

– If you are using the -host option, try pinging the server machine from the command line from the

machine on which you are trying to launch wsadmin to verify there are no issues of connectivity such

as firewalls.

– verify that you are using the right port number to connect to the WebSphere Application Server

process:

- If you are not specifying a port number (using the -port option) when you start the wsadmin tool,

the wsadmin tool uses the default port specified in

install_dir/profiles/profile_name/properties/wsadmin.properties file, property

name=com.ibm.ws.scripting.port (default value =8879).

- The port that wsadmin should send on depends on the server process wsadmin is trying to

connect to.

For a single-server installation, wsadmin attempts to connect to the application server process by

default. To verify the port number:

v Look in the file

install_dir/profiles/profile_name/config/cells/node_name/nodes/node_name/serverindex.html for a

tag containing the property serverType=″APPLICATION_SERVER″.

v Look for an entry within that tag with the property

endPointName=″SOAP_CONNECTOR_ADDRESS″.

v Look for a port property within that tag. This is the port wsadmin should send on.

In a Network Deployment installation, wsadmin launched from the bin directory on the Network

Deployment installation attempts to send requests to the deployment manager by default. To verify

the port number:

v Get the hostname of the node on which the Deployment Manager is installed.

v Using that hostname, look in

install_dir/profiles/profile_name/config/cells/cell_name/nodes/node_name/serverindex.html file for

a tag containing the property serverType=″DEPLOYMENT_MANAGER″.

v Within that tag, look for an entry with a property

endPointName=″SOAP_CONNECTOR_ADDRESS″.

v Within that tag, look for a ″port″ property. This is the port that the wsadmin tool should send on.

"com.ibm.bsf.BSFException: error while eval’ing Jacl expression: no such method command name

in class com.ibm.ws.scripting.AdminConfigClient" returned from wsadmin command.

This error is usually caused by a misspelled command name. Use the $AdminConfig help command to

get information about what commands are available. Note that command names are case-sensitive.

Chapter 10. Troubleshooting administration 2069

WASX7022E returned from running "wsadmin -c ..." command, indicating invalid command

If the command following -c appears to be valid, the problem may be caused by the fact that on Unix,

using wsadmin -c to invoke a command that includes dollar signs results in the shell attempting to do

variable substitution. To confirm that this is the problem, check the command to see if it contains an

unescaped dollar sign, for example: wsadmin -c ″$AdminApp install ″.

To correct this problem, escape the dollar sign with a backslash. For example: wsadmin -c ″\$AdminApp

install ...″.

com.ibm.ws.scripting.ScriptingException: WASX7025E: String "" is malformed; cannot create

ObjectName

One possible cause of this error is that an empty string was specified for an object name. This can happen

if you use one scripting statement to create an object name and the next statement to use that name,

perhaps in an ″invoke″ or ″getAttribute″ command, but you don’t check to see if the first statement really

returned an object name. For example (the following samples use basic Jacl commands in addition to the

wsadmin Jacl extensions to make a sample script):

#let’s misspell "Server"

set serverName [$AdminControl queryNames type=Srever,*]

$AdminControl getAttributes $serverName

To correct this error, make sure that object name strings have values before using them. For example:

set serverName[$AdminControl queryNames node=mynode,type=Server,name=server1,*]

if {$serverName == ""} {puts "queryNames returned empty - check query argument"}

else {$AdminControl getAttributes $serverName}

For details on Jacl syntax beyond wsadmin commands, refer to the Tcl developers’ site, http://www.tcl.tk.

"The input line is too long" error returned from the wsadmin command on a Windows platform

This error indicates that the Windows command line limit of 2048 characters has been exceeded, probably

due to a long profile path used within the wsadmin.bat command. You may get this error when running

wsadmin in a Windows command prompt or calling wsadmin from a .bat file, an ant build file, or Profile

Creation Tool. If this error results in running wsadmin in a way other than from the Profile Creation Tool,

you can avoid the problem by using the Windows subst command which allows you to map an entire path

to a virtual drive. To see the syntax of the subst command, enter help subst from a Windows command

prompt.

For example if the product resides in the c:\Program Files\IBM\WebSphere\AppServer directory, edit the

c:\Program Files\IBM\WebSphere\AppServer\bin\setupCmdLine.bat file. For example:

SET CUR_DIR=%cd%

cd /d "%~dp0.."

SET WAS_HOME=%cd%

cd /d "%CUR_DIR%"

@REM add the following two lines to workaround Windows 2K command line length limit

subst w: %WAS_HOME%

set WAS_HOME=w:

...

...

Then edit the setupCmdLine.bat file which resides in the bin directory of your profile. For example:

SET WAS_USER_PROFILE=...

SET USER_INSTALL_ROOT=...

SET WAS_HOME=c:\Program Files\IBM\WebSphere\AppServer

SET JAVA_HOME=c:\Program Files\IBM\WebSphere\AppServer\java

2070 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

http://www.tcl.tk

@REM add the following three lines to workaround Windows 2K command line length limit

subst w: %WAS_HOME%

set WAS_HOME=w:

set JAVA_HOME=%WAS_HOME%\java

...

...

If this error occurred while running the Profile Creation Tool, you have to rerun the Profile Creation Tool to

provide a shorter profile path with a shorter profile name. If this does not fix the problem, then you have to

follow the same instruction given above to edit the setupCmdLine.bat file resided in the bin directory of

your WebSphere install. After editing the file, rerun Profile Creation Tool. If the same problem persists,

then you may have to reinstall WebSphere with a shorter install path.

WASX701E: Exception received while running file ″scriptName.jacl″; exception information:

com.ibm.bsf.BSFException: error while evaluating Jacl expression: missing close-bracket

This error is caused by a mix-up between the code page that the scripting client expects to see and the

code page in which the Jacl script was written.

To fix this problem, set the -Dscript.encoding=script codepage option in the wsadmin.sh or wsadmin.bat

file to the code page of the Jacl script. The following guideline will help you to determine the code page of

the script:

v If the script was written in the OMVS interface using the OEDIT editor, the code page is IBM-037. In this

case, set the option to the following: -Dscript.encoding=Cp037

v If the script was written in a telnet session to the OMVS interface using the VI editor, the code page is

IBM-1047. In this case, set the option to the following: -Dscript.encoding=Cp1047

v IF the script was written on a personal computer, or any other ASCII machine, and was transferred to

the host as a text file, the code page is IBM-1047. In this case, set the option to the following:

-Dscript.encoding=Cp1047

v If the script was written on a personal computer, or any other ASCII machine, and transferred to the

host in binary format, the code page is ISO-8859-1 (ASCII). In this case, you do not need to set the

option because the default is ASCII. You should review other possible reasons for this error.

v

IBM Support has documents that can save you time gathering information needed to resolve this problem.

Before opening a PMR, see the IBM Support page.

Problems using tracing, logging or other troubleshooting features

What kind of problem are you having?

v Error messages when launching the Log Analyzer

v Netscape browser fails when trying to enable a component trace

Error messages when launching the Log Analyzer

Upon starting the Log Analyzer for the first time or after the Log Analyzer preferences files of the users are

deleted, the following message displays in the Log Analyzer shell window:

Cannot open input stream for waslogbrsys

This message is an informational message. You can disregard the message because it does not affect the

execution of the Log Analyzer.

The following error messages might display in the Log Analyzer shell window when you start the Log

Analyzer:

Chapter 10. Troubleshooting administration 2071

http://www-1.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCQTYF&q=mustgather

Cannot open input stream for default

Cannot open input stream for default

Cannot load configuration: default

Cannot open input stream for default

Cannot open input stream for default

Cannot load configuration: default

These error messages indicate corrupt or incomplete user preference files.

To resolve this problem, take the following steps:

1. Close the Log Analyzer.

2. Delete all user preference files in the %USERPROFILE%\logbr directory on Windows platforms or

$HOME/logbr directory on UNIX platforms.

3. Restart the Log Analyzer.

Note:Deleting all user preference files removes the preferences of Log Analyzer set by the user in the

preferences dialog.

Netscape browser fails when trying to enable a component trace

On systems using AIX, the Netscape browser fails when you try to enable trace on a component.

To work around this problem, do one of the following:

v Disable JavaScript on the browser and continue setting trace.

v Administer the AIX server from a remote machine running another browser and operating system.

v Change the trace manually in the server.xml file.

2072 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Notices

References in this publication to IBM products, programs, or services do not imply that IBM intends to

make these available in all countries in which IBM operates. Any reference to an IBM product, program, or

service is not intended to state or imply that only IBM’s product, program, or service may be used. Any

functionally equivalent product, program, or service that does not infringe any of IBM’s intellectual property

rights may be used instead of the IBM product, program, or service. Evaluation and verification of

operation in conjunction with other products, except those expressly designated by IBM, is the user’s

responsibility.

IBM may have patents or pending patent applications covering subject matter in this document. The

furnishing of this document does not give you any license to these patents. You can send license inquiries,

in writing, to:

 IBM Director of Licensing

 IBM Corporation

 500 Columbus Avenue

 Thornwood, New York 10594 USA

© Copyright IBM Corp. 2004 2073

2074 IBM WebSphere Application Server – Express, Version 6: Administering applications and their environment

Trademarks and service marks

Tor trademark attribution, visit the IBM Terms of Use Web site (http://www.ibm.com/legal/us/).

© Copyright IBM Corp. 2004 2075

	Contents
	How to send your comments
	Chapter 1. Overview and new features for administering applications and their environments
	Overview of administering applications and their environments
	Getting started with WebSphere Application Server
	Introduction: System administration
	Introduction: Administrative console
	Introduction: Administrative scripting (wsadmin)
	Introduction: Administrative commands
	Introduction: Administrative programs
	Introduction: Administrative configuration data

	Introduction: Servers
	Introduction: Application servers
	Introduction: Web servers

	Introduction: Environment

	Chapter 2. How do I administer applications and their environments?
	Chapter 3. Setting up the application serving environment
	Planning the installation (diagrams)
	Planning to install WebSphere Application Server - Express
	Planning to install Web server plug-ins
	Planning to install WebSphere Application Server Clients
	Planning to create application server environments
	Queuing network
	Queuing and clustering
	Queue configuration tips

	Configuring the product after installation
	firststeps command
	Using the Profile creation wizard
	Using the Profile creation wizard to create an application server
	Deleting a profile

	wasprofile command
	Introduction to terms that describe Version 6 profiles
	Location of the command file
	Logging
	Required disk space
	Concurrent profile creation
	Entering lengthy commands on more than one line
	wasprofile.sh command syntax
	wasprofile.bat command syntax
	Parameters
	Use case scenarios

	Using the installation verification test
	ivt command

	Configuring ports
	Port number settings in WebSphere Application Server versions

	Communicating with Web servers
	Web server plug-in properties settings
	Plug-in log file name
	Plug-in installation location
	Plug-in configuration file name
	Automatically generate plug-in configuration file
	Automatically propagate plug-in configuration file
	Ignore DNS failures during Web server startup
	Refresh configuration interval
	Plug-in logging
	Web server plug-in request and response optimization properties settings
	Web server plug-in caching properties settings
	Web server plug-in request routing properties settings

	Web server plug-in custom properties
	Web server plug-in configuration service properties settings
	Enable automated Web server configuration processing

	Application Server property settings for a Web server plug-in
	Server role
	Connect timeout
	Maximum number of connections that can be handled by the Application Server
	Use extended handshake to check whether Application Server is running
	Send the header "100 Continue" before sending the request content

	Web server plug-in configuration properties
	Web server plug-in connections
	Web server plug-in remote user information processing
	Web server plug-ins
	Checking your IBM HTTP Server version
	Web server tuning parameters
	Gskit install images files
	Plug-ins: Resources for learning
	Web server plug-in tuning tips
	Tuning Web servers

	Setting up the administrative architecture
	Administration service settings
	Standalone
	Preferred Connector
	Extension MBean Providers collection
	Extension MBean collection
	Java Management Extensions connector properties
	Java Management Extensions connectors
	Repository service settings

	Administrative agents: Resources for learning

	Configuring the environment
	Virtual hosts
	Why you would use virtual hosting
	The default virtual host (default_host)
	How requests map to virtual host aliases

	Configuring virtual hosts
	Virtual host collection

	Variables
	Configuring WebSphere variables
	WebSphere variables collection
	IBM Toolbox for Java JDBC driver
	Configure and use the jt400.jar file

	Shared library files
	Managing shared libraries
	Creating shared libraries
	Shared library collection
	Associating shared libraries with applications
	Associating shared libraries with servers
	Installed optional packages
	Using installed optional packages
	Library reference collection

	Environment: Resources for learning

	Working with server configuration files
	Configuration documents
	Configuration document descriptions
	Object names
	Configuration repositories
	Handling temporary configuration files resulting from session timeout
	Changing the location of temporary configuration files
	Changing the location of backed-up configuration files
	Changing the location of temporary workspace files
	Backing up and restoring administrative configurations
	Transformation of configuration files
	Server configuration files: Resources for learning

	Administering application servers
	Application servers
	Creating application servers
	Configuring application servers for UTF-8 encoding

	Managing application servers
	Server collection
	Starting servers
	Running application servers from a non-root user
	Detecting and handling problems with run-time components
	Stopping servers

	Creating generic servers
	Starting and terminating generic servers

	Configuring transport chains
	Transport chains
	HTTP transport channel custom property
	HTTP Tunnel transport channel custom property
	Troubleshooting transport chain problems
	Configuring HTTP transports
	Transport chains collection
	Transport chain settings
	HTTP tunnel transport channel settings
	HTTP transport channel settings
	TCP transport channel settings
	DCS transport channel settings
	Web container transport channel settings

	Custom services
	Developing custom services
	Custom service collection

	Process definition
	Defining application server processes
	Process definition settings
	Automatically restarting server processes

	Java virtual machines (JVMs)
	Using the JVM
	Java virtual machine settings
	Configuring JVM sendRedirect calls to use context root
	Setting custom JVM properties
	Tuning Java virtual machines

	Preparing to host applications
	Java memory tuning tips
	Tuning application servers
	Web services client to Web container optimized communication
	Application servers: Resources for learning

	Chapter 4. Using the administrative clients
	Using the administrative console
	Starting and stopping the administrative console
	Login settings
	Save changes to the master configuration

	Setting the session timeout for the administrative console
	Administrative console areas
	Taskbar
	Navigation tree
	Workspace
	Administrative console buttons
	Administrative console page features
	Administrative console navigation tree actions
	Administrative console taskbar actions

	Specifying console preferences
	Preferences settings
	Administrative console preference settings
	Administrative console scope settings

	Accessing help and product information from the administrative console
	Administrative console: Resources for learning

	Using scripting (wsadmin)
	Getting started with scripting
	Java Management Extensions (JMX)
	WebSphere Application Server configuration model
	Jacl
	Jython
	Scripting objects
	Starting the wsadmin scripting client
	Scripting: Resources for learning

	Deploying applications using scripting
	Installing applications with the wsadmin tool
	Uninstalling applications with the wsadmin tool

	Managing deployed applications using scripting
	Starting applications with scripting
	Updating installed applications with the wsadmin tool
	Stopping applications with scripting
	Listing the modules in an installed application with scripting
	Querying application state using scripting
	Disabling application loading in deployed targets using scripting
	Configuring applications for session management using scripting
	Configuring applications for session management in Web modules using scripting
	Exporting applications using scripting
	Configuring a shared library using scripting
	Configuring a shared library for an application using scripting
	Setting background applications using scripting

	Configuring servers with scripting
	Creating a server using scripting
	Configuring the Java virtual machine using scripting
	Configuring enterprise bean containers using scripting
	Configuring a Performance Manager Infrastructure service using scripting
	Limiting the growth of Java virtual machine log files using scripting
	Configuring an ORB service using scripting
	Configuring for processes using scripting
	Configuring transaction properties for a server using scripting
	Setting port numbers kept in the serverindex.xml file using scripting
	Disabling components using scripting
	Disabling services using scripting
	Dynamic caching with scripting

	Configuring connections to Webservers with scripting
	Regenerating the node plug-in configuration using scripting
	Creating new virtual hosts using templates with scripting

	Managing servers with scripting
	Stopping a node using scripting
	Starting servers using scripting
	Stopping servers using scripting
	Querying server state using scripting
	Listing running applications on running servers using scripting
	Starting listener ports using scripting
	Managing generic servers using scripting
	Setting development mode for server objects using scripting
	Disabling parallel startup using scripting
	Removing multicast endpoints using scripting
	Obtaining server version information with scripting

	Configuring security with scripting
	Enabling and disabling global security using scripting
	Enabling and disabling Java 2 security using scripting

	Configuring data access with scripting
	Configuring a JDBC provider using scripting
	Configuring new data sources using scripting
	Configuring new connection pools using scripting
	Configuring new data source custom properties using scripting
	Configuring new J2CAuthentication data entries using scripting
	Configuring new WAS40 data sources using scripting
	Configuring new WAS40 connection pools using scripting
	Configuring new WAS40 custom properties using scripting
	Configuring new J2C resource adapters using scripting
	Configuring custom properties for J2C resource adapters using scripting
	Configuring new J2C connection factories using scripting
	Configuring new J2C authentication data entries using scripting
	Configuring new J2C activation specs using scripting
	Configuring new J2C administrative objects using scripting
	Testing data source connections using scripting

	Configuring messaging with scripting
	Configuring the message listener service using scripting
	Configuring new JMS providers using scripting
	Configuring new JMS destinations using scripting
	Configuring new JMS connections using scripting
	Configuring new WebSphere queue connection factories using scripting
	Configuring new WebSphere topic connection factories using scripting
	Configuring new WebSphere queues using scripting
	Configuring new WebSphere topics using scripting
	Configuring new MQ queue connection factories using scripting
	Configuring new MQ topic connection factories using scripting
	Configuring new MQ queues using scripting
	Configuring new MQ topics using scripting

	Configuring mail, URLs, and resource environment entries with scripting
	Configuring new mail providers using scripting
	Configuring new mail sessions using scripting
	Configuring new protocols using scripting
	Configuring new custom properties using scripting
	Configuring new resource environment providers using scripting
	Configuring custom properties for resource environment providers using scripting
	Configuring new referenceables using scripting
	Configuring new resource environment entries using scripting
	Configuring custom properties for resource environment entries using scripting
	Configuring new URL providers using scripting
	Configuring custom properties for URL providers using scripting
	Configuring new URLs using scripting
	Configuring custom properties for URLs using scripting

	Troubleshooting with scripting
	Tracing operations with the wsadmin tool
	Configuring traces using scripting
	Turning traces on and off in servers processes using scripting
	Dumping threads in server processes using scripting
	Setting up profile scripts to make tracing easier using scripting

	Scripting reference material
	Wsadmin tool
	Commands for the Help object
	Commands for the AdminConfig object
	Commands for the AdminControl object
	Commands for the AdminApp object
	Commands for the AdminTask object
	Administrative command invocation syntax
	Properties used by scripted administration

	Using Ant to automate tasks
	ws_ant command
	Ant tasks for deployment and server operation
	Ant tasks for building application code

	Using administrative programs (JMX)
	Creating a custom Java administrative client program using WebSphere Application Server administrative Java APIs
	Developing an administrative client program

	Extending the WebSphere Application Server administrative system with custom MBeans
	Best practices for standard, dynamic, and open MBeans
	Creating and registering standard, dynamic, and open custom MBeans
	Java 2 security permissions

	Developing administrative programs for multiple Java 2 Platform, Enterprise Edition application servers
	Deploying and managing a custom Java administrative client program with multiple Java 2 Platform, Enterprise Edition application servers
	Migrating Java Management Extensions V1.0 to Java Management Extensions V1.2
	Java Management Extensions interoperability
	Managing applications through programming
	Installing an application through programming
	Uninstalling an application through programming
	Updating an application through programming
	Adding to, updating, or deleting part of an application through programming
	Preparing a module and adding it to an existing application through programming
	Preparing and updating a module through programming
	Deleting a module through programming
	Adding a file through programming
	Updating a file through programming
	Deleting a file through programming

	Using command line tools
	Example: Security and the command line tools
	startServer command
	stopServer command
	startManager command
	stopManager command
	startNode command
	stopNode command
	addNode command
	Best practices for adding nodes using command line tools

	serverStatus command
	removeNode command
	cleanupNode command
	syncNode command
	backupConfig command
	restoreConfig command
	EARExpander command
	GenPluginCfg command

	Chapter 5. Starting and stopping quick reference
	Chapter 6. Class loading
	Class loaders
	Configuring class loaders of a server
	Class loader collection
	Class loader ID
	Class loader mode
	Class loader settings
	Class loader ID
	Class loader mode

	Configuring application class loaders
	Configuring Web module class loaders
	Configuring class preloading
	Class loading: Resources for learning

	Chapter 7. Deploying and administering applications
	Enterprise (J2EE) applications
	System applications
	Installing application files
	Installable module versions
	Ways to install applications or modules
	Installing application files with the console
	Preparing for application installation settings

	Example: Installing an EAR file using the default bindings
	Installing J2EE modules with JSR-88
	Customizing modules using DConfigBeans

	Enterprise application collection
	Name
	Status
	Enterprise application settings
	Name
	Application binaries
	Use metadata from binaries
	Enable distribution
	Validation
	Class loader mode
	WAR class loader policy
	Enable class reloading
	Reloading interval
	Starting weight
	Background application
	Create MBeans for resources

	Configuring an application
	Application bindings
	Mapping modules to servers

	Starting and stopping applications
	Disabling automatic starting of applications
	Target mapping collection
	Target
	Node
	Version
	Status
	Target mapping settings

	Exporting applications
	Exporting DDL files
	Updating applications
	Ways to update application files
	Preparing for application update settings
	Application name
	Full application
	Single module
	Single file
	Partial application

	Hot deployment and dynamic reloading
	Changing or adding application files
	Changing or adding WAR files
	Changing or adding EJB Jar files
	Changing the HTTP plug-in configuration

	Uninstalling applications
	Removing a file
	Deploying and administering applications: Resources for learning

	Chapter 8. Developing WebSphere applications
	Web applications
	Task overview: Developing and deploying Web applications
	Web applications
	web.xml file
	Default Application
	Servlets
	JavaServer Pages
	Web modules
	Troubleshooting tips for Web application deployment
	Web applications: Resources for learning

	Task overview: Managing HTTP sessions
	Sessions
	Session security support
	Session management support
	Session tracking options
	Session recovery support
	Clustered session support
	Tuning session management
	Best practices for using HTTP Sessions
	Managing HTTP sessions: Resources for learning

	Modifying the default Web container configuration
	Web container
	Web container settings
	Web module deployment settings
	Web container custom properties
	Transaction class mapping file entries

	Configuring session management by level
	Configuring session tracking
	Serializing access to session data
	Session management settings
	Cookie settings
	Session management custom properties

	Configuring session tracking for Wireless Application Protocol (WAP) devices
	Configuring for database session persistence
	Switching to a multirow schema
	Configuring tablespace and page sizes for DB2 session databases
	Database settings
	Multirow schema considerations

	EJB applications
	Task overview: Using enterprise beans in applications
	Enterprise beans
	EJB modules
	EJB containers
	Enterprise beans: Resources for learning
	EJB method Invocation Queuing

	Using access intent policies
	Access intent policies
	Configuring read-read consistency checking with the assembly tools
	Access intent service
	Access intent design considerations
	Applying access intent policies to methods
	Access intent exceptions
	Access intent assembly settings
	Access intent best practices
	Frequently asked questions: Access intent

	Managing EJB containers
	EJB container settings
	EJB container system properties
	Changing enterprise bean types to initialize at application start time using the Application Server Toolkit
	Changing enterprise bean types to initialize at application start time using the administrative console
	EJB cache settings
	Container interoperability

	Deploying EJB modules
	EJB module collection
	EJB module settings

	Client applications
	Using application clients
	Application Client for WebSphere Application Server
	Application client troubleshooting tips

	Running application clients
	launchClient tool
	Java Web Start architecture for deploying application clients
	Using Java Web Start

	Installing Application Client for WebSphere Application Server
	Best practices for installing application clients
	Installing application clients silently
	Uninstalling Application Client for WebSphere Application Server

	Deploying J2EE application clients on workstation platforms
	Resource Adapters for the client
	Configuring resource adapters
	Starting the Application Client Resource Configuration Tool and opening an EAR file
	Data sources for the Application Client
	Configuring new data source providers (JDBC providers) for application clients
	Configuring new data sources for application clients
	Configuring mail providers and sessions for application clients
	Configuring new mail sessions for application clients
	URLs for application clients
	URL providers for the Application Client Resource Configuration Tool
	Configuring new URL providers for application clients
	Configuring new URLs with the Application Client Resource Configuration Tool
	WebSphere asynchronous messaging using the Java Message Service API for the Application Client Resource Configuration Tool
	Java Message Service (JMS) providers for clients
	Configuring Java messaging client resources
	Configuring new JMS connection factories for application clients
	Configuring new Java Message Service destinations for application clients
	Example: Configuring MQ Queue and Topic connection factories and destination factories for application clients
	Example: Configuring WAS Queue and Topic connection factories and destination factories for application clients
	Configuring new resource environment providers for application clients
	Configuring new resource environment entries for application clients
	Creating locally defined objects for message destination references and message destinations
	Managing application clients

	Web services
	Implementing Web services applications
	Web services
	Web Services for J2EE specification
	JAX-RPC
	SOAP
	SOAP with Attachments API for Java
	Web Services-Interoperability Basic Profile
	RMI-IIOP using JAX-RPC
	WS-I Attachments Profile
	Web services: Resources for learning

	Deploying Web services
	wsdeploy command

	Configuring Web service client bindings
	Web services client bindings

	Configuring the scope of a Web service port
	Web services implementation scope

	Web Services Invocation Framework (WSIF): Enabling Web services
	Goals of WSIF
	An overview of WSIF

	Getting started with UDDI Registry
	Getting started for UDDI Administrators
	Getting started for UDDI users

	Planning to use Web services
	Service-oriented architecture
	Web services approach to a service-oriented architecture
	Web services business models supported

	Setting up and deploying a new UDDI Registry
	Setting up a customized UDDI node
	Setting up a default UDDI node
	Creating a DB2 database
	Creating an Oracle database
	Creating a Cloudscape database
	Using a remote database for the UDDI Registry
	UDDI Registry Installation Verification Program (IVP)

	Publishing WSDL files
	WSDL
	WSDL architecture
	Multipart WSDL best practices

	Configuring endpoint URL information for JMS bindings
	Provide JMS and EJB endpoint URL information

	Configuring Web services applications with the wsadmin tool
	WSIF system management and administration
	Maintaining the WSIF properties file
	Enabling security for WSIF
	Troubleshooting the Web Services Invocation Framework

	Using the UDDI Registry
	An overview of the IBM Version 3 UDDI Registry
	UDDI Registry terminology
	UDDI Registry Security
	UDDI Registry user interface
	UDDI Registry Management Interfaces
	IBM Java API for XML Registries (JAXR) Provider for UDDI
	UDDI Registry Messages
	UDDI Registry samples

	Removing and reinstalling UDDI Registry
	Removing a UDDI Registry node
	Reinstalling the UDDI Registry application

	Configuring the UDDI Registry Application
	Configuring UDDI Security Roles
	Multiple language encoding support in UDDI
	Customizing the UDDI User Console (GUI)
	Configuring SOAP API and GUI service
	Configuring WebSphere to use HTTPS and SSL

	Managing the UDDI Registry
	UDDI node collection
	UDDI Registry Administrative Interface Overview
	Backing up and restoring the UDDI Registry database

	Data access resources
	Task overview: Accessing data from applications
	Resource adapter
	Connection factory
	JDBC providers
	Data sources
	Data access beans
	Connection management architecture
	Cache instances
	Resource adapter archive file
	Data access : Resources for learning

	Deploying data access applications
	Relationship of assembly and administrative console data access settings
	Installing J2EE Connector resource adapters
	Pretesting pooled connections to ensure validity
	Creating and configuring a JDBC provider and data source
	Configuring J2EE Connector connection factories in the administrative console
	Security of lookups with component managed authentication
	Configuring data access for the Application Client
	Configuring Cloudscape Version 5.1.60x
	DB2 tuning parameters
	Vendor-specific data sources minimum required settings
	Connector modules collection

	Messaging resources
	Learning about messaging with WebSphere Application Server
	JMS providers
	Styles of messaging in applications
	Using JMS interfaces to explicitly poll for messages
	Using message-driven beans to automatically retrieve messages
	Asynchronous messaging - security considerations
	Messaging: Resources for learning

	Installing and configuring a JMS provider
	Installing the default messaging provider

	Using asynchronous messaging
	Maintaining Version 5 default messaging resources
	Listing version 5 default messaging resources
	Configuring Version 5 default JMS resources
	Managing Version 5 JMS servers in a deployment manager cell
	Configuring authorization security for a Version 5 default messaging provider
	JMS components on version 5 nodes

	Using JMS resources of WebSphere MQ
	Installing WebSphere MQ as a JMS provider
	Listing JMS resources for WebSphere MQ
	Configuring JMS resources for the WebSphere MQ messaging provider
	Securing WebSphere MQ messaging directories and log files

	Using JMS resources of a generic provider
	Defining a generic messaging provider
	Displaying administrative lists of generic messaging resources
	Configuring JMS resources for a generic messaging provider

	Administering support for message-driven beans
	Configuring a J2C activation specification
	Configuring a J2C administered object
	Configuring message listener resources for message-driven beans
	Important file for message-driven beans

	Mail, URLs, and other J2EE resources
	Using mail
	JavaMail API
	Mail providers and mail sessions
	Mail migration tip
	JavaMail security permissions best practices
	Mail: Resources for learning
	JavaMail support for IPv6

	Using URL resources within an application
	URLs
	URL provider collection
	URL provider settings
	URL configuration collection
	URL configuration settings
	URLs: Resources for learning

	Resource environment entries
	Resource environment providers and resource environment entries
	Resource Environment Provider collection
	Resource environment entries collection
	Referenceables collection

	Configuring mail providers and sessions
	Mail provider collection
	Mail provider settings
	Protocol providers collection
	Protocol providers settings
	Mail session collection
	Mail session settings

	Security
	Securing applications and their environments
	Planning to secure your environment
	Security considerations when adding a Base Application Server node to Network Deployment
	Creating login key files
	Preparing truststore files
	Configuring the application server for interoperability

	Implementing security considerations at installation time
	Securing your environment before installation
	Securing your environment after installation
	Protecting plain text passwords
	PropFilePasswordEncoder command reference

	Integrating IBM WebSphere Application Server security with existing security systems
	Interoperability issues for security
	Interoperating with a C++ common object request broker architecture client
	Interoperating with previous product versions
	Security: Resources for learning

	Administering security
	Global security
	Configuring global security
	Configuring server security
	Administrative console and naming service authorization
	Assigning users to administrator roles
	Assigning users to naming roles
	Authentication mechanisms
	Configuring authentication mechanisms
	User registries
	Configuring user registries
	Java Authentication and Authorization Service
	Configuring application logins for Java Authentication and Authorization Service
	Identity mapping
	Configuring inbound identity mapping
	Configuring outbound mapping to a different target realm
	Security attribute propagation
	Enabling security attribute propagation
	Default PropagationToken
	Implementing a custom PropagationToken
	Default AuthorizationToken
	Implementing a custom AuthorizationToken
	Default SingleSignonToken
	Implementing a custom SingleSignonToken
	Default AuthenticationToken
	Implementing a custom AuthenticationToken
	Propagating a custom Java serializable object
	Authorization in WebSphere Application Server
	JACC providers
	JACC support in WebSphere Application Server
	Enabling an external JACC provider
	Propagating security policy of installed applications to a JACC provider using wsadmin
	Configuring a JACC provider
	Interfaces used to support JACC
	Tivoli Access Manager integration as the JACC provider
	Tivoli Access Manager security for WebSphere Application Server
	Creating the security administrative user
	Tivoli Access Manager JACC provider configuration
	Configuring the JACC provider for Tivoli Access Manager using the wsadmin utility
	Configuring the JACC provider for Tivoli Access Manager using the administrative console
	Enabling the JACC provider for Tivoli Access Manager
	Configuring additional authorization servers
	Role-based security with embedded Tivoli Access Manager
	Administering security users and roles with Tivoli Access Manager
	Configuring Tivoli Access Manager groups
	Tivoli Access Manager JACC provider configuration properties
	Logging Tivoli Access Manager security
	Enabling embedded Tivoli Access Manager
	Disabling embedded Tivoli Access Manager client
	Disabling embedded Tivoli Access Manager client using the Administration Console
	Disabling embedded Tivoli Access Manager client using wsadmin
	Forcing the unconfiguration of the Tivoli Access Manager JACC provider
	Updating console users and groups
	The Tivoli Access Manager migrateEAR utility
	Troubleshooting authorization providers
	Authentication protocol for EJB security
	Configuring Common Secure Interoperability Version 2 and Security Authentication Service authentication protocols
	Secure Sockets Layer
	Configuring Secure Sockets Layer
	Cryptographic token support
	Opening a cryptographic token using the key management utility (iKeyman)
	Configuring to use cryptographic tokens
	Using Java Secure Socket Extension and Java Cryptography Extension with Servlets and enterprise bean files
	Java 2 security
	Configuring Java 2 security

	Deploying secured applications
	Assigning users and groups to roles
	Delegations
	Assigning users to RunAs roles
	Updating and redeploying secured applications

	Naming and directory
	Using naming
	Naming
	Name space logical view
	Initial context support
	Lookup names support in deployment descriptors and thin clients
	JNDI support in WebSphere Application Server
	Configured name bindings
	Name space federation
	Name space bindings
	Naming and directories: Resources for learning

	Configuring name servers
	Name server settings

	Configuring and viewing name space bindings
	String binding settings
	CORBA object binding settings
	Indirect lookup binding settings
	EJB binding settings
	Name space binding collection

	Developing applications that use JNDI
	Example: Getting the default initial context
	Example: Getting an initial context by setting the provider URL property
	Example: Setting the provider URL property to select a different root context as the initial context
	Example: Looking up an EJB home with JNDI
	Example: Looking up a JavaMail session with JNDI
	JNDI interoperability considerations
	JNDI caching
	JNDI cache settings
	Example: Controlling JNDI cache behavior from a program
	JNDI name syntax
	INS name syntax
	JNDI to CORBA name mapping considerations
	Example: Setting the syntax used to parse name strings

	Developing applications that use CosNaming (CORBA Naming interface)
	Example: Getting an initial context with CosNaming
	Example: Looking up an EJB home with CosNaming

	Object Request Broker
	Managing Object Request Brokers
	Object Request Brokers
	Logical pool distribution
	Object Request Broker tuning guidelines
	Object Request Broker service settings
	Object Request Broker custom properties
	Object Request Broker communications trace
	Client-side programming tips for the Java Object Request Broker service
	Character code set conversion support for the Java Object Request Broker service
	Object Request Brokers: Resources for learning

	Transactions
	Configuring transaction properties for an application server
	Transaction service settings

	Using the transaction service
	Transaction support in WebSphere Application Server
	Using local transactions
	Transaction service exceptions
	UserTransaction interface - methods available

	Managing active and prepared transactions
	Managing transaction logging for optimum server availability
	Configuring transaction aspects of servers for optimum availability
	Moving a transaction log from one server to another
	Restarting an application server on a different host

	Interoperating transactionally between application servers
	Using one-phase and two-phase commit resources in the same transaction
	Coordinating access to 1-PC and 2-PC-capable resources within the same transaction
	Assembling an application to use one-phase and two-phase commit resources in the same transaction
	Configuring an application server to log heuristic reporting
	Exceptions thrown for transactions involving both single- and two-phase commit resources
	Last Participant Support: Resources for learning

	WebSphere programming extensions
	ActivitySessions
	Configuring the default ActivitySession timeout for an application server
	Using the ActivitySession service
	Disabling or enabling the ActivitySession service

	Application profiling
	Task overview: Application profiling
	Managing application profiles

	Asynchronous beans
	Using asynchronous beans
	Configuring timer managers
	Configuring work managers

	Dynamic cache
	Task overview: Using the dynamic cache service to improve performance
	Enabling the dynamic cache service
	Configuring cacheable objects with the cachespec.xml file
	Configuring command caching
	Configuring the Web services client cache
	Using the DistributedMap and DistributedObjectCache interfaces for the dynamic cache
	Displaying cache information
	Using servlet cache instances

	Dynamic query
	Using EJB query
	Using the dynamic query service

	Internationalization
	Task overview: Internationalizing applications
	Task overview: Internationalizing interface strings (localizable-text API)
	Task overview: Internationalizing application components (internationalization service)
	Administering the internationalization service

	Object pools
	Using object pools

	Scheduler
	Using schedulers
	Managing schedulers

	Startup beans
	Using startup beans
	Enabling startup beans in the administrative console

	Work area
	Task overview: Implementing shared work areas
	Developing applications that use work areas
	Managing the work area service
	Configuring work area partitions on the server

	Chapter 9. Troubleshooting deployment
	Errors or problems deploying, installing, or promoting applications
	Troubleshooting testing and first time run problems
	Errors starting an application
	The application does not start or starts with errors
	A web resource does not display
	Cannot uninstall an application or remove a node or application server

	Chapter 10. Troubleshooting administration
	Administration and administrative console troubleshooting tips
	Installation completes but the administrative console does not start
	Errors connecting to the administrative console from a browser
	When a single user that uses multiple instances of the Mozilla browser logs into the administrative console, the first user ID that logs into the administrative console is the current user.
	A user on Mozilla browser Version 1.4 selects a check box on a collection table, presses Enter, and receives an error.
	A user on Mozilla browser Version 1.4 enters an invalid ID or password, presses Enter, and receives an error message

	Web server plug-in troubleshooting tips
	The server process does not start or starts with errors
	The stopServer.sh hangs and creates a Java core dump (Red Hat Linux)
	Problems starting or using the wsadmin command
	Problems using tracing, logging or other troubleshooting features

	Notices
	Trademarks and service marks

