
WebSphere® Application Server V4.0 for z/OS and OS/390

Assembling J2EE Applications

SA22-7836-01

���

WebSphere® Application Server V4.0 for z/OS and OS/390

Assembling J2EE Applications

SA22-7836-01

���

Note
Before using this information and the product it supports, be sure to read the general information under
“Appendix D. Notices” on page 167.

Second Edition (June 2001)

This is a major revision of SA22–7836–00

This edition applies to WebSphere Application Server V4.0 for z/OS and OS/390 (5655-F31), and to all subsequent
releases and modifications until otherwise indicated in new editions.

The most current versions of the WebSphere Application Server V4.0 for z/OS and OS/390 publications are at this
Web site: http://www.ibm.com/software/webservers/appserv/

© Copyright International Business Machines Corporation 2000, 2001. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures. v

Tables. vii

About this book ix
Who should read this book ix
Where to find related information ix
How to send your comments. x

Summary of changes xiii

Part 1. Introducing the WebSphere
for z/OS J2EE server 1

Chapter 1. Overview of the WebSphere for
z/OS J2EE server 3

Chapter 2. Overview of application tools . . 7

Chapter 3. Overview of J2EE server
definition and activation 11

Part 2. Creating, assembling and
deploying J2EE server
applications 17

Chapter 4. Setting up the application
development environment. 19
Steps for setting up your workstation . . . 19
Steps for setting up z/OS or OS/390. . . . 23

Chapter 5. Creating new application
components to be installed in a J2EE
server 25
Creating Enterprise beans 25

Checklist for developing Enterprise beans 26
Developing Enterprise beans 27
Packaging beans in JAR files 28

Creating Web applications 29
Developing Web components 29
Packaging Web components in WAR files 30

Chapter 6. Assembling a J2EE application 33

Steps for installing the Application Assembly
tool 33
Steps for assembling a new J2EE application 35

Chapter 7. Creating a J2EE server run-time
environment 43
Steps for completing manual OS/390 tasks. . 44
Steps for creating JCL procedures for the
control and server regions 46
Steps for setting properties for the JVM . . . 47
Enabling J2EE server support for Web
applications (optional) 47

Setting up a Web container in a J2EE
server 48
Exposing Web applications to HTTP clients 52
Configuring HTTP session support . . . 54

Defining the server configuration 62
Steps for starting the Administration
application 63
Steps for starting a conversation 63
Steps for adding the J2SERV server . . . 64
Steps for adding the J2SERV1 server
instance 66
Steps for adding a J2EE resource 66
Steps for adding the J2EE resource instance 67
Steps for installing a J2EE application . . 67
Steps for validating the new conversation
model 70
Steps for committing the conversation . . 70
Steps for marking z/OS or OS/390 tasks
as completed. 70
Steps for activating the server
configuration. 71

Chapter 8. Creating and running J2EE
application clients 73
WebSphere Application Server Standard
Edition for z/OS or OS/390 clients 73
Native z/OS or OS/390 Java clients 76
WebSphere Application Server Advanced
Edition and Standard Edition clients on
non-z/OS and non-OS/390 platforms . . . 77
Security considerations for J2EE applications 79

© Copyright IBM Corp. 2000, 2001 iii

||

|
||
||
||

Part 3. Working with J2EE
applications in the run-time
environment 81

Chapter 9. Installing applications in a
WebSphere for z/OS server 83
Steps for using the export/import process
through the Administration application . . . 83
Installing applications using scripts 85

Chapter 10. Collecting data about J2EE
application activity 87
Collecting J2EE application information
through SMF records 87
Logging messages and trace data for Java
applications 87

Background on issuing application
messages to the z/OS or OS/390 master
console. 89
Background on issuing trace requests for
your application 91
Steps for coding your Java application to
issue messages and trace requests 93
Steps for preparing the z/OS or OS/390
environment for logging Java application
messages and trace requests. 99
Background on viewing messages and
trace data 102

Part 4. Migrating applications to
the J2EE server 107

Chapter 11. Background on migration . . 109

Chapter 12. Migrating applications to a
new release of WebSphere for z/OS . . . 111
Migration scenarios for applications running
on WebSphere Application Server for z/OS
or OS/390 Standard Edition 112
Migration scenarios for applications running
on WebSphere Application Server for
OS/390 Enterprise Edition V3.02 112

Chapter 13. Migrating applications to the
WebSphere for z/OS platform 117

Chapter 14. Upgrading applications that
are already installed in a WebSphere for
z/OS J2EE server 119

Part 5. Appendixes 121

Appendix A. Environment and JVM
properties files 123
Environment files and environment variables 123

How WebSphere for z/OS manages
server environment variables and
environment files 123
How run-time server start procedures
point to their environment files 124
Environment variables for OS/390 clients 125
Note on using substitution variables . . 125
Environment variable syntax 126
Environment variable use 126
Environment variable descriptions . . . 134

JVM properties and properties files 150
How to manage JVM properties 151
JVM property use 151
Properties descriptions 152

Appendix B. Default webcontainer.conf
file 153

Appendix C. Migration considerations for
Web applications running on WebSphere
Application Server Standard Edition. . . 161
Migrating from version 3.5. 161
Migrating from V3.02 162
Migrating from JDK 1.1x to SDK 1.3 . . . 163
Setting runtime properties 165
Setting Session properties 165
Accessing services 166
Migrating Web applications to WAR files 166
Servlet reloading 166
Serving servlets by class name 166

Appendix D. Notices 167
Examples in this book 169
Programming interface information 169
Trademarks 169

Glossary 171

Index 173

iv WebSphere Application Server V4.0 for z/OS and OS/390: Assembling J2EE Applications

Figures

1. The new WebSphere for z/OS server for
J2EE applications 3

2. Potential clients of application
components installed in the J2EE server . 5

3. Possible configurations of Standard
Edition for z/OS or OS/390 and the J2EE
server. 6

4. Tools and output for developing,
assembling, and installing components in
a J2EE server 7

5. Supported J2EE application components 8
6. Model of a J2EE server 12
7. Installing a J2EE application in a J2EE

server 14
8. An active J2EE application server 15

© Copyright IBM Corp. 2000, 2001 v

vi WebSphere Application Server V4.0 for z/OS and OS/390: Assembling J2EE Applications

Tables

1. Current WebSphere for z/OS support for
J2EE technologies 4

2. Software requirements for Java 2
Enterprise Edition application
components 19

3. References for installation or migration
information for application development
software 20

4. References for installation or migration
information for assembly and
deployment software 21

5. Checklist for developing Enterprise
beans 27

6. Trace setting property types and their
corresponding JRas trace types . . . 100

7. Application migration paths at a glance 107
8. Checklist of roles and potential

migration actions 109
9. Summary of migration tasks for

WebSphere Application Server for
OS/390 Enterprise Edition V3.02
applications 113

10. Summary of migration scenarios for
applications in other WebSphere family
environments 118

11. Where to use environment variables 128
12. Where to use JVM properties 152

© Copyright IBM Corp. 2000, 2001 vii

viii WebSphere Application Server V4.0 for z/OS and OS/390: Assembling J2EE Applications

About this book

WebSphere Application Server V4.0 for z/OS and OS/390: Assembling J2EE
Applications, SA22-7836 describes how to create, assemble, and install Java 2
Enterprise Edition (J2EE) applications to run in the WebSphere Application
Server V4.0 for z/OS and OS/390 environment. These J2EE applications may
consist of Enterprise Java beans, Java servlets and JavaServer Pages (JSPs).
WebSphere for z/OS J2EE servers provide an application environment that
allows these applications to be highly managed and integrated with databases
and transactional systems on z/OS or OS/390.

Note: The full product name is “WebSphere Application Server V4.0 for z/OS
and OS/390,” referred to in this text as “WebSphere for z/OS.”

Who should read this book

This book is intended primarily for programmers who fulfill the tasks defined
in the Sun Microsystems Java 2 Enterprise Edition Specification V1.2 for the
roles of Application Component Provider, Application Assembler, and
Deployer. For details about those roles and associated responsibilities, refer to
the Sun Microsystems J2EE specification, which is available at:
http://java.sun.com/

Where to find related information

This is a list of books that are in the WebSphere for z/OS library. They can be
found at the following Web site:
http://www.ibm.com/software/webservers/appserv/

v WebSphere Application Server V4.0 for z/OS and OS/390: Program Directory,
GI10-0680, describes the elements of and the installation instructions for
WebSphere for z/OS.

v WebSphere Application Server V4.0 for z/OS and OS/390: License Information,
LA22-7855, describes the license information for WebSphere for z/OS.

v WebSphere Application Server V4.0 for z/OS and OS/390: Installation and
Customization, GA22-7834, describes the planning, installation, and
customization tasks and guidelines for WebSphere for z/OS.

v WebSphere Application Server V4.0 for z/OS and OS/390: Messages and
Diagnosis, GA22-7837, provides diagnosis information and describes
messages and codes associated with WebSphere for z/OS.

© Copyright IBM Corp. 2000, 2001 ix

v WebSphere Application Server V4.0 for z/OS and OS/390: Operations and
Administration, SA22-7835, describes system operations and administration
tasks.

v WebSphere Application Server V4.0 for z/OS and OS/390: Assembling J2EE
Applications, SA22-7836, describes how to develop, assemble, and install
J2EE applications in a WebSphere for z/OS J2EE server. It also includes
information about migrating applications from previous releases of
WebSphere Application Server for OS/390, or from other WebSphere family
platforms.

v WebSphere Application Server V4.0 for z/OS and OS/390: Assembling CORBA
Applications, SA22-7848, describes how to develop, assemble, and deploy
CORBA applications in a WebSphere for z/OS (MOFW) server.

v WebSphere Application Server V4.0 for z/OS and OS/390: System Management
User Interface, SA22-7838, describes the system administration and
operations tasks as provided in the Systems Management User Interface.

v WebSphere Application Server V4.0 for z/OS and OS/390: System Management
Scripting API, SA22-7839, describes the functionality of the WebSphere for
z/OS Systems Management Scripting API product.

You might also need to refer to information about other z/OS or OS/390
elements and products. All of this information is available through links at the
following Internet locations:
http://www.ibm.com/servers/eserver/zseries/zos/
http://www.ibm.com/servers/s390/os390/

Here are some books that you might find particularly helpful:
v Getting Started with WebSphere Application Server, SC09-4581, provides an

overview of WebSphere for z/OS and describes requirements for setting up
the environment.

v Building Business Solutions with WebSphere, SC09-4432

How to send your comments

Your feedback is important in helping to provide the most accurate and
highest quality information. You can e-mail your comments to:
wasdoc@us.ibm.com

or fax them to 919-254-0206.

Be sure to include the document name and number, the WebSphere
Application Server version, and, if applicable, the specific page, table, or
figure number on which you are commenting.

x WebSphere Application Server V4.0 for z/OS and OS/390: Assembling J2EE Applications

When you send information to IBM, you grant IBM a nonexclusive right to
use or distribute the information in any way it believes appropriate without
incurring any obligation to you.

About this book xi

|

xii WebSphere Application Server V4.0 for z/OS and OS/390: Assembling J2EE Applications

Summary of changes

Summary of changes
for SA22-7836-01
WebSphere for z/OS
as updated, June 2001
service level W400018

This book contains information previously presented in SA22–7836-00, which
supports WebSphere for z/OS. The following is a summary of changes to this
information:
v In various topics in “Part 2. Creating, assembling and deploying J2EE server

applications” on page 17, the maximum length of security role names has
been corrected. The maximum length is 246 characters.

v The topic “Steps for installing a J2EE application” on page 67 has been
updated to include instructions for replacing the resource reference
ws390rt/cmp/jdbc/CMPDS with a valid datasource for backing entity beans
that use container-managed persistence (CMP).

v The following sections contain information that was previously available
through the document WebSphere Application Server V4.0 for z/OS or OS/390:
Enabling Web Applications on a J2EE server:
– “Enabling J2EE server support for Web applications (optional)” on

page 47
– “Appendix B. Default webcontainer.conf file” on page 153
– “Appendix C. Migration considerations for Web applications running on

WebSphere Application Server Standard Edition” on page 161
v The information in “Chapter 8. Creating and running J2EE application

clients” on page 73 has been clarified, including updates introduced through
APAR PQ49461 (PTF UQ54982, service level W400017):
– The initial JNDI context factory property setting is now

com.ibm.websphere.naming.WsnInitialContextFactory

– J2EE application clients must specify the javax.naming.provider.url
property to access the WebSphere for z/OS naming service on another
sysplex, or to access the JNDI on an Advanced EditionWebSphere
Application Server running on a workstation platform.

v The information in “Logging messages and trace data for Java applications”
on page 87 has been changed to reflect the following behavior, introduced
through APAR PQ47682 (PTF UQ53715, service level W400010):

© Copyright IBM Corp. 2000, 2001 xiii

|

|

|
|
|
|
|

|
|
|

|
|
|

|
|
|
|

|
|
|

|
|

|

|
|

|
|
|

|
|

|
|
|
|

|
|
|

All messages that your application issues will appear in the CTRACE data
set for WebSphere for z/OS. Some messages also will appear on the master
console or in the error log, depending on the message type:
– TYPE_INFORMATION (or TYPE_INFO) will appear on the master console.
– TYPE_ERROR (or TYPE_ERR) will appear in the error log.

Note that comments in the sample code in section “Steps for coding your
Java application to issue messages and trace requests” on page 93 also have
changed to reflect the changed destinations for messages.

Technical changes or additions to the text and illustrations are indicated by a
vertical line to the left of the change.

xiv WebSphere Application Server V4.0 for z/OS and OS/390: Assembling J2EE Applications

|
|
|

|

|

|
|
|

|
|

Part 1. Introducing the WebSphere for z/OS J2EE
server

© Copyright IBM Corp. 2000, 2001 1

2 WebSphere Application Server V4.0 for z/OS and OS/390: Assembling J2EE Applications

Chapter 1. Overview of the WebSphere for z/OS J2EE
server

WebSphere Application Server for z/OS and OS/390 provides a highly
available, secure, reliable, and scalable run-time environment for Java 2
Enterprise Edition (J2EE) applications. This WebSphere for z/OS run-time
includes servers for both J2EE and CORBA applications, through its J2EE
server and managed-object framework (MOFW) servers, respectively. Figure 1
presents an illustration of the WebSphere for z/OS environment.

The primary focus for WebSphere for z/OS, however, is its J2EE server, which
supports both Enterprise beans and Web applications that conform to the J2EE
specifications and packaging standards published by Sun Microsystems. These
J2EE application components that run in a WebSphere for z/OS J2EE server
can use both:
v The application programming interfaces (APIs) and services that the Java 2

Standard Edition (J2SE) Software Development Kit (SDK) V1.3 provides,
and

Figure 1. The new WebSphere for z/OS server for J2EE applications

© Copyright IBM Corp. 2000, 2001 3

v Enterprise services such as Java Database Connectivity (JDBC), Java
Naming and Directory Interface (JNDI), and the Java Transaction Service
(JTS) and API.

Current WebSphere for z/OS support includes the J2EE technologies listed in
Table 1.

Table 1. Current WebSphere for z/OS support for J2EE technologies

J2EE technology Support in WebSphere for z/OS J2EE server

Java 2 Standard Edition (J2SE)
Software Development Kit (SDK)

V1.3

Enterprise JavaBeans V1.1 (but also supports V1.0 specification)

Java servlets V2.2 specification

JavaServer Pages (JSPs) V1.1 specification

Java Transaction Service (JTS) and API
(JTA)

V1.0 supported with distributed transactions

Java Database Connectivity (JDBC) JDBC V2.1 and JDBC Standard Extensions
V2.0 (JDBC V1.x is supported for
compatibility)

Java Naming and Directory Interface
(JNDI)

1.2

Java Remote Method Invocation (RMI)
and RMI/IIOP

1.0

Java IDL Supported

Java Messaging Service (JMS) Not currently supported

JavaBeans Activation Framework (JAF) Not currently supported

JavaMail Not currently supported

Connectors For Web components only: IBM Common
Connector Framework (CCF) connectors:
v The IMS Connect product (5655-E51)
v CICS Transaction Gateway product (5648–

B43)

The WebSphere for z/OS J2EE server supports a variety of client applications,
which can access either Enterprise beans or Web applications, as shown in
Figure 2 on page 5. Note that:
v Components in a WebSphere for z/OS J2EE server may be clients of

components in another J2EE server, on the same or a different z/OS or
OS/390 image. Also:
– Servlets can drive CORBA-based Java business objects (BOs) in a MOFW

server.
– Enterprise beans and Java BOs can interoperate.

4 WebSphere Application Server V4.0 for z/OS and OS/390: Assembling J2EE Applications

C++ business objects in a MOFW server, however, cannot access application
components in a J2EE server.

v Web components (servlets and JavaServer Pages) that run in WebSphere
Application Server Standard Edition can be:
– Clients that drive Enterprise beans in the WebSphere for z/OS J2EE

server.
– Web components that can be migrated to run in the WebSphere for z/OS

J2EE server.

Figure 3 on page 6 illustrates the two possible configurations through which
you can enable Web serving on z/OS or OS/390: Directing requests from the
HTTP server to either:
1. Web applications in WebSphere Application Server Standard Edition

Versions 3.5 or 3.02, or

Figure 2. Potential clients of application components installed in the J2EE server

Chapter 1. Overview of the WebSphere for z/OS J2EE server 5

2. Web applications in a Web container in a WebSphere for z/OS J2EE server.
This option uses a WebSphere Application Server plug-in to direct requests
to WebSphere for z/OS.

Because Enterprise beans and Web applications must conform to J2EE
packaging standards, WebSphere for z/OS has introduced new tools to help
you prepare J2EE applications for installation in a WebSphere for z/OS J2EE
server. The following topics briefly review how to:
v Create, assemble, and install (or deploy) J2EE applications in a WebSphere

for z/OS J2EE server. The assembly stage requires the use of a new tool, the
WebSphere for z/OS Application Assembly tool. See “Chapter 2. Overview
of application tools” on page 7.

v Define and activate a WebSphere for z/OS J2EE server. This process
requires the use of the WebSphere for z/OS Administration application. The
Administration application is also known as the Systems Management
End-User Interface (SM EUI).
If you have used the WebSphere Application Server Enterprise Edition for
OS/390 product, you will notice some differences when you use the
Administration application. See “Chapter 3. Overview of J2EE server
definition and activation” on page 11.

Figure 3. Possible configurations of Standard Edition for z/OS or OS/390 and the J2EE server

6 WebSphere Application Server V4.0 for z/OS and OS/390: Assembling J2EE Applications

Chapter 2. Overview of application tools

To understand the process description in this chapter, you might need to
review some J2EE terminology: A Java 2 Enterprise Edition (J2EE) application
is comprised of J2EE modules, which, in turn, are comprised of J2EE
components:
v Enterprise beans
v Web components; that is, servlets or JavaServer Pages (JSPs)
v Application clients
v Applets

A J2EE module may contain one or more of the same type of component. J2EE
modules are archives: Java archive (JAR) files or Web application archive
(WAR) files. J2EE applications, collections of J2EE modules, are packaged in
Enterprise archive (EAR) files. You can install J2EE applications in WebSphere
for z/OS only when they are packaged in EAR files.

The J2EE application components that WebSphere for z/OS currently supports
in its J2EE server are Enterprise beans and Web components. The J2EE server
supports Enterprise beans through its EJB container, and supports servlets and
JSPs through its Web container.

To create the supported components for a J2EE application, you need to be
familiar with the Sun Microsystems specifications for each type of
component— Enterprise bean, servlet, or JSP— and the specification levels
that WebSphere for z/OS supports. With that knowledge, you may begin the
development and deployment process, as illustrated in Figure 4:

Figure 4. Tools and output for developing, assembling, and installing components in a J2EE server

© Copyright IBM Corp. 2000, 2001 7

1. According to your business goals, define and implement application
components and the associated classes or files that each component
requires. To develop application components, you may use a tool like
IBM’s VisualAge for Java.
As part of the component development process, the tools you use create a
deployment descriptor, which contains attribute and environment settings
that you select to define how a J2EE server is to manage each application
component’s lifecycle and resources. You may test these definitions in the
workstation development environment, because they are
platform-independent specifications.
When you have completed this stage of the process, you have one or more
of the following artifacts, as illustrated in Figure 5:
v Enterprise beans, their classes and deployment descriptor packaged in

Java archive (JAR) files
v Web applications, consisting of servlets, their classes and descriptors,

JSPs, and static files, such as HTML or GIFs, packaged in Web
application archive (WAR) files

Note that each JAR file may contain one or more Enterprise beans;
similarly, each WAR file may contain multiple servlets or JSPs. These JAR
and WAR files become the input for the next stage: assembly and
deployment.

Figure 5. Supported J2EE application components

8 WebSphere Application Server V4.0 for z/OS and OS/390: Assembling J2EE Applications

|
|

2. Assemble and deploy J2EE application components
During application assembly and deployment, you need to assemble these
modules into an Enterprise archive (EAR) file, which is the only type of
file that WebSphere for z/OS accepts for installation in a J2EE server.
To assemble an application for installation on WebSphere for z/OS, you
must use the WebSphere for z/OS Application Assembly tool, which:
v Generates code for z/OS or OS/390, including remote interfaces, home

interfaces, ties and stubs, keys, handles, finder helpers, and code related
to persistence.

v Converts the deployment descriptors for V1.0 Enterprise beans to match
the V1.1 specification level. This capability enables WebSphere for z/OS
to support V1.0 beans.

3. Install the J2EE application
To install an application on WebSphere for z/OS, you must use the
WebSphere for z/OS Administration application. Through the installation
process, deployment descriptors are customized for the WebSphere for
z/OS environment, and application components are loaded into the
WebSphere for z/OS J2EE server. Specifically:
v Application artifacts (including JAR and EAR files) are transferred from

the workstation to z/OS or OS/390.
v Application metadata is stored so that WebSphere for z/OS can access

and manage J2EE application components.
v Bean and servlet resources and references are resolved through the use

of the Java Naming and Directory Interface (JNDI).

Note: Only server-side java:comp look-ups are possible, because
WebSphere for z/OS does not provide client container support. In
other words, only Enterprise beans, servlets, and JSPs running in
the J2EE server can use java:comp look-ups, as long as
development tools used to create those components also support
JNDI look-ups for java:comp names. Clients and applets must use
explicit names for application components and homes.

v The container parameters for the J2EE server are configured through the
deployment descriptors for installed applications, modules, components,
and methods.

v Web applications are provided with a fully qualified URI that enables
the WAR files and the EJB JAR files to be accessed through HTTP
protocol when requested by a client.

Chapter 2. Overview of application tools 9

10 WebSphere Application Server V4.0 for z/OS and OS/390: Assembling J2EE Applications

Chapter 3. Overview of J2EE server definition and
activation

Once you have developed and assembled an executable J2EE application, you
need to install the application in an appropriate run-time environment. For
the z/OS or OS/390 platform, the run-time environment is a WebSphere for
z/OS application server (J2EE server). Depending on your installation’s
policies, a J2EE server might be already available for you to use for testing
applications. If not, you need to create a new application server, which
involves a combination of tasks that you complete by hand, and that you
complete through the WebSphere for z/OS Administration application. The
Administration application is also known as the Systems Management
End-User Interface (SM EUI).

Because the manual tasks require some expertise with the z/OS or OS/390
operating system, each task is typically performed by a system programmer,
database administrator, or security administrator. IBM provides samples that
can help you complete these tasks, even if you are not very familiar with
z/OS or OS/390, but you should consult with experts at your installation, if
necessary.

The tasks you accomplish through the Administration application do not
necessarily require familiarity with z/OS or OS/390. You might, however, find
the tasks easier if you understand that you start by defining a model run-time
environment for your application, and complete the process by activating the
model into a working z/OS or OS/390 application. This chapter provides an
overview of how you gradually build this server model and turn it into a
run-time environment that exploits traditional strengths of the z/OS or
OS/390 operating system. To accomplish these tasks, you must make sure the
Administration application has a connection to a properly configured and
active WebSphere for z/OS installation.
1. Define the J2EE server, J2EE server instance, and J2EE resources

When you use the Administration application to define a J2EE server, you
create a model that includes the elements illustrated in Figure 6 on
page 12.

© Copyright IBM Corp. 2000, 2001 11

The model includes additional elements, such as system and sysplex, that
define how the J2EE server fits into a z/OS or OS/390 configuration for
test or production. For the purpose of defining a run-time environment for
your application, however, you may concentrate on these model elements:
v A generic server that represents the application environment. A server is

an entity that is responsible for a certain type of work that runs on
z/OS or OS/390.

v A server instance in which your application will run. A server instance
is an entity that represents, among other things, the Java virtual
machine (JVM) in which your application components will run. The
server instance is responsible for running and managing your
application components through an EJB container for Enterprise beans,
or a Web container for servlets and JSPs.

v A J2EE resource and J2EE resource instance. They represent, respectively,
generic types of system resources and the specific subsystems that
manage those types. For example, DB2 is a type of z/OS or OS/390
system resource, and a specific DB2 subsystem might manage all of the
DB2 databases and tables on that system.

2. Install Enterprise archive (EAR) files containing your J2EE applications
Your J2EE applications also become part of the server model. As part of
the installation process:
v Application artifacts (including JAR and EAR files) are transferred from

the workstation to z/OS or OS/390.

Figure 6. Model of a J2EE server

12 WebSphere Application Server V4.0 for z/OS and OS/390: Assembling J2EE Applications

v Application metadata is stored so that WebSphere for z/OS can access
and manage J2EE application components.

v Bean and servlet resources and references are resolved through the use
of the Java Naming and Directory Interface (JNDI).

Note: Only server-side java:comp look-ups are possible, because
WebSphere for z/OS does not provide client container support. In
other words, only Enterprise beans, servlets, and JSPs running in
the J2EE server can use java:comp look-ups, as long as
development tools used to create those components also support
JNDI look-ups for java:comp names. Clients and applets must use
explicit names for application components and homes.

v The container parameters for the J2EE server are configured through the
deployment descriptors for installed applications, modules, components,
and methods.

v Web applications are provided with a fully qualified URI that enables
the WAR files and the EJB JAR files to be accessed through HTTP
protocol when requested by a client.

Figure 7 on page 14 illustrates the result of the server definition and
application installation process: a model of the application server instance
with:
v An EJB container (for Enterprise beans), and possibly a Web container

(for servlets and JSPs).
v Connections to the J2EE resources, which WebSphere for z/OS creates as

part of the application installation

Note: Currently, if you are installing a J2EE application containing servlets
or JSPs, you must complete some additional tasks to configure a
Web container for the J2EE server. Then you may use the
Administration application to install your application. Details
appear later in this book, in the step-by-step instructions for
creating a J2EE server.

Chapter 3. Overview of J2EE server definition and activation 13

3. Convert the conversation model into an active J2EE server run-time
environment
Once you have a model of the run-time environment for your sample
application, you start the last phase of this process: converting the model
into an active run-time environment on z/OS or OS/390.
First, you use the Administration application to commit the server model,
which is analogous to permanently saving the definition.
Then you use the Administration application to activate the server.
Figure 8 on page 15 illustrates how the model elements correspond to
active elements in the z/OS or OS/390 system.

Figure 7. Installing a J2EE application in a J2EE server

14 WebSphere Application Server V4.0 for z/OS and OS/390: Assembling J2EE Applications

In particular, note the following elements:
v A server instance consists of:

– A control region that receives and queues client requests to the z/OS
or OS/390 workload manager (WLM).

– One or more server regions (z/OS or OS/390 address spaces). A
server region consists of several functions that work together to run
and manage your application’s code. WLM starts additional server
regions depending on the volume of incoming requests.

v The server region containers manage the lifecycle of application
components installed in this server. Each server region can find the
executable application code that was installed in the HFS.

v A J2EE resource is equivalent to one subsystem managing one type of
resource. Each server instance may be connected to one or more J2EE
resource types and subsystems.

When you activate a server model, WebSphere for z/OS connects the control
region to WLM to manage client requests; and connects the server region to

Figure 8. An active J2EE application server

Chapter 3. Overview of J2EE server definition and activation 15

an actual subsystem, such as DB2, that manages data. As soon as a client
request comes in, the J2EE server determines whether the request is for an
Enterprise bean or a Web component, and directs the request to either the EJB
container or Web container. The container then locates the code for the
referenced application component, and the lifecycle begins.

16 WebSphere Application Server V4.0 for z/OS and OS/390: Assembling J2EE Applications

Part 2. Creating, assembling and deploying J2EE
server applications

© Copyright IBM Corp. 2000, 2001 17

18 WebSphere Application Server V4.0 for z/OS and OS/390: Assembling J2EE Applications

Chapter 4. Setting up the application development
environment

All of the tools you use to develop, assemble, and install J2EE application
components are workstation tools. Because documentation for installing and
using these tools is available already, the following procedure provides only a
summary of the installation steps, with references to resources with further
instructions. Use this procedure as a checklist to make sure you have the
correct tools and information sources on hand, before you begin to develop
J2EE application components.

Steps for setting up your workstation

Perform the following steps to set up your workstation for developing,
assembling, and installing Java 2 Enterprise Edition (J2EE) applications:
1. Decide which application development tools and other software you will

need to develop your application. Use the following table to help you
determine which software is necessary.
Recommendation for developing EJB components: If you use the IBM
EJB Development Environment feature of VisualAge for Java for
developing and testing beans, servlets, and JSPs, you do not need to install
the Java 2 Standard Edition (J2SE) Software Development Kit (SDK), or a
WebSphere Application Server run-time. This feature of VisualAge for Java
provides a code-generated test client and a WebSphere Application Server
run-time that you can use to simulate the bean deployment environment
on your workstation. The IBM EJB Development Environment enables
developers to fully test entity and session beans, including JNDI lookups,
remote method calls, and method calls on the home interface. It also has a
servlet engine, so that servlets and JSPs can be served up to a web
browser as if they were going through an HTTP and Application server.
Recommendation for developing Web components: Use IBM WebSphere
Studio to develop servlets or JSPs, and automatically package them into
Web application archive (WAR) files. (If you use other tools, you might
have to create the WAR files manually.) You can then use the WebSphere
Application Server for Multiplatforms to test these Web components before
assembling and installing them in a J2EE server.

© Copyright IBM Corp. 2000, 2001 19

Table 2. Software requirements for Java 2 Enterprise Edition application components

J2EE
application
component

Software to use

Enterprise
beans

For development and testing:

v VisualAge for Java 3.5 with Patch 2, with the following features:
– Data Access Beans 3.5
– IBM EJB Development Environment 3.5
– IBM Enterprise Extension Libraries 3.5
– IBM WebSphere Test Environment 3.5
– IBM Common Connector Framework 3.5
– IBM Enterprise Access Builder Library 3.5
– IBM Java Record Library 3.5

Tip: As an alternative to using VisualAge for Java, you may use
non-IBM tools, such as JBuilder or Visual Cafe, for application
development. Use the documentation for those products to
determine hardware and software requirements.

v IBM or Sun Microsystems Java 2 Standard Edition (J2SE) Software
Development Kit (SDK)V1.3

v WebSphere Application Server Advanced Edition, V3.5, for testing
application components.

v (Optional) DB2 Universal Database Version 7.1, required only for
testing beans that require the use of a persistent datastore.

For assembly: The WebSphere for z/OS Application Assembly tool

For installation in a J2EE server: TheWebSphere for z/OS
Administration application

Servlets and
JavaServer
Pages (JSPs)

For development and testing:

v WebSphere Studio 3.5.2

Tip: When you start WebSphere Studio, that tool checks to see that
both VisualAge for Java and WebSphere Application Server
Advanced Edition are installed on your workstation.

v IBM or Sun Microsystems Java 2 Standard Edition (J2SE) Software
Development Kit (SDK) V1.3

For assembly: The WebSphere for z/OS Application Assembly tool

For installation in a J2EE server: TheWebSphere for z/OS
Administration application

2. If necessary, install or upgrade the appropriate application development

software on your workstation. For installation or migration instructions,
see the following references:

20 WebSphere Application Server V4.0 for z/OS and OS/390: Assembling J2EE Applications

Table 3. References for installation or migration information for application development
software

Software: Source of installation or migration information:

v VisualAge for Java

v WebSphere Studio

v WebSphere Application
Server Advanced
Edition for distributed
platforms

For hardware requirements and installation instructions,
use a browser to view the web page at:

http://www.ibm.com/software/webservers/appserv/library.html

From this web page, click on the following links:
v Supported hardware, software, and APIs for WebSphere

Application Server V3.5 (all editions for distributed
platforms), for a complete listing of hardware and
software.

v The InfoCenter for the WebSphere Application Server
Version 3.5 Standard and Advanced Editions for
distributed platforms, for information about or links to
planning and installation instructions.

Non-IBM tools, such as
JBuilder or Visual Cafe

Use the documentation for those products for installation
and migration instructions.

DB2 Universal Database
Version 7.1

For more information about setting up DB2 and the
implications for application programs, start with the DB2
Universal Database... Quick Beginnings book for your
workstation platform.

3. Install or upgrade the appropriate assembly and deployment software on

your workstation. For installation or migration instructions, see the
following references:

Table 4. References for installation or migration information for assembly and
deployment software

Software: Source of installation or migration information:

WebSphere for z/OS
Application Assembly
tool

For workstation requirements and installation instructions,
see “Steps for installing the Application Assembly tool” on
page 33.

WebSphere for z/OS
Administration
application

For workstation requirements and installation instructions,
see the topic on installing the Administration and
Operations applications in WebSphere Application Server V4.0
for z/OS and OS/390: Installation and Customization,
GA22-7834.

4. Make sure your workstation’s environment variables are set correctly. The

variables to check include CLASSPATH, JAVA_HOME, LIBPATH, and

Chapter 4. Setting up the application development environment 21

PATH. Depending on the products you installed, these variables might be
set automatically; refer to the installation documentation for each product
for further details.

5. If you are using the IBM WebSphere Test Environment feature of
VisualAge for Java to run and test beans that require a persistent data
store, make sure you specify the correct DB2 JDBC driver. JDBC V2.1
might not be the default for the DB2 product installation. Refer to the DB2
installation documentation for further details.

6. Recommendation: If you are using VisualAge for Java, back up the
workspace after you finish installing or upgrading VisualAge for Java. To
do so, back up the ide.icx and ide.ini files.

7. If you are using WebSphere Studio, make sure you complete the following
steps after installing this tool:
a. Start WebSphere Studio and complete the following steps:

1) Select File → New Project, and name your project.
2) Select Project → VisualAge for Java → Install Studio Tools in

VisualAge

3) Select Project → Customize Publishing Stages.
In the dialog box that appears, enter VAJ for Stage Name, and click
Add and then OK.

4) Right-click on the VAJ stage icon in the right-hand pane, then select
Insert and insert a server with the name localhost:8080

Result: A server icon appears for the default server. All the
publishable resources in the project are automatically added to this
server.

5) In the Publishing view, right-click on the http://localhost:8080
server, select Properties, and click on Define Publishing Targets.
Then set the paths to the WebSphere Test Environment document
and servlets directories as follows:
html=D:\Program Files\IBM\VisualAge for Java\ide\project_resources\

IBM WebSphere Test Environment\hosts\default_host\default_app\web

servlet=D:\Program Files\IBM\VisualAge for Java\ide\project_resources\
IBM WebSphere Test Environment\hosts\default_host\default_app\servlets

b. Start VisualAge for Java and complete the following steps:
v Select Window → Options→ Remote Access To Tool API.
v Select the Remote Access To Tool API checkbox to activate remote

access on VisualAge start-up.

22 WebSphere Application Server V4.0 for z/OS and OS/390: Assembling J2EE Applications

v If remote access is not currently running, click on Start Remote
Access To Tool API to start it.

v Select Window → Options→ Resources. Then add the following to the
Workspace Classpath:
D:\Program Files\IBM\VisualAge for Java\ide\project_resources\

IBM WebSphere Test Environment\hosts\default_host\default_app\servlets

c. From the Command Prompt, search for the SERunner.properties file.
Open this properties file and make sure the docRoot and serverRoot
paths are correct:
docRoot=D:\\Program Files\\IBM\VisualAge for Java\\ide\\project_resources\\

IBM WebSphere Test Environment\\hosts\\default_host\\default_app\\web

serverRoot=D:\\Program Files\\IBM\VisualAge for Java\\ide\\project_resources\\
IBM WebSphere Test Environment

8. If you are developing beans that require a persistent data store, create the

DB2 tables that they will need. For more information about setting up DB2
tables, start with the DB2 Universal Database... Quick Beginnings book for
your workstation platform.

Steps for setting up z/OS or OS/390

Almost all application development, assembly, and installation tasks take
place on the workstation, but some tasks require a connection to the z/OS or
OS/390 system on which you plan to deploy your J2EE application. When
system programmers at your site install WebSphere for z/OS, they may set up
the UNIX application development environment on z/OS or OS/390. The
instructions here list minimum requirements, so you may verify the correct
environment yourself. If necessary, see additional references for further details:
v See z/OS UNIX System Services Planning, GA22-7800 for information about

setting up the UNIX environment.
v See z/OS Communications Server: IP Configuration Guide, SC31-8775 for

information about setting up an ftp server. Use the same user ID and
password that you will later use for the WebSphere for z/OS
Administration application. (If necessary, see WebSphere Application Server
V4.0 for z/OS and OS/390: System Management User Interface, SA22-7838.)

Perform the following steps to set up z/OS or OS/390:
1. Make sure you have TCP/IP connectivity between your workstation and

the z/OS or OS/390 system on which WebSphere for z/OS resides. One
way to check is to open a command prompt window and enter the ping
command, specifying the TCP/IP host name.

Chapter 4. Setting up the application development environment 23

2. On z/OS or OS/390 UNIX, check each application developer’s region size
(MAXASSIZE in BPXPRMxx or ASSIZEMAX on the RACF ADDUSER or
ALTUSER commands). The rule of thumb is to run with the largest region
size possible, but start with a minimum size of 256 MB. The size can be
limited by the IEFUSI exit, JES2 EXIT06, JES3 IATUX03, or TSO segment
defaults. If the compiler runs out of memory, you may need to increase the
application developer’s region size.

3. On z/OS or OS/390, set up an ftp server that has write access to the HFS.

24 WebSphere Application Server V4.0 for z/OS and OS/390: Assembling J2EE Applications

Chapter 5. Creating new application components to be
installed in a J2EE server

Once you have installed or upgraded the appropriate workstation software, as
noted in “Chapter 4. Setting up the application development environment” on
page 19, you are ready to create J2EE application components. Because
documentation for developing J2EE application components is available
through other WebSphere Application Server, Sun Microsystems, and
third-party documents, the following topic lists only the rules or guidelines to
keep in mind while you are coding application components for installation in
an EJB container or Web container in a WebSphere for z/OS J2EE server.

When you develop an Enterprise bean or Web component, you may
concentrate solely on the business and application logic for each component.
The J2EE server’s Web and EJB containers are designed to handle transactions,
security, and scalability related to access to any Enterprise Information
Systems (for example, DB2 databases; Enterprise Resource Planning systems;
mainframe systems such as CICS and IMS; RDBMs; and legacy applications).

This topic addresses the guidelines for developing and testing only the types
of components that may be installed in the J2EE server:
v Enterprise beans written to the Sun Microsystems Enterprise JavaBeans

(EJB) 1.1 and 1.0 specifications, and
v Web applications written to the Sun Microsystems Java Servlet Specification,

V2.2.

For information about developing J2EE application clients, see “Chapter 8.
Creating and running J2EE application clients” on page 73.

Creating Enterprise beans

The WebSphere for z/OS J2EE server supports all types of Enterprise
JavaBeans:
v Stateless session
v Stateful session
v Container-managed (CMP) entity
v Bean-managed (BMP) entity

If you are not familiar with these terms, or with the concepts and
requirements for coding Enterprise beans to the Sun Microsystems EJB
specifications, you may use either IBM or non-IBM resources for information
about the bean programming model, application programming interfaces, and
services that you may use. Make sure that you also note the temporary

© Copyright IBM Corp. 2000, 2001 25

limitations that are specific to z/OS and OS/390, which are covered in
“Developing Enterprise beans” on page 27.

Perhaps the easiest approach to developing beans is to use the IBM VisualAge
for Java EJB Development Environment, which enables you to code and test
Enterprise beans that conform to the distributed component architecture
defined in the EJB 1.0 specification. This feature of VisualAge for Java also
provides a code-generated test client and a WebSphere Application Server
run-time that you can use to simulate the bean deployment environment. The
IBM EJB Development Environment enables developers to fully test entity and
session beans, including JNDI lookups, remote method calls, and method calls
on the home interface.

Recommendation: Although you can test Enterprise beans on the workstation,
you also should test them on the z/OS or OS/390 platform as well, because
there may be subtle differences in the run-time environment. For example, if
your beans use DB2, differences between DB2 support on the workstation and
on z/OS or OS/390 might become evident. Use the guidelines in this chapter
to identify potential differences between the workstation and z/OS or OS/390
run-time environments.

Checklist for developing Enterprise beans
Use the following checklist to make sure you have completed all of the
necessary tasks related to creating an Enterprise bean.

Before you begin:

v For further details about this development process, use one of the following
resources:
– The Preventive Service Planning (PSP) bucket for WebSphere for z/OS.
– The Sun Microsystems EJB 1.1 or 1.0 specification document, or an

equivalent information source.
– Instructions for using the application development tools you have

selected. These instructions appear in product documentation, which is
available through the IBM home page (www.ibm.com) by clicking on the
links for software products. For example, to find the documentation for
using the VisualAge for Java IBM EJB Development Environment, follow
these steps after the IBM home page loads into your browser:
1. Click on the following links: Products → Software → WebSphere →

Products → VisualAge for Java
2. Click on Library in the left-hand frame, then scroll down to click on

Product Documentation
3. Click on the link for IBM VisualAge for Java 3.5 PDF Documentation
4. Scroll down to the category Developing EJB components and click on

ejb.pdf

26 WebSphere Application Server V4.0 for z/OS and OS/390: Assembling J2EE Applications

Table 5. Checklist for developing Enterprise beans

U Task

h Add a new project and package for the beans you are creating
Note: A project is a concept used in VisualAge for Java only.

h Add an Enterprise bean, specifying a name and type

h Define the bean class attributes and interfaces

h Add import statements as necessary (for example, associated bean classes and
Java classes for specific functions)

h Code business logic methods for bean classes

h Tips for creating CMP beans:
v Allow the tool to generate finder helper interface to support finder methods
v Define which bean attributes require container-managed persistence
v Import classes required for data access (for example, DB2 JDBC classes)
v Import a database schema, specifying the connection type and data source
v Generate a map for the appropriate table from the database schema
v Map bean attributes to the associated column name in table maps

h Tips for creating BMP beans:
v Code the methods that manage the bean’s lifecycle
v If you are using dynamic SQL, make sure that #sql statements include the

high-level qualifier that matches the one used when creating DB2 tables

h Add properties, including:
v The JNDI name for the BeanHome
v Transaction attribute

h Generate deployed code for the bean
Note: For CMP beans, you need to generate stubs, ties, and persisters.

h Test application components

h Package the beans in JAR files

Tip: See “Packaging beans in JAR files” on page 28

Developing Enterprise beans
As you develop Enterprise beans to install in a WebSphere for z/OS J2EE
server, keep the following points in mind:

Rules:

v Container-managed persistence (CMP) is supported only for Enterprise
beans created using VisualAge for Java.

v If your bean manages transactions (in other words, has a
“bean-managed transactions” attribute), you need to be aware these
rules and ways in which WebSphere for z/OS resolves uncommitted
transactions:

Chapter 5. Creating new application components to be installed in a J2EE server 27

– Your bean cannot start a global transaction until it resolves any
uncommitted local transactions or resources that it may have.

– In a global transaction, if the bean finishes its processing without
first resolving its transaction, WebSphere for z/OS will roll back the
bean’s transaction.

– If the bean finishes its processing without first resolving any
resource-manager local transactions, WebSphere for z/OS will roll
back those transactions.

v WebSphere for z/OS supports role-based security for Enterprise beans.
You may use the isCallerInRole and getCallerPrincipal methods if
you want to code beans to perform security checks.
A role name cannot contain blanks, and cannot exceed 246 characters.
Role names, however, may be in mixed case.

Guidelines:

v You may code your beans to use the JDBC application programming
interface (API) to access DB2 data. For additional information, see:
– DB2 Application Programming and SQL Guide, SC26-8958 for

instructions on using the DB2 for z/OS or OS/390 JDBC driver.
– http://java.sun.com/products.jdbc for detailed information about

the JDBC API.
v If the beans you code require DB2 to store persistent data, you need to

use the type 2 JDBC driver that ships with DB2 for OS/390 Version 7.1.
Given the use of this driver, you may design your bean to:
– Participate in either global or local transactions.
– Have multiple connections with DB2. (Note, however, that

performance is better with only one connection.)
– Assign a different outcome for each DB2 connection, when the bean

does not run under a global transaction.

Packaging beans in JAR files
If you use VisualAge for Java to develop and test Enterprise beans, you
package the beans by selecting the Export → Deployed Jar option. During this
process, you select the beans, classes, and resources to be included in the JAR
file.

Recommendations: To limit the JAR file contents to only those application
parts that you need on z/OS or OS/390, which should make future
maintenance of the application easier, do the following:
v Review the details for classes that VisualAge for Java will export. Classes

with a checkmark to the left will be exported unless you click on that mark
to deselect the class. For example, if this bean uses DB2 as a persistent
datastore, VisualAge for Java automatically includes the DB2 JDBC classes

28 WebSphere Application Server V4.0 for z/OS and OS/390: Assembling J2EE Applications

|
|

you imported to create the bean. Because these classes reside on z/OS or
OS/390 already, you do not have to include them in your bean JAR file.

v Consider exporting JAR files without using the VisualAge for Java Select
referenced types and resources option. When you package your
application (as described in “Chapter 6. Assembling a J2EE application” on
page 33), the resulting EAR file will contain the necessary classes for the
J2EE server.

Creating Web applications

A Web application can include one or more of any of the following Web
components:
v Servlets
v JavaServer Pages (JSPs)
v Utility classes
v Static documents

The roles each Web component should play in a Web application are defined
in the Java™ Servlet Specification, V2.2, which is available at:
http://www.javasoft.com

Developing Web components
An instance of a Web application exists within a single WebSphere for z/OS
J2EE server. It uses Servlet Context to obtain references to other local objects
and to share data with other applications. A servlet can be replicated if it is
marked distributable. In this case, however, you must ensure that one of the
following conditions is true:
v Either the servlet is not written to leave objects around for later processing,

or
v The servlet is installed in a J2EE server that cannot be replicated within a

sysplex.

Before a Web application can be installed on a J2EE server:
1. All of the components of the Web application must be packaged into a

Web application archive (WAR) file. This file has a file extension of .war,
and must include a web.xml file. (The web.xml file indicates how the
application will be served when requested by a client.)

2. This WAR file must then be packaged as part of an Enterprise archive
(EAR) file. (See “Steps for assembling a new J2EE application” on page 35
for information on how to perform this packaging.) An EAR file is
basically a JAR file with a specific directory structure and format and has
an extension of .ear. It includes a application.xml file which contains the
descriptive meta information which ties together all of the WAR or EJB
JAR files packaged in the EAR file.

Chapter 5. Creating new application components to be installed in a J2EE server 29

It is the responsibility of the Application Component Provider to write the
business and application logic for his application. An Application Component
Provider can rely on the Web and EJB containers to handle transactions,
security, and scalability related to Enterprise Information Systems (EIS) access.
(EISs include DB2 databases, Enterprise Resource Planning systems,
mainframe systems such as CICS and IMS, RDBMS, and legacy applications.)

WebSphere for z/OS supports role-based security for servlets. You may use
the isCallerInRole and getCallerPrincipal methods if you want to code
servlets to perform security checks.

Rule: A role name cannot contain blanks, and cannot exceed 246 characters.
Role names, however, may be in mixed case.

Packaging Web components in WAR files
A tool, such as the IBM WebSphere Studio product, that is used to create JAR
files can be used to create a WAR file as long as the resulting WAR file:
v Includes a web.xml file in the WEB-INF directory.
v Any JAR files being included reside in the WEB-INF/lib directory
v The files and JSPs that are being included are rooted at the top of the jar.

The following is an example of a war file that includes a servlet, servlet class
files, a JSP and static files:
/mywebApplication

index.html
other.html
CatalogDisplay.jsp
/gifs

logo.gif
/WEB-INF

web.xml
/classes

/com
/mycorp

/CatalogServlet.class
/lib

myItems.jar

The web.xml file contained in this WAR file might look like the following:
<!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc... ...dtd"><
web-app><
display-name>A Simple Application</display-name><
context-param><
param-name>Webmaster</param-name><
param-value>webmaster@mycorp.com</param-value><
/context-param>

<servlet><
servlet-name> catalog</servlet-name><

30 WebSphere Application Server V4.0 for z/OS and OS/390: Assembling J2EE Applications

|
|

servlet-class>com.mycorp.CatalogServlet</servlet-class><
init-param><
param-name>catalog</param-name><
param-value>Spring</param-value><
/init-param><
/servlet><
servlet mapping><
servlet-name>catalog</servlet-name><
url-pattern>/catalog</url-pattern><
/servlet mapping>

Chapter 5. Creating new application components to be installed in a J2EE server 31

32 WebSphere Application Server V4.0 for z/OS and OS/390: Assembling J2EE Applications

Chapter 6. Assembling a J2EE application

Before you can install a J2EE application in a WebSphere for z/OS J2EE
server, you need to prepare the application for installation. In other words,
you need to package the JAR or WAR files for individual components
together into an Enterprise archive (EAR) file, and ensure that all component
references can be resolved. An EAR file is basically a JAR file with a specific
directory structure and format, and has an extension of .ear. To create an
EAR file for your application, use the WebSphere for z/OS Application
Assembly tool.

During this assembly process, you not only define the individual components
of a single application, but also deploy those components for the WebSphere
for z/OS environment. The Application Assembly tool generates an
application.xml file (part of the EAR file contents), which contains the
descriptive meta-information that ties together all of the JAR or WAR files
that you might package in a single application. This metadata enables the
J2EE server to understand the content and individual component
requirements of an installed J2EE application.

In addition to packaging new applications, you may use the Application
Assembly tool to change the contents of existing J2EE applications and their
associated EAR files.

The following table shows the subtasks and associated procedures for using
the Application Assembly tool to assemble a J2EE application:

Subtask Associated procedure (See . . .)

Install the Application Assembly
tool on your workstation

“Steps for installing the Application Assembly tool”

Assemble a new J2EE application “Steps for assembling a new J2EE application” on
page 35

Steps for installing the Application Assembly tool

Before you begin:

v Download the latest copy of the Application Assembly tool, which IBM
delivers through its WebSphere Application Server web site
(http://www.ibm.com/software/webservers/appserv/). From that site, click

© Copyright IBM Corp. 2000, 2001 33

|
|
|

on Download in the left frame, and scroll to the link for WebSphere
Application Server V4.0 for z/OS and OS/390 downloads to access the
Application Assembly tool.

v Make sure you review the Readme file for the Application Assembly tool,
so that you understand any temporary limitations or instructions that might
apply for the latest code.

v If you already have a copy of the WebSphere for z/OS Application
Assembly tool installed on your workstation, remove it before installing the
latest version.

Perform the following steps to install the Application Assembly tool on your
workstation:
1. Download or copy the code for the Application Assembly tool to a

temporary directory on your workstation.

2. In the temporary directory on your workstation, locate and select the
aatxxxx.exe file for the Application Assembly tool, then double-click with
the left mouse button.
Result: The InstallShield Wizard displays the setup language window.

3. Select the default setup language (English) by clicking OK.
Result: After some initial preparation, the ″Welcome″ window appears on
the screen.

4. From the ″Welcome″ window for the tool, click Next.
Result: The license agreement window appears.

5. Accept the terms of the license agreement by selecting the appropriate
radio button, and click Next.
Result: The customer information window appears.

6. Accept the default user name (IBM user), select the radio button to install
the tool only for yourself, and click Next.
Result: The setup type window appears.

7. Select the radio button to install the complete tool, and click Next.
Result: The ″Ready to install″ window appears.

8. Click on the Install button.

34 WebSphere Application Server V4.0 for z/OS and OS/390: Assembling J2EE Applications

|
|
|

Result: A progress bar indicates status until the ″InstallShield Wizard
Completed″ window appears.

9. Click the Finish button.
Result: The InstallShield Wizard window closes.

You should now see a subdirectory called WebSphere 390 Application
Assembly under C:\Program Files\IBM.

Steps for assembling a new J2EE application

Before you can install a new Java 2 Enterprise Edition (J2EE) application in a
J2EE server, you need to prepare the application for installation. This
preparation includes using the Application Assembly tool to:
1. Import J2EE application components that you created through an

appropriate application development tool, and package them together in
an application.

2. Define, verify, or correct attributes in the deployment descriptor for each
application component or for the application itself.

3. Export your application, which causes the Application Assembly tool to
create an Enterprise archive (EAR) file, which is the input format that the
Administration application requires for installing applications. An EAR file
packages together all of the component code (JAR and WAR files) and the
deployment descriptor for the J2EE application.

The following instructions assume that this is your first time using the
Application Assembly tool. The instructions guide you through the major
tasks for importing and deploying a new application. To become familiar with
the tool, you may use the help information for the Application Assembly tool,
by selecting Help → Contents and view the “Quick Start” topic.

When you begin to use the tool for assembling your own components, make
sure that you have used the recommended tools and specification levels for
component development, which are described in:
v “Chapter 4. Setting up the application development environment” on

page 19, and
v “Chapter 5. Creating new application components to be installed in a J2EE

server” on page 25.

When you first start the tool, the left frame of the window contains only a
folder named Applications. After you begin defining application names and
importing J2EE application components, the left frame displays those
applications and components in a hierarchical tree structure. To perform any

Chapter 6. Assembling a J2EE application 35

tasks related to those components, you may select components and tasks
using either one of the following methods:
v Use the left mouse button to select an application or component label in the

left frame, and then use the right mouse button to display a pop-up menu
of tasks.
Tip: As an alternative, you may use the right mouse button to click the
object, which automatically selects the object and displays the pop-up
menu.

v Use the left mouse button to select an application or component label in the
left frame, and then use the left button to click a pull-down menu label or
toolbar icon.

Before you begin:

v Make sure you have the correctly updated your workstation environment
and installed the Application Assembly tool, as instructed in “Steps for
installing the Application Assembly tool” on page 33.

v Review the Readme file for the Application Assembly tool, so that you
understand any temporary limitations or instructions that might apply for
the latest code.

v Consider having a copy of the appropriate Sun Microsystems specification
(or an equivalent reference), in case you need to look up bean or servlet
attributes or other information. The help information for the Application
Assembly tool includes this type of information, so you might not need an
additional reference.

Perform the following steps to assemble a new J2EE application for
installation in a J2EE server:
1. To start the Application Assembly tool, click Start → Programs → IBM

WebSphere for z/OS → Application Assembly

Result: The Application Assembly tool window appears, with the
Applications folder selected.

2. To define a new application, click Selected → Add. In the right frame,

enter values for the following information:
a. Application display name, which is the name of the folder that will

appear in the left frame.
b. (Optional) Application description, which is any text to briefly

describe this new application

36 WebSphere Application Server V4.0 for z/OS and OS/390: Assembling J2EE Applications

3. Click the diskette icon to save these values. Under the Applications
folder, a new node appears with a label matching the application display
name you just entered.

4. Expand the application node to display folders for the types of
application components you may import.

5. To import application components, highlight the folder for the type of
application component you want to import, and select Import. From the
Import dialog:
a. Click the Choose button and select the JAR or WAR file you want to

import into this application.
b. Click Select to enter the full path name for JAR or WAR file.
c. Click OK to start the import process.

Guidelines: Some application components might require additional files
to be packaged in the EAR file. The following guidelines identify
potential additions to the EAR file, with suggestions for limiting the
number of application parts or avoiding duplication of files. You may
import these additional files using the Import button on the Files
property.
v For Web components, make sure you import the web.inf file.
v For CMP beans with finder helpers, include the associated vaprt.jar

file.
v For all CMP beans, include the ivjejb35.jar file.
v For any components that require specific utilities or functions, include

the JAR files for those functions. If application components or their
z/OS or OS/390 clients share the same utilities or functions, consider
excluding those JAR files from the EAR file. Instead, you can transfer
those JAR files to z/OS or OS/390, and include them on the
CLASSPATH variable for:
– Any z/OS or OS/390 client that needs those functions, and
– Any J2EE server in which the application components are installed.

6. Expand the view to list the components in the JAR or WAR file you just

imported.
As the application tree expands to display a component in an imported
file, the Application Assembly tool displays the following message if it
detects errors in any deployment descriptors:
BBO94030E Error(s) detected in application_name deployment descriptors.
See message log for details.

Chapter 6. Assembling a J2EE application 37

|
|

|

Tip: To display more detailed information about these errors, either select
File → Message log, or click the message log toolbar icon. Then you can
use the message log as a checklist for the errors you must correct.

Recommendation: Although you can correct errors in components, JAR,
or WAR files using the Application Assembly tool, you should make
corrections using the application development tool (such as VisualAge for
Java) that you used to create the application component.

7. Change or update the properties associated with each application

component, using the following process. These properties are the
attributes that appear in the deployment descriptor for each application
component.
Repeat this process for each component that comprises your J2EE
application. If you need help for any of the component properties, click
the right mouse button to select the property, and then select Help from
the pop-up menu.
a. Click Selected → Modify for an application component you want to

change. The component’s properties are displayed in the right frame
of the Application Assembly tool window.

b. Use the tabs in the right frame of the window to navigate through the
various properties. These component properties correspond to the
appropriate Sun Microsystems specification.

c. After completing changes to a selected application component, save
your changes. When you save your changes, the Application
Assembly tool detects any errors in the changed property values, and
displays more detailed information in the message log.
Rules:

v You cannot select another component until you have either saved
or cancelled changes for the currently selected component.

v You must correct any errors that the Application Assembly tool
detects, or runtime results will be unpredictable.

Guidelines: If the Application Assembly tool did not detect any errors
when you imported an application or component, you are not required to
modify any of the application or component properties for applications to
be installed in a J2EE server. You might, however, want to do the
following:
v Rename applications or components to match any naming conventions

your installation might recommend for applications installed on z/OS
or OS/390.
Rule: Bean names must be unique, within a given JAR file.

38 WebSphere Application Server V4.0 for z/OS and OS/390: Assembling J2EE Applications

v Decide whether the application requires the following:
– Container-transaction elements
– Security roles and method permissions

If you want to use security roles for Enterprise beans or servlets,
specify role names in the deployment descriptor for either
individual components or for the J2EE application. Application-level
roles override component-level roles.
Rules:
- A role name cannot contain blanks, and cannot exceed 246

characters. Role names, however, may be in mixed case.
- Role names must match profiles specified in the EJBROLE or

GEJBROLE class, which a security administrator defines for your
installation. (Instructions for defining these classes appear in
“Steps for completing manual OS/390 tasks” on page 44.)

- For each security role that you define for an individual
component, make sure you select the component methods to
which each role has access. Use the method permissions property
form to do so.

- If beans or servlets use the isCallerInRole or getCallerPrincipal
methods, these security role reference names must be linked to
the security roles you have defined to match profiles specified in
the EJBROLE or GEJBROLE class. Use the Security tab for an
individual component to define these links. Under the Security
tab, fill in the following information related to security role
references:

Role name Description Link

The string used on the
isCallerInRole or
getCallerPrincipal
method.
Note: If you are working
with an Enterprise bean
written to the 1.1
specification level, these
strings will appear
automatically.

An optional description
that explains the level of
authority required for this
security role

The security role name that
you have defined to match
a specific profile in the
EJBROLE or GEJBROLE
class

8. Repeat steps 5 through 7 for all of the components that you want to

assemble into a single J2EE application.

9. To validate the contents of an application, select the application in the
tree, then select Validate.

Chapter 6. Assembling a J2EE application 39

|
|
|
|
|
|
|

||||

|
|
|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|

|

|

Tip: Validating each component individually, after finishing the steps in 5
through 7, might be faster than validating the entire application.

10. To deploy an application, select the application in the tree, then select
Deploy. Message BBO94009I appears in the status bar when the
deployment process is complete.

11. To export a deployed application, select the application in the tree, then
select Export. The Export application window opens.

12. In the Export application window, you may enter the full path name for
a new or existing EAR file, or click Choose to browse for an existing EAR
file or an appropriate location for a new EAR file.
Recommendation: When exporting your own applications, consider
setting up and using a specific folder or subdirectory where you can
easily find applications that are ready for installation in the J2EE server
on z/OS or OS/390.
Result: The Application Assembly tool creates new or updates existing
XML files for your application, and for each of the JAR or WAR files for
the components. These XML files contain the values you entered (if any)
for the components’ properties, and enable the J2EE server to understand
the content of and correctly manage an installed J2EE application.
Samples:

v EAR file contents for an application containing two WAR files and one
EJB JAR file:
/usr/MyApp

EJB123.jar
webappABC.war
myItems.war

/meta-inf
application.xml
manifest.mf

v application.xml file contents for the same EAR file:
<?xml version="1.0 encoding="ISO-8859-1"?>
<application>
<display-name>MyApp</display-name>

>module><
web><
web-uri>webappABC.war</web-uri><
context-root>/Payroll</context-root><
/web><
/module>

40 WebSphere Application Server V4.0 for z/OS and OS/390: Assembling J2EE Applications

<module><
web><
web-uri>myItems.war</web-uri><
context-root>/MyTools</context-root><
/web><
/module>

<module><
ejb>EJB123.jar</ejb><
/module>

</application>

You know you are done when message BBO94010I appears in the status bar,
indicating that your application was exported to the EAR file.

Chapter 6. Assembling a J2EE application 41

42 WebSphere Application Server V4.0 for z/OS and OS/390: Assembling J2EE Applications

Chapter 7. Creating a J2EE server run-time environment

Now that you have created an EAR file to use to install your J2EE application,
you need to create theWebSphere for z/OS J2EE server in which your
application will run. The J2EE server, or run-time environment, consists of the
following elements:
v A generic server that represents the application environment. A server is an

entity that is responsible for a certain type of work.
v A server instance in which your application will run. A server instance

consists of one control region, and at least one server region. The control
region accepts work requests, and the server region is the actual run-time
environment for the application, which includes a Java virtual machine
(JVM), an EJB container, and possibly a Web container. (If you are installing
a J2EE application containing servlets or JSPs, you must complete some
additional tasks to configure a Web container for the J2EE server.)

v A J2EE resource and J2EE resource instance, which identify a generic type
and specific subsystem, respectively. This resource might be, for example,
the subsystem that manages a persistent data store for components installed
in the J2EE server.

v A J2EE resource connection that enables the components in the J2EE server
to access the resource. The Administration application automatically creates
this connection when you install your J2EE application.

The following instructions for creating a J2EE server include sample names to
use for these elements:
v J2SERV for the generic J2EE server
v J2SERV1 for the J2EE server instance

You do not have to use the sample names; however, if you choose different
names, you must follow the rules listed in “Steps for completing manual
OS/390 tasks” on page 44 to set up your application environment correctly.

The instructions also tell you where to find sample files that you may copy
and modify to create OS/390 artifacts for a J2EE server.

The following table shows the subtasks and associated procedures for creating
a J2EE server for your application:

Subtask Associated procedure (See . . .)

Completing manual OS/390 tasks “Steps for completing manual OS/390 tasks” on
page 44

© Copyright IBM Corp. 2000, 2001 43

Subtask Associated procedure (See . . .)

Creating JCL procedures “Steps for creating JCL procedures for the control
and server regions” on page 46

Setting JVM properties “Steps for setting properties for the JVM” on
page 47

Enabling the J2EE server to host
Web applications (optional)

“Enabling J2EE server support for Web
applications (optional)” on page 47

Defining and activating the J2EE
server through the Administration
application

“Defining the server configuration” on page 62

Steps for completing manual OS/390 tasks

Depending on your installation’s conventions, many of these manual tasks
might have been completed already, as part of either installing and verifying
the WebSphere for z/OS product itself, or setting up WebSphere for z/OS test
or production environments. Because documentation for these manual tasks is
available already, the following procedure provides only a summary of the
tasks, with references to resources with further instructions. Use this
procedure as a checklist to make sure you have the correct environment set
up, before you begin to define a new J2EE server for testing application
components.

Perform the following steps to complete the manual z/OS or OS/390 tasks
related to defining a new J2EE server:
1. Decide on naming conventions for J2EE application components, J2EE

server elements, and z/OS or OS/390 subsystems, such as DB2. The
following instructions for creating a J2EE server include sample names to
use for these elements, but you should replace them with names that your
installation either has set up or prefers to use.
For recommendations for naming conventions, see the appendix in
WebSphere Application Server V4.0 for z/OS and OS/390: Operations and
Administration, SA22-7835.

2. Define the workload manager (WLM) application environment, service
class, and classification rules for the new J2EE server and the applications
it will host. To define the application environment (that is, to define the
J2EE server to WLM), use the IWMARIN0 dialog to fill in the following
values:

Field in IWMARIN0 dialog: Value to use:

Run-time server Use a short description of the J2EE server, such as
EJB-DB2 application server

44 WebSphere Application Server V4.0 for z/OS and OS/390: Assembling J2EE Applications

Field in IWMARIN0 dialog: Value to use:

Application environment name J2SERV

Subsystem type CB

Procedure name J2SERV1

Start parameter IWMSSNM=&IWMSSNM

Limit on starting server address
space for a subsystem instance

No limit

For further details about using the IWMARIN0 dialog, and defining
service classes and classification rules, see z/OS MVS Planning: Workload
Management, SA22-7602.

3. Set up the database resources or connectors for data access. Your system

programmer or database administrator has probably installed and
configured the required z/OS or OS/390 subsystems, such as DB2, and
might already have created the databases or tables that your application
will use. So the only tasks you might need to do are these:
v Find out what DB2 subsystem name you need to specify when you

define the J2EE server.
v Create any database tables that your J2EE application components need

to use.

If necessary, see DB2 Administration Guide, SC26-8957 for instructions on
creating database tables.

4. Define security profiles and permissions, using your installation’s security

product. You might need to work with your installation’s security
administrator to accomplish this task. The security profiles and
permissions depend, to some degree, on your installation’s guidelines for
test or production systems. For example, in a test environment, you might
allow J2EE application clients to access test systems and data without
using any security mechanism. This approach might be especially suitable
when client programs run on the same z/OS or OS/390 system as the
J2EE server.
Guidelines:

v Regardless of the security you set up for client access to resources,
certain authorizations are required for the J2EE server. For example, if
your J2EE application requires the use of DB2, the J2EE server needs to
be granted access to the DB2 plan DSNJDBC. For recommendations and

Chapter 7. Creating a J2EE server run-time environment 45

instructions for setting up security for J2EE servers and J2EE application
clients, see WebSphere Application Server V4.0 for z/OS and OS/390:
Installation and Customization.

v If you want to install a J2EE application that requires role-based
security, you need to define profiles in the EJBROLE or GEJBROLE class,
and then allow users or groups to have read access to those profiles.
Rules:
– Profiles specified in the EJBROLE or GEJBROLE class follow this

format:
role_name

where role_name matches the security role attribute specified in either:
- The J2EE application deployment descriptor, or
- The deployment descriptor of an individual application

component.
– A role name cannot contain blanks, and cannot exceed 246 characters.

Role names, however, may be in mixed case.

If your installation uses the z/OS or OS/390 SecureWay Security Server
(RACF), see z/OS SecureWay Security Server RACF Command Language
Reference, SA22-7687 for information about using:
– The RDEFINE command to define profiles to the EJBROLE or

GEJBROLE class.
– The PERMIT command to grant users read access to these profiles.

Steps for creating JCL procedures for the control and server regions

In TSO, perform the following steps to set environment variables and create
JCL procedures for the application control region and server region:
1. In your working PROCLIB data set, create a new member named J2SERV

(the generic server name). Copy the BBOASR2 sample member from
BBO.SBBOJCL into this new member, and make appropriate updates
according to comments in the file. Modify the PROC statement to use the
server instance name you will specify in the WebSphere for z/OS
Administration application. For example, the PROC statement should state
something like this:
//J2SERV PROC SRVNAME='J2SERV1'

2. Also in your PROCLIB, create a new member named J2SERV1 (the JCL

procedure name you will later specify to WLM). Copy the BBOASR2S
sample member from BBO.SBBOJCL into this new member, and make
appropriate updates according to comments in the file. For example, edit

46 WebSphere Application Server V4.0 for z/OS and OS/390: Assembling J2EE Applications

the IWMSSNM parameter to use the server instance name you will specify
in the WebSphere for z/OS Administration application: IWMSSNM='J2SERV1'

Steps for setting properties for the JVM

Use the following procedure only if you want to change the default settings
that WebSphere for z/OS uses for the Java virtual machine (JVM) that runs in
the J2EE server. To change the defaults, create a JVM properties file, specifying
the properties and values that you want to use.

Before you begin:

v Review the supported JVM properties listed in “JVM properties and
properties files” on page 150, which also contains information about the
placement and content of a JVM properties file.

v You might need special authorization to edit an existing JVM properties file,
or store a new file in the appropriate directory. Check with the system
programmer who installed WebSphere for z/OS on your test system.

Perform the following steps to set up a JVM properties file:
1. Edit an existing or create your own JVM properties file, and place it in the

same HFS directory in which WebSphere for z/OS places the current.env
file containing environment variables for this J2EE server.
Rule: This JVM properties file must be named jvm.properties

2. Edit the JVM properties file to add or set the property keys and values

that you want to use.

3. Save your changes to the JVM properties file.

If WebSphere for z/OS cannot find or use the property file you provide, it
continues the process of activating the server, using default JVM property
values.

Enabling J2EE server support for Web applications (optional)

If you are installing a J2EE application that contains only Enterprise beans,
you do not have to perform any of the steps in this section. In this case, skip
to “Defining the server configuration” on page 62. If your application contains
servlets or JSPs, however, you must complete some additional tasks to set up
the J2EE server configuration.

Chapter 7. Creating a J2EE server run-time environment 47

|
|
|
|
|

The following table shows the subtasks and associated procedures for
enabling support for Web applications installed in a WebSphere for z/OS J2EE
server:

Subtask: Associated procedure (See ...)

Configuring a Web container for
servlets or JSPs to be installed in
the J2EE server

1. “Setting up a Web container in a J2EE server”

2. “Exposing Web applications to HTTP clients”
on page 52

Setting up an HTTP server to
establish communication between
the J2EE server and a Web
browser

“Configuring HTTP session support” on page 54

Setting up a Web container in a J2EE server
Each WebSphere for z/OS J2EE server contains at least one Web container and
one EJB container. The Web container is able to manage Web applications in
accordance with the guidelines described in the Java™ Servlet Specification
V2.2. The Web container also provides support for managing JavaServer Pages
that are compliant with the Javasoft JavaServer Pages V1.1 Specification.

The J2EE server within which a Web container resides, provides additional
services for the applications deployed in that Web container, such as security
and resource management. It also enables a Web application to access external
resources such as relational databases through JDBC, and Enterprise Java
Beans, over RMI.

HTTP work management in a sysplex is not changed with the introduction of
WebSphere for z/OS. OS/390 Web servers still act as the communication
endpoint for HTTP requests that are inbound into the sysplex. Installations are
not required to change their existing HTTP Server and network topologies.
Existing outboard routing and workload distribution mechanisms, such as
intelligent routers and network dispatchers, remain valid in this environment.

Any OS/390 HTTP Server that is going to be used to route work to a J2EE
server in the sysplex must be configured to work with the plugin routine that
is provided with the WebSphere for z/OS product. The plugin routine will
work with the OS/390 Workload Manager to determine the best J2EE server
in which to service each HTTP request. “Exposing Web applications to HTTP
clients” on page 52 describes the changes that need to be made to an HTTP
Server’s httpd.conf file and httpd.envarrs file to configure it to work with the
plugin routine.

48 WebSphere Application Server V4.0 for z/OS and OS/390: Assembling J2EE Applications

|
|
|

|||

|
|
|

|

|
|

|
|
|
|

|

|

|

|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|

Customizing the Web container in a J2EE server
A Web container is created as part of the J2EE server set up process. Its
configuration settings are specified in a webcontainer.conf file provided with
the product. You can update the webcontainer.conf file to:
v Configure one or more virtual hosts within a Web container. When the Web

container is initially configured, at least one virtual host (the default virtual
host that is provided with the product) is associated with it.

v Specify whether or not you want to collect session data. If you want to
collect session data, you can also specify other settings, such as the name of
the DB2 table that will be used to store session data. “Configuring HTTP
session support” on page 54 provides more information about collecting
session data and the options that can be set in the webcontainer.conf file.

Note: This database table can be shared between V3.5 and V4 WebSphere
Application Servers.

The default webcontainer.conf file that is shipped with the product is located
in the applicationserver_root/bin directory.

The following property is used to associate a webcontainer.conf file with a
J2EE server. You must add this property to the target J2EE server’ JVM
properties file to enable the J2EE server to recognize your customized
webcontainer.conf file:
com.ibm.ws390.wc.config.filename=/your_root/your_webcontainer.conf_filename

If this property is not added to the JVM properties file, the Web container
uses the default file, applicationserver_root/bin/webcontainer.conf.

Note: Even though the file system location of the webcontainer.conf file is
optional, you might want to place the webcontainer.conf file in the
same directory as the other configuation files associated with this J2EE
server.

After editing the webcontainer.conf file, you must refresh the J2EE server to
activate the changes you made.

Configuring a virtual host: Virtual hosting allows a single Web container to
handle processing for more than one internet host. For example, the same
Web container may service requests for hosts www.mycompany.com and
www.MyOtherCompany.com.

You can deploy one or more Web applications into a virtual host. This
capability allows the Web container configuration to be partitioned in
accordance with the hosts for which it is servicing requests.

Chapter 7. Creating a J2EE server run-time environment 49

|
|
|
|

|
|
|

|
|
|
|
|

|
|

|
|

|
|
|
|

|

|
|

|
|
|
|

|
|

|
|
|
|

|
|
|

Properties in the webcontainer.conf file of the form host.<virtual-
hostname>.<property>=<value> are used to define a virtual host. These
properties indicate the name by which this host is known within the
WebSphere for z/OS administrative domain (virtual-hostname).

The Web container uses the host. properties to determine to which virtual
host an application request is to be routed. It checks the URL used to initiate
an input request and routes the request to the specified virtual host.

The following properties are used to configure a virtual host:
v host.<virtual-hostname>.alias=<hostname>. This property specifies a

hostname alias to be associated with this virtual host name. It provides a
binding between the host names understood by the HTTP server and the
virtual host definitions in the Web container. The alias can be the name by
which this virtual host is known to clients and applications.

v host.<virtual-hostname>.mimetypefile. This property is the fully qualified
name of a file containing definitions for MIME types that describe the
content that can be included in HTTP responses served from this virtual
host. The Web container contains a default MIME type file containing
standard MIME type definitions. The name of this default file is contained
in the default webcontainer.conf file provided with the product.

v host.<virtual-hostname>.contextroots. This property is used to bind installed
Web applications into a specific virtual host. The context root specified
corresponds to the context root assigned to the Web application during
application deployment. The Web container’s default configuration includes
a predefined virtual host, named default_host, and a contextroots property
that binds all installed Web applications to the default_host virtual host.
If you are defining only one virtual host per J2EE server, you can use the
default context root binding property. All subsequently installed
applications will be bound to this virtual host. See “Appendix B. Default
webcontainer.conf file” on page 153 for more a more detailed description of
this property.

A virtual host can have more than one alias. The alias definition may contain
both a host name and a port number. When a client requests a Web
application, servlet, or related resource, WebSphere for z/OS compares the
hostname and port in the request with the list of configured DNS aliases. If a
match is not found, WebSphere for z/OS reports an error that is returned to
the browser. The following example illustrates the properties you might
include in the webcontainer.conf file to configure the virtual host MyHost
with DNS aliases of www.mycompany.com and www.MyOtherCompany.com:
host.MyHost.alias=www.mycompany.com
host.MyHost.alias=www.MyOtherCompany.com

50 WebSphere Application Server V4.0 for z/OS and OS/390: Assembling J2EE Applications

|
|
|
|

|
|
|

|

|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|

|
|

See “Appendix B. Default webcontainer.conf file” on page 153 for a complete
description of the webcontainer.conf properties that are applicable to defining
a virtual host.

Installing Web applications into a J2EE server
A Web application exists within a single WebSphere for z/OS instance. It can
be replicated, if it is marked distributable. It uses servlet context to obtain
references to other local objects and to share data with other applications.

A Web application consists of various Web components, such as:
v Servlets
v JavaServer Pages (JSPs)
v Utility classes
v Static documents

The role each Web component plays in a Web application is defined in the
Java Servlet Specification V2.2, which is available at the following URL:
http://www.javasoft.com

Before a Web application can be installed on a J2EE server:
1. All of the components of the Web application must be packaged into a

Web Archive (WAR) file.

Note: A tool, such as the IBM WebSphere Studio product, that is used to
create JAR files can be used to create a WAR file. However, after
creating the WAR file, check the web.xml file that the tool will also
create, to make sure that all of the <servlet>XML tags are grouped
together; not intermixed with the <servlet-mapping> tags. Some
tools intermix the <servlet>tags with <servlet-mapping> tags, which
can create processing errors. If the tags are intermixed, edit this file
and group all of the <servlet> tags together and group all of the
<servlet-mapping> tags together.

2. This WAR file must then be packaged as part of an Enterprise Archive
(EAR) file. An EAR file is basically a JAR file with a specific directory
structure and format and has an extension of .ear. It includes a
application.xml file which contains the descriptive meta information which
ties together all of the WAR and/or EJB JAR files packaged in the EAR
file.
Use the Application Assembly Tool for z/OS and OS/390, that is provided
with WebSphere for z/OS, to create EAR files. This tool requires as input,
the WAR files and/or EJB JAR files you want included in the EAR file.

The Systems Management EUI provided with WebSphere for z/OS is used to
install a Web applications into the Web Container. The application must be in

Chapter 7. Creating a J2EE server run-time environment 51

|
|
|

|
|
|
|

|

|

|

|

|

|
|

|

|

|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|

|
|

the form of an Enterprise Application Archive file (.ear file). Systems
Management EUI takes the .ear file, resolves references and installs the
Enterprise application into the Web container.

It is the responsibility of the Application Component Provider to write the
business and application logic for his application. An Application Component
Provider can rely on the Web and EJB containers to handle transactions,
security, and scalability related to Enterprise Information Systems (EIS) access.
(EISs include DB2 databases, Enterprise Resource Planning systems,
mainframe systems such as CICS and IMS, RDBMS, and legacy applications.)

It is the responsibility of the Application Assembler to create the enterprise
application package (EAR file plus application.xml file) and ensure that all
component references can be resolved.

Exposing Web applications to HTTP clients
A Web application that is installed in a J2EE server needs to be made
accessible to HTTP clients, such as Web browsers. Therefore, WebSphere for
z/OS requires that at least one OS/390 HTTP Server is defined within the
sysplex. The plugin routine provided with WebSphere for z/OS can then
enable the HTTP server to find Web applications that are installed in J2EE
servers within the sysplex. When the plugin receives an HTTP request, it
routes the request to the appropriate J2EE server for processing.

Before an HTTP server can communicate with a J2EE server, you must:
1. Add the following Web server directives to the httpd.conf configuration

file of any Web server that will be communicating with WebSphere for
z/OS to provide the Web server with the entry point to the WebSphere for
z/OS plugin’s initialization, request processing, and exit routines. These
routines exist as entry points init_exit, service_exit, and term_exit,
respectively, within the was400plugin.so DLL. The was400plugin.so DLL is
found within the applicationserver_root/WebServerPlugIn/bin directory.
ServerInit applicationserver_root/WebServerPlugIn/bin/

was400plugin.so:init_exit applicationserver_root,was.conf_name
ServerTerm applicationserver_root/WebServerPlugIn/bin/was400plugin.so:term_exit
Service /webapp/* applicationserver_root/WebServerPlugIn/bin/

was400plugin.so:service_exit

applicationserver_root is the fully qualified name of the mounted
install-image of an individual execution system. The default value is
/usr/lpp/WebSphere

was.conf_name is the fully qualified name of a V3.5 was.conf file. This
parameter is optional and is only required if you want to continue using
your V3.5 Application Server along with WebSphere for z/OS V4.0 . See
“Migrating from version 3.5” on page 161 for a description of the changes

52 WebSphere Application Server V4.0 for z/OS and OS/390: Assembling J2EE Applications

|
|
|

|
|
|
|
|
|

|
|
|

|

|
|
|
|
|
|
|

|

|
|
|
|
|
|
|

|
|
|
|
|

|
|
|

|
|
|
|

you need to make to your V3.5 Application Server was.conf file in order to
continue using V3.5 in a V4.0 environment.

Notes:

a. In this example, the ServerInit and Service directives are split for
printing purposes. In the actual httpd.conf file, each directive is on a
single line.

b. The Web server interprets a blank in a directive specification as a
delimiter and a number sign (#) as the beginning of a comment that
should be ignored. Therefore, if you need to use a blank or number
sign in a directive, you must include a backslash (\) before the blank
or number sign to enable the Web server to correctly process the
directive.

2. Make sure that the JAVA_HOME environment variable contained in the
hosting Web server’s httpd.envvars file (as well as any other environment
variable, such as PATH or LIBPATH) points to the exact location where the
required level of the Software Development Kit (SDK) is installed on your
system

3. Append the WebSphere for z/OS plugin’s message catalog directory to the
existing NLSPATH specified in the HTTP server’s envvars file. For
example, if NLSPATH was set as:
/usr/lib/nls/msg/%L/%N:/usr/lpp/internet/%L/%N

and the WebSphere for z/OS plugin is installed in /usr/lpp/WebSphere,
change the NLSPATH to:
/usr/lib/nls/msg/%L/%N:/usr/lpp/internet/%L/%N:/usr/lpp/WebSphere/WebServerPlugIn/msg/%L%N

4. Start the HTTP server

Once the HTTP server is started, a client can use a Web browser to initiate a
transaction with a Web application. This transaction is communicated via the
HTTP server to the appropriate Web container residing in the J2EE server. If
the OS/390 system is a sysplex with multiple J2EE servers, WebSphere for
z/OS determines which J2EE server contains the correct Web container.

Multiple requests can be initiated concurrently to different replicated J2EE
servers. WebSphere for z/OS will serialize these requests within a single
session across containers.

Note: Configuring multiple instances of the Application Server or multiple
product levels of the Application Server within the same address space
is not permitted. Therefore, when updating an existing httpd.conf file
that contains existing Application Server directives, you must replace
the existing ServerInit, ServerTerm, and Service directives with
corresponding directives containing the new format previously
described in this section.

Chapter 7. Creating a J2EE server run-time environment 53

|
|

|

|
|
|

|
|
|
|
|
|

|
|
|
|
|

|
|
|

|

|
|

|

|

|
|
|
|
|

|
|
|

|
|
|
|
|
|
|

Configuring HTTP session support
A session is a series of requests originating from the same user, at the same
browser. Using WebSphere for z/OS’s implementation of the Java Servlet API
session framework, your Web container can maintain state information about
sessions.

WebSphere for z/OS provides facilities we group under the heading Session
Manager that support the javax.servlet.http.HttpSession interface described in
the Servlet API specification. A session object can be implemented in a variety
of ways, each of which provides different levels of performance, failover, and
clustering. In all cases, WebSphere for z/OS defines the notion of a session
transaction. A session transaction begins when a servlet calls
javax.servlet.http.HttpServletRequest.getSession(boolean). It ends with the
completion of that servlet’s javax.servlet.http.HttpServlet.service(request,
response) method.

WebSphere for z/OS fully supports the HTTP Session state semantic proposed
by the Java Servlet Specification V2.2. It ensures that requests that are part of
the same HTTP Session are not allowed to execute concurrently in multiple
Application Server instances. If two requests that are part of the same session
arrive at two different Application Server instances, WebSphere for z/OS will
serialize the dispatch of these requests among the Application Servers.

WebSphere for z/OS allows multiple requests in the same session to execute
concurrently within the same Application Server instance. It is the
responsibility of the Web application components (servlets, JSPs, etc.) to
serialize their access to the HTTP Session object within the same Application
Server. WebSphere for z/OS maintains the responsibility of providing the
serialization among Application Server instances.

WebSphere for z/OS makes use of a DB2 database as the mechanism for
serializing access to and sharing HTTP Session State data. It uses the same
HTTP Session database format as the Versions 3.5 and 3.02. Therefore, the
administrator is not required to create new databases for Version 4.0. Instead,
he can allow Versions 4.0, 3.5 and 3.02 to concurrently utilize the same
database in their processing.

Maintaining HTTP Session State data in-memory is still supported in
WebSphere for z/OS Version 4.0. When maintaining HTTP Session data
in-memory, it is unable to be shared across multiple instances of the Web
application that exist concurrently in multiple Application Server regions. If
HTTP Session data is configured to be in-memory, it is necessary for the Web
application that accesses that HTTP Session data to be placed in a J2EE server
which has been configured to have only one control region defined in the

54 WebSphere Application Server V4.0 for z/OS and OS/390: Assembling J2EE Applications

|

|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|

sysplex and only one server region defined for that control region. The ability
to constrain the number of runtime instances of a J2EE server is controlled by
OS/390 Workload Manager policy.

Configuring session tracking
Each plugin routine contains a single Session Manager. The Session Manager
supports the javax.servlet.http.HttpSession interface described in the Java
Servlet API 2.1 specification. When configuring the Session Manager, the
WebSphere administrator can specify:
v Whether to enable sessions.
v How to convey session IDs to servlets (cookies or URL rewriting).
v Whether to save session data in a DB2 database during execution

(persistent sessions)
v Whether to add session IDs to URLs in transition from HTTP to HTTPS and

back (protocol switch rewriting)

To activate the session tracking function within an WebSphere for z/OS
instance, the appropriate properties must be added to the webcontainer.conf
file that is specified during the WebSphere for z/OS initialization process.
Following is an example of the properties that need to be included in the
webcontainer.conf file to enable non-persistent session support with an
invalidation interval of 30 minutes (the value is specified in milliseconds).
This example configures cookies as the mechanism for maintaining the state
with the client.
session.enable=true
session.invalidationtime=1800000
session.cookies.enable=true

Note: This example illustrates a minimal set of options. The full set of session
properties, including detailed descriptions, are provided in the default
webcontainer.conf file, a copy of which is provide in “Appendix B.
Default webcontainer.conf file” on page 153.

Session security
Maintaining the security of individual sessions is part of the function of the
overall security structure built into WebSphere for z/OS. When creating a
session as part of request processing, WebSphere for z/OS uses the value
returned by the getUserName method on the HTTP Request object as the user
name associated with a session. If the getUserName method returns null
(which it will if a request does not require authentication) WebSphere for
z/OS uses a value of ″anonymous″ to denote the user. When processing a
getSession() request on behalf of a Servlet, WebSphere for z/OS validates that
the user name associated with the current request matches the user name
associated with the session. If the names do not match, the getSession method

Chapter 7. Creating a J2EE server run-time environment 55

|
|
|

|
|
|
|
|

|

|

|
|

|
|

|
|
|
|
|
|
|
|

|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

will throw an exception of
com.ibm.websphere.servlet.session.UnauthorizedSessionRequestException.

User authentication is performed by the Web server prior to invoking
WebSphere for z/OS. The following table illustrates the different scenarios
that may occur depending on whether the HTTP Request was authenticated
and whether a valid session ID and user name were detected by the Session
Manager.

No session ID
was passed in
for this request,
or an ID is
passed in for a
session that is
no longer valid.

A session ID for
a valid session is
passed in. The
current session
user name is
″anonymous″.

A Session ID for a
valid session is
passed in. The
current session user
name is ″FRED″.

A Session ID for a
valid session is
passed in. The
current session user
name is ″BOB″.

Unauthenticated
HTTP request
used to retrieve
a session.

A new session is
created and the
user name is
marked as
″anonymous″.

The session is
returned.

The session is not
returned;
UnauthorizedSession
RequestException is
thrown.

The session is not
returned;
UnauthorizedSession
RequestException is
thrown.

HTTP request
authenticated,
with an identity
of ″FRED″ used
to retrieve a
session.

A new session is
created and the
user name is
marked as
″FRED″.

The session is
returned and the
user name is
changed by the
Session Manager
to ″FRED″.

The session is
returned.

The session is not
returned;
UnauthorizedSession
RequestException is
thrown.

Using cookies for session tracking
If cookies are to be used with session tracking, the following changes might
need to be made to properties in the webcontainer.conf file:
v Set the session.cookies.enable property to true to enable cookies.
v Specify the name of the cookie on the session.cookie.nameproperty.
v Set the session.cookie.maxage property to a specific time interval. This

change is only needed if you want the cookie to persist for a set length of
time instead of for the full duration of the invocation of a browser. (The
value specified must be an integer value that indicates, in milliseconds, the
amount of time the cookie is to remain valid.)

v Set the session.cookie.path to a string that specifies to which paths on the
HTTP server cookies will be sent. This change is only needed if you want
to restrict to which servlets, JHTML files, and HTML files cookies will be
sent.

v Set the session.cookie.domain property to a specific name if you want to
limit the domain for which a cookie is valid.

56 WebSphere Application Server V4.0 for z/OS and OS/390: Assembling J2EE Applications

|
|

|
|
|
|
|

|||
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|

|

|
|
|

|

|

|
|
|
|
|

|
|
|
|

|
|

v Add a session.cookie.comment property if you want to include a comment
about the cookie.

v Set the session.cookie.secure property to true if you want to restrict the
exchange of cookies to only HTTPS sessions.

The Session Tracker will use a unique session ID to match user requests with
their HttpSession objects on the server. When the user first makes a request
and the HttpSession object is created, the session ID is sent to the browser as
a cookie. On subsequent requests, the browser sends the session ID back as a
cookie and the Session Tracker uses it to find the HttpSession associated with
this user.

Using URL rewriting
To use URL rewriting, you must set the session.urlrewriting.enable and
session.protocolswitchrewriting.enable properties in the webcontainer.conf
file to true. These settings:
v Enable URL rewriting in the Session Manager, using a servlet or a JSP as an

entry point. This entry point is not dependent on sessions for its processing;
rather, it contains encoded HREFs to servlets in the application that are
dependent on sessions.

v Enable the session ID to be added to a URL when the URL requires a
switch from HTTP to HTTPS, or HTTPS to HTTP.

The following example shows how Java code may be embedded within a JSP:
<%
response.encodeURL ("/store/catalog") ;
%>

Note: If you want to use URL rewriting to maintain session state, do not
include links to parts of your Web applications in plain HTML files
(i.e., files with .html or .htm extensions). This restriction is necessary
because URL encoding cannot be used in plain HTML files.

To maintain state using URL rewriting, every page that the user requests
during the session must have code that can be understood by the Java
interpreter. If your Web application and portions of the site that the user
might access during the session contain plain HTML files, these files must be
converted to JSPs. This will impact the application writer because, unlike
maintaining sessions with cookies, maintaining sessions with URL rewriting
requires that each servlet in the application use URL encoding for every HREF
attribute on tags. Sessions will be lost if one or more servlets in an application
do not call the encodeURL(String url) or encodeRedirectURL(String url)
methods.

Chapter 7. Creating a J2EE server run-time environment 57

|
|

|
|

|
|
|
|
|
|

|
|
|
|

|
|
|
|

|
|

|

|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|

To rewrite the URLs that are returning to the browser, the servlet must call the
encodeURL() method before sending the URL to the output stream. For
example, if a servlet that does not use URL rewriting contains the code:
out.println("catalog<a>");

then this code must be replaced with:
out.println("");
out.println(response.encodeURL ("/store/catalog"));
out.println("/">catalog");

To rewrite URLs that are redirecting, a servlet must call the
encodeRedirectURL() method. For example, if a servlet contains the following
code:
response.sendRedirect ("http://myhost/store/catalog");

then this code must be replaced with:
response.sendRedirect (response.encodeRedirectURL("http://myhost/store/catalog"));

The encodeURL() and encodeRedirectURL() methods are part of the
HttpServletResponse object. In both cases, these calls check to see if URL
rewriting is configured before encoding the URL. If it is not configured, it
returns the original URL. Also, unlike previous releases, WebSphere no longer
makes any checks to see if the browser making an http request has processed
cookies, and thus halts encoding of the URL. If URL encoding is configured
and response.encodeURL or encodeRedirectURL are called, the URL will be
encoded.

Session clustering
To support propagating events across z/OS or OS/390 nodes in a session
cluster, WebSphere for z/OS uses a database to track and manage sessions in
the common pool of sessions across all z/OS or OS/390 cluster nodes. With
the use of a database as well as the general architectural changes implemented
in this version of WebSphere for z/OS, WebSphere for z/OS no longer
maintains the notion of a session cluster client and a session cluster server. In
a clustered environment, the session may be accessed on any one of the
virtual hosts in a cluster; which one is actually accessed will be transparent to
the end user.

During the processing of a session transaction, if the virtual host fails for
whatever reason during the WebSphere HttpSession transaction, the update to
the database does not occur, but the common pool of sessions remains
functioning (including the session being processed during the failure, minus
any updates made during the uncompleted transaction). For non-catastrophic
failures (i.e., when the virtual host remains functional), any changes made to
the session which cannot be completed are rolled back and the session reverts
to its state prior to the start of the transaction. Otherwise, once the transaction

58 WebSphere Application Server V4.0 for z/OS and OS/390: Assembling J2EE Applications

|
|
|

|

|

|
|
|

|
|
|

|

|

|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

is completed and the changes are committed, the session is still accessible
regardless of the failure of an individual node.

Configuring a session cluster: WebSphere for z/OS can be configured so
that the hosting HTTP server session data can be accessed by instances of Web
applications executing in the same or different WebSphere for z/OS instances.
WebSphere for z/OS instances hosting these Web applications may be
executing within multiple Web server processes. The HTTP server processes
may be located on the same or on a different z/OS or OS/390 image.
Essentially, a session cluster defines the scope in which the session data may
be shared among WebSphere for z/OS instances.

WebSphere for z/OS uses a DB2 database as the sharing mechanism among
WebSphere for z/OS instances. Any V3.5 Application Server that is executing
on a z/OS or OS/390 image and is able to access the central database is able
to participate in the session cluster.

To configure a session cluster, you must:
v Have your DB2 Administrator create a database table for use within the

session cluster. (For more information about creating DB2 tables see the
DB2 Administration Guide for the version of DB2 you will be using.)
The table space in which the database table is created must be defined with
row level locking (LOCKSIZE ROW). It should also have a page size that is
large enough for the objects that will be stored in the table during a session.
Following is an example of a table space definition with row level locking
specified and a buffer pool page size of 32K:
CREATE TABLESPACE <tablespace_name>

IN <database_name>
USING STOGROUP <group_name>

PRIQTY 52
SECQTY 2
ERASE NO

LOCKSIZE ROW
BUFFERPOOL BP32K
CLOSE YES;

A DB2 table must then be defined within this table space for the Session
Manager to use to process the session data. The following example shows
the format of this table:
CREATE TABLE TABLEOWNER.<table_name>

(ID VARCHAR(24) NOT NULL,
PROPID VARCHAR(24) NOT NULL,
APPNAME VARCHAR(32),
LISTENERCNT SMALLINT,
EXPIRES TIMESTAMP,
LASTACCESS TIMESTAMP,
CREATIONTIME TIMESTAMP,
MAXINACTIVETIME INTEGER,

Chapter 7. Creating a J2EE server run-time environment 59

|
|

|
|
|
|
|
|
|
|

|
|
|
|

|

|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|
|

USERNAME VARCHAR(256),
SMALL VARCHAR(3595) FOR BIT DATA,
MEDIUM LONG VARCHAR FOR BIT DATA
)

IN DATABASE.<database_name>;

The DB2 Administrator must also create a type 2 unique index on the ID
and PROPID columns of this table. The following is an example of the
index definition:
CREATE TYPE 2 UNIQUE INDEX DATABASE.<database_name>.<index_name>

ON DATABASE.<database_name>.<table_name>
(ID , PROPID)
USING STOGROUP <group_name>
ERASE NO
BUFFERPOOL BP0
CLOSE YES;

Note: At run time, the Session Manager will access the target table using
the identity of the J2EE server in which the owning Web Application
is deployed. Any Application Server that is configured to use
persistent sessions should be granted both read and update access to
the subject database table.

v
Make sure that the following property settings are specified in the
webcontainer.conf file to enable session persistence and to inform the
Session Manager of the location of its entities:
session.enable=true
session.invalidationtime=<milliseconds>
session.cookies.enable=true
session.dbenable=true
session.dbjdbcpoolname=<session-jdbc-poolname>
session.datasourcename=<datasourcename>
session.dbtablename=<database-tablename>

<milliseconds> is the amount of time in, milliseconds, that a session is
allowed to go unused before it is considered invalid.

<session-jdbc-poolname> is the name of the JDBC database connection pool
that will be used for session support whenever the session.dbenable
property is set to true.

<datasourcename> is the name of the datasource for this JDBC database
connection pool.

<database-tablename> is the name of the database table that is to be used by
the session services.

60 WebSphere Application Server V4.0 for z/OS and OS/390: Assembling J2EE Applications

|
|
|
|
|

|
|
|

|
|
|
|
|
|
|

|
|
|
|
|

|

|
|
|

|
|
|
|
|
|
|

|
|

|
|
|

|
|

|
|

You can also change the value on the session.tableoverflowenable to false
if you want to limit the number of session objects maintained by the
WebSphere for z/OS plugin to the number of session objects specified on
the session.tablesize property. (The default value for the session.tablesize
property is 1000 session objects.)

Session clustering considerations: You should be aware of the following
caveats regarding how session management works within a clustered HTTP
server environment:
v The definition of the putValue() method of the HttpSession interface in the

current Java Servlet Version 2.2 API Specifications (as specified by Sun
Microsystems) does not account for the possibility of a clustered
environment. If you add an object to a session that does not implement the
serializable interface, you do not have any way to propagate the object
along with a given session (each session must be serialized across the
cluster). Consequently, the object will not be sent to and from the database
when session updates are made. To make your applications portable to a
clustered environment, you must make any objects placed in a session
serializable.

v When HttpSessionBindingListener and HttpSessionBindingEvent are used
in a clustered Web server environment, the event will be fired in
WebSphere for z/OS where the session is currently being processed. This
will occur in situations where:
– The servlet explicitly invalidates the session.
– The session times out.
– A listener is removed from a session.

v Any changes to the database parameters require a restart of the associated
Session Managers. Therefore, you must restart ALL instances of a Session
Manager in a cluster. Session Management operates under the previous
mode setting until you restart the Session Manager.

In-memory session pools
You can specify the number of in-memory sessions that are to be maintained.
Once this number is surpassed, these functions are bypassed. General memory
requirements for your hardware system, as well as your site’s usage
characteristics, will determine the optimum value for this number. Also, with
larger numbers, you may need to increase the heap sizes of the Java processes
for WebSphere for z/OS instances.

If you do not wish to place a limit on the number of sessions maintained in
memory and allow overflow, set the value contained in the base in-memory
session pool size to true. Allowing for an unlimited amount of sessions,
however, can potentially exhaust system memory and even allow for system
sabotage (where somebody could write a malicious program that continually

Chapter 7. Creating a J2EE server run-time environment 61

|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|

|

|

|

|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|

hits your site and creates sessions, but ignores any cookies or encoded URLs
and never utilizes the same session from one http request to the next).

When overflow is not allowed, the Session Manager will still return a session
with the HttpServletRequest’s getSession(true) method if the memory limit
has currently been reached, but it will be an invalid session which is not
saved in any fashion. With the WebSphere extension to HttpSession,
com.ibm.websphere.servlet.session.IBMSession, there is an Overflow() method
which will return ″true″ if the session is such an invalid session. Your
application could then check this and react accordingly.

Defining the server configuration

Use the WebSphere for z/OS Administration application, also known as the
System Management End-User Interface (SM EUI), to define the run-time
environment for your application. Defining this run-time environment, or
server configuration includes defining a J2EE server, server instance,
datasource; and installing the EAR file for your J2EE application.

Recommendation: Define the environment variable settings at the server level.
When you do so, these settings apply for all server instances.

Before you begin: You should know:
v Where to find additional help with using the Administration application:

Help is available in the Administration application itself, and in WebSphere
Application Server V4.0 for z/OS and OS/390: System Management User
Interface, SA22-7838.

v Which environment variables that you need to set for the run-time
environment. See “Appendix A. Environment and JVM properties files” on
page 123 for a complete list of run-time variables and the values you can
set during this process.

The following table shows the subtasks and associated procedures for defining
a J2EE server configuration, using the WebSphere for z/OS Administration
application:

Subtask: Associated procedure (See ...)

Starting the Administration
application

“Steps for starting the Administration application”
on page 63

Starting a new conversation “Steps for starting a conversation” on page 63

Adding the server “Steps for adding the J2SERV server” on page 64

Adding the server instance “Steps for adding the J2SERV1 server instance” on
page 66

Adding the J2EE resource “Steps for adding a J2EE resource” on page 66

62 WebSphere Application Server V4.0 for z/OS and OS/390: Assembling J2EE Applications

|
|

|
|
|
|
|
|
|

Subtask: Associated procedure (See ...)

Adding the J2EE resource instance “Steps for adding the J2EE resource instance” on
page 67

Installing the J2EE application “Steps for installing a J2EE application” on page 67

Validating the new conversation “Steps for validating the new conversation model”
on page 70

Committing the conversation “Steps for committing the conversation” on page 70

Marking manual tasks as
completed

“Steps for marking z/OS or OS/390 tasks as
completed” on page 70

Activating the new conversation “Steps for activating the server configuration” on
page 71

Steps for starting the Administration application
Before you begin: You need to know the naming server IP name and port
number for the machine running WebSphere for z/OS. The naming server IP
name is set either in your domain name server (DNS) or workstation HOSTS
file; the default port number is 900.

Perform these steps to start the Administration application:
1. On your workstation, click on Start, then Programs, then IBM WebSphere

for z/OS Administration.

2. Fill in the dialog with the naming server IP name, port 900, the user ID
CBADMIN, and password cbadmin. Click OK. Wait for the message that
indicates initialization is complete.

You know you are done when the main dialog window appears.

Steps for starting a conversation
Perform these steps to start a new conversation:
1. Select the Conversations folder with the left mouse button. Then, using the

right mouse button, click on the Conversations folder, then select Add.

2. In the properties form (the panel on the right), enter a name for the new
conversation.

3. Click on the save (diskette) icon. The words ″Adding... Conversation″
appear in the tree.

Chapter 7. Creating a J2EE server run-time environment 63

You know you are done when message BBON0515I appears in the status bar
(at the bottom of the dialog window), indicating that the new conversation
was added.

Steps for adding the J2SERV server
Perform these steps to add the new server:
1. Expand your new conversation tree by clicking on the node to the left of

the conversation name.

2. Expand Sysplexes, then your sysplex.

3. Select the J2EE server folder with the left mouse button. Then, using the
right mouse button, click on the J2EE server folder, then select Add.

4. In the properties form, enter values or make selections as appropriate for
your installation.
Usually, you can use default values for most of the properties; however,
make sure you check at least the properties listed in the following table.
For a complete list and explanation of server properties, use the help
available through the Administration application, or see WebSphere
Application Server V4.0 for z/OS and OS/390: System Management User
Interface, SA22-7838.

Server name J2SERV

Control region identity The user ID under which the control region runs. This user ID must match an
entity in the RACF STARTED class and have appropriate RACF authorizations
for a control region.

Server region identity The user ID under which the server region runs. This user ID must match an
entity in the RACF STARTED class and have appropriate RACF authorizations
for a server region.

Local identity Use only if you want to allow non-authenticated clients

Remote identity Use only if you want to allow non-authenticated clients

Control region start
procedure name

J2SERV

64 WebSphere Application Server V4.0 for z/OS and OS/390: Assembling J2EE Applications

Environment variable
list

Provide values for the following key environment variables for the application
server.
Note: Make sure you set all required environment variables for the run-time
environment. See “Appendix A. Environment and JVM properties files” on
page 123 for a complete list of application server run-time variables and their
values. You may also browse the current.env file to look up current values.
Then cut-and-paste the existing value into the panel and add to it, if necessary.
Use quick keys for cut/copy and paste ([ctrl]+c for COPY, [ctrl]+x for CUT,
[ctrl]+v for PASTE). These functions are not available from a pop-up menu in
the tables for the environment variables.

v LIBPATH. The LIBPATH variable specifies the DLL search paths for Java and
JDBC in the hierarchical file system (HFS). Specify system, WebSphere for
z/OS, Java, and DB2 JDBC DLLs.

Example:

LIBPATH=/db2_install_path/lib
:/usr/lpp/java/IBM/J1.3/bin
:/usr/lpp/java/IBM/J1.3/bin/classic
:/usr/lpp/WebSphere/

where db2_install_path is the HFS where you installed DB2 for OS/390.

v CLASSPATH. The CLASSPATH statement specifies Java class files (JAR files
and classes.zip) for use by Java applications in server regions.

If the CLASSPATH variable does not already contain a value, copy the value
set for the sysplex in this conversation, and append any necessary files. If
your application components access DB2 data, add the full path to the zip
file for the JDBC driver.

Rule: The entire CLASSPATH contents must fit on one line.

Example:

CLASSPATH=:/usr/lpp/ldap/lib/ibmjndi.jar
:/db2_install_path/classes/db2j2classes.zip

Note: After activation of this conversation, WebSphere for z/OS
automatically prepends the following files to the J2EE server CLASSPATH
for you:
– ws390srt.jar
– waswebc.jar
– xerces.jar

5. Click on the save (diskette) icon. The words ″Adding... J2EE server″

appear in the tree.

You know you are done when message BBON0515I appears in the status bar,
indicating that the new server definition was added.

Chapter 7. Creating a J2EE server run-time environment 65

Steps for adding the J2SERV1 server instance
Perform these steps to add the server instance:
1. If necessary, expand the J2SERV folder by clicking on the node to the left

of the folder icon.

2. Select Server Instances with the left mouse button. Then, using the right
mouse button, click on Server Instances, then select Add.

3. In the properties form, enter J2SERV1 as the server instance name.

4. Optionally, enter a server instance description.

5. Optionally, supply a log stream name. If you do not supply one, the
default is the log stream name you chose for the J2SERV server.

6. Click on the save (diskette) icon. The words ″Adding... Server Instance″
appear in the tree.

You know you are done when message BBON0515I appears in the status bar,
indicating that the new server instance was added.

Steps for adding a J2EE resource
Perform these steps to add a J2EE resource:
1. Select J2EE Resource with the left mouse button. Then, using the right

mouse button, select Add.

2. In the properties form, enter a name for the J2EE resource.

3. Optionally, enter a description of the J2EE resource.

4. Find the property labelled Datasource type, and select DB2.
The Administration application fills in the fields above with the
information that is appropriate for a DB2 datasource.

5. Click on the save (diskette) icon. The words ″Adding... J2EE resource″
appear in the tree.

66 WebSphere Application Server V4.0 for z/OS and OS/390: Assembling J2EE Applications

You know you are done when message BBON0515I appears in the status bar,
indicating that the J2EE resource was added.

Steps for adding the J2EE resource instance
Perform these steps to add the datasource instance:
1. If necessary, expand the tree for the newly created J2EE resource by

clicking on the node to the left of the resource name.

2. Select J2EE resource instance with the left mouse button. Then, using the
right mouse button, click on J2EE resource instance, then select Add.

3. In the properties form, enter the appropriate values for the following:
v J2EE resource instance name
v J2EE resource instance description
v Database name: supply the DB2 for OS/390 location name

4. Click on the save (diskette) icon. The words ″Adding... J2EE resource

instance″ appear in the tree.

You know you are done when message BBON0515I appears in the status bar,
indicating that the J2EE resource instance was added.

Steps for installing a J2EE application
Before you begin: Make sure that the ftp server on z/OS or OS/390 is
running.

Perform the following steps to install the EAR file for your application, using
the Administration application:
1. In the tree, select the J2EE server in which you want to install your

application.

2. Choose Install J2EE Application... from the Selected menu bar. The Install
J2EE Application dialog box appears.

3. In the dialog box, enter the following values:
v The fully qualified path name of the EAR file that contains your J2EE

application.
v The name of the FTP server for the sysplex in which you want to install

your application. Usually, this is the server IP name you specified as
instructed in “Steps for starting the Administration application” on
page 63.

Chapter 7. Creating a J2EE server run-time environment 67

v Click OK.
Result: The Reference and Resource Resolution window appears, and
displays the application content in the EAR file.

4. For each Enterprise bean listed in the Reference and Resource Resolution

window, click on the bean name to display the details for that bean on the
right side of the window. Then complete the following steps, as necessary,
for each bean:
a. Click on the EJB tab, and then click on the Set Default JNDI Name

button.
b. Click on the Reference tab to list any beans that this bean references.

Under the label JNDI Name, click on the ↓ symbol to display a list of
possible JNDI names for each referenced bean, and select the
appropriate JNDI name.
Repeat this step for each bean in the Reference list.

c. Click on the Resource tab to display the datasources for this bean.
Under the label Datasource, click on the ↓ symbol to display a list of
possible JNDI names for the datasource, and select the appropriate
JNDI name. Usually, this name is db2os390:ssn, where ssn is the DB2
for OS/390 subsystem name that you specified when adding the
datasource instance.
If this bean is an entity bean that uses container-managed persistence
(CMP), the ws390rt/cmp/jdbc/CMPDS resource reference appears under
the Resource tab for this CMP bean. This resource reference was added
to your application’s deployment descriptor during assembly of the
application, to allow you to select the datasource that WebSphere for
z/OS will use to back CMP beans.
Rule: When you install the application, you must select a datasource to
back any CMP beans.

Tip: Data from the Reference and Resource Resolution window is saved in
a new copy of the EAR file named application_name_resolved.ear before
it is transferred to the server for deployment. If you reopen that copy of
the file later, you do not have to re-enter the information a second time.

5. Repeat the JNDI selection process for any remaining beans. You will know

you have finished this process for each bean, when the bean symbol to the
left of the bean name has a checkmark over it.

6. When the JNDI selection process is complete for all application
components, the OK button becomes selectable. Click OK.

68 WebSphere Application Server V4.0 for z/OS and OS/390: Assembling J2EE Applications

|
|
|
|
|
|

|
|

Result: This action starts the automatic ftp transfer of the EAR file
contents from your workstation to z/OS or OS/390. The message
Deploying... application_name appears on the screen. The ftp transfer
proceeds through the following stages:

Stage Description

1 When the ear file is imported, the system transfers it to

targetdir/sysplex/temp/administrator_ID/application_name.ear

targetdir is the mount point, sysplex is the name of the sysplex, and
administrator_ID is the user ID of the administrator (usually CBADMIN).

2 The ear file is copied to

targetdir/apps/J2SERV/Ln/application_name.ear

n is the level number.

3 The ear file is processed. During ear file processing, the ear file is exploded
into directory

targetdir/apps/J2SERV/Ln/app_name/

app_name is the name of the application (not necessarily equal to the ear file
name).

4 A scaffolding directory

targetdir/apps/J2SERV/Ln/A/

is created under which all the deployment information is stored.

Note: Upon activation of the conversation, everything beneath

targetdir/apps/J2SERV/Ln/

is moved one level up to

targetdir/apps/J2SERV/

Also during this deployment process for your application:
v Appropriate ownership and file permissions are set for your application

files.
v If the application contains any servlets or JSPs, these Web applications

are provided with a fully qualified URI that enables the WAR files and
the EJB JAR files to be accessed through HTTP protocol when requested
by a client. (See “Exposing Web applications to HTTP clients” on
page 52 for more information on invoking a Web application from a
browser.)

Chapter 7. Creating a J2EE server run-time environment 69

|

You know you are done when message BBON0470I appears in the status bar,
indicating that the application_name_resolved.ear file has been successfully
installed.

Steps for validating the new conversation model
Perform these steps to validate the conversation:
1. If necessary, scroll up the tree to the conversation you have defined.

2. Select the conversation with the left mouse button. Then, using the right

mouse button, click on the conversation, then select Validate.

You know you are done when message BBON0442I appears in the status bar,
indicating that the new conversation is valid.

Steps for committing the conversation
Perform these steps to commit the conversation:
1. If necessary, scroll up the tree to the conversation you have validated.

2. Select the conversation with the left mouse button. Then, using the right

mouse button, click on the conversation, then select Commit. Answer Yes
to the question: ″Do you still want to commit?″ The words ″Committing...
conversation_name″ appear in the tree.

You know you are done when message BBON0444I appears in the status bar,
indicating that the new conversation and J2EE server definition was
committed.

Steps for marking z/OS or OS/390 tasks as completed
1. Select the new conversation with the left mouse button. Then, using the

right mouse button, click on the conversation, then select Instructions.

2. Double-check the instructions provided by the Administration application
to determine whether you have completed all of the required z/OS or
OS/390 tasks, which include defining workloads and setting up security. A
checklist for these required z/OS or OS/390 tasks appears in “Steps for
completing manual OS/390 tasks” on page 44.

3. When you have verified or finished the z/OS or OS/390 tasks, mark all
tasks complete in the administration application by following these steps:

70 WebSphere Application Server V4.0 for z/OS and OS/390: Assembling J2EE Applications

a. Select the conversation with the left mouse button. Then, with the right
mouse button, click on the conversation, select Complete, then All
tasks.

b. Answer Yes to the question: ″Are you sure that all tasks have been
completed?″

You know you are done when message BBON0484I appears in the status bar,
indicating that all tasks are complete.

Steps for activating the server configuration
1. Select the conversation with the left mouse button. Then, with the right

mouse button, click on the conversation, then select Activate.

2. Answer Yes to the question: ″Do you want to activate conversation
conversation_name?″ At the bottom of the dialog, a message indicates when
the server definition has been activated.

You know you are done when message BBON0449I appears in the status bar,
indicating that the new conversation was activated. Now the J2EE server you
just activated is ready to host the applications you installed.

Chapter 7. Creating a J2EE server run-time environment 71

72 WebSphere Application Server V4.0 for z/OS and OS/390: Assembling J2EE Applications

Chapter 8. Creating and running J2EE application clients

Once you have installed application components in a J2EE server, you are
ready to create J2EE application clients that use those components. Figure 2 on
page 5 illustrates the most likely types of clients for components that run in a
J2EE server. The information in this chapter primarily applies to z/OS or
OS/390 clients, but cites sources of details for developing and running
non-z/OS or non-OS/390 clients.

The following table lists types of client applications, and where to find
information about creating and running them. For all types of clients, make
sure you read the information in “Security considerations for J2EE
applications” on page 79.

For this type of client: See the following information sources:

Clients running in WebSphere
Application Server Standard
Edition on z/OS or OS/390

“WebSphere Application Server Standard Edition
for z/OS or OS/390 clients”

Clients running on z/OS or
OS/390

“Native z/OS or OS/390 Java clients” on page 76

Clients running on WebSphere
Application Server on distributed
platforms

“WebSphere Application Server Advanced Edition
and Standard Edition clients on non-z/OS and
non-OS/390 platforms” on page 77

WebSphere Application Server Standard Edition for z/OS or OS/390 clients

Figure 3 on page 6 depicts possible configurations for WebSphere Application
Server Standard Edition Web applications. The following information applies
only to the case in which Web applications run in the Standard Edition
environment and drive Enterprise beans that run in a WebSphere for z/OS
J2EE server.

Because documentation for developing and running this type of J2EE
application client is available inWebSphere Application Server for OS/390 V3.5
Standard Edition Planning, Installing, and Using, GC34-4835, the following
procedure provides only a summary of the development and installation
process, with references to resources with further instructions. Before you
begin: You must have the WebSphere Application Server Standard Edition
Version 3.5 for OS/390 installed and customized. Because this task is typically

© Copyright IBM Corp. 2000, 2001 73

performed by system programmers, you might need the help of such experts
to complete this task at your installation. If necessary, see one or both of the
following information sources:
v WebSphere Application Server for OS/390 Version 3.5 Standard Edition Program

Directory, which is shipped with the Standard Edition product
v WebSphere Application Server for OS/390 V3.5 Standard Edition Planning,

Installing, and Using, GC34–4835

Perform the following steps to create and run J2EE application clients:
1. Make sure you have installed the appropriate application development

software, and have the associated documentation for those tools on hand.
For further details, see “Chapter 4. Setting up the application development
environment” on page 19.
Recommendations:

v Use VisualAge for Java or WebSphere Studio to develop and test
servlets and JSPs. The VisualAge for Java WebSphere Test Environment
feature enables you to test your application clients without having to
install a WebSphere Application Server environment on the workstation.

v Make sure you check the latest edition of the following book for any
additional application development tooling considerations: WebSphere
Application Server for OS/390 V3.5 Standard Edition Planning, Installing,
and Using, GC34–4835

2. Code and test the servlet and JSP components of your J2EE application.

Rule: J2EE application clients must set the Java property key
java.naming.factory.initial to
com.ibm.websphere.naming.WsnInitialContextFactory.
Recommendations:

v Instead of hardcoding property values in the client application itself, set
the properties through the was.conf file for the WebSphere Application
Server. See Step 6 on page 75.

v Make sure you check the latest edition of WebSphere Application Server for
OS/390 V3.5 Standard Edition Planning, Installing, and Using for any
programming model restrictions that might affect the design of your
application clients.

3. When you are satisfied with the unit test results for these components,

transfer the component artifacts (JAR files, and so on) to a working
directory in the hierarchical file system (HFS) on OS/390.
Recommendation: Use the following naming convention for your working
directory: /webapp/servlet_or_JSP_name/

74 WebSphere Application Server V4.0 for z/OS and OS/390: Assembling J2EE Applications

|
|
|

Note: When you transfer the files from the workstation (an ASCII-based
system) to OS/390 (an EBCDIC-based system), you must perform
the necessary conversions as part of transferring the files.

4. To the WebSphere Application Server directives section in the HTTP server

configuration file (called httpd.conf), add the following Service directive
for the webapp/servlet_or_JSP_name relative directory:
Service /webapp/servlet_or_JSP_name/*

/usr/lpp/WebSphere/AppServer/bin/was302plugin.so:service_exit

The httpd.conf file is usually in the /etc directory.

5. Configure the WebSphere Application Server by changing settings in the

was.conf file as follows:
appserver.libpath=/usr/lpp/WebSphere/lib
appserver.
classpath=path/ws390crt.jar

where path is the directory in which the jar file resides.
/usr/lpp/WebSphere/lib/ is the default path.

The was.conf file is usually in the
/usr/lpp/WebSphere/AppServer/properties directory.WebSphere Application
Server for OS/390 V3.5 Standard Edition Planning, Installing, and Using
describes all of the application server properties that you can set through
this file.

6. Define your J2EE application clients to the WebSphere Application Server

by setting Web Application properties in the was.conf file.
Rule: The following property settings are required for both servlets and
JSPs:
v deployedwebapp.<webapp_name>.classpath=

/usr/lpp/WebSphere/lib/ws390crt.jar plus the location and name of
JAR files for any Enterprise bean that the client uses

v deployedwebapp.<webapp_name>.java.naming.factory.initial=
com.ibm.websphere.naming.WsnInitialContextFactory

v deployedwebapp.<webapp_name>.javax.naming.provider.url=
“iiop://x.x.x.x:ppp where x.x.x.x:ppp is the IP address and port of the
WebSphere for z/OS systems management server.

Chapter 8. Creating and running J2EE application clients 75

|

|

|
|
|
|
|

You must specify a value for this property to access the WebSphere for
z/OS naming service on another sysplex, or to access the JNDI on an
Advanced Edition WebSphere Application Server running on a
workstation platform.

Recommendation: Make sure you check WebSphere Application Server for
OS/390 V3.5 Standard Edition Planning, Installing, and Using to determine
whether you need to set any additional Web Application properties
through the was.conf file.

7. Stop and restart the HTTP server.

8. Access your J2EE application client from a web browser by setting the

location to http://<host>/webapp/<webapp_name> Web site, where <host> is
the application client host system.

Native z/OS or OS/390 Java clients

When your installation’s system programmers installed and customized
WebSphere for z/OS, they ran sample J2EE applications (which are shipped as
part of the product) to verify that the installation was successful. You can use
the same applications to see how to drive J2EE applications on z/OS or
OS/390 from a Java client running on z/OS or OS/390. WebSphere Application
Server V4.0 for z/OS and OS/390: Installation and Customization, GA22-7834
contains a procedure for running the WebSphere for z/OS installation
verification programs (IVPs). Use this procedure and the associated files as
models for running your own z/OS or OS/390 clients, which may include
any Java processes running in the UNIX System Services (USS) environment.
Pay particular attention to the content and instructions in the ejbivp.sh file,
which is a USS shell script that runs the sample PolicyClient to drive the
Policy Enterprise bean IVP. This shell script is available in the
/samples/PolicyIVP/ejb subdirectory of the HFS location in which WebSphere
for z/OS is installed.

For information about designing and coding Java clients that run on z/OS or
OS/390, start with z/OS UNIX System Services User’s Guide, SA22-7801, and the
following rules and guidelines:
v Rules:

– Clients must include the following on their CLASSPATH:
/usr/lpp/WebSphere/lib/ws390crt.jar plus the location and name of
JAR files for any Enterprise bean that the client uses

76 WebSphere Application Server V4.0 for z/OS and OS/390: Assembling J2EE Applications

|
|
|
|

|
|
|

– Clients must use explicit names for Enterprise beans and homes because
WebSphere for z/OS does not provide a client container. In other words,
clients cannot use JNDI look-ups for java:comp names.

– To access the WebSphere for z/OS naming service, clients must set the
property:
javax.naming.provider.url=“iiop://x.x.x.x:ppp”

where x.x.x.x:ppp is the IP address and port of the WebSphere for z/OS
systems management server.

You must specify a value for this property to access the WebSphere for
z/OS naming service on another sysplex, or to access the JNDI on an
Advanced Edition WebSphere Application Server running on a
workstation platform.

v Guideline: Make sure you consider security requirements. For z/OS or
OS/390 clients, your installation might not require any security mechanisms
even if you are running these clients in a production system. Review the
considerations in and consult with your security administrator.

WebSphere Application Server Advanced Edition and Standard Edition clients
on non-z/OS and non-OS/390 platforms

When your installation’s system programmers install and customize
WebSphere for z/OS, they run a sample J2EE application (which is shipped as
part of the product) to verify that the installation was successful. You can use
the same application to see how to drive J2EE applications on z/OS or
OS/390 from a remote platform, such as Windows NT.

To drive the WebSphere for z/OS installation verification program (IVP)
remotely, you may use the WebSphere for z/OS Java Client for Windows,
which is available through the WebSphere Application Server Web site. The
WebSphere for z/OS Java Client for Windows package contains the Java client
Policy IVP, which is the same IVP used on z/OS or OS/390 as part of the
WebSphere for z/OS installation process. The WebSphere for z/OS Java Client
for Windows also contains a README file with further instructions for running
the Policy IVP client. Use these instructions as a model for setting up your
own clients on Windows to drive Enterprise beans installed in a WebSphere
for z/OS J2EE server.

Depending on the software installed on your workstation, you might not need
to download the WebSphere for z/OS Java Client for Windows to run Java
clients that use J2EE application components installed in WebSphere for z/OS.
Use the following chart to determine when the Java Client for Windows
download package is required:

Chapter 8. Creating and running J2EE application clients 77

|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

If your workstation configuration: Then:

Includes WebSphere Application Server Advanced
Edition V4.0

You do not need to download the
WebSphere for z/OS Java Client.

Includes WebSphere Application Server Advanced
Edition V3.5

You must download the
WebSphere for z/OS Java Client
to run clients that use J2EE
application components installed
in WebSphere for z/OS.

Does not include any version of WebSphere
Application Server Advanced Edition

To download the WebSphere for z/OS Java Client for Windows, go to the
WebSphere Application Server Web site:
http://www.ibm.com/software/webservers/appserv/

Then click on Download in the left frame, and scroll to the link for WebSphere
Application Server V4.0 for z/OS and OS/390 downloads to access the
WebSphere for z/OS Java Client for Windows.

Rules:

v Clients must include the following on their CLASSPATH: the location and
name of JAR files for any Enterprise bean that the client uses

v Clients must use explicit names for Enterprise beans and homes. In other
words, clients cannot use JNDI look-ups for java:comp names.

v To access the WebSphere for z/OS naming service, clients must set the
property:
javax.naming.provider.url=“iiop://x.x.x.x:ppp”

where x.x.x.x:ppp is the IP address and port of the WebSphere for z/OS
systems management server.

Guideline: Make sure you consider security requirements. For z/OS or
OS/390 clients, your installation might not require any security mechanisms
even if you are running these clients in a production system. Review the
considerations in and consult with your security administrator.

For further information about designing and coding J2EE client applications to
run on platforms other than z/OS and OS/390, see the InfoCenter
information for the WebSphere Application Server product you are using. The
InfoCenter is available at http://www.ibm.com/software/webservers/appserv/

78 WebSphere Application Server V4.0 for z/OS and OS/390: Assembling J2EE Applications

|||

|
|
|
|

|
|
|
|
|
|
|

|
|

|

|
|

|

|
|
|

Security considerations for J2EE applications

The security profiles and permissions for clients depend, to some degree, on
your installation’s guidelines for test or production systems. For example, in a
test environment, you might allow J2EE application clients to access test
systems and data without using any security mechanism. This approach
might be especially suitable when client programs run on the same z/OS or
OS/390 system as the J2EE server. If your installation does require the
authentication of clients, however, you might need to work with your
installation’s security administrator to comply with security requirements.

Guidelines:

v For recommendations and instructions for setting up security for J2EE
servers and J2EE application clients, see WebSphere Application Server V4.0
for z/OS and OS/390: Installation and Customization. The security topics in that
book cover:
– Client authentication
– Client access to J2EE servers
– Client access to objects in a server
– Client access to DB2 (optional)

v If your client applications need permission to use Enterprise bean or servlet
methods that are protected through role-based security, you need to define
profiles in the EJBROLE or GEJBROLE class, and then allow users or
groups to have read access to those profiles.
Rules:
– Profiles specified in the EJBROLE or GEJBROLE class follow this format:

role_name

where role_name matches the security role attribute specified in either:
- The J2EE application deployment descriptor, or
- The deployment descriptor of an individual application component.

– A role name cannot contain blanks, and cannot exceed 246 characters.
Role names, however, may be in mixed case.

If your installation uses the z/OS or OS/390 SecureWay Security Server
(RACF), see z/OS SecureWay Security Server RACF Command Language
Reference, SA22-7687 for information about using:
– The RDEFINE command to define profiles to the EJBROLE or GEJBROLE

class.
– The PERMIT command to grant users read access to these profiles.

Chapter 8. Creating and running J2EE application clients 79

80 WebSphere Application Server V4.0 for z/OS and OS/390: Assembling J2EE Applications

Part 3. Working with J2EE applications in the run-time
environment

© Copyright IBM Corp. 2000, 2001 81

82 WebSphere Application Server V4.0 for z/OS and OS/390: Assembling J2EE Applications

Chapter 9. Installing applications in a WebSphere for z/OS
server

In addition to step-by-step installation through the WebSphere for z/OS
Administration application, you may use the following alternative methods of
installing applications in a WebSphere for z/OS:

For information about: See . . .

Using the export/import function of the
Administration application

“Steps for using the export/import
process through the Administration
application”

Using the System Management Scripting
APIs

“Installing applications using scripts” on
page 85

Steps for using the export/import process through the Administration
application

After you have finished testing your J2EE applications, you can use the
WebSphere for z/OS Administration application to export the J2EE server
configuration you have been using on your test system, and import that
model configuration on a production system. Through this export/import
process, you create an HFS file that contains the server definition, which you
transfer to a production system. This process can be quicker and less
error-prone than defining a server configuration from scratch.

Perform the following steps to use the export/import process:
1. In the Administration application, export the server model of the J2EE

server in which your application is deployed:
a. Select the server in the active image.
b. Select the export server... action of the Selected menu bar choice. The

Export server dialog box appears.
c. Enter the fully qualified name of an HFS file to contain the output of

the export process.
d. Click OK.

Result: The action Export server... creates HFS files for the server on the
host. These files contain definitions of the server and its subtree with
almost all its properties, even referenced but not defined J2EE resources.

© Copyright IBM Corp. 2000, 2001 83

2. Copy or move the output HFS files to the z/OS or OS/390 production
system on which you want the server to run. See z/OS UNIX System
Services User’s Guide, SA22-7801 for methods of and instructions for
moving or copying files.
Warning: Do not edit the output HFS file.

3. In the Administration application, import the J2EE server model by
completing the following steps:
a. Add a conversation, if necessary.
b. Select the Servers folder.
c. Select the import server... action of the Selected menu bar choice. The

Import server dialog box appears.
d. For Server name, enter a name that is unique to this WebSphere for

z/OS configuration.
e. For Input file, enter the fully qualified name of the HFS files that you

moved or copied to the production system.
f. Click OK.
g. Modify the properties of the server, including Control region proc

name and Debugger allowed.
h. Add server instances for the production system, as appropriate.
i. Add J2EE resources instances for the production system, as appropriate.

4. Also in the Administration application:

a. Validate the imported model by selecting the conversation, then
selecting Validate. When message BBON0442I appears in the status
bar, the new conversation is valid.

b. Commit the conversation by selecting the conversation, then selecting
Commit. Answer Yes to the question: ″Do you still want to commit?″
When message BBON0444I appears in the status bar, the new
conversation was committed.

c. Complete OS/390 tasks, as appropriate.
d. Activate the conversation by selecting the conversation, then selecting

Activate. Answer Yes to the question: ″Do you want to activate
conversation... ?″ At the bottom of the dialog, a message indicates
when the server definition has been activated.

84 WebSphere Application Server V4.0 for z/OS and OS/390: Assembling J2EE Applications

Installing applications using scripts

To install applications in a J2EE server without using the WebSphere for z/OS
Administration application, you may use the System Management Scripting
APIs, which provide exactly the same capabilities as the Administration
application. Using the scripts might provide a quicker, less error-prone
method of installing applications into a production server, for example. For
more information about using the System Management Scripting APIs, see
WebSphere Application Server V4.0 for z/OS and OS/390: System Management
Scripting API, SA22-7839.

Chapter 9. Installing applications in a WebSphere for z/OS server 85

86 WebSphere Application Server V4.0 for z/OS and OS/390: Assembling J2EE Applications

Chapter 10. Collecting data about J2EE application activity

WebSphere for z/OS offers several different methods of collecting information
about applications running in a J2EE server:

For information about: See . . .

Using SMF records to collect accounting
information

“Collecting J2EE application information
through SMF records”

Using JRas support to enable applications
to issue messages and trace entries

“Logging messages and trace data for
Java applications”

Collecting J2EE application information through SMF records

If you want to collect and record statistics related to your server applications,
you may define a J2EE server to use the z/OS or OS/390 systems
management facility (SMF). Through SMF activity and interval records, the
J2EE server records application details that you may use for application
profiling. To enable SMF recording, you must define the J2EE server to create
SMF records, and perform other administration tasks; for further details, start
with the SMF topic in WebSphere Application Server V4.0 for z/OS and OS/390:
Operations and Administration, SA22-7835.

Logging messages and trace data for Java applications

The WebSphere for z/OS run-time supports the Ras Toolkit for Java, which
enables you to issue messages from and collect trace data for your Java server
applications that run in WebSphere for z/OS J2EE or MOFW servers. Through
WebSphere for z/OS extensions to the toolkit, known as JRas support, your
Java application’s messages can appear on the z/OS or OS/390 master
console or in the error log stream, depending on the message type. All
messages are logged in the component trace (CTRACE) data set for
WebSphere for z/OS. Also, your application’s trace entries can appear in the
same CTRACE data set.

You might want to issue messages to the master console to report serious
error conditions for mission-critical applications. Through the master console,
an operator can receive and, if necessary, take action in response to a message
that indicates the status of your application. In addition, by directing
messages to the master console, you can trigger automation packages to take
action for specific conditions or events related to your application’s
processing.

© Copyright IBM Corp. 2000, 2001 87

|
|
|
|
|
|
|
|
|

With JRas support, you may direct error messages to the error log stream.
Any messages that your application issues also appear in the CTRACE data
set for WebSphere for z/OS. Logging the messages in these system resources
can help you more easily diagnose errors related to your application’s
processing.

Similarly, issuing requests to log trace data in the CTRACE data set is another
method of recording error conditions, or collecting application data for
diagnostic purposes. You can select the amount and types of trace data to be
collected, so you have the ability to run your application with minimal
tracing, when performance is a priority, or to run your application with
detailed tracing, when you need to recreate a problem and collect additional
diagnostic information.

Recommendation: The error log stream, the CTRACE data set for WebSphere
for z/OS, and the master console are primarily intended for recording
diagnostic data for or monitoring system components and critical applications.
Depending on your installation’s configuration, directing application messages
and data to these resources might have an adverse affect on system
performance. For example, if you send application data to the CTRACE data
set, trace entries in that data set might wrap more quickly, which means you
might lose some critical diagnostic data because the system writes new entries
over existing ones when wrapping occurs. Use this logging support
judiciously.

Notes:

1. You can use the WebSphere for z/OS support for logging messages and
trace data only for Java applications (not for Java applets).

2. The WebSphere for z/OS support for the Ras Toolkit is not the same as the
JRas support supplied in Enterprise Edition V3.02. The new JRas support:
v Always logs messages that your application issues. This change means

that, once you code an application to issue messages and run that
application, its messages will always be collected and logged. With
Enterprise Edition V3.02, you had the ability turn off message collection.

v Requires a different mechanism for enabling the collection of trace data.
With Enterprise Edition V3.02, environment variables for the MOFW
application server controlled the collection of trace data; with
WebSphere for z/OS V4.0, a customer-supplied trace settings file
enables or disables the collection of trace data.

v Uses different classes for obtaining message or trace loggers, but the
same methods: the createRASTraceLogger and createRASMessageLogger
methods. The WebSphere for z/OS V4.0 methods, however, have
slightly different signatures than those for Enterprise Edition V3.02.
Although the Enterprise Edition V3.02 createRASTraceLogger and
createRASMessageLogger methods are deprecated, you do not have to

88 WebSphere Application Server V4.0 for z/OS and OS/390: Assembling J2EE Applications

|
|
|
|
|

change any of the programs you coded to use them, unless those
programs must run on another platform as well as on OS/390. With
WebSphere for z/OS V4.0, calls to createRASTraceLogger or
createRASMessageLogger are delegated to the same methods in the new
WebSphere for z/OS V4.0 class. To run your application on additional
platforms, such as Windows NT, you must recode your program to use
the new methods.
For descriptions of the methods you can issue from your server
application to issue messages or log trace entries, refer to Using the
WebSphere JRas Message Logging and Trace Facility, which describes the
methods in the com.ibm.ras package, as it applies to all supported
platforms, including z/OS or OS/390.

The following table shows the subtasks and associated procedures for logging
messages and trace data for your Java application:

Subtask Associated procedure (See . . .)

Determining which types of messages and
trace data to issue or collect

v “Background on issuing application
messages to the z/OS or OS/390
master console”

v “Background on issuing trace requests
for your application” on page 91

Preparing your Java server application to
issue messages and trace requests

“Steps for coding your Java application to
issue messages and trace requests” on
page 93

Preparing the z/OS or OS/390 run-time
environment for logging messages and
collecting trace data

“Steps for preparing the z/OS or OS/390
environment for logging Java application
messages and trace requests” on page 99

Viewing messages or trace data collected
for your Java server application

v “Background on viewing messages and
trace data” on page 102

v “Steps for using IPCS in batch mode to
format application trace data” on
page 103

Background on issuing application messages to the z/OS or OS/390
master console

With the WebSphere for z/OS run-time support for the Ras Toolkit (JRas
support), you can issue messages from your Java application to the master
console. You might want to issue messages to the master console to report
serious error conditions for mission-critical applications, or to trigger
automation packages. The messages your application issues also appear in the
component trace (CTRACE) data set that WebSphere for z/OS uses, and in its
error log stream if the messages are classified as error messages. Logging the

Chapter 10. Collecting data about J2EE application activity 89

messages is another method of recording error conditions, or collecting
application data for diagnostic purposes.

WebSphere for z/OS provides code that creates and manages a message
logger, which processes your application’s messages. The message logger runs
in the Java virtual machine (JVM) for the WebSphere for z/OS J2EE or MOFW
server in which your Java application will run. To use a message logger, all
you need to do in your Java application is:
1. Define the message logger,
2. Drive the method to instruct WebSphere for z/OS to create the message

logger, and
3. Code messages at appropriate points in your application. To direct specific

messages to the master console, your code must include the appropriate
classification for each message.

Specific instructions for updating your application to use JRas support appear
in “Steps for coding your Java application to issue messages and trace
requests” on page 93. Before you can use those instructions to properly code
messages, however, you need to understand the concepts in the following
topics:
v “Defining messages through inline method calls or a message properties

file”
v “Understanding how the message type affects message destinations” on

page 91

Defining messages through inline method calls or a message properties
file
If you want to issue messages from your Java application, you may either
define the messages inline, or use a separate file to contain the messages.
Generally speaking, defining messages inline is faster and requires fewer steps
to complete; using a separate message properties file is a better approach for
both usability and for text translation, if you plan to provide message text in a
variety of languages. Regardless of whether you use the file or inline
approach for defining messages, you must code methods in your Java
application to issue messages at appropriate points in its processing. At those
points, you use methods defined in the RASIMessageLogger interface to issue
messages.

If you define messages inline, use textMessage methods to issue messages
from your application. The string that you specify on the method call is what
the message logger sends to the master console, error log stream, or CTRACE
data set.

If you plan to use a message properties file, you need to:
1. Create the message properties file.
2. Define all messages using a key/text pair.

90 WebSphere Application Server V4.0 for z/OS and OS/390: Assembling J2EE Applications

|
|
|

The key enables the message logger to locate the appropriate message in
the message file; the text is what the message logger sends to the master
console, error log stream, or CTRACE data set.

3. Use the appropriate methods to tell the message logger where to find
message text for your application’s messages.
You can identify the message file to the message logger through two
mechanisms:
v The setMessageFile method, which registers one message properties file

to serve as the default file for retrieving message text.
v The message or msg methods, on which you may specify the name of the

message properties file.

See “Steps for coding your Java application to issue messages and trace
requests” on page 93 for specific instructions for creating a message file, rules
for defining the messages in it, and examples.

Understanding how the message type affects message destinations
When you code the method to issue a message, you assign a message type to
characterize the message as an error, warning, or informational message. The
RASIMessageEvent interface defines the message types. These types define the
destination of each message:
v Only informational messages (TYPE_INFORMATION or TYPE_INFO) are sent to

the master console.
v Only error messages (TYPE_ERROR or TYPE_ERR) are sent to the error log

stream.
v All three types of messages are sent to the CTRACE data set.

Note that messages are always logged; once you code an application to issue
messages, and run that application on z/OS or OS/390, its messages will
always be collected and logged.

Background on issuing trace requests for your application
The purpose of collecting trace data is to provide sufficient information to
diagnose a problem with your application. With the WebSphere for z/OS
run-time support for the Ras Toolkit (JRas support), you can issue trace
requests from your Java application, and have the resulting trace data
recorded in the component trace (CTRACE) data set that WebSphere for z/OS
uses. Your application’s trace data appears in the CTRACE data set for the
WebSphere for z/OS J2EE or MOFW server in which your application runs.

WebSphere for z/OS provides code that creates and manages a trace logger,
which processes your application’s trace requests. The trace logger runs in the
Java virtual machine (JVM) for the WebSphere for z/OS J2EE or MOFW
server in which your Java application will run. To use a trace logger, all you
need to do in your Java application is:

Chapter 10. Collecting data about J2EE application activity 91

|
|
|
|

|
|

|
|

|

1. Define the trace logger,
2. Drive the method to instruct WebSphere for z/OS to create the trace

logger, and
3. Code trace requests at appropriate trace points in your application.

Specific instructions for updating your application to use JRas support appear
in “Steps for coding your Java application to issue messages and trace
requests” on page 93. Before you can use those instructions to properly code
trace requests, however, you need to understand the concepts in the following
topics:
v “Determining where to place trace points and what data to request”
v “Assigning trace types to trace points” on page 93

Determining where to place trace points and what data to request
To collect trace data for a Java application running in a WebSphere for z/OS
J2EE or MOFW server, you must decide where to locate trace points in your
application’s code. At those trace points, you can use RASTraceLogger class
interfaces to request a trace entry. Typical trace points include:
v Method entry
v Method exit
v Start of a functional request
v Major checkpoints in the process of completing a request
v Completion of a functional request
v Interface to another system function
v Any unusual event, such as a detected I/O error or an unexpected

exception

You must also decide what information to record in the trace entries, which
can hold a variable amount of data. WebSphere for z/OS automatically
collects the address space identifier (ASID) and task control block (TCB) for
the unit of work or transaction, and Java name for the thread. The following
are suggestions on the additional types of data you might place in the trace
entries for a Java application running in a WebSphere for z/OS J2EE or
MOFW server:
v Identification of the unit of work or transaction that is being serviced by the

application. This can be the JOBNAME, USERID, or transaction identifier.
v For entries that trace the start of a functional request, the input parameters.
v For internal checkpoints, an identification that ties this trace entry to the

original request, and information on the current status of the process.
v For unusual events, the cause of the problem and any additional data. For

example, you could record any exceptions and stack traces.
v On return from a service, the return code and reason code.
v For trace entries being used for analysis rather than as a debugging aid,

whatever information the user of the application needs.

92 WebSphere Application Server V4.0 for z/OS and OS/390: Assembling J2EE Applications

Assigning trace types to trace points
For each trace point you define in your Java application, you use methods
defined in the RASITraceLogger interface to request trace entries. As part of
each trace request, you should assign a trace type for this specific request. The
RASITraceEvent interface defines the types that you may use.

Note: The Enterprise Edition V3.02 JRas support required you to assign a
trace level to trace points in your application. These assignments are
still supported, so you do not have to recode any applications that use
trace levels.

After you code trace requests, your Java application is capable of issuing trace
requests while it runs. To actually record the trace data requested, however,
the WebSphere for z/OS J2EE or MOFW server in which your application
runs must be enabled for tracing. “Steps for preparing the z/OS or OS/390
environment for logging Java application messages and trace requests” on
page 99 provides more detail about enabling tracing for specific trace types.

Steps for coding your Java application to issue messages and trace
requests

By coding instructions for issuing messages and logging trace entries, you can
improve the reliability, availability, and serviceability (Ras) of your Java server
application. When your Java application runs in a WebSphere for z/OS J2EE
or MOFW server, its messages appear in one or more of the following
destinations, depending on the message type:
v The z/OS or OS/390 master console
v The error log stream that WebSphere for z/OS uses
v The component trace (CTRACE) data set that WebSphere for z/OS uses.

The application’s trace entries appear in the same CTRACE data set.

Before you begin:

v If you want to issue messages from your Java application, you may either
define the messages inline, or use a separate file to contain the messages.
Decide which approach you want to use before you start coding. If
necessary, see “Defining messages through inline method calls or a message
properties file” on page 90 for more information about these two
approaches.

v For descriptions of the JRas interfaces and methods you can use to issue
messages or log trace entries, refer to Using the WebSphere JRas Message
Logging and Trace Facility, which describes the methods in the com.ibm.ras
package, as it applies to all supported platforms, including z/OS or
OS/390.

Chapter 10. Collecting data about J2EE application activity 93

|
|
|

|

|

|

Perform the following steps to add code to your Java server application to
direct messages and trace entry requests to z/OS or OS/390 message and
trace data logging facilities.
1. (Optional) Create a message properties file if you want to log messages

from your application, and have not defined messages inline. For each
message that the Java application issues, define the message in a key/text
pair:
v Use the text portion to indicate what is to appear on the master console

or in the error log stream
v Use the key, in both the message properties file and in your Java

application code, to enable the run-time code to find the correct message
text.

Rules:

v Always use an equals sign to separate the key from the text. For
example:
BBOJ0001=BBOJ0001 Java BO created.
BBOJ0002=BBOJ0002 Policy number {0} obtained.

v Message text that contains variable data requires special coding to
indicate the placement and content. To correctly define messages with
variable text, use braces {} to indicate that a variable is to appear at a
particular place in the text. Within the braces, use a digit to indicate
which variable belongs at this place.
For example, suppose your code contains the following instructions:
String day = "Monday";
Integer temp = new Integer(75);
msgLogger.message(RASIMessageEvent.TYPE_INFO,

this,
"methodName",
"APPL061I",
day,
temp);

To correctly define this message, you would code the following in your
message properties file:
APPL061I=APPL061I On {0}, it is {1} degrees.

2. Using an appropriate application development tool for your application,

edit the source code for your Java application as follows:
v Add import statements for the com.ibm.ras and com.ibm.WebSphere

packages. For example, type the following:
import com.ibm.ras.*;
import com.ibm.websphere.ras.*;

94 WebSphere Application Server V4.0 for z/OS and OS/390: Assembling J2EE Applications

v Add definition statements for the message and trace loggers. For
example, type the following:
private RASIMessageLogger msgLogger = null;
private RASITraceLogger trcLogger = null;

3. Edit the constructor for your Java application to create the message logger,

trace logger, or both:

For this type
of logger:

Complete the following steps:

Message v Use the createRASMessageLogger method to request a message
logger

v (Optional) Define the message properties file, if you are using the
file, rather than inline, approach for issuing messages from your
application.

Trace Use the createRASTraceLogger method to request a trace logger

Rules:

v Applications must refer to the object returned by the
createRASMessageLogger method as a type RASIMessageLogger object.

v Applications must refer to the object returned by the
createRASTraceLogger method as a type RASITraceLogger object.

Tip: Avoid using logger names that begin with the com.ibm. prefix, which
is reserved for use by WebSphere for z/OS.

4. If you want to issue messages from your Java application, add messages at

appropriate points in the application’s source code.
Rules:

v If you are defining messages inline, use the textMessage methods in the
RASIMessageLogger interface, specifying the complete message in a string
on the method call.

v If you are using a message properties file, use the message or msg
methods in the RASIMessageLogger interface, specifying the message key
on the method call. For example:
msgLogger.message(RASIMessageEvent.TYPE_INFO,

"com.myCompany.JRasSample",
"doSomething",
"BBOJ0001");

v For each message, assign an appropriate type, as defined in the
RASIMessageEvent interface. These types define the destination of each

Chapter 10. Collecting data about J2EE application activity 95

|
|

message:

Message type Destination

TYPE_INFORMATION or TYPE_INFO Master console and CTRACE data set

TYPE_ERROR or TYPE_ERR Error log and CTRACE data set

TYPE_WARNING or TYPE_WARN CTRACE data set only

Notes:

a. Assign only one message type to each message.
b. If you do not assign a type to a message, or specify ″null″ for the

type, the Java compiler issues an error message.
c. If you assign a type that is not valid, the message logger processes

the message as a TYPE_INFORMATION (or TYPE_INFO) message.
v Each character used in a message must map to an EBCDIC character.
v When routing a message to the master console, WebSphere for z/OS

sends only the first 700 characters of message text.

Limitation: When writing an error message to the error log stream,
WebSphere for z/OS uses only 512 characters of data, including the
information it adds to the message text for identification. (This additional
information consists of the date, time, organization name, and so on.) See
WebSphere Application Server V4.0 for z/OS and OS/390: Messages and
Diagnosis, GA22-7837 for the format and content of error log stream entries
for application messages.

5. If you want to collect trace data for your Java application, add trace

requests at appropriate points in the application’s source code.
Rules:

v For each trace request, assign an appropriate type as defined in the
RASITraceEvent interface.

Note: If you do not assign a type to a trace request, the trace logger
ignores that trace request.

v Each character used in trace data must map to an EBCDIC character.

Limitation: When processing trace data, WebSphere for z/OS uses only a
limited amount of hexadecimal or character data:
v For hexadecimal trace data (from tracing Java byte arrays), WebSphere

for z/OS truncates the data after 1024 bytes.

96 WebSphere Application Server V4.0 for z/OS and OS/390: Assembling J2EE Applications

|

|||

||

||

||
|

v For character trace data, WebSphere for z/OS substitutes the literal
BUFFER OVERFLOW when that trace data exceeds 16384 characters.
This cumulative limit includes 1-byte string terminators for each
character string.

Tip: To improve your application’s performance, you may use one of the
following alternatives:
v Wrap trace calls in a test of the RASTraceLogger.isLogging variable,

which is set to false when trace logging is not active.
v Use the isLogging method in an if statement to test whether trace

logging is active for any level of tracing.
v Use the isLoggable method to determine whether logging is active for

the designated trace type.

With the first two approaches, the overhead of creating a trace entry does
not take place if trace logging is not active. In contrast, the isLoggable
method requires more overhead, but might be the better option, especially
if some level of tracing is always active.

6. Using the appropriate application development tools for your Java

application, generate and compile the code for your application.

When you have executable code for your Java application, you are ready to
complete the steps listed in “Steps for preparing the z/OS or OS/390
environment for logging Java application messages and trace requests” on
page 99 .

Example: The following example illustrates the coding requirements described
in the instructions above. The example assumes the use of a message
properties file, named com/myCompany/JRasSample.properties, which contains
the following message definitions:
BBOJ0001=BBOJ0001 Java BO created.
BBOJ0002=BBOJ0002 Policy number {0} obtained.
BBOJ0003=BBOJ0003 Java BO destroyed.

package com.myCompany;

// Import JRas and Websphere packages
import com.ibm.ras.*;
import com.ibm.websphere.ras.*;

public class JRasSample
{

// Loggers
private RASIMessageLogger msgLogger = null;
private RASITraceLogger trcLogger = null;

Chapter 10. Collecting data about J2EE application activity 97

// Message file
private static final String MSG_FILE = "com.myCompany.JRasSample";
// Array of trace objects
Object[] objs = new Object[3];

// Constructor
public JRasSample()
{

// Get logger manager object
Manager manager = Manager.getManager();
// Get logger
trcLogger = manager.createRASTraceLogger("com.myCompany","myProduct",

"myComponent","myLogger.COM");
msgLogger = manager.createRASMessageLogger("com.myCompany","myProduct",

"myComponent","myLogger.COM");
msgLogger.setMessageFile(MSG_FILE);

}

// Example of JRas trace events and messages
public int doSomething(String parm1,String parm2,String parm3)
{

int returnValue = 0;
byte[] byteArray = {1,2,3,4,5};

// Trace input parameters
objs[0] = parm1;
objs[1] = parm2;
objs[2] = parm3;
if (trcLogger.isLoggable(RASITraceEvent.TYPE_ENTRY_EXIT))

trcLogger.entry(RASITraceEvent.TYPE_ENTRY_EXIT,
"com.myCompany.JRasSample",
"doSomething",
objs);

if (trcLogger.isLoggable(RASITraceEvent.TYPE_MISC_DATA))
{

// Trace a text string
trcLogger.trace(RASITraceEvent.TYPE_MISC_DATA,

"com.myCompany.JRasSample",
"doSomething",
"Text data to be traced");

// Trace binary data
trcLogger.trace(RASITraceEvent.TYPE_MISC_DATA,

"com.myCompany.JRasSample",
"doSomething",
byteArray);

// Trace the current stack
trcLogger.stackTrace(RASITraceEvent.TYPE_MISC_DATA,

"com.myCompany.JRasSample",
"doSomething");

}
// Issue informational message to WTO and CTRACE
msgLogger.message(RASIMessageEvent.TYPE_INFO,

"com.myCompany.JRasSample",
"doSomething",
"BBOJ0001");

98 WebSphere Application Server V4.0 for z/OS and OS/390: Assembling J2EE Applications

|

// Issue warning message to CTRACE
msgLogger.message(RASIMessageEvent.TYPE_WARN,

"com.myCompany.JRasSample",
"doSomething",
"BBOJ0002",
"123");

// Issue error message to error log and CTRACE
msgLogger.message(RASIMessageEvent.TYPE_ERR,

"com.myCompany.JRasSample",
"doSomething",
"BBOJ0003");

// Trace return value
if (trcLogger.isLoggable(RASITraceEvent.TYPE_ENTRY_EXIT))

trcLogger.exit(RASITraceEvent.TYPE_ENTRY_EXIT,
"com.myCompany.JRasSample",
"doSomething",
returnValue);

return returnValue;
}

// This method is invoked when a JRasSample object is traced
public String toString()
{

String traceString = "This is the JRasSample object trace data";
return traceString;

}

public static void main(String[] args)
{

JRasSample sample = new JRasSample();
sample.doSomething("parm1","parm2","parm3");

}
}

Steps for preparing the z/OS or OS/390 environment for logging Java
application messages and trace requests

Before you begin:

v Check with the appropriate installation personnel to determine whether
error log streams and component trace data sets were set up during the
installation process for WebSphere for z/OS. While error logs and CTRACE
data sets might be available already, your installation personnel might
determine that changes are necessary to handle your application data, as
well as current data from other WebSphere for z/OS servers and
applications. For example, your installation may set up either a common
error log stream for all WebSphere for z/OS servers, or a separate log
stream for each individual server. Your installation might want to switch
from using a common log to separate logs, to accomodate additional
diagnostic data from your Java applications.

v To turn on tracing for an application in a J2EE or MOFW server, you need
to edit or create a JVM properties file. This task might require special

Chapter 10. Collecting data about J2EE application activity 99

|

|

authorization to edit or store this file in the appropriate directory. Check
with the system programmer who installed WebSphere for z/OS on your
system.

Notes:

1. Instructions for setting up error log streams appear in WebSphere
Application Server V4.0 for z/OS and OS/390: Installation and Customization,
GA22-7834.

2. Instructions for setting up and running CTRACE appear in WebSphere
Application Server V4.0 for z/OS and OS/390: Messages and Diagnosis,
GA22-7837.

Perform the following steps to set up the z/OS or OS/390 environment for
JRas support:
1. On z/OS or OS/390, create a trace settings file in the hierarchical file

system (HFS), if you want to enable the WebSphere for z/OS J2EE or
MOFW server to collect and log your application’s trace data. In this file,
type the trace settings that you want, in the following format:
logger_name=type=[enabled|disabled]

Example:
myLogger.COM=all=enabled

logger_name corresponds to the logger name that you specified in the
source code for your application, when you coded the create method to
obtain a trace logger. To enable logging support for more than one logger
name, you may specify a common prefix with an asterisk (for example,
a.b.c.*), rather than spelling out each logger name in its entirety.
Specifying something like a.b.c.* enables logging for loggers named
a.b.c.d and a.b.c.e

Tip: Avoid using logger names that begin with the com.ibm. prefix, which
is reserved for use by WebSphere for z/OS.

type corresponds to one of the property values in the following table.
Property types are case-sensitive.

Table 6. Trace setting property types and their corresponding JRas trace types

Specifying this
property type:

Enables tracing for the following JRas trace types:

all All supported RASITraceEvent types

event v RASITraceEvent.TYPE_ERROR_EXC
v RASITraceEvent.TYPE_SVC
v RASITraceEvent.TYPE_OBJ_CREATE
v RASITraceEvent.TYPE_OBJ_DELETE
v RASITraceEvent.TYPE_LEVEL1

100 WebSphere Application Server V4.0 for z/OS and OS/390: Assembling J2EE Applications

Table 6. Trace setting property types and their corresponding JRas trace
types (continued)

Specifying this
property type:

Enables tracing for the following JRas trace types:

entryExit v RASITraceEvent.TYPE_ENTRY_EXIT
v RASITraceEvent.TYPE_API
v RASITraceEvent.TYPE_CALLBACK
v RASITraceEvent.TYPE_PRIVATE
v RASITraceEvent.TYPE_PUBLIC
v RASITraceEvent.TYPE_STATIC
v RASITraceEvent.TYPE_LEVEL1
v RASITraceEvent.TYPE_LEVEL2

debug v RASITraceEvent.TYPE_MISC_DATA
v RASITraceEvent.TYPE_LEVEL1
v RASITraceEvent.TYPE_LEVEL2
v RASITraceEvent.TYPE_LEVEL3

Rules:

v You may use the same trace properties file to enable different trace
types for given loggers. If you do not use a separate line to define each
logger’s trace types, you must use a single colon (:) to distinguish each
logger’s trace settings.
Example (separate line for each logger):
com.aCompany.*=all=enabled
com.anotherCompany.*=event=enabled

Example (same line for each logger):
com.aCompany.*=all=enabled:com.anotherCompany.*=event=enabled

v To specify more than one trace type for a logger, separate each trace
type with a comma (,)
Example:
com.aCompany.aComponent=debug=enabled,event=enabled

2. Create a new or edit an existing Java virtual machine (JVM) properties file

to point to the trace settings file you just created. This properties file,
named jvm.properties, changes the default settings for the JVM that runs
in a WebSphere for z/OS J2EE or MOFW server.
Rules:

v You must set the com.ibm.ws390.trace.settings system property to the
fully qualified directory path and file name for your trace settings file. If
you do not specify this system property, or specify the path and file
name incorrectly, all trace types are disabled (the default setting).

Chapter 10. Collecting data about J2EE application activity 101

v You must make the jvm.properties file accessible to WebSphere for
z/OS, so it can find and use your property settings when activating the
server. Place the jvm.properties file in the same HFS directory in which
WebSphere for z/OS places the current.env file containing environment
variable settings for the server in which your Java application will run.
See “Appendix A. Environment and JVM properties files” on page 123
for more information about this directory.

v Trace logging cannot be dynamically started or stopped.

3. Check the environment variable settings related to the J2EE or MOFW

server’s use of component trace. You might want to modify some of the
values to accomodate additional trace entries in the CTRACE data set.
Specifically, check the following environment variable settings:
v TRACEBUFFCOUNT
v TRACEBUFFSIZE

4. Start the WebSphere for z/OS J2EE or MOFW server in which your

application will run:
v If you have set up JRas support for an existing application that you

already installed in a server, you need to:
a. Make sure your newly compiled code replaces the existing code.
b. Make sure the WebSphere for z/OS server picks up any

modifications you made to the jvm.properties file or the
environment variables. You need to stop and restart the server to
pick up these changes.

v If you have set up JRas support for a brand-new application, follow the
appropriate process to assemble and install your Java application in a
WebSphere for z/OS server. For applications to be installed in a J2EE
server, see the information in “Part 2. Creating, assembling and
deploying J2EE server applications” on page 17.

Background on viewing messages and trace data
Once your Java application starts running, you can view its messages and
trace data, as follows:

102 WebSphere Application Server V4.0 for z/OS and OS/390: Assembling J2EE Applications

If you want to view
this type of output:

Use the following instructions:

Messages on the
z/OS or OS/390
master console

The message logger automatically routes messages to the master
console in a readable format. Their appearance and duration
depend on how your installation has set up its console
configuration. If necessary, see z/OS MVS Planning: Operations,
SA22-7601 for an explanation of ways to configure consoles,
including controlling message display, scrolling, and deletion.

Messages in the
error log stream

To view messages in the error log stream, use the log browse
utility (BBORBLOG). See WebSphere Application Server V4.0 for
z/OS and OS/390: Messages and Diagnosis, GA22-7837 for
instructions for using the log browse utility, and for examples of
message output.

Messages or trace
data in Component
Trace

To view messages or application trace data in Component Trace,
you must use the interactive problem control system (IPCS) in
one of the following ways:

v Line mode on a terminal (IPCS CTRACE command),

v Full-screen mode on a terminal (IPCS dialog), or

v Batch mode, using the terminal monitor program.

Recommendation: If you are not familiar with IPCS, TSO/E and
ISPF, use IPCS in batch mode to format and view trace data, as
described in “Steps for using IPCS in batch mode to format
application trace data”.

See WebSphere Application Server V4.0 for z/OS and OS/390:
Messages and Diagnosis, GA22-7837 for instructions for using the
IPCS dialog, and for examples of message and trace data output.

Note: When you view the trace data for your Java application, messages and
CTRACE records might not appear in the order in which your
application issued the message or trace requests. All message requests
appear in sequential order, relative to each other. Similarly, all CTRACE
records appear in order, relative to each other. Different types of trace
data, however, might not be in sequence; for example, messages issued
after trace requests might show up in trace output before the trace
requests.

Steps for using IPCS in batch mode to format application trace data
To view messages or application trace data from Component Trace, you must
use the interactive problem control system (IPCS) to format the data. Using
IPCS in batch mode is the easiest method of formatting data, especially if you
do not have much experience with using IPCS, TSO/E and ISPF. Through
batch mode, you can use IPCS to format trace data and write it to an MVS
data set. Optionally, you may copy the contents of that data set into an HFS
file for viewing.

Chapter 10. Collecting data about J2EE application activity 103

Before you begin: You must create an IPCS dump directory before you can
use IPCS in batch mode. When setting up IPCS, your installation may
customize IPCS for its users. This customization can include modifying the
IBM-supplied BLSCDDIR CLIST with default values for creating an IPCS
dump directory.

If your installation has modified the BLSCDDIR CLIST, perform the following
steps to create an IPCS dump directory:
1. Decide on a fully-qualified data set name for the directory.
2. From the TSO/E command prompt, enter the BLSCDDIR command,

specifying the data set name. For example, to create a dump directory
named IBMUSER.DDIR, enter:
%blscddir dsn('ibmuser.ddir')

If your installation has not customized IPCS, you might need to alter other
BLSCDDIR CLIST parameters. See z/OS MVS IPCS User’s Guide, SA22-7596
and z/OS MVS IPCS Commands, SA22-7594 for more details about using the
BLSCDDIR CLIST to create a dump directory.

Perform the following steps to use IPCS in batch mode to format application
trace data:
1. Create a file and copy the following sample JCL into it. This JCL invokes

IPCS to extract and format JRAS trace data and write it into an MVS data
set, and then uses the TSO/E OPUT command to copy the formatted data
from the MVS data set into an HFS file.
//IBMUSERX JOB ,
// CLASS=J,NOTIFY=&SYSUID,MSGCLASS=H
//IPCS EXEC PGM=IKJEFT01,REGION=4096K,DYNAMNBR=50
//IPCSDDIR DD DSN=IBMUSER.DDIR,DISP=SHR
//IPCSDOC DD SYSOUT=H
//JRASTRC DD DSN=IBMUSER.CB390.CTRACE,DISP=SHR
//IPCSPRNT DD DSN=IBMUSER.IPCS.OUT,DISP=OLD
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD *
IPCS
DROPDUMP DDNAME(JRASTRC)
PROFILE LINESIZE(80)PAGESIZE(99999999)
SETDEF NOCONFIRM
CTRACE COMP(SYSBBOSS) DDNAME(JRASTRC) FULL PRINT +

NOTERMINAL
DROPDUMP DDNAME(JRASTRC)
END
/*
//OPUT EXEC PGM=IKJEFT01,REGION=4096K,DYNAMNBR=50
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD *
oput 'ibmuser.ipcs.out' '/u/ibmuser/ipcs/jrastrace.txt' TEXT
/*

104 WebSphere Application Server V4.0 for z/OS and OS/390: Assembling J2EE Applications

2. Edit the sample JCL to replace IBMUSER.DDIR with the data set name that

you used for the IPCS dump directory you created.

Notes:

a. Use the PAGESIZE parameter on the PROFILE statement only if you do
not want to print the output data set.

b. You may replace the HFS file name with the name of an existing HFS
file, but you do not have to do so. The OPUT command processing will
create a new HFS file, if the one specified does not exist, and grants
read and write access to that file for your user ID only.
If you do specify an existing HFS file, the OPUT command processing
will write over any data that is already in that file. If you want to
know more about the OPUT command, see z/OS UNIX System Services
Command Reference, SA22-7802.

c. Change the data set name specified on the JRASTRC DD in the example
to the name of the data set containing the CTRACE data.

d. Change the name of the MVS data set on both the JRASTRC DD
statement and the OPUT command in the SYSTSIN stream, as necessary.
The formatted output of the JRAS CTRACE data is first written to the
MVS data set specified by the IPCSPRNT DD statement and then
(optionally) copied to the HFS data set. You must either pre-allocate
this data set, or change the sample JCL to allocate the data set. This
data set should have a record format of VBA and a record length of
133.

3. Submit the JCL to start the IPCS batch job.

Once you are done you can use a UNIX editor, such as vi, to view your trace
data in the HFS file. If you want to know more about the UNIX editors, see
z/OS UNIX System Services User’s Guide, SA22-7801.

To learn about formatting CTRACE data with the IPCS dialog, see WebSphere
Application Server V4.0 for z/OS and OS/390: Messages and Diagnosis, GA22-7837.

Chapter 10. Collecting data about J2EE application activity 105

106 WebSphere Application Server V4.0 for z/OS and OS/390: Assembling J2EE Applications

Part 4. Migrating applications to the J2EE server

The following chapters contain information about migrating applications to
the WebSphere for z/OS J2EE server environment. Because WebSphere for
z/OS V4.0 requires compliance with the latest J2EE programming and
packaging specifications, and requires the use of specific development,
assembly, and installation tools, consider reading the following introductory
material before using the instructions to migrate application components:
v “Chapter 2. Overview of application tools” on page 7 for a brief

introduction to tools and processes for developing, assembling, and
installing J2EE applications in the WebSphere for z/OS J2EE server.

v “Chapter 11. Background on migration” on page 109 for a brief introduction
to migration concepts, tasks, and recommendations.

If you already have some experience with developing J2EE applications for
the WebSphere for z/OS J2EE server, use Table 7 to go directly to procedures
for migrating specific application components. Each procedure includes
references to further details about tools, for example, in case you need
additional information.

Table 7. Application migration paths at a glance

To migrate this type of
application component:

From this
WebSphere product:

Read the following topics:

Enterprise beans Advanced Edition
V3.5 on distributed
platforms

“Chapter 13. Migrating
applications to the WebSphere for
z/OS platform” on page 117

Servlets and JavaServer
Pages

Standard or
Advanced Edition
V3.5 on distributed
platforms

“Chapter 13. Migrating
applications to the WebSphere for
z/OS platform” on page 117

Standard Edition on
z/OS or OS/390

“Migration scenarios for
applications running on
WebSphere Application Server
for z/OS or OS/390 Standard
Edition” on page 112

Java business objects
(CORBA)

Enterprise Edition
V3.02 on z/OS or
OS/390

“Migration scenarios for
applications running on
WebSphere Application Server
for OS/390 Enterprise Edition
V3.02” on page 112

© Copyright IBM Corp. 2000, 2001 107

108 WebSphere Application Server V4.0 for z/OS and OS/390: Assembling J2EE Applications

Chapter 11. Background on migration

Generally speaking, migration encompasses actions that you complete to
ensure that existing applications continue to function correctly on a new
version or release of an IBM product. To take advantage of the J2EE server
environment in WebSphere for z/OS or OS/390, however, you also might
migrate existing J2EE applications from one WebSphere family environment to
WebSphere for z/OS or OS/390.

Table 8 is a checklist of migration actions that might be either required or
optional, depending on the type of application you want to migrate and its
current run-time environment. The checklist also indicates the role of the most
appropriate person to complete each action or set of actions, based on the Sun
Microsystems J2EE specification. Many actions are the same as steps for
developing, assembling, deploying, and installing a new application, as
described in “Part 2. Creating, assembling and deploying J2EE server
applications” on page 17. Familiarity with those procedures will help you
complete the migration process more efficiently.

To determine which migration actions are necessary for a specific situation,
refer to details in the following chapters:
v “Chapter 12. Migrating applications to a new release of WebSphere for

z/OS” on page 111
v “Chapter 13. Migrating applications to the WebSphere for z/OS platform”

on page 117
v “Chapter 14. Upgrading applications that are already installed in a

WebSphere for z/OS J2EE server” on page 119

Table 8. Checklist of roles and potential migration actions

U Potential migration actions: Condition / Comments

For system programmers or administrators:

h Understand how product, system, database,
or configuration changes might affect your
applications

Required for any migration path

h Preconfigure J2EE resources, such as DB2 Optional, depending on
requirements of application to be
installed (required for connection
pooling)

For application component providers:

© Copyright IBM Corp. 2000, 2001 109

Table 8. Checklist of roles and potential migration actions (continued)

U Potential migration actions: Condition / Comments

h Understand how tooling changes might
affect your applications

Required because WebSphere for
z/OS requires specific tools

h Understand how interface changes might
affect your applications

Required because WebSphere for
z/OS requires compliance with
particular levels of programming
specifications

h Change component design or rewrite source
code because of interface changes

Required, depending on the type
of application component and its
compliance with required levels
of programming specifications

h Regenerate code to pick up interface
enhancements, or enhancements to or
maintenance for development tools

Optional, as above

For application assemblers or deployers:

h Repackage applications and regenerate
metadata because of enhancements to or
maintenance for application assembly and
deployment tools

Required for all applications to
be installed in a WebSphere for
z/OS J2EE server

For application installers:

h Re-install any reassembled applications to
replace existing or add new EAR files and
metadata

Required for all applications to
run in a WebSphere for z/OS
J2EE server

h Manually replace individual component files
installed on z/OS or OS/390 (when
application maintenance does not require
repackaging EAR files or regenerating
application metadata)

Optional

h Modify conversation elements because of
enhancements to or maintenance for the
WebSphere for z/OS Administration
application

Required to define and activate a
WebSphere for z/OS J2EE server
and the J2EE resources associated
with it, and to install J2EE
applications

h Modify z/OS or OS/390 constructs because
of product, system, or configuration changes.
Such changes include moving or
reconstructing application databases,
changing WLM service goals, and so on.

Required for:
v Applications that require

role-based security
v Web applications that formerly

ran in the WebSphere for z/OS
Standard Edition environment

110 WebSphere Application Server V4.0 for z/OS and OS/390: Assembling J2EE Applications

Chapter 12. Migrating applications to a new release of
WebSphere for z/OS

A new release of the WebSphere for z/OS or OS/390 product, or its associated
tools, might require you to migrate applications that are already installed and
running on a previous release. You might have to migrate these applications
to either adapt to or exploit enhancements or service updates in the new
version or release. (If you want to know how to migrate applications that
currently run in another WebSphere family environment, see “Chapter 13.
Migrating applications to the WebSphere for z/OS platform” on page 117.)

The following table shows the subtasks and associated information for
learning about a new release of WebSphere for z/OS, and for migrating
applications that currently run on a previous release:

Subtask Associated information (See . . .)

Determine which migration
paths are supported

The migration roadmap in WebSphere Application Server
V4.0 for z/OS and OS/390: Installation and Customization,
GA22-7834

Determine what changes
have been introduced with
a particular version or
release

The release summary for the new WebSphere for z/OS
product. Release summaries are listed in WebSphere
Application Server V4.0 for z/OS and OS/390: Installation
and Customization.

Understand how each
change might affect your
installation and its existing
applications

The change descriptions listed in a particular release
summary (in WebSphere Application Server V4.0 for z/OS
and OS/390: Installation and Customization). These
descriptions of functional updates summarize the
change, the areas of processing that might be affected,
migration tasks, new and changed interfaces, and sources
of additional details.

Determine how to migrate
existing applications to a
new release

v “Migration scenarios for applications running on
WebSphere Application Server for z/OS or OS/390
Standard Edition” on page 112

v “Migration scenarios for applications running on
WebSphere Application Server for OS/390 Enterprise
Edition V3.02” on page 112

© Copyright IBM Corp. 2000, 2001 111

Migration scenarios for applications running on WebSphere Application Server
for z/OS or OS/390 Standard Edition

One of the WebSphere products your installation might be using for Web
serving is the WebSphere Application Server for z/OS or OS/390 Standard
Edition. Depending on the version of the Standard Edition product you are
currently using, you might have to upgrade elements of your z/OS or OS/390
system as well as perform migration actions for your Web applications.

For additional information about the Standard Edition products and
WebSphere for z/OS, see:
v “Appendix C. Migration considerations for Web applications running on

WebSphere Application Server Standard Edition” on page 161 for
information about migrating from Standard Edition V3.02 or V3.5

v “Migrating from version 3.5” on page 161, if you want to run existing Web
applications in a Standard Edition environment at the same time you run
new Web applications in a WebSphere for z/OS J2EE server.

v WebSphere Application Server for OS/390 Application Server Planning, Installing
and Using, Version 3.5, GC34–4835, to determine how to:
– Install and configure Standard Edition V3.5.
– Migrate Web applications from previous versions of Standard Edition to

Standard Edition V3.5.

Migration scenarios for applications running on WebSphere Application Server
for OS/390 Enterprise Edition V3.02

Table 9 on page 113 lists the possible migration scenarios for applications that
currently run on WebSphere Application Server for OS/390 Enterprise Edition
V3.02. If you need further details, use the following information sources:
v Sun Microsystems web site (java.sun.com) for details about differences

between levels of the Software Development Kit (SDK), and between
Enterprise bean specifications.

v “Part 2. Creating, assembling and deploying J2EE server applications” on
page 17 if you need instructions or guidelines for tasks related to creating,
assembling, and installing applications in a WebSphere for z/OS J2EE
server.

v WebSphere Application Server V4.0 for z/OS and OS/390: Assembling CORBA
Applications, SA22-7848 if you need instructions or guidelines for tasks
related to creating, assembling, and installing CORBA applications in a
WebSphere for z/OS MOFW server.

112 WebSphere Application Server V4.0 for z/OS and OS/390: Assembling J2EE Applications

Note: You cannot install the WebSphere for z/OS J2EE server on the same
z/OS or OS/390 system image, or in the same sysplex, on which you
are currently running WebSphere Application Server Enterprise Edition
for OS/390 V3.02.

Table 9. Summary of migration tasks for WebSphere Application Server for OS/390 Enterprise Edition
V3.02 applications

Migration
scenario:

Comments:

Migrate an
Enterprise
Edition V3.02
Enterprise bean
to V4.0

Recommendation: Because the V3.02 support for Enterprise beans was limited,
consider starting over— design and code new Enterprise beans to match the new
support that the V4.0 J2EE server provides.

Rule: V4.0 of WebSphere for z/OS supports two types of servers: the new J2EE server,
and servers that are based on the V3.02 managed-object framework (MOFW) for
CORBA applications. You cannot run Enterprise beans in a V4.0 (MOFW) server.

If you must preserve a bean from V3.02 and upgrade it for the V4.0 J2EE server
support, do the following:
1. Import the bean source into an appropriate development tool.

Note: If you do not have access to source code, you may import a bean JAR file to
check for deprecated interfaces. If there are none, you can skip to Step 4.

2. Recommendation: Rewrite code to eliminate functions, if any, that are deprecated
because of the new SDK level or EJB specification.

3. For entity beans, review requirements for container-managed or bean-managed
persistence

4. Regenerate bean code and export the resulting JAR file.
5. Use the WebSphere for z/OS Application Assembly tool to import the JAR file and

package the bean into an Enterprise archive (EAR) file.
6. Use the WebSphere for z/OS Administration application to install the EAR file.

Chapter 12. Migrating applications to a new release of WebSphere for z/OS 113

Table 9. Summary of migration tasks for WebSphere Application Server for OS/390 Enterprise Edition
V3.02 applications (continued)

Migration
scenario:

Comments:

Migrate an
Enterprise
Edition V3.02
Java business
object to a V4.0
Enterprise bean

Recommendation: Follow this migration path only if you purposely designed and
coded them according to guidelines supplied in WebSphere Application Server Enterprise
Edition for OS/390 Component Broker Assembling Applications Guide Version 3.02,
GA22-7326, with the intent of later converting the Java BOs to Enterprise beans.
Otherwise, the conversion effort will probably be more complicated and difficult than
coding a new Enterprise bean from scratch.

To convert a Java BO to an Enterprise bean:
1. Understand the differences between the CORBA and EJB programming models and

the new SDK level.
2. Create a new Enterprise bean in an appropriate development tool. Copy the Java

BO’s business logic and modify it as necessary:

v Recommendation: Rewrite code to eliminate functions, if any, that are
deprecated because of the new SDK level or EJB specification.

v For entity beans, review requirements for container-managed or bean-managed
persistence

v Rewrite other code as necessary, paying particular attention to the following:
– Implementation inheritance
– Helper classes that deal with other objects or with CORBA services
– Code containing references to properties that may vary based on environment
– Association code for objects that have associations with other objects

3. Generate bean code and export the resulting JAR file.
4. Use the WebSphere for z/OS Application Assembly tool to import the JAR file and

package the bean into an Enterprise archive (EAR) file.
5. Use the WebSphere for z/OS Administration application to install the EAR file.

Migrate an
Enterprise
Edition V3.02
Java business
object to run in
a V4.0 (MOFW)
server

To upgrade a Java BO to run in a V4.0 server, do the following:
1. Import the source into an appropriate development tool.

Rule: Use Object Builder 3.5 for your Java BOs.
2. Recommendation: Rewrite code to eliminate functions, if any, that are deprecated

because of the new SDK level.
3. If this object contains code that used to drive Enterprise beans in a Enterprise

Edition V3.02 MOFW server, you need to change the code that provides the
following functions. Enterprise beans must reside in V4.0 J2EE server now, so the
programming model for using beans has changed.
v Setting initial context
v Finding and using homes
v Narrowing object references

4. Regenerate code and export the resulting JAR file.
5. Transfer the application files to z/OS or OS/390, and recompile the code by

running the all.mak file.
6. Use the WebSphere for z/OS Administration application to install the application

in a V4.0 (MOFW) server.

114 WebSphere Application Server V4.0 for z/OS and OS/390: Assembling J2EE Applications

Table 9. Summary of migration tasks for WebSphere Application Server for OS/390 Enterprise Edition
V3.02 applications (continued)

Migration
scenario:

Comments:

Migrate an
Enterprise
Edition V3.02
C++ business
object to run in
a V4.0 (MOFW)
server

You do not have to change the source code of existing V3.02 C++ business objects at
all, but you might, however, consider taking them back through the application
development tooling to take advantage of any service updates or enhancements to the
compiler or Object Builder.

Rules:

v Use Object Builder 3.5 for your C++ business objects.

v You must recompile your C++ business objects on z/OS or OS/390

To upgrade C++ business objects to run in a V4.0 server, do the following:
v Rerun the all.mak file to recompile the code on z/OS or OS/390.
v Use the Administration application to install the application in a V4.0 (MOFW)

server.

Migrate a
″native″ z/OS
or OS/390 client
application that
drives CORBA
server
applications

You do not have to change existing C++ or Java clients that use the CORBA
programming model to use CORBA server applications. You might, however, consider
taking them back through the application development tooling to take advantage of
any service updates or enhancements to the compiler or tooling.

Migrate a
″native″ z/OS
or OS/390 client
application that
drives
Enterprise beans

Because Enterprise beans must reside in J2EE servers, the programming model for
using beans has changed. If the ″native″ z/OS or OS/390 client application is using
the CORBA programming model to access beans, you must change the source code.
Use the following procedure to do so:
1. Import the source into an appropriate development tool.
2. Recommendation: Rewrite code to eliminate functions, if any, that are deprecated

because of the new SDK level.
3. Change the code that provides the following functions:

v Setting initial context
v Finding and using homes
v Narrowing object references

4. Regenerate code and export the resulting JAR file.
5. Recompile the code on z/OS or OS/390.

Migrate a
distributed
client
application

You do not have to change clients that meet both of the following criteria:

v They use C++ or Java business objects installed a MOFW server, and

v They run in WebSphere Application Server Enterprise Edition Component Broker
Versions 3.0, V3.5, or V3.6, on a workstation platform (Windows NT, and so on).

Chapter 12. Migrating applications to a new release of WebSphere for z/OS 115

116 WebSphere Application Server V4.0 for z/OS and OS/390: Assembling J2EE Applications

Chapter 13. Migrating applications to the WebSphere for
z/OS platform

With previous releases of WebSphere family products, programming model
differences inhibited the portability of applications from distributed platforms
to OS/390. With the support available through the WebSphere for z/OS J2EE
server, however, moving J2EE application components from other WebSphere
environments to WebSphere for z/OS or OS/390 should be relatively easy. In
fact, the primary considerations for migrating J2EE application components
are:
1. Differences between supported specification levels.

For example, WebSphere for z/OS J2EE server supports the Sun
Microsystems Java Servlet 2.2 specification. If you have a V2.2 servlet
running in another WebSphere environment, you can migrate it without
code changes. If you have a V2.1 servlet, however, you need to understand
the differences between the V2.1 and V2.2 specifications, and remove any
deprecated functions from your servlet code.
For information about migrating components to the appropriate
specification levels, use the instructions available through the InfoCenter
at http://www.ibm.com/software/webservers/appserv/library.html

2. Differences between database requirements or access.
For example, if you want to migrate Enterprise beans that use
container-managed persistence, you do not have to make any changes if
you are using DB2 as a persistent datastore. If your applications directly
access DB2, however, you will need to account for differences between
DB2 on distributed platforms and DB2 on z/OS or OS/390. These
differences mean that you need to change JDBC driver names and some
SQL syntax.
For further details, see z/OS and OS/390 DB2 Application Development Guide,
which is located at http://www.ibm.com/software/db2os390/v7books.html

3. Platform-specific tools for assembly, deployment, and installation.
WebSphere for z/OS currently requires the use of its Application
Assembly tool to prepare J2EE applications for installation, and the use of
its Administration application to install these applications. You will have
to use these two tools as part of the migration process.

Table 10 on page 118 lists the possible migration scenarios for applications that
currently run in other WebSphere family environments. If you need further
details, use the following information sources:

© Copyright IBM Corp. 2000, 2001 117

v See the Sun Microsystems web site (java.sun.com) for details about
differences between levels of the Software Development Kit (SDK), and
between specification levels for J2EE application components.

v See “Part 2. Creating, assembling and deploying J2EE server applications”
on page 17 if you need instructions or guidelines for tasks related to
creating, assembling, and installing applications in a WebSphere for z/OS
J2EE server.

Table 10. Summary of migration scenarios for applications in other WebSphere family environments

Migration scenario: Comments:

Moving servlets and
JSPs from
WebSphere
Application Server
Standard Edition
V3.5

1. Upgrade application development software on your workstation, if necessary.
2. Import your application component into an appropriate development tool.

Then:
v Rewrite code to eliminate functions that are deprecated because of new SDK

levels or component specification levels.
v If your Web components use J2EE resources, such as DB2, review the code

and make any appropriate changes.
3. Regenerate component code and create a Web archive (WAR) file for the Web

application.
4. Export the resulting WAR file from the application development tool.
5. Use the WebSphere for z/OS Application Assembly tool to import the

component files and package the component into an Enterprise archive (EAR)
file.

6. Use the WebSphere for z/OS Administration application to install the EAR file.

Moving Enterprise
beans, servlets and
JSPs from
WebSphere
Application Server
Advanced Edition
V3.5

1. Upgrade application development software on your workstation, if necessary.
2. Import your application component into an appropriate development tool.

Then:
v Rewrite code to eliminate functions that are deprecated because of new SDK

levels or component specification levels.
v For entity beans, review requirements for container-managed or

bean-managed persistence.
v If your Web components use J2EE resources, such as DB2, review the code

and make any appropriate changes.
3. Regenerate component code and create a Web archive (WAR) file for the Web

application components, or JAR files for Enterprise beans.
4. Export the resulting WAR or JAR files from the application development tool.
5. Use the WebSphere for z/OS Application Assembly tool to import the

component files and package the components into an Enterprise archive (EAR)
file.

6. Use the WebSphere for z/OS Administration application to install the EAR file.
7. Review JNDI lookup names for the Enterprise bean homes used in your

components, and make sure the lookup names match the names under which
the required components are registered on z/OS.

118 WebSphere Application Server V4.0 for z/OS and OS/390: Assembling J2EE Applications

Chapter 14. Upgrading applications that are already
installed in a WebSphere for z/OS J2EE server

The following notes apply for working with applications that you have
previously installed in a WebSphere for z/OS J2EE server:

Notes:

1. You may install multiple versions of the same application in the same J2EE
server, as long as each application version is unquely named, separately
packaged and installed through the WebSphere for z/OS Application
Assembly tool. If each version of the application requires a different
database schema, you may define a separate J2EE resource connection for
each application.

2. If you make changes to an already installed application, and those changes
are minor enough that they do not require you to reassemble and reinstall
the application using the appropriate tools, you may:
a. Replace JAR or WAR files in the z/OS or OS/390 HFS
b. Issue a z/OS or OS/390 workload manager command to drain current

work
c. Start new server regions

Use this process as a replacement for the Standard Edition servlet
reloading function.

© Copyright IBM Corp. 2000, 2001 119

120 WebSphere Application Server V4.0 for z/OS and OS/390: Assembling J2EE Applications

Part 5. Appendixes

© Copyright IBM Corp. 2000, 2001 121

122 WebSphere Application Server V4.0 for z/OS and OS/390: Assembling J2EE Applications

Appendix A. Environment and JVM properties files

This appendix provides reference information for:
v Environment files and environment variables
v JVM properties files and properties

Environment files and environment variables

This section describes:
v How WebSphere for z/OS manages environment variables and

environment files.
v How run-time server start procedures point to their environment files.
v Environment variables for OS/390 clients.
v The syntax and meaning of the run-time environment variables.

How WebSphere for z/OS manages server environment variables and
environment files

After the bootstrap process during installation and customization, WebSphere
for z/OS manages environment data through the Administration application
and writes the environmental data into the system management database. To
add or change environment variable data, you must enter environment data
pairs (an environment variable name and its value) on the sysplex, server, or
server instance properties form. When you activate a conversation or prepare
for a cold start, the environment variable data is written to HFS files.
WebSphere for z/OS determines which values are the most specific for an
environment file. For instance, a setting for a server instance takes precedence
over the setting for the same variable for its server, and a setting for a server
takes precedence over the setting for the same variable for its sysplex.

If you modify an environment file directly and not through the
Administration application, any changes are overwritten when you activate a
conversation or prepare for a cold start.

When you activate a conversation or prepare for a cold start, WebSphere for
z/OS writes the environment data to an HFS file for each server instance. The
path and name for each environment file is:
CBCONFIG/controlinfo/envfile/SYSPLEX/SRVNAME/current.env

where

CBCONFIG
Is a read/write directory that you specify at installation time as the

© Copyright IBM Corp. 2000, 2001 123

directory into which WebSphere for z/OS is to write configuration data
and environment files. The default is /WebSphere390/CB390.

Recommendation: The System Management server region user ID
(CBSYMSR1 in our BBOCBRAC sample) should be the owner of the
/WebSphere390/CB390 directory. The System Management server region
writes files to this directory. The permission bits should be 775 so other
server region user IDs have read access to the directory.

SYSPLEX
Is the name of your sysplex. WebSphere for z/OS derives this name from
the predefined &SYSPLEX JCL variable.

SRVNAME
Is the server instance name.

Except for the initial installation of WebSphere for z/OS, you must manage
the environment variables through the Administration application. At initial
installation, you must modify an initial environment file, which the bootstrap
job uses. This is the only time you should modify an environment file directly.

There are, therefore, two distinct situations in which you define environmental
data for your servers. Matching those situations are two distinct ways you
create the environment data:
1. Defining environment data by coding environment variables prior to the

bootstrap process. In this situation, you modify the sample we give you.
The bootstrap job reads the file and places the environmental data into the
system management database. This is the only time you modify an
environment file directly in the HFS.
For the syntax of the environment variables, see “Environment variable
syntax” on page 126.

2. Defining and managing environmental data through the Administration
application. In this situation, you enter environment data pairs (an
environment name and its value—no “=”) through a panel in the
Administration application.

How run-time server start procedures point to their environment files
WebSphere for z/OS run-time server start procedures must point to an
environment file for configuration information. The start procedures use a
BBOENV DD statement with a PATH parameter that points to an HFS file.
The BBOENV DD statement is:
//BBOENV DD PATH='&CBCONFIG/&RELPATH/&SYSPLEX/&SRVNAME/current.env'

where

&CBCONFIG
Is a variable you set in the start procedure. It must match the read/write

124 WebSphere Application Server V4.0 for z/OS and OS/390: Assembling J2EE Applications

directory that you specify at installation time as the directory into which
WebSphere for z/OS is to write configuration data and environment files.
The default is WebSphere390/CB390.

&RELPATH
Is a subdirectory (controlinfo/envfile). Its value must not change.

&SYSPLEX
Is the name of your sysplex. Because it is a predefined JCL variable, you
do not need to set it in your start procedure.

&SRVNAME
Is the server instance name. By specifying the server instance name when
you start the procedure, you can use the same start procedure for other
server instances.

Example: To pass the server instance name BBOASRIA to its start
procedure, specify:
s bboasr1.bboasr1a,srvname='BBOASR1A'

To use the same start procedure for server instance BBOASR1B, specify:
s bboasr1.bboasr1b,srvname='BBOASR1B'

Environment variables for OS/390 clients
The Administration application does not manage environment variables for
OS/390 clients. You must create and manage OS/390 client environment files
and point to them from client programs. Table 11 on page 128 tells you which
environment variables are required or optional for OS/390 clients.

Note on using substitution variables
You cannot use variable substitution ($ variables) in environment statements.
The variable substitution that is used in UNIX shell environments is not
implemented in the Language Environment (LE). Because WebSphere for
z/OS processes environment variables in the Language Environment, use of
variables such as $PATH in a path environment variable will fail.

Example:

UNIX shell environments often set up paths by appending the new path to
the existing path, like this:
PATH=yourdir
PATH=$PATH/mydir

The resulting path is PATH=yourdir/mydir after substitution for the $PATH
variable. However, because WebSphere for z/OS processes the environment
variables in the Language Environment, where no variable assignment is
made, the resulting path would be PATH=$PATH/mydir.

Appendix A. Environment and JVM properties files 125

Environment variable syntax
You must follow this syntax only when defining your initial environment file
before the bootstrap process.

Rules: The following are the syntax rules:
v The syntax of the environment variables follows this pattern:

VARIABLE=VALUE

Where:

VARIABLE
is the environment variable.

VALUE
is the setting for the variable. The descriptions define possible values
for each variable.

v Leading and trailing white space (blanks or tabs) for both variables and
values is ignored. Example: The two following lines yield the same result:
VARIABLE1=VALUE1

and
VARIABLE1 = VALUE1

v “=” is required.
v Blank lines are ignored.
v Code upper and lowercase characters as documented in this topic.
v To comment out an environment variable, simply add a character, such as

‘#’, to the variable. For example, you could change TRACEALL=0 to
#TRACEALL=0. The system ignores such coding because the variable does not
begin with an alphabetic character.

Environment variable use
Not all environment variables need to be used for each server or client.
Table 11 on page 128 tells you where to use a given environment variable.
Here are the meanings for what appears in each column:
v “R” means required.
v “O” means optional.
v “F” means required in a future release.
v A blank in the Default column means the variable is not set.
v A blank in other columns means the variable is not used.

Footnotes appear at the end of the table.

Note: The default settings and examples use the standard _CEE_ENVFILE
syntax. You do not use this syntax when defining environmental data

126 WebSphere Application Server V4.0 for z/OS and OS/390: Assembling J2EE Applications

|

in the Administration application.

Appendix A. Environment and JVM properties files 127

Ta
bl

e
11

.
W

he
re

to
us

e
en

vi
ro

nm
en

t
va

ria
bl

es

E
n

vi
ro

n
m

en
t

va
ri

ab
le

=
<

d
ef

au
lt

>
D

ae
m

on
se

rv
er

in
st

an
ce

S
ys

te
m

M
an

ag
em

en
t

se
rv

er
in

st
an

ce

N
am

in
g

se
rv

er
in

st
an

ce
In

te
rf

ac
e

R
ep

os
it

or
y

in
st

an
ce

J2
E

E
se

rv
er

in
st

an
ce

O
S

/3
90

cl
ie

n
t

co
n

tr
ol

re
gi

on
co

n
tr

ol
re

gi
on

se
rv

er
re

gi
on

co
n

tr
ol

re
gi

on
se

rv
er

re
gi

on
co

n
tr

ol
re

gi
on

se
rv

er
re

gi
on

co
n

tr
ol

re
gi

on
se

rv
er

re
gi

on

B
B

O
L

A
N

G
=

E
N

U
S

O
O

O
O

O
O

O
O

O
O

C
B

C
O

N
FI

G
=

/
W

eb
Sp

he
re

39
0/

C
B

39
0

R
R

R
R

R
R

R
R

R

C
L

A
SS

PA
T

H
=

O
O

O
O

1

C
L

IE
N

T
_D

C
E

_Q
O

P=
N

O
_P

R
O

T
E

C
T

IO
N

O

C
L

IE
N

T
_H

O
ST

N
A

M
E

=
O

C
L

IE
N

T
L

O
G

ST
R

E
A

M
N

A
M

E
=

O

C
L

IE
N

T
_R

E
SO

LV
E

_I
PN

A
M

E
=

<
va

lu
e

fo
r

R
E

SO
LV

E
_

IP
N

A
M

E
>

O
O

O
O

O

C
L

IE
N

T
_T

IM
E

O
U

T
=

co
m

.ib
m

.w
s.

na
m

in
g.

ld
ap

.c
on

ta
in

er
d

n=
<

ib
m

-w
sn

Tr
ee

=
t1

,o
=

<
or

g>
,

c=
<

co
un

tr
y>

>

O
O

co
m

.ib
m

.w
s.

na
m

in
g.

ld
ap

.
d

om
ai

nn
am

e=
do

m
ai

n
na

m
e

O
O

co
m

.ib
m

.w
s.

na
m

in
g.

ld
ap

.m
as

te
ru

rl
=

ld
ap

:/
/

<
ip

na
m

e>
:<

po
rt

>
O

O

D
A

E
M

O
N

_I
PN

A
M

E
=

R
O

D
A

E
M

O
N

_P
O

R
T

=
55

55
O

2
O

2

D
E

FA
U

LT
_C

L
IE

N
T

_X
M

L
_P

A
T

H
=

O
3

D
M

_G
E

N
E

R
IC

_S
E

R
V

E
R

_N
A

M
E

=
C

B
D

A
E

M
O

N
O

2
O

2

D
M

_S
PE

C
IF

IC
_S

E
R

V
E

R
_N

A
M

E
=

D
A

E
M

O
N

01
O

4
O

4
O

4
O

4
O

4

128 WebSphere Application Server V4.0 for z/OS and OS/390: Assembling J2EE Applications

Ta
bl

e
11

.
W

he
re

to
us

e
en

vi
ro

nm
en

t
va

ria
bl

es
(c

on
tin

ue
d)

E
n

vi
ro

n
m

en
t

va
ri

ab
le

=
<

d
ef

au
lt

>
D

ae
m

on
se

rv
er

in
st

an
ce

S
ys

te
m

M
an

ag
em

en
t

se
rv

er
in

st
an

ce

N
am

in
g

se
rv

er
in

st
an

ce
In

te
rf

ac
e

R
ep

os
it

or
y

in
st

an
ce

J2
E

E
se

rv
er

in
st

an
ce

O
S

/3
90

cl
ie

n
t

co
n

tr
ol

re
gi

on
co

n
tr

ol
re

gi
on

se
rv

er
re

gi
on

co
n

tr
ol

re
gi

on
se

rv
er

re
gi

on
co

n
tr

ol
re

gi
on

se
rv

er
re

gi
on

co
n

tr
ol

re
gi

on
se

rv
er

re
gi

on

H
O

M
E

=
O

IB
M

_O
M

G
SS

L
=

0
O

O

IC
U

_D
A

TA
=

/
us

r/
lp

p/
W

eb
Sp

he
re

/
bi

n/
R

R

IR
_G

E
N

E
R

IC
_S

E
R

V
E

R
_N

A
M

E
=

C
B

IN
T

FR
P

O

IR
_S

PE
C

IF
IC

_S
E

R
V

E
R

_N
A

M
E

=
IN

T
FR

P0
1

O
4

O
4

O
4

O
4

O
4

IR
PR

O
C

=
B

B
O

IR
O

O

IV
B

_D
R

IV
E

R
_P

A
T

H
=

/
us

r/
lp

p/
W

eb
Sp

he
re

R
R

ja
va

.n
am

in
g.

se
cu

ri
ty

.c
re

d
en

ti
al

s=
<

pa
ss

w
or

d
>

O
O

ja
va

.n
am

in
g.

se
cu

ri
ty

.p
ri

nc
ip

al
=

<
us

er
id

>
O

O

JA
V

A
_C

O
M

PI
L

E
R

=
O

O

JA
V

A
_I

E
E

E
75

4=
O

11

JV
M

_B
O

O
T

C
L

A
SS

PA
T

H
=

O
O

JV
M

_B
O

O
T

L
IB

R
A

R
Y

PA
T

H
=

O
O

JV
M

_D
E

B
U

G
=

O
O

JV
M

_E
N

A
B

L
E

_C
L

A
SS

_G
C

=
O

O

JV
M

_E
N

A
B

L
E

_V
E

R
B

O
SE

_G
C

=
O

O

JV
M

_E
X

T
R

A
_O

PT
IO

N
S=

O

Appendix A. Environment and JVM properties files 129

Ta
bl

e
11

.
W

he
re

to
us

e
en

vi
ro

nm
en

t
va

ria
bl

es
(c

on
tin

ue
d)

E
n

vi
ro

n
m

en
t

va
ri

ab
le

=
<

d
ef

au
lt

>
D

ae
m

on
se

rv
er

in
st

an
ce

S
ys

te
m

M
an

ag
em

en
t

se
rv

er
in

st
an

ce

N
am

in
g

se
rv

er
in

st
an

ce
In

te
rf

ac
e

R
ep

os
it

or
y

in
st

an
ce

J2
E

E
se

rv
er

in
st

an
ce

O
S

/3
90

cl
ie

n
t

co
n

tr
ol

re
gi

on
co

n
tr

ol
re

gi
on

se
rv

er
re

gi
on

co
n

tr
ol

re
gi

on
se

rv
er

re
gi

on
co

n
tr

ol
re

gi
on

se
rv

er
re

gi
on

co
n

tr
ol

re
gi

on
se

rv
er

re
gi

on

JV
M

_H
E

A
PS

IZ
E

=
25

6
O

JV
M

_L
O

C
A

L
R

E
FS

=
O

O

JV
M

_L
O

G
FI

L
E

=
O

O

JV
M

_M
IN

H
E

A
PS

IZ
E

=
O

O

L
D

A
PB

IN
D

PW
=

F
R

5

L
D

A
PC

O
N

F=
F

R
5

L
D

A
PH

O
ST

N
A

M
E

=
F

R
5

L
D

A
PI

R
B

IN
D

PW
=

F
R

6

L
D

A
PI

R
C

O
N

F=
F

R
6

L
D

A
PI

R
H

O
ST

N
A

M
E

=
F

R
6

L
D

A
PI

R
N

A
M

E
=

F
R

6

L
D

A
PI

R
R

O
O

T
=

F
R

L
D

A
PN

A
M

E
=

F
R

5

L
D

A
PR

O
O

T
=

F
R

L
IB

PA
T

H
=

O
O

O
O

1

L
O

G
ST

R
E

A
M

N
A

M
E

=
O

O

M
IN

_S
R

S=
[0

fo
r

M
O

FW
,1

fo
r

J2
E

E
]

O

N
M

_G
E

N
E

R
IC

_S
E

R
V

E
R

_N
A

M
E

=
C

B
N

A
M

IN
G

O

N
M

_S
PE

C
IF

IC
_S

E
R

V
E

R
_N

A
M

E
=

N
A

M
IN

G
01

O
4

O
4

O
4

O
4

O
4

130 WebSphere Application Server V4.0 for z/OS and OS/390: Assembling J2EE Applications

Ta
bl

e
11

.
W

he
re

to
us

e
en

vi
ro

nm
en

t
va

ria
bl

es
(c

on
tin

ue
d)

E
n

vi
ro

n
m

en
t

va
ri

ab
le

=
<

d
ef

au
lt

>
D

ae
m

on
se

rv
er

in
st

an
ce

S
ys

te
m

M
an

ag
em

en
t

se
rv

er
in

st
an

ce

N
am

in
g

se
rv

er
in

st
an

ce
In

te
rf

ac
e

R
ep

os
it

or
y

in
st

an
ce

J2
E

E
se

rv
er

in
st

an
ce

O
S

/3
90

cl
ie

n
t

co
n

tr
ol

re
gi

on
co

n
tr

ol
re

gi
on

se
rv

er
re

gi
on

co
n

tr
ol

re
gi

on
se

rv
er

re
gi

on
co

n
tr

ol
re

gi
on

se
rv

er
re

gi
on

co
n

tr
ol

re
gi

on
se

rv
er

re
gi

on

N
M

PR
O

C
=

B
B

O
N

M
O

O

O
T

S_
D

E
FA

U
LT

_T
IM

E
O

U
T

=
30

O
O

O
O

O
O

O
O

O

O
T

S_
M

A
X

IM
U

M
_T

IM
E

O
U

T
=

60
O

O
O

O
O

O
O

O
O

PA
T

H
=

O
O

R
A

S_
M

IN
O

R
C

O
D

E
D

E
FA

U
LT

=
N

O
D

IA
G

N
O

ST
IC

D
A

TA

R
E

M
_D

C
E

PA
SS

W
O

R
D

=
O

R
E

M
_D

C
E

PR
IN

C
IP

A
L

=
O

R
E

M
_P

A
SS

W
O

R
D

=
O

7
O

7
O

7
O

7
O

R
E

M
_U

SE
R

ID
=

O
7

O
7

O
7

O
7

O

R
E

SO
LV

E
_I

PN
A

M
E

=
O

8
O

9
O

9
O

9
O

9
O

9
O

9
O

9
R

1
0

R
E

SO
LV

E
_P

O
R

T
=

90
0

O
O

O
O

O
O

O
O

O

SM
_D

E
FA

U
LT

_A
D

M
IN

=
C

B
A

D
M

IN
O

SM
_G

E
N

E
R

IC
_S

E
R

V
E

R
_N

A
M

E
=

C
B

SY
SM

G
T

O

SM
_S

PE
C

IF
IC

_S
E

R
V

E
R

_N
A

M
E

=
SY

SM
G

T
01

O
4

O
4

O
4

O
4

O
4

SM
PR

O
C

=
B

B
O

SM
S

O
O

SO
M

O
O

SQ
L

=
O

SR
V

IP
A

D
D

R
=

O
O

O
O

O

SS
L

_K
E

Y
R

IN
G

=
O

SY
S_

D
B

2_
SU

B
_S

Y
ST

E
M

_N
A

M
E

=
D

B
2

R
R

R
R

R

Appendix A. Environment and JVM properties files 131

Ta
bl

e
11

.
W

he
re

to
us

e
en

vi
ro

nm
en

t
va

ria
bl

es
(c

on
tin

ue
d)

E
n

vi
ro

n
m

en
t

va
ri

ab
le

=
<

d
ef

au
lt

>
D

ae
m

on
se

rv
er

in
st

an
ce

S
ys

te
m

M
an

ag
em

en
t

se
rv

er
in

st
an

ce

N
am

in
g

se
rv

er
in

st
an

ce
In

te
rf

ac
e

R
ep

os
it

or
y

in
st

an
ce

J2
E

E
se

rv
er

in
st

an
ce

O
S

/3
90

cl
ie

n
t

co
n

tr
ol

re
gi

on
co

n
tr

ol
re

gi
on

se
rv

er
re

gi
on

co
n

tr
ol

re
gi

on
se

rv
er

re
gi

on
co

n
tr

ol
re

gi
on

se
rv

er
re

gi
on

co
n

tr
ol

re
gi

on
se

rv
er

re
gi

on

T
R

A
C

E
A

L
L

=
1

O
O

O
O

O
O

O
O

O
O

T
R

A
C

E
B

A
SI

C
=

O
O

O
O

O
O

O
O

O
O

T
R

A
C

E
B

U
FF

C
O

U
N

T
=

4
O

O
O

O
O

O
O

O
O

T
R

A
C

E
B

U
FF

L
O

C
=

(S
er

ve
r:

B
U

FF
E

R
C

lie
nt

:S
Y

SP
R

IN
T

)
O

O
O

O
O

O
O

O
O

O

T
R

A
C

E
B

U
FF

SI
Z

E
=

1M
O

O
O

O
O

O
O

O
O

T
R

A
C

E
D

E
TA

IL
=

O
O

O
O

O
O

O
O

O
O

T
R

A
C

E
M

IN
O

R
C

O
D

E
=

T
R

A
C

E
PA

R
M

=
00

O

132 WebSphere Application Server V4.0 for z/OS and OS/390: Assembling J2EE Applications

Ta
bl

e
11

.
W

he
re

to
us

e
en

vi
ro

nm
en

t
va

ria
bl

es
(c

on
tin

ue
d)

E
n

vi
ro

n
m

en
t

va
ri

ab
le

=
<

d
ef

au
lt

>
D

ae
m

on
se

rv
er

in
st

an
ce

S
ys

te
m

M
an

ag
em

en
t

se
rv

er
in

st
an

ce

N
am

in
g

se
rv

er
in

st
an

ce
In

te
rf

ac
e

R
ep

os
it

or
y

in
st

an
ce

J2
E

E
se

rv
er

in
st

an
ce

O
S

/3
90

cl
ie

n
t

co
n

tr
ol

re
gi

on
co

n
tr

ol
re

gi
on

se
rv

er
re

gi
on

co
n

tr
ol

re
gi

on
se

rv
er

re
gi

on
co

n
tr

ol
re

gi
on

se
rv

er
re

gi
on

co
n

tr
ol

re
gi

on
se

rv
er

re
gi

on

N
ot

es
:

1.
R

eq
ui

re
d

fo
r

se
rv

er
re

gi
on

s
th

at
us

e
Ja

va
,i

nc
lu

d
in

g
th

e
IM

S
PA

A
an

d
C

IC
S

PA
A

.

2.
If

yo
u

sp
ec

if
y

a
va

lu
e

fo
r

th
e

D
ae

m
on

Se
rv

er
,y

ou
m

us
t

pr
ov

id
e

th
e

sa
m

e
va

lu
e

fo
r

th
e

Sy
st

em
M

an
ag

em
en

t
Se

rv
er

co
nt

ro
l

re
gi

on
.

3.
R

eq
ui

re
d

w
he

n
th

e
cl

ie
nt

us
es

th
e

Sy
st

em
M

an
ag

em
en

t
Sc

ri
pt

in
g

A
PI

.

4.
Yo

u
m

us
t

sp
ec

if
y

th
is

fo
r

th
e

se
co

nd
an

d
su

bs
eq

ue
nt

sy
st

em
s

in
a

sy
sp

le
x.

5.
L

D
A

PC
O

N
F

is
m

ut
ua

lly
ex

cl
us

iv
e

w
it

h
L

D
A

PB
IN

D
PW

,L
D

A
PH

O
ST

N
A

M
E

,a
nd

L
D

A
PN

A
M

E
.E

it
he

r
L

D
A

PC
O

N
F

is
re

qu
ir

ed
,

or
L

D
A

PB
IN

D
PW

,L
D

A
PH

O
ST

N
A

M
E

,a
nd

L
D

A
PN

A
M

E
ar

e
re

qu
ir

ed
.

6.
L

D
A

PI
R

C
O

N
F

is
m

ut
ua

lly
ex

cl
us

iv
e

w
it

h
L

D
A

PI
R

B
IN

D
PW

,L
D

A
PI

R
H

O
ST

N
A

M
E

,a
nd

L
D

A
PI

R
N

A
M

E
.E

it
he

r
L

D
A

PI
R

C
O

N
F

is
re

qu
ir

ed
,o

r
L

D
A

PI
R

B
IN

D
PW

,L
D

A
PI

R
H

O
ST

N
A

M
E

,a
nd

L
D

A
PI

R
N

A
M

E
ar

e
re

qu
ir

ed
.

7.
U

se
d

w
he

n
a

se
rv

er
be

co
m

es
a

re
m

ot
e

cl
ie

nt
of

an
ot

he
r

se
rv

er
.

8.
D

ef
au

lt
is

th
e

va
lu

e
of

D
A

E
M

O
N

_I
PN

A
M

E
d

ur
in

g
bo

ot
st

ra
p.

9.
D

ef
au

lt
is

th
e

lo
ca

l
sy

st
em

IP
na

m
e.

G
en

er
al

ly
,d

o
no

t
co

d
e.

10
.

O
pt

io
na

l
if

a
D

ae
m

on
Se

rv
er

is
on

th
e

sa
m

e
sy

st
em

as
th

e
cl

ie
nt

,i
n

w
hi

ch
ca

se
th

e
d

ef
au

lt
is

th
e

lo
ca

l
sy

st
em

IP
na

m
e.

11
.

R
eq

ui
re

d
fo

r
Ja

va
cl

ie
nt

s
th

at
ru

n
on

O
S/

39
0.

Appendix A. Environment and JVM properties files 133

Environment variable descriptions

BBOLANG=LANGUAGE
The name of the WebSphere for z/OS message catalog used. The default
is ENUS.

CBCONFIG=path
Specifies a read/write directory in the HFS into which WebSphere for
z/OS writes configuration and environment files when a conversation is
activated. The &CBCONFIG variable in control and server region start
procedures must match this value. In this way, WebSphere for z/OS can
find the appropriate environment file for a server when those start
procedures are executed. The default is /WebSphere390/CB390.

Example: CBCONFIG=/WebSphere390/CB390

CLASSPATH=path1:[path2]:...
Specifies Java class files—.jar files and classes.zip files—for use by Java
business objects in server regions. Specify your Java business object’s .jar
files when you use Java business objects. The entire CLASSPATH
statement must be on one line only.

Example:
CLASSPATH=/usr/lpp/db2/db2710/classes/db2j2classes.zip: . . .

CLIENT_DCE_QOP=value
The level of DCE message protection used by a local OS/390 client to
apply to the current transaction flows. Normally, you would set DCE
security for an OS/390 client that accesses servers on remote systems.
Note that the DCE level for a server is set through the Administration
application.

When enabled on client and server, DCE authentication offers each proof
of the other’s legitimacy with a handshake message exchange using DCE’s
third-party authentication scheme. Once this exchange has taken place,
messages can be assigned one of three levels of protection, which are the
values of this environment variable:

NO_PROTECTION
DCE assures only that the messages and their replies are from the
legitimate sender. This is the default.

INTEGRITY
DCE assures that the message is from the legitimate sender and it has
not been modified in any way since the sender sent it.

CONFIDENTIALITY
DCE encrypts the message so that none but the legitimate receiver can
read it.

134 WebSphere Application Server V4.0 for z/OS and OS/390: Assembling J2EE Applications

CLIENT_HOSTNAME=
Allows an OS/390 client to determine its host IP name when no Daemon
is running on the same system. When a client program issues the
CBSeriesGlobal::hostName() method, the system checks the
CLIENT_HOSTNAME environment variable first and returns this value, if
it is set. If the value is not set, the system returns the IP name of the
Daemon running on that system, if the Daemon is running. The default
value is null.

Example: CLIENT_HOSTNAME=MYSYS.SYS.COM

CLIENTLOGSTREAMNAME=LOG_STREAM_NAME
The WebSphere for z/OS error log stream to which an OS/390 client ORB
writes error information.

Example: CLIENTLOGSTREAMNAME=MY.CLIENT.ERROR.LOG

CLIENT_RESOLVE_IPNAME=IP_NAME
The Internet Protocol name that an OS/390 client, or server region acting
as a client, uses to access the bootstrap server (that is, when the client or
server region invokes the resolve_initial_references method). The default is
the value specified by the RESOLVE_IPNAME environment variable,
which is the Internet Protocol name associated with the System
Management Server (the default bootstrap server). If RESOLVE_IPNAME
is not set, the value is the system on which the client or server region is
running.

The CLIENT_RESOLVE_IPNAME environment variable allows you to
specify a bootstrap server running on a remote system, while other clients
use a local bootstrap server defined by the RESOLVE_IPNAME
environment variable.

Note: The TCP/IP port number for the CLIENT_RESOLVE_IPNAME is
defined by the RESOLVE_PORT environment variable.

The value of CLIENT_RESOLVE_IPNAME can be up to 255 characters.

Example: CLIENT_RESOLVE_IPNAME=REMHOST

CLIENT_TIMEOUT=n
Sets the time-out value for response from a client method call. The values
are in integers and signify the time in tenths of seconds (thus, a value of
10 is 1 second). The default value is 0, which means no time-out value is
set.

Example: CLIENT_TIMEOUT=20

com.ibm.ws.naming.ldap.containerdn=ibm-wsnTree=t1,o=org,c=country
The starting point of WsnName tree. Only the Naming server uses this
environment variable. By default, the system expects the value to be

Appendix A. Environment and JVM properties files 135

|
|
|

ibm-wsnTree=t1,o=WASNaming,c=us. If you take the default, delete this
environment variable from your environment file.

This value must match the value specified in LDAP initialization file (our
sample is bboldif.cb). If you’ve modified the organization or country in
your bboldif.cb file, use the same value on this environment variable.
Note that case does not matter in LDAP, though it does matter for the
environment variables. The ″o=,c=″ portion must also be specified as a
suffix in bboslapd.conf. For example:
suffix "o=WASNaming,c=us"

Tip: The suffix statement appears as:
suffix "<ws_rdn>"

in the sample bboslapd.conf we ship.

Example:
com.ibm.ws.naming.ldap.containerdn=ibm-wsnTree=t1,o=WASNaming,c=us

com.ibm.ws.naming.ldap.domainname=domain name
Uniquely identifies the host root and is the basis for partitioning the JNDI
global name space. Only the Naming server uses this environment
variable. By default, the system expects the value to be the domain name
of the sysplex on which Naming Server is running. If you want the
default, delete this environment variable from the environment file. If you
want a different domain name, specify it.

Example:
com.ibm.ws.naming.ldap.domainname=plex1

com.ibm.ws.naming.ldap.masterurl=ldap://IP_name:port
The LDAP Server IP Name and port number. Only the Naming server
uses this environment variable. By default, the system expects the IP name
to be the same as the system on which the Naming Server runs and the
port to be 1389. If your LDAP server is running on a system other then
the one the Naming Server runs on or uses a port other than 1389, update
this environment variable. Otherwise, delete this environment
variable.Example:
com.ibm.ws.naming.ldap.masterurl=ldap://wsldap:1389

DAEMON_IPNAME=IP_NAME
The Internet Protocol name that the Daemon Server registers with the
Domain Name Service (DNS). Any CORBA client communication with
WebSphere for z/OS requires this IP name.

136 WebSphere Application Server V4.0 for z/OS and OS/390: Assembling J2EE Applications

|
|

|
|
|
|
|
|

|

|

|

|

|

|

|

You must define the DAEMON_IPNAME environment variable at
installation time, before you start the Daemon bootstrap process.
Otherwise, WebSphere for z/OS issues an error message and terminates
the Daemon.

The bootstrap process sets, among other things, the Daemon IP name in
the system management database. After bootstrap, WebSphere for z/OS
uses the value in the system management database. It is possible that,
after bootstrap, the value of the DAEMON_IPNAME environment
variable could change to a value other than what is in the system
management database. If this happens, an error message is issued, but the
Daemon initializes with the Daemon IP name from the system
management database.

To place Daemon server instances in the same host cluster, you must code
the same DAEMON_IPNAME value for each server instance.

Rules:

v The value for DAEMON_IPNAME must be a fully-qualified long name.
v The first-level qualifier can be from 1 to 18 characters.
v Once chosen, the port and IP name for the Daemon should not change,

since every object reference includes the port and IP name—if you
change them, existing objects will no longer be accessible.

Example: DAEMON_IPNAME=CBQ091.PDL.POK.IBM.COM

DAEMON_PORT=n
The port number at which the Daemon Server listens for requests. The
default is 5555. If you specify a value, you must provide the same value
for the System Management Server control region.

Example: DAEMON_PORT=5555

DEFAULT_CLIENT_XML_PATH=path
Specifies the location of a set of XML files that hold default parameter
lists used by the System Management Scripting API. You must set this
environment variable for clients that use the System Management
Scripting API.

IBM provides a set of sample XML files that contain default parameter
lists. After installation, these samples reside in
/usr/lpp/WebSphere/samples/smapi. For information about the XML files
and the parameter lists, see WebSphere Application Server V4.0 for z/OS and
OS/390: System Management Scripting API, SA22-7839.

You can override the default behavior of the System Management
Scripting API in two ways:

Appendix A. Environment and JVM properties files 137

1. Specifying the parameters explicitly in the REXX script that calls the
System Management Scripting API. By specifying parameters
explicitly, you do not have to modify the XML samples IBM provides.
You simply need to code
DEFAULT_CLIENT_XML_PATH=/usr/lpp/WebSphere/samples/smapi

in your client environment file.
2. Copying the XML files to another directory (the samples IBM provides

are read-only), making modifications to the parameter lists, then
changing the DEFAULT_CLIENT_XML_PATH to point to the new
directory. Making these changes is required only if you want to
override permanently the default behavior of the System Management
Scripting API.

Example: DEFAULT_CLIENT_XML_PATH=/usr/lpp/WebSphere/samples/smapi

DM_GENERIC_SERVER_NAME=SERVER_NAME
The server name for the Daemon Server. The default is CBDAEMON. If
you specify a value, you must provide the same value for the System
Management Server control region.

Example: DM_GENERIC_SERVER_NAME=CBDAEMON

DM_SPECIFIC_SERVER_NAME=SERVER_INSTANCE_NAME
A server instance name of the Daemon Server. The default is DAEMON01.
You must specify this environment variable for all server instances in the
second and subsequent systems in a sysplex.

Example: DM_SPECIFIC_SERVER_NAME=DAEMON01

IBM_OMGSSL=[0 | 1]
Specifies whether only CORBA-compliant security tags will be exported
by the server. The value 1 means only CORBA-compliant tags are
exported. The value 0 (the default) means CORBA-compliant and
non-compliant tags are exported.

Use value 1 when the server uses only SSL basic authentication for its
security and clients (such as CICS or other OEM ORBs) use
CORBA-compliant tags. This is only in the case when the server uses SSL
basic authentication. If your server supports SSL client certificates as well,
you do not have to set this variable.

Use value 0 (or take the default) when your server uses SSL basic
authentication and interoperates with WebSphere clients on distributed
platforms or WebSphere Application Server Enterprise Edition for OS/390
V3.02.

Example: IBM_OMGSSL=1

138 WebSphere Application Server V4.0 for z/OS and OS/390: Assembling J2EE Applications

HOME=path
Specifies the home directory. This variable is set automatically from the
security product user profile when the user logs in to the UNIX shell. For
C++ or Java clients running on OS/390, set this variable to /tmp when
debugging business objects with the IBM Distributed Debugger.

Example: HOME=/tmp

ICU_DATA=path
The path to binary files required by the XML Parser used by the System
Management server during bootstrap and import server processing. If you
installed the WebSphere for z/OS code in the default directory, you do
not need to change this path. The default path is
/usr/lpp/WebSphere/bin/.

Example: ICU_DATA=/usr/lpp/WebSphere/bin/

IR_GENERIC_SERVER_NAME=SERVER_NAME
The server name of the Interface Repository Server. The default is
CBINTFRP. You must define a workload management (WLM) application
environment using this name for the Interface Repository Server server
regions to work.

IR_SPECIFIC_SERVER_NAME=SERVER_INSTANCE_NAME
A server instance name of the Interface Repository Server. The default is
INTFRP01. You must specify this environment variable for all server
instances in the second and subsequent systems in a sysplex.

IRPROC=PROC_NAME
The start procedure used by the Daemon Server to start the Interface
Repository Server. The default is BBOIR. You can supply the name of your
own start procedure. If you do so, copy the information from the default
start procedure to your new start procedure.

Example: IRPROC=BBOIR

IVB_DRIVER_PATH=path
The name of the directory where WebSphere for z/OS files reside after
SMP/E installation. The default is /usr/lpp/WebSphere.

Example: IVB_DRIVER_PATH=/usr/lpp/WebSphere

JAVA_COMPILER=
Specifies the use of the just-in-time (JIT) compiler.

If you use the environment variable, a null value (JAVA_COMPILER=) turns
the JIT compiler on. Any other value turns the JIT compiler off.

By default, a Java virtual machine (JVM) running on OS/390 uses the JIT
compiler, so you do not have to explicitly set this environment variable. If
you are debugging Java business objects, however, turn off the JIT
compiler by specifying a non-null value.

Appendix A. Environment and JVM properties files 139

Example: JAVA_COMPILER=NONE

JAVA_IEEE754=EMULATION
Specifies the correct executable code for the system to load for the Java
virtual machine (JVM) in which Java clients on OS/390 run. This
environment variable setting is required only for Java clients that run on
OS/390.

java.naming.security.credentials=password
The password used by the distinguished name specified by
java.naming.security.principal. The password must match the password
defined for the administrator access ID (default is WASAdmin) by the
LDAP initialization file during initial system customization. IBM provides
the WASAdmin access ID in a sample LDIF file called bboldif.cb. The
default value is secret. Example:
java.naming.security.credentials=secret

Recommendation: You should change the IBM-supplied password.

java.naming.security.principal=distinguished_name
Distinguished name (user ID) defined to have write access to WsnName
directory. Specify this only if you want to provide read/write access to all
JNDI users. The distinguished name must match the one defined for the
administrator access ID (default is WASAdmin) by the LDAP LDIF file
during initial system customization. IBM provides the WASAdmin access
ID in a sample LDAP initialization file called bboldif.cb. The default value
is cn=WASAdmin,o=WASNaming,c=us. Example:
java.naming.security.principal=cn=WASAdmin,o=WASNaming,c=us

Recommendation: We suggest you keep the WASAdmin access ID.

JVM_BOOTCLASSPATH=path1:[path2]
Enables the use of bootclasspath. This option is equivalent to the
-Xbootclasspath/p: Java invocation option.

JVM_BOOTLIBRARYPATH=path1:[path2]
Enables the use of bootlibrarypath. This option is equivalent to the
-Dsun.boot.library.path= Java invocation option.

JVM_DEBUG=1
This option is equivalent to the —verbose:class,jni Java invocation
option. It reroutes JVM messages to SYSOUT for debugging purposes. Set
JVM_DEBUG=1 to invoke JVM messaging.

JVM_ENABLE_CLASS_GC=1
Enables class objects to be garbage collected. The value 1 is required for
enabling class object garbage collection. This option is equivalent to the
-Xnoclassgc Java invocation option.

140 WebSphere Application Server V4.0 for z/OS and OS/390: Assembling J2EE Applications

|

|

|

JVM_ENABLE_VERBOSE_GC=1
Sets verbose garbage collection on or off. The value 1 is required for
enabling garbage collection messages. This option is equivalent to the
-verbose:gc Java invocation option.

JVM_EXTRA_OPTIONS=string
Allows you to specify one new Java environment variable that is not
already predefined by IBM (those predefined variables start with JVM_).
With JVM_EXTRA_OPTIONS, string is the new Java option or property that
you want to specify.

JVM_HEAPSIZE=n
Sets the maximum size (in megabytes) of the JVM heap. The default is 256
MB. This option is equivalent to the -Xmx=xxxM Java invocation option.

Example: JVM_HEAPSIZE=256 # specifies a 256 MB heap

JVM_LOCALREFS=
Should only be used under the direction of IBM support. The default is
128.

JVM_LOGFILE=filename
Specifies the HFS file in which messages from the JVM will be logged.

Recommendation: Use this variable only in a single-server environment.
If you use JVM_LOGFILE in a multiple-server environment, all the servers
write to the same file, so you might have difficulty using the file for
diagnostic purposes. In a multiple-server environment, use JVM_DEBUG=1 to
direct JVM messages to the SYSOUT for a specific server.

JVM_MINHEAPSIZE=n
Sets the mimimum size (in megabytes) of the JVM heap. The default is
256 MB. This option is equivalent to the -Xms=xxxM Java invocation option.
For optimal performance, specify the same value for JVM_HEAPSIZE and
JVM_MINHEAPSIZE.

LDAPBINDPW=password
The password the Naming Server uses to bind to the LDAP server. Used
in conjunction with LDAPNAME.

LDAPCONF=filename
The LDAP configuration file used by WebSphere for z/OS. If you
designate a file in the HFS, do not use quotes. If you designate an MVS
data set, enclose the data set in single quotes.

Example: LDAPCONF=‘bbo.s21slapd.conf’

LDAPHOSTNAME=name:port
The host name of the LDAP server that the Interface Repository Server
uses as its data store.

Appendix A. Environment and JVM properties files 141

|
|
|
|

|
|
|
|
|

|

|

|

|

|

LDAPIRBINDPW=password
The password the Interface Repository Server uses to bind to the LDAP
server. Used in conjunction with LDAPIRNAME.

LDAPIRCONF=filename
The LDAP configuration file used by the LDAP server that the Interface
Repository Server uses as its data store. If you designate a file in the HFS,
do not use quotes. If you designate an MVS data set, enclose the data set
in single quotes.

LDAPIRHOSTNAME=name:port
The host name of the LDAP server that the Interface Repository Server
uses as its data store.

LDAPIRNAME
The LDAP entry name that the Interface Repository Server uses to
authenticate itself to the LDAP server that it uses as its data store.

LDAPIRROOT=root
The LDAP entry name at which the Interface Repository Server anchors
its data.

Example: LDAPIRROOT=o=BOSS,c=U

LDAPNAME
The LDAP entry name that the Naming Server uses to authenticate itself
to the LDAP server that it uses as its data store.

LDAPROOT=root
The LDAP entry name at which the Naming Server anchors its data.

Example: LDAPROOT=o=BOSS,c=US

LIBPATH=path1:[path2]:...
Specifies the DLL search paths for Java in the hierarchical file system
(HFS). Specify system, WebSphere for z/OS, and Java DLLs.

Example:
LIBPATH=/db2_install_path/lib:/usr/lpp/java/J1.3/bin:/usr/lpp/java/J1.3/bin/classic:/usr/lpp/WebSphere/lib

where db2_install_path is the HFS where you installed DB2 for OS/390.

LOGSTREAMNAME=LOG_STREAM_NAME
The WebSphere for z/OS error log stream name the Daemon and System
Management servers use during bootstrap. If not specified in the
environment file for the Daemon and System Management servers during
bootstrap, the system uses the following algorithm to form an error log
stream name. WebSphere for z/OS:
1. Takes the first qualifier in the Daemon Server’s IP name.
2. If the first qualifier is more than 8 characters, divides the qualifier into

8-character strings and separates them with periods.

142 WebSphere Application Server V4.0 for z/OS and OS/390: Assembling J2EE Applications

3. Adds a high-level qualifier “BBO”.

For example, if the Daemon IP name is MYDAEMONSERVER.IBM.COM,
the algorithm would produce an error log stream name
BBO.MYDAEMON.SERVER.

After bootstrap, you can create or change an error log stream name for the
entire sysplex, a server, or a server instance through the Administration
application. A server error log stream setting overrides the general
WebSphere for z/OS setting, and a server instance setting overrides a
server setting. Thus, you can set up general error logging, but direct error
logging for servers or server instances to specific log streams.

During processing, if the specified log stream is not found or not
accessible, a message is issued and errors are written to the server’s
joblog.

Example: LOGSTREAMNAME=MY.CB.ERROR.LOG

Tip: Do not put the log stream name in quotes. Log stream names are not
data set names.

MIN_SRS=nn
The number of server regions to be kept running once those server
regions have initialized. That is, workload management will not direct the
server region to shut down even though it becomes inactive. Use this
environment variable when the response time for the workload requires
that several server regions are always ready to process work.

The default for J2EE servers is 1. For MOFW servers, the default is 0. The
maximum value is 20. If you specify more than 20, the variable is set to
20.

WebSphere for z/OS garbage collection may cause a server region to
refresh, but the minimum number of server regions will not fall below the
value specified on this environment variable.

Example: MIN_SRS=2

NM_GENERIC_SERVER_NAME=SERVER_NAME
The server name of the Naming Server. The default is CBNAMING. You
must define a workload management (WLM) application environment
using this name for the Naming Server server regions to work.

Example: NM_GENERIC_SERVER_NAME=CBNAMING

NM_SPECIFIC_SERVER_NAME=SERVER_INSTANCE_NAME
The server instance name of the Naming Server. The default is

Appendix A. Environment and JVM properties files 143

NAMING01. You must specify this environment variable for all server
instances in the second and subsequent systems in a sysplex.

Example: NM_SPECIFIC_SERVER_NAME=NAMING01

NMPROC=PROC_NAME
The start procedure used by the Daemon Server to start the Naming
Server. The default is BBONM. You can supply the name of your own
start procedure. If you do so, copy the information from the default start
procedure to your new start procedure.

Example: NMPROC=BBONM

OTS_DEFAULT_TIMEOUT=n
The amount of time (in seconds) given by default to an application
transaction to complete. This amount of time is given to the application
transaction if it does not set its own time-out value through the current
—> set_timeout method.

The default is 30 seconds and the maximum value is 2147483 seconds
(24.85 days). You should not use a null or 0 value.

Note: When a conversation is activated, the system performs special
processing for the System Management server instances only.
v If the OTS_DEFAULT_TIMEOUT variable is not set, it is added.
v If the value for OTS_DEFAULT_TIMEOUT is less than 3600

(seconds), it is set to 3600.

This special processing is performed for the System Management
server instances because the server instances sometimes perform
long-running transactions. Other server instances do not require
such lengthy transaction defaults.

Example: OTS_DEFAULT_TIMEOUT=30

OTS_MAXIMUM_TIMEOUT=n
The maximum allowable amount of time (in seconds) given to an
application transaction to complete. If an application assigns a greater
amount of time, the system limits the time to the
OTS_MAXIMUM_TIMEOUT value.

The default is 60 seconds and the maximum value is 2147483 seconds
(24.85 days). You should not use a null or 0 value.

Note: When a conversation is activated, the system performs special
processing for the System Management server instances only.
v If the OTS_MAXIMUM_TIMEOUT variable is not set, it is added.
v If the value for OTS_MAXIMUM_TIMEOUT is less than 3600

(seconds), it is set to 3600.

144 WebSphere Application Server V4.0 for z/OS and OS/390: Assembling J2EE Applications

This special processing is performed for the System Management
server instances because the server instances sometimes perform
long-running transactions. Other server instances do not require
such lengthy transaction defaults.

Example: OTS_MAXIMUM_TIMEOUT=60

PATH=path
Specifies the path. When tracing and debugging Java on OS/390, for the
application server only, include the path to the executable called irmtdbgj.

RAS_MINORCODEDEFAULT=value
Determines the default behavior for gathering documentation about
system exception minor codes. Use only under the guidance of IBM
Service.

CEEDUMP
Captures callback and offsets.

Tip: It takes time for the system to take CEEDUMPs and this may
cause transaction timeouts. For instance, your
OTS_DEFAULT_TIMEOUT may be set to 30 seconds, but, since
taking a CEEDUMP can take longer than 30 seconds, your
application transaction may time out. To prevent this from
happening, either:
v Increase the transaction timeout value.

or
v Code RAS_MINORCODEDEFAULT=NODIAGNOSTICDATA.

Be sure TRACEMINORCODE is not in the environment file.

TRACEBACK
Captures Language Environment and UNIX System Services
traceback data.

SVCDUMP
Captures an MVS dump (but will not produce a dump in the
client).

NODIAGNOSTICDATA
The default. This setting will not cause the gathering of a
CEEDUMP, TRACEBACK, or SVCDUMP.

Note: Sometimes results depend on the setting of another environment
variable, TRACEMINORCODE. If you code
TRACEMINORCODE=(null value) and
RAS_MINORCODEFAULT=TRACEBACK you get a traceback. But,
if you code RAS_MINORCODEDEFAULT=NODIAGNOSTICDATA
and TRACEMINORCODE=ALL, you also get a traceback. So,

Appendix A. Environment and JVM properties files 145

specifying RAS_MINORCODEDEFAULT=NODIAGNOSTICDATA
does not cancel TRACEBACK; it simply does not cause a
TRACEBACK to be gathered.

REM_DCEPASSWORD=password
The password of the remote DCE principal passed in the security context
when an OS/390 client makes a request to a system outside the sysplex
and SSL Type 1 authentication is being used. The password must conform
to DCE requirements for passwords.

Example: REM_DCEPASSWORD=mydcePW

REM_DCEPRINCIPAL=principal
The principal passed in the security context when a client makes a request
to a system outside the sysplex and SSL Type 1 authentication is being
used. This principal must be defined on the target server. The value must
conform to DCE requirements for principals.

Example: REM_DCEPRINCIPAL=myDCEprin

REM_PASSWORD=password
The password used in the security context when a client makes a request
to a remote OS/390 system and user ID/password security or SSL
security is being used.

Example: REM_PASSWORD=MYPASSW

REM_USERID=USER_ID
The user ID used in the security context when a client makes a request to
a remote OS/390 system and user ID/password security or SSL security is
being used.

Example: REM_USERID=MCOX

RESOLVE_IPNAME=IP_NAME
The Internet Protocol name that the System Management Server registers
with the Domain Name Service (DNS). Any CORBA client communication
with WebSphere for z/OS requires this IP Name. If not set, the Resolve IP
Name is the system on which the program is running.

Rule: The value for RESOLVE_IPNAME should be a fully-qualified name,
but it cannot exceed 255 characters.

Example: RESOLVE_IPNAME=CBQ091.COMPANY.NY.COM

RESOLVE_PORT=n
The port number at which the System Management Server listens for
requests. The default is 900. This is a well-known port for Object Request
Brokers, so IBM advises that you do not change this variable. If you
already have an application that uses this port, consider using TCP/IP
bind-specific support and the SRVIPADDR environment variable.

146 WebSphere Application Server V4.0 for z/OS and OS/390: Assembling J2EE Applications

Example: RESOLVE_PORT=900

SM_DEFAULT_ADMIN=USER_ID
The user ID for the administrator who uses the Administration and
Operations applications. This environment variable is used by the System
Management bootstrap during installation—setting this environment
variable after the System Management bootstrap runs has no effect. If you
do not define this environment variable, the default user ID is CBADMIN.
You must define this user ID to OS/390 and give it appropriate security
authorizations (for example, RACF permissions and LDAP permissions).

Note: After the System Management bootstrap runs, you can define
additional administrator user IDs only through the Administration
application. Those user IDs do not replace the user ID defined by
SM_DEFAULT_ADMIN.

Example: SM_DEFAULT_ADMIN=DUDE

SM_GENERIC_SERVER_NAME=SERVER_NAME
The server name of the Systems Management Server. The default is
CBSYSMGT. You must define a workload management (WLM) application
environment using this name for the Systems Management Server server
regions to work.

Example: SM_GENERIC_SERVER_NAME=CBSYSMGT

SM_SPECIFIC_SERVER_NAME=SERVER_INSTANCE_NAME
The server instance name of the Systems Management Server. The default
is SYSMGT01. You must specify this environment variable for all server
instances in the second and subsequent systems in a sysplex.

Example: SM_SPECIFIC_SERVER_NAME=SYSMGT01

SMPROC=PROC_NAME
The start procedure used by the Daemon Server to start the Systems
Management Server. The default is BBOSMS. You can supply the name of
your own start procedure. If you do so, copy the information from the
default start procedure to your new start procedure.

Example: SMPROC=BBOSMS

SOMOOSQL=value
Improves performance for client applications that use object-oriented SQL
queries on string attributes. By using SOMOOSQL=1, string comparisons
are pushed down to the database.

The default value is null (SOMOOSQL=).

Rule: You can use SOMOOSQL=1 only when the database and server
region address spaces have been declared to run in the same locale.

Appendix A. Environment and JVM properties files 147

SRVIPADDR=IP_ADDRESS
The IP address in dotted decimal format that WebSphere for z/OS servers
use to listen for client connection requests.

This IP address is used by the server to bind to TCP/IP. Normally, the
server will listen on all IP addresses configured to the local TCP/IP stack.
However if you want to fence the work or allow multiple heterogeneous
servers to listen on the same port, you can use SRVIPADDR. The specified
IP address becomes the only IP address over which WebSphere for z/OS
receives inbound requests. Normally, you also have to map the Daemon
IP name, resolve IP name, or host name of the server that you are on to
this particular SRVIPADDR.

SSL_KEYRING=keyring
The name of the OS/390 client’s key ring used in SSL processing. This key
ring must reside in RACF.

Example: SSL_KEYRING=IVPRING

SYS_DB2_SUB_SYSTEM_NAME=NAME
The DB2 for OS/390 name used by Daemon and System Management
servers to connect to the database. Use either the DB2 for OS/390
subsystem name or group attachment name. The default is DB2. If the
default is not correct for your installation, change the environment
variable to match the correct value.

Example: SYS_DB2_SUB_SYSTEM_NAME=DB21

TRACEALL=n
Specifies the default tracing level for WebSphere for z/OS. Valid values
and their meanings are:

0 No tracing

1 Exception tracing, the default

2 Basic and exception tracing

3 Detailed tracing, including basic and exception tracing

Use this variable in conjunction with the TRACEBASIC and
TRACEDETAIL environment variables to set tracing levels for WebSphere
for z/OS subcomponents. Do not change this variable unless directed by
IBM service personnel.

Example: TRACEALL=1

TRACEBASIC=n | (n,...)
Specifies tracing overrides for particular WebSphere for z/OS
subcomponents. Subcomponents, specified by numbers, receive basic and
exception traces. If you specify more than one subcomponent, use

148 WebSphere Application Server V4.0 for z/OS and OS/390: Assembling J2EE Applications

parentheses and separate the numbers with commas. Contact IBM service
for the subcomponent numbers and their meanings. Other parts of
WebSphere for z/OS receive tracing as specified on the TRACEALL
environment variable. Do not change TRACEBASIC unless directed by
IBM service personnel.

Example: TRACEBASIC=3

TRACEBUFFCOUNT=n
Specifies the number of trace buffers to allocate. Valid values are 4
through 8. The default is 4.

TRACEBUFFLOC=SYSPRINT | BUFFER
Specifies where you want trace records to go: either to sysprint
(SYSPRINT) or to a memory buffer (BUFFER), then to a CTRACE data set.
The default is to direct trace records to sysprint for the client and to a
buffer for all other WebSphere for z/OS processes. For servers, you may
specify one or both values, separated by a space. For clients, you may
specify TRACEBUFFLOC=SYSPRINT only.

Example: TRACEBUFFLOC=SYSPRINT BUFFER

TRACEBUFFSIZE=n
Specifies the size of a single trace buffer in bytes. You can use the letters
“K” (for kilobytes) or “M” (for megabytes). Valid values are 128K through
4M. The default is 1M.

TRACEDETAIL=n | (n,...)
Specifies tracing overrides for particular WebSphere for z/OS
subcomponents. Subcomponents, specified by numbers, receive detailed
traces. If you specify more than one subcomponent, use parentheses and
separate the numbers with commas. Contact IBM service for the
subcomponent numbers and their meanings. Other parts of WebSphere for
z/OS receive tracing as specified on the TRACEALL environment
variable. Do not change TRACEDETAIL unless directed by IBM service
personnel.

Examples:
TRACEDETAIL=3

TRACEDETAIL=(3,4)

TRACEMINORCODE=value
Enables traceback of system exception minor codes. Use only when
instructed by IBM Service. Values are:

ALL|all
Enables traceback for all system exception minor codes.

Appendix A. Environment and JVM properties files 149

minor_code
Enables traceback for a specific minor code. Specify the code in
hex, such as X'C9C21234'.

(null value)
The default. This setting will not cause gathering of a traceback.

Note: Sometimes results depend on the setting of another environment
variable, RAS_MINORCODEDEFAULT. If you code
TRACEMINORCODE=ALL and
RAS_MINORCODEDEFAULT=NODIAGNOSTICDATA, you get a
traceback. But, if you code TRACEMINORCODE=(null value) and
RAS_MINORCODEFAULT=TRACEBACK you also get a traceback.
So, specifying TRACEMINORCODE=(null value) does not cancel
TRACEBACK; it simply does not cause a TRACEBACK to be
gathered.

TRACEPARM=SUFFIX | MEMBER_NAME
Identifies the CTRACE PARMLIB member. The value can be either a
two-character suffix, which is added to the string CTIBBO to form the
name of the PARMLIB member, or the fully-specified name of the
PARMLIB member. For example, you could use the suffix “01”, which the
system resolves to “CTIBBO01”. A fully-specified name must conform to
the naming requirements for a CTRACE PARMLIB member. For details,
see z/OS MVS Diagnosis: Tools and Service Aids, GA22-7589.

The default value is 00.

If this environment variable is specified and the PARMLIB member is not
found, the default PARMLIB member, CTIBBO00, is used. If neither the
specified nor the default PARMLIB member is found, tracing is defined to
CTRACE, but there is no connection to a CTRACE external writer. For
details on the PARMLIB member and the use of the CTRACE external
writer, see WebSphere Application Server V4.0 for z/OS and OS/390: Messages
and Diagnosis, GA22-7837.

Note that the Daemon Server is the only server that recognizes this
environment variable.

Example: TRACEPARM=01

JVM properties and properties files

Use a properties file only if you want to change the default settings that
WebSphere for z/OS uses for the Java virtual machine (JVM) that runs in the
server. Note that the property settings that you define in this file do not
override any environment variables that you set through the WebSphere for
z/OS Administration application.

150 WebSphere Application Server V4.0 for z/OS and OS/390: Assembling J2EE Applications

JVM properties are similar to environment variables and have a similar
syntax. However, upper and lower case characters are significant.

The syntax of the JVM properties has this pattern:
property=value

Where:

property
is the JVM property.

value
is the setting for the property. The descriptions define possible values for
each property.

Note: Do not place quotes arround the values.

How to manage JVM properties
To change default properties for the JVM in a particular server, create a file in
the same HFS directory in which WebSphere for z/OS places the current.env
file containing environment variable settings for the server:
CBCONFIG/controlinfo/envfile/SYSPLEX/SRVNAME/

where

&CBCONFIG
Is the read/write directory that you specify at installation time as the
directory into which WebSphere for z/OS is to write configuration data
and environment files.

&SYSPLEX
Is the name of your sysplex.

&SRVNAME
Is the server instance name.

Note: This subdirectory will not exist until the conversation containing
this server is activated for the first time.

Rules:

v The file must be named jvm.properties

v The permission bits for this HFS directory should be 775 so that server
region user IDs have read access to the directory.

JVM property use
Table 12 on page 152 lists the supported JVM properties for a WebSphere for
z/OS server. The following list explains the table contents:
v “O” means optional

Appendix A. Environment and JVM properties files 151

v A blank in the Default column means the variable is not set
v A blank in other columns means the variable is not used.

Table 12. Where to use JVM properties

JVM property=<default> J2EE server
instance

MOFW
server
instance

server region server
region

com.ibm.ws390.trace.settings= O O

com.ibm.ws390.wc.config.webcontainer.configfile= O

Properties descriptions

com.ibm.ws390.trace.settings=path/file
The fully qualified directory path and file name for the trace settings file.

For more information about trace settings, see:
v “Steps for preparing the z/OS or OS/390 environment for logging Java

application messages and trace requests” on page 99, and
v WebSphere Application Server V4.0 for z/OS and OS/390: Messages and

Diagnosis, GA22-7837.

Example:
com.ibm.ws390.trace.settings=/mydir/trace.settings

com.ibm.ws390.wc.config.webcontainer.configfile=path/file
The fully qualified directory path and file name for an optional file for
Web container configuration information. Specify this property only if you
want to override the default webcontainer.conf file.

For information about using your own Web container configuration file,
see the documentation about enabling Web application support in
WebSphere for z/OS, available at
http://www.ibm.com/software/webservers/appserv/

Example:
com.ibm.ws390.webcontainer.configfile=/usr/lpp/WebSphere/AppServer/bin/WebCon2.conf

152 WebSphere Application Server V4.0 for z/OS and OS/390: Assembling J2EE Applications

|

|

Appendix B. Default webcontainer.conf file

The following is a copy of the Web container configuration file,
webcontainer.conf file. This copy includes a description of the values that can
be specified for the various properties in the file. It also includes property
migration considerations which may be helpful if you are migrating from a
previous version of the Application Server.
##
(C) COPYRIGHT 2001 IBM Corporation. All rights reserved.
#
appserver.version=4.00
==
#
Configuration file for an IBM WebSphere Application Server
for z/OS and OS/390 version 4.0 Web container.
#
The documentation in this file provides descriptions of the properties
contained in the webcontainer.conf file. For more information, please
read WebSphere Application Server V4.0 for z/OS and OS/390:
Assembling 2EE Applications
#
NOTES ON SYNTAX:
#
The property names consist of fixed portions (e.g. host)
and variable portions (e.g. <virtual-hostname>). The fixed portions
must be in lowercase; the variable portion can be in
mixed case and is case sensitive.
#
In the following example, host, and alias are fixed
portions of the property name and must be in lowercase, while
<virtual_hostname>, and <hostname> are the variable portions
within the property name and can be specified in mixed case.
#
ex. host.<virtual-hostname>.alias=<hostname>
#
#
==
#
PROPERY GROUPINGS
=================
- Http Session Tracking
- Virtual Host
#
Note: Throughout this file, <applicationserver_root> refers
to the directory path of the mounted install image of the
product. The default is /usr/lpp/WebSphere.
#
#
==
#

© Copyright IBM Corp. 2000, 2001 153

Session Settings
#
==
#
session.enable=true|false
#
The value of this property is a boolean that
indicates whether session tracking is enabled. If
the property is set to "true," the session-related
methods for the request and response objects will
be functional.
#
If session is disabled and an application within the
Web container attempts to use the session services,
an exception will be thrown.
#
The default is true.
#
#
session.enable=true
#
#--#
#
session.urlrewriting.enable=true|false
#
The value of this property is a boolean that
indicates whether session tracking uses rewritten
URLs to carry the session IDs. If the property is
set to "true", the Session Tracker recognizes
session IDs that arrive in the URL and rewrites
the URL, if necessary, to send the session IDs.
#
The default is false.
#
#
session.urlrewriting.enable=false
#
#--#
#
session.cookies.enable=true|false
#
The value of this property is a boolean that
indicates whether session tracking uses cookies to
carry the session IDs. If the property is set to
"true", session tracking recognizes session IDs that
arrive as cookies and tries to use cookies as a means
for sending the session IDs.
#
The default is true.
#
#
session.cookies.enable=true
#
#--#
#

154 WebSphere Application Server V4.0 for z/OS and OS/390: Assembling J2EE Applications

session.protocolswitchrewriting.enable=true|false
#
The value of this property is a boolean that
indicates whether the session ID is added to a URL
when the URL requires a switch from HTTP to HTTPS, or
HTTPS to HTTP.
#
The default is false.
#
#
session.protocolswitchrewriting.enable=false
#
#--#
#
session.cookie.name=<name>
#
The value of this property is a string that specifies
the name of the cookie, if cookies are enabled. The
cookie name must only contain:
-English alphanumeric characters (uppercase or
lowercase A to Z and numbers 0 to 9)
-Period (.)
-Underscore (_)
-Hyphen (-)
#
The initial setting is "sesessionid".
#
#
session.cookie.name=sesessionid
#
#--#
#
session.cookie.comment=<comment>
#
The value of this property is a string that specifies
a comment about the cookie, if cookies are enabled.
#
The default is "WebSphere Session Support".
#
#
session.cookie.comment=servlet Session Support
#
#--#
#
session.cookie.maxage=<integer>
#
The value of this property is an integer that
specifies the amount of time, in milliseconds, that a
cookie will remain valid. Specify a value only to
restrict or extend how long the session cookie will
live on the client browser.
#
By default, the cookie only persists for the current
invocation of the browser. When the browser is shut down,
the cookie is deleted.

Appendix B. Default webcontainer.conf file 155

#
The default is -1.
#
#
session.cookie.maxage=-1
#
#--#
#
session.cookie.path=<path>
#
The value of this property is a string that specifies
the path field that will be sent for session cookies.
Specify a value only to restrict to which paths on the
server (and, therefore, to which servlets, JHTML files,
and HTML files) the cookies will be sent.
#
Specifying "/" for the path indicates the root directory,
which means that the cookie will be sent on any access to
the given server.
#
The initial setting is "/".
#
#
session.cookie.path=/
#
#--#
#
session.cookie.secure=true|false
#
The value of this property is a boolean that
indicates whether session cookies include the secure
field. If this property is set to "true", this will
restrict the exchange of cookies to only HTTPS
sessions. Otherwise, they will be exchanged in
HTTP sessions as well.
#
The default is false.
#
#
session.cookie.secure=false
#
#--#
#
session.tablesize=<integer>
#
Specifies the size of the session table used to maintain
session objects within the Web container. When
session.tableoverflowenable=false, this is the limit on
the number of session objects that can be created by the
Web container at any one time. When
session.tableoverflowenable=true, this represents the
initial size of the session table and the quantity by
which it is expanded.
#
The default is 1000 session objects.

156 WebSphere Application Server V4.0 for z/OS and OS/390: Assembling J2EE Applications

#
#
session.tablesize=1000
#
#--#
#
session.invalidationtime=<milliseconds>
#
The value of this property is an integer that
specifies the amount of time in, milliseconds, that a
session is allowed to go unused before it is no
longer considered valid.
#
The default is 180000 millisecs, or 180 seconds.
#
#
session.invalidationtime=180000
#
#--#
#
session.tableoverflowenable=true|false
#
Specifies whether there is a limit on the number of session
objects that should be maintained by the Application Server,
or whether the number of session objects that should be
maintained is unlimited. The number of session objects
is controlled by the session.tablesize property.
#
The default value is true, which means that the number
of session objects is unlimited.
#

session.tableoverflowenable=true
#
#--#
#

session.dbenable=true|false
#
Specifies whether or not the session objects should be stored
in a database.
#
The default value is false, which means that the session
objects are stored using memory in the JVM of the Application
Server instance that created the session.
#
#
session.dbenable=false
#
#--#
#
session.datasourcename=<name>
#
Specifies name of the datasource that is to be used to obtain
a connection to the database where the session data will be stored.

Appendix B. Default webcontainer.conf file 157

The name specified should be the same name that your
application will use to perform the naming service lookup
on the datasource object.
#
The default name is jdbc/SessionDataSource.
#
#
session.datasourcename=jdbc/SessionDataSource
#
#--#
#
session.dbtablename=<database-tablename>
#
Specifies the database table name to be used by the session
services when session.dbenable=true.
#
There is no default.
#
#
session.dbtablename=
#
#--#
#
session.domain
#
Specifies the domain name for which the session cookie is
valid.
#
The default is null.
#
#
session.domain=
#
.# == #
#
Virtual Host settings
#
==
#
host.<virtual-hostname>.alias=<hostname>|localhost
#
Specifies a hostname alias to be associated with this virtual
host name. This property provides a binding between the
hostnames understood by the HTTP server and the virtual host
definitions in the Application Server.
There can be multiple alias properties per virtual host.
#
The Application Server supports a special hostname, "localhost",
which maps all requests to the virtual host definition.
This support is provided for the initial verification program.
IBM recommends that it not be used beyond that purpose.
#
There is no default.
#
#

158 WebSphere Application Server V4.0 for z/OS and OS/390: Assembling J2EE Applications

host.default_host.alias=localhost
#
#--#
#
host.<virtual_hostname>.contextroots=<path_prefix>
#
Specifies the path prefix associated with the ServletContext that
servlets in this virtual host are a part of. A servlet uses this
path to access available resources. Using this path, a servlet can
log events, obtain URL references to resources, and set and store
attributes that other servlets in the context can use.
#
A ServletContext is rooted at a specific path within a Web container.
If this context is the ôdefaultö context rooted at the base of the
Web containerÆs URL namespace, this path will be an empty string.
Otherwise, this path starts with aÆ/Æ character but does not
end with aÆ/Æ character.
#
The default is /*.
#
#
<ahost.default_host.contextroots=/*
#
#--#
#
host.<virtual_hostname>.mimetypefile=<fully-qualified-filename>
#
Specifies the fully qualified filename of the mimetype properties
file used for this virtual host.
#
The default is:
<applicationserver_root>/AppServer/bin/default_mimetype.properties
#
#
host.default_host.mimetypefile=
#
==
#
Migrating a Version 3.x was.conf properties file to
Version 4.0 webcontainer.conf
#
==
#
The following V3.x properties can be used to
configure a V4.0 Web container. Update these properties, where
required, with environment-specific data and then uncomment the
properties and start the Application Server using these settings.
#
- Server properties: None. Server properties are established during the

J2EE server configuration process.
#
- Session properties
#
To start the Application Server with equivalent session support
configured, copy the following properties, with their current

Appendix B. Default webcontainer.conf file 159

settings, from your existing V3.x was.conf file to the new
V 4.0 webcontainer.conf file:
#
session.enable
session.urlrewriting.enable
session.cookies.enable
session.protocolswitchrewriting.enable
session.cookie.name
session.cookie.comment
session.cookie.maxage
session.cookie.path
session.cookie.secure
session.tablesize
session.invalidationtime
session.tableoverflowenable
session.dbenable
session.dbtablename
session.domain
#
Additionaly, you must provide a value for the new virtual host property,
session.datasourcename, or use the default value jdbc/SessionDataSource.
#
The remaining V3.5 was.conf session properties are not supported for V4.0.
#
- Virtual Host properties
#
To start the Application Server with equivalent virtual host support
configured, copy the following properties, with their current
settings, from your existing V3.x was.conf file to the new
V 4.0 webcontainer.conf file:
#
host.<virtual-hostname>.alias
host.<virtual_hostname>.mimetypefile

Notes:
1. If you prefer, you can define a host called "default_host",
take the default mime types, and simply replace
<your-hostname> in the
host.default_host.alias=<your-hostname> property
with your specific hostname
#
2. You can have multiple alias statements for a single
host. If you want more than one DNS alias to map to a host,
just add multiple configuration directives.
#
Additionaly, you must provide a value for the .new virtual host property,
host.<virtual_hostname>.contextroots, unless you want to use the
default value /*.
#
##

160 WebSphere Application Server V4.0 for z/OS and OS/390: Assembling J2EE Applications

Appendix C. Migration considerations for Web applications
running on WebSphere Application Server Standard
Edition

Migrating from version 3.5

WebSphere Application Server Standard Edition V3.5 can co-exist on the same
z/OS or OS/390 system with WebSphere Application Server for z/OS or
OS/390 V4.0 as long as the V3.5 HFS is mounted on a different mount point
than the V4.0 HFS. The ability to have both the V3.5 and V4.0 Application
Server on the same system enables you to migrate existing V3.5 Web
applications to your Web container over time, while creating new applications
in a WAR file format that can be installed into the V4.0 Web container. Both
sets of applications can be accessed, using HTTP protocol, from a browser.
This capability enables you to:
v Continue to run existing V3.5 Web applications while becoming familiar

with V4.0.
v Develop new Web applications at the Java Servlet Specification Version 2.2

level, package them as WAR files, and install them in a Web container on
the J2EE server.

v Slowly migrate existing V3.5 Web applications to a Web container.
v Continue to run Web applications that do not comply with the Java Servlet

Specification Version 2.2, that or require JavaServer Pages (JSPs) written at a
0.91 or 1.0 specification level, on a V3.5 Application Server.

To continue using your V3.5 Application Server, you must:
v Specify the fully qualified name of the V3.5 was.conf file as the second

parameter on the ServerInit directive in the HTTP server’s httpd.conf
configuration file that indicates the entry point to the V4.0 WebSphere for
z/OS plugin’s initialization routine.

v Change the value specified for the appserver.version property in the V3.5
was.conf file from 3.50 to 4.00.

If the HTTP Server detects a value in this second position of the ServerInit
directive when it receives a request from a browser, it:
1. Searches the V3.5 was.conf file for a deployedwebapp property for the

requested application. If a match is found, processing will be handled by
the V3.5 Application Server.

© Copyright IBM Corp. 2000, 2001 161

2. If a matching deployedwebapp property is not found, the HTTP server
sends the request to the J2EE server for processing. The J2EE server then
searches the appropriate Web and EJB containers for the requested
application.

If a second parameter is not specified on the ServerInit directive, all requests
will be sent directly to a J2EE server for processing.

When you are ready to migrate your Web applications to a Web container,
you must:
1. Ensure that all of the servlets and JSPs contained in your Web applications

conform to the Javasoft Servlet Specification V2.2 and the JavaServer Pages
1.1 specification level.

2. For each application, package all of the Web components into a WAR file,
using standard Java Archive tools (see “Migrating Web applications to
WAR files” on page 166).

3. Using the Application Assembly Tool for z/OS and OS/390 that is shipped
with the V4.0 product, convert each WAR file to an EAR file and install it
into a Web Container on the V4.0 J2EE server.

Migrating from V3.02

You have two options for migrating from V3.02:
1. You can first migrate to V3.5 and then to V4.0.

Migrating to V3.5 and then to V4.0 enables you to continue using Web
applications written to the V2.1 Javasoft Servlet Specification and
JavaServer Pages written to the 0.91 and 1.0 specification levels, provided
you configure your V3.5 Application Server to run in compatibility mode.
(See the WebSphere Application Server for OS/390 Application Server Planning,
Installing and Using, Version 3.5, GC34–4835 for more information about
how to migrate from V3.02 and how to set up your V3.5 Application
Server to run in compatibility mode.)
Once you have your V3.5 Application Server running, you can follow the
instructions in the previous section, “Migrating from version 3.5” on
page 161, and add V4.0 to the same z/OS or OS/390 system. You can now
run your current Web applications on the V3.5 Application Server while
developing new applications for the V4.0 Application Server.

2. You can migrate directly to V4.0. To migrate directly to V4.0, you must:
a. Ensure that all of the servlets and JSPs contained in your Web

applications conform to the Javasoft Servlet Specification V2.2 and the
JavaServer Pages 1.1 specification level.

b. For each application, package all of the Web components into a WAR
files, using standard Java Archive tools (see “Migrating Web
applications to WAR files” on page 166).

162 WebSphere Application Server V4.0 for z/OS and OS/390: Assembling J2EE Applications

c. Using the Application Assembly Tool for z/OS and OS/390 that is
shipped with the V4.0 product, repackage each WAR file as an EAR file
and install it into a Web container on the V4.0 J2EE server.

Migrating from JDK 1.1x to SDK 1.3

Regardless of whether you migrate directly to V4.0 or migrate to V3.5 first,
both the V4.0 and V3.5 Application Server run-time environments are built on
SDK 1.3. You should be able to run most programs that ran under JDK 1.1x
with little or no modification. However, the following list summarizes some
minor potential incompatibilities that may require your applications to be
modified:
1. There are now two Timer classes:

v java.util.Timer (new)
v javax.swing.Timer (existed in V1.1x)

If an application has the following two import statements:
import java.util.*;
import javax.swing.*;

and refers to javax.swing.Timer by its unqualified name, the following
import statement must be added in order for the ambiguous reference to
class Timer to be correctly resolved:
import javax.swing.Timer;

2. The implementation of method java.lang.Double.hashcode has been
changed to conform to the API specification. This change should not
affect the behavior of existing applications because hashcode returns a
truncated integer value.

3. A new Permission class, java.sql.SQLPermission, has been added in
version 1.3. WebSphere Application Server V3.5 on MultiPlatforms
supports this new class; WebSphere Application Server for OS/390 V3.5
does not.

4. The internal implementation of the Java Sound APIs (in class
com.sun.media.sound.SimpleInputDevice) now checks
javax.sound.sampled.AudioPermission. This new check means that,
under 1.3, applets must now be given the appropriate AudioPermission
to access audio system resources

5. JInternalFrames are no longer visible by default. Developers must set the
visibility of each JInternalFrame to true in order to have it show up on
the screen.

6. The TableColumn.getHeaderRenderer method returns null by default.
Therefore, you must use the new JTableHeader.getDefaultRenderer
method instead to get the default header renderer.

Appendix C. Migration considerations for Web applications running on WebSphere Application Server Standard

Edition 163

7. The JTable’s default text editor now gives setValueAt objects of the
appropriate type, instead of always specifying strings. For example, if
setValueAt is invoked for an Integer cell, then the value is specified as an
Integer instead of a String. If you implemented a table model, you might
have to change its setValueAt method to take the new data type into
account. If you implemented a class that is used as a data type for cells,
make sure that your class has a constructor that takes a single String
argument.

8. It is no longer possible for sufficiently trusted code to modify final fields
by first calling Field.setAccessible(true) and then calling Field.set(). An
IllegalArgumentException will be thrown when an attempt is made to
modify a final field. The JNI Set<Field> routines can be used to set
non-static final fields.

9. The specification and behavior of the constructors
BasicPermission(String name) and BasicPermission(String name, String
actions) in class java.security.BasicPermission have been modified. When
the name parameter is null, the constructors now throw a
NullPointerException. When name is an empty string, the constructors
now throw an IllegalArgumentException. This change of behavior is
inherited by subclasses of BasicPermission. The change also affects the
behavior of java.lang.System.getProperty() and
java.lang.System.setProperty() whose implementations construct an
instance of PropertyPermission, a subclass of BasicPermission. Because
of this change, a call to getProperty or setProperty with an empty
property name (that is, getProperty(″″) or setProperty(″″, value)) will
result in an IllegalArgumentException. When using JDK instead of SDK,
such a call would return quietly with no exception.

10. The behavior of java.net.URL has changed for cases where a URL
instance is constructed from a String. A final slash (’/’) is not
automatically added to a URL when the URL is constructed without one.
For example, the following code:
URL url = new URL("http://www.xxx.yyy");
System.out.println(url.toString());

now results in the following output:
http://www.xxx.yyy

11. The javac complier has a new implementation with the following
implications:
v Inherited members of an enclosing class are now accessible.
v A local variable or catch clause parameter can be hidden when it is

declared within the scope of a like-named method parameter, local
variable, or catch clause parameter.

v It is now illegal for a package to contain a class or interface type and a
subpackage with the same name. A package, class, or interface is

164 WebSphere Application Server V4.0 for z/OS and OS/390: Assembling J2EE Applications

presumed to exist if there is a corresponding directory, source file, or
class file accessible on the classpath or the sourcepath, regardless of its
content.

v A qualified name in a constant expression must be of the form
TypeName.identifier.

v Member classes of interfaces are inherited by implementing classes
12. java.io.ObjectInputStream has been optimized to buffer incoming data.

This change should improve performance. This change causes
ObjectInputStream to more frequently call the multi-byte read(byte[], int,
int) method of the underlying stream. If underlying stream classes
incorrectly implement this method, serialization failures may occur.

13. A public input method engine SPI as been included so that a client side
adapter can be developed and distributed as a separate product and
installed into any implementation of the Java 2 platform. Environments
that are currently set up to allow text entry using a server-based input
method should updated to use a different solution, such as host input
methods.

For the most current Java for OS/390 documentation, go to URL:
http://www.ibm.com/s390/java/

Setting runtime properties

In V3.5 of the Application Server, runtime settings, such as the location of the
JVM properties file, the level of logging that is to be performed, and the
location of the working directory, were set in the was.conf file. In V4.0, the
runtime settings established for the J2EE server configuration apply to the
containers within that server. Therefore, properties, such as the
appserver.jvmpropertiesfile and appserver.loglevel properties, do not exist in
the webcontainer.conf file.

Setting Session properties

You can continue to use most of the session settings you had in effect in V3.x
of the Application Server. The following session properties can be copied from
your V3.x was.conf file and added to the V4.0 Web container configuration
file, webcontainer.conf:
v session.enable
v session.urlrewriting.enable
v session.cookies.enable
v session.protocolswitchrewriting.enable
v session.cookie.name
v session.cookie.comment

Appendix C. Migration considerations for Web applications running on WebSphere Application Server Standard

Edition 165

v session.cookie.maxage
v session.cookie.path
v session.cookie.secure
v session.tablesize
v session.invalidationtime
v session.tableoverflowenable
v session.dbenable
v session.dbtablename
v session.domain

Accessing services

In V3.5 of the Application Server, access to services such as JDBC and JNDI,
was established through settings in the was.conf file. In V4.0, access to these
tools is provided by the J2EE server. Therefore, properties, such as the
jdbcconnpool properties, do not exist in the webcontainer.conf file.

Migrating Web applications to WAR files

When you are ready to convert your V3.5 Web applications to WAR files, use
a conversion tool, such as the IBM WebSphere Studio product, to convert your
Web applications into WAR files.

Note: If your Web application contains more than one servlet, after you have
converted your application to a WAR file, check the web.xml file that
the tool will also create, to make sure that all of the <servlet> XML tags
are grouped together; not intermixed with the <servlet-mapping> tags.
Some tools intermix the <servlet>tags with <servlet-mapping> tags,
which can create processing errors. If the tags are intermixed, edit this
file and group all of the <servlet> tags together and group all of the
<servlet-mapping> tags together.

Servlet reloading

The servlet reloading function that existed in previous versions of the
Application Server is no longer supported. WLM commands are now used to
refresh servlets without causing an interruption of service.

Serving servlets by class name

Servlets can no longer be served by using their class name. Class names must
be mapped to a servlet in a WAR file.

166 WebSphere Application Server V4.0 for z/OS and OS/390: Assembling J2EE Applications

Appendix D. Notices

This information was developed for products and services offered in the
U.S.A. IBM may not offer the products, services, or features discussed in this
document in other countries. Consult your local IBM representative for
information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or
imply that only that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe
any IBM intellectual property right may be used instead. However, it is the
user’s responsibility to evaluate and verify the operation of any non-IBM
product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give
you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
USA

For license inquiries regarding double-byte (DBCS) information, contact the
IBM Intellectual Property Department in your country or send inquiries, in
writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any
other country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY
OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow
disclaimer of express or implied warranties in certain transactions, therefore,
this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will

© Copyright IBM Corp. 2000, 2001 167

be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s)
described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for
this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact:

IBM Corporation
Mail Station P300
2455 South Road
Poughkeepsie, NY 12601-5400
USA

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer
Agreement, IBM International Program License Agreement, or any equivalent
agreement between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments
may vary significantly. Some measurements may have been made on
development-level systems and there is no guarantee that these measurements
will be the same on generally available systems. Furthermore, some
measurement may have been estimated through extrapolation. Actual results
may vary. Users of this document should verify the applicable data for their
specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available
sources. IBM has not tested those products and cannot confirm the accuracy
of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be
addressed to the suppliers of those products.

168 WebSphere Application Server V4.0 for z/OS and OS/390: Assembling J2EE Applications

All statements regarding IBM’s future direction or intent are subject to change
or withdrawal without notice, and represent goals and objectives only.

This information is for planning purposes only. The information herein is
subject to change before the products described become available.

Examples in this book

The examples in this book are samples only, created by IBM Corporation.
These examples are not part of any standard or IBM product and are
provided to you solely for the purpose of assisting you in the development of
your applications. The examples are provided ″as is.″ IBM makes no
warranties express or implied, including but not limited to the implied
warranties of merchantability and fitness for a particular purpose, regarding
the function or performance of these examples. IBM shall not be liable for any
damages arising out of your use of the examples, even if they have been
advised of the possibility of such damages.

These examples can be freely distributed, copied, altered, and incorporated
into other software, provided that it bears the above disclaimer intact.

Programming interface information

This publication documents intended Programming Interfaces that allow the
customer to write programs to obtain services of WebSphere for z/OS.

Trademarks

The following terms are trademarks or registered trademarks of International
Business Machines Corporation in the United States, other countries, or both:

AIX
CICS
DB2
IBM
IMS
IMS/ESA
Language Environment
Open Class
OS/390
RACF
VisualAge
VTAM
WebSphere
z/OS

Appendix D. Notices 169

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc.
in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and
other countries.

Other company, product, or service names may be trademarks or service
marks of others.

170 WebSphere Application Server V4.0 for z/OS and OS/390: Assembling J2EE Applications

Glossary

For more information on terms used in this book,
refer to one of the following sources:

v WebSphere Application Server V4.0 for z/OS and
OS/390 Glossary, SC09-4450, located on the
Internet at:

http://www.ibm.com/software/webservers/appserv/

v Sun Microsystems Glossary of Java
Technology-Related Terms, located on the
Internet at:

http://java.sun.com/docs/glossary.html

If you do not find the term you are looking for,
refer to IBM Glossary of Computing Terms, located
on the Internet at:

http://www.ibm.com/ibm/terminology/

or the Sun Web site, located on the Internet at:

http://www.sun.com/

© Copyright IBM Corp. 2000, 2001 171

172 WebSphere Application Server V4.0 for z/OS and OS/390: Assembling J2EE Applications

Index

Special Characters
ws390rt/cmp/jdbc/CMPDS resource

reference
instructions for replacing 67

A
adding to a J2EE server 49
Administration and Operations

applications
CBADMIN 147

Administration application tasks
activating a new server

configuration
steps for 71

adding a J2EE resource
steps for 66

adding a J2EE resource instance
steps for 67

adding a J2EE server
steps for 64

adding a J2EE server instance
steps for 66

committing a new conversation
steps for 70

installing a server application in
a J2EE server

steps for 67
marking z/OS or OS/390 tasks

as completed
steps for 70

starting a conversation
steps for 63

starting the Administration
application

steps for 63
validating a new conversation

steps for 70
alias, associating with a virtual host

name 49, 55
Application Server V3.02, migrating

from 162
Application Server V3.5, migrating

from 161

C
class name, serving servlets by 166
coexistence with V3.5 161
configuring

a virtual host 49

configuring (continued)
adding to a J2EE server 48, 49
session cluster 59
session tracking 55
Web container 48, 49, 56

conversation
committing through the

Administration application
steps for 70

starting through the
Administration application

steps for 63
validating through the

Administration application
steps for 70

cookies, not using 57
cookies, using for session

tracking 55, 56

D
Daemon

IP name 136
port 137
server instance name 138
server name 138

DB2, using to store session data 59
DB2 for OS/390

environment variable 131, 148
DB2 table, setting up 59
Distributed Computing Environment

(DCE)
setting up a client 134

DNS aliases 49

E
encodeRedirectURL() method 57
encodeURL method 57
environment variables

for clients on OS/390
reference 123

run-time environment variables
DB2 for OS/390 131, 148
reference 123

error log stream
client 128, 135
environment variable 130, 135,

142
export/import process

for moving server applications
into production systems 83

G
getSession() method 54

H
HFS directories 123
host.alias property 49
host.contextroots property 49
host.mimetypefile property 49
host properties 49
HttpSession object 54

I
Interface Repository Server

server instance name 139
server name 139
start procedure 139

J
J2EE application

installing in a J2EE server
steps for 67

J2EE resource
adding through the

Administration application
steps for 66, 67

J2EE server
adding a Web container to 48
adding through the

Administration application
steps for 64

configuring a virtual host for 49
J2EE server instance

adding through the
Administration application

steps for 66
Java applications

logging messages and trace
data 87

java.util.Dictionary object 54
javax.servlet.http.HttpServletRequest

object 54
javax.servlet.http.HttpSession

interface support 54
javax.servlet.http.HttpSessionBindingListener

object 54
JDBC, accessing 166
JDNI, accessing 166

© Copyright IBM Corp. 2000, 2001 173

L
Lightweight Directory Access

Protocol (LDAP)
environment variables 130, 141

M
messages

logging for Java applications 87
migrating from V3.02 162
migrating from V3.5 161
migrating Web applications to WAR

files 166
migration considerations 161

N
Naming Server

root naming context 130, 142
server instance name 143
server name 143
start procedure 144

O
OS/390 tasks

for a new application server
defining security profiles and

permissions 44
defining WLM application

environment 44
setting up database

resources 44
using naming

conventions 44
marking as completed

steps for 70

R
reloading servlets 166
Resolve Port 146
root naming context 130, 142
run-time environment

environment variables 123
runtime properties 165

S
Secure Sockets Layer (SSL)

environment variables 131, 146
security

environment variables 131, 146
Lightweight Directory Access

Protocol (LDAP) 141
remote DCE password 146
remote DCE principal 146
remote password 146
remote user ID 146
setting up a client 134

security for individual sessions 55
Security Server (RACF)

remote password 131, 146
remote user ID 131, 146

server application
moving to a production system

export/import process 83
server configuration

activating through the
Administration application

steps for 71
serving servlets by class name 166
servlet reloading 166
ServletContextpath, setting prefix

associated with 49
servlets, serving by class name 166
session clustering 58
session.cookies.comment

property 56
session.cookies.domain property 56
session.cookies.enable property 55,

56
session.cookies.maxage property 56
session.cookies.name property 56
session.cookies.path property 56
session.cookies.secure property 56
session data

collecting 54
description of 54

session.dbenable property 59
session.enable property 55
session.invalidationtime

property 55
session objects 54
session properties 55, 56, 57, 59,

165
session.protocolswitchrewriting.enable

property 57
session security 55
session.tableoverflowenable

property 59
session.tablesize property 59
session tracking, configuring 55
session.urlrewriting.enable

property 57
sessions

locking 54
sysplex system

environment variables 124
system logger 128, 130, 135, 142
System Management Scripting API

DEFAULT_CLIENT_XML_PATH 137
System Management Server

IP name 146
port 146

System Management Server
(continued)

server instance name 147
server name 147
start procedure 147

system tools, accessing 166

T
TCP/IP

client resolve IP name 128
resolve IP name 146
resolve port 146
server IP address 147

trace data
logging for Java applications 87

U
URL rewriting 57
user authentication 55

V
virtual host, configuring 49

W
WAR files, migrating Web

applications to 166
Web applications, migrating to WAR

files 166
Web container

adding to a J2EE server 48, 49
configuring 48, 49
creating 48, 49

webcontainer.conf file
properties contained in 49, 55,

56

Z
z/OS tasks

marking as completed
steps for 70

174 WebSphere Application Server V4.0 for z/OS and OS/390: Assembling J2EE Applications

����

Program Number: 5655-F31

Printed in the United States of America

SA22-7836-01

	Contents
	Figures
	Tables
	About this book
	Who should read this book
	Where to find related information
	How to send your comments

	Summary of changes
	Part 1. Introducing the WebSphere for z/OS J2EE server
	Chapter 1. Overview of the WebSphere for z/OS J2EE server
	Chapter 2. Overview of application tools
	Chapter 3. Overview of J2EE server definition and activation
	Part 2. Creating, assembling and deploying J2EE server applications
	Chapter 4. Setting up the application development environment
	Steps for setting up your workstation
	Steps for setting up z/OS or OS/390

	Chapter 5. Creating new application components to be installed in a J2EE server
	Creating Enterprise beans
	Checklist for developing Enterprise beans
	Developing Enterprise beans
	Packaging beans in JAR files

	Creating Web applications
	Developing Web components
	Packaging Web components in WAR files

	Chapter 6. Assembling a J2EE application
	Steps for installing the Application Assembly tool
	Steps for assembling a new J2EE application

	Chapter 7. Creating a J2EE server run-time environment
	Steps for completing manual OS/390 tasks
	Steps for creating JCL procedures for the control and server regions
	Steps for setting properties for the JVM
	Enabling J2EE server support for Web applications (optional)
	Setting up a Web container in a J2EE server
	Customizing the Web container in a J2EE server
	Installing Web applications into a J2EE server

	Exposing Web applications to HTTP clients
	Configuring HTTP session support
	Configuring session tracking
	Session security
	Using cookies for session tracking
	Using URL rewriting
	Session clustering
	In-memory session pools

	Defining the server configuration
	Steps for starting the Administration application
	Steps for starting a conversation
	Steps for adding the J2SERV server
	Steps for adding the J2SERV1 server instance
	Steps for adding a J2EE resource
	Steps for adding the J2EE resource instance
	Steps for installing a J2EE application
	Steps for validating the new conversation model
	Steps for committing the conversation
	Steps for marking z/OS or OS/390 tasks as completed
	Steps for activating the server configuration

	Chapter 8. Creating and running J2EE application clients
	WebSphere Application Server Standard Edition for z/OS or OS/390 clients
	Native z/OS or OS/390 Java clients
	WebSphere Application Server Advanced Edition and Standard Edition clients on non-z/OS and non-OS/390 platforms
	Security considerations for J2EE applications

	Part 3. Working with J2EE applications in the run-time environment
	Chapter 9. Installing applications in a WebSphere for z/OS server
	Steps for using the export/import process through the Administration application
	Installing applications using scripts

	Chapter 10. Collecting data about J2EE application activity
	Collecting J2EE application information through SMF records
	Logging messages and trace data for Java applications
	Background on issuing application messages to the z/OS or OS/390 master console
	Defining messages through inline method calls or a message properties file
	Understanding how the message type affects message destinations

	Background on issuing trace requests for your application
	Determining where to place trace points and what data to request
	Assigning trace types to trace points

	Steps for coding your Java application to issue messages and trace requests
	Steps for preparing the z/OS or OS/390 environment for logging Java application messages and trace requests
	Background on viewing messages and trace data
	Steps for using IPCS in batch mode to format application trace data

	Part 4. Migrating applications to the J2EE server
	Chapter 11. Background on migration
	Chapter 12. Migrating applications to a new release of WebSphere for z/OS
	Migration scenarios for applications running on WebSphere Application Server for z/OS or OS/390 Standard Edition
	Migration scenarios for applications running on WebSphere Application Server for OS/390 Enterprise Edition V3.02

	Chapter 13. Migrating applications to the WebSphere for z/OS platform
	Chapter 14. Upgrading applications that are already installed in a WebSphere for z/OS J2EE server
	Part 5. Appendixes
	Appendix A. Environment and JVM properties files
	Environment files and environment variables
	How WebSphere for z/OS manages server environment variables and environment files
	How run-time server start procedures point to their environment files
	Environment variables for OS/390 clients
	Note on using substitution variables
	Environment variable syntax
	Environment variable use
	Environment variable descriptions

	JVM properties and properties files
	How to manage JVM properties
	JVM property use
	Properties descriptions

	Appendix B. Default webcontainer.conf file
	Appendix C. Migration considerations for Web applications running on WebSphere Application Server Standard Edition
	Migrating from version 3.5
	Migrating from V3.02
	Migrating from JDK 1.1x to SDK 1.3
	Setting runtime properties
	Setting Session properties
	Accessing services
	Migrating Web applications to WAR files
	Servlet reloading
	Serving servlets by class name

	Appendix D. Notices
	Examples in this book
	Programming interface information
	Trademarks

	Glossary
	Index

