
WebSphere™ Application Server

Building Business Solutions with
WebSphere
Version 4.0

SC09-4432-02

IBM

Note
Before using this information and the product it supports, be sure to read the general information under
“Notices” on page 185.

Third Edition (March 2001)

This edition replaces SC09-4432-01.

Order publications through your IBM representative or through the IBM branch office serving your locality.

© Copyright International Business Machines Corporation 2000, 2001. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures vii

Tables ix

About this book xi
Who should read this book xi
Document organization xi
Related information xii
Conventions used in this book xii
How to send your comments xiv

Part 1. Understanding WebSphere
Application Server 1

Chapter 1. WebSphere Application Server
Standard Edition 5
Standard Application Server features 5
Run-time and system management architecture 6

Web application server 7
Web server 7
System Management server 7
Services server 8

Standard Edition application development
environment 8

Chapter 2. WebSphere Application Server
Advanced Edition 11
Advanced Application Server features . . . 11
Run-time and system management
architecture 11

Topology 12
Workload and availability management . . 14
System management 14

Object services and support services 15
Advanced Edition application development
environment 16

Application model 16
WebSphere Studio 17
VisualAge for Java 17

Chapter 3. Using JavaServer Pages . . . 19
How JSP pages work 19
Invoking JSP pages. 20
Using Java code in an HTML document. . . 22

Using JSP tags 22
Using JSP pages in applications 22
Advantages of using JSP pages. 24

Chapter 4. Using servlets 27
Servlet programming model 27
Servlet API 28
Life cycle of servlets 29
Servlet run-time environment 29

Servlet containers 30
Servlet queues 30
Servlet groups 30
Affinity 30

Managing servlet sessions 30
Advantages of using servlets 31

Chapter 5. Using enterprise beans 35
EJB environment 35

Client view 35
EJB server environment 36
Containers 36

Enterprise bean application development . . 37
Enterprise bean types 37
Using session and entity beans in an
application 38
Development team roles 39
Application development process 40

Session beans 40
Stateless and stateful session beans . . . 41
Session bean components 41
Session bean life cycle. 43

Entity beans 43
Bean-managed persistence (BMP) 43
Container-managed persistence (CMP) . . 44
Entity bean life cycle 45

Extensions to the EJB specification 46
Access beans 46
Inheritance 47
Association 50

Object Services 51
Naming and directory services 52
Security services 54
Persistence services 57
Transaction services 61

© Copyright IBM Corp. 2000, 2001 iii

Chapter 6. Developing Web applications 67
Web application programming model . . . 67

First tier 68
Second tier 68
Third tier 69

Using JSP pages, servlets, and enterprise
beans in Web applications 69

Implementing a Model-View-Controller
architecture 69
Maintaining state in Web applications . . 70
Implementing security in Web applications 71

Chapter 7. WebSphere Application Server
Enterprise Edition 75
Enterprise Application Server features . . . 75

Component Broker 75
TXSeries 76

Run time and system management
architecture 77
Enterprise Edition application development
environment and tools 79

WebSphere Studio 79
IBM VisualAge for Java Enterprise Edition 79
IBM Enterprise Access Builder (EAB) . . 80
IBM TeamConnection® 80
VisualAge Component Development
Toolkit 80
VisualAge for C++ Professional Edition . . 80
IBM DB2®. 80
MQSeries 81

Chapter 8. Using Component Broker . . . 83
Component Broker implementation 83
Component Broker run-time environment . . 84

Run-time architecture 84
Client support 86
Component Broker ORB 88
Managed Object Framework 89
Object services 95
Programming model 97

Component Broker application development
environment 99

VisualAge Component Development
Toolkit 99
Enterprise bean support and deployment 102

Component Broker system management . . 103
System management model 103
Common data model 104

Chapter 9. Using TXSeries 107

TXSeries Encina 107
Encina Monitor 108
The Recoverable Queueing Service (RQS) 112
The Structured File Server (SFS) 113
Peer-to-Peer Communications (PPC)
Services 114
Encina++. 116
The Encina Toolkit 118
DCE-Encina Lightweight Client
(DE-Light) 119
WebSphere Advanced to Encina
Interoperability 120

TXSeries CICS 122
Basic CICS concepts 122
CICS application programming interface 126
CICS intersystem communication . . . 129
CICS administration 132
CICS workload management 133

Part 2. Using WebSphere
Application Server 135

Chapter 10. Overview of the sample
application 137
Sample application scenario: Online banking 137
Goals of the sample application 138

Chapter 11. Sample application design 141
Application design 141
Client/server relationship 142
Model-view-controller architecture 142
Object model 143
Data model 145

Chapter 12. Implementing the sample
application 147
Advanced Edition implementation with
enterprise beans 148
Enterprise Edition implementation with
enterprise beans deployed in Component
Broker 149
Enterprise Edition implementation with
Component Broker managed objects . . . 149
Enterprise Edition implementation with
enterprise beans and TXSeries Encina++ . . 150
Sample application platforms 151
Common features and differences between
implementations 152

Managed objects and enterprise beans 153

iv WebSphere: Building Business Solutions with WebSphere

CopyHelper objects and access beans . . 154

Chapter 13. Technical details of the
sample application 157
Web site 157

Web site design 157
Client validation and back-end processing 158

Servlets 158
JavaServer Pages 161
WebCommands 163

WebCommand structure 163
Interaction with access beans and
CopyHelpers 165

Enterprise beans (Advanced Edition and
Enterprise Edition/Component Broker) . . 167

Session bean implementation 168
Entity bean implementation 168
Access bean implementation 169
Associations between enterprise beans 170
Deployment. 171

Enterprise beans, the Encina bridge server,
and Encina++ 171

Enterprise beans 171
Defining interfaces by using wstidl . . . 172
Encina bridge server 175
Encina++ server 175

Managing transactions 176
Deployment. 176

Component Broker managed objects . . . 176
Application object implementation . . . 176
Business object implementation 177
Data object implementation 177
Associations between managed objects 177
CopyHelper objects and managed objects 177
Deployment. 178

Chapter 14. Extending the sample
application 179
Connecting Component Broker managed
objects to other systems 179

Connecting to MQSeries 179
Connecting to CICS, SAP, or IMS . . . 180

Connecting Java applications to MQSeries 181
Using the WebSphere Edge Server with the
sample application 182

Notices 185
Trademarks and service marks 187

Index 191

Contents v

vi WebSphere: Building Business Solutions with WebSphere

Figures

1. WebSphere Standard Application Server
run-time architecture 6

2. A high—level view of the Advanced
Application Server system architecture . 12

3. A typical node in an Advanced
Application Server system 13

4. JSP program flow 20
5. Browser request to a JSP page 21
6. Servlet request to JSP page 21
7. Servlet execution model 28
8. Basic Flow of Servlet 29
9. A client view of the EJB environment 36

10. Client interaction with an enterprise
bean 37

11. Building an application with session
beans and entity beans 38

12. Enterprise bean application
development process 40

13. WebSphere Application Server object
services system view 53

14. Permission-based protection of an EJB
method 57

15. CCF architecture. 60
16. OTS transaction model 64
17. Components of a Web application 68
18. Authentication using digital certificates 73
19. Enterprise Application Server

Interoperability 78
20. Component Broker building blocks 84
21. A high-level view of the Component

Broker run-time architecture 85
22. Component Broker client programming

model 87
23. Application adaptor container and

homes 92
24. Composition allows new objects to be

formed from existing objects. 94
25. Collaboration between run-time

components 98

26. Topology of a Component Broker
system management network 103

27. Physical Architecture of a Monitor Cell 109
28. PPC communications model 115
29. DE-Light Java client 120
30. Interoperability between Java

applications and Encina/Encina++
servers 121

31. A CICS region 123
32. Communication between CICS clients

and a CICS region. 131
33. The sample application 142
34. Object model 143
35. Enterprise bean implementation in the

Advanced Application Server 148
36. Business object implementation in

Component Broker 149
37. Enterprise bean implementation with

Encina++ 150
38. Code example: Servlet utility class 160
39. Code example: Loading an enterprise

bean-specific command bean 160
40. Code example: Using the <BEAN> tag 162
41. WebCommand inheritance structure 164
42. Code example: Using access beans with

WebCommands. 166
43. Code example: Using CopyHelpers

with WebCommands 167
44. Code example: CopyHelper wrapper

on an entity bean 170
45. Code example: Using a rowset access

bean 170
46. Managing persistence 172
47. Code example: TIDL file containing

interfaces for TranRecord entity bean . 174
48. WebSphere Edge Server and

Application Server 183

© Copyright IBM Corp. 2000, 2001 vii

viii WebSphere: Building Business Solutions with WebSphere

Tables

1. Conventions used in this book. . . . xiii
2. Parent and child interfaces 48

3. wstidl files for entity beans 173

© Copyright IBM Corp. 2000, 2001 ix

x WebSphere: Building Business Solutions with WebSphere

About this book

This book describes how WebSphere Application Server™ can be used to
create an infrastructure for doing business over the Internet and the World
Wide Web. It includes discussions of the architecture and features of
WebSphere Application Server Standard, Advanced, and Enterprise Editions,
and covers the technologies supported by each edition. Finally, it describes a
sample application that serves as an example of how WebSphere Application
Server can be used to craft a business solution.

Who should read this book

This document is written for software engineers, architects and administrators
responsible for designing and building end-to-end e-business systems. There
is no presumed knowledge about any aspect of WebSphere Application Server.
Readers of this book are assumed to be familiar with traditional programming
concepts, object-oriented programming, and components.

Document organization

This document has the following organization:

Part 1: Understanding WebSphere Application Server discusses the three
WebSphere Application Server editions and the technologies supported by
each edition.
v “Chapter 1. WebSphere Application Server Standard Edition” on page 5

describes the features and architecture of WebSphere Application Server
Standard Edition.

v “Chapter 2. WebSphere Application Server Advanced Edition” on page 11
describes the features and architecture of WebSphere Application Server
Advanced Edition

v “Chapter 3. Using JavaServer Pages” on page 19 describes the WebSphere
Application Server implementation of the Sun JavaServer Pages™ (JSP)
specification.

v “Chapter 4. Using servlets” on page 27 describes the WebSphere Application
Server implementation of servlets.

v “Chapter 5. Using enterprise beans” on page 35 describes the WebSphere
Application Server implementation of the Sun Enterprise JavaBeans™

specification.

© Copyright IBM Corp. 2000, 2001 xi

v “Chapter 6. Developing Web applications” on page 67 describes how JSP
pages, enterprise beans, and servlets can be used to create business
applications that can be accessed over the World Wide Web.

v “Chapter 7. WebSphere Application Server Enterprise Edition” on page 75
describes the features and architecture of WebSphere Application Server
Enterprise Edition.

v “Chapter 8. Using Component Broker” on page 83 describes IBM®

Component Broker.
v “Chapter 9. Using TXSeries” on page 107 describes IBM TXSeries™.

Part 2: Using WebSphere Application Server discusses a sample application that
illustrates different ways that WebSphere Application Server can be used to
implement a business system.
v “Chapter 10. Overview of the sample application” on page 137 describes the

sample application scenario and goals.
v “Chapter 11. Sample application design” on page 141 describes how the

sample application is designed.
v “Chapter 12. Implementing the sample application” on page 147 describes

how the sample application is implemented using various features of
WebSphere Application Server Advanced and Enterprise Editions.

v “Chapter 13. Technical details of the sample application” on page 157
describes technical details of each component of the sample application.

v “Chapter 14. Extending the sample application” on page 179 describes some
ways to extend the sample application using additional WebSphere
products and features.

Related information

For further information on the topics discussed in this manual, see the
following documents:
v Getting Started with WebSphere Application Server

v Writing Enterprise Beans in WebSphere

v The Component Broker product documentation
v The TXSeries Encina® and CICS® product documentation
v The IBM VisualAge™ for Java™ product documentation

Conventions used in this book

WebSphere Application Server Enterprise Edition documentation uses the
following typographical and keying conventions.

xii WebSphere: Building Business Solutions with WebSphere

Table 1. Conventions used in this book

Convention Meaning

Bold Indicates command names. When referring to graphical user interfaces
(GUIs), bold also indicates menus, menu items, labels, and buttons.

Monospace Indicates text you must enter at a command prompt and values you must
use literally, such as commands, functions, and resource definition attributes
and their values. Monospace also indicates screen text and code examples.

Italics Indicates variable values you must provide (for example, you supply the
name of a file for fileName). Italics also indicates emphasis and the titles of
books.

Ctrl-x Where x is the name of a key, indicates a control-character sequence. For
example, Ctrl-c means hold down the Ctrl key while you press the c key.

Return Refers to the key labeled with the word Return, the word Enter, or the left
arrow.

% Represents the UNIX command-shell prompt for a command that does not
require root privileges.

Represents the UNIX command-shell prompt for a command that requires
root privileges.

C:\> Represents the Windows NT
®

command prompt.

> When used to describe a menu, shows a series of menu selections. For
example, “Click File > New” means “From the File menu, click the New
command.”

When used to describe a tree view, shows a series of folder or object
expansions. For example, “Expand Management Zones > Sample Cell and
Work Group Zone > Configuration” means:

1. Expand the Management Zones folder

2. Expand the management zone named Sample Cell and Work Group Zone

3. Expand the Configurations folder

Note: An object in a view can be expanded when there is a plus sign (+)
beside that object. After an object is expanded, the plus sign is replaced by a
minus sign (-).

+ Expands a tree structure to show more objects. To expand, click the plus sign
(+) beside any object.

- Collapses a branch of a tree structure to remove from view the objects
contained in that branch. To collapse the branch of a tree structure, click the
minus sign (-) beside the object at the head of the branch.

Entering commands When instructed to “enter” or “issue” a command, type the command and
then press Return. For example, the instruction “Enter the ls command”
means type ls at a command prompt and then press Return.

[] Enclose optional items in syntax descriptions.

{ } Enclose lists from which you must choose an item in syntax descriptions.

About this book xiii

Table 1. Conventions used in this book (continued)

Convention Meaning

| Separates items in a list of choices enclosed in braces ({ }) in syntax
descriptions.

... Ellipses in syntax descriptions indicate that you can repeat the preceding
item one or more times. Ellipses in examples indicate that information was
omitted from the example for the sake of brevity.

IN In function descriptions, indicates parameters whose values are used to pass
data to the function. These parameters are not used to return modified data
to the calling routine. (Do not include the IN declaration in your code.)

OUT In function descriptions, indicates parameters whose values are used to
return modified data to the calling routine. These parameters are not used to
pass data to the function. (Do not include the OUT declaration in your code.)

INOUT In function descriptions, indicates parameters whose values are passed to the
function, modified by the function, and returned to the calling routine. These
parameters serve as both IN and OUT parameters. (Do not include the
INOUT declaration in your code.)

$CICS Indicates the full pathname where the CICS product is installed; for example,
C:\opt\cics on Windows NT or /opt/cics on Solaris. If the environment
variable named CICS is set to the product pathname, you can use the
examples exactly as shown; otherwise, you must replace all instances of
$CICS with the CICS product pathname.

CICS on Open Systems Refers collectively to the CICS products for all supported UNIX platforms.

TXSeries CICS Refers collectively to the CICS for AIX, CICS for Solaris, and CICS for
Windows NT products.

CICS Refers generically to the CICS on Open Systems and CICS for Windows NT
products. References to a specific version of a CICS on Open Systems
product are used to highlight differences between CICS on Open Systems
products. Other CICS products in the CICS Family are distinguished by their
operating system (for example, CICS for OS/2 or IBM mainframe-based CICS
for the ESA, MVS, and VSE platforms).

How to send your comments

Your feedback is important in helping to provide the most accurate and
highest quality information. If you have any comments about this book or any
other WebSphere Application Server Enterprise Edition documentation, send
your comments by e-mail to wasdoc@us.ibm.com. Be sure to include the name
of the book, the document number of the book, the version of WebSphere
Application Server Enterprise Edition, and, if applicable, the specific location
of the information you are commenting on (for example, a page number or
table number).

xiv WebSphere: Building Business Solutions with WebSphere

Part 1. Understanding WebSphere Application Server

The IBM WebSphere Application Server offers customers a comprehensive set
of middleware for designing, implementing, deploying, and managing a new
generation of business applications. These applications can range from a
simple Web site storefront to a complete revision of an organization’s
computing infrastructure.

WebSphere Application Server can help you to realize the promise of
electronic commerce. It is a set of software products and architectures that
enables customers to develop and manage high-performance Web sites and
integrate those Web sites with new or existing non-Web business systems. It is
focused on businesses that want to:
v Use the latest technologies to establish a powerful Web presence or upgrade

their current Web presence
v Develop distributed, enterprise wide business systems and applications
v Integrate their Web presence with their non-Web systems and applications

WebSphere Application Server delivers the essential elements of an
enterprise-class component server solution. In particular, it delivers an
environment that:
v Allows for the natural separation of responsibilities across a design and

development team
v Delegates object management to the system, freeing designers and

programmers from concerns about object management
v Leverages operating system capabilities to deliver optimal performance,

scale, integrity and security

WebSphere Application Server achieves this environment by providing:
v A framework and runtime implementation for object management built

upon industry standards such as the Java 2 Platform Enterprise Edition
(J2EE™) specification and the Common Object Request Broker Architecture
(CORBA).

v A visual development tool that organizes program resources and generates
the code necessary for integration with framework services.

v Application adaptors and connectors that support a variety of persistent
data stores and allow objects to be rendered from existing data and
transaction systems.

v A systems management tool to associate objects with servers and coordinate
system updates.

© Copyright IBM Corp. 2000, 2001 1

The WebSphere product family’s unified programming model allows
developers to create systems that can be deployed on many different
platforms and application servers. This paradigm enables code to be reused
and protects computing infrastructure investments.

The WebSphere multi-tiered, distributed design separates presentation,
business logic and data resources into different tiers. A variety of clients can
access the enterprise business applications and data any time and from any
location.

WebSphere offers the power of reuse. This includes reuse of newly developed
code, existing procedural applications, and enterprise data. The portability of
developed and deployed EJB applications allows for system scalability and
interoperations with non-WebSphere environments. The interoperability
between the WebSphere Application Servers allows systems to grow from
simple business applications to complex enterprise wide systems running on
high-end application servers. The variety of hardware and operating system
platforms supported by WebSphere allows business to choose the platforms
that are right for their needs.

WebSphere Application Server complies with the Java™ 2 Platform, Enterprise
Edition (J2EE™) specification. J2EE reduces the cost and complexity of
developing multi-tiered applications, enabling them to be easily deployed and
expanded to meet the needs of an organization. It defines an architecture that
includes a standardized model for developing multi-tiered applications and a
platform for hosting such applications. J2EE supports Java clients, applets,
servlets, JavaServer Pages (JSP pages), and enterprise beans. Its standard
services include HTTP, HTTPS, the Java Transaction API (JTA), the Java
Database Connectivity (JDBC) API, the Java Message Service (JMS) API, the
Java Naming and Directory Interface (JNDI) API, and the J2EE Connector
Architecture.

Part 1 of this book provides an overview of the features and capabilities of
WebSphere Application Server. It includes the following topics:
v “Chapter 1. WebSphere Application Server Standard Edition” on page 5
v “Chapter 2. WebSphere Application Server Advanced Edition” on page 11
v “Chapter 3. Using JavaServer Pages” on page 19
v “Chapter 4. Using servlets” on page 27
v “Chapter 5. Using enterprise beans” on page 35
v “Chapter 6. Developing Web applications” on page 67
v “Chapter 7. WebSphere Application Server Enterprise Edition” on page 75
v “Chapter 8. Using Component Broker” on page 83
v “Chapter 9. Using TXSeries” on page 107

2 WebSphere: Building Business Solutions with WebSphere

“Part 2. Using WebSphere Application Server” on page 135 describes how to
apply WebSphere Application Server’s features and capabilities in a business
application.

Part 1. Understanding WebSphere Application Server 3

4 WebSphere: Building Business Solutions with WebSphere

Chapter 1. WebSphere Application Server Standard Edition

WebSphere Application Server Standard Edition (also known as the Standard
Application Server) combines the portability of server-side business
applications with the performance and manageability of Java technologies to
offer a comprehensive platform for designing Java-based Web applications. It
enables powerful interactions with enterprise databases and transaction
systems and offers run-time, development, and system management
environments.

The Standard Application Server is used to build active Web sites and Web
applications such as servlets. This section describes the following elements of
the Standard Application Server:
v “Standard Application Server features”
v “Run-time and system management architecture” on page 6
v “Standard Edition application development environment” on page 8

For more complete information on the Standard Application Server, see the
Standard Edition InfoCenter. It is available from the WebSphere Application
Server library page at
www.software.ibm.com/webservers/appserv/library.html.

Standard Application Server features

The Standard Application Server is a single-machine Web application server. A
typical Standard Application Server installation supports a Web site. To create
applications, developers implement extended Hypertext Markup Language
(HTML) content. Developers build and test the Web site, then publish updates
into the active site.

The Standard Application Server provides an extended set of HTML tags, and
its application development tools support page creation (scripting) with these
tags. Supported content and page styles include:
v HTML with embedded images, sounds, and video clips.
v HTML with embedded client side scripts (such as JavaScript).
v JavaServer Pages (JSP), which are active HTML pages with an extended set

of markup tags. JSP tags allow programmers to develop data-driven page
content and page flows. See “Chapter 3. Using JavaServer Pages” on
page 19 for more information.

© Copyright IBM Corp. 2000, 2001 5

http://www.ibm.com/software/webservers/appserv/library.html

v Servlets written to the Sun Microsystem Servlet specification. A servlet
engine is included with the Standard Application Server. See “Chapter 4.
Using servlets” on page 27 for more information.

v JavaBeans components written to the Sun Microsystem JavaBeans™

specification.
v Enterprise beans written to Sun Microsystem’s Enterprise JavaBeans (EJB)

specification. See “Chapter 5. Using enterprise beans” on page 35 for more
information.

v Extensible Markup Language (XML) files, which are used to store
administration information such as configuration data and state
information.

For more information on the typical architecture of a Web application
supported by WebSphere Application Server, see “Chapter 6. Developing Web
applications” on page 67.

Run-time and system management architecture

Figure 1 shows the run-time architecture of the Standard Application Server.
The components of the Standard Application Server run time and system

management are as follows:

Database servers

.jsp Servlet.java .class

Static content

Control console

Administration
functions
Wizard GUI
Session/JSP
trace

•

•
•

SM admin server

Problem
wizard

Node

Service server

•
•
•

JNDI
Security
RAS/Trace

Figure 1. WebSphere Standard Application Server run-time architecture

6 WebSphere: Building Business Solutions with WebSphere

Note: Most run-time and system management functions are internally
implemented. Programmers and administrators see very few of these
functions.

Web application server
The Web application server is the run time environment for deployed servlets
and compiled and deployed JSP pages. It also implements containers for
servlets. The Web application server integrates with the Services server to
provide security to the resources it manages. It is multithreaded and
implements basic thread management and scheduling policies for managing
incoming requests.

The Web application server provides an implementation of the Java
Transaction Service (JTS) that is integrated with Java Database Control
(JDBC™) and XA-compliant databases. It also provides a connection manager
that improves interaction between Web applications and databases.

Web server
The Standard Application Server integrates with many different Hypertext
Transfer Protocol Daemon (HTTPD) servers, including the IBM, Netscape and
Apache Web servers. It also provides two plug-in extensions that augment the
Web server:
v Services—The Services plug-in enables the Web server to use the same

security, naming, and trace services that are used by the Standard
Application Server run time.

v NCF—The NCF plug-in enables the Web server to route uniform resource
locators (URLs) that match administrator-defined filters to the Web
application server. These URLs represent either servlet instances or JSP
pages (which are automatically compiled and executed as servlets). Explicit
administration is not necessary for JSP pages. The NCF plug-in uses the
Object Request Broker (ORB) to call the Web application server for
executing servlet and JSP pages. The ORB supports intra-system
optimizations for performance and propagates Web server context
information such as user identification on calls to the Web application
server. The Standard Application Server run time, the Advanced
Application Server run time, and the ORB can optionally be configured so
that their threads run within the Web server under threads that are
controlled by the Web server.

System Management server
The Standard Application Server System Management (SM) server provides a
single-site solution for integrating servlets, JSP applications, and their data
with the overall management of the Web site. SM server functions include:
v User management and group management—Support management of Web

site users and optional management of operating system user IDs and

Chapter 1. WebSphere Application Server Standard Edition 7

groups. User, group, and security management can also be done through
the native Web server and operating system management tools.

v Authorization management—Enables administrators to control access to
URLs, servlets, JSP pages, and enterprise bean homes. Authorization
management is optional.

v Definition and deployment—These functions support the installation and
deployment of enterprise beans and Java archive (JAR) files, servlet
instances, and JSP pages. Placing files at certain URLs and directories
triggers definition and deployment. Enterprise bean support must be
explicitly enabled; by default, only named servlets and their properties are
managed.

v Operation—This function allows the administrator to start and stop the
Service server, stop servlets, and manage database connections and
transactions.

v Problem determination wizard (Apache Web server only)—Web
application servers that are integrated with the Apache Web server can use
the problem determination wizard to read trace logs, merge trace and
operation logs, detect problems, and recommend corrective actions.

Services server
The Services server implements utility functions and applications needed by
the Standard Application Server’s Web server plug-ins and the SM server.
These include the security application that supports authentication,
authorization, tracing, and auditing; the name server; and trace services. These
applications and services can be configured to run in a separate server or
within the Web application server itself.

This server’s presence and operations are transparent to system administrators
and application developers.

Standard Edition application development environment

WebSphere Studio is the application development environment for the
Standard Application Server. It is a multipurpose Web site development tool
that can be used to create everything from personal Web pages to Web sites
that serve as front ends for e-business applications. WebSphere Studio
provides a tool set suite for developing HTML content and can be integrated
with other content development tools.

The Standard Application Server application development environment
supports the following:
v Static and active HTML—Many URLs map to static content — HTML files

with hypertext links, embedded pictures, sounds, and video. Some HTML
files are actively generated by the client; other HTML files are actively
generated by the server. Client-active HTML contains client-side scripts

8 WebSphere: Building Business Solutions with WebSphere

executed in the browser, such as JavaScript scripts or applets. Server-active
HTML can be JSP pages or explicitly coded servlets.

v Servlets—Servlets can be developed in WebSphere Studio and run in the
Standard Application Server. They are automatically reloaded when their
source code changes. A named servlet instance is explicitly configured with
its initialization values by the SM server. For more detailed information on
how WebSphere Application Server implement servlets, see “Chapter 4.
Using servlets” on page 27.

v JSP pages—All access to relational databases occurs through tool-generated
beans. JSP developers access the beans through bean markup tags in JSP
page. JSP files are implicitly compiled, deployed, and installed when they
are published from application development tools. For more detailed
information on how WebSphere Application Server implements JSP pages,
see “Chapter 3. Using JavaServer Pages” on page 19.

v Database support—The Standard Application Server defines an extended
HTML tag set for performing the following database operations:
– Defining a table’s signature (for instance, column names and values)
– URL data type for column values
– Create, Remove, Update, and Delete (CRUD) operations on a named

table
– Basic query support
– Formatting tables from query results

Chapter 1. WebSphere Application Server Standard Edition 9

10 WebSphere: Building Business Solutions with WebSphere

Chapter 2. WebSphere Application Server Advanced
Edition

WebSphere Application Server Advanced Edition (also known as the
Advanced Application Server) builds on the Standard Application Server. It
introduces multi-machine server capabilities for applications built to the
Enterprise JavaBeans (EJB) Specification (including supporting services such as
workload management) and enables Web applications to be more tightly
integrated with existing business systems.

For more complete information on the Advanced Application Server, see the
Advanced Edition InfoCenter. It is available from the WebSphere Application
Server library page at
www.software.ibm.com/webservers/appserv/library.html.

Advanced Application Server features

Expanding the functionality of the Standard Application Server, the Advanced
Application Server enables you to develop scalable and transactional Web
applications. It can run on multiple machine systems (as opposed to the
single-machine Standard Application Server). It supports enterprise beans that
implement business logic and access persistent data; distributed system
management; and shared name, security, and transaction services.

See “Chapter 1. WebSphere Application Server Standard Edition” on page 5 for
a detailed description of the Standard Application Server’s capabilities.

Run-time and system management architecture

The Advanced Application Server run-time environment supports clustered
and distributed systems in addition to the single-machine server of the
Standard Application Server run-time environment. Figure 2 on page 12 shows
a high-level view of the Advanced Application Server system architecture.

© Copyright IBM Corp. 2000, 2001 11

http://www.ibm.com/software/webservers/appserv/library.html

The elements of the Advanced Application Server system are as follows.

Topology
The topology of an Advanced Application Server system contains three
elements:

Node
A node represents a physical system on which the advanced application
server run time is installed. Multiple instances of a Web application server can
be defined and active on a node. Each instance is a single, multithreaded
operating system process. Figure 3 on page 13 shows a typical node
configuration.

Figure 2. A high—level view of the Advanced Application Server system architecture

12 WebSphere: Building Business Solutions with WebSphere

Server groups
A server group is a named collection of Web application server instances,
which can optionally be configured onto different hosts. All instances in the
group are connected to the same databases and same file systems. Web
application server instances from different server groups can be configured in
the same node.

Administrators define server groups for availability, performance, and
manageability reasons. All Web application server instances in a server group
are clones that run the same servlets, JSP pages and enterprise beans, and that
have the same containers configured with the same policies. Client
applications, application logic in a server group and other server groups see a
server group as a single Web application server instance.

Each Web application server instance in the server group has a name. For
example, the Underwriting ApplicationServerGroup can have an instance
called UAS1 on the machine pinnacle.uas.com and an instance called UAS2 on
the machine kaitlin.uas.com.

WLM

Database servers

ORB server

Servlet/JSP
Entity

Session

Node
manager
(Cell mgr
image)

Web application servers

.jsp Servlet.java .class

Service plug-in

Plug-insORB client

Web server process

Static content

JDBC plus
server extensions

Node

Figure 3. A typical node in an Advanced Application Server system

Chapter 2. WebSphere Application Server Advanced Edition 13

Cell
A cell is a named collection of nodes. A node can be in only one cell. A server
group does not span cells.

In general, the nodes in a cell do not access the same file systems and
databases. However, all nodes onto which servers from a server group are
installed must have access to the following resources:
v The file systems holding the HTML, servlets, JSP pages, and Java classes
v The databases and database servers referenced by enterprise beans

deployed into the server group

A cell manager notifies all of its active node managers when a server group
membership changes

Workload and availability management
Workload management optimizes the distribution of client requests. Incoming
work requests are distributed to the application servers and other objects that
can most effectively process the requests. Workload management also
provides failover (redirection of client requests to other servers when a server
is not available).

Clones (replicas of application objects) and models (templates for creating
clones) can be used to create multiple instances of objects such as enterprise
beans, servlets, and even entire application servers. The Advanced Application
Server automatically manages workloads for clones of enterprise beans and
EJB servers. Servlet redirection routes client requests to local or remote servlet
clones, balancing loads on individual servlet clones. Administration servers
can also participate in workload management for failover support.

Transactions, sessions, and workload balancing provide the basis for
bypassing failures and improving availability. If a Web application server
instance fails, the node manager detects the failure, rolls back the sessions and
transactions that are active in that process, and restarts the process. The node
manager also notifies the cell manager that a failure has occurred.

The Object Transaction Monitor (OTM) implements workload and availability
management for server groups. OTM balances transactions and sessions over
Web application server instances in a server group. Nontransactional and
nonsession requests are randomly routed over the instances.

System management
The System Management (SM) tools extend the Standard Application Server
system management model by providing the following additional services:
v Cell manager—The cell manager resides in its own server group within the

cell and uses enterprise bean transactions, relational database persistence
and OTM to achieve scalability and availability. Cell manager instances (the

14 WebSphere: Building Business Solutions with WebSphere

server processes running the cell manager application) can be assigned to
any node in the server group. However, they are typically consolidated into
a small number of nodes.

v Node manager—The node manager is responsible for managing the local
server instances and configuration information. Node managers perform
operations on behalf of a cell manager. Both the cell manager and the node
manager are implemented as enterprise bean applications.

Node managers and cell managers also monitor system activity to check
availability and can use clustered operating system process membership
services if they are available.

The system management tools also provide support for defining, configuring,
and operating Web application servers and server groups.
v Single point of management—This function manages remote nodes from

the SM console.
v Single logical image—This function maps operations performed at the

Server Group level (such as start and stop) onto operations on the
individual server instances in the group. This eliminates the need to
perform the same operation multiple times for each clone in the group.

Object services and support services

Object and support services are shared among all nodes and server groups
within an enterprise. They include the following:

Name service
Application server clusters within an enterprise share a global name
space. Name servers implement the name space, and an enterprise
may have multiple name servers.

RAS service
The Reliability, Availability, and Serviceability (RAS) service provides
an enterprise wide view of the logs for the run-time, application RAS,
and trace. Application and systems RAS records are written to a
node-specific log, and the node manager, cell manager and RAS
service collaborate to provide a centralized view of RAS and trace
information on demand.

Security service
Security services provide access to user registry information and
authorization rules for individual Web application servers. This
enables them to perform local authentication and authorization.

Transactions
The Advanced Application Server supports distributed transactions
and client-demarcated transactions.

Chapter 2. WebSphere Application Server Advanced Edition 15

Persistence
Persistence is implemented through calls to external databases that are
compatible with Java Database Connectivity (JDBC). The databases
may be shared among Web application server instances. The
Advanced Application Server also supports databases that are shared
with other applications.

These services are described in more detail in “Object Services” on page 51.

Advanced Edition application development environment

The Advanced Application Server supports Web applications that can be
developed by using WebSphere Studio (which is included with the Advanced
Application Server), VisualAge for Java, and other Java and HTML
development tools.

Application model
The application model for the Advanced Application Server is object-oriented
business logic backed by relational database systems. Applications can be
integrated with Web driven thin or thick clients. The Advanced Application
Server also provides support for limited integration with existing procedural
applications running in application servers.

An application typically has four parts:
v HTML and JSP pages provide the user interface and form flow for the

application.
– The JSP pages access the state data through enterprise beans. JSP tags are

used to access JavaBeans components that in turn access enterprise
beans. (The application development tools generate JavaBeans
components for accessing enterprise beans through JSP tags.)

– To improve performance, use stateless JSP pages. The Advanced
Application Server supports clustered servers to improve performance
and availability, but caching JSP state information prevents these benefits
from being realized. As an alternative, the Advanced Application Server
provides tags for accessing session bean data and storing JSP page data
within a cluster.

For more information about JSP pages, see “Chapter 3. Using JavaServer
Pages” on page 19.

v Enterprise beans implement business logic, transactional operations, and
access to databases. They act as a bridge between Web applications and
non-Web computer systems. For more information, see “Chapter 5. Using
enterprise beans” on page 35.

16 WebSphere: Building Business Solutions with WebSphere

v Servlets coordinate work between the other components of the application.
They also can perform tasks such as dynamically generating Web page
contents. For more information, see “Chapter 4. Using servlets” on page 27.

v Relational databases are used to implement persistence and query functions
for enterprise beans. Although new databases are generally defined for new
applications, the Advanced Application Server also allows the use of
existing databases in new applications.

“Chapter 6. Developing Web applications” on page 67 describes the
development of Advanced Application Server Web applications in more detail.
For an example of an application that is developed with the Advanced
Application Server, see “Part 2. Using WebSphere Application Server” on
page 135.

WebSphere Studio
WebSphere Studio is included with the Advanced Application server. For
more information on this product, see “Standard Edition application
development environment” on page 8.

VisualAge for Java
VisualAge for Java is an integrated development environment that supports
the complete cycle of Java program development. Although it is not a part of
the Advanced Application Server, VisualAge for Java is tightly integrated with
the WebSphere Application Server environment. This integration enables
VisualAge developers to develop, deploy, and test their Java programs
without leaving the VisualAge program. It also helps developers to manage
the complexity of the enterprise environment and is capable of automating
routine steps.

You can use the VisualAge for Java visual programming features to quickly
develop Java applets and applications. In addition, SmartGuides lead you
quickly through many tasks, including the creation of applets, servlets,
applications, Java beans, and enterprise beans built to the Enterprise Java
Beans (EJB) Specification. It also enables you to import existing code and
export code as required from the underlying file system.

Chapter 2. WebSphere Application Server Advanced Edition 17

18 WebSphere: Building Business Solutions with WebSphere

Chapter 3. Using JavaServer Pages

JavaServer Pages (JSP) are server-side components that allow developers to
embed scripting commands inside a HTML page and make use of server
components. JSP pages dynamically generate HTML, Extensible Markup
Language (XML), and other structured documents inside a server.

JSP pages use the WebSphere Application Server implementation of the
JavaSoft servlet application programming interface (API). A Java class
corresponds to and implements each JSP page. JSP pages make use of the
JavaBeans component architecture and use Java as a scripting language. They
use servlets as compiled page objects.

This section discusses the following JSP page-related topics:
v “How JSP pages work”
v “Invoking JSP pages” on page 20
v “Using Java code in an HTML document” on page 22
v “Using JSP tags” on page 22
v “Using JSP pages in applications” on page 22
v “Advantages of using JSP pages” on page 24

This section is intended to provide background information necessary for
understanding the WebSphere family example application described in
“Part 2. Using WebSphere Application Server” on page 135. It does not focus
on the practical development issues of creating JSP pages. For more detailed
information on their development, see the following:
v The IBM VisualAge for Java product documentation and samples
v The WebSphere Studio documentation and samples

How JSP pages work

JSP pages can be invoked directly or through a servlet. A JSP file is identified
by a .jsp extension. When a JSP page is invoked, it is parsed into a temporary
Java source file. This temporary source file is then compiled into a servlet. The
output from the servlet is standard HTML, which the browser interprets and
displays. This process is illustrated in Figure 4 on page 20.

© Copyright IBM Corp. 2000, 2001 19

A processor that can deliver requests from a client to a page and responses
from a page to a client interprets the JSP page. All JSP page processors must
support the HTTP protocol for request and responses; they can optionally
support additional protocols.

All JSP page processors support scripting elements written in Java. A Java run
time is needed to run scripts written in Java. If the tag extension mechanism
is implemented, a Java run time is also needed to run the tag handlers.

The JSP compiler processes a JSP file and generates a corresponding Java
servlet class. The class is then loaded into memory to handle all requests for
that page. The class stays in memory until the server shuts down or the
source page changes.

During each request to a JSP page, the server checks to see if the JSP page has
changed. If there is no change, the server uses the loaded servlet; otherwise
the server automatically compiles the JSP page and reloads the servlet.

The first invocation of a JSP page is delayed since the JSP page must be
compiled into a servlet and then loaded into memory. (This also applies when
a request is made to a JSP page that has changed.) However, subsequent
invocations do not experience this delay.

Invoking JSP pages

JSP pages can be invoked from a Web browser or by a servlet.

Figure 4. JSP program flow

20 WebSphere: Building Business Solutions with WebSphere

Figure 5 shows how a JSP page can be directly invoked from a browser. The
JSP page is invoked either as a uniform resource locator (URL) or within a
HTML page. After receiving the client request, the JSP page requests
information from server components, which perform any necessary
processing. The JSP page then inserts the results into the HTML page, which
is then displayed by the browser.
Figure 6 shows how a JSP page can be invoked by a servlet. The browser

request is sent to the servlet, which then invokes the JSP page. The servlet
interacts with the server components (in this case, Java beans) to perform any
necessary processing. The servlet can optionally create a bean to store the
results. The JSP page then extracts the required information from the server
components and merges the information with the HTML page. The browser
then displays the resulting HTML.

This method of invoking JSP pages is used in the WebSphere sample
application described in “Part 2. Using WebSphere Application Server” on
page 135. The JSP pages are invoked by the servlet through a command bean,
a Java bean that is used to isolate the servlets from the business logic. The
application uses JPS pages to format and display processing results to the
client.

Figure 5. Browser request to a JSP page

Figure 6. Servlet request to JSP page

Chapter 3. Using JavaServer Pages 21

Using Java code in an HTML document

JSP pages support two ways to include Java code in a HTML document:
v A scripting approach in which the Java code is embedded directly inside

the HTML document by using tags that are called scriptlets.
v A component-centric approach in which the Java code resides inside

components such as Java beans. The programming logic resides in the
components. Component-centric tags (<BEAN> tags) are used to request
information from the components to be inserted into the HTML document.

Scriptlets are typically used to implement simple sequences of commands.
Their use is recommended in cases where it does not make sense to use
beans. However, using scriptlets extensively makes it difficult to maintain the
HTML document. It also makes it more difficult to separate roles in a
development team because the HTML and Java code are tightly coupled.

Including Java code by using components separates the business logic from its
presentation. It facilitates a cleaner separation of roles in a development team,
because the HTML author interacts with components only through a tag set
and does not have direct responsibility for programming them. In addition, it
enables JSP pages to reuse components.

Using JSP tags

A JSP tag is an HTML or XML representation of a JSP page function that
encapsulates the programmatic syntax of the function. JSP tags provide
functions for:
v Accessing the properties, methods, request parameters, and session data of

JavaBeans components.
v Conditional inclusion of HTML based on bean or data values, request

parameters, and session data.
v Defining error pages and page inclusion.
v Running scripts written in the Java programming language or the

JavaScript scripting language.

For more detailed information about the basic JSP tag set and tag extension,
see the Sun JSP Specification.

JSP tags can be manipulated by a JSP authoring tool and a JSP compiler, both
of which are included in the WebSphere Studio tool set. See the WebSphere
Studio documentation for more information on how to use these tools.

Using JSP pages in applications

JSP pages can be used in combination with servlets, HTTP, HTML, XML,
applets, and enterprise beans to implement the following application models:

22 WebSphere: Building Business Solutions with WebSphere

Two-tiered model
This application model allows a JSP page or servlet to directly access
a resource (such as a database or legacy application) to service a
client’s request. Its advantages are that it is simple to program and
allows the page author to generate dynamic content based upon the
request and state of the resource or resources. However, the two-tiered
model cannot handle a large number of simultaneous clients, since
each client must establish or share a connection to the resources. The
two-tiered model is often used as a replacement for Common
Gateway Interface (CGI) programs.

Multitiered model
This application model comprises at least three tiers. The JSP page in
the middle tier interacts with the back-end resources by using an
enterprise bean. The EJB server and the enterprise bean provide
managed access to resources, which addresses performance issues.
The EJB server also supplies transaction and security services. This
application model is used by the WebSphere sample application.

Loosely coupled applications
Applications that have peer or client/server dependencies are
considered to be loosely coupled. They can communicate over an
intranet, an extranet, or the Internet. Common examples of loosely
coupled applications are supply-chain applications between vendor
enterprises. Each application must be isolated from changes in the
other applications that depend on it. To achieve this loose coupling,
the applications communicate via HTTP, using either JSP-generated
HTML or XML.

Using XML with JSP pages
JSP pages are an ideal way to process XML input and output. Static
XML pages can be generated by writing the XML as a static template
within a JSP page. Dynamic XML pages can be generated through
JavaBeans components, enterprise beans, or custom tags that generate
XML. Input XML can be received from POST or QUERY arguments,
then manipulated by scripting or sent directly to JavaBeans, enterprise
beans, or custom tags.

Two attributes of a JSP page aid in XML processing. XML fragments
can be described directly in JSP pages either as templates for input
into a component or as templates for output to be extended with XML
fragments. In addition, the JSP tag extension mechanism enables the
creation of tags and directives to manipulate XML.

Redirecting requests
Data to be sent to the client can vary significantly, depending on the
properties of the client. These properties can be directly encoded in a

Chapter 3. Using JavaServer Pages 23

request or stored in a client profile. In either case, the initial JSP page
can determine details about the request and then, if necessary, redirect
the request to a second JSP page.

This programming model is supported by the underlying servlet APIs.
However, the HTTP protocol prevents a redirect of a request if the
response stream is being sent back to the client. This makes it difficult
to redirect requests in some common situations. To address this, the
JSP specification provides buffering on the output stream. The JSP
code can redirect the request at any point before flushing the output
buffer. Buffering makes it easy to handle error pages, since that is also
done by redirecting requests.

Including requests
The request reaches an initial JSP page and begins generating a result.
The JSP page must dynamically include the contents of another page.
These contents can be static or can be dynamically generated by
another JSP page, a servlet, or a legacy application. This model is used
most often for content that is independent of presentation — for
instance, for generating XML that is later converted into another
format.

Advantages of using JSP pages

JSP pages have the following advantages over other Web application
architectures:

Separation of content presentation and generation
The responsibility for generating content and data is delegated to
server components. JSP pages are responsible only for extracting that
content and merging it with a HTML document.

Support for Model-View-Controller architecture
JSP pages provide better support for a Model-View-Controller (MVC)
architecture in Web applications. Prior to the development of JSP
technology, servlets were responsible for both the control logic
(controller) and dynamic content generation (view). Implementing this
dual role made the servlet more difficult to maintain, because changes
to the output format required the servlet to be recompiled. However,
using JSP pages to generate content eliminates the need to modify and
recompile the servlet whenever the output format changes. See
“Implementing a Model-View-Controller architecture” on page 69 for
more information on this application architecture.

Separate development team roles
Encapsulating the business logic in components, using servlets to
handle the control logic, and dynamically generating HTML with JSP
pages makes it easier to demarcate roles in a Web development team.

24 WebSphere: Building Business Solutions with WebSphere

The JSP file can be developed by an HTML author, and software
developers can be responsible for coding the servlets and JavaBeans.

Improved portability
JSP pages use standardized, portable components such as the Java
scripting language, the JavaBeans component architecture, and HTML.
The standardized JSP application programming interface (API) makes
JSP pages portable across application servers.

Java programming benefits
JSP pages reap the benefits of using Java, including a strong type
system, object-oriented code, effective tools, and no memory
management problems.

Using existing skills
JSP pages build on existing Java and HTML programming skill sets.

JavaBeans introspection
Using the underlying JavaBeans component architecture distinguishes
JSP pages from other scripting languages. Combining simple tagging
with the power of JavaBeans introspection makes it easy to extract
data that is to be merged with generated HTML.

Chapter 3. Using JavaServer Pages 25

26 WebSphere: Building Business Solutions with WebSphere

Chapter 4. Using servlets

This section discusses servlets, Java applications that run inside Java-enabled
Web servers and enable users to access Web server functionality. They are
used to extend the capabilities of Web servers and application servers. Servlets
use the WebSphere Application Server implementation of the servlet
application programming interface (API). This section discusses the following
servlet-related topics:
v “Servlet programming model”
v “Servlet API” on page 28
v “Life cycle of servlets” on page 29
v “Servlet run-time environment” on page 29
v “Managing servlet sessions” on page 30
v “Advantages of using servlets” on page 31

It provides background information necessary for understanding the
WebSphere family example application described in “Part 2. Using WebSphere
Application Server” on page 135. It does not focus on the practical
development issues of creating servlets. For more detailed information on
their development, see the following:
v The IBM VisualAge for Java product documentation and samples
v The WebSphere Studio documentation and samples
v Writing Enterprise Beans in WebSphere, which describes how to write servlets

that use enterprise beans.

Servlet programming model

Servlets support a request-and-response programming model. When a client
sends a request to the application server, the server sends the request to the
servlet. The servlet then constructs a response that the server sends back to
the client. The client (usually a Web browser) never directly interacts with a
servlet.

Servlets run within the same process as the Web server. The Web server’s role
is to initialize, invoke, and destroy each servlet instance. Each servlet runs as
a separate thread within the Web server process, as shown in Figure 7 on
page 28. There is only one instance of the servlet, with multiple threads
created to handle multiple client requests. This uses server resources
efficiently and enables servlets to interact with their environment.

© Copyright IBM Corp. 2000, 2001 27

Servlets can be loaded dynamically when their services are first requested or
loaded automatically when the Web server starts.

Servlet API

Servlets are based on the Java Servlet Development Kit (JSDK) application
programming interface (API), which defines a standard interface between a
servlet and a Java-enabled server. This makes servlets platform independent
and portable across Web servers supplied by different vendors. A Web server
communicates with a servlet through the servlet interface. Client requests are
made to the server, which then invokes the servlet to handle these requests
through the JSDK interface.

A Java class becomes a servlet by implementing the servlet interface. This is
done by extending the GenericServlet class (for protocol-independent servlets)
or by extending the HttpServlet class (for HTTP-specific servlets). Like an
applet, a servlet does not have a main method. This interface defines methods
to perform the following tasks:
v Initialize and load the servlet.
v Construct responses for client requests.
v Destroy the servlet when it is no longer needed and release any resources

that the servlet has used.

Figure 7. Servlet execution model

28 WebSphere: Building Business Solutions with WebSphere

In writing a servlet, a developer implements these methods. Developers can
extend them to customize the servlet’s operation—for instance, to release
database connections when a servlet is destroyed.

Life cycle of servlets

The typical life cycle of a servlet is as follows:
1. The servlet can be loaded into memory by the invoking application server,

or it can be loaded automatically when the application server starts up.
There is only one instance of the servlet, with multiple threads created to
handle client requests.

2. The application server initializes the servlet by calling the init method.
3. The HTTP server receives incoming client requests. It forwards the

requests to the servlet run time, which passes it on to the servlet.
Depending on the type of HTTP request, either the doGet or the doPost
method is invoked.

4. The servlet processes the request and returns the results through an output
stream to the HTTP server.

5. The HTTP server sends the results to the client.
6. The application server unloads the servlet by invoking its destroy method.

The life cycle of a servlet is shown in Figure 8.

Servlet run-time environment

The WebSphere Application Server servlet run-time environment provides
performance and administration support for servlets. The components of the
servlet run-time environment are described as follows:

Figure 8. Basic Flow of Servlet

Chapter 4. Using servlets 29

Servlet containers
Servlets run in special servlet-specific containers, which are primarily
intended to improve servlet performance. Servlet containers do not have
transaction, persistence, and security support because these services are not
needed in the servlet environment. Although servlet containers follow a
programming model similar to EJB containers, they cannot be used to deploy
and run enterprise beans.

Servlet queues
A servlet queue dispatches servlet requests from the HTTP server to the
servlet process. All clones of a server group share the same queue and process
requests from the queue as threads become available If all the clones are busy,
the request stays on the queue and eventually backs up at the Web server
thread.

Servlet groups
A servlet group is an EJB server group that runs clones of a servlet. It can run
one or more servlet containers and can listen on a servlet queue for incoming
requests. Servlet groups are limited to servlet clones running on the same
machine.

Affinity
Affinity allows requests to be directed to specific servlet instances or groups.
Two types of affinity are supported:
v Application affinity—Directs requests to specific servlet instances by

mapping a uniform resource locator (URL) to an instance of a servlet. If an
application’s requests are returned to a specific client instance (that is, the
application is stateful), the server group hosting that application must be
configured as a single instance. No clones can be available. These types of
servlets are nonscalable.

v Session affinity—Directs requests to servlet groups by providing a scalable
shared session infrastructure. This improves the performance of clustered
HTTP sessions.

Managing servlet sessions

Clients connect to servlets by using sessions. A session is a continuous
connection from a browser over a fixed period of time. It is not a permanent
connection.

Servlets have built-in session management. The servlet API defines a number
of classes and interfaces to manage sessions. Every client is associated with a
HttpSession object. This object is used by a servlet to store or retrieve
information about that client. The HttpSession object maintains information
about a single session. Java objects and database connections can also be
saved in a session object.

30 WebSphere: Building Business Solutions with WebSphere

A servlet gets the current HttpSession object by calling the request object’s
getSession method. This method takes a Boolean parameter. If the parameter
is true, a new session is created when a new session is detected. If the
parameter is false, the method returns null if a new session is detected.

Sessions can be terminated in two ways:
v Automatically by the server after a fixed time period (generally, 30 minutes)
v Manually by the servlet

When a session expires, the HttpSession object and the data values it contains
are removed from the system. To save session data beyond its life cycle, you
must store it in a persistent resource such as a database. For instance, session
data can be saved and analyzed for trends in site usage.

For more information on maintaining state information, see “Maintaining state
in Web applications” on page 70. For more information on session
management, see the JavaSoft Servlet Specification.

Advantages of using servlets

Servlets offer a number of advantages as a technology for developing
distributed applications. These advantages are described in the rest of this
section.

Portability
Servlets are written in Java, which makes them portable across
platforms. Because the servlet API defines a standard interface
between a servlet and a Web server, servlets are also portable across
Java-enabled application servers.

Persistence
Servlets remain in memory after they are loaded and can maintain
system resources (such as database connections) between requests.
They can also be loaded automatically when the Web server is started.

Benefits of the Java programming language
Servlets reap the benefits of using the Java programming language,
including a strong type system, object-oriented code, and good
memory management.

Replacement for CGI
Servlets are often used to replace CGI in Web applications. CGI
supports a request-and-response programming model that is similar to
the servlet programming model. However, CGI has the following
problems:
v In the CGI model, each application component is an independent

program. This limits the number of requests that a Web server can
handle, since a new process must be launched for each HTTP

Chapter 4. Using servlets 31

request that accesses a CGI program. A large number of CGI
requests can exhaust a Web server’s memory and processing
resources.

v A CGI program runs in a separate process. After the CGI program
begins running, it cannot interact with the Web server.

v Web server vendors support plug-in APIs that enable CGI
applications to be linked directly to the Web server. Using these
APIs improves CGI application performance but makes porting CGI
applications between Web servers more difficult.

Using servlets in a Web application can solve these performance and
portability problems. Servlets have better performance than CGI
programs. The servlet programming model is very similar to the CGI
programming model, which simplifies replacing CGI applications with
servlets. Servlets run inside the Web server process and have no
barriers to communication with the server. Each servlet represents a
thread within the Web server, which uses server resources more
efficiently. Servlets are also portable across platforms and application
servers.

Fewer client prerequisites
Using servlets moves Java support to the middle tier of an
application. This reduces the prerequisites for servlet clients. For
instance, servlets can support HTTP clients that do not require a Java
Virtual Machine (JVM).

Support for thin clients
Moving the back-end access, business logic, and connectivity from a
client to a servlet results in a much thinner client that better supports
the multitiered architecture of Web applications. For a description of
this type of client, see Getting Started with WebSphere Application Server.

Common security model
Servlets share the same security model as JSP pages and enterprise
beans. See “Security services” on page 54 for details.

Web application security
Security is a major concern for Web applications. Typically, firewalls
are used to control outside access. Servlets use the HTTP protocol,
which is supported by firewalls. This provides a single point of entry
to the firewall and conceals back-end resources from the client. See
“Implementing security in Web applications” on page 71 for details.

Extend capabilities of applets
Applets operate under a tight security model that prohibits them from
making connections to any server other than the one from which they
originated. They can use servlets to make connections to resources on
other servers. For instance, an applet can use a servlet to make a

32 WebSphere: Building Business Solutions with WebSphere

connection to a database that resides on a different server than the
one from which the applet originated. This also uses resources more
efficiently, since the servlet can be shared among many applets. See
Getting Started with WebSphere Application Server for more information
on applet-based clients.

Chapter 4. Using servlets 33

34 WebSphere: Building Business Solutions with WebSphere

Chapter 5. Using enterprise beans

Enterprise beans are the standard component architecture for building
distributed applications in the Java programming language. They are
server-side components that must reside in a home environment and run in
an execution environment. The execution environment must provide run-time
services such as transaction support, persistence, and resource management.

This section provides an overview of the WebSphere Application Server
Enterprise JavaBeans (EJB) environment. It includes the following topics:
v “EJB environment”
v “Enterprise bean application development” on page 37
v “Session beans” on page 40
v “Entity beans” on page 43
v “Extensions to the EJB specification” on page 46
v “Object Services” on page 51

It provides background information necessary for understanding the
WebSphere family example application described in “Part 2. Using WebSphere
Application Server” on page 135. It does not focus on the practical
development issues of creating enterprise beans. For more detailed
information on enterprise bean development, see the following:
v Writing Enterprise Beans in WebSphere

v The IBM VisualAge for Java product documentation and samples

EJB environment

The EJB specification provides a detailed description of the services needed to
support enterprise beans. It separates the enterprise bean’s business logic from
the intricacies of persistence, transactions, security, and other
middleware-related services.

Client view
Figure 9 on page 36 shows the client view of the EJB environment. EJB clients
interact with enterprise beans through the interfaces defined by the EJB
container, the client container, and the services provided by the EJB server.
Clients interact with an enterprise bean through its home and remote
interfaces. The EJB server environment and containers are discussed in the
sections that follow.

© Copyright IBM Corp. 2000, 2001 35

EJB server environment
The EJB server manages containers and provides the services required by the
EJB Specification. Mandatory services are:
v Java Naming and Directory Interface (JNDI)
v A transaction service compatible with the Object Transaction Service (OTS)
v Security

The EJB server can optionally provide access to a data store through Java
Database Connectivity (JDBC). See “Object Services” on page 51 for more
detailed information on the services required by the EJB Specification.

Containers
Enterprise beans are deployed into a container. As described in the EJB
Specification, a container manages one or more enterprise beans. Deployment
adds a concrete implementation of object services.

A container provides access to the required object services through two
interfaces:
v The home interface exposes methods for creating, removing, and finding an

enterprise bean in a container. A deployment descriptor is used by
deployment tools to give a meaningful name to the home interface. The
container registers this name in the name space, which is accessible by
clients using JNDI.

v The remote interface (also referred to as the EJBObject interface) defines the
business methods offered by an enterprise bean class.

A client interacts with the interfaces provided by the container. Figure 10 on
page 37 shows how a client application interacts with an enterprise bean
through the home and remote interfaces provided by a container.

Figure 9. A client view of the EJB environment

36 WebSphere: Building Business Solutions with WebSphere

The client application uses the home interface to access the home object. The
home object can create, remove and find instances of the enterprise bean class
it uses. The client uses the remote interface to access the EJB object. The EJB
object can invoke the business methods of an enterprise bean instance.

Enterprise bean application development

This section provides a high-level overview of developing applications with
enterprise beans. It discusses the following topics:
v “Enterprise bean types”
v “Using session and entity beans in an application” on page 38
v “Development team roles” on page 39
v “Application development process” on page 40

Enterprise bean types
The EJB architecture provides two types of enterprise beans for building
distributed applications: session beans and entity beans. Each type of bean
performs different functions within an application.
v A session bean performs work on behalf of an EJB client. The conversational

state of a session bean instance is not persistent and does not survive a
server failure. The life cycle of a session bean is typically the same as the
life cycle of the EJB client. For a more detailed description of this type of
enterprise bean, see “Session beans” on page 40.

v An entity bean represents a permanent entity in an application. They are
often used to represent and manipulate persistent data. Persistent data can
be stored in a data source such as an object-oriented database or a relational
database. It can also be produced by invoking an application or by
executing a transaction. The persistent data represented by an entity bean
can be managed either by the bean’s container (container-managed

Figure 10. Client interaction with an enterprise bean

Chapter 5. Using enterprise beans 37

persistence) or by the bean itself (bean-managed persistence). For a more
detailed description of this type of enterprise bean, see “Entity beans” on
page 43.

One of the biggest differences between session beans and entity beans is that
session beans do not have a primary key class that uniquely identifies the
enterprise bean. Session beans do not require primary keys because they are
not unique; they can be created, associated with a client, and removed as
needed. In contrast, entity beans represent permanent data that can be
uniquely identified.

Using session and entity beans in an application
Entity beans represent persistent data and need to be shared among clients.
They cannot maintain information related to a specific client. Session beans
cannot access data directly, but can maintain information about their clients.
Most applications therefore need to use both types of beans.

Figure 11 shows how session and entity beans can work together in an
application. In this example, a client application logs onto an EJB server. It can
display a list of employees and change employee data.

The EJB client needs to connect to the server and store connection information
for later use. These tasks can be performed by using session beans.

To display the list of employees, the EJB client must retrieve employee data
from a database. This task can be performed by using entity beans. Each
entity bean represents a row in the database. A session bean that represents a
login session can access employee data through the entity beans.

Record First Last Dept

001 Jerry Smith E45

002 Carol Lee D87

003 Mark Sanders D33

004 Elsa Brown E45

Clients Session beans Entity beans

C1

C2

C3

Logon C1
State for C1

Logon C3
State for C3

Logon C2
State for C2

Database

Figure 11. Building an application with session beans and entity beans

38 WebSphere: Building Business Solutions with WebSphere

Changing employee information can be done through a transaction. Session
beans can manage the transactional context of the entity beans that represent
the data stored in the database.

Development team roles
Separating the development of business logic from other tasks requires the
members of the application development team to assume different roles. The
EJB specification defines six different roles for the application and deployment
process. Software developers are not limited to a single role; they can take on
as many of these roles as a project requires. Each role is described as follows:

Enterprise bean provider
Providers understand the application’s business logic and know how
to implement it in the Java programming language. Providers also
understand the interfaces and semantics of enterprise beans. They
decide whether the enterprise bean is persistent or not. If the
enterprise bean is persistent, they must identify which fields have a
persistent state and decide whether bean-managed persistence or
container-managed persistence is used. In addition, they specify how
an enterprise bean behaves when it is involved within the scope of a
transaction. Providers are responsible for packaging the enterprise
beans and all associated files into Java Archive (JAR) files, which are
then given to a deployer.

EJB container provider
Container providers create enterprise bean containers, which provide
client interfaces, persistence, scalability, security, and transactional
support for enterprise beans. They link the business logic to the
underlying services.

EJB server provider
Server providers bring operating system and middleware services to
the container. In most cases, the same vendor provides the server and
container because there are as yet no specifications to define the
interface between a container and a server.

Deployer
Deployers install the enterprise bean classes on the EJB server. They
understand enterprise beans and the EJB server environment and can
configure enterprise bean requirements by using EJB server tools.
They also make enterprise beans accessible through JNDI.

Application assembler
Application assemblers write applications that use enterprise beans,
such as applets, servlets, and native CORBA applications. They can
also build new enterprise beans from existing enterprise beans.

Chapter 5. Using enterprise beans 39

System administrator
System administrators ensure that the system is working properly by
using the monitoring and management tools furnished by the server
and container providers.

Application development process
Developing an application with enterprise beans is a five-step process:
1. The provider codes the application’s business logic in a set of enterprise

beans, then packages the beans and their deployment descriptor in a JAR
file.

2. The container provider creates the container used by the enterprise beans.
3. The server provider sets up the EJB server to provide the essential services

required by the application.
4. The beans are deployed on the EJB server. The deployer generates

additional classes used internally by the container. Usually, this is done
through tools that the container software provides.

5. The application assembler builds the EJB client.

Session beans

Session beans are transient objects that exist for the duration of a single user
session. They encapsulate data and methods associated with a user session,
task, or ephemeral object.

Figure 12. Enterprise bean application development process

40 WebSphere: Building Business Solutions with WebSphere

A session bean executes a unit of work on behalf of an EJB client. Session
beans are not shared among clients and can therefore maintain client-specific
session information. Session bean support is mandatory for containers that
comply with the EJB Specification.

Stateless and stateful session beans
The data in a session bean instance is ephemeral; if it is lost, no real harm is
done. The design of a session bean determines whether its data is shorter
lived or longer lived:
v If a session bean needs to maintain specific data across methods, it is

referred to as a stateful session bean. When a session bean maintains data
across methods, it is said to have a conversational state. After a particular
client begins using an instance of a stateful session bean, the client must
continue to use that instance as long as the specific state of that instance is
required.

v If a session bean does not need to maintain specific data across methods, it
is referred to as a stateless session bean. For stateless session beans, a client
can use any instance to invoke any of the session bean’s methods.

A container can manage stateful session bean instances by removing an
instance from memory and saving it to permanent storage. This is called
passivation. When the session bean is invoked again, the container creates a
new instance and initializes it with the data saved during passivation. This is
called activation.

Containers do not use passivation with stateless session beans. Stateless
session beans can be destroyed if memory resources are low. Because all
instances of stateless session beans are the same, the container can use any
available instance to satisfy a client request.

Session bean data is not permanently stored. The session bean class does not
contain methods for storing and retrieving data from a persistent data source.
However, a session bean can optionally access and update data in a
transaction-safe mode.

Session bean components
Every session bean must contain a bean class, a home interface, and a remote
interface.

Bean class
The bean class encapsulates the data associated with the enterprise bean and
contains the business methods that access this data. It also contains the
methods used by the container to manage the life cycle of an enterprise bean
instance. Clients such as other enterprise beans and user applications never
directly access objects of this class. Instead, they use the container-generated
classes associated with the home and remote interfaces to manipulate the
enterprise bean.

Chapter 5. Using enterprise beans 41

The bean class can contain business methods, but is not required to. These
methods must be public. Business method names cannot conflict with other
names used in the EJB architecture. (For instance, if you need to declare a
method for performing a calculation, do not name it ejbCalculate. A better
choice for the method name is calculate.)

Each business method parameter must be a permitted Java RMI type. The
throws clause can include specific application exceptions.

Implementing the enterprise bean’s remote interface in the bean class is not
recommended.

Home interface
The home interface contains methods used by the client to create and remove
instances of the enterprise bean. This interface is implemented by the
container during enterprise bean deployment in a class known generically as
the EJB home class.

A session bean’s home interface defines the methods used by clients to create
and remove instances of the enterprise bean and obtain metadata about an
instance. The home interface is defined by the developer and implemented in
the EJB home class created by the container during deployment. The container
makes the home interface accessible to clients through the Java Naming and
Directory Interface (JNDI).

Home interface methods must follow the Java RMI rules.

The home interface must implement one or more create methods. The return
type for a create method is the enterprise bean remote interface type.

Remote interface
A session bean’s remote interface provides access to the business methods
available in the enterprise bean class. It also provides methods to remove an
enterprise bean instance and to obtain the enterprise bean’s home interface
and handle. The remote interface is defined by the developer and
implemented in the EJB object class created by the container during
deployment.

After the client has used the home interface to gain access to an enterprise
bean, it uses the remote interface to invoke the business methods defined in
the bean class. This interface is implemented by the container during
enterprise bean deployment in a class known generically as the EJB object
class.

The remote interface contains the methods used by the EJB client developer.
Each method must have a matching method in the bean class with exactly the

42 WebSphere: Building Business Solutions with WebSphere

same parameters. Remote interface methods must follow the Java RMI rules.
The return types must be valid Java RMI types, and the methods must
include the java.rmi.RemoteException in the throws clause.

Session bean life cycle
During its life cycle, a session bean instance goes through the following states:
1. Creation state. A session bean’s life cycle begins when a client invokes a

create method defined in the bean’s home interface. The container sets the
session context and creates a new session bean instance.

2. Ready state. After a session bean instance is created, clients can invoke the
business methods defined in the bean’s remote interface.

3. Pooled state. When a stateful session bean instance is no longer needed, the
container passivates the instance. If a client invokes a method on a
passivated session bean instance, the container activates the instance and
returns it to the ready state.
Stateless session bean instances are neither passivated nor activated. These
instances exist in a ready state at all times until their removal.

4. Removal state. A session bean’s life cycle ends when a client or the
container invokes a remove method defined in the bean’s home interface
or remote interface.

For a more detailed description of the life cycle of a session bean, see Writing
Enterprise Beans in WebSphere.

Entity beans

An entity bean represents persistent data that can be stored in a database,
produced by a transaction, or produced by an application.

Bean-managed persistence (BMP)
In bean-managed persistence (BMP), the entity bean manages the storage and
retrieval of persistent data. The entity bean developer must encode the bean’s
business logic and explicitly make database calls or other type of access to
permanent storage. The developer must also save and restore the state of the
enterprise bean when the container uses life cycle methods such as ejbFind,
ejbLoad, and ejbStore to call the bean.

The advantage of using an entity bean with BMP is that the bean can be
tailored to meet the data-handling requirements of an individual EJB client.
For instance, it can be written to optimize access to a specific type of data
storage. However, this customization also makes it more difficult to reuse and
maintain the entity bean.

Entity beans with BMP are recommended for data stores that are not
supported by EJB containers. For instance, storing persistent data in a file is
supported by only a few types of containers. (Most containers store persistent

Chapter 5. Using enterprise beans 43

data in databases.) Using entity beans with BMP enables you to save data in a
file if the container does not support this type of storage.

Container-managed persistence (CMP)
In container-managed persistence (CMP), the container handles the
interactions between the entity bean and the persistent data source. Database
connections for entity beans with CMP are not explicitly coded by the entity
bean developer. Instead, the developer simply specifies which fields are
persistent; the container handles the details of making the database calls. The
container maps entity bean fields to a database or an existing application. In
addition, it can efficiently manage database access by using a shared pool of
connections and caching data. VisualAge for Java also provides ways to
associate fields in entity beans with CMP to database columns.

Every entity bean with CMP has the following components:
v Bean class
v Home interface
v Remote interface
v Primary key class
v Finder methods

These components are described as follows.

Bean class
The bean class defines and implements the business methods used to access
and manipulate the data associated with the entity bean. It also defines and
implements the methods used to create instances of the entity bean, and
implements the methods used by the container to inform the instances of the
entity bean of significant events in the instance’s life cycle (callback methods).
The bean class is called nameBean, where name is the name assigned to the
entity bean.

Home interface
The home interface defines the methods that are used by EJB clients to
perform the following tasks:
v Create new instances of the bean.
v Find instances of the bean.
v Remove instances of the bean.
v Obtain information about an instance.

The home interface is implemented by the EJB home class generated by the
container’s deployment tool. The container registers the home interface in the
name space accessible to EJB clients that use the Java Native Directory
Interface (JNDI) application programming interface (API). The home interface
is called nameHome, where name is the name assigned to the enterprise bean.

44 WebSphere: Building Business Solutions with WebSphere

Note: All home interfaces must be associated with an enterprise bean
implementation. Abstract home interfaces, or home interfaces that are
not associated with a bean, are not supported.

Remote interface
The remote interface provides access to the business methods available in the
bean class. It is called name, where name is the name assigned to the enterprise
bean.

The container implements methods for returning the home interface, the
handle, and the primary key of an enterprise bean instance; comparing
interface instances; and removing enterprise bean instances.

Primary key class
Every entity bean has a unique identity within a container. The bean’s identity
is defined by using a combination of the object’s home interface name and its
primary key. The client uses the primary key to create or find an instance of an
entity bean. The primary key is assigned when the instance of the entity bean
is created. Two enterprise bean instances that have the same identity are
considered to be identical.

Simple primary keys that consist of a single field of a primitive Java data type
(such as integer, long, or string) can be assigned at deployment. Composite
primary keys that are composed of multiple fields or more complex Java data
types must be encapsulated in a primary key class. This class must be public
and serializable. Its instance variables must be public and the variable names
must match a subset of the variable names defined in the bean class.

By convention, the primary key class is called nameKey, where name is the
name assigned to the enterprise bean.

Finder methods
The finder methods retrieve instances from the database by using search
criteria other than the primary key value. (For example, these methods can be
used to perform a search by a customer’s account number.) You must define a
unique query string for each finder method other than the findByPrimaryKey
method.

You can create a finder helper class for the EJB server (Component Broker)
environment or a finder helper interface for the EJB server (Advanced
Application Server) environment, if required. The container uses it to generate
the necessary code for querying the database by using finder methods.

Entity bean life cycle
After an entity bean is deployed into a container, clients can create and use
instances of that bean as required. During its life cycle, an entity bean instance
goes through the following states:

Chapter 5. Using enterprise beans 45

1. Creation state — An entity bean instance’s life cycle begins when the
container creates that instance and sets its session context.

2. Pooled state — After an entity bean instance is created, it is placed in a pool
of available instances of the specified entity bean class. Every instance of
that bean class in the pool is identical. While an instance is in this pooled
state, the container can use it to invoke any of the bean’s finder methods.

3. Ready state — When a client requests a specific entity bean instance, the
container picks an instance from the pool and associates it with the EJB
object initialized by the client. Two events cause an entity bean instance to
be moved to the ready state:
v When a client invokes the create method in the Bean’s home interface to

create a new and unique entity of the entity bean class (and a new
record in the data source).

v When a client invokes a finder method to manipulate an existing
instance of the entity bean class, which is associated with an existing
record in the data source.

When an enterprise bean instance is in the ready state, the container can
synchronize the data in the instance with the corresponding data in the
data source. In addition, the client can invoke the bean instance’s business
methods.

Entity bean instances in the ready state are moved to the pooled state
when they are no longer required.

4. Removal state - An entity bean instance’s life cycle ends when the container
removes its context while it is in the pooled state.

Note: Removing an entity bean instance does not remove data that is stored
in the data source.

For a more detailed description of the life cycle of an entity bean, see Writing
Enterprise Beans in WebSphere.

Extensions to the EJB specification

WebSphere Application Server has extended the EJB specification to supply
additional functionality for application designers. The extensions to the EJB
specification include access beans, inheritance, and association.

Access beans
An access bean is a JavaBeans component that serves as a wrapper around
one or more enterprise beans. Access beans help to bridge the gap between
developers who concentrate on presentation and developers who concentrate

46 WebSphere: Building Business Solutions with WebSphere

on business logic. They simplify the use of enterprise beans in a client
application by hiding the enterprise bean’s home and remote interfaces from
EJB clients.

Access beans enable the development of EJB clients that use enterprise beans
in the same way as they use local JavaBeans components. The EJB client
interacts only with the access bean wrapper and does not directly use the
enterprise bean. This eliminates the need to explicitly make remote calls to a
naming service and an enterprise bean’s home and remote interfaces. Access
beans can also improve performance by maintaining a local copy of an
enterprise bean’s attributes. They are written in pure Java code and do not
affect the portability of applications.

Access beans are primarily intended to support servlet and JavaServer Pages
(JSP) programs. However, they can be used by any application that accesses a
server-side enterprise bean.

VisualAge for Java supports three types of access beans:
v Wrapped bean—Acts as a wrapper for a session bean instance.
v CopyHelper for an entity bean—Acts as a wrapper for an entity bean

instance and maintains a local copy of the attributes of that instance. An
EJB client can access the copy of the attributes instead of retrieving them
directly from the remote entity bean.

v Rowset for multiple entity bean instances—Acts as a wrapper for one or
more entity bean instances and stores local copies of their attributes. It
enables an EJB client to use multiple entity beans without having to
initialize and contact them individually.

Access beans are available only through the Advanced Application Server run
time and can be created only in VisualAge for Java. When Visual Age for Java
creates a client JAR file, it exports the access beans associated with the
selected enterprise beans. Each access bean class is identified as a Java bean in
the manifest file.

For more detailed instructions on developing access beans, consult the
VisualAge for Java documentation.

Inheritance
The WebSphere Application Server enterprise bean architecture recognizes
inheritance in enterprise beans to support polymorphism and enable
enterprise beans to be reused more easily. Inheritance allows an enterprise
bean to be used as the basis for creating new beans that inherit its interfaces.
Inheritance can be implemented only in VisualAge for Java.

Chapter 5. Using enterprise beans 47

This section provides background information on how inheritance fits into the
WebSphere enterprise bean model. It is not intended to be a guide for using
inheritance. For more detailed information, see the Visual Age for Java
documentation.

How inheritance affects an enterprise bean
Enterprise beans do not directly inherit the interfaces of their parents. Instead,
the parent enterprise bean interfaces serve as templates for creating the child
interfaces as shown in Table 2. In this example, the parent enterprise bean is
named Parent and the child enterprise bean is named Child. Note that the
parent’s primary key class is the only interface that retains its name in the
child.

Table 2. Parent and child interfaces

Interface Name of Parent bean
interface

Name of Child bean
interface

Remote interface Parent Child

Home interface ParentHome ChildHome

Bean class ParentBean ChildBean

Primary key class ParentKey ParentKey

Note: Enterprise beans that do not use inheritance or are at the root of an
inheritance hierarchy do not have any additional implementation
requirements.

Inheritance affects the following components of an enterprise bean:

Remote interface
The remote interface of the child enterprise bean extends the remote
interface of the parent bean. This ensures that an instance of the child
can be used where an instance of the parent is expected.

Home interface
The home interface of the child enterprise bean must not extend the
home interface of the parent bean. The following methods are
implemented differently in parent and child enterprise beans:
v A create method on the parent’s home interface creates only an

instance of the parent enterprise bean.
v A create method on the child’s home interface creates only an

instance of the child enterprise bean (which is treated like the
parent).

v A remove method on the parent’s home interface removes only
parent enterprise bean instances.

v A remove method on the child’s home interface removes both the
child and parent enterprise bean instances.

48 WebSphere: Building Business Solutions with WebSphere

v A custom finder method on the parent’s home interface returns an
enumeration that contains parent instances.

v A custom finder method on the child’s home interface returns an
enumeration that contains both parent and child instances.

Bean class
Bean implementations that are the root of an inheritance hierarchy
define a discriminator field that determines the type of instance of the
child entity bean. A remote interface method for determining the type
of instance must also be defined for the discriminator.

The child bean’s implementation class must extend from a proxy class
that contains all of the methods defined in the remote interface of the
parent bean. An invocation of any of these methods is redirected to an
instance of the parent bean.

Primary Key Class
Entity beans must define a Java key class for their primary keys. All
entity beans in an inheritance hierarchy must use the same key class
for their primary keys.

Inheritance in entity beans
Inheritance provides the following additional functions for entity beans with
CMP:
v Identity relationships can be specified between entity beans.
v Primary key searches return the target class and its subclasses.
v Relationship finders return results that contain instances of the target class

and its subclasses.

For instance, suppose you have created an entity bean, Account, that
represents a bank account. The Account bean can serve as the parent of a
group of related entity beans, such as SavingsAccount, CheckingAccount and
CorporateAccount enterprise beans. The children of the Account bean are
identified as Account beans. A search for all Account beans returns the
Account bean and all of the entity beans that are derived from it.

Entity beans with BMP that use inheritance follow the same programming
model as entity beans with CMP, with one exception. BMP finder methods can
return only enumerations that contain the type of bean managed by the home
on which the finder method is defined.

Inheritance in session beans
Session beans that use inheritance follow the same programming model as
entity beans that use inheritance. In addition, child session beans must
manage their state in the same way as their parents. All session beans that
inherit from a stateless session bean must be stateless; all session beans that
inherit from a stateful session bean must be stateful.

Chapter 5. Using enterprise beans 49

Inheritance support in VisualAge for Java
The EJB tools in VisualAge for Java can be used to define inheritance between
enterprise beans. They enable a hierarchy of enterprise beans to be mapped to
database tables. They can also generate persistor and finder code to extract
the instances of a child bean according to the selected database mapping
schema. (This means that the results of a find operation on a parent home
may return instances of its child beans.)

The relationships between parent and child enterprise bean classes are defined
in the metadata for enterprise beans that are identified as child classes. This is
done by creating a generalization object that relates the parent and child class
bean models.

VisualAge for Java recognizes inheritance relationships between created and
imported enterprise beans. The deployment descriptors in a JAR file contain
parent class information. Entity beans from other sources derive this
information from the interfaces and classes specified by the deployment
descriptors.

For inheritance hierarchies that are mapped to persistent storage, the root
class defines the create table string for the whole hierarchy. This defines either
a single table into which all subclasses map, or the root and leaf tables into
which the entire hierarchy maps. Since any class could be asked to create the
tables, the child classes returns the create table string of their parent class.

A child class must have a minimum persistence map provided by the map
browser. This is required to generate the queries for the persistor for the new
child class. At a minimum, the map must specify which inheritance strategy is
to be used. It can also optionally supply a value for the discriminator field.

Association
The WebSphere Application Server enterprise bean architecture provides
association as an extension of the EJB specification. Association defines
relationships between entity beans with CMP in order to improve database
searches. It is implemented only in VisualAge for Java.

VisualAge for Java provides mapping and deployment support for association.
Its implementation of association can be deployed only to the WebSphere
Application Server Advanced Edition EJB server. WebSphere Application
Server Enterprise Edition users can modify enterprise beans that have
association relationships, then deploy them to an enterprise server by using
the VisualAge Component Development Toolkit’s Object Builder.

This section describes how association fits into the WebSphere enterprise bean
model. For more detailed information, see the Visual Age for Java
documentation.

50 WebSphere: Building Business Solutions with WebSphere

Association applies only to entity beans with CMP. The EJB tools in VisualAge
for Java allow users to define associations between beans according to the
Uniform Modeling Language (UML) definition of associations. These tools can
be used to create, edit, and delete associations and maintain consistency
between the participating entity beans. Both single-valued forward
relationships (one-to-one relationships) and many-valued forward
relationships (one-to-many relationships) can be defined.

For each association end, only navigability and multiplicity are collected. The
map browser enables associations to be mapped to key fields in other entity
beans. The deployment tool generates finders for backward association
mapping.

Key fields contain data to support single relationships between entity beans.
Initially, relationships can only refer to entity beans within the same group
(which is defined in VisualAge for Java). Subclasses inherit the key fields and
accessors for single-valued forward relationships between entity beans.
However, the finders for many-valued forward relationships are generated
only on the home of the target class, not its subclasses.

When a single-valued association role is defined for a class, an appropriate
public key field is added to the bean class. A validation of these definitions
occurs when deployment code is generated. If the appropriate constructs are
not in the bean to support the defined relationships, code generation stops.

Object Services

WebSphere Application Server supports the following object services for the
EJB environment:
v “Naming and directory services” on page 52
v “Security services” on page 54
v “Persistence services” on page 57
v “Transaction services” on page 61

Both Java and Common Object Resource Broker (CORBA) object services are
supported. The Java object services apply to the Advanced Application Server
implementation of Java standard interfaces such as the Java Naming and
Directory Interface (JNDI), the Java Transaction Service (JTS), and Java
Database Connectivity (JDBC). The CORBA object services apply to the
Enterprise Application Server implementation. Interoperability issues are
described in “Part 2. Using WebSphere Application Server” on page 135. The
object services apply to both the Advanced Application Server and the
Enterprise Application Server.

Chapter 5. Using enterprise beans 51

Naming and directory services
A naming service enables enterprise beans to be found by their names. Many
naming services are extended with a directory service. A directory service also
enables objects to have attributes. In addition to looking up an enterprise
bean, it enables you to find an enterprise bean’s attributes or search for
enterprise beans by their attributes.

WebSphere Application Server supports three naming and directory services:
v Java Naming and Directory Interface (JNDI) furnishes directory and naming

functionality for Java applications. It provides a common way to access
directories that is independent of a specific directory service
implementation. The JNDI Service Provider Interface (SPI) enables different
directories to be accessible from applications that use JNDI.

v The Common Object Request Broker Architecture (CORBA) CosNaming
Naming Service enables clients of Object Request Broker (ORB) based
systems to locate remote objects. The Advanced Application Server supports
a persistent Java implementation of the CosNaming Naming Service that
can be used in situations where basic naming support is needed.

v The Component Broker Naming Service provides a robust naming service
for ORB-based systems. It is described in “Run-time architecture” on
page 84.

Naming service components
The WebSphere Application Server naming service has three components:
v Location service daemon
v Persistent name server
v EJB server

Figure 13 on page 53 provides a system-level view of the naming service
components.

52 WebSphere: Building Business Solutions with WebSphere

Location service daemon: The location service daemon keeps track of the
name spaces in use across the network. The tasks it performs depend on the
specific naming service used by the EJB client.
v An EJB client that uses JNDI requests an initial session context. It then

connects implicitly to the location server daemon, which waits for object
requests.

v An EJB client that uses the CosNaming naming service issues an object
request. The request is forwarded to the location server daemon, which
retrieves the host on which the object implementation is running. A new
interoperable object request (IOR) pointing to the host running the
enterprise bean is returned to the client ORB.

Persistent name server: An EJB server registers enterprise beans with a
persistent name server. Each persistent name server maintains an independent
name space, regardless of how many are running in the network.

A persistent name server uses the native file system to maintain the EJB name
space in persistent storage. When the system is started, the persistent name
server contacts the location server daemon and loads a copy of the name
space in memory. The cached naming information is used to perform
operations that do not affect the name space data in permanent storage, such

Figure 13. WebSphere Application Server object services system view

Chapter 5. Using enterprise beans 53

as listing objects. Operations that permanently affect name space data, such as
creating new object names, are performed transactionally on the copies in
memory and on disk.

EJB server: Enterprise beans are deployed in an EJB server. When an EJB
server is started, it automatically registers all EJB home objects in the name
space. To perform this operation, an EJB server is given the location server
daemon’s hostname and port number at startup. It then retrieves the initial
context of the name space root and binds EJB home objects with their JNDI
names into the name space.

Security services
WebSphere Application Server provides a unified security model. A single
policy can govern the security of Web pages, servlets, and enterprise beans.
The following security topics are discussed in this section:
v “Security server”
v “Security collaborator”
v “Security plugin” on page 55
v “Authentication services” on page 55
v “Authorization services” on page 55
v “Delegation policy” on page 56
v “Using security services” on page 56

The security application comprises the security server, the security
collaborator, and the security plug-in.

Security server
The security server gives centralized control over security policies and
security services. It provides the following for Web servers and EJB servers:
v Authentication, authorization, and delegation policies
v Authentication and authorization services, including token services when

the lightweight third-party authentication (LTPA) model is used

The security server is coupled with the System Management Facility (SMF).
All instances of the security server obtain their security policies through SMF.

Security collaborator
The security collaborator works with the security server to perform the
following services for every remote method invocation of an enterprise bean:
v Check authorization
v Log security trace information
v Enforce the delegation policy

54 WebSphere: Building Business Solutions with WebSphere

It supports user registries based on the Lightweight Directory Access Protocol
(LDAP) and on operating systems such as Windows NT and UNIX. It also
supports the single user registry of the Advanced and Standard Application
Servers.

Security plugin
The security plug-in resides on the Web server and protects access to
resources like HTML pages, servlets and JSP pages. It consults the security
server for authentication and authorization services.

Authentication services
The underlying assumption of an authentication scheme is that the client and
the server do not trust each other. In WebSphere Application Server,
authentication is based on validating credentials (such as a user ID and
password), certificates, or tokens. Credentials are verified against the user
registry. A certificate validation list is used when authentication is based on a
client certificate presented by the user over a mutual Secure Sockets Layer
(SSL) connection.

WebSphere Application Server supports a three-party authentication scheme.
The client principal and the server principal are authenticated to a mutually
trusted third party—for example, the authentication token server. This allows
the user registry to be centrally administered.

A principal has a number of attributes that can be used to control its access to
system resources. These attributes can be administered through an individual
user ID or through groups. Where possible, administer access control on
groups. Administering access control to individual users can be cumbersome
if many attributes need to be changed at once.

The policy for performing authentication between a user and a Web server or
EJB server can be specified by the following mechanisms:
v A challenge mechanism specifies how a server receives authentication data

from a user. It can be based on a user ID and password or certificates.
Using a challenge mechanism is optional.

v An authentication mechanism validates the authentication data against a user
registry. Authentication mechanisms can include network user registry
authentication, LTPA, and operating system-based authentication.

A set of constraints can be specified as a part of the authentication policy. This
can include using a secure channel (for instance, where an SSL connection is
required) or limiting access to a group of trusted clients.

Authorization services
WebSphere Application Server uses a capability-based model for security.
Individual resources are collected into applications, and methods are collected

Chapter 5. Using enterprise beans 55

into method groups. Each user has a set of (application-method group) pairs
that identify the methods in an application that the user is permitted to
execute. Each (application-method group) pair is called a permission.
WebSphere Application Server administrators manage permissions. When a
user attempts to perform an operation, the security run time determines the
permissions that grant access.

The authorization policy of an enterprise bean can be managed in one of the
following ways:
v The authorization policies of an EJB application apply to the Home objects

contained within the application and the enterprise beans contained within
the Home objects. This prevents authorization policies to be applied to a
Home object instance independently of the enterprise bean instances, except
when the Home object methods are assigned to a different method group
than the enterprise bean methods.

v The authorization policies of the enterprise beans do not apply to the Home
object instance. This allows authorization policies to be defined
independently.

Delegation policy
In general, a method is executed under the principal of the process that issued
the operation. However, methods sometimes need to run under a different
principal (for instance, to use resources that the client does not have
permission to access). A method can be executed with the identity of the
client, the identity of the system server or server group, or an identity that is
specified from the enterprise user registry. This identity does not have to map
to an operating system identity if the enterprise user registry is not an
operating system registry.

The default delegation policy for the methods of an enterprise bean comes
from its deployment descriptor. It can specify delegation for a method or for a
bean. Administrators can override the delegation policy by using the
WebSphere Administrative Console.

Using security services
When a client executes a method on an enterprise bean or its Home object,
the EJB server must determine whether the principal (client) is permitted to
do so.

Figure 14 on page 57 shows an example of the principal Teller attempting to
access a getBalance method on the Account enterprise bean.

56 WebSphere: Building Business Solutions with WebSphere

The following steps are taken to determine if access is permitted:
1. The EJB server uses the delegation policy to determine the identity to be

checked—in this case, the identity of the client.
2. The EJB server identifies the principal of the client. If the principal cannot

be determined, the request is rejected. In this case, Teller is identified as
the principal.

3. The set of permissions corresponding to the method is resolved. In this
example, the permission required to use the getBalance method is the
AccountRead permission.

4. If Teller has the permission AccountRead, the method is invoked.

Persistence services
This section describes the underlying components and interfaces of the
WebSphere Application Server persistence service. They include:
v “Connector beans” on page 58
v “Adaptor beans” on page 58
v “Persistors” on page 58
v “Common Connection Framework (CCF)” on page 59
v “Implementing persistence” on page 61

Figure 14. Permission-based protection of an EJB method

Chapter 5. Using enterprise beans 57

Connector beans
Connector beans are Java beans that simplify access to applications, components
and databases. They can be used to implement persistence for servlets and JSP
pages. There are two types of connector beans:
v Data connector beans—Support access to relational databases.
v Procedural connector beans—Encapsulates a single call-return interaction

with a legacy procedural system.

WebSphere Application Server, VisualAge for Java and WebSphere Studio
support and generate the following implementations of connector beans:
v JDBC
v SQLJ
v Customer Information Control System (CICS)
v ECI, EPI and EXCI
v MQSeries
v Access to enterprise beans
v Internet Management Specification (IMS) transactions

Servlets use connector beans to access relational data sources through JDBC
and SQLJ. They also use connector beans to call interfaces to external
applications such as CICS transactions. Servlets may also implicitly use
persistence services by calling enterprise beans. For more information on
servlets, see “Chapter 4. Using servlets” on page 27.

JSP pages access connector beans by using the UseBean tag. For more
information on servlets and JSP pages, see “Chapter 3. Using JavaServer
Pages” on page 19.

Adaptor beans
Adaptor beans are JavaBeans that support relational database management
schemes. They can be used to implement persistence for servlets and JSP
pages. Adaptor beans directly use persistence interfaces such as Java Database
Connectivity (JDBC) and the IBM Common Connector Framework (CCF).

WebSphere Studio and VisualAge for Java provide tools that generate adaptor
beans. Their implementation of adaptor beans simplifies the use of JDBC,
SQL, RowSets, and other database query languages. It also interacts with the
WebSphere database connection manager.

Adaptor beans can be accessed directly from servlets or by using a UseBean
tag in JSP pages.

Persistors
The WebSphere Application Server enterprise bean programming model
recommends direct use of JDBC and other persistence APIs within a helper

58 WebSphere: Building Business Solutions with WebSphere

class. This helper class is called a persistor. The persistor class is generated by
EJB development tools such as VisualAge for Java.

Persistors are implemented by enterprise beans that directly maintain
persistent data. Entity beans with BMP implement functions that create,
retrieve and modify persistent data by calling Java persistence services (such
as JDBC) within a persistor. Entity beans with CMP do not need to implement
persistors, since they rely on the helper classes produced by their container
and deployment tools to maintain persistent state data. Although session
beans are not persistent, they can maintain persistent state data by using
entity beans or by calling other Java persistence services within a persistor.

For more information on enterprise beans, see Enterprise JavaBeans.

Common Connection Framework (CCF)
CCF provides a framework for developing connectors. A connector is a
software package or library that implements the client side of a client-server
protocol. Examples of connectors include JECI for CICS, JBAPI for SAP, and
JDBC.

All of these packages make connections to a server system. Each connection
defines a server instance to which requests are sent (for example, a CICS
region or a database table). In addition, the connector and server associate the
connection with user information, such as security delegation and transaction
participation.

Figure 15 on page 60 shows the CCF architecture divided into two interface
groups: the CCF client interfaces and the CCF infrastructure interfaces.

Chapter 5. Using enterprise beans 59

A connector uses the CCF client interfaces to interact with a resource manager.

The CCF infrastructure interfaces contain two interfaces:
v Quality of service (QOS)—This interface is implemented by a component

server. QOS adapts the CCF connector quality of service view to the actual
implementation of the service in the component server. QOS can be used
for tasks such as retrieving security information and enlisting with the
current transaction.

v State management (SM)—This interface is implemented by a CCF
connector. SM is used by the component server’s QOS implementation to
control CCF connector states. The states controlled by SM include the
physical connection and the transactional state of the connected resource
manager (with respect to the current transaction).

Internally, a CCF connector uses proprietary connectors that can be accessed
through a Java gateway interface or a native interface.

The Enterprise Access Builder (EAB) tool in VisualAge for Java simplifies the
use of CCF connectors by defining two Java beans:
v Command beans (or commands) encapsulate single interactions with an

application system, eliminating the need to manually script calls to the CCF
connector. CCF’s client interface interacts with EAB commands, allowing
you to use any CCF-based connector with an EAB command.

v Navigator beans (or navigators) implement sequences of interactions with
an application system. They can be combined with command beans and
other navigator beans to create a complex series of interactions.

Figure 15. CCF architecture

60 WebSphere: Building Business Solutions with WebSphere

For more detailed information on EAB, command beans, and navigator beans,
see the VisualAge for Java documentation.

Implementing persistence
The WebSphere Application Server programming model supports the use of
general Java classes. A developer can use any class library for implementing
persistence within a servlet, JavaBean, session bean or entity bean with BMP.
The following guidelines for implementing persistence simplify reusing and
moving components.
v Use access beans that encapsulate CCF. Do not use CCF directly. See

“Access beans” on page 46 for more information on using this type of bean.
v JDBC calls can be encapsulated in a predictor for session and entity beans

with BMP. They can be encapsulated in JavaBeans components for servlets
and JSP pages.

v Session beans and entity beans with BMP can access legacy systems
through a predictor that delegates legacy system connections to an access
bean.

Transaction services
Transaction support is an essential component of the EJB architecture.
WebSphere Application Server provides transaction processing services for
enterprise beans. This section discusses the following transaction-related
topics:
v “Managing transactions for enterprise beans”
v “The transaction attribute” on page 62
v “The transaction isolation level attribute” on page 63
v “Locking” on page 63
v “The OTS and EJB transaction models” on page 63
v “Implementing session synchronization” on page 65

Managing transactions for enterprise beans
The EJB architecture provides two ways to manage transaction processing for
enterprise beans:
v In bean-managed transactions, an enterprise bean controls transactions.
v In container-managed transactions, a container controls transactions for its

enterprise beans.

Session beans can use either container-managed transactions or bean-managed
transactions. Entity beans must use container-managed transactions.
Transaction processing is handled by the EJB server. Server providers can use
transaction services such as two-phase commit, transaction context
propagation, and distributed two-phase commit. Nested transactions are not
supported.

Chapter 5. Using enterprise beans 61

EJB clients can also manage transactions; for more detailed information on
managing transactions in the EJB environment, see Writing Enterprise Beans in
WebSphere.

Bean-managed transactions: In some situations, a session bean must
participate directly in a transaction. To indicate that a session bean is an active
participant in a transaction, set the transaction attribute in its deployment
descriptor to TX_BEAN_MANAGED. The session bean developer must
explicitly demarcate transactions by using the
javax.transaction.UserTransaction interface. (This interface can also be used for
client-managed transactions.) You must also set the transaction isolation level
in a session bean’s deployment descriptor.

Container-managed transactions: The EJB API does not require enterprise
bean and EJB application developers to write special code to use transactions.
Instead, a container can manage transactions, freeing the enterprise bean and
EJB application developers to concentrate on the business logic of their
applications.

When an EJB client invokes a method on an enterprise bean, the container
intercepts the method invocation to manage its transactions. The way in
which the container controls transaction demarcation is specified by the
transaction attribute of either the method or the enterprise bean.

To enable container-managed transactions, you must set the transaction
attribute of the enterprise bean’s deployment descriptor to any value other
than TX_BEAN_MANAGED. The value of the transaction attribute depends
on the requirements of your application. You must also set the transaction
isolation level; see “The transaction isolation level attribute” on page 63 for
details.

The transaction attribute
The transaction attribute defines the transactional manner in which the
container invokes enterprise bean methods. This attribute can be set for the
bean as a whole and for individual methods in a bean. Values for this
attribute are as follows:

TX_BEAN_MANAGED
Notifies the container that the bean can call methods to explicitly
manage transaction boundaries. (See “Bean-managed transactions” for
more information.)

TX_MANDATORY
The container always invokes the bean method within the transaction
context associated with the client.

TX_NOT_SUPPORTED
The container invokes bean methods without a transaction context.

62 WebSphere: Building Business Solutions with WebSphere

TX_REQUIRES_NEW
The container always invokes the bean method within a new
transaction context, regardless of whether the method is invoked
within an existing transaction context.

TX_REQUIRED
The container invokes the bean method within a transaction context. If
a method is invoked outside a transaction context, the container create
a new transaction context and invokes the bean method from within
that context.

TX_SUPPORTS
If the client invokes the bean method within a transaction, the
container invokes the bean method within a transaction context. If the
client invokes the bean method without a transaction context, the
container invokes the bean method without a transaction context.

The transaction isolation level attribute
The transaction isolation level determines how isolated one transaction is from
another. This isolation is for read purposes only. The transaction isolation level
can be set for the bean as a whole. The first method call within a transaction
uses the bean’s isolation level. Different isolation levels on subsequent calls
are ignored.

The container uses the transaction isolation level attribute as follows:
v Session beans and entity beans with bean-managed persistence

(BMP)—For each database connection used by the bean, the container sets
the transaction isolation level at the start of each transaction.

v Entity beans with container-managed persistence (CMP)—The container
generates database accesses that achieve the specified isolation level.

Locking
Write locks cannot be defined for enterprise beans. As a work around, either
define methods as read only or acquire write locks on database rows for
non-read-only methods.

The OTS and EJB transaction models
The EJB transaction model is similar to that of the Object Transaction Service
(OTS). The key components of OTS can be mapped almost directly to the EJB
transaction service. Understanding how these transaction models work helps
to understand how transactions work in the EJB environment.

The EJB transaction model makes use of the Javba Transaction API (JTA) and
the Java Transaction Service (JTS). JTA specifies the interfaces between a
transaction manager and the applications, resource managers, and application

Chapter 5. Using enterprise beans 63

server that are involved in a transaction. JTS is a Java programming language
binding of the OTS. It provides a standard IIOP protocol for propagating
transactions between servers.

The OTS transaction model is shown in Figure 16. The dashed box represents
a transaction. It contains all of the objects that are participating in the
transaction. Commits and rollbacks are applied to all the resource objects in
this group.

control object
Represents the transaction. An enterprise bean does not directly
contact the control object. Instead, the control object is used by the
container to manage the transaction on behalf of the bean.

terminator object
Used by the container to commit or roll back a transaction in cases
where the container is required to terminate a transaction when a
method returns.

resource objects
Implement the two-phase commit protocol. For example, if a resource
object represents a connection to a database, committing the
transaction causes the database to be updated. Rolling back the
transaction reverts all database changes made through this connection
since the transaction started. After the commit or rollback is
completed, the corresponding rows in the database are unlocked. The

Figure 16. OTS transaction model

64 WebSphere: Building Business Solutions with WebSphere

locking level is specified in the deployment descriptor. The resource
objects allow each object to vote as to whether the entire transaction
should be committed or rolled back.

synchronization object
Is notified as to whether a completed transaction was committed or
rolled back. Unlike the resource objects, it does not participate in the
two-phase commit protocol and plays a passive role in the transaction.
(A session bean can play this role by implementing a special
interface.)

coordinator object
Registers the resource and synchronization objects that participate in
the transaction. An enterprise bean does not access this object directly.
Transaction-aware objects that are intended for use with an enterprise
bean register themselves by transparently obtaining a reference to the
current transaction’s coordinator.

OTS distinguishes transactional objects from recoverable objects. This distinction
is relevant to enterprise beans.
v Transactional objects are associated with a transaction. They do not have

commit and rollback methods and cannot be directly manipulated by the
transaction. They serve as managers of the recoverable objects (or resources)
that are associated with the object’s current transaction.

v Recoverable objects have commit and rollback methods, allowing the
transaction to directly manipulate their state or behavior.

An example of a transactional object is an enterprise bean that uses
container-managed transactions. The container maintains a transaction on
behalf of the bean. Recoverable objects that are allocated by the enterprise
bean are transparently placed in the current transaction with the help of the
container. Because the enterprise bean does not have a commit or rollback
method, the transaction cannot manipulate the bean directly. (Creating an
enterprise bean that is a recoverable resource requires additional work;
enterprise beans rarely have an internal state that directly affects the outcome
of a transaction.)

A bean can vote to roll back a transaction before the container attempts a
commit or rollback. A bean can still be notified of the outcome of a
transaction through the session synchronization interface.

Implementing session synchronization
A session bean can optionally implement an interface that provides the bean
with notifications of transaction synchronization in the form of container
callbacks. Session beans use these notifications to manage database data that
is cached within transactions.

Chapter 5. Using enterprise beans 65

The afterBegin notification signals a session instance that a new transaction has
begun. At this point, the instance is already in the transaction and can do any
database work it requires within the scope of the transaction.

The beforeCompletion notification is issued when the client of a session instance
has completed work on its current transaction but the instance has not
committed its resources. This is when the instance must write any database
updates it has cached. The instance can cause the transaction to roll back by
invoking the setRollbackOnly method on its session context.

The afterCompletion notification signals that the current transaction has
completed. A completion status of true indicates the transaction committed; a
status of false indicates a rollback occurred.

In the Advanced Application Server, entity beans can implement the session
synchronization interface and can be notified when a transaction begins or
completes. This type of session synchronization is used in the example in
“Part 2. Using WebSphere Application Server” on page 135 to find out how
many transactions are processed during testing. Each time an entity bean calls
the afterBegin method, the relevant information is displayed on the console.

Note: Implementing session synchronization in an entity bean is not
supported by all container vendors.

66 WebSphere: Building Business Solutions with WebSphere

Chapter 6. Developing Web applications

JSP pages, enterprise beans, and servlets can be used to implement Web
applications in all editions of WebSphere Application Server. This section
discusses issues related to developing Web applications with these
components. It includes the following topics:
v “Web application programming model”
v “Using JSP pages, servlets, and enterprise beans in Web applications” on

page 69

For more detailed information on the components of a Web application, see:
v “Chapter 3. Using JavaServer Pages” on page 19
v “Chapter 4. Using servlets” on page 27
v “Chapter 5. Using enterprise beans” on page 35

Web application programming model

The Web application programming model is based on a multitiered
architecture. Enterprise applications are partitioned into multiple components
that can run on different computers, creating a set of physical tiers.
Application components are assigned to logical tiers based on the functions
that they perform. The physical and logical tiers do not have to correspond
directly — for instance, application components that are assigned to different
logical tiers can run on the same physical tier. This model is designed to
support thin clients with high-function Web application and enterprise
servers. Multitiered architectures and client topologies are described in more
detail in Getting Started with WebSphere Application Server.

Figure 17 on page 68 shows an example of a multitiered Web application. The
Web server provides the content that is displayed in the browser. To generate
the content, the server communicates with a resource manager that manages a
database and transaction processing monitor.

© Copyright IBM Corp. 2000, 2001 67

First tier
The first tier contains the client — in this case, a Web browser. The client
communicates with the Web server by using industry standard protocols such
as Hypertext Transfer Protocol (HTTP) and Internet Inter-ORB Protocol (IIOP).

Second tier
The second tier (or middle tier) resides between the client and the enterprise
server resources and data. Application servers (such as WebSphere
Application Server) are located in the middle tier. In this example, the middle
tier includes a Web server that coordinates, collects, and assembles Web pages
composed from static and dynamic content and delivers them to clients. It
also includes a resource manager that controls access to the third tier.

This tier is the heart of the Web programming model. Although many Web
applications still use a Common Gateway Interface (CGI) based programming
model, a Java based programming model is becoming more popular. In the
WebSphere Application Server sample application, the middle tier logic is
implemented in Java by using servlets and JSP pages. Enterprise beans and
Component Broker business objects implement the application’s business
logic. Java beans act as the interface between servlets and the business logic.

DBMS TP monitor

Browser

Web server

External resources

Content

Figure 17. Components of a Web application

68 WebSphere: Building Business Solutions with WebSphere

Third tier
The third tier contains resources that are used by the entire organization, such
as databases and external transaction processing monitors (for example, CICS).
Third-tier resources are managed by the second tier.

Using JSP pages, servlets, and enterprise beans in Web applications

JSP pages and servlets are complementary technologies. This section discusses
how they can be used together in Web applications. It includes the following:
v “Implementing a Model-View-Controller architecture”
v “Maintaining state in Web applications” on page 70
v “Implementing security in Web applications” on page 71

Implementing a Model-View-Controller architecture
A Model-View-Controller (MVC) architecture divides an application into the
following parts:
v Model—How the application works internally (for example, its business

logic)
v View—How the client sees the state of the model (for example, a client user

interface)
v Controller—How the client changes the application state or provides input

to the application

To apply an MVC architecture to a Web application, the various WebSphere
component architectures can be used as follows:
v JavaBeans components and enterprise beans can be used as the model, since

they implement the business logic.
v JSP pages can be used as the view, since they display the dynamic content.
v Servlets can be used as the controller. They coordinate with other entities to

handle tasks such as generating dynamic content. Servlets also handle
Hyper Text Transfer Protocol (HTTP) connectivity. JavaBeans components
can be used as the interface between the controller and the model.

Although servlets can also function as the view component of the MVC
architecture, using them for this role is not recommended. If the servlet
generates dynamic content, changes to the output format require it to be
modified and recompiled. This makes the application more difficult to
maintain and blurs the roles between developers and HTML authors. In
addition, some servlet run times require the Web server to be stopped and
restarted to load the latest version of the servlet. (In contrast, the WebSphere
Application Server servlet run time always checks for servlet changes and
automatically loads the latest version.)

Using JSP pages to view dynamic content solves these problems. JSP pages are
independent from servlets. Changes to output formats are made in a JSP file

Chapter 6. Developing Web applications 69

and do not require the servlet to be recompiled. Using JSP pages to display
content also separates the roles of HTML authors (who maintain the JSP
pages) and developers (who maintain the servlet and the components that
implement the business logic).

The sample application (described in “Part 2. Using WebSphere Application
Server” on page 135) uses a MVC architecture.
v The model is implemented as enterprise beans and Component Broker

managed objects. These business components perform processing tasks and
represent permanent entities such as accounts, customers, and transaction
records.

v The view is implemented by the Web site and the JSP pages. They control
how the application displays data to the client.

v The controller is implemented by servlets. They receive client requests from
the Web site (view) and pass them on to the business components (model)
for processing. JavaBeans components act as an interface between the
servlets in the controller and the components in the model.

Maintaining state in Web applications
HTTP is a stateless protocol. It sets up a new connection for each client
request and does not maintain information between requests. This means that
a server cannot recognize whether a series of requests have come from the
same client.

However, maintaining information across client requests is a core requirement
for many Web applications. Several different approaches can be used to add
state information to Web applications that use HTTP. These approaches
include:
v Web server authentication
v Hidden form fields
v Cookies
v Servlet session management

All of these approaches are based on the concept of a session — a continuous
connection from a browser over a fixed period of time.

Web server authentication
Most Web servers have built in user authentication that permits access to
resources only by clients who have logged in by using a user ID and
password. The user ID can be used to track a client session. When a client
logs in, the browser stores the user ID and sends it with every request.

This approach has the following advantages:
v Easy to implement.
v Automatically used by most Web servers.

70 WebSphere: Building Business Solutions with WebSphere

v Handles client requests from different machines.

However, Web server authentication has two disadvantages:
v Users must login during every visit to your Web site. Although users expect

and appreciate a login procedure when requesting sensitive information,
they see it as intrusive and restrictive for public information.

v It does not support multiple sessions from the same client.

Hidden form fields
As their name implies, hidden form fields are fields in an HTML form that are
not displayed in the client browser. They are sent to the server whenever the
HTML form is submitted.

This approach has a number of advantages, including:
v It is supported by all browsers.
v A special server setup is not required.
v A user does not have to be logged in.

The disadvantage of hidden form fields is that they work only with
dynamically generated forms. This approach is not possible for static Web
pages. Hidden form fields also do not work with e-mailed pages, bookmarked
pages, and browser shutdowns.

Cookies
A cookie is a piece of data passed between a Web server and a browser. The
Web server sends a cookie to the browser, which stores it locally. When the
browser accesses a page on the server, it sends the cookie back to the server,
which uses it to identify the client. This makes it easy to track sessions.

The disadvantage of using cookies is that clients can configure browsers to
reject them, which makes tracking sessions through cookies unreliable.

Servlet session management
Servlets have built-in session management. The servlet API defines a number
of classes and interfaces to manage sessions. Servlets also use persistent
cookies to track sessions. Session management is described in more detail in
“Managing servlet sessions” on page 30.

Implementing security in Web applications
Servlets , JSP pages, and enterprise beans use the same security model. See
“Security services” on page 54 for details.

Servlets and JSP pages that communicate with other applications over the
Internet have additional security needs. The Internet is a two-way
communication channel that makes it possible for organizations to make
information and services available to millions of users. It also makes it

Chapter 6. Developing Web applications 71

possible for users to break into these organizations. As companies provide
services to their customers by using the Internet, they must implement
security measures.

Securing the Web server involves securing the machine on which the Web
server runs and securing the Web server itself. In order to secure the server, a
user management system must be set up to allow different levels of access;
anonymous access must be prohibited.

Securing the client’s computer involves controlling what software the user is
permitted to run. The key piece of software is the browser that is used to
access information on the World Wide Web. Although browsers sometimes
have security problems, clients that run the most up-to-date versions of the
browser can take advantage of fixes for these problems.

Encryption is used to secure information in transit between the Web server
and its intended recipient. Servlets and JSP pages can make use of the
following encryption mechanisms:

Secure Sockets Layer (SSL)
SSL automatically encrypts information that is sent over the Internet and
decrypts it before it is used. SSL sits between the raw TCP/IP data stream and
the application. The standard TCP/IP protocol sends an anonymous stream of
data between two computers. SSL adds features including authentication and
data integrity.

SSL hides the complexity of encryption from both the user and the server
developer. It allows for authentication of both the client and the server
through digital certificates and digitally signed challenges. It also permits
connections that are not encrypted but are authenticated and protected against
tampering.

The SSL protocol is designed to protect against both man-in-the-middle and
replay attacks. In a man-in-the-middle attack, the attacker intercepts all of the
communications between two parties, making each think that it is
communicating with the other. In a replay attack, an attacker captures the
communications between two parties and replays the messages.

Digital certificates
Digital certificates consist of a private key and a public key. The private key is
used to assign a signature to a block of data. The public key is used to verify
the signature.

Figure 18 on page 73 shows an example of how digital certificates work. Two
entities, A and B, are communicating over the Internet. Entity A sends Entity
B a message. Entity B signs the message with its private key and sends it back

72 WebSphere: Building Business Solutions with WebSphere

to Entity A. Entity A compares the message with its copy of Entity B’s public
key to make sure it is authentic. If a third party, Entity C, intercepts the
message and alters it, the message does not match Entity B’s public key,
causing Entity A to reject it.

Client certificates
The purpose of a client certificate is to verify the identity of an individual. A
client certificate binds a individual’s name to a particular key. Client
certificates can eliminate the need to remember user IDs and passwords. They
eliminate anonymity and can be used to gather information about visitors to
Web sites. Client certificates are sold by certificate authorities.

Server certificates
A server certificate is issued by a Web server that implements SSL. When a
browser connects to the Web server by using the SSL protocol, the server
sends the browser its public key in a certificate. The certificate is used to
authenticate the identity of the server and to distribute the server’s public key,
which is used to encrypt the initial information that is sent to the server by
the client.

Server certificates are sold by certificate authorities.

Entity A
public key

Entity B
public key

Entity A
public key

Entity B
public key

Entity A Entity BEntity C

X

Figure 18. Authentication using digital certificates

Chapter 6. Developing Web applications 73

74 WebSphere: Building Business Solutions with WebSphere

Chapter 7. WebSphere Application Server Enterprise
Edition

WebSphere Application Server Enterprise Edition (also known as the
Enterprise Application Server) extends the WebSphere Application Server
Advanced Edition to handle enterprise-level distributed transaction processing
and distributed object applications. It combines the TXSeries transactional
application environment with the full distributed object and business process
integration capabilities of Component Broker. It also includes development
tools for creating enterprise beans.

This section describes the following elements of the Enterprise Application
Server:
v “Enterprise Application Server features”
v “Run time and system management architecture” on page 77
v “Enterprise Edition application development environment and tools” on

page 79

Enterprise Application Server features

The Enterprise Application Server has the full capabilities of the Advanced
Application Server. In addition, it includes the following products:

Component Broker
Component Broker is an enterprise solution for distributed object computing.
It provides a scalable, manageable run time for developing and deploying
distributed component-based solutions. Component Broker implements the
open standards of the Object Management Group’s (OMG) Common Object
Request Broker Architecture (CORBA). It supports components written in the
Java and C++ programming languages

Component Broker provides an application server for object-oriented
applications that require advanced object services like object query and
integration with transactions, notification services, business rules, complex
composition, and inheritance and association models. It also provides support
for integrating procedural applications and databases with EJB applications.
This approach supports the incremental reengineering of business processes.

Component Broker provides performance optimizations for applications that
use complex queries and complex object composition, and that have
heterogeneous back-end resource manager environments with heavy
transaction rates.

© Copyright IBM Corp. 2000, 2001 75

Component Broker has a separate implementation of the Enterprise JavaBeans
(EJB) specification from the Advanced application server. The Component
Broker EJB server can be used as an alternative to the Advanced application
server, or the two EJB servers can be used together.

TXSeries
TXSeries offers cross-enterprise integration and provides high levels of
application scalability, availability, integrity, longevity, and security. It consists
of two popular middleware packages that are used to create distributed
transactional applications:

Customer Information Control System (CICS)
CICS is IBM’s general-purpose online transaction processing software. It is an
application server that runs on a range of operating systems from the desktop
to the largest mainframe. TXSeries CICS runs on AIX, Solaris, and Windows
NT, but other versions of CICS run on OS/390®, OS/400, OS/2®, and VMS.
CICS handles security, data integrity, and resource scheduling. It integrates
basic business software services required by online transaction processing
applications. CICS supports enterprise beans produced by IBM VisualAge for
Java. It provides a natural evolution to the WebSphere Application Server
programming model for customers that want to use their existing CICS skill
sets.

Encina
Encina is a family of software products used to develop and manage open
distributed systems. It consists of the following products:

Encina Monitor
A transaction processing monitor that provides the means to develop,
run, and administer transaction processing applications.

Recoverable Queueing Service (RQS)
RQS allows applications to queue transactional work for later
processing.

Structured File Server (SFS)
SFS is a record-oriented file system that provides transactional
integrity, log-based recovery, and broad scalability.

Peer-to-Peer Communications (PPC) Services
PPC services enables Encina transaction processing systems to
interoperate with systems, typically mainframes, that have System
Network Architecture (SNA) LU (Logical Unit) 6.2 communications
interfaces.

Encina++
Encina++ is an object-oriented application programming interface
(API) for Encina. It supports both CORBA and the Distributed

76 WebSphere: Building Business Solutions with WebSphere

Computing Environment (DCE). Encina++ servers can be written in
the C++ programming language; clients can be written in the Java or
C++ programming languages.

Encina Toolkit
The Encina Toolkit is a collection of modules, libraries, and programs
that provide the functions required for large-scale distributed
client/server system development. It includes Transactional-C, a
transactional extension to the C programming language.

DCE-Encina Lightweight Client (DE-Light)
DE-Light extends the power of DCE and Encina to systems that are
not running as DCE clients. It supports clients written in the Java and
C programming languages, and provides a gateway server for
accessing Encina applications.

The Enterprise Application Server provides application development tools for
using Encina applications and enterprise beans with WebSphere applications,
Component Broker applications, and CICS applications. Encina supports
customers who want to develop high performance transaction processing
applications in the C, Java, or C++ programming languages.

Run time and system management architecture

The Enterprise Application Server run-time environment extends the
functionality of the Advanced Application Server run-time environment. It is
designed to be flexible and serve the run time and development environments
of crucial business applications. It supports and implements industry
standards such as CORBA and the EJB specification, which makes
interoperability under secure and transactional environment possible.

Figure 19 on page 78 shows how this interoperability is enabled.

Chapter 7. WebSphere Application Server Enterprise Edition 77

v Common protocols—The Remote Method Invocation (RMI) protocol and
the Internet Inter-ORB Protocol (IIOP) supply the common security,
transactional, and naming context for WebSphere family interoperability.

v Resource manager access—Access to resource managers is achieved
through the Common Connector Framework (CCF) and the Application
Adaptors Frameworks in Component Broker.

v Servers—The Enterprise Application Server is composed of one or more
Advanced application servers providing Internet front-end support for
Component Broker server groups, Component Broker/390 systems, or
TXSeries CICS, Encina, or Encina++ systems. The Advanced application
servers provide the run-time for servlets, JavaServer Pages (JSP), and
enterprise beans that directly support Web applications. The EJB servers
implement shared entities and business processes and map session beans to
alternative run time implementations. Component Broker can also host
enterprise beans that directly support Web applications.

v System Management—The Enterprise Application Server System
Management (SM) solution builds on the functions of the Advanced
Application Server System Management. It provides integration with
Tivoli® Suites system management.
The Enterprise Application Server system management model manages and
integrates all of the components that make up a business application. This

Figure 19. Enterprise Application Server Interoperability

78 WebSphere: Building Business Solutions with WebSphere

differs from the Advanced Application Server and the Standard application
server, which can manage individual components but do not manage the
entire application.

Enterprise Edition application development environment and tools

The Enterprise Application Server contains a tool set for building applications
that span all aspects of a customer-oriented and supplier-aware business.
Whether you want to build a powerful Web presence, create distributed,
transactional applications that can tie together non-Web business computing
resources, integrate your Web and non-Web systems, or accomplish all of
these goals, the Enterprise Application Server can help you.

The Enterprise Application Server contains all application development tools
provided by the Advanced Application Server and the Standard Application
Server. In addition, it provides the following application development tools:

WebSphere Studio
WebSphere Studio is included with the Enterprise Application server. For
more information on this product, see “Standard Edition application
development environment” on page 8.

IBM VisualAge for Java Enterprise Edition
VisualAge for Java is IBM’s platform for designing, implementing, and testing
enterprise beans. It provides support for:
v Session and entity enterprise beans
v Model import from and export to Rational Rose
v Unit test and debugging
v Enterprise bean inheritance and associations
v Relational database mapping
v Bottom-up production of enterprise beans from existing databases
v Support for by-value dependent objects
v Programming models for bean-managed persistence and session beans that

make database calls
v Automatic generation of object adaptor beans
v Automatic generation of JSP pages
v Export of enterprise bean Java archive (JAR) files
v Export of predeployed JAR files for the Standard Application Server
v Control information and map statements for deploying enterprise beans in

Component Broker.

VisualAge for Java Enterprise Edition is included with the Enterprise
Application Server.

Chapter 7. WebSphere Application Server Enterprise Edition 79

IBM Enterprise Access Builder (EAB)
EAB provides support for integrating EJB applications with non-EJB
applications. EAB imports legacy interface definitions to produce command
adaptor beans, which are JavaBeans components that handle a single call and
return interaction with an external application. Using a legacy application
often requires more than a single call and response interaction. The EAB
programming model can also combine multiple command adaptor beans into
a special, non-portable enterprise bean that can be used to connect EJB
applications with other types of applications.

IBM TeamConnection ®

TeamConnection supports team development in a distributed environment. It
allows different levels of source code access, distributed compilation, and
version control.

VisualAge Component Development Toolkit
The VisualAge Component Development Toolkit consists of Object Builder, a
distributed trace facility, and a debugger. These tools provide the following
functionality:
v Deployment of enterprise beans into Component Broker
v Cache and object-oriented SQL (OOSQL)
v Integration of EAB parts with Application Adaptors
v Distributed trace and debug
v Rational Rose integration
v Component Broker/390 support
v A C++ implementation of the EJB interface

VisualAge for C++ Professional Edition
VisualAge for C++ provides a complete C++ development environment. The
development environment is especially valuable for high-performance and
highly computational applications. Its Open Class Library provides advanced
class libraries and frameworks to build robust applications on AIX and
Windows NT systems.

IBM DB2®

IBM DB2 is a distributed relational database that can be used as a resource
manager in conjunction with TXSeries and Component Broker. DB2 can be
used by the EJB administration servers contained in the Advanced Application
Server and must be used by the EJB administration servers contained in
Component Broker. It can also be used to store persistent data associated with
container-managed persistence (CMP) entity beans in both the Advanced and
Enterprise Application Server.

80 WebSphere: Building Business Solutions with WebSphere

MQSeries
MQSeries® is IBM’s premier messaging and queuing service. It provides an
open architecture for integrating enterprise business processes. MQSeries
applications exchange information across different platforms by sending and
receiving data as messages. The underlying MQSeries software takes care of
network interfaces, assures delivery of messages, and deals with
communications protocols so that programmers can use their skills to handle
key business requirements, instead of wrestling with underlying network
complexities.

Although MQSeries is not formally part of the WebSphere platform, a version
of MQSeries that is licensed specifically for use with WebSphere Application
Server is included with the Enterprise Application Server. MQSeries can be
used to improve the scalability, performance, and portability of multitiered
WebSphere applications. It integrates with Java applications running under
WebSphere Application Server to provide access to back end resources and
legacy systems on a wide variety of platforms.

Chapter 7. WebSphere Application Server Enterprise Edition 81

82 WebSphere: Building Business Solutions with WebSphere

Chapter 8. Using Component Broker

IBM Component Broker is an integrated environment for developing,
deploying, and managing applications that use distributed objects.
Component Broker provides a common, high-level programming model and
framework for creating Common Object Request Broker Architecture (CORBA)
based applications.

This section discusses the following topics:
v “Component Broker implementation”
v “Component Broker run-time environment” on page 84
v “Component Broker application development environment” on page 99
v “Component Broker system management” on page 103

This section provides background information necessary for understanding
the WebSphere family example application described in “Part 2. Using
WebSphere Application Server” on page 135. It does not focus on the practical
issues of developing enterprise applications with Component Broker.

For more detailed information on Component Broker, see the documentation
for this product.

Component Broker implementation

The Component Broker implementation is based on CORBA and supports the
programming model described by the Enterprise JavaBeans (EJB) specification.
It consists of three parts:
v A run-time environment that supports distributed object applications.
v A development environment that enables software developers to create

business objects and combine them in applications. The Component Broker
application development environment is optimized for creating business
objects that run in the Component Broker application server.

v Systems management tools for administering a large-scale distributed
computing environment.

Figure 20 on page 84 shows how the parts of Component Broker work
together.

© Copyright IBM Corp. 2000, 2001 83

The Component Broker implementation hides the details of low-level
platform-specific interfaces, so that developers can focus on designing, coding
and testing applications. Platform experts can apply the best practices of the
selected run-time environment to support the security, integrity, and workload
management policies needed to support these applications.

Component Broker run-time environment

The Component Broker run-time environment provides the services required
by multitiered distributed object applications. It supports ActiveX® clients and
clients that are written in the Java and C++ programming languages, provides
a robust application server for managing business objects, and includes a set
of interfaces to database and transaction managers to support persistence.

Run-time architecture
The key attributes of the Component Broker run-time architecture are
flexibility and choice. Different types of clients and supporting data stores can
be used in an application without affecting the underlying business object
logic.

Figure 20. Component Broker building blocks

84 WebSphere: Building Business Solutions with WebSphere

Figure 21 shows a high-level view of the Component Broker run-time
architecture.

The Component Broker run-time architecture consists of the following:
v Client run-time environment —The client run-time environment enables

clients to connect to the application server.
v Object Request Broker — A CORBA-compliant Object Request Broker

(ORB) enables clients to communicate with the application server. Part of
the ORB resides on each end of the communication channel.

Figure 21. A high-level view of the Component Broker run-time architecture

Chapter 8. Using Component Broker 85

v Application server — The most important part of the Component Broker
run-time environment is its object-oriented application server. The
application server integrates Component Broker components with business
objects. It contains business objects such as CORBA components and
enterprise beans. It also implements the services that support business
objects. Component Broker supports three types of objects:
– Application objects provide a high-level application interface for clients.

They are unique to each client and usually exist only for the duration of
a session. Application objects often used to implement business
processes.

– Business objects (also known as entity objects) represent individual
components of a business information system (such as an account in a
banking system). They have a unique identifier known as a primary key
and are always persistent.

– Data objects specify the state of the business objects, which must be
preserved between client sessions. Data objects also constitute the
interface to back-end resource managers.

v Managed Object Framework—Component Broker objects implement the
Managed Object Framework (MOFW) responsible for managing objects
within the server environment and Application Adaptors (AA), which
provide support for specific backing data stores.

Behind these high-level Component Broker services are the CORBA Object
Services used by the server frameworks. Server frameworks shield application
developers from low-level interfaces to system services and CORBA services
and help to make application objects portable across platforms.

Back-end database management systems (DBMS) and transaction managers
are not really part of the Component Broker implementation. However, they
are included to show that Component Broker provides a well-designed
interface to back-end and legacy resources that enables their operational reuse.

Client support
Component Broker is designed to support a wide variety of clients. Clients
can run on operating systems such as Windows NT or in Web browsers.
ActiveX-based applications, CORBA-compliant C++ applications, Java applets,
and Java applications are all supported by the client run-time environment.

Figure 22 on page 87 illustrates the client programming model.

86 WebSphere: Building Business Solutions with WebSphere

Client applications are developed using tools such as IBM VisualAge for Java,
IBM VisualAge for C++, Microsoft Visual Basic®, and Microsoft Visual C++®.
A client application communicates with the server by using a proxy object.
Each server object has a corresponding client proxy object that interacts with
the client user interface and application code. Proxy objects do not implement
any business logic themselves, but forward requests to their server
counterparts for execution.

Client proxy objects are produced by language-specific emitters. The C++,
Java, and ActiveX emitters generate language-specific bindings from Interface
Definition Language (IDL) files, which are language-neutral. In the case of
ActiveX clients, a special COM object is produced that acts as a wrapper for a
Component Broker object. The COM object translates COM application
programming interface calls to CORBA proxy object calls. The proxy objects
are generated automatically during the development process. The code
necessary for handling client/server communications can be downloaded
from a Web server or installed through the Component Broker Systems
Management tools. Client bindings are produced through the VisualAge
Component Development Toolkit.

The proxy object sends client requests through an ORB. The ORB
communicates through Internet Inter-ORB Protocol (IIOP) with the
Component Broker ORB on the server, which then sends the requests to the
managed objects. See “Component Broker ORB” on page 88 for a more
detailed description of how the ORB handles client proxy objects.

Figure 22. Component Broker client programming model

Chapter 8. Using Component Broker 87

Managed objects are reusable components capable of serving different client
types. The managed objects on the Component Broker application server do
not care how requests are actually delivered. They do not need to know the
implementation language, platform, or operating system of the clients they
serve.

For more information on the Component Broker programming model, see the
Component Broker Programming Guide.

Component Broker ORB
Component Broker supplies an ORB that enables clients and servers to
exchange requests and responses. The ORB provides a standard way to use
distributed objects in a multitiered application. By using the ORB, developers
can implement a location-transparent programming model. Application
software does not need to contain location information or deal with different
low-level transport protocols.

Interface Definition Language
Component Broker supports the CORBA Interface Definition Language (IDL).
IDL enables clients and servers to have a platform-independent and
language-neutral standard on which to base their communications.

IDL is used to publish an object’s external interfaces and describe the objects
that make up the architecture of a system. An IDL compiler generates the
code necessary to use an interface with a specific programming language. IDL
interfaces correspond to types and can be grouped into modules. IDL also
supports multiple interface inheritance.

IDL files can be generated automatically through Component Broker’s Object
Builder tool. Developers who implement server-side objects must add the
application’s business logic to the IDL-generated code. Client developers
simply invoke the operations provided in their native programming language
environment through the Component Broker tools.

Proxy objects
To the client, the object on the server appears as if it resides in the client
program. This is accomplished by using a proxy object. The proxy object
communicates with both the client and the ORB. It has the same interface as
the server object it represents, but does not directly implement the object’s
methods. Instead, the proxy object translates a method invocation into a
format that is communicated over the ORB to the server. The server then finds
the target object, which executes the actual method implementation.

Object Adaptor
The Object Adaptor (OA) analyzes each request received by the ORB and
dispatches it to the server object implementation that is the target of the

88 WebSphere: Building Business Solutions with WebSphere

request. It serves as a mediator between the communications framework of
the ORB and the objects that reside on a server.

When the server-side ORB receives a client request, it creates a Request object
containing the information in the request. The Request object is then put on a
request queue. The OA removes each Request object from the queue for
processing.

First, the OA finds the target object. In Component Broker, it is assisted by the
container and the home object. Next, the OA unmarshals the client’s method
request and dispatches the appropriate method call on the server object. The
results from the method implementation are then returned to the client.

Interoperable object references
An interoperable object reference (IOR) is a distributed object pointer that
allows objects to communicate across network boundaries. IORs are formatted
as follows:
v Type ID—Associates the IOR with the type of the object it represents.
v Tagged profile—A protocol for contacting the server and finding the target

object.

The representation of an IOR depends on where it is used. For instance, it is
represented in a wire-level message format when it is being sent between
ORBs and in an object format when it is stored in a proxy object.

A client can convert an IOR into a string, save it to a file, and then terminate.
When the client is activated again, the IOR can be read from the file, and then
converted back into an object reference.

Managed Object Framework
Component Broker server objects are derived from the MOFW. A managed
object is a run-time wrapper for a business object. It controls how business
objects execute methods and drives the behavior of the server.

A managed object provides a manageable, server-side implementation of a
business abstraction. The abstraction is represented by using Interface
Definition Language (IDL). IDL produces proxy objects for the client and fully
implemented managed objects for the server. Both the proxy object and the
managed object inherit from MOFW and CORBA interfaces. Any object that
inherits from these interfaces can be accessed remotely and can also
participate in Component Broker services.

Managed objects are configured into containers that provide object services,
including security, transactional integrity, activation and isolation policies. See
“Containers” on page 90 for a more detailed description of Component Broker
server containers.

Chapter 8. Using Component Broker 89

The container ensures that all three instances are properly initialized and
related to each other. Collectively, they become the managed object. This
managed object (or managed object assembly) is the server-side object that
services requests from its client-side proxy object.

The Object Builder (which is part of the VisualAge Component Development
Toolkit) generates nearly all of the code that goes into a managed object. In
addition, it clearly identifies any methods that you need to
implement—specifically, the methods that pertain to the business solutions
you are building.

Server run-time components
The interactions between containers, managed objects, and other run-time
components on the Component Broker server are determined by the roles and
responsibilities assigned to each component. This section discusses the
function of key run-time elements.

Containers: A container provides a place to store managed objects and
describes the basic interactions between business objects and application
adaptor implementations. It also allows fundamental behaviors to be added to
the business objects through interfaces that are inherited from the managed
object framework.

A container keeps track of the objects that reside in memory and manages
object services. It activates and passivates objects, drives the transactional
interaction over the resource manager attachments to back-end data stores,
and establishes the security level required.

Client and business object developers do not need to be aware of the
container since its services are not part of their programming model. This
aspect of the Component Broker programming model enables the separation
of responsibilities that allows domain experts to focus on business solutions
while system experts focus on quality of service.

In addition to adding systems capabilities to objects and packaging object
services in an integrated and coordinated manner, a container provides a
boundary for administrative and management functions. These include
policies for transactional behavior, state management, and object isolation.

Any container can be configured to administer any set of policies. This
enables administrators to control the policies governed on a specific set of
objects. For instance, a container policy can implement the requirement that
an object exists only once within a server because it must be shared by all
clients. A resource manager can be configured to more than one container in
order to establish a different security policy for specific classes.

90 WebSphere: Building Business Solutions with WebSphere

Mixin objects: A mixin object is provided by the container at run time to
implement the policies associated with the container. Mixin objects integrate
object services with business objects. They are called dynamically by the
managed object to mix the container’s policies with the behavior of the
managed object.

Homes: A home is a collection of objects. Homes are part of both the
Component Broker programming model and the EJB specification. They are
key to the integration of these language-neutral and Java-oriented
technologies.

A home is used to bring managed objects into existence. It works with the
container, which knows the specific managed object subclass that inherits
from the business object class. It also knows the data object implementation
class that is associated with a managed object. The home creates instances of
the managed object subclass, the data object implementation class, and
appropriate mixin object.

Clients can create objects in a home through the home’s factory interface.
They can either provide a fully-initialized copy helper object or a primary-key
string for the object to be created.

Many managed objects can be created in the same home. However, these
managed objects are all instances of the same class. In that sense, a home is
like a factory designed to only manufacture objects of a specific type. For
instance, one home is required for objects of the Account class and another
home is required for objects of the Customer class. A home can locate any
managed object that it produces.

Homes are configured into containers. Since a home represents a collection of
objects of a specific class, this association with a container provides the
desired object services to a class.

Figure 23 on page 92 shows the relationship between homes and a container.

Chapter 8. Using Component Broker 91

A container can have many homes, where each home corresponds to a
particular type of object. Homes can be added to a container to support a new
type of object.

Homes that are associated with the same container use the same back-end
data storage or procedural environment, such as DB2 or CICS. The managed
objects of these homes are also subject to the same set of policies, which are
implemented at the container level.

Homes also support collections, which are groups of objects within a home.
They provide iterator objects to access individual objects within a collection.
Other objects within the home can also be accessed through an iterator.

Application adaptors
Application adaptors are resource manager attachments that are configured to
a container. They enable objects in the container to access specific back-end
resource managers. A single application adaptor can be used to access one
type of data store. Additional resource managers can be added to a container
by configuring more than one application adaptor.

For example, a business object can need to obtain some of its state from a DB2
database and other state from an existing CICS transaction. To support these
resource managers, a container configures the appropriate application
adaptors. This allows a business object to be associated with more than one
data object, each representing the state associated with the specific back-end

Figure 23. Application adaptor container and homes

92 WebSphere: Building Business Solutions with WebSphere

resource. Using application adaptors provides a flexible way to compose
objects from multiple back-end data stores, which provides a higher level of
operational reuse.

Component Broker provides the following application adaptors:
v DB2 application adaptor
v Oracle application adaptor
v Informix application adaptor
v Procedural application adaptor, which allows access to IMS™, SAP, and

CICS
v MQSeries application adaptor

Although application adaptors are built on a common framework, the
application adaptors for different resource managers are implemented
differently on each Component Broker platform. Software vendors can use the
application adaptor frameworks to provide implementations for their resource
managers.

For more information on using application adaptors, see the following
Component Broker documents:
v Procedural Application Adaptor Development Guide

v Database Application Adaptors Development Guide

v MQSeries Application Adaptor Development Guide

Composed business objects
One of the most powerful features of object technology is composition — the
ability to create new objects from existing ones. The MOFW treats composed
objects in the same way that it treats other objects.

Figure 24 on page 94 shows a simple example of composition.

Chapter 8. Using Component Broker 93

Two business objects are combined into a single composite object. (Data
objects are omitted from this figure for clarity.) This type of composition is
useful where client access patterns indicate that a set of basic objects are
frequently used together. For these types of clients, a single unified interface is
a more convenient mechanism for accessing information and executing
behaviors. Normally, such clients are not even aware that composition is being
used. They view the composed object in the same way as they do any other
object in the distributed system. Other clients that need to access the business
objects independently can continue to do so.

Application objects
Many times an application needs to manage processes, tasks, or control flows.
Application objects direct the application’s work flow and execute logical
business processes. Application objects are commonly used with composed
business objects and basic business objects to implement a business model.
These objects are also known as session objects, since they typically exist for
one client session.

Interoperable objects
The Component Broker server environment supports business object logic
written in the Java and C++ programming languages. However, the
frameworks and infrastructure that surround this logic are written in the C++
programming language. Component Broker provides a facility known as the
Interlanguage Object Model (IOM), which allows C++ and Java programs to
communicate with each other seamlessly. The IOM is integrated into the
MOFW.

Enterprise beans and managed objects
Component Broker provides a run-time environment for enterprise beans.
Enterprise beans fit into the MOFW. Programming logic in the business object
class delegates to the enterprise bean. The VisualAge Component
Development Toolkit can be used to design and deploy enterprise beans.

Client Application server Resource managers

Customer
account

Account

Customer

DB2

IMS

Figure 24. Composition allows new objects to be formed from existing objects

94 WebSphere: Building Business Solutions with WebSphere

Entity beans with container-managed persistence use data objects in the same
way as CORBA components do. Entity beans with bean-managed persistence
do not use data objects because the enterprise bean handles its own
persistence. Session beans also do not use data objects.

Object services
Component Broker comes with a rich set of object services that provide an
implementation for common functions required for working with distributed
objects. The CORBA services are implemented in Component Broker for all
supported platforms. For more information, see the Component Broker Advanced
Programming Guide.

Naming Service
The Component Broker Naming Service enables CORBA-based applications to
register and find objects. This is accomplished by using a human-readable
name that is mapped to an entry in a special directory known as the system
name tree. The Naming Service is fully compliant with the CORBA
specification.

Each Component Broker network (that is, the hosts managed by the same
System Manager) has its own system name tree, implemented by a name
server running on each managed server host. The name server provides the
naming service for the host, and in some cases for a cell and work group. The
name server is used by Component Broker to house a number of system
objects, including naming contexts used in the system name space, factory
finders, location objects, event channels, and so on.

The Naming Service does not store references to every object. Instead, it stores
references to high-level objects such as homes. Finding specific objects within
a home is done by using mechanisms provided by other parts of the
Component Broker infrastructure.

The Naming Service implementation depends on the platform. Since all
requests for Naming Services are made through the CORBA interface, the
different implementations are transparent to Component Broker applications.
v On the OS/390 platform, the CORBA Naming Service is mapped to the

Lightweight Directory Access Protocol (LDAP). The underlying datastore is
DB2.

v Workstation platforms use the Distributed Computing Environment (DCE)
Cell Directory Service (CDS). The CDS Server manages a database, called a
clearinghouse, which contains the names and attributes (including locations)
of network resources in the DCE cell. The master clearinghouse can be
replicated on other servers in the network; all replicas are read-only.

Chapter 8. Using Component Broker 95

Security Service
The Component Broker Security Service controls access to information and
resources. Component Broker supports bidirectional authentication of clients
and servers and protection for message transmission. It also provides logging
and other related security functions.

The workstation implementation of the Security Service is based on the DCE
Security Service. DCE is available on OS/390 when Kerberos security is
required. User ID and password support is available on the OS/390 system as
well.

Component Broker supports legacy Security Services on systems such as
OS/390. The security architecture provided on the server must be integrated
and mapped to the existing platform security software. All authorization
checking, logging and administration uses the System Authorization Facility
(SAF) interface on OS/390 to integrate fully with existing security policies.
Reusing the investments made in these highly reliable established
infrastructures can, in certain cases, be just as important as reusing business
logic code.

Life Cycle Service
The Component Broker Life Cycle Service provides operations for creating,
copying, moving, and deleting objects in a distributed environment.

Component Broker extends the OMG standard for Life Cycle Services by
allowing a finer measure of control over the placement of objects within a
network of servers. This is done by specifying a location for each object.
Locations embody the notion of proximity, which can be interpreted in a
geographical, structural, or even temporal sense. Locations are defined and
configured by using systems management facilities, freeing client code of such
concerns as organizational changes within your enterprise.

Externalization Service
Objects are often exchanged between environments — either between
processes on the same host machine or through an Object Request Broker
(ORB) between clients and servers. The Externalization Service provides a
mechanism by which objects are able to save and restore their state in a
nonobject form. This allows the object’s state to exist independent of the
existence of the object itself. The state can be maintained for an indefinite
amount of time without regard to the continued existence of the original
object or the ORB process in which it existed.

Component Broker frameworks transparently use the Externalization Service.
In most cases, applications do not need to use the service directly.

96 WebSphere: Building Business Solutions with WebSphere

Identity Service
The Identity Service allows you to verify the identity of objects that reside in
the distributed network. Component Broker derives an object’s identity from
relative information that positions the object within its container, server, host,
and domain. This information is used within the Component Broker Managed
Object Framework to uniquely identify each object.

Query Service
The Query Service enables you to search for objects that satisfy a set of
conditions that you specify. The Query Service works in conjunction with
object-oriented SQL and can deal with various types of collections through
views, joins, projections, and so forth.

Object Transaction Service
High-performance, reliable transaction support is indispensable in large-scale
commercial application systems. In the case of Component Broker, objects
receive their transaction capabilities through the Managed Object and
Application Adaptor Framework. You can use these facilities to implicitly
manage transactions. Alternatively, you can explicitly control transactions by
using the Object Transaction Service. The Object Transaction Service enables
programmers to implement transactions using standard object-oriented
interfaces in a distributed environment. Component Broker uses the Object
Transaction Service to ensure that data is always updated consistently.

Back-end resource managers such as transaction monitors and database
systems are integrated into the Component Broker transactional environment.
In its coordinator function, Component Broker uses a two-phase commit
protocol when it deals with resource managers such as DB2. In the OS/390
environment, Component Broker relies on the Resource Recovery Service
(RRS) to provide the necessary transactional integration. Component Broker
fully complies with the X/Open Distributed Transaction Processing
specification.

Programming model
The Component Broker programming model provides client programmers
with the ability to create and find managed objects and to invoke methods on
them. This section discusses the programming model, run-time environment,
and helper classes.

For more information on the Component Broker programming model, see the
Component Broker Programming Guide.

Programming model and run-time environment
Figure 25 on page 98 shows how the Component Broker programming model
uses the features of the run-time environment. The run-time environment
performs the following steps:

Chapter 8. Using Component Broker 97

1. It uses the Naming Service to find the home in which the managed object
resides. Clients typically interact with homes to create and locate specific
objects.

2. It passes the interoperable object reference (IOR) of the object back to the
client, which uses it to locate the desired managed object.

3. The IOR is stored in a proxy object that is local to the client. The client
then uses the proxy object to communicate with the remote managed
object as though it was a local process

Note: The client must have access to the Naming Service before it can ask it
for a home of an object. Obtaining access to the Naming Service is part
of the Object Request Broker (ORB) bootstrapping procedure. The client
automatically has access to the Naming Service after the ORB is
initialized.

A client never knows whether an object needs to be brought into memory on
the remote system. To the client, the object is simply there. This notion of a
single-level store is built into the Component Broker programming model.

Helper classes
The Component Broker programming model specifies two helper classes that
are used to find and create remote objects:
v Key class—Finds objects. It allows a client to locally set the attributes of the

primary key value to be used by the home in a search operation. The key
class also provides compile-time checking.

v Copy class—Creates objects. It allows a client to locally set the essential
attribute values required by a remote object and ship the copy of the copy
to the Home. Object initialization is performed in the same language and
process; creating the object only requires one communication across the
ORB.

Figure 25. Collaboration between run-time components

98 WebSphere: Building Business Solutions with WebSphere

Both of these classes are produced during the course of Object Builder
development.

Component Broker application development environment

Component Broker’s application development environment provides a
framework for designing, coding, debugging and deploying CORBA–based
applications. Applications can be developed by using Component Broker’s
tool suite or tools by other vendors.

The development environment also provides bridges to popular analysis,
design, and reengineering tools. It integrates with the IBM VisualAge product
family, but can be used with other software development tools. The
Component Broker application development environment also provides
support for deploying enterprise beans in a Component Broker application
server.

See the Component Broker Application Development Tools Guide for more
information on using the Component Broker application development tools.

VisualAge Component Development Toolkit
The most important part of the Component Broker development environment
is the VisualAge Component Development Toolkit. It enables developers to
create object-oriented distributed applications and provides a set of tools that
automate the process of business object construction and testing.

The VisualAge Component Development Toolkit is implemented on every
platforms that is supported by the run-time environment and can be used for
cross-platform development. The toolkit includes the following:
v The Object Builder tool, which is used to develop CORBA-based

applications. It supports the Component Broker run-time programming
model and Managed Object Framework, including generation of support
code required by the framework.

v An IDL compiler that produces client-side and server-side code for remote
object communication.

v Bridges to modeling, analysis and design tools.
v Support for other development environments, including IBM VisualAge and

Microsoft Visual software development products.
v CICS Connection
v IBM TeamConnection

Object Builder
Object Builder is the primary development tool in the VisualAge Component
Development Toolkit. It is specifically designed to support construction of
server objects. Developers fill in the business logic in the appropriate places

Chapter 8. Using Component Broker 99

within the framework. Object Builder then generates the code, makefiles, and
application configuration information necessary to test the application. Object
Builder supports large-scale development projects. It can also be used to
deploy enterprise beans and develop applications that use both enterprise
beans and CORBA components.

Object Builder defines the behavior and attributes of server objects and
generates the necessary code for them to function within the Component
Broker run-time environment. It supports the CORBA programming model
using IDL and C++. Complete working applications can be generated,
including unit test versions and full client/server packages complete with
server setup scripts.

Object Builder accepts Rational Rose object models, ERWin and Data
Definition Language (DDL) models, CICS connection procedure maps, and
IDL files as input. It generates the necessary IDL and binding files for Java,
C++ and ActiveX clients. When used with the Enterprise Access Builder
(EAB), Object Builder can generate server-side code in Java and C++. It
provides an interface for manually adding code to business objects - for
instance, to implement business logic. It can also output Extensible Markup
Language (XML) files, relational database DDL files, and systems management
DDL files.

Object Builder provides assistance with common tasks such as constructing
application objects and composed business objects (that is, business objects
assembled from others) or mapping data objects to back-end systems. It also
provides tools for debugging and deploying business objects.

Object Builder allows you to assemble applications by composing business
objects from basic components. Business objects can be composed by
conjunction (combining components into more complex objects) and by
disjunction (using specific criteria to select components that are related by
inheritance). Basic and combined objects can be reused in applications.

Object Builder also supports programming by framework completion. The
goal is to achieve source code-level portability of business objects across
different platforms. Developers implement the business logic; the rest of the
code and client bindings are generated automatically.

The interface between Object Builder and the software configuration
management tools is based on industry standards, allowing third-party tools
to be integrated into the Component Broker application development
environment. Object Builder accepts design input from object-oriented analysis
and design tools such as Rational Rose. For instance, a system design can be
created in Rational Rose and imported into Object Builder, which can then be
used to add the final objects and program logic.

100 WebSphere: Building Business Solutions with WebSphere

Bridges to modeling, analysis, and design tools
The VisualAge Component Development Toolkit includes bridges to system
design and modeling tools. For instance, system designs created in Rational
Rose can be imported into Object Builder to serve as templates for
implementing an application.
v Component Broker provides models of the Managed Object Framework that

can be loaded into Rational Rose, a system design and analysis tool. The
resulting business object designs can then be imported into the Object
Builder.

v ERWin by Logitech can be used to import relational database management
system tables into Component Broker applications.

Support for other development environments
The VisualAge Component Development Toolkit can be used with
development environments such as the IBM VisualAge family of products,
Microsoft Visual C++ and Microsoft Visual Basic. These tools provide an
alternative to using Object Builder for designing parts of an application. For
instance, you can use VisualAge C++, VisualAge for Java, or other
development environments to construct client user interfaces.

Object Builder simplifies building components that interoperate with
Microsoft ActiveX components by generating the required code for the two
environments. Microsoft COM objects can be generated as wrappers for
Component Broker business objects.

The VisualAge Component Development Toolkit also supports client
component architectures. For instance, client-side JavaBeans components can
integrate with Component Broker business objects through the CORBA
Internet Inter-ORB protocol (IIOP) communications bus.

CICS/IMS Connection
The CICS/IMS Connection (CICON) tool makes CICS or IMS procedural
transaction programs available for reuse in Component Broker. CICON is
based on the IBM VisualAge for Java product. It allows you to create a
procedural adaptor object that can be imported into Object Builder for
integration with other managed objects.

IBM TeamConnection
IBM TeamConnection is a team programming environment used with
Component Broker. It provides programming libraries and tools for
development teams engaged in building distributed object applications. These
facilities are centered around a shared repository of components. Development
efforts can be partitioned into projects and subprojects. Source code can be
shared within the team in a controlled manner. This helps to improve
software integrity and productivity in large team environments.

Chapter 8. Using Component Broker 101

IBM TeamConnection also supports application deployment. The shared
repository is the starting point for implementing the logistics of scalable
software distribution in a multitiered environment. Software deployment
begins with packaging all the components of an application solution and
handing them over to Component Broker Systems Management.

Enterprise bean support and deployment
Component Broker fully supports enterprise beans. They can be developed
using integrated development tools such as VisualAge for Java, then deployed
on the Component Broker EJB server. Component Broker provides the
following tools for deploying enterprise beans:
v jetace, which enables you to create or update an EJB JAR file for one or

more enterprise beans.
v Object Builder, which is the recommended tool for deploying enterprise

beans.
v cbejb, which works with Object Builder to create and compile the necessary

files needed by the EJB server to manage an enterprise bean. The output of
this process is a set of server-side and client-side JAR and library files.

v CBDeployJar, which automates the deployment of enterprise beans. The
CBDeployJar tool can be used to deploy JAR files that are compatible with
either version 1.0 or version 1.1 of the EJB specification.

v CBDeployEar, which is used to deploy enterprise beans from a JAR file
stored in a J2EE Enterprise Archive (EAR) file. The CBDeployEar tool
extracts a JAR file from an EAR file, then runs the CBDeployJar tool on the
extracted JAR file.

v appbind, which allows enterprise bean deployers to create an
application-specific naming context and associate it with a selected factory
finder so that the EJB home lookup operations are resolved with that
factory finder. This tool is available only on the AIX, Windows NT, and
Solaris platforms and can only be applied to servers installed on any of
those platforms.

v ejbbind, which binds an enterprise bean’s Java Naming and Directory
Interface (JNDI) home name (found in its deployment descriptor) to a
factory in an EJB server (CB). This tool is deprecated for servers running on
the AIX, Windows NT, and Solaris platforms.

For more information on developing and deploying enterprise beans in the
Component Broker environment, see the following documents:
v Writing Enterprise Beans in WebSphere

v The Component Broker Application Development Tools Guide

102 WebSphere: Building Business Solutions with WebSphere

Component Broker system management

Component Broker system management tools are used to administer a
large-scale server environment. These tools assist in installing, monitoring,
and running the Component Broker application server. The Component
Broker run time uses the system management tools to manage server
workload by determining which services are needed, which programs need to
be loaded, and so forth. System management tools are also used to manage
the run-time repository. Business Objects can be registered, grouped into
applications and application families, and distributed to managed clients.

For more information on how to administer a Component Broker
environment, see the Component Broker System Administration Guide.

System management model
Component Broker system management gives you the ability to configure,
deploy, monitor, and control all aspects of a Component Broker network. It
uses an object-oriented system management model. Every system entity is
represented by an object. These system objects are organized into a network
that represents your enterprise, the Component Broker administrative
definition of it, and the components that interact with it.

Figure 26 shows the major parts of a Component Broker-managed network.

The network has been simplified for the sake of illustration. It consists of
three System/390 host machines. A host is actually a cluster of systems
configured as a System Complex (Sysplex). The OS/390 System Management
Tool is a Component Broker application that provides configuration and
operational control of the Sysplex as a single system image.

Agent

Common
data

model

Local
configuration

data

SM application

Common
data

model

Central
configuration

data

Centrally
managed
client Locally

managed
client

Server

Client manager

SM user
interface

Application
installation

tool

Figure 26. Topology of a Component Broker system management network

Chapter 8. Using Component Broker 103

Note: Although production-level managed networks are normally much
bigger than the one displayed in Figure 26 on page 103, the entire
network can potentially be implemented on one machine.

The network is configured as follows:
v The System Management Application is the central management control

point. It stores configuration data centrally and contains a copy of the
common data model (CDM). The System Management Application runs on
a single host in its own process. A Component Broker network has only one
System Management Application. (However, a network can optionally
configure an emergency reserve System Management Application on a
second machine.)

v A Component Broker server runs on the second host, shown in the bottom
left side of Figure 26 on page 103. This host also runs a client application.
An agent enables the System Management Application to communicate with
the Component Broker server being controlled. It contains a copy of the
common data model and the configuration data that is associated with its
host. The agent also contains interface modules for monitoring and
controlling the Component Broker system. An agent has its own process
separate from the servers it controls.

v Client applications run on the third host, shown on the bottom right side of
Figure 26 on page 103. Clients can be managed centrally or locally. An
example of a locally-managed client is shown at the lower-right corner of
the figure. The Client Manager user interface can be used to set the
attributes that control clients.

The Application Installation Tool loads applications onto the hosts. It also allows
you to add configuration data to a System Management Application or an
agent.

One component that is not explicitly shown in Figure 26 on page 103 is the
logging facility built into Component Broker System Management. All
components produce error, activity and trace log files. Log files can be viewed
through the user interfaces of the System Management Application, an agent,
or the log browser.

Common data model
The common data model is a description or template of the structure of the
Component Broker configuration data. It is a hierarchical model that contains
folders of objects that form a tree. All objects have unique names within their
folder; as a consequence, all objects have unique, fully-qualified path names.

The common data model consists of three conceptual parts (or worlds):

104 WebSphere: Building Business Solutions with WebSphere

v The model world defines the topology of the system in high-level terms. This
data is stored in the System Management Application and can be backed up
and restored independently of any other data.

v The install world defines the topology of the system in low-level terms. Its
primary use is in the agent, although it is stored in both the System
Management Application and the agents. Install world data is provided
through application packages generated by tools such as the Object Builder.
(It is also possible for an administrator to edit the structure of the install
data in the System Management Application and send the revised structure
to the agents.)

v The image world provides a definition of each individual server in the local
agent. Most of this data is mapped into the common data store to make it
accessible to the servers. Image world data is built by system management
code from data stored in the model and install worlds.

Some objects (such as containers) exist in both the model and image worlds.
These objects are matched by name and allow an application package to
supply the relations of the corresponding image object while the administrator
supplies the attributes.

Chapter 8. Using Component Broker 105

106 WebSphere: Building Business Solutions with WebSphere

Chapter 9. Using TXSeries

IBM TXSeries is an advanced transaction processing solution that coordinates
and integrates servers, managing high-performance applications and data
sources across the network. It enables customers to create a distributed,
client/server environment with all the reliability, availability, and data
integrity required for online transaction processing.

This section discusses the following members of the TXSeries product family:
v Encina, a family of software products used to develop and manage open

distributed systems and perform transaction processing. For more
information, see “TXSeries Encina”.

v Customer Information Control System (CICS), which is IBM’s
general-purpose online transaction processing software. For more
information, see “TXSeries CICS” on page 122.

This section provides background information for the WebSphere family
example application described in “Part 2. Using WebSphere Application
Server” on page 135. It does not focus on the practical issues of using TXSeries
to develop enterprise transaction processing applications.
v For general information about TXSeries, see the Concepts and Facilities guide.
v For more information about Encina, see the Encina product documentation.
v For more information about CICS, see the CICS product documentation.

TXSeries Encina

Encina is a family of software products used to develop and manage open
distributed systems. Using the underlying technology of the Open Group
Distributed Computing Environment (DCE), Encina provides the
infrastructure to handle the complexities of large distributed systems and to
maintain data integrity across them. Furthermore, Encina simplifies many
aspects of programming distributed systems, allowing application developers
to concentrate on the business logic of the program and to ignore many of the
underlying details.

This section provides an overview of the following Encina family members:
v “Encina Monitor” on page 108
v “The Recoverable Queueing Service (RQS)” on page 112
v “The Structured File Server (SFS)” on page 113
v “Peer-to-Peer Communications (PPC) Services” on page 114
v “Encina++” on page 116

© Copyright IBM Corp. 2000, 2001 107

v “The Encina Toolkit” on page 118
v “DCE-Encina Lightweight Client (DE-Light)” on page 119
v “WebSphere Advanced to Encina Interoperability” on page 120

For more information on Encina, see the Encina product documentation.

Encina Monitor
The Encina Monitor, or just the Monitor, is a transaction processing (TP)
monitor that provides the means to develop, run, and administer transaction
processing applications. The Encina Monitor, in conjunction with resource
managers, provides an environment to maintain large quantities of data in a
consistent state, controlling which users and clients access specific data
through defined servers in specific ways. The Monitor provides an open,
modular system that is scalable and that interoperates with existing
computing resources such as IBM mainframes.

Encina Monitor functionality
The Monitor provides three functional areas for a TP system:
v Runtime environment. The Monitor runtime environment coordinates TP

applications and resource managers, and performs runtime administration
tasks, such as load balancing and collecting diagnostics. In addition, this
environment provides for other interactions with the execution
environment, such as scheduling calls for later execution and retrieving
information about users, transactions, data-dependent routing, and
client/server bindings.

v System administration facility. The Monitor system administration
interface is used to construct, initiate, control, and terminate a Monitor
system. Administering the Monitor is done through Monitor administrative
and configuration interfaces.

v Application development environment. Monitor applications are
developed using the Monitor application programming interface (API) in
conjunction with other Encina interfaces, such as Transactional-C (Tran-C).
The Monitor saves the programmer effort by performing some tasks, such
as interaction with DCE RPC and Security, on the application’s behalf.
Servers can be developed using Tran-C or other transactional interfaces
such as the one provided by the Monitor API. The Monitor API also
provides functionality to manage client and server application programs in
a distributed transaction processing environment.

The Monitor runtime environment
The Monitor provides an environment in which client/server applications can
be run. This runtime environment is the Monitor cell, or single administrative
unit. A cell consists of a collection of nodes; each node is a machine on which
applications and Monitor software run. The nodes that make up a Monitor
cell are a subset of the nodes in a DCE cell; the term cell in this document
refers to a Monitor cell unless stated otherwise. A DCE cell can contain more

108 WebSphere: Building Business Solutions with WebSphere

than one Monitor cell. Some services, such as security and the name service,
are provided by the DCE cell, and so all nodes must be able to access these
DCE services.

The physical architecture of a Monitor cell, shown in Figure 27 is a cluster of
nodes connected together by a local area network, with potentially one or
more wide area network connections to similar clusters.

A Monitor cell contains the following components:

Cell manager
The part of the Monitor that monitors and controls the node managers
and data repository within the cell. The cell manager communicates
with node managers, clients, and DCE services. The most important
task of the cell manager is the management of the data needed to
configure and administer the system.

Node manager
The part of Encina that controls all application servers on a single
managed node on behalf of the cell manager. The node manager starts
and monitors the application servers running on a single node. The

Figure 27. Physical Architecture of a Monitor Cell

Chapter 9. Using TXSeries 109

cell manager and its node managers monitor the system constantly,
detecting, reporting, and restarting application servers that have
failed.

Application server
Application servers are the components that process client requests,
usually by interacting with one or more resource managers. They run
on managed nodes and exports services required by the application’s
clients.

An application server consists of one or more processes called
processing agents (PAs) that receive and handle client requests for
services. The Monitor automatically parcels out client requests among
the various processing agents

Application client
The part of the application through which a user interacts with the
Monitor system, making requests for services exported by active
application servers. A client can incorporate an interactive user
interface or use other methods for generating the requests. Clients are
the only components that do not need to run on managed nodes.

Resource manager
A component that manages a shared resource, such as application
data. Application servers communicate with resource managers. Note
that Monitor resource managers include the Structured File Server
(SFS) and Recoverable Queueing Service (RQS).

The Monitor manages several kinds of data for its cell, including
configuration data for the cell and Monitor components and diagnostic data
for each configured diagnostic class.

For more information on the Monitor runtime environment and administering
Encina applications, see Encina Administration Guide Volume 1: Basic
Administration.

Monitor interactions with DCE
The Monitor provides a transaction processing environment built on top of
DCE and the Encina Toolkit. Encina extensions to the underlying DCE
components provide the necessary application execution environment and
associated administration facilities. The Encina Toolkit provides the semantics
necessary for transactional integrity.

DCE is a modular collection of interfaces that provides the basic building
blocks for constructing distributed systems. It supplies the following:
v Remote procedure calls (RPCs), which provide the programming paradigm

for communication between clients and servers. The Monitor’s Transactional
RPC (TRPC) mechanism is built on top of DCE RPC.

110 WebSphere: Building Business Solutions with WebSphere

v Cell Directory Service (CDS), which provides a consistent way of
identifying resources in a DCE cell.

v DCE Security Service, which provides the necessary authentication and
authorization controls for secure operation of Monitor applications

Monitor application development environment
The Monitor development environment consists of the application
development tools, languages, and libraries that enable programmers to
develop application programs for the Monitor. The development environment
consists of three major components:
v The Transactional-C (Tran-C) programming language is a set of extensions

to the C programming language that simplify the development of
transactional applications. The Tran-C runtime system automatically
invokes the necessary functions to support the Tran-C functions used in a
program and monitors the scope and state of transactions and their
associated low-level data structures and constructs.

v Encina Transactional RPC (TRPC) is used to define and execute
client/server interactions Interfaces are described using the Transactional
Interface Definition Language (TIDL), which is an extension to the DCE
IDL. The TRPC runtime, which is built on top of the DCE RPC, serves as
the communication mechanism between an Encina Monitor client and an
application server.

v The Encina Monitor API is a collection of functions that support the
development of distributed transaction processing applications, such as
functions allowing clients and application servers to register with the
Monitor system.

Additional programming and diagnostic tools are available only on the
Windows NT and Windows 95/98 systems platforms.
v The Encina Server Wizard can be used to create Encina and Encina++

servers. It generates much of the standard initialization code for the server,
organizes the code into a project, and associates the appropriate Encina and
system libraries required to build a server.

v The Encina COM Wizard is used to create an Encina COM component (in
the form of a DLL file) from an Encina TIDL interface. The DLL file can
then be incorporated into a client written in any language to enable that
client’s access to any Encina server that exports the interface defined in the
DLL file.

v The WinTrace tool aids developers in debugging distributed client/server
applications. This Encina-specific tool is used to format and view
application output and Encina trace files and to translate error codes and
trace identifiers. It can also be used to start Encina Trace Listener servers
for use in viewing output while a process is running. For information on
using this tool, consult its online help.

Chapter 9. Using TXSeries 111

For more information on writing programs that run in the Encina Monitor
environment, see the following documents:
v Writing Encina Applications

v Writing Encina Applications on Windows Systems

v Encina Transactional Programming Guide

v Encina Monitor Programming Guide

The Recoverable Queueing Service (RQS)
The Recoverable Queueing Service (RQS) allows applications to queue
transactional work for later processing. Applications can store data related to
a task in a queue. This data can be subsequently processed by another
program. Applications can then commit their transactions with the assurance
that the queued work will be completed transactionally at a later time.

Queues are linear data structures that can be used to pass information from
one application to another. Applications enqueue (add) elements to the tail of a
queue and dequeue (remove) elements from the head of a queue in a first-in
first-out (FIFO) manner (although RQS also provides other ways of accessing
elements).

Each queue is maintained by a single RQS server. All interactions with that
queue are handled by the server. An RQS server can contain multiple
queues—for example, one or more queues for storing data associated with
each of the billing, shipping, and inventory maintenance tasks of a retail
business.

Applications use queues to store data in the form of elements. An element is
record-oriented data specific to an application. The fields of an element store
related pieces of the information. For example, a billing element might have
fields for storing the customer name, customer account number, and current
account balance.

Typically, business transactions are structured so that each step in the work of
a transaction must complete successfully before the entire transaction can
finish. An RQS server permits a client to take a subtask of a transaction,
represent the subtask with data, and enqueue the data.

An application can requeue an element to another queue for subsequent
processing by another application. Requeueing is the process of moving an
element from one queue to another.

Applications that select from several different queues when processing
dequeue requests can use queue sets (collections of queues) to simplify the

112 WebSphere: Building Business Solutions with WebSphere

selection process. A queue can belong to more than one queue set. A queue
that belongs to a queue set can be accessed as part of that queue set or can be
accessed individually.

Locking guarantees the consistency of elements and queues in RQS. RQS
supports locking for the duration of an operation, or for the duration of a
transaction. The locking models provided by RQS support high concurrency
among multiple applications that are accessing the same elements or queues.

For more information on writing RQS programs, see the Encina RQS
Programming Guide. For more information on administering an RQS server, see
the Encina Administration Guide Volume 2: Server Administration.

The Structured File Server (SFS)
The Encina Structured File Server (SFS) is a record-oriented file system. SFS
uses structured files, which are composed of records. A record is a grouping of
related information with a predefined size and a predefined number of fields,
which hold specific parts of the record’s information. These fields can be of
various predefined data types. The field layout of a record is defined when
the file is created. For example, each record can contain information about an
employee, with fields for the name, employee number, and salary.

SFS provides both data processing and administrative functions. The data
processing functions provide the standard operations used to access and
modify data: read, insert, update, delete, lock, unlock, and so on. The
administrative functions enable programs to create, query, and modify SFS
files and volumes, copy files, delete files, and so forth.

All data in SFS files is managed by the SFS server. Programs that require
access to this data must submit their requests to that server, which retrieves
the requested data or performs the specified operation.

SFS provides a number of benefits, including:
v Transaction protection. SFS provides transactional access to data stored in a

file. Files managed by SFS are thus fully recoverable from server problems,
network outages, and media failures.

v Support for distributed computing and open systems. SFS provides a
consistent mechanism for requesting access to structured data across
multiple platforms. The client/server model used by SFS allows
applications to be easily and transparently distributed on the network.

v Ease of porting existing applications. SFS enables you to simplify porting
existing structured file or database applications by providing a logical
(rather than physical) data model.

Chapter 9. Using TXSeries 113

v ISAM compatibility. The Encina Transactional Indexed Sequential Access
Method (T-ISAM) library provides an X/Open ISAM-compliant method of
accessing data stored in SFS.

v COBOL record interface. The SFS External File Handler (EXTFH) supports
the use of Micro Focus COBOL with SFS. Existing COBOL applications,
using standard COBOL I/O statements, can be made to access SFS files; the
native COBOL I/O calls are transparently mapped to SFS calls.

v Compatibility with database systems. The Encina Transaction Manager-XA
(TM-XA) Service enables SFS applications to interact with database
applications that support the X/Open XA interface.

v Compatibility with RQS Many SFS are compatible with RQS. For example,
the field types used by SFS have corresponding types in RQS. Thus,
applications can easily use both SFS and RQS.

For more information on writing SFS programs, see the Encina SFS
Programming Guide. For more information on administering an SFS server, see
the Encina Administration Guide Volume 2: Server Administration.

Peer-to-Peer Communications (PPC) Services
PPC Services enables Encina transaction processing systems to interoperate
with systems, typically mainframes, that have System Network Architecture
(SNA) LU (Logical Unit) 6.2 communications interfaces. It enables integration
and migration between mainframe systems using SNA and Encina transaction
processing systems.

PPC Services enable bidirectional communications, so that both applications
and data can be shared between mainframes and Encina, with either side
initiating communications. Applications that run on an SNA network can
allocate a conversation through the PPC gateway to an application in the
Encina Monitor.

PPC Services supports several interfaces that provide thread-safe routines for
execution in DCE environments.
v Distributed Program Link (DPL). DPL enables Encina PPC Executive

applications to operate in a client/server relationship with CICS
applications and other Encina DPL applications. DPL applications
communicate with other applications in a way that is similar to an Encina
transactional remote procedure call (TRPC).

v Both the X/Open Common Programming Interface Communications
(CPI-C) and the IBM System Application Architecture (SAA) CPI-C. The
CPI-C interface provides a more generalized way to implement peer-to-peer
communications between a PPC Executive application and a remote
application.

v The SAA Common Programming Interface Resource Recovery (CPI-RR)
interface for transaction demarcation.

114 WebSphere: Building Business Solutions with WebSphere

v The X/Open TX interface for transaction demarcation.

These interfaces are not mutually exclusive. The interfaces that you use
depend on your environment and the requirements of your application.

The PPC Services model for communicating through a gateway server is
illustrated in Figure 28.

The gateway server runs on a machine that is part of a DCE cell and an SNA
network. The Gateway/SNA establishes a virtual link between an SNA LU 6.2
application on a mainframe and a PPC Executive application on a DCE node.
PPC Executive applications are fully integrated into the Encina/DCE
environment. That is, an application can communicate with a mainframe
using SNA while using Encina and DCE to communicate with other
applications in the Encina/DCE environment.

The two products that make up a PPC application are:
v The PPC Executive—A library that supports peer-to-peer communications

and two-phase commit transactional semantics. Programmers use the
functionality provided by the PPC Executive to create programs (PPC
Executive applications) that communicate with other applications that support
the SNA LU 6.2 protocol.

v The PPC Gateway Server—A communications manager that provides
communications between Encina applications in a DCE cell and LU 6.2
applications in an SNA network. Allocating conversations through a
gateway is bidirectional, enabling transactional access to data on either a
mainframe or a machine in the Encina system from an application on the

Figure 28. PPC communications model

Chapter 9. Using TXSeries 115

other network. The gateway server isolates SNA requirements (such as
logging and recovery) from PPC Executive applications.

For more information on writing PPC programs, see the Encina PPC Services
Programming Guide. For more information on administering a PPC Gateway
server, see the Encina Administration Guide Volume 2: Server Administration.

Encina++
Encina++ is an object-oriented application programming interface (API) for
Encina. It is composed of classes that access many Encina components.

Encina++ interfaces
Encina++ supports the development of object-oriented applications that are
based on DCE, CORBA, and a mixture of both DCE and CORBA. The latter
type of application is often referred to as a mixed application. Of the
components that make up Encina++, some can be used only with
Encina++/DCE or only with Encina++/CORBA, and some can be used by
either or both.

Common Encina++ interfaces: The following Encina++ interfaces can be
used in any type of Encina++ application:

Encina++
The Encina++ interface defines C++ classes and member functions
that enable the creation and management of client/server applications
and provide support for the underlying environment.

Transactional-C++ (Tran-C++)
The Tran-C++ interface defines C++ constructs and macros as well as
classes and member functions for distributed transaction processing.
This interface provides an object-oriented alternative to the Encina
Transactional-C interface.

Object Transaction Service (OTS)
The Object Management Group (OMG) OTS interface also defines
C++ classes and member functions for distributed transactional
processing. This interface implements the OMG Object Transaction
Service specification as documented in OMG document 94.8.4.

For more information on writing programs using the common Encina++
interfaces, see the Encina Object-Oriented Programming Guide.

Encina++/DCE interfaces: The Encina++ programming interfaces that are
supported only for DCE (including mixed applications) provide
object-oriented access to two types of Encina servers offering specialized
services:

116 WebSphere: Building Business Solutions with WebSphere

Recoverable Queueing Service C++ interface (RQS++)
The RQS++ interface defines C++ classes and functions for
enqueueing and dequeueing data transactionally at an RQS server.

Structured File Server C++ interface (SFS++)
The SFS++ interface defines C++ classes and functions for
manipulating data stored in record-oriented files at an SFS server
while maintaining transactional integrity.

The Encina Data Definition Language (DDL) compiler is used to generate the
classes used by RQS++ and SFS++ applications. For more information on
these interfaces, see the Encina RQS++ and SFS++ Programming Guide.

Encina++/CORBA interfaces: Encina++ provides two programming
interfaces that are supported only for CORBA applications and mixed
DCE-CORBA applications:

Object Concurrency Control Service (OCCS)
The OCCS interface defines C++ classes and functions that enable
multiple clients to coordinate access to shared resources. This interface
implements the OMG Concurrency Control Service Proposal as
documented in OMG TC Document 94.5.8.

Java OTS Client interface
The Java OTS Client interface defines Java classes and functions that
enable Java client applications to begin and control distributed
transactions. This interface implements the OMG Object Transaction
Service specification as documented in OMG document 94.8.4.

For more information on writing programs using the Encina++/CORBA
interfaces, see the Encina Object-Oriented Programming Guide.

Encina++ programming model
The Encina++ classes support a client/object programming model in which
clients access objects instead of servers. Servers export one or more interfaces
(classes) and one or more instances of each class (objects). The client
application can access objects exported by servers without the application
developer knowing how the objects available in the system map to servers.

Clients can bind to objects exported by servers. They can bind to individual
objects when the objects are known, or they can bind to a class when the
objects are not known or when all objects of a specific class provide the same
capabilities. Typically, the application developer specifies a name for an object.
Although each object created has a universal unique identifier (UUID),
naming an object allows clients to bind to the object by name instead of by
UUID.

Chapter 9. Using TXSeries 117

In Encina++, an interface definition language (IDL) is used to specify the
interfaces to objects in the form of remote procedures. The remote procedures
are used for communications between the client and server applications. The
interface compiler generates files that include client stub and server stub
classes for each interface. These stub classes give the client and server a
slightly different view of the same interface.

Client and server support
Encina++ offers the following features for object-oriented, distributed
transaction-processing applications:
v Initialization of clients and servers
v Transparent and explicit binding
v Object registration and binding
v Integration of XA-compliant databases
v Transactional and nontransactional threads
v Integrated exception handling

Encina++ enables you to develop several different types of client and server
applications in C++ as well as Java clients that access Encina++ servers.

The Encina++ interfaces are designed to support functionality exported by the
Encina Monitor and can be used to create Monitor application servers and
clients in C++. Monitor application servers and clients can use DCE or
CORBA or both. See the Encina Monitor Programming Guide and the Concepts
and Planning for more information on the Encina Monitor.

The Encina++ interfaces also support the development of C++ client and
server applications that do not run under the control of the Encina Monitor.
These applications can use either DCE, CORBA or both.

Encina++ provides a set of Java classes for use with the OrbixWeb object
request broker from IONA Technologies, Ltd. OrbixWeb allows you to build
distributed applications in the Java language. The Encina++ Java interfaces
allow you to write Java client applications that begin and control transactions
by using the Java-language implementation of the OTS. Encina++ Java clients
can bind to objects exported by Encina++/CORBA servers.

The Encina Toolkit
The Encina Toolkit is a collection of modules, libraries, and programs that
provide the functions required for large-scale distributed client/server system
development. The modules of the Toolkit include log and recovery services,
transaction services, and Transactional Remote Procedure Call (TRPC, an
extension to the DCE RPC technology). These modules transparently ensure
distributed transactional integrity. The Toolkit also provides Transactional-C
(Tran-C), a transactional extension to the C programming language.

118 WebSphere: Building Business Solutions with WebSphere

Lower-level modules of the Encina Toolkit include the following:
v The Distributed Transaction Service (TRAN), which coordinates

transactions.
v The Lock Service (LOCK), which prevents conflicting access to data.
v The Log Service (LOG) and Recovery Service (REC), which guarantee that

changes made to data on behalf of a transaction are either performed in
their entirety or appear never to have occurred.

v The Volume Service (VOL), which enables applications to address storage in
terms of logical units called volumes. Volumes can consist of single or
multiple physical disk partitions, can include entire disks, and can span
multiple physical disks. The Volume Service maintains the storage used by
the Log Service, which in turn stores the data required by the Recovery
Service to restart a recoverable application.

v The Transaction Manager-XA Service (TM-XA), which implements the
transaction manager side of the X/Open XA interface. TM-XA coordinates
distributed transactions with relational database managers.

v The Transarc/Encina DCE Utilities Library (TRDCE), which provides
utilities for constructing client and server programs.

Application programs do not generally use the lower-level modules directly,
although they can be accessed if needed. For example, Tran-C (not TRAN) is
used for creating transactions. Tran-C itself calls TRAN; the application does
not have to call TRAN directly.

For more information on using the Encina Toolkit, see the Encina Toolkit
Programming Guide.

DCE-Encina Lightweight Client (DE-Light)
The DCE Encina Lightweight Client™ (DE-Light) is a set of application
programming interfaces (APIs) and a gateway server that extends the power
of DCE and TXSeries Encina to systems that are not running as DCE clients.

You can use DE-Light to build clients that require less overall effort to create,
involve fewer administrative resources, and generate less network traffic than
standard DCE or Encina clients. Yet these DE-Light clients can still take
advantage of the benefits of load balancing, scalability, and server replication
that were formerly available only to full DCE and Encina clients. In addition,
DE-Light enables you to access DCE and Encina from systems that do not
support DCE, but that do support Java.

DE-Light is composed of the following components:
v Java API—Used to develop Java clients for standalone Java applications.

DE-Light Java clients communicate with gateways via TCP/IP and
Hypertext Transfer Protocol (HTTP).

Chapter 9. Using TXSeries 119

v C API—Used to develop clients for Microsoft Windows environments.
DE-Light C clients use TCP/IP to communicate with gateways at known
endpoints.

v Gateway server—Enables communications between DE-Light clients and
DCE or Encina.

DE-Light Java clients can consist of either of the following:
v A Java applet embedded into a Hypertext Markup Language (HTML)

document residing on a Web server. With this type of client (shown in
Figure 29), a user contacts a Web server through a Java-enabled Web
browser, and the browser automatically downloads the DE-Light Java client
applet along with the HTML document. The DE-Light Java client applet
then contacts the appropriate DE-Light gateway. The gateway is a separate
server that resides on a DCE client machine. The Web client can now
communicate with DCE or Encina servers via the DE-Light gateway.

v A standalone Java application.

For more information on how to write DE-light programs, see the Encina
DE-Light Programming Guide. For more information on how to administer a
DE-light gateway, see Encina Administration Guide Volume 2: Server
Administration.

WebSphere Advanced to Encina Interoperability
Advanced Application Server applications written in the Java programming
language can use the WebSphere Advanced to Encina Interoperability
functionality to communicate with Encina and Encina++ servers. This
functionality is used in the sample application to enable the Java-based
sample application to communicate with an Encina++ server.

Figure 29. DE-Light Java client

120 WebSphere: Building Business Solutions with WebSphere

Java applications communicate with an Encina or Encina++ application by
using a bridge server. The bridge server exports CORBA interfaces whose
methods correspond to the TIDL interfaces of an Encina or Encina++
application. Java applications contact the bridge server by using IIOP; the
bridge server makes TRPCs to the Encina Monitor Application Server. Calls
from the Java client to Encina are in one direction only.

Note: The CORBA interfaces are encapsulated; they cannot be called directly.
CORBA clients are not supported.

Figure 30 illustrates a distributed system that uses a bridge server.
The wstidl tool takes an Encina TIDL file as input and generates the required

CORBA IDL interfaces, Java classes, server main function, and other files used
to achieve connectivity. The generated bean or enterprise bean can be used as
part of an Advanced Application Server application.

The connectivity layer on the client side is embedded in the bean class. On the
bridge server, the connectivity layer consists of CORBA interfaces and
additional specialized files that map TIDL parameters, TIDL data types, and
Encina exceptions to analogous elements in CORBA.

Using a bridge server provides the following additional advantages:
v The bridge server uses the IBM C++ ORB. Thus, you do not have a

dependency on third-party ORBs.
v The bridge server propagates transactions originating at the client to the

server, preserving the appropriate behavior as defined in the original TIDL
file.

For more information on how to create a bridge server, see the Encina
Object-Oriented Programming Guide.

Figure 30. Interoperability between Java applications and Encina/Encina++ servers

Chapter 9. Using TXSeries 121

TXSeries CICS

CICS is IBM’s general-purpose online transaction processing software. It an
application server that runs on a range of operating systems from the desktop
to the largest mainframe. TXSeries CICS, which is part of WebSphere
Enterprise Edition, runs on AIX, Solaris, HP-UX, Windows 2000, and
Windows NT, but other versions of CICS run on OS/390, OS/400, OS/2,
VMS, and other platforms. CICS handles security, data integrity, and resource
scheduling. It integrates basic business software services required by online
transaction processing applications.

This section provides a high-level overview of CICS. For more information,
see the TXSeries Concepts and Planning guide and the CICS documentation set.

Basic CICS concepts
This section describes the components of a CICS system. For more
information on basic CICS system concepts, see the Concepts and Planning, the
CICS Administration Guide for Open Systems, the CICS Administration Guide for
Windows Systems, and the CICS Administration Guide for Windows Systems.

Regions
An instance of a CICS system is called a CICS region. On UNIX or Windows
systems, this region consists of a number of processes. A CICS region provides
the transaction processing services that are convenient to manage as a single
administrative unit. These services typically support the business logic of user
applications, running as transactions requested by CICS client applications
and 3270 terminal users.

A CICS region frees application programs from having to negotiate with the
operating system to acquire and release resources. Each task being processed
uses processor cycles, processor memory for the programs doing the work,
and memory for the task and user data. It needs small areas of memory for
scratchpad-type calculations and, sometimes it needs data-communications
channels, data files, and databases. For all these, the region gets the resources
needed from the operating system. It then allocates the resources to the tasks
that need them. It reacquires the resources when the tasks complete their
processing or specifically release a resource.

A CICS region controls the simultaneous access to resource managers, even
across multiple machines and platforms, and preserves the integrity of data
updates. For example, it synchronizes updates, logs changes, and recovers
in-doubt updates. It can also use security services to ensure that only
authorized users can access and update data.

Figure 31 on page 123 shows the components that make up a CICS region.

122 WebSphere: Building Business Solutions with WebSphere

It is common to run multiple CICS regions on the same system. These regions
can be independent of one another—for example, one for accounting, one for
inventory management, and so on—or they can be closely tied together. CICS
provides a number of facilities for inter-region (also called intersystem)
communication. (See “CICS intersystem communication” on page 129 for more
information.)

Tables
CICS is a table-driven system. That is, the operation of a CICS region is
defined and controlled by a number of tables. These tables tell CICS which
files to use, which terminals to use, which transactions are available (and
which programs these transactions are associated with) and so on. The
contents of these tables are controlled by resource definitions. CICS
administration involves a large number of resource definitions. Every
transaction, program, file, queue, terminal, remote system, and so on must be
defined.

Transactions
Each user’s interaction with a CICS region involves one or more transactions.
In CICS terms, a transaction is a basic operation that is offered to the user. For
example, a banking application could include a query transaction, a debit
transaction, a funds-transfer transaction, and so on. Note that this use of the
term is a bit different than the term as used in other contexts (such as how the
term is used by Encina). CICS calls a group of actions that must be performed
as an atomic unit of work and which must be durable and recoverable a
logical unit of work (LUW).

Figure 31. A CICS region

Chapter 9. Using TXSeries 123

The transactions that make up an application are written by CICS application
developers. An administrator specifies which transactions are to be offered to
users in the region’s Transaction Definitions. The users typically select
transactions by specifying the four-character name for the transaction. CICS
then schedules the transaction to run. The transaction is then run in a process
called an application server. If the transaction is implemented by several
programs, those programs can run in the same or separate processes. The
CICS region monitors the progress of the program, serving its requests for
data, communications, and other resources. When the transaction completes,
the CICS region commits any data changes, terminates the program, and frees
resources for use by other transactions.

You can distribute transactions across multiple CICS regions to spread the
workload across those regions. You can predefine whether a transaction
request is to be served locally (on the CICS region that received the request),
routed to a specified remote region to be run there, or routed dynamically to
any region that can run the transaction.

A number of predefined transactions are supplied with CICS. These
transactions allow users to sign on and off. They also provide utility,
management, and debugging facilities.

Task management services
CICS Task management services control the creation, processing, and
termination of tasks. Whenever possible, the CICS region provides the best
response times to the most important work. Usually, several tasks are
competing for processing time, so the CICS region determines the priority. At
any time there are likely to be many tasks to be performed concurrently, all
requiring use of the same resources. The region schedules and dispatches
tasks according to their relative priority and the availability of application
servers and other system resources. This controls the rate and order in which
tasks are processed, thereby minimizing the chances of conflict or system
overload. The CICS region calculates the priority several times during the
lifetime of a task. For example, a task can be processed until it needs input
from a file or a user. The CICS region suspends the task, awaiting its input,
and starts a new waiting task or resumes work for another suspended task.

Program management services
CICS Program management services are used to associate a task with the
application program that is to do its work. Although many tasks can need to
use the same application program, program control loads only one copy of the
code into memory. Each task threads its way through this code independently,
so many users can run tasks concurrently using the same physical copy of an
application program.

124 WebSphere: Building Business Solutions with WebSphere

If a task involves many interactions with the user (for example, for data to be
input), it is usually implemented as a number of programs that run in
sequence and end before the next program starts. This technique is called
pseudoconversational programming. When each program ends, it displays a
screen for the user to input data. The CICS region remembers which program
to run next to process the input, but releases the memory used by the task
and the program that ended. If that program was not being used by other
tasks, the region also reuses the memory used to hold the program. So, while
the CICS region is waiting for a user to input data, the system resources are
freed to be used by other tasks. However, the user is unaware of the program
ending and can continue to communicate with the system, almost as if in a
conversation.

Time management services
Time management services enable programs to start and control a range of
time-dependent operations—for example, starting a transaction (task) at a
certain time of day and signaling when a specified time period has elapsed.
These services also enable date- and time-stamped events to be logged to disk
for accounting purposes or to ensure data integrity, and they enable a degree
of automation for the CICS region.

Security services
A CICS region provides security against unauthorized logon, and protects
individual resources (programs, files, and so on) from use by all but certain
users. The security management services provide the data needed for the
checks, which are performed by CICS internal security, an external security
manager, Distributed Computing Environment (DCE) security services, or by
some combination of these.

CICS regions can use DCE security services for centralized authentication and
authorization of users who want to use transaction processing services. CICS
provides its own internal security services that are a more basic alternative to
DCE security. It also provides interfaces to special-purpose external security
packages to manage all aspects of system security.

Recovery management services
A CICS region ensures that the business system and its data are always in a
consistent state. In the event of an application or system failure, the region
can automatically restart itself (if needed) and recover any uncompleted work
that was in progress at the time of failure, including any changes to data. If it
cannot commit data changes for a task, a region dynamically backs out the
changes to a point when the system was last in a consistent state.

User interface
CICS Terminal management provides a standard way for applications to
communicate with any type of terminal. The CICS region queries the users’
devices and determines the optimum characteristics to use for application

Chapter 9. Using TXSeries 125

output. The region can use models to influence its choice of characteristics
and can use terminal definitions to apply specific characteristics to devices.

The typical user interface to a CICS application is through an IBM 3270
terminal—either an actual 3270 terminal or through a terminal emulator
package. Other user interfaces that do not present a 3270 interface to the user
often still use a 3270 data stream to communicate with the CICS region,
allowing the existing CICS applications to be used by new clients.

CICS application programming interface
CICS provides a rich application programming interface (API) that enables
developers to create transaction application programs.

CICS region application programming
The CICS API is made up of a number of commands for performing
operations in CICS regions. These commands are embedded in an application
program written in a high-level programming language (such as COBOL, C,
C++, PL/I, or Java). The developer simply precedes the CICS command by
the phrase EXEC CICS. For example:
EXEC CICS READ FILE('ORDER') INTO(RECORD)

The program source file is then processed by a precompiler before it is
processed by the compiler for the programming language (the COBOL
compiler, the C compiler, and so on).

CICS API commands are available to perform the following types of
functions:
v File control—reading, writing, and updating files
v Storage control—allocating and freeing memory
v Program control—passing control between CICS programs
v Temporary storage control—reading from and writing to temporary storage

queues
v Transient data control—reading from and writing to transient data queues
v Interval control—using timers
v Journal control—writing journals for audit trails, change records, and so

forth
v Basic mapping support and terminal support—sending and receiving data

from 3270 terminals
v Advanced program-to-program communications—communicating using

SNA LU 6.2 communications
v Task control—controlling the CICS internal dispatcher
v Syncpoint and abend support—handling logical units of work

126 WebSphere: Building Business Solutions with WebSphere

Commands are also provided for security, authentication, batch data
exchange, monitoring and diagnostics, and a number of other areas.

CICS provides a Java API that encapsulates these commands. Software
developers can use the classes in this API as an alternative to embedding
EXEC CICS commands in their programs.

For more information on programming CICS applications, see the following
documents:
v CICS Application Programming Guide

v CICS IIOP and Java Programming Guide

CICS client application programming
CICS provides two APIs that enable non-CICS applications on a client
machine to use the facilities of connected CICS regions. These APIs are
common to all IBM CICS Clients.
v The external call interface (ECI) enables a non-CICS application running on

the client machine to call a CICS server program running on a CICS region.
The client program can call the server program synchronously or
asynchronously as a subroutine.

v The external presentation interface (EPI) enables client applications to start
and converse with legacy 3270 CICS applications running on CICS regions.
The CICS application sends and receives 3270 data streams to and from the
client application as though it is conversing with a 3270 terminal. The client
application captures these data streams and, typically, displays them with a
presentation product such as a graphical user interface. The legacy
application itself does not need to be altered.

ECI and EPI application programs that run on CICS clients can be written in
COBOL, C, or C++. Programs that do not make operating-system-specific calls
are portable between the CICS client products. Client application programs
can use both the ECI and the EPI. To use the ECI and EPI, programs must be
linked to the appropriate ECI and EPI libraries.

CICS Internet application programming
Developing Internet applications that use CICS is an extension to normal
programming for the Internet, and uses the standard interfaces of Web
servers. The most commonly used interface is the Common Gateway Interface
(CGI), which is a way of invoking programs from a Web server and returning
any output from the programs to the Web server. By using programs invoked
by a Web server, you can run CICS transactions from a Web browser,
dynamically create Hypertext Markup Language (HTML) pages in response to
user input, and issue Structured Query Language (SQL) queries to relational
database managers.

Chapter 9. Using TXSeries 127

An Internet application using the CICS Internet gateway generally contains
the following:
v An HTML form, which presents a user with a Web page for entering data

and sends user input to the CICS Internet gateway whose name is encoded
in the form. This form can be developed by using standard Web
development tools and processes.

v The CICS Internet gateway, which is a CGI script called to convert between
HTML and 3270 data streams. You can also develop your own CGI scripts,
using interpretive languages like REXX or compiled languages like C.

v A program to be invoked on a CICS region. The program can be developed
by using the standard CICS application development facilities.

Besides forms, you can use environment variables and command-line
arguments to pass data to the CICS Internet gateway.

Support for relational databases
CICS supports the use of a number of relational databases. These databases
can be used to store the information used by CICS applications, which can
include embedded Structured Query Language (SQL) statements. CICS
supports the XOpen X/A specification, which means that databases that also
support this specification can fully participate in CICS LUWs using a full
two-phase commit process if needed.

CICS provides support for the following relational database management
systems:
v IBM Universal Database (UDB) (DB2)
v Oracle
v Informix
v Sybase
v Microsoft SQL Server

Queue services
Queues are sequential storage facilities that are global resources within either
a single CICS region or a system of interconnected CICS regions. That is,
queues, like files and databases, are not associated with a particular task. Any
task can read, write or delete queues, and the pointers associated with a
queue are shared across all tasks.

Two types of queues are provided by CICS:
v CICS transient data queue services provide a generalized queueing facility.

Data can be queued (stored) for subsequent internal or external processing.
Applications can:
– Write data to a transient data queue.
– Read data from a transient data queue.

128 WebSphere: Building Business Solutions with WebSphere

– Delete an intrapartition transient data queue.
v CICS temporary storage queue services provide the application programmer

with the ability to store data in temporary storage queues. These queues
can be located either in main storage, or in auxiliary storage on a
direct-access storage device. Data stored in a temporary storage queue is
known as temporary data. Temporary storage queues are efficient, but they
must be created and processed entirely within CICS. However, they can be
defined dynamically by an application and do not have to be defined to
CICS before the application uses them. Applications can:
– Write data to a temporary storage queue.
– Update data in a temporary storage queue.
– Read data from a temporary storage queue.
– Delete a temporary storage queue.

Although these names imply impermanence, CICS queues are permanent
storage. Except for temporary storage queues kept in main storage, CICS
queues persist across executions of CICS, unless explicitly discarded in a cold
start. Persistent queues are stored by the CICS file manager—either the Encina
Structured File Server (SFS) or DB2.

User exits
A user exit is a place in a CICS module at which CICS can transfer control to a
program that you have written (a user exit program). CICS resumes control
when your exit program has finished its work. You can use user exits to
extend and customize the function of your CICS system according to your
own requirements. User exits provide a powerful way for you to control the
operation of your CICS system.

CICS intersystem communication
In a multiple system environment, CICS regions can communicate with other
regions to provide users of the local region with services on remote systems
and offer services in the local region to users on remote systems. Both data
and applications can be shared.

CICS intercommunication facilities
The CICS intercommunication facilities simplify the operation of distributed
systems. In general, this support extends the standard CICS facilities (such as
reading and writing to files and queues) so that applications or users can use
resources situated on remote systems without needing to know where the
resources are located. The CICS intercommunication facilities are:

Distributed program link (DPL)
DPL extends the use of the EXEC CICS LINK command to allow a
CICS application program to link to a program that resides on a
different CICS system. In doing so, the first program (the one
initiating the DPL request) passes control to the second program.

Chapter 9. Using TXSeries 129

Conceptually, DPL has many similarities to the remote procedure calls
(RPCs) and remote method invocation (RMI) used by other
WebSphere components.

Function shipping
Function shipping allows an application program to access files,
transient data queues, and temporary storage queues belonging to
another CICS system.

Transaction routing
Transaction routing allows you to execute a transaction on a remote
system. The transaction is able to display information on your
terminal as if it were running on your local system.

Asynchronous processing
Asynchronous processing extends the EXEC CICS START command to
allow an application to initiate a transaction to run on another CICS
system. As with standard EXEC CICS START calls, the transaction
requested in the START command runs independently of the
application issuing the START command.

Distributed transaction processing (DTP)
DTP uses additional EXEC CICS commands that allow two
applications running on different systems to pass information between
themselves. These EXEC CICS commands map to the Logical Unit
(LU) 6.2 mapped conversation verbs defined in IBM System Network
Architecture (SNA). DTP can be used to communicate with non-CICS
applications that use the advanced program-to-program
communications (APPC) protocol.

TXSeries intercommunication is based on the SNA LU 6.2 protocol, often
referred to as APPC. CICS regions and Encina Peer to Peer Communications
(PPC) applications can communicate across SNA with any system that
supports APPC; for example, IBM mainframe-based CICS and APPC
workstations.

CICS and the Encina Monitor support all three synchronization levels defined
by SNA, across both SNA and TCP/IP networks. TXSeries can use CICS local
SNA support and the Encina PPC Gateway Server. Both methods support all
the CICS intercommunication facilities to other CICS regions, and DTP is
supported to non-CICS region (such as Encina). Also, CICS can use local SNA
support to communicate with IBM CICS Clients.

For more information on CICS intercommunication facilities, see the CICS
Intercommunication Guide. See “Peer-to-Peer Communications (PPC) Services”
on page 114 for more information about the PPC Gateway server.

130 WebSphere: Building Business Solutions with WebSphere

Communicating with users
Users communicate with the CICS region through clients. Clients are typically
products dedicated to communicating with servers and providing interfaces to
users and their application programs. Clients run on a range of platforms, for
example, laptop computers and Open Systems workstations.

Users can communicate with CICS through the following:
v IBM CICS Clients, which also enable you to access CICS regions from the

Internet and Lotus Notes.
v Telnet clients with 3270 emulation capability.
v Local 3270 terminals attached directly to CICS regions.

Other devices for communicating with users can be connected to CICS
Clients. For example, an automatic teller machine (ATM) can be connected to
a client to provide its user interface to CICS. Similarly, a printer attached to a
client can be used for output from CICS.

Figure 32 illustrates the various communications methods used by CICS
clients.

A CICS client can communicate with multiple CICS regions. A client
initialization file determines the parameters for client operation and identifies
the associated regions and protocols used for communication.

Communications gateways
CICS supports the following communications gateways:

Figure 32. Communication between CICS clients and a CICS region

Chapter 9. Using TXSeries 131

CICS Transaction Gateway
The CICS Transaction Gateway enables Java applications and Web
browsers to access TXSeries. The gateway resides on the same
machine as the Web server, and can be used by a Java-enabled Web
browser or a network computer (NC). The CICS Transaction Gateway
provides an interface between a Web server and a CICS client and,
through the client, the rest of the CICS transaction processing
environment. It also provides an API that enables conversations
between an application or applet in Java and a transactional
application running in a CICS region. The CICS Transaction Gateway
runs on the Windows NT, AIX, Solaris and OS/2 operating systems.

CICS link for Lotus Notes
CICS link for Lotus Notes is a gateway that enables Lotus Notes
applications to access data managed within the TXSeries environment.
The gateway resides on the same machine as the Lotus Notes server
and can be used by any Lotus Notes application that can connect to
that server. The gateway provides an interface between a Lotus Notes
server and a CICS client and, through the client, to the rest of the
CICS environment. To use CICS link for Lotus Notes, you need a
Lotus Notes Server and client. You can get these through the Lotus
Domino Server or you can use your existing Lotus Notes software (of
the required version). The CICS link for Lotus Notes runs on the
Windows NT and OS/2 operating systems.

CICS administration
Systems administration for CICS consists of configuring the CICS environment
so that CICS regions can be started, monitoring running regions, shutting
regions down, and recovering from problems. Administering CICS involves
procedures that affect other components such as the Structured File Server
(SFS), DB2, and DCE.

The administrative tool used to configure and manage CICS depends on the
operating system you are using. For example, you can use the Administration
Utility for CICS on Windows NT or the System Management Interface Tool
(SMIT) for CICS on AIX. The tools simplify and automate the administrative
procedures. You can also use other tools, such as CICS commands and
transactions.

The CICS administration tools are designed to manage the CICS environment
on one machine. To use them, you log into the machine as a systems
administrator, then invoke the tool that you want to use. To manage the CICS
environment on several machines, you can use standard techniques to log into
each machine remotely and use the tools on those machines. For example, you
can use one machine as a single point of control, with sessions set up to run
tools on other machines. You can control access to the administration tools by
controlling access to this machine.

132 WebSphere: Building Business Solutions with WebSphere

For more information on administering CICS applications, see the following
documents:
v CICS Administration Guide for Open Systems

v CICS Administration Guide for Windows Systems

v CICS Problem Determination Guide

CICS workload management
CICS Workload Management (WLM) is a stand-alone utility that optimizes the
distribution of processing tasks in a CICS environment with two or more
regions that can process work requests. WLM is available only on the AIX and
Solaris platforms and must be installed separately.

WLM distributes the incoming work requests over the systems that can
process the work. The combined machine resources are now available to each
application. This provides several benefits:
v Application availability is improved because applications can be accessed

from multiple locations.
v Available processing power is optimized because a distribution algorithm is

used to route tasks.
v Scalability is improved because additional regions can be created and easily

added to the WLM configuration.
v Servers can be shut down and maintained transparently because requests

are automatically routed to healthy servers.
v The cost of hardware upgrades is reduced because work requests are

distributed over all available servers in the WLM configuration.

For more information, see Using CICS Workload Management.

Chapter 9. Using TXSeries 133

134 WebSphere: Building Business Solutions with WebSphere

Part 2. Using WebSphere Application Server

This section describes an example application that illustrates some of the
capabilities of WebSphere Application Server. The sample application is an
e-business Web site that is created by using members of the WebSphere
Application Server product family.

The following topics are discussed:
v “Chapter 10. Overview of the sample application” on page 137
v “Chapter 11. Sample application design” on page 141
v “Chapter 12. Implementing the sample application” on page 147
v “Chapter 13. Technical details of the sample application” on page 157
v “Chapter 14. Extending the sample application” on page 179

The sample application can be accessed from the WebSphere Application
Server samples page at www.ibm.com/software/webservers/samples.

© Copyright IBM Corp. 2000, 2001 135

http://www.software.ibm.com/webservers/samples/

136 WebSphere: Building Business Solutions with WebSphere

Chapter 10. Overview of the sample application

This section introduces the sample application and discusses its goals.

Sample application scenario: Online banking

The scenario for the sample application centers around a bank’s plan to create
a corporate Web site. The goals for the site are to establish a World Wide Web
presence and enable customers to do online banking.

The bank plans to make the following information available to its customers:
v Account balances
v Transaction histories of accounts
v Company information, such as the bank’s mission statement, a list of

branches and their hours, and the bank’s current promotions
v Site information, such as a site map and other navigation aids

The bank also plans to allow customers to perform the following tasks
through the Web site:
v View account balances
v View transaction histories of accounts
v Transfer funds between accounts
v View other types of information on the site by navigating through the site’s

pages.

The site must meet various performance requirements — for example, the
number of users that can be logged onto the site concurrently and the total
number of users permitted. It must also meet performance requirements for
transactions, such as the maximum duration of a transaction and the timeout
period for a typical transaction.

To understand how customers use their site, the bank has defined a set of use
cases. They illustrate site flow and exceptions, and can identify areas that
might need redesign. An example of a use case follows.
1. The customer logs onto the Web site by entering a valid user ID and

password.
2. The customer gets a list of accounts associated with that user ID.
3. The customer views the transaction history for one of the accounts.

Finally, the site must interact smoothly with the information systems currently
in place at the bank. For example, it must be able to access account

© Copyright IBM Corp. 2000, 2001 137

information from an existing customer database and communicate with legacy
transaction-monitoring systems. This requirement affects the site’s architecture.
If customer data can be easily and reliably accessed (for example, in a DB2
database), the site can be designed to directly manipulate data. However, if
data must be accessed through existing mechanisms like CICS transactions,
the site must be designed to use these legacy transactions.

Goals of the sample application

The sample application illustrates how WebSphere Application Server can be
used to implement an electronic commerce system.
v It shows how the individual parts of WebSphere Application Server work

together. The different implementations of the sample application use most
of the WebSphere tools and features. The application was created by using
WebSphere Studio, VisualAge for Java, and the VisualAge Component
Development Toolkit. It makes use of a Web server, Web site, servlets,
JavaBeans components, and JavaServer Pages (JSP). The business logic is
implemented with distributed objects such as enterprise beans and
Component Broker managed objects. The various parts of the sample
application run on a Web server, the WebSphere Advanced Application
Server, and the Enterprise Application Server Component Broker and
TXSeries.

v It shows how a business system can be implemented by using the
Advanced Application Server and the Enterprise Application Server. The
different implementations of the sample application show how enterprise
beans can be used with both the Advanced Application Server, TXSeries
Encina++, and Component Broker. They also show how Component Broker
managed objects can be used in place of enterprise beans.

v It shows the development process and design trade-offs involved in
creating an application that uses WebSphere Application Server. The sample
illustrates the following software development concepts:
– Customer-driven design and implementation. The sample application’s

architecture is derived directly from how bank customers intend to use
it.

– Incremental application design. The application is created as a set of
related components, each of which can be designed and implemented
independently. The application can be built on a component-by-
component basis from its individual parts.

– Reusability. The application is designed so that its components can be
reused between different implementations. For example, the same Web
site, servlets, and JSP pages are used for all versions of the business
logic. The enterprise bean implementation of the business logic can be
deployed in the Advanced Application Server or in Component Broker in
the Enterprise Application Server.

138 WebSphere: Building Business Solutions with WebSphere

– The model-view-controller (MVC) architecture, which serves as a
paradigm for designing Web applications that isolate business processing
from the Web site front end.

v It illustrates access beans, which are a WebSphere Application Server
extension to the Enterprise JavaBeans (EJB) specification.

v It provides example code that can be used for designing business systems.
Although the sample application is relatively simple, its basic design and
code can be modified for use in more complex applications.

Chapter 10. Overview of the sample application 139

140 WebSphere: Building Business Solutions with WebSphere

Chapter 11. Sample application design

This chapter describes the high-level architecture of the sample application. It
discusses the following topics:
v “Application design”
v “Client/server relationship” on page 142
v “Model-view-controller architecture” on page 142
v “Object model” on page 143
v “Data model” on page 145

Each of these sections applies to all implementations of the sample
application, except where noted. For more information on the different ways
that the sample application is implemented, see “Chapter 12. Implementing
the sample application” on page 147.

Application design

The sample application consists of the following components:
v A Web site that acts as the customer interface
v Servlets that coordinate the business processing
v WebCommands, which are JavaBeans components that encapsulate the

interface between the servlets and the business logic
v Objects that implement the business logic and perform the actual business

processing
v JavaServer Pages (JSP) that display the results of the business processing
v A database that handles persistent storage of customer, account, and

transaction information

Figure 33 on page 142 shows how the sample application is designed.

© Copyright IBM Corp. 2000, 2001 141

Client/server relationship

The sample application is an example of client/server design. The client is a
customer’s Web browser. The customer loads the application Web site into the
browser. From the browser, the customer can interact with the sample
application by requesting that banking tasks such as transfers be performed
and information about accounts be displayed.

The server is the sample application. It processes client requests and returns
the information to be displayed in the client browser. The Web server is the
intermediary between the client browser and the application server on which
the business logic runs. It hosts the Web site, handles HTTP requests, and so
forth. The application server handles all information processing and hosts the
servlets, JSP pages, and business logic.

Model-view-controller architecture

The sample application implements a Model-View-Controller (MVC)
architecture. The MVC architecture of the sample application is implemented
by using various WebSphere Application Server features:

Model Defines the application’s business logic and other internal functions.
The model performs the banking tasks defined in “Sample application
scenario: Online banking” on page 137. It also makes permanent
updates to customer data by accessing a database. The model is
implemented as objects that encapsulate processing tasks and
represent permanent entities such as accounts, customers, and
transaction records.

View Defines the client user interface and displays the results of operations

Figure 33. The sample application

142 WebSphere: Building Business Solutions with WebSphere

to the client. The view is implemented by the Web site and the JSP
pages. The Web site provides a user interface for the sample
application that enables the client to interact with the application. The
JSP pages are used to dynamically generate HTML containing the
results of client operations (transfers, information requests, and so
forth). They work with the Web site to display the results to the client.

Controller
Defines how the client provides input to the application by interacting
with the model and view. The controller is implemented by the
servlets and WebCommands (which are JavaBeans components). The
servlets receive client requests from the Web site (view) and pass them
on to the business logic (model) for processing. They also receive the
results of the business processing and pass them back to the JSP pages
(view) for display. The WebCommands act as the interface between
the servlets and the business logic, simplifying their interactions and
allowing them to be developed independently.

Object model

As described earlier, the business logic is encapsulated into objects, each
serving a different function in the sample application. Figure 34 shows the
objects that make up the business logic and how they interact.

The objects perform the following functions in the sample application:

BankTasks
Looks up customer, account, and transaction information and makes
transfers between accounts. The BankTasks object acts as the front end
to the other objects. It is the only object that contains methods that
can be accessed (although indirectly) by the customer. Its methods
manipulate the Customer, BankAccount, and TranRecord objects to
perform the tasks requested by the customer. For instance, to perform
a transfer, the BankTasks method looks up the Account objects
specified in the request. It then withdraws the amount of the transfer
from the account that is the source of the transfer, and deposits the
amount into the account that receives the transfer. It does not perform

Figure 34. Object model

Chapter 11. Sample application design 143

the transaction if the amount is less than zero or is more than the
current balance of the source account.

Customer
Represents a bank customer and is associated with information about
a customer in the database. The Customer object contains a method
for retrieving information about a customer (such as the customer ID)
from the database. Since a customer can have more than one account,
a Customer object can be associated with multiple BankAccount
objects.

BankAccount
Represents a bank account. (The sample application does not
differentiate between different types of accounts; in a real application,
there might be CheckingAccount, SavingsAccount, and objects
representing other types of accounts.) The BankAccount object is
associated with information about an account (such as the account
number and balance) in a database. It contains methods for retrieving
account information and depositing and withdrawing money in the
account, which update the account balance in the database. These
methods are not accessible to the customer; instead, they are used by
the BankTasks object while it is performing transfers. Because an
account is owned by a single customer, a BankAccount object can be
associated with only one Customer object. However, because an
account may have many records of transactions associated with it, a
BankAccount object may be associated with multiple TranRecord
objects.

TranRecord
This object records transactions for a bank account and is associated
with a transaction in the database. It contains methods for retrieving
information on completed transactions from the database and writing
information about new transactions to the database. Because an
account can have many transactions, multiple TranRecord objects can
be associated with an Account object.

These objects are implemented in the sample application as either enterprise
beans or Component Broker managed objects. See “Chapter 12. Implementing
the sample application” on page 147 for details on the different object
implementations.

144 WebSphere: Building Business Solutions with WebSphere

Data model

The sample application is backed by a DB2 database for persistent storage.
Customers, accounts, and transaction records are associated with specific rows
in the database. The business logic retrieves this information from the
database in response to queries. It can also update account balances and
transaction records in response to requests for balance transfers.

Chapter 11. Sample application design 145

146 WebSphere: Building Business Solutions with WebSphere

Chapter 12. Implementing the sample application

The sample application features a Web site whose business logic is
encapsulated by a set of commands implemented in JavaBeans components.
These commands make calls to implementation-specific code that actually
performs the business functions (accessing account data, performing transfers,
and so forth). In all implementations of the sample application, the Web site is
served by the IBM HTTP Server. The Advanced Application Server supports
the servlets and JavaServer Pages (JSP) that serve the Web site.

The business logic of the sample application is implemented in four different
ways using the Advanced and Enterprise Application Servers:
v By enterprise beans deployed in the Advanced Application Server, using

entity beans with container-managed persistence (CMP) and a DB2 database
as persistent storage. This implementation is described in “Advanced
Edition implementation with enterprise beans” on page 148.

v By enterprise beans deployed in Component Broker, using entity beans with
CMP and a DB2 database as persistent storage. This implementation is
described in “Enterprise Edition implementation with enterprise beans
deployed in Component Broker” on page 149.

v By Java business objects (BOs) deployed in Component Broker, using the
relational database adaptor to DB2. This implementation is described in
“Enterprise Edition implementation with Component Broker managed
objects” on page 149.

v By enterprise beans deployed in the Advanced Application Server, using
entity beans with bean-managed persistence (BMP) and the TXSeries
Encina++ bridge server to communicate with an Encina++ Monitor
application server that uses a DB2 database as persistent storage. This
implementation is described in “Enterprise Edition implementation with
enterprise beans and TXSeries Encina++” on page 150.

“Sample application platforms” on page 151 discusses how the sample
application is implemented on various operating systems and hardware
platforms. “Common features and differences between implementations” on
page 152 compares the similarities and differences between the four
implementations of the sample application.

Each implementation has its benefits and drawbacks. The implementation you
select for your organization depends on your business requirements, your
legacy systems, and which edition of WebSphere Application Server you
decide to use.

© Copyright IBM Corp. 2000, 2001 147

Advanced Edition implementation with enterprise beans

Figure 35 shows how the sample application’s business logic is implemented
by using enterprise beans deployed in the Advanced Application Server. Only
the business logic design is shown. (The overall design of the sample
application is shown in Figure 33 on page 142.)
The WebCommand implementation calls BankTasks, a session bean that

contains the business logic necessary to manipulate the entity beans Customer,
BankAccount, and TranRecord. For example, the BankTasks session bean has a
method called transfer that transfers money between two accounts
represented by BankAccount beans. The transfer method transactionally
handles debiting and crediting money between two instances of a
BankAccount bean. It also instantiates a TranRecord bean for each account to
document the transfer.

Persistence is handled by the container in which the enterprise beans are
deployed. The container (in response to requests by the entity beans) retrieves
account information from the DB2 database and writes the updated
information back to the database. The enterprise bean developer does not
need to worry about the persistence model that is used when the entity beans
with CMP are deployed. If the persistence model changes later, the entity
beans can be deployed to a new container without changing the application’s
business logic.

The container also manages transactions for the enterprise beans. Transactions
associated with enterprise beans that are deployed with a Transaction
characteristic of TX_REQUIRED are automatically scoped by the container.
The client programmer and enterprise bean programmer do not need to
include any transaction-related coding in the enterprise beans. Instead, the
container automatically manages the context of the transaction, enabling the
appropriate resources to participate in it. (In this case, the resource is the DB2
database.) The container also manages the life cycles of the objects involved in
the transaction. For more information about transaction characteristics, see
“Transaction services” on page 61.

Figure 35. Enterprise bean implementation in the Advanced Application Server

148 WebSphere: Building Business Solutions with WebSphere

Enterprise Edition implementation with enterprise beans deployed in
Component Broker

The client/server programming model for enterprise beans deployed in
Component Broker is identical to that of enterprise beans deployed in the
Advanced Application Server. (See “Advanced Edition implementation with
enterprise beans” on page 148 for more information.) The container handles all
interactions with Component Broker (in addition to managing persistence and
transactions).

Enterprise Edition implementation with Component Broker managed objects

Figure 36 shows how the sample application’s business logic is implemented
with Component Broker managed objects. Only the business logic design is
shown. (The overall design of the sample application is shown in Figure 33 on
page 142.)
The WebCommand implementation calls the application object BankTasks,

which manipulates the Java business objects Customer, Bank Account, and
TranRecord. For example, BankTasks has a method named transfer that
transfers money between two accounts. The transfer method transactionally
debits and credits money between two instances of a BankAccount business
object. It also creates a TranRecords business object to document the transfer.

Persistence is handled by data objects, which retrieve account information
from the DB2 database and write the updated information back to the
database. The business logic does not need to change if the persistence model
changes, since the data objects can be modified without affecting the business
objects.

Figure 36. Business object implementation in Component Broker

Chapter 12. Implementing the sample application 149

The application, business and data objects are deployed into a container. A
Component Broker container with automatic transactions scopes any
transactions associated with the methods of the managed objects that are
deployed in it. The object programmer does not need to include any
transaction-related coding. Instead, the container automatically manages the
context of the transaction, enabling the appropriate resources to participate in
it. (In this case, the resource is the DB2 database.) The container also manages
the life cycles of the objects involved in the transaction.

Enterprise Edition implementation with enterprise beans and TXSeries Encina++

Figure 37 shows how the sample application’s business logic is implemented
by using enterprise beans and TXSeries Encina++. Only the business logic
design is shown. (The overall design of the sample application is shown in
Figure 33 on page 142.)
The sample application uses the WebSphere Advanced to Encina

Interoperability functionality to communicate with an Encina++ server that
manages persistence. A bridge server enables Java applications developed in
WebSphere Application Server to communicate with Encina and Encina++
servers. The bridge server exports interfaces whose methods correspond to the
transactional interface definition language (TIDL) interfaces in an Encina++
application. Through these interfaces, the enterprise beans can access an
Encina++ application. The wstidl command generates the files required to
connect Java applications to Encina and Encina++ applications.

The enterprise bean implementation is similar to the Advanced Application
Server implementation described in “Advanced Edition implementation with
enterprise beans” on page 148. However, Customer, BankAccount and

Figure 37. Enterprise bean implementation with Encina++

150 WebSphere: Building Business Solutions with WebSphere

TranRecord are entity beans with BMP (not entity beans with CMP). The
entity beans refer all requests for accessing or updating persistent data to
JavaBeans components that are generated by using the wstidl command.

The JavaBeans components reside on the bridge server, whose files are also
generated by the wstidl command. The JavaBeans components pass on the
requests through the Encina bridge server to the Encina++ application.
Depending on the operation, the Encina++ application server then queries or
transactionally updates the DB2 database.

The interfaces that are shared between the entity beans and the Encina++
server are the methods for accessing and updating persistent data. These
shared interfaces are generated from a series of TIDL files. The wstidl
command then generates JavaBeans components and a set of files that are
used to create the Encina bridge server.

Using WebSphere Advanced to Encina Interoperability offers several
advantages:
v New Java-based applications can communicate with existing Encina and

Encina++ servers.
v Transactions can begin in a Java application and continue through Encina to

access back-end resources.
v It uses standard IIOP and EJB interfaces.
v The only manual step in creating the client and server files is writing TIDL

files to represent the interfaces that are shared between the Encina or
Encina++ application and the Java application. The wstidl command
automatically generates the files needed to implement these interfaces and
create the bridge server.

However, there are currently several drawbacks to using the Encina Java
connectivity functionality:
v A TIDL file can contain only one interface. (This is actually a limitation of

the Distributed Computing Environment (DCE), which is required for
Encina.) However, multiple TIDL files can be created for an application.

v IIOP connections to the bridge server do not have workload management.
v There is no security between the bridge server and WebSphere Application

Server.

Sample application platforms

The sample application is available on the following platforms:
v AIX
v Solaris
v Windows NT

Chapter 12. Implementing the sample application 151

v OS/390

It is supported for the same versions of these operating systems supported by
the WebSphere Application Server software.

The complete sample application is available on the AIX, Solaris, and
Windows NT platforms. On each of these platforms, the application is
implemented as described earlier in this section.

The sample application is implemented somewhat differently on the OS/390
platform. Because some parts of the Enterprise Application Server are not
supported for OS/390, only two versions of the business logic implementation
are available on this platform:
v Enterprise beans deployed in Component Broker. (See “Enterprise Edition

implementation with enterprise beans deployed in Component Broker” on
page 149 for a description of this implementation.)

v Component Broker business objects. (See “Enterprise Edition
implementation with Component Broker managed objects” on page 149 for
a description of this implementation.)

The other parts of the sample application (Web site, servlets, JSP pages, and
JavaBeans components) are hosted using the Standard Application Server
because the Advanced Application Server is not supported for the OS/390
platform. These components of the sample application function in the same
way on all platforms.

Common features and differences between implementations

All versions of the sample application express the application’s basic design
and have many features in common. The mechanism for gathering customer
input and displaying the results of customer commands is the same in all four
versions. They all use the same Web site, servlets, and JSP pages.
WebCommands perform the same tasks in each version of the sample, but
their implementation varies depending on how the business logic is designed.

Each version’s business logic shares a set of common features:
v All versions of the sample application are backed by a DB2 database.
v All make use of the same component architecture. Each part of the business

logic is encapsulated into components. A component that performs various
application tasks acts as the front end for accessing components that modify
persistent data. The similarities and differences between the
implementations of this architecture are described in “Managed objects and
enterprise beans” on page 153

152 WebSphere: Building Business Solutions with WebSphere

v Remote requests are reduced by passing as much data as possible locally.
The similarities and differences between the implementations of this
mechanism are described in “CopyHelper objects and access beans” on
page 154.

Managed objects and enterprise beans
The sample application’s component architecture is implemented by using
either Component Broker managed objects or enterprise beans. In the
managed object implementation, an application object accesses business and
data objects that modify persistent data. In the enterprise bean
implementation, a session bean accesses entity beans that modify persistent
data. This section discusses the similarities and differences between the
Component Broker and enterprise bean implementations of the sample’s
architecture.

Application objects and session beans
Component Broker application objects are designed to accomplish various
tasks. They can optionally be backed by a persistence mechanism. This object
model is analogous to stateless and stateful session beans in the Enterprise
JavaBeans (EJB) programming model.

In the sample application, the BankTasks component is implemented as an
application object in the Component Broker programming model and as a
stateless session bean in the EJB programming model.

Business objects, entity beans with CMP, and data objects
Component Broker business objects contain an application’s business logic.
They do not implement persistence. Entity beans with CMP play a similar role
in the EJB programming model. They contain the application’s business logic
but do not implement persistence.

In Component Broker, persistence is handled by using data objects, which
directly manipulate the underlying data store. These data objects are created
by using the VisualAge Component Development Toolkit. In the EJB
programming model, persistence is often handled by the container. The entity
bean developer identifies the persistent fields. The person who deploys the
beans into a container on a server determines which persistence mechanism to
use.

In both the Component Broker and EJB programming models, implementing
persistence separately allows the persistence mechanism to change without
affecting the business logic. For example, the data store can be changed from
a DB2 database to an Oracle database by changing either the type of data
objects or the container into which the entity beans are deployed. The
business objects or entity beans themselves do not need to be modified.

Chapter 12. Implementing the sample application 153

Note: Entity beans with BMP handle persistence directly and therefore need
to be modified if the persistence mechanism changes. “Enterprise
Edition implementation with enterprise beans and TXSeries Encina++”
on page 150 describes a version of the sample application that uses

entity beans with BMP.

In the sample application, the Customer, BankAccount, and TranRecord
components are implemented as business objects in the Component Broker
programming model and as entity beans in the EJB programming model.
Persistence is handled by data objects in the Component Broker programming
model and the container (for entity beans with CMP) in the EJB programming
model.

CopyHelper objects and access beans
A distributed object programmer does not always know where the actual
object resides and is being serviced. It can be in the same process, in another
process on the same machine, or on an entirely different machine. A client
request for attributes from an object can result in multiple remote requests to
the object to retrieve the information. It is often useful to save a local copy of
the object in the current process so that this information can be retrieved more
efficiently. This can be done by using CopyHelper objects if you are using
Component Broker or access beans if you are using enterprise beans.

CopyHelper and LocalOnly objects
The Component Broker programming model uses CopyHelper objects to build
a local copy of an object. CopyHelpers are used for create methods. In the
Component Broker managed object implementation, CopyHelpers store local
copies of the business objects and application object. LocalOnly objects hold
the state of the business objects. In addition, methods have been added to the
business objects to copy information back and forth from the LocalOnly
object.

CopyHelpers can pass attributes from a client to a server during object
creation. They can also save their structure in a byte sequence, allowing it to
be easily communicated. When a create method is invoked with multiple
attributes, a CopyHelper object can be created. Its serialized attributes can
then be passed by calling the createFromCopyhelper method.

LocalOnly objects have the same functionality of CopyHelpers. They share the
ability of CopyHelpers to store their attributes in byte strings. A LocalOnly
object can be converted into a byte string and passed to a remote location,
where it can be turned back into an object. LocalOnly objects must also
contain methods for updating the state of the attribute information (the
refreshFromJBO method) and sending the attributes to a business object (the
copyToJBO method).

154 WebSphere: Building Business Solutions with WebSphere

CopyHelpers and LocalOnly objects can be generated by the VisualAge
Component Development Toolkit. However, the refreshFromJBO and
copyToJBO methods must be added manually.

Access beans
Access beans are an extension of the EJB programming model. They perform a
function that is similar to that of CopyHelpers. They can be created by using
the Access Bean Builder in VisualAge for Java. All types of enterprise beans
can use access beans.

An access bean is designed to allow an enterprise bean to be used like a local
JavaBeans component. It serves as a wrapper that hides an enterprise bean’s
home and remote interfaces. This simplifies the enterprise bean’s use. An
access bean also maintains a local copy of the bean’s attributes, reducing the
number of remote requests and improving performance. It contains methods
for copying state information from a remote enterprise bean to the local object
(the refreshCopyhelper method) and copy state information from the local
object to the remote enterprise bean (the commitCopyHelper method). The
application developer must decide how often to update the local copy of the
enterprise bean.

The entity beans Customer, TranRecord, and BankAccount are all wrapped
with access beans to reduce the number of remote requests for multiple
attributes from the objects.

Chapter 12. Implementing the sample application 155

156 WebSphere: Building Business Solutions with WebSphere

Chapter 13. Technical details of the sample application

This chapter describes the technical details of each component of the sample
application. It includes the following topics:
v “Web site”
v “Servlets” on page 158
v “JavaServer Pages” on page 161
v “WebCommands” on page 163
v “Enterprise beans (Advanced Edition and Enterprise Edition/Component

Broker)” on page 167
v “Enterprise beans, the Encina bridge server, and Encina++” on page 171
v “Component Broker managed objects” on page 176

Web site

The Web site is created by using WebSphere Studio and runs on the IBM
HTTP Server. Its purpose is to interact with the bank’s customers, who access
it through a browser client. It enables customers to access information and
perform banking tasks.

The Web site serves as a front end for displaying information produced by
servlets and JavaServer Pages (JSP). The site includes both static HTML files
and HTML that is dynamically generated by servlets and JSP pages. Servlets
are associated with Web site commands that perform business processing or
dynamically build an HTML page. The servlet calls a JavaBeans component in
a command style format. The JavaBeans component is then passed to a JSP
page for generating formatted HTML data.

Web site design
The overall design of the Web site is based on the model-view-controller
(MVC) paradigm described in “Model-view-controller architecture” on
page 142. WebSphere Studio’s JavaBeans wizard generates a site that follows
this design. The typical site usage pattern is as follows:
1. A Web site visitor goes to (requests) the input page.
2. The visitor enters data and submits the form, which calls the servlet.
3. The servlet uses the JSP file and the JavaBeans component generated by

the servlet to dynamically create the output page.
4. The servlet returns the output page to the browser.

WebSphere Studio’s JavaBeans wizard creates the following files:

© Copyright IBM Corp. 2000, 2001 157

v An HTML file (*.html) for the input page. This page is used to gather user
input and invoke the servlet.

v A servlet (*.class and *.java files) to call the JavaBeans component and
execute the methods specified by the user’s action.

v A servlet configuration file (*.servlet), which is processed when the servlet
calls the JavaBeans component.

v A JSP page (*.jsp) that contains the HTML and JSP tags, including
formatting for the variable fields. This file is used by the servlet and the
JavaBeans component to dynamically create the output HTML file that is
returned to the requesting browser.

Note: The input HTML file, the class files, the servlet file and the .jsp file are
all publishable. The Java files are not.

In the sample application, the client also selects which implementation of the
business logic is to be used. This information is used by the servlet to
communicate with the proper implementation of the WebCommands. See
“Servlets” for a more detailed discussion.

Client validation and back-end processing
Client-side validation with JavaScript functions is useful for preliminary
validation of customer input. It reduces the need for remote requests to
identify input errors. The sample application Web site uses JavaScript
functions to verify that input fields for the customer ID and the amount of a
transfer contain non-blank numeric fields with positive values. An example of
this type of client-side validation can be found in the login page, which takes
a customer ID as input.

All of the back-end processing for the Web site is encapsulated in a set of
JavaBean classes called WebCommands. These JavaBeans components are set
up in a command-style format where each component (or WebCommand)
performs one set of business processing operations. The command object has a
group of attributes that define the command’s parameters, a method to
perform the command, and another set of attributes that are queried for the
result of the command. For more information on how WebCommands are
implemented, see “WebCommands” on page 163.

Servlets

Servlets perform several different functions in the sample application. They
collect information that is entered by the client through the Web site, then
send the collected information to the WebCommands (and ultimately the
business logic) for processing. They receive the results and forward the
information to the JSP page for display.

158 WebSphere: Building Business Solutions with WebSphere

The sample application servlets are created by using the WebSphere Studio
JavaBean wizard. The JavaBean wizard generates the basic servlet code, which
is then modified to add things like headers and format colors.

The same servlets are used with all implementations of the sample
application. They are designed to perform the following tasks:
1. Gather input parameters from the Web site.
2. Load a WebCommand bean and set its input parameters.
3. Process the command bean.
4. Pass the command bean to the JSP page to display the results to the client.

Another JSP page receives and handles any servlet errors.

The version of the WebCommands that is loaded by a servlet depends on
which business logic implementation is being used for processing. The client
selects the business logic implementation on the Web site. This information is
used to select the correct version of the WebCommands for the servlet.

A utility loads a specific implementation of a command class based on a
setting in the client’s Httpsession. When a servlet needs to call a command, it
first invokes the utility class to load the correct implementation of the
command. It then invokes the command as indicated by the client request. All
exceptions that are specific to a particular implementation of the command are
mapped into user exceptions. This mapping encapsulates the implementation
of the commands under the command itself.

The servlet uses a utility to request a generic command bean. A command
bean is an abstract WebCommand whose subclasses implement specialized
methods for accessing different versions of the business logic. The utility uses
the information in the Httpsession and the name of the generic command
bean to instantiate a specific subclass of the command bean and pass it back
to the servlet. The servlet then invokes the methods on it (the interfaces on all
of the subclasses are the same as those on the generic command bean).

For example, Figure 38 on page 160 shows a code excerpt from the utility
class. It illustrates how the utility class uses a value from the Httpsession to
call the appropriate version of a WebCommand. (The utility class was added
in WebSphere Studio to the basic servlet generated by the Servlet wizard.)

Chapter 13. Technical details of the sample application 159

For example, if the customer loads the enterprise bean implementation that
runs on the Advanced Application Server, a version of the command object
that is specifically designed to work with that implementation is loaded (as
shown in Figure 39.

The JSP code that references this part of the servlet is shown in Figure 40 on
page 162.

private static String[] subClass = {"EJB","EJB","JBO","ENC"};
...
public Commands.CMD loadCommand(HttpSession session, String className)

throws Commands.LoginRequired {
int sample = 0;
sample = Integer.valueOf((String)session.getValue("sample")).intValue();
Commands.CMD obj =

(Commands.CMD)java.beans.Beans.instantiate(getClass().getClassLoader(),
"Commands." + subClass[sample] + "." + className + "_CMD");

obj.setSession(session);
return obj;

}

Figure 38. Code example: Servlet utility class

public void performTask(HttpServletRequest request, HttpServletResponse response)
{
...
HttpSession session = request.getSession(true);
// Instantiate the beans and store them so they can be accessed by the called page

Commands.ShowAccounts_CMD showAccounts_CMD = null;
showAccounts_CMD = (Commands.ShowAccounts_CMD)

Util.instance().loadCommand(session, "ShowAccounts");
"ShowAccounts");

String customerId = (String)session.getValue("customerId");
// Setting the command bean in the HTTP request

setRequestAttribute("showAccounts_CMD", showAccounts_CMD, request);
// Initialize the input value of the bean: the customerId property from the parameters

showAccounts_CMD.setCustomerId(customerId);
// Call the perform method to execute the business logic.

showAccounts_CMD.perform();

// Call the JSP output page on successful completion.
// If the output page is not passed as part of the URL, the default page is called.

callPage(getPageNameFromRequest(request), request, response);
catch(Throwable theException)
{

// call the error JSP page if an error condition occurs
handleError(request, response, theException);
}

}

Figure 39. Code example: Loading an enterprise bean-specific command bean

160 WebSphere: Building Business Solutions with WebSphere

JavaServer Pages

JavaServer Pages (JSP) are used to display the results of client requests. They
dynamically generate HTML that can be displayed in the client browser.

The JSP pages that are used in the sample application are created by using the
WebSphere Studio JSP wizard and comply with version 1.0 of the JSP
specification. Information is retrieved from the command bean by using a
jsp:UseBean tag. This tag defines the reference to the command bean; the
reference to the bean is read as the request is passed to the JSP page. Later,
the properties of the command bean can be directly accessed from the bean
itself.

Figure 40 on page 162 shows how the jsp:UseBean tag is used to retrieve the
properties of the command bean. The key parts of the code example are in
bold font, and show how the JSP page gets information from the command
bean.

Chapter 13. Technical details of the sample application 161

<jsp:UseBean id="showAccounts_CMD" scope="request" type="Commands.ShowAccounts_CMD">
<CENTER>

...
<!--METADATA type="DynamicData" startspan
--><%
try {

// throws an exception if empty
java.lang.String _p0 = showAccounts_CMD.getAccountId(0); .
java.lang.String _p0_0 = showAccounts_CMD.getAccountType(0);
java.lang.String _p0_1 = showAccounts_CMD.getBalance(0); %>
<TABLE border="1" width="600">
<CAPTION>Accounts</CAPTION>
<TBODY>
<TR>
<TH>Id</TH>
<TH>Type</TH>
<TH>Balance</TH>
<TH>History</TH>

</TR><%
for (int _i0 = 0; ;) { %>
<TR>
<TD align="center" class="TBL_ODD"><%= _p0 %></TD>
<TD align="center" class="TBL_EVEN"><%= _p0_0 %></TD>
<TD align="right" class="TBL_ODD">$<%= _p0_1 %></TD>
<TD align="center" class="TBL_EVEN">

<FORM action="/servlet/Commands.ShowHistory" method="POST"
target="_self" name="history<%= _i0 %>">

<A href="javascript:invoke('history<%= _i0 %>');"
onmouseout="if(hover)mout('history',
<%= _i0 %>)" onmouseover="if(hover)mover('history',<%= _i0 %>)">

<IMG border="0" height="50" name="history<%= _i0 %>"
src="file:///D:/Studio/Projects/WSFamily/WSFamily/history_o.gif"
width="50">

<INPUT name="accountId" type="hidden" value="<%= _p0 %>">

</FORM>
</TD>

</TR><%
_i0++;
try {
_p0 = showAccounts_CMD.getAccountId(_i0);
_p0_0 = showAccounts_CMD.getAccountType(_i0);
_p0_1 = showAccounts_CMD.getBalance(_i0);

}
catch (java.lang.ArrayIndexOutOfBoundsException _e0) {
break;

}
} %>

</TBODY>
</TABLE><%

}
catch (java.lang.ArrayIndexOutOfBoundsException _e0) {
} %><!--METADATA type="DynamicData" endspan-->

Figure 40. Code example: Using the <BEAN> tag

162 WebSphere: Building Business Solutions with WebSphere

The jsp:UseBean tag references the JavaBeans component showAccounts_CMD
that is contained in the HTTP request. This is indicated by the value of the
jsp:UseBean tag parameter scope="request".

WebCommands

WebCommands are JavaBeans components that encapsulate interactions with
the application’s business logic. They provide a standardized way of handing
off information for processing. Instead of directly invoking business logic
methods, a servlet invokes the WebCommands, which then execute the
appropriate methods on the components. This process allows the developers
of the Web site, servlets, and business logic to work independently. The
WebCommands are created manually by using a text editor.

WebCommand structure
Figure 41 on page 164 shows how the WebCommands are structured.

Chapter 13. Technical details of the sample application 163

All of the WebCommands are derived from the base JavaBeans component,
Commands.CMD. This component includes a method called perform that
communicates with the business logic. Each type of WebCommand executes a
particular task, such as showing a customer’s accounts
(Commands.ShowAccounts_CMD) or transferring funds between accounts
(Commands.TransferAccount_CMD). The WebCommands add the attributes

Figure 41. WebCommand inheritance structure

164 WebSphere: Building Business Solutions with WebSphere

necessary for input and output for their particular tasks. The subclasses of
each WebCommand have different implementations of the perform method
for each version of the business logic.

Commands.EJB.command_CMD
Used with the enterprise bean implementation of the business logic in
the Advanced Application Server and Component Broker.

Commands.JBO.command_CMD
Used with the Component Broker Java business object implementation
of the business logic.

Commands.ENC.command_CMD
Used with the enterprise bean and Encina++ implementation of the
business logic.

For example, Commands.EJB.ShowHistory_CMD retrieves an account’s
transaction history from the Advanced Application Server or the Component
Broker enterprise bean implementation of the business logic. The business
logic-specific WebCommand subclasses use the input attributes of the parent
class. They set the output attributes on the parent class as part of the
implementation of the perform method. The servlet loads the appropriate
WebCommand for the business logic implementation, as described in
“Servlets” on page 158.

Interaction with access beans and CopyHelpers
The perform methods of the WebCommands act as clients to the business logic
implementation on the server (either the EJB server or the Component Broker
managed object server). The actual business processing takes place on the
server. However, the WebCommands do not directly access the enterprise
beans or managed objects. To minimize the number of remote method calls
and simplify looking up remote methods, the WebCommands interact with
either access beans or CopyHelpers.

Figure 42 on page 166 shows a code excerpt from the perform method on
Commands.EJB.ShowAccounts_CMD. This WebCommand is used with the
enterprise bean implementation in the Advanced Application Server and
Component Broker. It shows the accounts owned by a customer. The customer
ID serves as input; the list of accounts is returned as output.

Chapter 13. Technical details of the sample application 165

The example uses access beans to make it easier to look up remote methods
on the enterprise beans. The perform method creates a new access bean that
fronts the session bean BankTasks. The settings for the client’s Uniform
Resource Locator (URL) and initial context factory are read from the base
Commands.CMD component. The lookupAccounts method is then invoked
using the customer ID, which is set on the WebCommand bean in the servlet
and stored in the customerId variable. If the method executes successfully, the
returned access bean is stored by the WebCommand and sent to the JSP page
for display. The reference for the initial access bean is then removed.

Figure 43 on page 167 shows the implementation of the perform method on
Commands.JBO.ShowAccounts_CMD. This WebCommand is used with the
Component Broker managed object implementation. Its perform method is
similar to that of Commands.EJB.ShowAccounts_CMD and has the same input
and output parameters.

public void perform() throws CustNotFoundException, java.lang.Exception {
btab = new BankTasksAccessBean();
if (nameServiceTypeName() != null)

btab.setInit_NameServiceTypeName(nameServiceTypeName());
if (nameServiceURLName() != null)

btab.setInit_NameServiceURLName(nameServiceURLName());
try {baabt = btab.lookupAccounts(customerId);
}
catch (javax.ejb.FinderException fe) {

throw new CustNotFoundException("id " + customerId
+ " does not exist in our records....");

} finally {
btab = null;

}
}

Figure 42. Code example: Using access beans with WebCommands

166 WebSphere: Building Business Solutions with WebSphere

Like the access bean in Figure 42 on page 166, the CopyHelper simplifies
looking up a remote method on the Java business object. The WebCommand
instantiates local copies of the Customer and BankAccount objects;
Component Broker’s externalization service then converts the local objects to
byte-strings so that their contents can be passed around.

A utility class called SharedData is used to look up and store the results from
a Name Service lookup. This limits the WebCommand to only one remote
lookup. The WebCommand calls the remote BankTasks object, which returns a
sequence of byte-strings (similar to an access bean table). This is stored in
private instance data in the Commands.JBO.ShowAccounts_CMD
implementation of the Commands.ShowAccounts_CMD class.

The byte-string output data is converted back into local objects. The
information is returned to the JSP page for display. The BankTasks object is
then deleted.

Enterprise beans (Advanced Edition and Enterprise Edition/Component Broker)

Enterprise beans handle back-end processing for the Advanced Application
Server and the Enterprise Application Server/Component Broker versions of
the sample application. These enterprise bean implementations are nearly
identical except for the server on which the beans are deployed.

The business logic for the Web site resides in enterprise beans that run on a
distributed object server (either the Advanced Application Server or
Component Broker in the Enterprise Application Server). These EJB servers
can be configured to do the following:

...
protected LocalCustomer lc = null;
protected LocalBankAccount lba = null;
protected byte[][] rtn = null;
...

public void perform() throws CustNotFoundException, java.lang.Exception {
IFamSamp.BankTasks bt = null;
try {

bt = SharedData.instance(this).bankTasksHome.createBankTasks();
rtn = bt.lookupAccounts(getCustomerId());

}
catch (com.ibm.IManagedClient.INoObjectWKey ino) {

throw new CustNotFoundException();
}
if (bt != null) {

bt.remove();
}

}

Figure 43. Code example: Using CopyHelpers with WebCommands

Chapter 13. Technical details of the sample application 167

v Run in the same process as the servlet engine (Advanced Application
Server)

v Run in another process on the same machine (Advanced and Enterprise
Application Servers)

v Run in another process on a different machine in the environment
(Advanced and Enterprise Application Servers)

The business logic is accessed by calling methods on stateless session beans.
These stateless session beans scope the unit of work and manipulate the entity
beans accordingly. The entity beans update data in the DB2 database and
handle some of the business processing.

The customer does not directly access the business logic from the Web site.
Instead, a customer request is passed to a servlet, which uses the appropriate
set of WebCommands to access the business logic. See “WebCommands” on
page 163 for details.

Session bean implementation
One stateless session bean, BankTasks, contains most of the business logic
which the customer requires. It has the following methods:
v lookupCustomer, which returns information about a customer.
v lookupAccounts, which returns a list of a customer’s accounts.
v lookupHistory, which returns the transaction history of a given account.
v deposit, which credits funds to an account and updates its transaction

history. This method is not available on the Web site.
v withdraw, which debits funds from an account and updates its transaction

history. This method is not available on the Web site.
v transfer, which transfers funds between accounts and updates their

transaction history.

The session bean is deployed with the attribute TX_REQUIRED (transaction
required) into a container. When the session bean is invoked, the container
starts a new transaction, processes the customer request, and then commits
the transaction when processing is finished.

See “Session beans” on page 40 for more information on this type of enterprise
bean.

Entity bean implementation
Three entity beans — Customer, BankAccount, and TranRecord — represent
the different entities in the bank. The Customer and TranRecord entity beans
update rows in the underlying database. They do not contain any additional
business logic. The BankAccount entity bean also updates rows in the
underlying database. However, it contains methods for depositing and

168 WebSphere: Building Business Solutions with WebSphere

withdrawing money from the account. It throws errors in the case of zero or
negative amounts and insufficient funds available for withdrawals.

Note: The difference between the withdraw method in the session bean
BankTasks and the withdraw method in the entity bean BankAccount is
that the session bean also generates transaction records of the changes
to the accounts via the TranRecords bean.

See “Entity beans” on page 43 for more information on this type of enterprise
bean.

Access bean implementation
All of the enterprise beans are wrapped with access beans. Access beans
simplify the programming model for the user by concealing an enterprise
bean’s home and remote interfaces, allowing the bean to be treated as a local
JavaBeans component. For example, the WebCommands in the sample
application do not directly access the enterprise beans. Instead, they use
access beans to simplify their interactions with the enterprise beans. Three
different types of access beans — wrapped bean, copy helper, and rowset —
are used in the enterprise bean implementations of the sample application.

The session bean, BankTasks, uses a wrapped bean. This type of access bean is
used with a session bean instance. The following code example shows how a
client can access methods on a session bean that uses a wrapped bean access
bean.
BankTasksAccessBean bt = new BankTasksAccessBean();
CustomerAccessBean cab = bt.lookupCustomer("1234");
System.out.println("Customer title is " + cab.getTitle());
System.out.println("Customer first name is " + cab.getFirstName());
System.out.println("Customer last name is " + cab.getLastName());

The entity Beans, Customer, TranRecord, and BankAccount all use
CopyHelper access beans. This type of access bean maintains a local copy of
the enterprise bean, reducing the number of remote requests when attributes
are retrieved from the object. Figure 44 on page 170 shows how a client can
get information from an entity bean that is wrapped with a CopyHelper
access bean.

Chapter 13. Technical details of the sample application 169

The BankAccount and TranRecord objects also use a rowset access bean. This
type of access bean allows you to work with multiple instances of an entity
bean without having to instantiate them individually. It also maintains local
copies of the enterprise beans. The access bean returns indexed results to
make it easier for a JSP page to display the returned data. Figure 45 shows
how a JSP client can loop through a rowset access bean.

For more information on access beans, see “Access beans” on page 46. The
VisualAge for Java documentation describes how to create and use access
beans.

Associations between enterprise beans
Associations define the relationships between enterprise beans. There are
several one-to-many (1:m) associations between the entity beans in the sample
application. A customer can have many bank accounts; therefore, a Customer
entity bean can be associated with many BankAccount beans. Similarly, each
bank account has multiple transaction records, one for each transaction made
on that account; a BankAccount bean can therefore have many TranRecord
beans associated with it.

In the sample applications, these associations are hand-defined to be very
portable. (Alternatively, the EJB tools in VisualAge for Java can be used to
define associations between CMP entity beans.) A method looks up the home

public BankAccountAccessBean lookupAccount(String accountId)
throws javax.naming.NamingException, java.rmi.RemoteException, FinderException {

try {
BankAccountAccessBean baab = new BankAccountAccessBean();
baab.setInitKey_accountId(accountId);
baab.refreshCopyHelper();
return baab;

} catch (CreateException ce) {
throw new java.rmi.RemoteException(ce.getMessage());

}
}

Figure 44. Code example: CopyHelper wrapper on an entity bean

BankAccountAccessBeanTable baabt = bt.lookupAccounts("1234");
for (int i=0; i < baabt.numberOfRows(); i++) {

BankAccountAccessBean baab = (BankAccountAccessBean)
baabt.getBankAccountAccessBean(i);

System.out.println("Balance is " + baab.getBalance());
System.out.println("Account Id is " +

((BankAccountKey)baab.__getKey()).accountId);
System.out.println("Account Type is " + baab.getAccountType());

}

Figure 45. Code example: Using a rowset access bean

170 WebSphere: Building Business Solutions with WebSphere

interface for an associated entity bean once by using the Java Network
Directory Interface (JNDI). It then stores that information for subsequent
lookup requests.

In the example where the Customer bean is associated with many
BankAccounts beans, the Customer entity bean has two additional methods,
getBankAccounts and getBankAccountHome. These methods are used as
follows:
v The getBankAccountHome method does the JNDI lookup and returns a

reference to the home for the BankAccount bean.
v The getBankAccounts method returns an enumeration of individual

instances of BankAccount objects. It does so by calling a custom finder
method on the BankAccount Home interface and passing in the primary
key information from the Customer bean. For example,
findBankAccountsByCustomerId(((CustomerKey)

entityContext.getPrimaryKey()).customerId)

For more information about associations between entity beans, see
“Association” on page 50.

Deployment
The enterprise beans are deployed into a container on the EJB server. The
container manages transactions and handles all interaction with the server and
the persistence mechanism.

Enterprise beans, the Encina bridge server, and Encina++

The Encina++ implementation of the sample application (described in
“Enterprise Edition implementation with enterprise beans and TXSeries
Encina++” on page 150) consists of enterprise beans, an Encina bridge server,
and an Encina++ server. These components and their interfaces are described
in this section.

Enterprise beans
The enterprise beans in the Enterprise Application Server/Encina++
implementation of the sample application are similar to the ones in the
Advanced Application Server and Component Broker implementations of the
sample application. Both implementations use the following:
v A session bean, BankTasks, which contains the business logic.
v A set of three entity beans, Customer, BankAccount, and TranRecord, which

represent the entities involved in banking operations.
v Access beans that wrap each enterprise bean.

See “Enterprise beans (Advanced Edition and Enterprise Edition/Component
Broker)” on page 167 for more information on how the enterprise beans and
access beans are implemented.

Chapter 13. Technical details of the sample application 171

The main difference between the entity bean implementations in the sample
application is in how they manage persistence. The Encina++ enterprise bean
implementation uses entity beans with BMP; the Advanced Edition and
Component Broker enterprise bean implementation uses entity beans with
CMP.

The Encina++ implementation of persistence is shown in Figure 46.
The entity beans refer requests for access to persistent data to JavaBeans

components that reside on the Encina bridge server. The JavaBeans
components contain methods that correspond to the operations available on
the Encina++ server. The bridge server passes on the persistence requests to
an Encina++ server, which transactionally updates a DB2 database.

The entity bean methods correspond to methods in the Encina++ application.
These methods are defined in a Transactional Interface Definition Language
(TIDL) file. The JavaBeans components and the files that make up the Encina
bridge server are generated by the wstidl command.

Defining interfaces by using wstidl
The business logic methods encapsulated in the enterprise beans are first
written in TIDL. (In general, the TIDL files originally created for an Encina or

Figure 46. Managing persistence

172 WebSphere: Building Business Solutions with WebSphere

Encina++ application are used to define the corresponding interfaces in the
Java application.) From the interfaces defined in the TIDL file, the wstidl
command generates the following:
v A CORBA IDL file with home and bridge object interfaces. The home

interface creates and returns an object, using specific create methods that
correspond to Encina++ binding types. The bridge object interface and
methods correspond to the TIDL interfaces and operations.

v C++ home and bridge object implementations (the C++ bridge layer). This
layer communicates with the Encina++ application.

v JavaBeans components (Java bridge layer), which encapsulate the client-side
use of the CORBA home and bridge object interfaces. The entity beans refer
persistence requests to these components. (The wstidl command can
optionally generate an enterprise bean implementation to serve as the client
side of the Java bridge layer.)

v Additional Java classes for handling the out parameters and return value of
operations and application exceptions.

v A main function for the bridge server.

The entity bean interfaces are manually mapped to corresponding TIDL files.
A TIDL file is associated with each entity bean, because a TIDL file can
contain only one set of interfaces. Table 3 lists the TIDL input files that are
used in the sample application.

Table 3. wstidl files for entity beans

Entity bean TIDL file

BankAccount ibmwebsAcctIf.tidl

Customer ibmwebsCustIf.tidl

TranRecord ibmwebsTranIf.tidl

In addition to the TIDL files, an Interface Definition Language (IDL) file,
common.idl, defines the data structures for the interfaces. It is included in the
TIDL files listed in Table 3.

Figure 47 on page 174 shows a TIDL file, ibmwebsTranIf.tidl, that contains the
interface definition for the TranRecord entity bean.

Chapter 13. Technical details of the sample application 173

This TIDL file defines four interfaces that are used to communicate with the
Encina++ server:
v getTranRec, which retrieves a transaction record from the database
v getAllTR, which retrieves records of all transactions associated with a

customer’s accounts
v updateTR, which creates a new transaction record or updates an existing

record. Notice that this method executes within the context of a transaction
(indicated by the [transactional] specification in the TIDL file).

v removeTR, which deletes a transaction. This method also executes within
the context of a transaction.

/* WebSphere Family Sample TIDL file
ibmwebsTranInterface */
[

uuid(c7cc49d0-572f-11d3-9da4-0008c7b2e356),
version(1.0)

]
interface ibmwebsTranIf
{
import "common.idl";
/* get TransactionRecord given transaction id */
/* this should cover all get TransactionRecord EJB get methods */
[nontransactional] void getTranRec
(

[in] estring_t tranId,
[out] transactionRecord_t *txRecord

);
/* get all transactions of all banking accounts of the
* specified customer using customer id */
[nontransactional] void getAllTR
(
[in] estring_t customerId,
[out] transactionRecordArray_t *arrayP

);
/* create new transaction record if txRecord.id == null
* otherwise update other fields */
/* this should cover all TransactionRecord EJB set and add methods */
[transactional] void updateTR
(
[in, out] transactionRecord_t *txRecord

);
/* remove transaction given tranId */
[transactional] void removeTR
(
[in] estring_t tranId

);
}

Figure 47. Code example: TIDL file containing interfaces for TranRecord entity bean

174 WebSphere: Building Business Solutions with WebSphere

Each of these interfaces corresponds to a method defined on the TranRecord
entity bean and the Encina++ server. The TranRecord entity bean implements
these interfaces. It refers requests to obtain or update persistent data to the
JavaBeans component that was generated from the TIDL file. The Encina
bridge server passes the request to the Encina++ application server, which
executes the method specified in the TIDL file. Java serializable local classes
are used to avoid remote calls where only one TIDL call is needed.

The following wstidl command is used to generate the files for the bridge
server:
wstidl -Ic:\opt\encina\include -main \

-module CustomerIf -javabean \
-pkgPrefix com.ibm.ibmwebs.ibmwebsCustIf.tidl

Each of the TIDL files is compiled with this command; substitute the
appropriate file name and module. The -javabean option tells wstidl to
generate JavaBeans components as the client layer. Because only one main
function needs to be generated for the bridge server, use the -main option
only for the first TIDL file.

The common.idl file is run through the IDL compiler to generate the
corresponding header file. The generated header file is linked in with the
other generated files to produce the bridge server.

Encina bridge server
The Encina bridge server, ibmwebsBridge, is actually a specialized Monitor
application server (MAS) that acts as a bridge between the Java-based sample
application and an Encina++/DCE application. It is built from the files
generated by the wstidl command. The generated main function includes the
header file for the TIDL interface and initializes the interface. Since the bridge
server exports multiple interfaces, you must edit the file to include the header
files for all three TIDL interfaces and the common.idl interface. You must also
initialize each interface.

Encina++ server
The Encina++ server, ibmwebsEnc, is created by using the Encina Server
wizard, which is part of the TXSeries application development kit. It
incorporates all three TIDL files defined for the sample application (see
Table 3 on page 173).

The ibmwebsEnc server transactionally accesses a DB2 database. Data requests
from the entity beans are passed through the JavaBeans components and the
bridge server to the Encina++ server. The Encina++ server then queries and
transactionally updates the database by using embedded Structured Query
Language (SQL) statements. Each SQL statement (some of which have
multiple joins) roughly corresponds to an entity bean method.

Chapter 13. Technical details of the sample application 175

Managing transactions
Transactions are initiated by the entity beans and are managed by the
container. The container works with the Encina bridge server to coordinate
transactions that involve the Encina++ application server. Transactions pass
through the bridge server to access the back-end resources controlled by the
Encina++ application server. Transactional methods on the Encina++ server
are identified in the TIDL files.

Deployment
The enterprise beans are deployed with a deployment descriptor of
TX_MANDATORY. (See “Managing transactions” for more information on
how the application manages transactions.) Because the implementation uses
entity beans with BMP, the container does not handle persistence.

Component Broker managed objects

The business logic for the Web site resides in Component Broker managed
objects that are running on a distributed object server. Component Broker
distributed object servers can run on the same machine as the Advanced
Application Server process in which the servlets run, or on a different
machine. The servlets act as customers to the business logic and call methods
on an application object (AO) in Component Broker. The application object
scopes the unit of work and manipulates the Component Broker business
objects representing the banking entities.

The Java business objects are backed by a persistent store: a DB2 database. As
clients (such as the application object) manipulate these business objects, the
objects activate. This causes data to be loaded from persistent storage into the
object. When the unit of work is committed, any changes to the data are
written back to the persistent store.

Application object implementation
One application object, BankTasks, contains most of the business logic
required by the customer. It has a number of different methods:
v lookupCustomer, which returns information about a customer
v lookupAccounts, which returns a list of a customer’s accounts
v lookupHistory, which returns the transaction history of an account
v deposit, which credits money to an account and updates its transaction

history. This method is not available on the Web site.
v withdraw, which debits money from an account and updates its transaction

history. This method is not available on the Web site.
v transfer, which transfers money between accounts and updates their

transaction history.

176 WebSphere: Building Business Solutions with WebSphere

The application object is deployed into a container that supports transactions.
When a method is invoked, the container starts a new transaction, executes
the business logic, and then commits the transaction when finished.

Business object implementation
Three business objects — Customer, BankAccount, and TranRecord —
represent the different entities in the bank. The Customer and TranRecord
entity beans directly update rows in the underlying database. They do not
contain any additional business logic. The BankAccount entity bean also
updates rows in the underlying database. However, it contains methods for
depositing and withdrawing money from the account. It throws errors in the
case of zero or negative amounts and insufficient funds available for
withdrawals.

Note: The difference between the withdraw method in the application object
BankTasks and the withdraw method in the business object
BankAccount is that the application object also generates transaction
records of the changes to the accounts via the TranRecords bean.

Data object implementation
Data objects handle the persistence of the business objects Customer,
BankAccount, and TranRecord. Data objects are persistent objects that
communicate with the underlying data store by using Component Broker
cache support. The cache support uses optimistic locking and allows the reuse
of existing data to speed up access to the data objects when the business
objects that use them are activated or passivated.

Associations between managed objects
There are a number of one-to-many (1:m) relationships between the various
objects. A customer can have many bank accounts; therefore, a Customer
business object can be associated with many BankAccount business objects.
These relationships are defined by using Object Builder. All the code
necessary for retrieving the related objects is generated automatically by
Object Builder.

CopyHelper objects and managed objects
Component Broker can create LocalOnly objects. These objects can be
serialized into a byte stream and rebuilt from the same byte stream.
Component Broker use a form of LocalOnly objects, CopyHelper objects, to
pass multiple attributes from a client to a server during the creation of an
object.

After a CopyHelper object’s structure is serialized to a byte sequence, it can
easily be communicated to other objects and other parts of the application.
When a customer invokes the create method with multiple attributes, a
CopyHelper object is built. Its serialized byte-string is passed on a
createFromCopyHelper method call.

Chapter 13. Technical details of the sample application 177

A LocalOnly object is a generalized CopyHelper object. To achieve
functionality similar to an access bean, LocalOnly objects have been created
for each business object to hold their states. In addition, two methods have
been added to the local business objects to copy information to and from the
remote Java business object (copyFromJBO and copyToJBO).

For more information on LocalOnly objects, see “CopyHelper objects and
access beans” on page 154.

Deployment
Component Broker can deploy objects on servers by using a command-line
mechanism. Scripts that use the command line mechanism can load and
configure the sample application’s business objects within Component Broker.
The scripts define and load applications containing the business objects,
define servers, and then configure the business objects with the loaded
applications.

178 WebSphere: Building Business Solutions with WebSphere

Chapter 14. Extending the sample application

This section describes some ways in which the sample application can be
extended. Its purpose is to present ideas on how other IBM and WebSphere
products can be used with WebSphere Application Server. It is not intended to
be an exhaustive list of extensions or a detailed guide for implementing these
extensions.

The following topics are included:
v “Connecting Component Broker managed objects to other systems”
v “Connecting Java applications to MQSeries” on page 181
v “Using the WebSphere Edge Server with the sample application” on

page 182

Connecting Component Broker managed objects to other systems

The Component Broker managed object implementation of the sample
application can be extended to use other systems as resource managers
through the use of the Component Broker application adaptors. The
application adaptors are independent of the components that use them; they
provide services (such as identity, caching, and persistence) to support access
to a particular resource manager. Both Component Broker business objects
and enterprise beans deployed in Component Broker can use application
adaptors to connect with other systems.

Connecting to MQSeries
One resource manager that can be integrated with the sample application is
MQSeries, which is included with the Enterprise Application Server. MQSeries
provides a mechanism for exchanging data in the form of messages. It can be
used to distribute work among a large number of different types of systems
and provides transactional integrity in environments where propagating a
two-phase commit is not practical.

The MQSeries application adaptor enables Component Broker applications to
send and receive messages from MQSeries applications. The MQSeries
Application Adaptor supports communication between Component Broker
servers on the Windows NT and Solaris platforms and an MQSeries queue
manager on the same host. Using the application adaptor, Component Broker
applications can put messages onto MQSeries queues and pull messages from
MQSeries queues.

© Copyright IBM Corp. 2000, 2001 179

The MQSeries application adaptor framework provides a wrapper for the
MQSeries interface that hides its details from Component Broker application
developers. The application adaptor interface operates through data objects,
encapsulating MQSeries access from the objects that implement the business
logic.

To use MQSeries as a third-tier resource manager for the Component Broker
implementations of the sample application, modify the data object
implementation as follows:
v Instead of accessing cached information from a database, the application

pulls data from an MQSeries queue. The data is encapsulated in
InboundMessage objects handled by the data objects.

v After being processed by the business objects, updated data needs to be
encapsulated in OutboundMessage objects and put back onto the MQSeries
queue.

For more information on using the MQSeries Application Adaptor, see
MQSeries Application Adaptor Development Guide.

Connecting to CICS, SAP, or IMS
Component Broker applications can also connect to SAP, Information
Management System (IMS), and CICS. The procedural application adaptor
(PAA) provides a framework for using these systems as third-tier resource
managers for Component Broker systems.

The PAA run-time library integrates PAA support with Component Broker. It
also supports the communications technologies used by the third-tier systems,
such as Host on Demand and the CICS Transaction Gateway.

To use a CICS, SAP, or IMS system as a third-tier resource manager for the
Component Broker implementations of the sample application, each data
object must be associated with a procedural adaptor object (PAO). The PAO
encapsulates the data that is held within the third-tier system and can use
data access operations such as create, retrieve, update, and delete (CRUD) to
modify the data.

For instance, when the Component Broker application needs data from the
third-tier system, it instantiates a data object. It then calls a retrieve method
on the data object, which causes the PAO to invoke a transaction to fetch the
data.
v CICS and IMS applications are accessed using data streams compatible with

3270 terminals. The format of the data is defined by the CICS Basic
Mapping Services (BMS) and the IMS Message Formatting Services (MFS).
These services provide interfaces for manipulating 3270 data streams. The

180 WebSphere: Building Business Solutions with WebSphere

PAA can use Host on Demand, the CICS External Call Interface (ECI) and
Advanced Program to Program Communication (APPC) to execute routines
in CICS or IMS applications.

v SAP R/3 applications are accessed using remote function calls (RFC)
through the Java-based SAP connector to Component Broker business
objects. This enables Component Broker to issue requests to a SAP R/3
server to run SAP RFC modules to access data.

VisualAge for Java, the CICS/IMS Connector (CICON) tool, and the
Enterprise Access Builder can be used to build PAA connectors for these
third-tier systems.

For more information on using the CICS/IMS application adaptor, see the
Procedural Application Adaptor Development Guide.

Connecting Java applications to MQSeries

MQSeries can be used to extend the capabilities of the Advanced Application
Server by enabling Java applications (including servlets, applets, and
applications based on the JavaBeans and EJB component architectures) to
exchange data in the form of messages. This gives these applications the
ability to communicate with MQSeries applications on a wide variety of
platforms.

To enable the sample application to communicate with MQSeries, you can
modify the sample’s servlets or enterprise beans to connect to an MQSeries
queue manager and exchange data in message format. MQSeries supports
three Java APIs that can be used to implement messaging:
v The MQSeries classes for Java (MQ base Java) Java Bindings package

(com.ibm.mqbind) provides a full Java API for communicating with
MQSeries applications. Java applications can use this API to connect
directly to an MQSeries queue manager, which needs to reside on the same
host as the application. This API provides a high-speed connection to a
queue manager on the local host, but cannot be used to connect to queue
managers on different hosts.

v The MQ base Java Java Client package (com.ibm.mq) provides a full Java
API for communicating through a client connection to an MQSeries server
channel. Applications can use this API to communicate with MQSeries
queue managers on any host in the network. However, the Java Client API
provides a slower connection to a local queue manager than the Java
Bindings API because the Java application connects through a channel
instead of through a direct connection.

v The Java Messaging Service (JMS) API is the standard for implementing
messaging applications in the Java programming language. It provides a
portable, vendor-independent messaging API. The MQSeries

Chapter 14. Extending the sample application 181

implementation of the JMS interfaces lies beneath the JMS API. Objects that
represent MQSeries queues and queue managers are defined to JMS by
using a directory naming service (the MQSeries message service).
Applications can use the JMS API to connect to MQSeries queue managers
on any host in the network. JMS also provides functionality that is not
available in the MQ base Java APIs, including:
– Asynchronous messaging
– Message selectors
– Support for MQSeries Publish/Subscribe messages
– Structured message classes

These three APIs enable Java applications to issue calls and queries to
MQSeries (for instance, over the Internet) without requiring MQSeries to be
installed on the client machine. They provide a infrastructure for accessing
enterprise applications and developing Web-based applications. By placing the
MQSeries queue closer to the user in network terms, system loading can be
bypassed and responses can be sent more quickly. In addition, MQSeries
messaging enables back-end resources to be accessed transactionally.

In a WebSphere Application Server environment, MQSeries can be used to
implement an integration server — that is, a server that acts as an integration
point for multiple presentation tiers. An integration server enables first tier
clients to share the applications and resources on the second and third tiers. It
communicates with databases, transaction processing monitors, applications,
and back-end data stores to retrieve and manipulate enterprise information
before it is processed by other applications and presented to end users. The
flexible MQSeries messaging format enables an MQSeries-based integration
server to communicate with a wide variety of resources on many different
types of systems.

The MQ base Java and JMS APIs are available in MQSeries SupportPac MA88,
which can be downloaded from the MQSeries support Web site. For more
information on using these APIs, see the following documents:
v MQSeries Using Java, which is available from the MQSeries support Web

site.
v The JMS specification, which is available from the Sun Microsystems Java

Web site, www.java.sun.com.

Using the WebSphere Edge Server with the sample application

WebSphere Edge Server can be used in conjunction with WebSphere
Application Server. The Edge Server acts as a front-end to a WebSphere
Application Server system, as shown in Figure 48 on page 183.

182 WebSphere: Building Business Solutions with WebSphere

It can monitor server loading, verify application and database integrity, create
server clusters, provide failover support, and offload static content from the
Web server.

Both components of the Edge Server can be used with WebSphere applications
such as the sample application.
v The Caching Proxy component intercepts data requests from end users,

retrieves the requested information, and delivers it back to the end users.
Most commonly, the requests are for documents stored on Web servers and
delivered via HTTP. The Caching Proxy can be used to cache the sample’s
static Web pages, enabling them to load more swiftly.

v The Network Dispatcher intercepts data requests and forwards them to the
server machine that is currently best able to fill the requests. It distributes
incoming requests among a set of machines that handle the same type of
requests. The Network Dispatcher can be used as a load balancer for the
Web server — for instance, if the sample application was replicated over
several servers. It can evenly distribute requests over the different machines
and provide a reliable connection between the client and the application
server.

For more information on using the Edge Server, see the product
documentation.

Figure 48. WebSphere Edge Server and Application Server

Chapter 14. Extending the sample application 183

184 WebSphere: Building Business Solutions with WebSphere

Notices

This information was developed for products and services offered in the
U.S.A. IBM may not offer the products, services, or features discussed in this
document in other countries. Consult your local IBM representative for
information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or
imply that only that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe
any IBM intellectual property right may be used instead. However, it is the
user’s responsibility to evaluate and verify the operation of any non-IBM
product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give
you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the
IBM Intellectual Property Department in your country or send inquiries, in
writing, to:

IBM World Trade Asia Corporation Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any
other country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
DOCUMENT “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OR CONDITIONS OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some
states do not allow disclaimer of express or implied warranties in certain
transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will

© Copyright IBM Corp. 2000, 2001 185

be incorporated in new editions of the document. IBM may make
improvements and/or changes in the product(s) and/or the program(s)
described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for
this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact:

For Component Broker:
IBM Corporation
Department LZKS
11400 Burnet Road
Austin, TX 78758
U.S.A.

For TXSeries:
IBM Corporation
ATTN: Software Licensing
11 Stanwix Street
Pittsburgh, PA 15222
U.S.A.

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM International
Program License Agreement or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments
may vary significantly. Some measurements may have been made on
development-level systems and there is no guarantee that these measurements
will be the same on generally available systems. Furthermore, some
measurements may have been estimated through extrapolation. Actual results
may vary. Users of this document should verify the applicable data for their
specific environment.

186 WebSphere: Building Business Solutions with WebSphere

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available
sources. IBM has not tested those products and cannot confirm the accuracy
of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be
addressed to the suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change
or withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples may
include the names of individuals, companies, brands, and products. All of
these names are fictitious and any similarity to the names and addresses used
by an actual business enterprise is entirely coincidental.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Trademarks and service marks

The following terms are trademarks or registered trademarks of the IBM
Corporation in the United States, other countries, or both:

Advanced Peer-to-Peer Networking
AFS
AIX
APPN
AS/400
CICS
CICS OS/2
CICS/400
CICS/6000
CICS/ESA
CICS/MVS
CICS/VSE
CICSPlex
DB2
DCE Encina Lightweight Client
DFS
Encina
IBM
IBM System Application Architecture
IMS
IMS/ESA
Language Environment
MQSeries

MVS/ESA
NetView
Open Class
OS/2
OS/390
OS/400
Parallel Sysplex
PowerPC
RACF
RAMAO
RMF
RISC System/6000
RS/6000
S/390
SAA
SecureWay
TeamConnection
Transarc
TXSeries
VSE/ESA
VTAM
VisualAge
WebSphere

Notices 187

Domino, Lotus, and LotusScript are trademarks or registered trademarks of
Lotus Development Corporation in the United States, other countries, or both.

Tivoli is a registered trademark of Tivoli Systems, Inc. in the United States,
other countries, or both.

ActiveX, Microsoft, Visual Basic, Visual C++, Visual J++, Windows, Windows
NT, and the Windows 95 logo are trademarks or registered trademarks of
Microsoft Corporation in the United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States, other countries, or
both.

UNIX is a registered trademark of The Open Group in the United States and
other countries.

Some of this documentation is based on material from Object Management
Group bearing the following copyright notices:

Copyright 1995, 1996 AT&T/NCR
Copyright 1995, 1996 BNR Europe Ltd.
Copyright 1991, 1992, 1995, 1996 by Digital Equipment Corporation
Copyright 1996 Gradient Technologies, Inc.
Copyright 1995, 1996 Groupe Bull
Copyright 1995, 1996 Expersoft Corporation
Copyright 1996 FUJITSU LIMITED
Copyright 1996 Genesis Development Corporation
Copyright 1989, 1990, 1991, 1992, 1995, 1996 by Hewlett-Packard Company
Copyright 1991, 1992, 1995, 1996 by HyperDesk Corporation
Copyright 1995, 1996 IBM Corporation
Copyright 1995, 1996 ICL, plc
Copyright 1995, 1996 Ing. C. Olivetti &C.Sp
Copyright 1997 International Computers Limited
Copyright 1995, 1996 IONA Technologies, Ltd.
Copyright 1995, 1996 Itasca Systems, Inc.
Copyright 1991, 1992, 1995, 1996 by NCR Corporation
Copyright 1997 Netscape Communications Corporation
Copyright 1997 Northern Telecom Limited
Copyright 1995, 1996 Novell USG
Copyright 1995, 1996 02 Technolgies
Copyright 1991, 1992, 1995, 1996 by Object Design, Inc.
Copyright 1991, 1992, 1995, 1996 Object Management Group, Inc.
Copyright 1995, 1996 Objectivity, Inc.
Copyright 1995, 1996 Oracle Corporation
Copyright 1995, 1996 Persistence Software

188 WebSphere: Building Business Solutions with WebSphere

Copyright 1995, 1996 Servio, Corp.
Copyright 1996 Siemens Nixdorf Informationssysteme AG
Copyright 1991, 1992, 1995, 1996 by Sun Microsystems, Inc.
Copyright 1995, 1996 SunSoft, Inc.
Copyright 1996 Sybase, Inc.
Copyright 1996 Taligent, Inc.
Copyright 1995, 1996 Tandem Computers, Inc.
Copyright 1995, 1996 Teknekron Software Systems, Inc.
Copyright 1995, 1996 Tivoli Systems, Inc.
Copyright 1995, 1996 Transarc Corporation
Copyright 1995, 1996 Versant Object Technology Corporation
Copyright 1997 Visigenic Software, Inc.
Copyright 1996 Visual Edge Software, Ltd.

Each of the copyright holders listed above has agreed that no person shall be
deemed to have infringed the copyright in the included material of any such
copyright holder by reason of having used the specification set forth herein or
having conformed any computer software to the specification.

WHILE THE INFORMATION IN THIS PUBLICATION IS BELIEVED TO BE
ACCURATE, THE OBJECT MANAGEMENT GROUP, AND THE
COMPANIES LISTED ABOVE MAKE NO WARRANTY OF ANY KIND WITH
REGARDS TO THIS MATERIAL INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. The Object Management Group and the companies
listed above shall not be liable for errors contained herein or for incidental or
consequential damages in connection with the furnishing, performance, or use
of this material.

This software contains RSA encryption code.

Other company, product, and service names may be trademarks or service
marks of others.

Notices 189

190 WebSphere: Building Business Solutions with WebSphere

Index

Numerics
3–tiered architecture

in Web applications 67

A
access beans 46

comparison to CopyHelper
objects 154

interaction with
WebCommands 165

use in sample application 155
activation 41
adaptor beans 58
Advanced Application Server 11,

147
application design 16
communicating with Encina 120
run time architecture 11
system management tools 14
use in sample application 148,

167
Apache Web server 7
appbind tool 102
applets 32

connecting to MQSeries 181
application adaptors 92, 179
application affinity 30
application objects 94

BankTasks object 176
comparison to session beans 153

association 50
between enterprise beans 170
between managed objects 177
use in sample application 170

authentication services 55
authorization services 55
availability management 14

B
BankAccount object 144

enterprise bean implementation
(Advanced Application
Server) 148, 168

enterprise bean implementation
(Component Broker) 149, 168

enterprise bean implementation
(Encina++) 150, 171

managed object
implementation 149, 177

BankTasks object 143

BankTasks object 143 (continued)
enterprise bean implementation

(Advanced Application
Server) 148, 168

enterprise bean implementation
(Component Broker) 149, 168

enterprise bean implementation
(Encina++) 150, 171

managed object
implementation 149, 176

bean class
effect of inheritance on 49
entity beans 44
session beans 41

bean-managed persistence
(BMP) 43, 171

bean-managed transactions 62
bridge server 120, 150

creating 175
use in sample application 172

browsers
invoking JSP pages from 20

business logic
implemented with enterprise

beans 148, 149, 150
implemented with managed

objects 149
object model 143

business objects 83, 86
comparison to entity beans 153
Customer, BankAccount and

TranRecord objects 177

C
CBDeployEar tool 102
CBDeployJar tool 102
cbejb tool 102
CCF 59

VisualAge for Java tools 60
CDS 110
cell managers 14
cells 14
CGI 23, 31, 68
CICS 76, 122

administering 132
client interfaces 127
clients 131
connecting to Component

Broker 93, 180
developing applications 126

CICS 76, 122 (continued)
gateways 131
Internet applications 127
intersystem communication 129
regions 122
workload management 133

CICS/IMS connection (CICON) 101
CICS link for Lotus Notes 132
CICS Transaction Gateway 131
clearinghouse (Component

Broker) 95
client certificates 73
client/server

implementation in sample
application 142

client validation 158
clones 14
collaborations 90
collections 92
command bean 60
Component Broker 75, 83

application adaptors 92
application development 99
client programming model 86
connecting to databases 93
connecting to other systems 179
containers 90
enterprise bean support 102
homes 91
implementation 83
Managed Object Framework 89
mixin objects 91
Naming Service 52
object services 95
ORB 88
programming model 97
run-time architecture 84
run-time environment 84
system management 103
use in sample application 149,

167, 176
composition 93
connector beans 58
container-managed persistence

(CMP) 44, 171
container-mananged transactions 62
containers 36

for managed objects 90
relationship to homes 91

© Copyright IBM Corp. 2000, 2001 191

containers 36 (continued)
servlets 30

cookies 71
CopyHelper access bean 47

use in sample application 169
CopyHelpers

comparison to access beans 154
interaction with

WebCommands 165
CORBA 83

and Component Broker 83
CosNaming Naming Service 52
IDL 88

Customer object 144
enterprise bean implementation

(Advanced Application
Server) 148, 168

enterprise bean implementation
(Component Broker) 149, 168

enterprise bean implementation
(Encina++) 150, 171

managed object
implementation 149, 177

D
data objects 86, 149, 153, 177
DB2 80, 145, 148, 149
DCE 107, 110
DE-Light 119
delegation policy 56
deployment descriptor 36
development team roles

enterprise beans 39
digital certificates 72
directory service 52

E
EAB 60
EAR file

deploying enterprise beans from
(Component Broker) 102

EJB clients 35
EJB environment 35

client view 35
object services 51

EJB programming model
use in Component Broker 83

EJB server 54
EJB server environment 36
EJB specification

extensions to 46
EJB transactions 63
ejbbind tool 102
elements 112
Encina 76, 107

administering 108

Encina 76, 107 (continued)
application development 111
COM Wizard 111
DE-Light 119
Encina++ 116
PPC 114
RQS 112
Server Wizard 111
SFS 113
Toolkit 118
tracing tools 111
WebSphere Advanced to Encina

Interoperability 120
Encina++ 116

use in sample application 150,
175

Encina Monitor 108
runtime environment 108

Encina Server wizard 175
Encina Toolkit 118
Enterprise Application Server 75

application development
tools 79

run time architecture 77
system management tools 78
use in sample application 149,

150, 167, 171
enterprise beans

and OTS transaction model 63
application development

process 40
association 50
comparison to managed

objects 94, 153
connecting to MQSeries 181
deploying in Component

Broker 102
deploying into a container 36
in Advanced Application

Server 16
in Standard Application

Server 6
inheritance 47
transactional vs. recoverable

objects 65
transactions 61
types of 37
use in sample application 148,

149, 150, 167
entity beans 37, 43

comparison to business
objects 153

defining associations 50
inheritance 49
life cycle 45

entity beans 37, 43 (continued)
use in sample application 168
using in applications 38
with BMP 43
with CMP 44

ERWin 101
Externalization Service 96

F
first tier 68

H
helper classes 98
hidden form fields 71
home interface 36

effect of inheritance on 48
of entity beans 44
of session beans 42

homes 91
relationship to containers 91

I
IBM Enterprise Access Builder 80
IBM HTTP Server 147
IBM TeamConnection 80, 101
IBM VisualAge for Java Enterprise

Edition 79
Identity Service 97
IDL 88, 100

use in sample application 173
IMS

connecting to Component
Broker 93, 180

inheritance
effect on enterprise bean

components 48
in enterprise beans 47
parent and child interfaces 48

integration server 182
Interlanguage Object Model 94
interoperable object references 89
interoperable objects 94
IOM 94
IOR 89
iterators 92

J
J2EE 2
J2EE tools 102
Java Messaging Service (JMS) 181
JavaBeans components

generated with wstidl
command 151

in Advanced Application
Server 16

in Standard Application
Server 6

192 WebSphere: Building Business Solutions with WebSphere

JavaBeans components (continued)
role in MVC architecture 143
use in sample application 163
using with JSP pages 25
WebCommands 158

JDBC 36
jetace tool 102
JNDI 36, 52
JSDK 28
JSP pages 19, 147

advantages of 24
development roles 24
in Advanced Application

Server 16
in Standard Application

Server 5
invoking 20
program flow 19
role in MVC architecture 142
scripting 22
security 71
use in sample application 161
using in Web applications 69

JSP tags 22
jsp:UseBean tag 161

L
life cycle

of entity beans 45
of session beans 43

Life Cycle Service 96
LocalOnly objects 154
location service daemon 53
logical unit of work 123
loosely-coupled applications 23
LU 6.2 130

M
Managed Object Framework 89

importing into Rational
Rose 101

managed objects 89
comparison to enterprise

beans 94, 153
creating in homes 91
use in sample application 149,

176
use of CopyHelper objects 177
use of LocalOnly objects 177

mixin objects 91
model-view-controller

architecture 69
implemented in sample

application 142
JSP page support 24
use in sample application 157

models 14
MOFW 89
MQ base Java 181
MQSeries

connecting to Component
Broker 179

Java APIs 181
multitiered architecture 23

N
naming service 52
Naming Service (Component

Broker) 95
navigator bean 60
Netscape Web server 7
node managers 15
nodes 12

O
OA 88
Object Adaptor 88
Object Builder 99
object services 15

for Component Broker 95
for enterprise beans 51

Object Transaction Service 97
objects

role in MVC architecture 142
used to implement business

logic 143
online banking example 137
ORB 88

Component Broker 85
OS/390

sample application
implementation 152

OTS 36
OTS transactions 63

P
passivation 41
persistence 57

bean-managed 43
container-managed 44, 148
data objects 149, 177
implementing 61

persistent name server 53
persistors 58
PPC 114
primary key 45
primary key class 45

effect of inheritance on 49
procedural application adaptor 93,

180
program management 124
proxy objects 87, 88

Q
quality of service 60
Query Service 97
queues 112

R
Rational Rose 99, 101
recoverable objects 65
redirecting data requests 23
regions 122

application programming 126
relational databases 17, 80

support in CICS 128
support in Component

Broker 101
support in enterprise beans 57

remote interface 36
effect of inheritance on 48
of entity beans 45
of session beans 42

rowset access bean 47
use in sample application 170

RQS 112
elements 112
queues 112

S
sample application

access beans 169
Advanced Application Server

implementation 148, 167
AIX, Solaris and Windows

implementations 152
bank accounts 144
commonalities and

differences 152
Component Broker

implementation (enterprise
beans) 149, 167

Component Broker
implementation (managed
objects) 149, 176

customers 144
database 145
design of 141
Encina++ implementation

(enterprise beans) 150, 171
enterprise bean implementation

(Advanced Application
Server) 148, 167

enterprise bean implementation
(Component Broker) 149, 167

enterprise bean implementation
(Encina++) 150, 171

goals 138

Index 193

sample application (continued)
implementing 147
JSP pages 161
managed object

implementation 149, 176
managing transactions

(Advanced Application
Server) 148

managing transactions
(Component Broker) 149, 177

managing transactions
(Encina++) 151, 176

object model 143
OS/390 implementation 152
performing banking tasks 143
persistence (Advanced

Application Server) 148
persistence (Component

Broker) 149, 176
persistence (Encina++) 151, 175
scenario 137
servlets 158
transaction records 144
use of access beans 155
use of association (enterprise

beans) 170
use of CopyHelper objects 154
use of JavaBeans components

(WebCommands) 163
use of LocalOnly objects 154

SAP
connecting to Component

Broker 93, 180
scripting 22
scriptlets 22
second tier 68
security

in Web applications 71
security application 54
security collaborator 54
security plug-in 55
security server 54
Security Service 96
security services 54
server certificates 73
server groups 13
servlet redirection 14
servlets 27, 147

advantages of 31
affinity 30
connecting to MQSeries 181
groups 30
invoking JSP pages from 21
life cycle of 29
programming model 27

servlets 27, 147 (continued)
queues 30
role in MVC architecture 143
run-time environment 29
security 71
session management 30, 71
use in sample application 158
using in Web applications 69

session affinity 30
session beans 37, 40

comparison to application
objects 153

components of 41
inheritance 49
Java classes for 43
life cycle of 43
stateless vs. stateful 41
use in sample application 168
using in applications 38

session synchronization 65
SFS 113
SNA 130
SSL 72
Standard Application Server 5

HTML tags 5
run-time architecture 8
system management 6
Web servers 7

state management 60
stateful session beans 41
stateless session beans 41
system name tree (Component

Broker) 95

T
task management 124
thin client 32
third tier 69
TIDL 111, 150

use in bridge server 175
use in sample application 173

TranRecord object 144
enterprise bean implementation

(Advanced Application
Server) 148, 168

enterprise bean implementation
(Component Broker) 149, 168

enterprise bean implementation
(Encina++) 150, 171

managed object
implementation 149, 177

transaction attribute 62
transaction isolation level

attribute 63
transaction processing monitors 108
transaction services 61

Transactional-C 111
transactional objects 65
transactions

CICS 123
EJB transaction model 63
in enterprise beans 61
recording in sample

application 144
TRPC 111
two–tiered architecture 22
TX_BEAN_MANAGED 62
TX_MANDATORY 62
TX_NOT_SUPPORTED 62
TX_REQUIRED 63
TX_REQUIRES_NEW 62
TX_SUPPORTS 63
TXSeries 76, 107

V
Visual Basic 87
Visual C++ 87
VisualAge C++ 87
VisualAge Component Development

Toolkit 80, 99, 138
VisualAge for C++ Professional

Edition 80
VisualAge for Java 17, 87, 138

inheritance suport 50

W
Web applications 67

maintaining state 70
Web server authentication 70
Web site 147, 157

role in MVC architecture 142
WebCommands 163

inheritance hierarchy 163
WebSphere Advanced to Encina

Interoperability 120
use in sample application 150

WebSphere Application Server 1
Advanced Edition 11
and J2EE 2
Enterprise Edition 75
sample application 135
Standard Edition 5
using 138
using with WebSphere Edge

Server 182
WebSphere Edge Server 182
WebSphere Studio 8, 17, 79, 138

use in sample application 157
workload management 14

CICS 133
wrapped bean access bean 47

use in sample application 169

194 WebSphere: Building Business Solutions with WebSphere

wstidl command 121, 150

defining interfaces with 172
generated files 172

wstidl command 121, 150
(continued)

invoking 175

X
XML 19

used with JSP pages 23

Index 195

	Contents
	Figures
	Tables
	About this book
	Who should read this book
	Document organization
	Related information
	Conventions used in this book
	How to send your comments

	Part 1. Understanding WebSphere Application Server
	Chapter 1. WebSphere Application Server Standard Edition
	Standard Application Server features
	Run-time and system management architecture
	Web application server
	Web server
	System Management server
	Services server

	Standard Edition application development environment

	Chapter 2. WebSphere Application Server AdvancedEdition
	Advanced Application Server features
	Run-time and system management architecture
	Topology
	Node
	Server groups
	Cell

	Workload and availability management
	System management

	Object services and support services
	Advanced Edition application development environment
	Application model
	WebSphere Studio
	VisualAge for Java

	Chapter 3. Using JavaServer Pages
	How JSP pages work
	Invoking JSP pages
	Using Java code in an HTML document
	Using JSP tags
	Using JSP pages in applications
	Advantages of using JSP pages

	Chapter 4. Using servlets
	Servlet programming model
	Servlet API
	Life cycle of servlets
	Servlet run-time environment
	Servlet containers
	Servlet queues
	Servlet groups
	Affinity

	Managing servlet sessions
	Advantages of using servlets

	Chapter 5. Using enterprise beans
	EJB environment
	Client view
	EJB server environment
	Containers

	Enterprise bean application development
	Enterprise bean types
	Using session and entity beans in an application
	Development team roles
	Application development process

	Session beans
	Stateless and stateful session beans
	Session bean components
	Bean class
	Home interface
	Remote interface

	Session bean life cycle

	Entity beans
	Bean-managed persistence (BMP)
	Container-managed persistence (CMP)
	Bean class
	Home interface
	Remote interface
	Primary key class
	Finder methods

	Entity bean life cycle

	Extensions to the EJB specification
	Access beans
	Inheritance
	How inheritance affects an enterprise bean
	Inheritance in entity beans
	Inheritance in session beans
	Inheritance support in VisualAge for Java

	Association

	Object Services
	Naming and directory services
	Naming service components

	Security services
	Security server
	Security collaborator
	Security plugin
	Authentication services
	Authorization services
	Delegation policy
	Using security services

	Persistence services
	Connector beans
	Adaptor beans
	Persistors
	Common Connection Framework (CCF)
	Implementing persistence

	Transaction services
	Managing transactions for enterprise beans
	The transaction attribute
	The transaction isolation level attribute
	Locking
	The OTS and EJB transaction models
	Implementing session synchronization

	Chapter 6. Developing Web applications
	Web application programming model
	First tier
	Second tier
	Third tier

	Using JSP pages, servlets, and enterprise beans in Web applications
	Implementing a Model-View-Controller architecture
	Maintaining state in Web applications
	Web server authentication
	Hidden form fields
	Cookies
	Servlet session management

	Implementing security in Web applications
	Secure Sockets Layer (SSL)
	Digital certificates
	Client certificates
	Server certificates

	Chapter 7. WebSphere Application Server EnterpriseEdition
	Enterprise Application Server features
	Component Broker
	TXSeries
	Customer Information Control System (CICS)
	Encina

	Run time and system management architecture
	Enterprise Edition application development environment and tools
	WebSphere Studio
	IBM VisualAge for Java Enterprise Edition
	IBM Enterprise Access Builder (EAB)
	IBM TeamConnection®
	VisualAge Component Development Toolkit
	VisualAge for C++ Professional Edition
	IBM DB2®
	MQSeries

	Chapter 8. Using Component Broker
	Component Broker implementation
	Component Broker run-time environment
	Run-time architecture
	Client support
	Component Broker ORB
	Interface Definition Language
	Proxy objects
	Object Adaptor
	Interoperable object references

	Managed Object Framework
	Server run-time components
	Application adaptors
	Composed business objects
	Application objects
	Interoperable objects
	Enterprise beans and managed objects

	Object services
	Naming Service
	Security Service
	Life Cycle Service
	Externalization Service
	Identity Service
	Query Service
	Object Transaction Service

	Programming model
	Programming model and run-time environment
	Helper classes

	Component Broker application development environment
	VisualAge Component Development Toolkit
	Object Builder
	Bridges to modeling, analysis, and design tools
	Support for other development environments
	CICS/IMS Connection
	IBM TeamConnection

	Enterprise bean support and deployment

	Component Broker system management
	System management model
	Common data model

	Chapter 9. Using TXSeries
	TXSeries Encina
	Encina Monitor
	Encina Monitor functionality
	The Monitor runtime environment
	Monitor interactions with DCE
	Monitor application development environment

	The Recoverable Queueing Service (RQS)
	The Structured File Server (SFS)
	Peer-to-Peer Communications (PPC) Services
	Encina++
	Encina++ interfaces
	Encina++ programming model
	Client and server support

	The Encina Toolkit
	DCE-Encina Lightweight Client (DE-Light)
	WebSphere Advanced to Encina Interoperability

	TXSeries CICS
	Basic CICS concepts
	Regions
	Tables
	Transactions
	Task management services
	Program management services
	Time management services
	Security services
	Recovery management services
	User interface

	CICS application programming interface
	CICS region application programming
	CICS client application programming
	CICS Internet application programming
	Support for relational databases
	Queue services
	User exits

	CICS intersystem communication
	CICS intercommunication facilities
	Communicating with users
	Communications gateways

	CICS administration
	CICS workload management

	Part 2. Using WebSphere Application Server
	Chapter 10. Overview of the sample application
	Sample application scenario: Online banking
	Goals of the sample application

	Chapter 11. Sample application design
	Application design
	Client/server relationship
	Model-view-controller architecture
	Object model
	Data model

	Chapter 12. Implementing the sample application
	Advanced Edition implementation with enterprise beans
	Enterprise Edition implementation with enterprise beans deployed inComponent Broker
	Enterprise Edition implementation with Component Broker managed objects
	Enterprise Edition implementation with enterprise beans and TXSeries Encina++
	Sample application platforms
	Common features and differences between implementations
	Managed objects and enterprise beans
	Application objects and session beans
	Business objects, entity beans with CMP, and data objects

	CopyHelper objects and access beans
	CopyHelper and LocalOnly objects
	Access beans

	Chapter 13. Technical details of the sample application
	Web site
	Web site design
	Client validation and back-end processing

	Servlets
	JavaServer Pages
	WebCommands
	WebCommand structure
	Interaction with access beans and CopyHelpers

	Enterprise beans (Advanced Edition and Enterprise Edition/Component Broker)
	Session bean implementation
	Entity bean implementation
	Access bean implementation
	Associations between enterprise beans
	Deployment

	Enterprise beans, the Encina bridge server, and Encina++
	Enterprise beans
	Defining interfaces by using wstidl
	Encina bridge server
	Encina++ server
	Managing transactions
	Deployment

	Component Broker managed objects
	Application object implementation
	Business object implementation
	Data object implementation
	Associations between managed objects
	CopyHelper objects and managed objects
	Deployment

	Chapter 14. Extending the sample application
	Connecting Component Broker managed objects to other systems
	Connecting to MQSeries
	Connecting to CICS, SAP, or IMS

	Connecting Java applications to MQSeries
	Using the WebSphere Edge Server with the sample application

	Notices
	Trademarks and service marks

	Index

