WebSphere Application Server Enterprise Edition

Component Broker

Advanced Programming Guide

Version 3.0

SC09-4443-00






WebSphere Application Server Enterprise Edition

Component Broker

Advanced Programming Guide

Version 3.0

SC09-4443-00



Fifth Edition (August, 1999)
This edition applies to:
VisualAge Component Development for WebSphere Application Server V3.0, Enterprise Edition for AIX, 5765-E27

VisualAge Component Development for WebSphere Application Server V3.0, Enterprise Edition for Windows NT,
5639-107

WebSphere Application Server V3.0, Enterprise Edition for AIX, 5765-E28

WebSphere Application Server V3.0, Enterprise Edition for Solaris, 5765-E29

WebSphere Application Server V3.0, Enterprise Edition for Windows NT, 5639-109

WebSphere Application Server V3.0, Enterprise Edition Development Runtime for Windows NT, 5639-111
WebSphere Application Server V3.0, Enterprise Edition Development Runtime for AIX, 5765-E31
WebSphere Application Server V3.0, Enterprise Edition Development Runtime for Solaris, 5765-E30

and to all subsequent versions, releases, and modifications until otherwise indicated in new editions. Consult the
latest edition of the applicable system bibliography for current information on these products.

Order publications through your IBM representative or through the IBM branch office serving your locality.

© Copyright International Business Machines Corporation 1997, 1999. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.



Contents

About this book

Who should read this book
Conventions used in this book .
How to send your comments.

Chapter 1. Concurrency Service
The purpose of a Concurrency Service
How concurrency supports locking.
Transactional and non-transactional locking .
Managing updates to resources . .
The Concurrency Service in a transactlonal
environment
Related lock sets .
Locks and lock sets .
Lock modes .
Conlflicting locks in a lock set
Servicing lock requests in a lock set
Multiple lock possession .
Programming considerations .
Deadlocks .
Granularity
Concurrency Service tasks
Defining a lock set .
Creating a lock set .
Relating lock sets
Obtaining and releasmg locks from a lock
set . .
Releasing locks in a transactional
framework . .
Completmg top level transactlons
Using non-transactional locks .
Changing the mode of a lock
Preventing deadlocks .
Managing objects
Handle exceptions . .
Configuring run-time support .
Troubleshooting .

Chapter 2. Event Service .

Communicating asynchronous events

Communication models .

Events .

Event topics . .
Single event channel schemas .
Multiple event channel schemas

© Copyright IBM Corp. 1997, 1999

. ix
. ix

B W W -

O NN N O U U s

O

.12

.13
. 14
. 15
.17
. 18
. 20
. 20
.21
.21

. 23
.23
. 25
.27
. 28
. 29
.29

Event suppliers .
Supplying events

Event consumers
Consuming events .

Event channels . .
Locating an event channel
Creating an event channel
Configuring an event channel .
Connecting to an event channel
Disconnecting from an event channel
Event channel samples

Chapter 3. Notification Service

Communicating asynchronous events

Communication models .

Structured events

Event topics . .
Single event channel schemas .
Multiple event channel schemas

Event suppliers .
Supplying events

Event consumers
Consuming events .

Event channels . .
Locating an event channel
Creating an event channel
Configuring an event channel .
Connecting to an event channel
Disconnecting from an event channel
FilterFactory and filters

Managed object-based sample . .
Step 1: Implementing the application
server (push supplier server object) .
Step 2 : Implementing the C++ client code
(PushSupplier and PullConsumer)
Step 3: Running the sample .

Chapter 4. Externalization Service .
Relationship to OMG Externalization Service
Use of externalization in Component Broker

Chapter 5. Identity Service
Comparing objects
Compare two objects.
Compare multiple objects .

. 30
.31
. 33
. 34
. 36
. 38
. 39
.41
.42
. 44
. 45

. 51
.51
. 54
. 56
. 59
. 59
. 60
. 60
. 62
. 64
. 65
. 67
.70
.71
.73
.74
. 76
.77
.79

. 80

. 87
.92

. 99
99
100

. 103
. 103
. 104
. 104

iii



Optimizations for object collections .

Chapter 6. LifeCycle Service
Concepts of LifeCycle Service .
Concepts of managed objects .
Concepts of factories .
Concepts of factory finders.
Concepts of locations
Location-based factory flndlng
Location object implementations .
Vocabulary of proximity .
FactoryFinders bound in the name space
Application factories and specialized
homes
Managed ob]ects and local only ob]ects
Creating and obtaining hfecycle objects
Minor interfaces
LifeCycleObject 1nterface on managed
objects .
GenericFactory 1nterface on homes .
Detailed view of location-based factory
finding .
Defining scope of locatlon
Lifecycle repository structure .
Factory keys .
Factory finding specifics
Default lifecycle objects .
Tips for using the default hfecycle ob]ects
Lifecycle interfaces and implementations .
Lifecycle object interfaces .
Lifecycle example .

Chapter 7. Naming Service

Naming objects in the distributed ob]ect

system .o

System name space .

Visibility of named objects .
Local and host name tree .
Workgroup name tree
Cell name tree . o
Navigation in the system name space .
Integration of system name spaces .

Naming contexts .
Object names . .
Local root naming Context and the
bootstrap host . . .
Absolute and relative names .
Summary of the naming context 1nterface
Implementing the Naming Service .

iv WebSphere: Advanced Programming Guide

. 106

. 109
. 110
111
. 113
. 114
. 115
. 117
. 119
. 120

121

. 122

123
125

. 126

. 126
. 127

. 128
. 128
. 130
. 133
. 135

. 146
152

. 153
. 154
. 173

. 181

. 181
. 184
. 187
. 188
. 189
. 190
. 191
. 192
. 193
. 194

. 207
. 208

209

. 210

Chapter 8. Security Service .
Security in the distributed object system .
Principals, credentials, and secure
associations .
Manipulating credentlals
Access control . .o
Other security considerations for the
server.
Authentication and end -users.
User IDs and passwords
Server key-tab file
Logging in with environment var1ables
Using environment variables to establish
authenticity .
Message protection
Delegation . .
Enabling delegation for a secure server
Security Service objects .
Principal object
Credentials object .
Current object .
LoginHelper object
Security and servlets in WebSphere
Enterprise
Configuring the WebSphere Enterprlse
Servers . .
Configuring the ]ava Chent servlet .
Installing and configuring servlets in
WebSphere Enterprise
Example code source.
Java client programming note.

Chapter 9. Transaction Service
An example of a transaction .
Top-level and flat transactions
Lifetime of a transaction
Transaction scope and context.
Recoverability .
Transaction outcomes
The two-phase commit process
The one-phase commit process
Heuristic decisions
Transaction retry limits .
Transaction time limits (tlmeouts)
Application programming using the
Transaction Service .
Architecture and design of a Transactlon
Service application
Visibility rules .
Design a Transaction Serv1ce apphcat1on

. 221
. 221

. 222
. 223
. 229

. 230
. 231
. 232
. 232

236

. 236
. 237
. 239

239

. 240
. 240
. 240
. 240
. 241

. 241

. 241
. 242

. 243
. 243
. 249

. 251
. 251
. 252
. 253
. 253
. 254
. 255
. 257
. 258
. 258
. 261
. 261

. 262

. 262
. 265

266



The Transaction Service objects and
interfaces
Manage transactrons in your apphcatron
Controlling the Transaction Service in a
running system .
The transaction service log
Types of server start-up.
Configuring a server to use the
Transaction Service
Problem determination .
Summary of the Transaction Serv1ce

Chapter 10. Session Service
What is the Session Service?
The scope of sessions
The relationship between transactrons and

sessions .
The timeout Value assoc1ated w1th a
session
Resource pr10r1t1es
Using the Session Service .
Visibility rules .

Session Service tasks . .
Setting a time limit for all new sessions
Beginning and ending a session .
Suspending and resuming a session.
Explicit and implicit propagatron of
session context. P
Checkpoint and reset a session context
Registering sessionable resources.
Collaborating on session outcome using
multiple concurrent threads

Chapter 11. Query Service for AIX and
Windows NT
Object-Oriented Structured Query Language
Differences between OOSQL and SQL .
Methods .
Inheritance .
Navigation . .
Query optimizations .
PAA pushdown rules
The cast operator . .
Query over reference collectlons
Data type mapping between DB2 and
CORBA . . L
Query evaluators .
Default query evaluator
Obtain a query evaluator
Topology of query evaluators and collectrons

. 267

269

. 282
. 282
. 284

. 285
. 285
. 286

. 287
. 287
. 287

. 289

. 289
. 290
. 290
. 292
. 295

295

. 295
. 299

. 300

301

. 303

. 305

. 307
308

. 308
. 311
. 313
. 313
. 317
. 321
. 321
. 322

. 323
. 323
. 324
. 324

325

Form a query .

. 326

Queries that result in an ob]ect collectlon

Queries that result in a data array
Queries over unnamed collections

328

. 328
. 329

Coding an extendedEvaluate() method

call.
Java client and ]ava BO exarnple
Memory management

Usage of Naming Service by query

. 329
. 343
. 350
. 350

Limit on number of query iterators per

transaction . .
Limit on query statement size.
Query Service tips

. 350
. 351
. 351

Chapter 12. Query Service for 0S/390 and

Solaris

Object-Oriented Structured Query Language

Differences between OOSQL and SQL .

Methods .

Inheritance .

Navigation .

Collections . .

Query optimizations .

The cast operator . .
Query over reference collectlons

Data type mapping between DB2 and

CORBA .

Query evaluators .
Default query evaluator
Obtain a query evaluator

. 355
356

. 357

. 360
. 362
. 362
. 364
. 364
. 367
. 368

. 369

. 369
. 370
. 370

Get the server name of a query evaluator
Topology of query evaluators and collections
. 375
. 376

Form a query .
Queries on queryable collectrons

Queries that result in an object collection

Queries that result in a data array
Queries over unnamed collections

371
374

376

. 377
. 378

An example using the query evaluator

interface . .

Java clients and Java BO example

Memory management .
Usage of Naming Service by query

. 378
. 385
. 388
. 389

Limit on number of query iterators per

transaction .
Query Service tips

Chapter 13. Cache Service
Cache Service and DB2 locking
considerations . R
Cache Service limits .

. 389
. 389

. 393

. 396
. 396

Contents

A\



Cache Service and Oracle locking . . . . 397

Chapter 14. Object Request Broker . . . 399
Remote method invocation. . . . .39
Conversion of objects to string form . .39
Code-set conversion for remote method
invocations . . . .. . 400
Dynamic invocation mterface (DH) .. . 403
Building a DII request . . . . . . . 403
Constructing a DII request. . . . . . 406
Initiating a DI request . . . . . . . 406
Sample DII requests . . . . ... 407
Dynamic skeleton interface (DSI) .. . 410
Chapter 15. Non-IBM ORB usage . . . . 413
The example . . . . . . . . . . .413
Bootstrapping . . .. . . . . 415
Creating the client bmdmgs Lo.. .. 418
Running the example . . .. 419
Additional tips for non-IBM ORB usage .. 419
Specialized homes . . . . . . . .419
CORBATIIOP . . . . ... 419
Trimming client-side dependencres on
Component Broker interfaces . . . . . 420

Chapter 16. Interlanguage object model 421

IOM and Component Broker . . . . . . 421

Defining IOM interfaces and

implementations . . . .. 424

Communication between C++ and ]ava .. 424

Scenario: C++ client of a local Java object 425
Create the IDLfile . . . . . . . .425
Run the idlc command . . . . . . . 426
Write the Java code to implement
getMessage . . N v
Compile the Java f11e Lo 428
Produce the C++ client file. . . . . . 428
Write the C++ client main program . . . 429
Compile and link to the client . . . . 429
Run the application . . . . 429

Scenario: Java client of a local C++ ob]ect

(NT Only) . . . ... 430
Create the IDL frle . .. 430
Produce the 1mplementat10n-51de C++
binding files . . . .. . 430
Write the C++ code to 1mplement
getMessage . . . 431
Compile and link the C++ plece to the
DLL . . . . .43
Produce the client stub o432

vi WebSphere: Advanced Programming Guide

Compile the Java files
Write and compile the Java cllent
program . . .
Run the apphcatron .

Scenario: C++ client of a remote ]ava ob]ect
Create the IDL files .

Produce the Java 1mplementat10n

bindings .

Write the Java 1mp1ementat10r1 of

getMessage()

Compile the Java pieces.

Create the C++ ORB adapter .

Create the Java server code
Compile and link the server

Create the client program .

Compile and link the client program

Run the application .

Scenario: Java client of a remote C++ ob]ect
Create the IDL file .
Produce a set of C++ 1mp1ementat10n
classes
Write the C++ code to 1mplement
getMessage . . .o
Write the C++ code for the main server
program .

Compile and hnk the C++ preces to the
DLL

Compile and link the DLL .

Write and compile the Java client
program . . .

Run the apphcatlon .

Chapter 17. Workload management .
Programming model .

Overview

Group identity .

Workload manageable ob]ects

WLM homes

WLM persistent ob]ects

WLM transient objects .

Scenario considerations .
Affinity management
Multiple activation .
References to other objects .
Local activation
Automatic rebind .

Scenario examples .
Transient application ob]ects . .
Business objects with DB2 application
adaptor persistence . e

. 433

. 433
. 433

434

. 435

. 435

. 436
. 436
. 436
. 436
. 438
. 438
. 439
. 439

440

. 441

. 441

. 442

. 442

. 443
. 443

. 444
. 445

. 447
. 447
. 447
. 448
. 449
. 450
. 450
. 451
. 451
. 451
. 452
. 453
. 454
. 454
. 454
. 454

. 456



Application objects using remote business
objects with DB2 apphcatlon adaptor

persistence .

Other business ob]ects
Application adaptors.

BOIM application adaptors
Using Object Builder.

Adding a container .

Adding a managed object to an

application .

Client programming model
Using factory finders.
Exceptions and recovery

Chapter 18. Interface repository
Using the configuration tool

Creating the IR database in DB2 .

. 458
. 459
. 459
. 459
. 459
. 459

. 460
. 461
. 461
. 462

. 465
. 465
. 465

Configuring ODBC for AIX

Building an interface repository database

Populating the IR with Component Broker’s

definitions .

Displaying the contents
The Test.idl file
The makefile
Running the makefile
Running the executable .
Running irdump .

Notices .
Trademarks and service marks

Index

Contents

. 466

468

. 468
. 468
. 469
. 469
. 470
. 470
. 470

. 473
. 475

. 479

vii



viii WebSphere: Advanced Programming Guide



About this book

The Component Broker Advanced Programming Guide describes the
Component Broker implementation of the CORBA Object Services and the
Component Broker Object Request Broker (including dynamic invocation
interface (DII) procedures), Interlanguage Object Model (IOM), Interface
Definition Language (IDL), and workload management.

Who should read this book

The Advanced Programming Guide is intended for application developers
who use the Component Broker environment to build distributed
object-oriented applications.

The examples are written in C++; therefore, programming experience in C++
and a background in object-oriented programming is required. A familiarity
with Java is also helpful, but not required.

This book is a programming manual for experienced programmers who are
going to use this product. It is assumed that readers of this book are familiar
with concepts in the WebSphere Application Server Enterprise Edition Component
Broker Programming Guide.

Conventions used in this book

The following conventions distinguish different text elements:
plain Window titles, folder names, icon names, and method names.

monospace
Programming examples, user input at the command line prompt or
into an entry field, user output, and directory paths.

bold Menu choices, push buttons, check boxes, radio buttons, group-box
controls, drop-down list boxes, combo-boxes, notebook tabs, and entry
fields.

italics Programming keywords, variables, and attributes, titles of information
units, initial use of unique terms, and emphasis.

© Copyright IBM Corp. 1997, 1999 ix



The following icons are used to indicate platform-specific sections.

Denotes a section that applies only to the Windows 95 or Windows
NT platform. Do not interpret this symbol to denote that an

WIN equivalent section exists for any other platform.

Note: The Windows 95 platform only supports the Component
Broker Java client.

Denotes a section that applies only to the AIX platform. Do not
AIX interpret this symbol to denote that an equivalent section exists for
any other platform.

Denotes a section that applies only to the Sun Solaris platform. Do
SOLARIS not interpret this symbol to denote that an equivalent section exists
for any other platform.

Denotes a section that applies only to the OS/390 Component
390 Broker platform. Do not interpret this symbol to denote that an
equivalent section exists for any other platform.

Denotes a section does NOT apply to OS/390 Component Broker.
Do not interpret this symbol to denote that an equivalent exists in
0S/390 Component Broker.

WEERN:

How to send your comments

Your feedback is important in helping to provide the most accurate and
highest quality information. If you have any comments about this book or any
other WebSphere Application Server Enterprise Edition documentation, send
your comments by e-mail to waseedoc@us.ibm.com. Be sure to include the
name of the book, the document number, the version of WebSphere
Application Server Enterprise Edition, and, if applicable, the specific location
of the information on which you are commenting (for example, a page
number or a table number).

X  WebSphere: Advanced Programming Guide



Chapter 1. Concurrency Service

The following chapter is platform-dependent and does NOT apply to OS/390
Component Broker.

The use of the Concurrency Service by user application code within the
Component Broker programming model is somewhat limited. This is due to
the Component Broker managed object framework already providing all the
necessary resource level locking and caching to coordinate resource access by
multiple transactions or threads. Further details on resource locking may be
found in section “Locking and visibility concerns with Component Broker” in
the WebSphere Application Server Enterprise Edition Component Broker Planning,
Performance and Installation Guide. The Concurrency Service can be used by
“application adaptor” writers to provide concurrent access to datastores
currently not supported by Component Broker, however this is beyond the
scope of the Component Broker programming model. This chapter is provided
to document the CORBA compliant Concurrency Service provided by
Component Broker for such “application adaptor” writers.

The Concurrency Service is a set of interfaces that allow an application to
coordinate access by multiple transactions or threads to a shared resource.
Coordinating access to a resource means that, when multiple transactions or
threads try to access a single resource at the same time, any conflicting actions
are reconciled so that the resource remains in a consistent state. This is known
as conflict resolution.

To enable conflict resolution, the Concurrency Service supports locking using

lock sets (see [Lacks and lack sets” an page ).

Component Broker for OS/390 does not support the Concurrency Service;
however, you can achieve the same coordination of access to resources by
configuring a Component Broker for OS/390 server with specific policies. See
0S5/390 Component Broker Planning and Installation for further information.

© Copyright IBM Corp. 1997, 1999 1



The purpose of a Concurrency Service

Why would you use a Concurrency Service? To answer this, consider the

following typical Object Oriented business scenario. Two bank clerks want to

credit the same bank account with two different amounts at the same time.
shows what could happen if a Concurrency Service is not used.

Table 1. Simultaneous updates. What can happen if a Concurrency Service is not used.
Program A: Add $100 to a/c Program B: Add $20 to a/c

1. Get value of account=50

2. Get value of account =50

3. Add 100 internally to program

4. Add 20 internally to program

5. Store the result account=150

6. Store the result account=70

The final balance of the account is 70 dollars, rather than 170. Because the
order of events is not predetermined, there is no guarantee that you will get
the correct result.

To avoid these problems, you can use a Concurrency Service. [[able 4 shows
what happens if programs A and B use a Concurrency Service.

Table 2. Simultaneous updates. A Concurrency Service is used.
Program A: Add $100 to a/c Program B: Add $20 to a/c

1. Request a write lock on the account

2. Obtain a write lock

3. Request a write lock on the account

4. Get value of account =50

5. Add 100 internally to program

6. Store the result account=150

7. Release the lock

8. Obtain a write lock

9. Get value of account =150

10. Add 20 internally to program

11. Store the result account=170

12. Release the lock

This time the result is correct. [Lable d introduces the concepts of locks and
lock modes (see Locks and lock setd and ELack modes” on page 3). A lock is

2 WebSphere: Advanced Programming Guide



used to regulate access to a resource. A lock mode defines the way in which
the resource can be accessed. For example, a “write lock” allows a program to
change a file record; a “read lock” only allows the program to inspect it.

n [[able 2 on page 2, transaction B is not given a lock straight away, because

transaction A already holds a write lock on the account. When transaction A
releases its lock, transaction B is able to get a write lock and update the
account.

By using a concurrency control service in this way, you get the correct result.

How concurrency supports locking

The Concurrency Service supports both transactional and non-transactional

locking (see I‘Transactional and non-transactional locking”). Locking prevents

multiple requesters (transactions or threads that request a lock) from
simultaneously accessing the same resource if their activities might conflict.

This is illustrated in The purpose of a Concurrency Service” on page 2.

The Concurrency Service is primarily intended to be used by server processes
that need to manage concurrent access to resources.

The Concurrency Service manages locks on behalf of a single server process
(either transactional- or thread-based locks). Shared locks between multiple
server processes are not supported.

The Concurrency Service can only be used by server processes, there are no
client usage bindings.

Transactional and non-transactional locking

The Concurrency Service is intended primarily for use in a transactional
environment, as a complementary service to the Transaction Service (see

’ v ). In a transactional environment,
locks are acquired and released on behalf of transactions.

It is possible to use the Concurrency Service in a non-transactional
environment. In this case, locks are acquired and released on behalf of
threads.

The Concurrency Service manages locks on behalf of a single server process

(either transactional- or thread-based locks). Shared locks between multiple
server processes are not supported.

Chapter 1. Concurrency Service 3



Managing updates to resources

Although the Concurrency Service could be used by a server process to
control thread execution as an alternative to semaphores , this would not be
very efficient. The Concurrency Service is primarily intended to be used by
server processes that need to manage concurrent access to resources. An
application requiring access to a particular resource invokes a method on the
server process controlling updates. Typically, the concurrency control
mechanism is contained entirely within that server process, which defines the
association between the locks and resources.

The Concurrency Service places no restrictions on what a resource can be. It
could, for example, be a field within a record, a single file record, or a
database - in the example illustrating the ['The purpose of a Concurrencyl
Bervice” on page 3, it is a bank account. Granularity describes the factors that
you should consider when deciding what size each resource should be (see

FCranularitg d).

For example, consider an application BankAccount that controls access to
resources of type AccountBalance. The AccountBalance class provides a
method (AccountBalance::get_balance) for applications wishing to query the
balance of AccountBalance objects. The implementation of this method might
be as follows:

1. Acquire a read lock on AccountBalance.
2. Read value of AccountBalance.
3. Release the read lock on AccountBalance

The Concurrency Service in a transactional environment

The Concurrency Service is intended primarily for use in a transactional
environment, as a complementary service to the Transaction Service (see

rc hapfpr 9 Transaction Service” on page 7’31|), In such an environment, a
locking mechanism ensures that a transaction is unable to view the partial
effects of another transaction (that is, changes that have not been committed).

Related lock sets

The Concurrency Service allows a group of lock sets to be related. This
enables a server process controlling updates to drop all the locks held by a
transaction in a related group by invoking just one operation, the
CosConcurrency::LockCoordinator drop_locks() operation.

4  WebSphere: Advanced Programming Guide



For example, a server process controlling updates might relate a group of lock
sets, each of which it has created to manage access to an individual file.
Within the server process’s commit and rollback methods, all the locks held
on any of the files by the completing transaction can be dropped by a single
method call.

Locks and lock sets

A lock is associated with a single resource and a single thread or transaction.
Locks can be exclusive or shared. When a transaction or thread holds an
exclusive lock on a resource, it means that (in general) no other transaction or
thread can obtain a lock to access the resource, until the exclusive lock is
released. Write locks are exclusive. If they were not, the timing of write events
could result in data corruption or outdated data could be read. Read locks, on
the other hand, can be shared; because the resource is not being changed,
more than one application can be given a read lock on it, with no danger of
any application reading outdated data.

A lock set is a collection of all the locks associated with a single resource. A
server process controlling updates creates a lock set for each resource that
requires controlled access. When first created, the lock set is empty. Before a
transaction or thread can access a controlled resource, it must obtain a lock, in
the relevant mode, from the appropriate lock set. If the requested lock cannot
be granted immediately, the request is queued. Each request for a lock,
whether granted or queued, results in a new lock being created in the lock set.
Each lock is associated with its requester, and exists until it is released.

A lock set is therefore the set of locks, both granted and queued, that
currently exist for a controlled resource.

Lock modes

Lock modes are categories of access to resources. They define the level of
concurrency that a held lock allows to other (conflicting) requesters of the
lock.

Having a variety of lock modes allows more flexible conflict resolution. For
example, having different modes for reading and writing means that a
resource can support multiple concurrent transactions or threads that are
merely reading the data of the resource. The Concurrency Service also defines
intention locks that support locking at multiple levels of granularity.

These lock modes are available:

Chapter 1. Concurrency Service 5



Read Lock Mode (R)
Obtains access to the lock for reading. This is known as a shared lock
mode, because multiple read locks can be held concurrently on the
same resource.

Write Lock Mode (W)
Obtains access to the lock for writing. This is known as an exclusive
lock mode, because it prevents other requesters from obtaining a lock
on the same resource.

Upgrade Lock Mode (U)
Only one requester can obtain this lock, but while it holds the lock
other requesters can obtain read locks Use of upgrade locks is
described in more detail in ”

Intention Read Lock
Indicates intention to obtain a read lock Use of the intention read lock
is described in more detail in ”

Intention Write Lock (IW)
Indicates intention to obtain a write lock. Use of the intention write

lock is described in more detail in FGranularity” on page d.

Lock Mode Capability

The following table shows the compatibility of the various lock modes. An X
shows where lock modes are incompatible.

Table 3. Lock mode compatibility

IR R U W \
Intentional Read (IR) X
Read (R) X X
Upgrade (U) X X X
Intentional Write (IW) X X X
Write (W) X X X X X

Conflicting locks in a lock set

If a transaction or thread requests a lock on a resource and a lock is already

held in an incompatible mode (as explained in 'Lack mades” on page 5), the

request is said to conflict with the held lock. The only exception to this, is
when the held lock is held by the same transaction or thread. See

- 3

6  WebSphere: Advanced Programming Guide



Servicing lock requests in a lock set

If a lock request does not conflict with any held locks, and no requests are
waiting to be granted in the lock set, the requested lock is granted and added
to the set of held locks. If the request does conflict with a currently held lock,
but norequests are waiting to be granted, it causes a queue of waiting requests
to be created (containing just itself).

If a request is made for a lock, and there is already a queue of one or more
waiting requests in the lock set, the request is usually added to the end of the
queue (irrespective of whether or not it conflicts with any held locks).
However, if both the following apply the lock is granted immediately:

* The requester or, in the case of a transaction, one of its ancestors, already
holds a lock in the lock set.

* The request does not conflict with any of the locks held.

Whenever a lock is released, the Concurrency Service automatically tries to
grant the lock request that is at the front of the queue. If the request is
successfully granted, the Concurrency Service removes it from the front of the
queue and tries to grant the next request.

When the Concurrency Service cannot grant the lock request at the front of
the queue, it searches down the queue. For each requester waiting, it checks
whether that requester (or, in the case of a transaction, one of its ancestors)
already holds a lock in the lock set. If this is the case and the request does not
conflict with any of the locks held, the request is granted and removed from
the queue.

Multiple lock possession

The Concurrency Service enables a transaction or thread to hold multiple
locks in the same lock set (that is, multiple locks on the same resource)
simultaneously. The locks can be of different (and possibly conflicting) modes,
or of the same mode. A count is kept of the number of locks of a given mode
that the transaction or thread holds. When a lock of that mode is unlocked,
the count is decremented. The transaction or thread holds the lock until the
count reaches zero. Therefore, to completely release a lock, the number of
unlock requests must equal the number of times that the lock has been
acquired in that mode.

Programming considerations

When creating a server process or an application that uses the Concurrency
Service, there are a number of points you should consider:

Chapter 1. Concurrency Service 7



* If a number of transactions or threads are competing for access to shared

resources, ['Deadlocks” on page 7 can occur. No transaction can proceed

because each is waiting for a lock held by another transaction.

* When deciding on the granularity of a lock (that is, the scope of the locked
resource), you need to balance the low overhead of coarse granularity with

the improved concurrency of fine granularity (see EGranularity” on page d).

* Manage objects explains how an application obtains objects from the
Concurrency Service and when, if ever, it can destroy them (see
Bbiects” 20).

* Your server process controlling updates must be able to handle the
exceptions that the Concurrency Service raises when it encounters an error

(see 'Handle exceptions” on page 20).

Deadlocks

When a number of transactions (or threads) are competing for shared
resources, there is the risk of deadlock. This occurs when no transactions in a
set can proceed because each is waiting for a lock held by another member of
the set.

In the following example, deadlock occurs because programs A and B are each
unable to proceed until the other releases its lock. This would be avoided if A
and B both attempt to lock resource X first, then Y.

Table 4. Deadlocks

Program A Program B

1. Request a write lock on resource X

2. Obtain a write lock on resource X

3. Request a write lock on resource Y

4. Obtain write lock on resource Y

5. Request write lock on resource Y

6. Thread suspended waiting for program B to
release its lock on Y

7. Request write lock on resource X

8. Thread suspended waiting for program A to
release its lock on X

8  WebSphere: Advanced Programming Guide



Granularity

The granularity of a lock relates to the scope of the locked resource. For
example, a lock on a resource object that represents a single file record could
be described as a “fine granularity lock”; while a lock on an entire database is
a “coarse granularity lock”.

Coarse granularity locks incur low overhead, because the Concurrency Service
has fewer locks to manage, but reduce concurrency because conflicts are more
likely to occur. Fine granularity locks improve concurrency, but result in a
higher locking overhead because more locks are requested. Selecting a suitable
granularity is a balance between the lock overhead and the degree of
concurrency required. With the Concurrency Service, a server process
controlling updates can use coarse or fine granularity by defining the
associated resources appropriately.

A server process controlling updates can support variable levels of granularity
on a single resource. For example, consider a collection of files each
containing a number of records. A server process could associate a lock set
with each of the files and a lock set with each of the records within the files.
A transaction could then obtain a coarse granularity lock on a complete file or
a finer granularity lock on one of the records contained within a file.

Imagine that a transaction needs to update a record in a file controlled by this
server process . It would be insufficient for the transaction simply to acquire a
write lock on the record, because another transaction might acquire a write
lock on the complete file containing the record, and delete or modify the file.

Alternatively, the server process controlling updates could ensure that a
transaction was not able to perform any updates to a record within a file
unless it already held a write lock on the complete file. However, this removes
the capability of finer granularity locking (on an individual record) that the
server process controlling updates aimed to provide.

The Concurrency Service provides two lock modes that a server process can
use to solve this problem These modes are intention read (IR) and intention
write (IW).

A transaction intending to obtain a write lock on a fine-granularity resource
contained within a coarser granularity resource must first obtain an intention
write lock on the coarser granularity resource. In the previous example, the
coarse-granularity resource is the file that contains the record to be updated.
When the intention write lock is successfully granted, the transaction can then
obtain a write lock on the individual record and update it.

Chapter 1. Concurrency Service 9



Notice that the ownership of an intention write lock does not prevent other
transactions from obtaining an intention write lock (or an intention read lock)
on the same file. However, it does prevent another transaction (which is not a
descendant of the intention lock holder) from obtaining a read, upgrade, or
write lock on the file. Essentially, the intention lock has restricted coarse
granularity locking on the file so that multiple requesters can simultaneously
hold finer granularity locks on its records.

An intention read lock is used in exactly the same way as an intention write
lock, to restrict coarse-granularity locking yet allow multiple requesters to
hold finer-granularity locks within a resource. An intention read lock is
incompatible only with a write lock.

Concurrency Service tasks

This section describes the tasks performed when using Concurrency Services.

Defining a lock set

A server process controlling updates creates a lock set for each resource that
requires controlled access.

You can define a lock set using either the LockSet interface or the
TransactionalLockSet interface. The LockSet interface enables more flexibility,
because the lock requests can be made on behalf of the current transaction or,
if a transaction does not exist, on behalf of the current thread. There is also no
need to pass an extra parameter specifying the transaction when using this
interface.

Before carrying out this procedure, make sure you are familiar with:

”

To define a lock set, define the LockSet as a private instance variable in the
class header file. For example: Define the lock set as a private instance
variable in the class header file as follows:

#include <CosConcurrency.hh>

CosConcurrencyControl::LockSet_ptr lockset;

only with a write lock.

Creating a lock set

A server process controlling updates creates a lock set for each resource that
requires controlled access.

10  WebSphere: Advanced Programming Guide



Before carrying out this procedure, make sure you are familiar with [Lockd

and lock sets” on page § and 'Defining a lack set” on page 10.

To create a lock set, follow these steps:

1. Create a lock set for every recoverable object, using a LockSetFactory
object. You can do this within the initialization code of your class.

2. Delete the LockSet factory object.
Here is an example:

To create a lock set, include the following in the initialization code for the
class:
#include <CosConcurrency.hh>

{

CosConcurrencyControl::LockSetFactory ptr const lockset_factory =
CosConcurrencyControl::LockSetFactory:: create();
this->lockset = lockset_ factory->create();

(.I(.)I.QBA: :release (Tockset factory);
}
The LockSetFactory object is needed only to create the LockSet. Once you
have finished with a factory, you can destroy it.

Relating lock sets

The Concurrency Service allows a group of lock sets to be related (see

’ “ . This enables a server process controlling
updates to drop all the locks held by a transaction in a related group by
invoking just one operation, the CosConcurrency::LockCoordinator
drop_locks() operation.

Before carrying out this procedure, make sure you are familiar with m

To relate lock sets, follow these steps:
1. Create the primary lock set, to which the others will be related.
2. Relate each additional lock set to the primary lock set as required.

Here is an example:

Create the primary lockset:

Chapter 1. Concurrency Service 11



#include <CosConcurrency.hh>

CosConcurrencyControl::LockSetFactory_ptr const lockset_factory =
ConcurrencyControl::LockSetFactory:: create();
this->lockset = lockset factory->create();

Create a lock set that is related to the initial one:
this->lockset2 = lockset factory->create_related(Tockset);

Create another lock set that is related to the initial one:
this->lockset3 = lockset factory->create_related(lockset);

Note that lockset3 is also related to lockset2.

The LockSetFactory object is needed only to create the LockSets. Once this has
been done successfully, you can destroy it:

CORBA::release (lockset_ factory);

Obtaining and releasing locks from a lock set

Before accessing data, an object must obtain a lock from the appropriate lock
set. If the lock cannot be granted immediately, the thread that issued the call
is blocked (suspended) until the lock can be granted. If you want the thread
to continue doing useful work if the lock cannot be granted immediately, you
can use the non-blocking try_lock() operation rather than the blocking lock()
operation.

Before Carrymg out thls procedure, make sure you are familiar with m
” , and (Lacks and lacld

To update data, follow these steps:

1. Use the lock() operation to obtain a write lock from the lock set that
controls access to the data.

2. Update the data.
3. Release the write lock.

e If the lock was acquired on behalf of a transaction, do this only when
the transaction has completed.

* If the lock was acquired on behalf of a thread, do this as soon as all the
data has been updated.

To read data, follow these steps:

1. Use the lock() operation to obtain a read lock from the lock set that
controls access to the data.

12 WebSphere: Advanced Programming Guide



2. Read the data.
3. Release the read lock when it is no longer required.

The CosConcurrency.hh include file defines the following enums for each type
of Lock Mode specified as the parameter to the lock()/unlock() functions:

¢ Read Lock - CosConcurrencyControl::read

¢ Write Lock - CosConcurrencyControl::write

* Upgrade Lock - CosConcurrencyControl::upgrade

¢ Intention Read Lock - CosConcurrencyControl::intention_read

¢ Intention Write Lock - CosConcurrencyControl::intention_write

Here is an update data example:

The following is an example of a lock request in a BankAccount
implementation. A bank clerk updates the balance of an account using a
method called BankAccount::updateBalance. Before it can do this, the
BankClerk object must obtain a write lock from the BankAccount lockset:

this->Tockset->Tock(CosConcurrencyControl::write);

The updateBalance() method can only be used within the scope of a
transaction. To avoid making public changes that might later be rolled back,
the transaction’s locks are not released until commit or rollback.

Here is a read data example:

The following is an example of a read only lock request in a BankAccount
implementation. A bank clerk is performing an account query using a method
called BankAccount::retrieveBalance. To do this, the BankClerk object must
obtain a read lock from the BankAccount lockset while performing the read of
the data.

this->Tockset->Tock(CosConcurrencyControl::read);
read data from datastore

this->Tockset->unlock(CosConcurrencyControl::read);

Releasing locks in a transactional framework

In a transactional environment, a locking mechanism ensures that a
transaction is unable to view the partial effects of another transaction (that is,
changes that have not been committed). A transaction should only release its
locks when it has completed its updates and is ready to reveal those updates
to other transactions.

Chapter 1. Concurrency Service 13



Although this document refers to transactions obtaining and releasing locks,
this is just a convenient shorthand. It is actually the server processes
controlling updates that obtain and release locks on behalf of transactions.

Before carrying out this procedure, make sure you are familiar with

”

Locks are released as follows:
1. The transaction commits or rolls back its changes.

2. The server process controlling updates using the Concurrency Service
ensures that the transaction releases its locks immediately.

You should release the locks within the server process’s commit and
rollback methods. To ensure that these methods are called during the
two-phase commit logic of the transaction, the resource object must
register itself as a synchronization object with the transaction Coordinator
using the Synchronization Interface. For further details see the
“Transaction Service” section in the WebSphere Application Server Enterprise
Edition Component Broker Programming Reference.

Important: In general, a transaction should always drop its locks during
two-phase commit processing as described here. However, if a
transaction acquires a lock on a resource and does not make any
modifications to that resource (that is, it acquires a read lock), the
transaction can drop the lock before committing or rolling back.
Be careful not to release locks too early though; if a transaction
requires that another transaction does not change a resource, it
should hold the read lock until it completes.

When using locks:
* Ensure that a transaction never holds any locks after it has completed.

* Ensure that a transaction never attempts to acquire locks during prepare,
commit or rollback processing. Following prepare, a transaction is no longer
associated with the current thread, on whose behalf the lock request is

made. This could result in deadlock (see 'Deadlacks” on page §).

Completing top level transactions

The Concurrency Service provides the LockCoordinator interface to ease the
implementation of dropping locks prior to transaction end. One
LockCoordinator object exists for each group of related lock sets for each
transaction that holds a lock or has an outstanding request in one or more of

the related lock sets (see [Related lock sets” on page 4). A server process

14  WebSphere: Advanced Programming Guide



controlling updates need not concern itself with the creation or management
of the LockCoordinator object because the Concurrency Service deals with this
internally.

Top-level transactions are completed as follows:

1. Use the get_coordinator() operation to obtain the LockCoordinator object
that represents the lock set and the transaction.

2. The transaction drops all the locks that it holds or has an outstanding
request on. It should do this when it has committed or rolled back its
changes.

Here is an example:

Suppose you are implementing a BankAccount class. You might provide a
drop_locks() method that drops all the locks that are held by the transaction
passed as an input parameter. First this method gets the LockCoordinator
object representing the lock set and the transaction:

CosConcurrencyControl::LockCoordinator_ptr const lock_coord;

this->1lockset->get coordinator(Tock coord);

Next, the transaction drops all the locks that it holds or has an outstanding
request on. This is done by the following call:

Tock_coord->drop_locks();

If the lock set were related to other lock sets, invoking drop_locks against the
LockCoordinator object would result in all the locks held by the transaction in
the other lock sets being dropped as well.

When the transaction has completed, it must drop all its locks. In this
example, you might do this in an uninvolve_in_transaction() method of the
BankAccount object before voting read-only to prepare or before returning
from commit or rollback.

Using non-transactional locks

Although the Concurrency Service is designed for use primarily in a
transactional environment, it is possible to have lock sets that are only ever
called outside the scope of a transaction. In such a case, each lock request in a
lock set is always associated with a thread.

Before carrying out this procedure, make sure you are familiar with:

° v ”

. s . 12

° 7 ”

Chapter 1. Concurrency Service 15



o I'Lacks and lock sets” on page |

To use non-transactional locks, follow these steps:

Define the lock set.

Create the lock set using a LockSetFactory in the class initialization code.
Suspend the transaction associated with the current thread.

Request a lock in the lock set.

Read or update data.

Release the lock.

Resume the transaction associated with the current thread.

NogprwNPE

Here is an example:

Suppose in a BankAccount implementation that a class called Traninv is used
for keeping track of each transaction’s involvement with a recoverable object.
It does this using a hash table to implement the Coordinator-to-Resource
mapping. To control access to the hash table, a lock set is defined as a private
instance variable in the Traninv header file:

/* C++ example */

#include <CosConcurrency.hh>

{
CosConcurrencyControl::LockSetFactory ptr Isfact;
CosConcurrencyControl::LockSet_ptr latch;

The latch object is then created during the initialization of the Traninv class.

// Get the LockSetFactory object (a new one is created if it does not
// exist)

Isfact = CosConcurrencyControl::LockSetFactory:: create();
// Create a lockset using the LockSetFactory object

latch = lsfact->create();

Suppose the Traninv class has a get_resource() method that returns the
address of the resource associated with a transaction. It acquires this
information from the hash table, which must be read locked to ensure that it
does not change during access. First the Traninv::get_resource() method
suspends the transaction and gets a read lock in the latch lock set on behalf of
the current thread:

CosTransactions::Control_ptr const control = current->suspend();

this->Tatch->Tock(CosConcurrencyControl::read);

16  WebSphere: Advanced Programming Guide



When the relevant data has been accessed, the thread releases the read lock
and resumes the transaction:

this->Tatch->unlock(CosConcurrencyControl::read);
current->resume (control);

release latch;
release [sfact;

Changing the mode of a lock

You can change the mode of a lock that has already been acquired by
invoking the change_mode() operation on the lock set object. For example,
suppose a server process controlling updates holds an upgrade lock, a special
type of read lock used when the server process intends to do a subsequent

write (see 'Lock modes” on page ). It would use the change_mode()

operation to upgrade the lock to a write lock.

Before carrying out this procedure, make sure you are familiar with Lock
Modes.

To change the mode of a lock, follow these steps:

1. Obtain an upgrade lock. Invoke the lock() operation on the appropriate
lock set object.

2. Read the data.

3. If you do not need to update the data, release the lock. If you do need to
update the data:

a. Use the change_mode() operation to change the mode from upgrade to
write.

Update the data.
Release the write lock.

Here is an example:

In Use Non-transactional Locks, a class called Traninv is used for keeping
track of each transaction’s involvement with a recoverable object in a
BankAccount implementation (see [1lsing non-transactional locks” onl

. Traninv has an involve method that creates a coordinator-to-resource
mapping for each transaction.

The thread obtains an upgrade lock:
this->Tatch->Tock(CosConcurrencyControl: :upgrade);

Chapter 1. Concurrency Service 17



Once it has successfully acquired the lock, the method looks in the hash table
to see whether a coordinator-to-resource mapping exists that corresponds to
the (recently suspended) transaction.

If a mapping already exists in the hash table for this transaction, there is no
need to perform any additional actions. The upgrade lock is released:

this->latch->unlock(CosConcurrencyControl: :upgrade);

If no mapping exists for the transaction, involve must create one. It uses the
change_mode() operation to change the mode to write:

this->1atch->change_mode(CosConcurrencyControl::upgrade,
CosConcurrencyControl::write);

Now that the thread holds a write lock on the latch, it is safe to proceed with
updates to the hash table. The hash table is updated with an entry associating
the coordinator to the resource.

When all required changes have been made to the hash table, the transaction
releases the write lock:

this->Tatch->unlock(CosConcurrencyControl::write);

Preventing deadlocks

When a number of transactions (or threads) are competing for shared
resources, there is the risk of deadlock. This occurs when no transactions in a
set can proceed because each is waiting for a lock held by another member of
the set.

Before carrying out this procedure, make sure you are familiar with

[/D ]] ] ” g

To prevent deadlock occurring within a single-process or application, when
two transactions try to access a resource already locked by the other
transaction, follow these steps:

1. Assign an arbitrary order to the resources that can be locked.

2. Ensure that all transactions or threads request locks in this order.

To prevent deadlock in an application that uses the Concurrency Service
across multiple processes, specify a transaction timeout (see m

).

If the transaction has not completed within the time specified, it automatically
rolls back and its locks are released. The timeout value you should choose

18  WebSphere: Advanced Programming Guide



depends on the application. It should be large enough to ensure that the
transaction has time to complete but short enough to be an acceptable time in

which to detect deadlock.

To prevent deadlock occurring when two or more requesters attempt to read
and then update the same resource, obtain an upgrade lock instead of a read

lock.

Here is an example:

In this example, A and B both try to read and then update the same resource:

Table 5. A and B both try to read and then update the same resource.

Program A

Program B

1. Request a read lock on resource

2. Obtain a read lock on resource

3. Request a read lock on resource

4. Obtain read lock on resource

5. Request write lock on resource

6. Thread suspended waiting for program B to
release its read lock

7. Request write lock on resource

8. Thread suspended waiting for program A to
release its read lock

If each registers for a single upgrade lock, followed by a write lock, the

deadlock does not occur:

Table 6. Each registers for a single upgrade lock, followed by a write lock.

Program A

Program B

1. Request an upgrade lock on resource

N

. Obtain an upgrade lock on resource

3. Request an upgrade lock on resource

. Request write lock on resource

. Obtain a write lock on resource

. Update resource

. Release write lock

| N || G| =

. Release upgrade lock

9. Obtain an upgrade lock on resource

10. Request a write lock on resource

Chapter 1. Concurrency Service

19



Table 6. Each registers for a single upgrade lock, followed by a write lock. (continued)

11. Obtain a write lock on resource

Managing objects

The first table shows how an application obtains objects from the Concurrency
Service, and when, of ever, it can destroy them. If the application is not
allowed to destroy an object, the second table shows when the concurrency
destroys the object.

Table 7. How an application obtains and destroys objects from the Concurrency Service

Object How the application obtains the object When the appl‘lcatlon can
destroy the object
LockSetFactory LockSetFactory::create At any time after the
application has finished
LockSet LockSetFactory::create or At any time after the
LockSetFactory::create_related application has finished using
it
TransactionalLockSet | LockSetFactory::create_transactional or At any time after the
LockSetFactory::create_transactional_related application has finished using
it
LockCoordinator LockSet::get_coordinator or Never (it is created and
TransactionalLockSet::get_coordinator destroyed by the
Concurrency Service)

Table 8. When the Concurrency Service destroys the object

. . . . When the application can
Object How the application obtains the object destroy the object
LockSet::get_coordinator LockCoordinator:drop_locks
LockCoordinator TransactionalLockSet::get_coordinator When the last related LockSet is
destroyed

Handle exceptions

When the Concurrency Service encounters an error and is unable to complete
a request successfully, it raises an exception in the application environment.
Your application should catch exceptions and take appropriate action.

An exception can be one of those defined in the Concurrency Service interface
definition or a standard system exception. The standard system exceptions

contain a minor code that identifies the nature of the problem being reported.
The system exceptions are listed in the “Errors and Exceptions” section under

20  WebSphere: Advanced Programming Guide



“Minor Codes Defined”, in the WebSphere Application Server Enterprise Edition
Component Broker Problem Determination Guide. Exceptions are handled as
follows:

1. The server process controlling updates should check the environment after
every request.

2. If an exception is raised, it must clear it before issuing subsequent
requests. If it does not, unpredictable results can occur.

Configuring run-time support
When you install Component Broker, the installation program sets default

values for trace and log files. You can change these using the Object Editor of
the System Management interface.

Troubleshooting

Problem determination is described in the WebSphere Application Server
Enterprise Edition Component Broker Problem Determination Guide.

Chapter 1. Concurrency Service 21



22 WebSphere: Advanced Programming Guide



Chapter 2. Event Service

The following chapter is platform-dependent and does NOT apply to OS/390
Component Broker.

An Event Service allows objects to dynamically register or unregister their
interest in specific events. An event is an occurrence within an object that is
specified to be of interest to one or more objects. The Event Service creates a
loosely joined communication channel between objects that are unfamiliar
with each other.

The purpose of an Event Service is to enable objects to freely register or
unregister their interest in certain events. An Event Service decouples
communication between objects by defining two roles for objects: supplier
objects and consumer objects. Suppliers produce events, while consumers
process events.

Events are communicated among suppliers and consumers using standard
CORBA requests. An Event Service contains event channels that act as
supplier and consumer objects. These event channels allow multiple suppliers
to communicate with multiple consumers asynchronously and without
knowing about each other.

Communicating asynchronous events

The Component Broker Event Service enables you to exchange asynchronous
event messages between different objects in the distributed system. This is
useful for communicating about events that occur in one part of your
application that another part of the application needs to know about. The
asynchronous and loosely coupled nature of the Event Service allows the
same event to be communicated to different parts of your application that
may be interested in the same thing; neither part of your application needs to
know directly of the other parts.

The Event Service introduces several key concepts:

Events
An event is a specific instance of an event message about a particular
event. For instance, an event message may be generated to report that

© Copyright IBM Corp. 1997, 1999 23



an Insurance Agent has closed a contract for an insurance policy. This
event may be monitored by one program that maintains statistics on
the number of contracts that are closed on average per hour, and by
another program that logs all of the activities of each agent.

Event messages are discrete, relating only to one event. However,
events can be replicated to report the same event information to
multiple consumers of that event.

Event topics
An event topic defines a specific event type, or a family of related
event types. For instance, the events that report when agents have
closed their contracts are all of the same type, even though there may
be many instances of this, one for each time an agent closes a contract.

Event suppliers
An event supplier is an object that generates event messages: it is a
supplier of events, or more literally, the messages that report on that
event.

Event consumers
An event consumer is an object that receives event messages, making
it a consumer of events.

Event channels
An event channel is a broker of event messages. Event suppliers
provide their events to an event channel, and event consumers obtain
those events from the same event channel. The event channel is
responsible for ensuring that all events that it receives are provided to
all of its connected consumers. It is also responsible for mediating
between the push and pull communication models.

Each event channel is actually composed of the following seven types
of objects: EventChannel, which anchors the set of other related event
channel objects; EventSupplierAdmin and EventConsumerAdmin which
are administrative objects for mediating event connections; and
PushConsumerProxy, PullConsumerProxy, PushSupplierProxy, and
PullSupplierProxy objects which serve to represent a specific connection
between individual suppliers and consumers of the event channel.

Communication models
The Component Broker Event Service supports both a push model of
communication as well as a pull model of communication. The push
model allows an event supplier to push its events to the event
channel. The pull model allows an event channel to pull events from
its event suppliers. Likewise, the push model allows an event channel
to push events on its event consumers. And the pull model allows an
event consumer to pull events from its event channel. An event

24  WebSphere: Advanced Programming Guide



channel can simultaneously support all communication models
between all of its suppliers and consumers.

Push Push
Suppliers

Consumers
\/\/\/ Event Channi{\ﬂ/\/v
o——

NN

—=0 —O
Pull Pull
Suppliers Consumers

Figure 1. Event Service relationship model

Push suppliers use an event channel to push their event messages. Event
channels use pull suppliers to pull their event messages. Event channels
queue up all the events they receive from all of their suppliers. Event
channels use consumers to push all of the events queued up in the channel.
Pull consumers use event channels to pull all of the events queued up in the
channel.

Communication models

The Event Service can be used with either a push model or a pull model of
interaction. Event suppliers can either push or pull events with the event
channel. Likewise consumers can either push or pull events with the event
channel.

A push supplier, having connected with the event channel, can push an event
message on the event channel whenever the event occurs, or whenever it is
appropriate for the supplier to present the event message to the event channel
after the occurrence of the event. The push supplier can push its event(s)
using the CosEventComm::PushConsumer::push() method supported by the
ProxyPushConsumer that it obtained from the SupplierAdmin during the
event channel connection process.

A pull supplier, having connected with the event channel, will have events
pulled from it periodically. The event channel does this by invoking a pull()

Chapter 2. Event Service 25



operation on the pull supplier. The pull supplier must support the
CosEventComm::PullSupplier interface, and in particular implement the pull()
and try_pull() operations. The pull() operation should be implemented to
block and return an event message when the event has occurred. The
try_pull() operation should never block, but rather should return an event
message and a boolean return value of TRUE if an event has occurred, and to
return a null message and a boolean return value of FALSE if not.

The event channel will perform its pull() operations on a separate thread for
each pull supplier. Nonetheless, the pull supplier should be implemented to
return from the pull() operation as quickly as possible (after an event is
available) to avoid consuming resources in the event channel that could
eventually affect its throughput.

Even though the event channel in Component Broker only uses the pull()
operation, both operations should be implemented as other event channel
implementations may invoke either. These methods should be implemented to
work together so either method can be used interchangeably and yet only
produce one event message for an event occurrence.

A push consumer, having connected with the event channel, will have events
pushed on it whenever the event message is supplied to the event channel.
When an event message is supplied to the event channel, the event channel
iterates through its full list of connected push consumers and pushes the same
event on each of those consumers.

The push consumer must support the CosEventComm::PushConsumer
interface, and in particular implement the push() operation. It is up to the
push consumer to decide what to do with the event when it arrives. Often,
consumers are implemented to spawn a separate thread of their own to
process the event. Each push occurs on a separate thread to isolate the effect
that different consumers can have on each other. Nonetheless, push
consumers should return from the push() operation as quickly as possible to
avoid consuming resources in the event channel that could eventually effect
its throughput.

A pull consumer, having connected with the event channel, can pull or
try_pull an event from the event channel whenever it is ready to receive the
next event message. The pull() operation is a blocking request and only
returns when the event channel has another event message to supply to the
pull consumer. The try_pull() operation is not blocking and returns an
event-message if one is available, or simply return FALSE if not. The pull
consumer can pull its event(s) using the CosEventComm::PullSupplier::pull()
or CosEventComm::PullSupplier:try_pull() methods supported by the
ProxyPullSupplier obtained from the ConsumerAdmin object during the event
channel connection process.

26 WebSphere: Advanced Programming Guide



Because the CosEventComm::PullSupplier::pull() operation is intended to be a
blocking method, and since some events may take a long time to actually
occur, it is possible that the communication network will fail or time-out
before the supplier has the chance to return from the pull. This can be a
significant problem for some applications. If the pull request times out, the
consumer is notified through an exception to which it can respond, usually by
simply re-invoking the pull request, and perhaps re-connecting to the event
channel if necessary. On the other hand, the supplier is not necessarily
informed of the error. Typically the supplier is programmed to present an
event on return from the pull() method. However, if the connection from the
consumer has timed out, then the return occurs without actually supplying
anything to the consumer, and the event is lost.

You can reduce the chances of this happening by setting the ORB time-out
value for the communication session between the consumer and supplier to
zero (no time-out). However, this won’t guard against other potential
communication errors that could have the same effect. Thus, you should avoid
the pull consumer model if it is important to you to avoid lost event
messages.

Events

An event is a specific instance of an event message about a particular event.
When an instance of an event occurs, an event supplier can produce an event
message representing the occurrence of that event. The event message can
contain as much or as little information about that occurrence as is relevant to
your application.

An event has some form of abstract type, although this type is not formalized
by the Event Service. The event type defines the format of the content of the
event message. This is needed so that event suppliers and event consumers
can know how to parse the information within the event message.

The Event Service defines an event message only as a CORBA ‘any’. This
means that it is entirely up to your application to define the format of the
event message in a way that it can use to recognize its contents. The structure
of the event message can be as elaborate or as simple as is appropriate for
your application’s needs. At one extreme, the event message can be a simple
integer containing an event identifier, a value that can be used to uniquely
identify the occurrence of the event. At this extreme, the event message does
not convey anything more about the event instance except that it occurred
and a handle that uniquely identifies that occurrence. Event consumers might
be able to use this event identifier later to correlate back to a separate
repository containing more information about the event.

Chapter 2. Event Service 27



When designing event messages you should consider the following:

* How much information do your event consumers need to know about the
event instance, and what information will they use in the handling of that
event?

* Are you likely to introduce other event consumers in the future? What
information will they likely need?

* How will you evolve the schema for the event message without affecting
backwards compatibility of existing event consumers and suppliers? Are
you willing to modify your event suppliers and consumers whenever you
change the event schema?

* How often are these events likely to occur? Will they happen so frequently
that having too much information in them will likely affect system
throughput?

* How often will consumers need all of the information you supply in the
event? Would it be better to supply only a little information in the event
message, including correlation information that can be used later to obtain
the rest of the detailed information from a separate repository if and when
it is actually needed?

* How do you want to group event types in an event topic, and what is the
relationship of those event topics to event channels? Different event
channels can be used for different event topics. Likewise, different event
topics can be used to group one or more event types. All of these can be
used to separate different event types, thus reducing the amount of
information that you have to include in the event message itself.

* How much extra event handling information do you need? Do you need,
for instance, to track how long, on average, it takes to process an event
message from the time that it is produced to the time that it is consumed?
Is there a maximum lifetime for the event handling, a point beyond which
if the event is not handled it is no longer relevant and should be discarded?
Do you need to prioritize the event? Do you want to correlate related
events?

Event topics

The idea of an event topic is an abstract concept introduced by Component
Broker to help you consider the relationship between event instances, event
types, and event channels. Within the running system there may be many
occurrences of many different types of events. Likewise, you can introduce as
many different event channels as you like. Designing an effective event
schema requires achieving the right balance between system performance,
integrity, and programming and administrative simplicity.

28  WebSphere: Advanced Programming Guide



Single event channel schemas

If you use only one event channel for all events supplied and consumed in
your application, then administration is fairly straight-forward: you need only
define one event channel and share that same event channel with all of your
suppliers and consumers. However, using a single event channel raises the
following concerns:

* The event channel can become a single point of failure. Since you are only
dealing with one event channel, then if that event channel should fail then
all of your suppliers and consumers are affected.

 Event suppliers must be able to identify the type and instance of event
message they are producing.

* Event consumers need to identify the type(s) and instance(s) of event
message they are interested in processing, filtering out all those that they're
not interested in, and sorting through the various types and instances they
are interested in, if there is more than one type.

Multiple event channel schemas

Another strategy is to have a different event channel for every type of event
message, and possibly a different event channel for each set of event messages
coming from different groups of either or both suppliers and consumers. This
has the obvious consequence of proliferating event channels, and in the latter
case significantly increasing administrative complexity for associating groups
of either or both event suppliers and consumers to determine which ones
should be attached to which event channel instance. By extension, event
suppliers and consumers may have to connect to numerous event channels for
all of the types of events they handle.

In many cases there are a set of event types that are highly related. For
instance, you may have a different event type for each of the steps an
insurance agent performs. Each of these event types may be related by virtue
that they all pertain to the steps an agent performs. This grouping may be
relevant, for instance, if you have an event consumer that tracks all of an
agent’s actions, as a sort of audit trail to ensure they’ve followed all of the
right procedures or to monitor their productivity.

You can group these related event types into an event topic. This is an
artificial grouping, not supported in any formal sense by the Event Service,
that you can use at your discretion and for your convenience. Having
identified one or more event topics, you can determine how many event
channels you will need. A common practice is to define a distinct event
channel for each event topic. Each topic is given a label and each event
channel is registered in the system name space with this topic name. Thus a
supplier can connect to a particular event channel based on the topic(s) it
supplies events for. Similarly, a consumer can connect to a particular event

Chapter 2. Event Service 29



channel based on the topic(s) the consumer handles. Thus, if an event channel
fails, only suppliers and consumers of that topic are effected. Likewise,
suppliers and consumers can concentrate on the topics that they are
programmed to handle, and in doing so avoid the system overhead associated
with dealing with events not relevant to them.

Event suppliers

An event supplier is an object that supplies event messages to an event
channel. An event supplier can use either the push or pull model of
interaction with the event channel. The same object can be a supplier to more
than one event channel concurrently, however if the supplier uses the pull
model there is no way for it to distinguish which event channel is pulling an
event. Push model event suppliers must support the
CosEventComm::PushSupplier interface. Pull model event suppliers must
support the CosEventComm::PullSupplier interface. It is up to you to provide
an implementation for the appropriate interface if you are introducing an
event supplier.

Event suppliers must create a connection to their event channel before they
can begin to supply events. To do this, they must first obtain the appropriate
event channel. In most cases, event channels are registered in the system
name space when they are created, and therefore obtaining an event channel
is a matter of resolving its appropriate name in the system name space. As
discussed in £ ics” , a common strategy is to register event
channels with the name of the event topic they broker. Thus you can use the
event topic name to resolve the appropriate event channel. Having located an
event channel, the supplier must then connect to it. At this point, the supplier
can supply any number of event messages, until the connection is terminated.

Push-model event suppliers can supply events using the
CosEventComm::PushConsumer::push() operation on their event channel.
Pull-model event suppliers can supply events when they are invoked with
either the CosEventComm::PullSupplier::pull() or
CosEventComm::PullSupplier:try_pull() operation. The connection with the
event channel can be terminated by either the supplier or by the event
channel. If the supplier is using the push-model it can disconnect by invoking
the CosEventComm::PushConsumer::disconnect_push_consumer() operation
on the event channel, and the event channel can disconnect the supplier by
invoking the CosEventComm::PushSupplier::disconnect_push_supplier()
operation on the supplier. If the supplier is using the pull-model it can
disconnect by invoking the
CosEventComm::PullConsumer::disconnect_pull_consumer() operation on the

30 WebSphere: Advanced Programming Guide



event channel, and the event channel can disconnect the supplier by invoking
the CosEventComm::PullSupplier::disconnect_pull_supplier() operation on the
supplier.

As event channel connections are not retained persistently, if the event
channel fails, the connection must be reestablished. In the case of an event
channel failure, push model event suppliers are notified in an exception on
their next CosEventComm::PushConsumer::push request. Event suppliers
should catch the CosEventComm::Disconnected exception. This is an
indication that the event channel has failed. At that point, the supplier should
re-connect before re-pushing the event.

Pull model event suppliers are never notified if an event channel fails.
Instead, pull model event suppliers simply stop being invoked for any further
events. If this is an issue for the supplier, it can periodically attempt to
reconnect with the event channel. If the event channel has not failed then the
reconnect attempt raises the CosEventChannel Admin::AlreadyConnected
exception with no other consequences.

Event suppliers can reside in pure clients. However, since pure clients cannot
export object references, event suppliers in pure clients are constrained to only
use the push model of interaction. Further, pure client event suppliers are not
notified if the event channel disconnects. If the event channel disconnects, the
event supplier is left to detect the loss of connection with the
CosEventComm::Disconnected exception raised on their next push request.

Supplying events

Supplying events requires you to first locate and connect to an event channel
that is intended to handle your event topic. The Event Service supports two
models of interaction between event suppliers and event channels: the push
model and the pull model. If your event supplier resides in a pure client, you
must use the push model.

Supply events using the following steps:

1. Locate an event channel. You need an event channel with which to
connect. The easiest approach is to simply obtain an already existing event
channel that has been registered in the system name space. In addition,
you can create a new event channel, or use the Component Broker System
Management facilities to configure a new event.

2. Connect to the event channel. Follow the procedure described in

{'Connecting to an event channel” on page 42 to connect with the event

channel.

3. Supply the event. As a push-model event supplier, you can use the
CosEventComm::PushConsumer::push() method to push your event on the
event channel. As a pull-model event supplier, you must implement the

Chapter 2. Event Service 31



CosEventComm::PullSupplier::pull() and
CosEventComm::PullSupplier::try_pull() methods. The pull() method
should block until ready to return an event. The try_pull() method should
always return immediately; returning a boolean value of TRUE and the
event message if one is ready, or returning a boolean value of FALSE and
a null event message if not.

The following example demonstrates how to connect as a push supplier to the
AgentActions event channel created in L i “
@ and supply methods using the push() method. This example assumes
that you are your own push-supplier object, and that you are operating in a
server process.

// Declare an intermediate Object, the AgentActions event

// channel, a supplier admin object and a push consumer
// proxy.

CORBA::0bject_var intermediateObject;
CosEventChannelAdmin::EventChannel_var agentActionsEC;
CosEventChannelAdmin::SupplierAdmin_var agentActionsSA;
CosEventChannelAdmin: :ProxyPushConsumer_var agentActionsPPC;

// Assuming an event structure has been declared in IDL, declare
// an instance of that event structure for reporting on agent
// actions, and a CORBA::Any for conveying it with.

ActionEventStructure_var agentActionEvent;
::CORBA: :Any_var eventAny;

// Locate the AgentActions event channel, obtain the supplier
// admin, and obtain a push consumer proxy.

intermediateObject = CBSeriesGlobal::nameService()
->resolve_with_string(
"/host/resources/event-channels/AgentActions");

agentActionskC=
CosEventChannelAdmin::EventChannel:: narrow(intermediateObject);

agentActionsSA = agentActionsEC->for_suppliers();

agentActionsPPC = agentActionsSA->obtain_push_consumer();

// Connect to the event channel proxy.
agentActionsPPC->connect_push_supplier(this);

// Do some activity for the Insurance agent

// Supply an event indicating the completion of that action.
// Fill in the fields of the agentActionEvent

32 WebSphere: Advanced Programming Guide



// Set the event in an Any
eventAny <<= agentActionEvent;

// Push the event
agentActionsPPC->push(eventAny);

Event consumers

An event consumer is an object that consumes event messages from an event
channel. An event consumer can use either the push or pull model of
interaction with the event channel. The same object can be a consumer of
more than one event channel concurrently, however, and if the consumer uses
the push model there is no way for it to distinguish which event channel is
pushing an event. Push model event consumers must support the
CosEventComm::PushConsumer interface. Pull model event consumers must
support the CosEventComm::PullConsumer interface. It is up to you to
provide an implementation for the appropriate interface if you are introducing
an event consumer.

Event consumers must first create a connection to their event channel before
they can begin to consume events. To do this, they must first obtain the
appropriate event channel. In most cases, event channels are registered in the
system name space when they are created, and obtaining an event channel is
simply a matter of resolving its appropriate name in the system name space.
As discussed in I ics” , a common strategy is to register
event channels with the name of the event topic they broker. Thus you can
use the event topic name to resolve the appropriate event channel.

Having located an event channel, the consumer must then connect to it. At
this point, the consumer can consume any number of event messages, until
the connection is terminated. Push model event consumers can consume
events when they are invoked with the
CosEventComm::PushConsumer::push() operation. Pull model event
consumers can consume events using either the
CosEventComm::PullSupplier::pull() or
CosEventComm::PullSupplier:try_pull() operation on their event channel.

The connection with the event channel can be terminated by either the
consumer or by the event channel. If the consumer is using the push model, it
can disconnect by invoking the
CosEventComm::PushSupplier::disconnect_push_supplier() operation on the
event channel, and the event channel can disconnect the consumer by
invoking the CosEventComm::PushConsumer::disconnect_push_consumer()
operation on the consumer. If the consumer is using the pull model it can
disconnect by invoking the
CosEventComm::PullSupplier::disconnect_pull_supplier() operation on the

Chapter 2. Event Service 33



event channel, and the event channel can disconnect the consumer by
invoking the CosEventComm::PullConsumer::disconnect_pull_consumer()
operation on the consumer.

As event channel connections are not retained persistently, if the event
channel fails, the connection must be reestablished. If the event channel fails,
pull model event consumer is notified in an exception on their next
CosEventComm::PullSupplier::pull or CosEventComm::PullSupplier:try_pull
request. Event consumers should catch the CosEventComm::Disconnected
exception. This is an indication that the event channel has failed. At that
point, the consumer should reconnect before re-pulling the event.

Push model event consumers are never notified if an event channel fails.
Instead, they stop receiving any further events. If this is an issue for the
consumer, it can periodically attempt to reconnect with the event channel. If
the event channel has not failed then the reconnect attempt raises the
CosEventChannel Admin::AlreadyConnected exception with no other
consequences.

Event consumers can reside in pure clients. However, since pure clients
cannot export object references, then event consumer in pure clients are
constrained to only use the pull model of interaction. Further, pure client
event consumers are not notified if the event channel decides to disconnect.
The event consumer is left to detect the loss of connection with the
CosEventComm::Disconnected exception raised on their next pull or try_pull
request.

Consuming events

This procedure demonstrates how to consume an event from an event
channel. To consume an event, you have to first locate and connect to an
event channel that is intended to handle your event topic. The Event Service
supports the push and pull models of interaction between event consumers
and event channels. If your event consumer resides in a pure client, you must
use the pull model.

Consume an event from the event channel using the following steps:

1. Locate an event channel. You need an event channel to connect with. The
easiest approach is to simply obtain an already existing event channel that
has been registered in the system name space. In addition, you can create
a new event channel, or use the Component Broker System Management
facilities to configure a new event.

2. Connect to the event channel. Follow the procedure described in
d i ” to connect with the event

channel.

34  WebSphere: Advanced Programming Guide



3. Consume the event. As a pull model consumer, you can use the
CosEventComm::PullSupplier::pull() or
CosEventComm::PullSupplier:try_pull() method to consume an event. If
you use the pull() method, your request blocks until an event is ready to
be returned. If you use the try_pull() method, your request always returns
immediately, and indicates in a boolean return value whether an event
was available to return. As a push model consumer, you must implement
the CosEventComm::PushConsumer::push() method. This method is
invoked whenever or not an event is available for you to consume.

The following example demonstrates how to connect as a pull consumer to
the AgentActions event channel created in L i i
@ and consume events using the pull() method. This example assumes
you are your own pull-consumer object, and that you are operating in a
server process.

// Declare an intermediate Object, the AgentActions event channel,
// a consumer admin object, and a pull supplier proxy.

CORBA::0Object_var intermediateObject;
CosEventChannelAdmin::EventChannel_var agentActionsEC;
CosEventChannelAdmin: :ConsumerAdmin_var agentActionsCA;
CosEventChannelAdmin::ProxyPullSuplier_var agentActionsPPS;

// Assuming an event structure has been declared in IDL, declare
// an instance of that event structure for receiving the agent
// actions, and a CORBA::Any for consuming it with.

ActionEventStructure_var agentActionEvent;
::CORBA: :Any_var eventAny;

// Locate the AgentActions event channel, obtain the consumer
// admin, and obtain a pull supplier proxy.

intermediateObject =

CBSeriesGlobal::nameService()->resolve with_string(
"/resources/event-channels/AgentActions");

agentActionsEC=
CosEventChannelAdmin: :EventChannel:: narrow(intermediateObject);

agentActionsCA = agentActionsEC->for_consumers();

agentActionsPPS = agentActionsCA->obtain pull_supplier();

// Connect to the event channel proxy.

agentActionsPPS->connect _pull_consumer(this);

// Consume an event.
// Pull the event

eventAny = agentActionsPPS->pull();

// Obtain the event from the Any

Chapter 2. Event Service 35



eventAny >>= agentActionEvent;

// Handle the fields of the agentActionEvent

Event channels

Event channels have two forms. In their abstract form, an event channel is a
broker of event messages, consuming them from their connected suppliers,
and supplying them to their connected consumers. In their concrete form, an
event channel is composed of the following object types:

CosEventChannelAdmin::EventChannel
This is the anchor point for the other event channel objects.
EventChannel objects define the abstract event channel, and are the
objects registered in the system name space that enable you to find an
event channel.

CosEventChannelAdmin:SupplierAdmin
SupplierAdmin objects broker connections between suppliers and the
event channel.

CosEventChannelAdmin::ConsumerAdmin
ConsumerAdmin objects broker connections between consumers and
the event channel.

CosEventChannel::ProxyPushConsumer
ProxyPushConsumer objects define a specific connection between a
supplier and the event channel. An instance of a ProxyPushConsumer
is created for each supplier that connects to the event channel using
the push-model of interaction.

CosEventChannel::ProxyPullConsumer
ProxyPullConsumer objects define a specific connection between a
supplier and the event channel. An instance of a ProxyPullConsumer
is created for each supplier that connects to the event channel using
the pull-model of interaction.

CosEventChannel::ProxyPushSupplier
ProxyPushSupplier objects define a specific connection between a
consumer and the event channel. An instance of a ProxyPushSupplier
is created for each consumer that connects to the event channel using
the push model of interaction.

CosEventChannel::ProxyPullSupplier
ProxyPullSupplier objects define a specific connection between a
consumer and the event channel. An instance of a ProxyPullSupplier
is created for each consumer that connects to the event channel using
the pull model of interaction.

36  WebSphere: Advanced Programming Guide



Event channels can support multiple simultaneous connections of suppliers
and consumers using any mixture of push model or pull model interactions.
In Component Broker, event channels are managed objects with persistent
references. Thus they must reside in a Component Broker server process, and
can be registered in the system name space. All suppliers and consumers that
resolve the same event channel reference get to the same instance of event
channel. Event channels are automatically reactivated in the Component
Broker server when they are first referenced.

As brokers of event messages, event channels are in fact both event
consumers and event suppliers (consumers to their connected event suppliers,
and suppliers to their connected event consumers), proxies are used to
mediate between consumers and suppliers, and between push and pull
models of interaction.

Event channels multicast all of the event messages they receive. That is, when
a supplier provides an event message to the event channel, that event
message is supplied to all of the consumers that are currently connected to the
event channel. The event message is not removed from the event channel
queues until it has been consumed by all of its connected consumers.
However, in Component Broker, event channels are transient. They do not
retain either supplier or consumer connections persistently, nor do they retain
event messages persistently. Connections and pending event messages are lost
whenever the event channel is passivated or terminated.

Component Broker automatically creates a single default event channel that is
registered in the system name space in /cell/resources/event-
channels/cell-default. This event channel can be used for any purpose, but
to allow for proper interoperation between all of the applications that could
end up using it, all event messages using the event channel in a production
environment must use the data type as CORBA::Any.

If you need an event channel within your application, you should introduce
our own event channel for your own purposes. See I'Event tapics” orl
for more information that may be useful in deciding how to divide
up your event system topology. Having done so, you should design an
appropriate structure for your event messages, as discussed in Em
. You can create a new event channel programmatically using the
standard Component Broker programming model for managed objects, as

described in I'Creating an event channel” on page 39.

Having created the event channel you should be sure to register it in the
system name space so that your suppliers and consumers can find it at
run-time. This is done for you automatically if you use the

IExtendedEventChannelAdmin::
IEventChannelHome: :createVisibleEventChannel ()

Chapter 2. Event Service 37



operation. Otherwise, you can use the
IExtendedEventChannelAdmin: :IEventChannelHome: :createEventChannel ()
operation and manually bind the event channel in the system name space.

You can also use the Component Broker System Management facility to
configure a new event channel. This is described in more detail in

’ iguri - . This process automatically
register the event channel in the system name space so that your suppliers
and consumers can find it at run-time. The Component Broker system name
space includes naming contexts where you can register event channels by
name at the following locations:

* /host/resources/event-channels/workgroup/resources/event-channels
* /cell/resources/event-channels

Alternately, you can register your event channels in your own application
name tree.

Locating an event channel

This procedure demonstrates how you can locate an event channel by name in
the system name space. This is useful to both event suppliers and event
consumers who are finding an event channel they can use to exchange event
messages.

You can locate an event channel in the fashion demonstrated here only if the
event channel already exists and has been bound in the system name space.
You must know the name of the event channel to use this procedure.

Use the following steps to locate an event channel:

1. Determine the name of the event channel you want to use. This may be
the name of the default event channel automatically created and registered
in the system name space by Component Broker installation. Or it could
be an event channel that your application created and bound in the system
name space at some earlier point in time.

2. Resolve the event channel from the system name space. Use the Event
Service operations to resolve that event channel from the system name
space, by the name that you determined in the previous step.

The default event channel is created automatically during Component Broker
installation.The following example shows how to obtain the default event
channel:

// Declare the targeted event channel

CORBA::0bject_var intermediateObject;
CosEventChannelAdmin: :EventChannel_var defaultEC;

38  WebSphere: Advanced Programming Guide



// Obtain the default event channel and narrow it to an event
// channel

intermediateObject=CBSeriesGlobal: :nameService()
->resolve_with_string(
" /cell/resources/event-channels/cell-default");
defaultEC = CosEventChannelAdmin::EventChannel:: narrow(
intermediateObject);

Creating an event channel

An event channel is created essentially in the same way that any other
managed object is created, that is, by first obtaining a factory finder with a
desired location scope. By extension, such a factory finder must exist.
Component Broker provides a set of default factory-finders that it creates and
registers in the system name space during Component Broker installation.
These are found in the following locations:

* /host/resources/factory-finders/host-scope

» /workgroup/resources/factory-finders/workgroup-scope

* /cell/resources/factory-finders/cell-scope

In addition, Component Broker automatically creates a home for event
channels in every server process. However, the least granularity of scoping
that any of the default factory finders supports is a host scope. Therefore, if
you want the event channel created in a more specific server you must create
a new factory finder with a corresponding location scope that narrows to that
server.

Create an event channel using the following steps:

1. Obtain a factory finder with the desired location scope. You need a factory
finder with which to create your new event channel. Alternately, you can
create a non-managed factory finder to use for finding the new event
channel’s factory.

2. Use the factory finder to find a factory (a home) for event channels.
Having obtained a factory finder, you can now use it to find a factory for
factory finders. You do this with the find_factory, find_factories(),
find_factory_from_string(), or find_factories_from_string() methods. The
event channels interface is
IEventChannelAdminManagedClient::EventChannel. This is the principal
interface name that you is passed in to the find_factory* or find_factories*
methods.

3. Create the event channel. The factory specialization for event channels
introduces the createEventChannel() and createVisibleEventChannel()
methods which you can use to create the new event channel. You must
narrow to the IExtendedEventChannel Admin::IEventChannelHome
interface to use either of these new methods.

Chapter 2. Event Service 39



4. Register the event channel in the system name space. This step is optional.
When you've created an event channel, often you want to retain this object
for future use in your application to be shared by event suppliers and
consumers. How you do this in your application is up to you, but the
typical approach is to bind the event channel in the system name space.
Again, where you bind it in the system name space is up to you. One
obvious and commonly used choice is to bind it in
/host/resources/event-channels, /workgroup/resources/event-
channels,or /cell/resources/event-channels depending on what visibility
you want to give it. Another choice is to bind it under your own
application, contexts within /host/applications,
/workgroup/applications, or /cell/applications. Typically, event
channels are bound with the event topic name for the types of events they
are intended to broker.

If you use the

IExtendedEventChannel Admin::[EventChannelHome::createVisibleEventChannel()
method, you can specify the relative name (the event channel’s topic

name), and a boolean flag for the name spaces in which you want the

event channel registered. The specialized home automatically registers the

new event channel into the name space in the indicated locations.

The example that follows demonstrates creating a new event channel, and
binding it in the system name space under /host/resources/event-channels
with the name AgentActions. The event channel is created within the local
host.

// Declare an intermediate Object, the event-channels naming
// context, the targeted factory finder where the new event
// channel will be created,a event channel factory, and the
// new event channel.

CORBA::0bject_var intermediateObject;

IExtendedNaming: :NamingContext _var eventChannelsNC;
IExtendedLifeCycle::FactoryFinder_var hostScopeFF:
IExtendedEventChannelAdmin::IEventChanneTHome_var factoryOfEC;
CosEventChannelAdmin::EventChannel_var myNewEC;

ByteString_var key;

// Obtain the default factory finder with a host-scope and
// narrow to an IExtendedLifeCycle::FactoryFinder so that we
// can use the find_factory_from string operation.

CBSeriesGlobal::Initialize();
//Initialize the CBSeries environment

intermediateObject = CBSeriesGlobal::nameService()
->resolve_with_string(
"/host/resources/factory-finders/host-scope");

hostScopeFF = IExtendedLifeCycle::FactoryFinder:: narrow(
intermediateObject);

40 WebSphere: Advanced Programming Guide



// Find a factory for event channels and narrow to the factory
// specialization

intermediateObject = hostScopeFF->find_factory from string(
"IEventChannelAdminManagedClient.object interface");

factoryofEC =
IExtendedEventChannelAdmin::IEventChannelHome:: narrow
(intermediateObject);

// Use the factory to create a new event channel.
myNewEC = factoryOfEC->createEventChannel (key);
// Bind the new event channel in the system name space.

intermediateObject = CBSeriesGlobal::nameService->resolve(
"/host/resources/event-channels");
eventChannelsNC =
IExtendedNaming: :NamingContext:: narrow(intermediateObject);
eventChannelsNC->bind_with_string("AgentActions", myNewEC);

The last four statements could have been combined into the following
statement:

myNewEC = factoryOfEC->createVisibleEventChannel (key,
"AgentActions", 0, 1, 0);

Configuring an event channel

This procedure demonstrates how to configure a new event channel using the
Component Broker System Management facility. This is useful for when you
need an event to support a new event topic. This procedure is entirely
administrative and does not involve any programming.

Configure a new event channel using the following steps:

1. Navigate to the desired server. The new event channel must be configured
within a specific server. Use the System Management user interface to
navigate to the host and server on which you want the factory finder
configured.

2. Create a event channel model. Insert an event channel model within the
server.

3. Set event channel model attributes. Use the attributes notebook to fill in
the event channel model attribute value. This includes the System
Management name for the event channel (don’t confuse this with the
name of the event channel in the system name space, although these can
be set to the same value), the name of the event channel in the system
name space, and the home of the event channel.

4. Apply the model changes. Select the apply function for the server, host, or
zone where you've created the event channel model. This results in a

Chapter 2. Event Service 41



corresponding event channel object being automatically created in the
targeted server and registered in the system name space.

Connecting to an event channel

This procedure demonstrates how to connect to an event channel. You need to
connect to an event channel before you can supply or consume events. The
event channel must have already been created and registered in a way that
you can find it.

Connect to an event channel using the following steps:

1. Locate an event channel. You need an event channel with which to
connect. The easiest approach is to simply obtain an already existing event
channel that has been registered in the system name space. Otherwise, you
can create a new event channel, or use the Component Broker System
Management facilities to configure a new event.

2. Acquire an event channel administration object. Use the for_suppliers() or
for_consumers() operation to get an event channel administration object,
depending on whether you want connecting to be an event supplier or an
event consumer.

If you are an event supplier, then use the for_suppliers() operation to get
back a CosEventChannel Admin::SupplierAdmin object.

If you are an event consumer, then use the for_consumers() operation to
get back a CosEventChannel Admin::ConsumerAdmin object.

3. Acquire an event channel proxy object. Use the obtain_push_consumer(),
obtain_pull_consumer(), obtain_push_supplier(), or obtain_pull_supplier()
operation on the corresponding event channel administration object to get
an event channel proxy object, depending on whether you are an event
supplier or event consumer, and depending on whether you are going to
use the push-model or the pull-model of communication.

If you are a supplier using the push model, then use the
obtain_push_consumer() operation to get back a
CosEventChannel Admin::ProxyPushConsumer object.

If you are a supplier using the pull model, then use the
obtain_pull_consumer() operation to get back a
CosEventChannel Admin::ProxyPullConsumer object.

If you are a consumer using the push model, then use the
obtain_push_supplier() operation to get back a
CosEventChannel Admin::ProxyPushSupplier object.

If you are a consumer using the pull model, then use the
obtain_pull_supplier() operation to get back a
CosEventChannel Admin::ProxyPullSupplier object.

4. Connect with the proxy. Use the connect_push_supplier(),
connect_pull_supplier(), connect_push_consumer(), or

42  WebSphere: Advanced Programming Guide



connect_pull_consumer() method to connect to the event channel proxy,
depending on whether you are a supplier or consumer, and whether you
are using the push or pull model of communication.

If you are a push supplier, then use the connect_push_supplier on your
ProxyPushConsumer.

If you are a pull supplier, then use the connect_pull_supplier on your
ProxyPullConsumer.

If you are a push consumer, then use the connect_push_consumer on your
ProxyPushSupplier.

If you are a pull consumer, then use the connect_pull_consumer on your
ProxyPullSupplier.

Normally, you have to supply a reference to yourself , namely your supplier
or consumer object, on the connect request. This is used either to pull or push
on you, as well as to inform you when the connection is being terminated.
However, if you are connecting from a pure-client you are not able to use the
connect_pull_supplier() or connect_push_consumer() methods. Also, you will
have to supply a NIL object reference in either the connect_push_supplier() or
connect_pull_consumer() requests. This basically indicates to the event
channel that you are operating from a pure-client and avoids the issuing of
any disconnect requests.

The example that follows demonstrates how to connect as a push supplier to
the AgentActions event channel that was created in LCrea.tm.g_a.n_azen.f]
thannel” on page 3d. This example assumes you are your own push-supplier

object, and that you are operating in a server process.

// Declare an intermediate Object, the AgentActions event
// channel, a supplier admin object, a push consumer proxy.

CORBA::0bject_var intermediateObject;

CosEventChannelAdmin: :EventChannel_var agentActionsEC;
CosEventChannelAdmin::SupplierAdmin_var agentActionsSA;
CosEventChannelAdmin: :ProxyPushConsumer_var agentActionsPPC;

// Locate the AgentActions event channel, obtain the supplier
// admin, and obtain a push consumer proxy.

CBSeriesGlobal::Initialize();
//Initialize the CBSeries environment

intermediateObject =CBSeriesGlobal::nameService()
->resolve_with_string(
"cell/resources/event-channels/AgentActions");

agentActionsEC=
CosEventChannelAdmin::EventChannel:: narrow(intermediateObject);

agentActionsSA = agentActionsEC->for_suppliers();

agentActionsPPC = agentActionsSA->obtain_push_consumer();

Chapter 2. Event Service 43



// Connect to the event channel proxy.

agentActionsPPC->connect_push_supplier(this);

Disconnecting from an event channel

Disconnecting from an event channel is useful for when you want to stop
supplying or consuming events. It essentially un-registers your event supplier
or event consumer with the event channel. After disconnecting, push model
suppliers can no longer push, pull model suppliers can no longer be pulled,
push model consumers can no longer be pushed, and pull model consumers
can no longer pull.

If you are already connected to an Event Channel, do the following to
disconnect:

Use the disconnect_push_consumer(), disconnect_pull_consumer(),
disconnect_push_supplier(), or disconnect_pull_supplier() method to
disconnect from the event channel, depending on whether you are a supplier
or consumer, and whether you are using the push model or pull model of
interaction.

* As a push supplier, use the
CosEventComm::PushConsumer::disconnect_push_consumer on your push
consumer proxy.

* As a pull supplier, use the
CosEventComm::PullConsumer::disconnect_pull_consumer on your pull
consumer proxy.

* As a push consumer, use the
CosEventComm::PushSupplier::disconnect_push_supplier on your push
supplier proxy.

* As a pull consumer, use the
CosEventComm::PullSupplier::disconnect_pull_supplier on your pull
supplier proxy.

The following example demonstrates how to disconnect from the
AgentActions event channel that was previously connected to in EConnecting
ko an event channel” on page 42, This example assumes this is being done
from a push supplier.

// Assuming we've already connected to the AgentActions event
// channel as push supplier

agentActionPPC->disconnect_push_consumer();

44  WebSphere: Advanced Programming Guide



Event channel samples

A complete non system managed object sample is provided. The system
managed object sample will be available when Event Services are supported
by Object Builder.

A push model stock application is shown here. First, a Stock object is created.
The stock price is changed by prompting for user input. The amount of stock
price changing which can be either a positive or a negative number (long for
simplicity) is entered by the user. When the stock price falls to 0, an exception
“InvalidPrice” is thrown and the application deletes the Stock object and
terminates.

The following example illustrates the Stock.cpp:

#include "Stock.ih"
#include <stdio.h>
void main()
{
Stock_Impl *Stock;
char str[10];
long amount;

try
{ // create Stock object
Stock = new Stock_Impl;
while (1)
{
cout << "Enter the amount: << endl;
gets(str);
amount = atoi(str); // convert string to long
Stock->changePrice(amount); // change the stock price

}

catch (Stock::InvalidPrice)
{

}
catch (...)

{

cout << "InvalidPrice exception !I" << endl;

cout << "unknown exception !" << endl;

}
delete(Stock);
1

In the push module, a Customer application is also created as an ORB server.
The ORB server is first initialized, the Customer object is then created and the
server is waiting for some action.

The following example illustrates the Customer.cpp:

Chapter 2. Event Service 45



#include "Customer.ih"
void main(int argc, char *argv[])
{
CORBA: : Imp1Def *imp;
CORBA: :0RB_var op;
static CORBA::BOA_var bp;
Customer_Impl *Customer;

// Initialize the server's ImplDef, ORB, and BOA
imp = new CORBA::Imp1Def();
imp->set_protocols("SOMD_TCPIP");
op = CORBA::0RB init(argc, argv, "DSOM");
bp = op->BOA_init(argc, argv, "DSOM_BOA");
bp->imp1_is_ready(imp, 0);

Customer = new Customer_Impl; // create Customer

cout << " ... Server Listening..." << endl; cout.flush();
bp->execute request Toop(CORBA::BOA::SOMD WAIT);
1

The Stock object is inherited from the CosEventComm::PushSupplier class
which has a disconnect_push_supplier() method defined. An InvalidPrice
exception and a changePrice() method are introduced by the Stock interface.

The following example illustrates the Stock.idl:

#include <CosEventComm.id1>
interface Stock : CosEventComm::PushSupplier

{
exception InvalidPrice {};
void changePrice(in Tong amount) raises (InvalidPrice);

}s

In the Stock object implementation header, a constructor is added. Two
instance variables, price and pxyPushC are included. The instance variable price
is used to hold the stock price. The pxyPushC is a

CosEventChannel Admin::ProxyPushConsumer pointer which is used to
communicate to the Event Channel.

The following example illustrates the Stock.ih:

#include <CosEventChannelAdmin.hh>

#include <Stock.hh>

class Stock_Impl : public virtual Stock_Skeleton

{

pubTic:

Stock_Imp1(); // constructor
CORBA: :Void changePrice(CORBA::Long amount);
CORBA: :Void disconnect_push_supplier();

protected:
long price;
CosEventChannelAdmin: :ProxyPushConsumer_var pxyPushC;

s

46  WebSphere: Advanced Programming Guide



In the Stock object implementation file, the “constructor” initializes the stock
price to 100. The Event Channel home “ecHome” is located, and the Event
Channel “ec” is created. The object reference of the Event Channel is then
converted into a string and saved in a file to be used by other applications.
The Supplier Admin is then obtained through the Event Channel and the
ProxyPushConsumer is obtained through the Supplier Admin. Finally the
Stock object is connected to the Event Channel through the
ProxyPushConsumer. A NULL is passed through the connect_push_supplier()
method call to indicate that the Stock object is a pure client application.

The changePrice() method updates the price change for the Stock object and
throws an InvalidPrice exception when the stock price falls below 0.

The disconnect_push_supplier() method is not implemented because the Stock
object is a pure client application and cannot accept any method calls.

The following example illustrates the Stock_i.cpp:

#include "Stock.ih"
#include <IExtendedEventChannelAdmin.hh>
#include <IExtendedLifeCycle.hh>
#include <CBSeriesGlobal.hh>
#include <fstream.h>
Stock_Impl::Stock Impl()
{
CORBA::0Object_var intermediateObject;
IExtendedLifeCycle::FactoryFinder_var hostScopeFF;
IExtendedEventChannelAdmin::IEventChanneTlHome var ecHome;
ByteString_var key;
CosEventChannelAdmin::EventChannel_var ec = NULL;
CosEventChannelAdmin::SupplierAdmin_var sa = NULL;
char *ec_stringref;
ofstream fout("..\\ec.dat"); // file contains the ec object reference
CORBA: :0RB_var orbp;
cout << "Enter - constructor" << endl;
price = 100; // initial price
// initialize the CBSeries environment
CBSeriesGlobal::Initialize();
// obtain the default factory finder with a host scope
intermediateObject = CBSeriesGlobal::nameService()->resolve with_string(
"host/resources/factory-finders/host-scope");
// narrow to a factory finder
hostScopeFF = IExtendedLifeCycle::FactoryFinder:: narrow(intermediateObject);
// find the event channel factory
intermediateObject = hostScopeFF->find_factory from string(
"IEventChannelAdminManagedClient::EventChannel.object interface");
// narrow to the event channel home
ecHome = IExtendedEventChannelAdmin::IEventChannelHome:: narrow(
intermediateObject);
cout << "ecHome is found!" << endl;
// use the factory in the event channel home to create
// a new event channl

Chapter 2. Event Service 47



ec = ecHome->createEventChannel (key);

// write the object reference out to a file
ec_stringref = orbp->object_to_string(ec);

cout << ec_stringref << endl;

fout << ec_stringref;
fout.close();

// Get Supplier Admin through Event Channel
sa = ec->for_suppliers();

// Get ProxyPushConsumer through Supplier Admin
pxyPushC = sa->obtain_push_consumer();

// Connect to the Event Channel
pxyPushC->connect_push_supplier(NULL);

1

CORBA: :Void Stock_Impl::changePrice(CORBA::Long amount)
{
CORBA: :Any ev;
char *str = CORBA::string _alloc(100);
cout << "Enter - changeBalance: price = " << price << " amount =
" << amount << endl;
price = price + amount;
if (price < 0)
{
price = 03
cout << "throw InvalidPrice exception !" << endl;
throw Stock::InvalidPrice();
1

else

{
itoa(price, str, 10);
ev <<= str;
pxyPushC->push(ev);

}

CORBA::Void Stock Impl::disconnect_push_supplier()
{
}

The Customer object is inherited from the CosEventComm::PushConsumer
class which has two methods defined: the push() method and the
disconnect_push_consumer() method. No additional methods are added in the
Customer object.

The following example illustrates the Customer.idl:

#include <CosEventComm.id1>
interface Customer : CosEventComm::PushConsumer

{
}s

In the Customer object implementation header, only a constructor is added.
The following example illustrates the Customer.ih:

48  WebSphere: Advanced Programming Guide



#include "Customer.hh"
class Customer_Impl : public virtual ::Customer_Skeleton
{
public:
Customer_Impl();
CORBA::Void push (const CORBA::Any & data);
CORBA: :Void disconnect_push_consumer ();

}s

In the Customer object implementation file, the “constructor” initializes the
ORB. The Event Channel object reference created by the Stock application is
obtained from the file. The Consumer Admin is then obtained through the
Event Channel and the ProxyPushSupplier is obtained through the Consumer
Admin. Finally the Customer object is connected to the Event Channel
through the ProxyPushSupplier. The current Customer object is passed
through the connect_push_consumer() method call to indicate that the
Customer object is a server application. The Event Channel can communicate
to the Customer server through the Customer object reference.

The push() method displays the event received from the Event Channel which
is the stock price.

The disconnect_push_consumer() method displays a message to indicate thate
the Customer application is just disconnected by the Event Channel.

The following example illustrates the Customer_i.cpp:

#include "Customer.ih"

#include <CosEventChannelAdmin.hh>

#include <IExtendedLifeCycle.hh>

#include <CBSeriesGlobal.hh>

#include <fstream.h>

#include <time.h>

Customer_Impl:: Customer Impl()

{
int argc;
char *xargv = NULL;
CORBA: :0RB_var op;
char objref[1024];
ifstream fin_ec("..\\ec.dat");
CORBA: :0Object_var optr;
CosEventChannelAdmin::EventChannel_var ec = NULL;
CosEventChannelAdmin::ConsumerAdmin_var ca = NULL;
CosEventChannelAdmin: :ProxyPushSupplier_var pxyPushS;
CORBA::0Object_var intermediateObject;
IExtendedLifeCycle::FactoryFinder_var hostScopeFF;
short i;

cout << "Enter - constructor" << endl;
// initial ORB
op = CORBA::0RB_init(argc, argv, "DSOM");
// Get Notify Channel through file ec.dat

memset (objref, 1024, '\0');

Chapter 2. Event Service 49



fin_ec >> objref;
optr = op->string _to_object(objref);
ec = CosEventChannelAdmin::EventChannel:: _narrow(optr);

// Get Consumer Admin through Event Channel
ca = ec->for_consumers();

// Get ProxyPushSupplier through Consumer Admin
pxyPushS = ca->obtain_push_supplier();

// Connect to the Event Channel!
pxyPushS->connect_push_consumer(this);

cout << "Exit - constructor" << endl;
1

CORBA: :Void Customer_Impl::push(const CORBA::Any & data)
{

char *str;

cout << "Enter - push" << endl;
data >>= str;
cout << str << endl;

}

CORBA: :Void Customer_Impl::disconnect _push_consumer()

{

cout << "Enter - disconnect _push_consumer" << endl;

}

50 WebSphere: Advanced Programming Guide



Chapter 3. Notification Service

The following chapter is platform-dependent and does NOT apply to OS/390
Component Broker.

The Component Broker Notification Service is based on the Component
Broker Event Service implementation with additional capabilties like filtering
and quality of services. Therefore, most of the following information is similar
to the Chapter 2. Event Service chapter.

A Notification Service allows objects to dynamically register or unregister
their interest in specific events. An event is an occurrence within an object
that is specified to be of interest to one or more objects. The Notification
Service creates a loosely joined communication channel between objects that
are unfamiliar with each other.

The purpose of a Notification Service is to enable objects to freely register or
unregister their interest in certain events. A Notification Service decouples
communication between objects by defining two roles for objects: supplier
objects and consumer objects. Suppliers produce events, while consumers
process events.

Events are communicated among suppliers and consumers using standard
CORBA requests. A Notification Service contains event channels that act as
supplier and consumer objects. These event channels allow multiple suppliers
to communicate with multiple consumers asynchronously and without
knowing about each other.

In this document, the event channel and the notification channel both imply
the Notification Service event channel.

Communicating asynchronous events

The Component Broker Notification Service enables you to exchange
asynchronous event messages between different objects in the distributed
system. This is useful for communicating about events that occur in one part
of your application that another part of application needs to know about. The
asynchronous and loosely coupled nature of the Event Service allows the
same event to be communicated to many different parts of your application

© Copyright IBM Corp. 1997, 1999 51



that may be interested in the same thing; neither part of your application
needs to know directly of the other parts.

The Notification Service introduces several key concepts:

Structured Events
A structured event is a well-defined data structure into which a wide
variety of event types can be mapped. An event is a specific instance
of an event message about a particular event. For instance, an event
message may be generated to report that an Insurance Agent has
closed a contract for an insurance policy. This event may be monitored
by one program that maintains statistics on the number of contracts
that are closed on average per hour, and by another program that logs
all of the activities of each agent.

Event messages are discrete, relating only to one event. However,
events can be replicated to report the same event information to
multiple consumers of that event.

The Notification Service implemented uses only the structured events
for communication.

Event topics
An event topic defines a specific event type, or a family of related
event types. For instance, the events that report when agents have
closed their contracts are all of the same type, even though there may
be many instances of this, one for each time an agent closes a contract.

Event suppliers
An event supplier is an object that generates event messages: it is a
supplier of events, or more literally, the messages that report on that
event.

Event consumers
An event consumer is an object that receives event messages, making
it a consumer of events.

Filters A Filter is an object that is used by the consumers to receive only the
events that they are interested in and not all the events that are being
supplied.

Event channels
An event channel is a broker of event messages. Notification suppliers
provide their events to an event channel, and event consumers obtain
those events from the same event channel. The event channel is
responsible for ensuring that all events that it receives are provided to
all of its connected consumers. It is also responsible for mediating
between the push and pull communication models.

52 WebSphere: Advanced Programming Guide



Each event channel is actually composed of the following seven types
of objects: EventChannel, which anchors the set of other related event
channel objects; SupplierAdmin and ConsumerAdmin which are
administrative objects for mediating event connections; and
StructuredProxyPushConsumer, StructuredProxyPullConsumer,
StructuredProxyPushSupplier, and StructuredProxyPullSupplier objects
which serve to represent a specific connection between individual
suppliers and consumers of the event channel.

Communication models
The Component Broker Notification Service supports both a push
model of communication as well as a pull model of communication.
The push model allows an event supplier to push its events to the
event channel. The pull model allows an event channel to pull events
from its event suppliers. Likewise, the push model allows an event
channel to push events on its event consumers. And the pull model
allows an event consumer to pull events from its event channel. An
event channel can simultaneously support all communication models
between all of its suppliers and consumers.

Push Push
Suppliers Consumers
\/\/\/ Event Channi{\ﬂ/\/v
Q_/\b oO—
—0 ——O
Pull Pull
Suppliers Consumers

Figure 2. Notification Service relationship model

Push suppliers use an event channel to push their event messages. Event
channels use pull suppliers to pull their event messages. Event channels
queue up all the events they receive from all of their suppliers. Event
channels use consumers to push all of the events queued up in the channel.
Pull consumers use event channels to pull all of the events queued up in the
channel.

Chapter 3. Notification Service 53



Communication models

The Event Service can be used with either a push model or a pull model of
interaction. Event suppliers can either push or pull events with the event
channel. Likewise, consumers can either push or pull events with the event
channel.

A push supplier, having connected with the event channel, can push an event
message on the event channel whenever the event occurs, or whenever it is
appropriate for the supplier to present the event message to the event channel
after the occurrence of the event. The push supplier can push its event(s)
using the CosNotifyComm::StructuredPushConsumer::push_structured_event()
method supported by the StructuredProxyPushConsumer that it obtained
from the SupplierAdmin during the event channel connection process.

A pull supplier, having connected with the event channel, will have events
pulled from it periodically. The event channel does this by invoking a pull
operation on the pull supplier. The pull supplier must support the
CosNotifyComm::StructuredPullSupplier interface, and in particular
implement the pull_structured_event and try_pull_structured_event
operations. The pull_structured_event() operation should be implemented to
block and return an event message when the event has occurred. The
try_pull_structured_event() operation should never block, but rather should
return an event message and a boolean return value of TRUE if an event has
occurred, and to return a null message and a boolean return value of FALSE if
not.

The event channel will perform its pull operations on a separate thread for
each pull supplier. Nonetheless, the pull supplier should be implemented to
return from the pull operation as quickly as possible (after an event is
available) to avoid consuming resources in the event channel that could
eventually affect its throughput.

Even though the event channel in Component Broker only uses the pull
operation, both operations should be implemented as other event channel
implementations may invoke either. These methods should be implemented to
work together so either method can be used interchangeably and yet only
produce one event message for an event occurrence.

A push consumer, having connected with the event channel, will have events
pushed on it whenever the event message is supplied to the event channel.
When an event message is supplied to the event channel, the event channel
iterates through its full list of connected push consumers and pushes the same
event on each of those consumers.

54  WebSphere: Advanced Programming Guide



The push consumer must support the
CosNotifyComm::StructuredPushConsumer interface, and in particular
implement the push_structured_event operation. It is up to the push
consumer to decide what to do with the event when it arrives. Often,
consumers are implemented to spawn a separate thread of their own to
process the event. Each push occurs on a separate thread to isolate the effect
that different consumers can have on each other. Nonetheless, push
consumers should return from the push operation as quickly as possible to
avoid consuming resources in the event channel that could eventually effect
its throughput.

A pull consumer, having connected with the event channel, can pull or
try_pull an event from the event channel whenever it is ready to receive the
next event message. The pull operation is a blocking request and will only
return when the event channel has another event message to supply to the
pull consumer. The try_pull operation is not blocking and will return an
event-message if one is available, or simply return FALSE if not. The pull
consumer can pull its event(s) using the
CosNotifyComm::StructuredPullSupplier::pull_structured_event or
CosNotifyComm::StructuredPullSupplier:try_pull_structured_event methods
supported by the StructuredProxyPullSupplier obtained from the
ConsumerAdmin object during the event channel connection process.

Since the CosNotifyComm::StructuredPullSupplier::pull_structured_event()
operation is intended to be a blocking method, and since some events may
take a long time to actually occur, it is possible that the communication
network will fail or time-out before the supplier has the chance to return from
the pull. This can be a significant problem for some applications. If the pull
request times out, the consumer will be notified through an exception that it
can respond to, usually by simply re-invoking the pull request, and perhaps
re-connecting to the event channel if necessary. On the other hand, the
supplier is not necessarily informed of the error. Typically the supplier is
programmed to present an event on return from the pull method. However, if
the connection from the consumer has timed out, then the return will occur
without actually supplying anything to the consumer, and the event will be
lost.

You can reduce the chances of this happening by setting the ORB time-out
value for the communication session between the consumer and supplier to
zero (no time-out). However, this does not guard against other potential
communication errors that could have the same effect. Thus, you should avoid
the pull consumer model if it is important to avoid lost event messages.

Chapter 3. Notification Service 55



Structured events

A structured event is an event that is encapsualted into a well-defined data
structure. An event is a specific instance of an event message about a
particular event. When an instance of an event occurs, an event supplier can
produce an event message representing the occurrence of that event. The
event message can contain as much or as little information about that
occurrence as is relevant to your application.

The Notification Service defines an event message as a structured event. Each
structured event consists of two main components: a header and a body. The
header part mainly consists information about the name of the event, the type
of the event and the various (optional) Quality of Services (QoS) that are
applicable to the event message. The body consists of the actual contents of
the event instance upon which the consumer is most likely to base filtering
decisions.

The suppliers and the consumers in the Notification Service are defined such
that the structured events can be transmitted directly, without any
repackaging needed.

The structure of the event message can be as elaborate or as simple as is
appropriate for your application’s needs provided it follows the format for the
structured event. At one extreme, the event message can be a simple integer
containing an event identifier, a value that can be used to uniquely identify
the occurrence of the event with no QoS related information. At this extreme,
the event message does not convey anything more about the event instance
except that it occurred and a handle that uniquely identifies that occurrence.
Event consumers might be able to use this event identifier later to correlate
back to a separate repository containing more information about the event.

At the other extreme, the event message may contain a number of QoS
properties like the priority of the event, the time when the channel should
discard the event, and so on.

The following IDL represents an example of a more sophisticated event
message structure:

typedef CosTrading::PropertySeq FilterableEventBody;

typedef struct Event s {

// Part 1: Header
// Fixed Header

string domain_type;

string event_type;

string event_name;
// Variable Header

short Priority;

56  WebSphere: Advanced Programming Guide



TimeBase::UtcT StopTime;
TimeBase::UtcT Timeout;

// Part 2: Filterable Event Data
FilterableEventBody filterable_data;
// Part 3: Un-filterable Event Data

any unfilterable_data;

}

StructuredEvent;

s

This event structure has provisions in it for defining the type and name of the
event instance; a set up quality-of-service controls: Priority, StopTime and
Timeout. In addition, this event structure can include event data (in the
filterable_data field) that can be used to filter the event message.

This type of structure might be useful in situations where event processing is
central to the overall architecture of your application structure and processes,
where not only being able to distinguish essential information about the event
occurrence itself is important, but also where being able to monitor the
handling of the event message is important, and where having sufficient
robustness to ensure the longevity of the event handling even in the presence
of further evolutions in your application is important too. However, this
structure may be overly complicated for other application situations.

In this implementation three types of QoS properties are supported. They are
Priority, StopTime and Timeout.

Priority indicates the relative priority of the event compared to other events in
the channel in terms of delivery. According to the OMG Notification Service
specification it should take a value between -32,767 and 32,767 with -32,767
being the lowest priority, 32,767 being the highest, and 0 being the default.
Internally, in our implementation we treat all the priorities less than 1 (that is,
0 to -32,767) to be 1, priorities greater than 9 (10 to 32,767) to be 10. All other
priorities (1 to 9) have their original priority numbers assigned.

StopTime is an absolute time (for example, 12/12/99 at 23:59) when the
channel should discard the event.

Timeout is a relative time (for example, 10 minutes from time received) when
the channel should discard the event.

One can set the QoS at the following levels of scope: notification channel,

admin objects, individual proxy objects and the event itself. Accessor
operations (set_qos and get_qos) are available at each of these levels (except

Chapter 3. Notification Service = 57



for the event where the QoS is set explicitly in its message as shown in the
Structured Event example above) to set and get the various QoS properties.
These levels of scope form a simple hierarchy, reflecting the ability to override
QoS at various levels. The QoS properties set at the event level take higher
precedence, followed by the QoS properties set at the individual proxy levels,
followed by the QoS properties set at the admin objects level, followed by the
QoS properties set at the notification channel level.

The samples provided at the end of this document illustrates a Structured
Event (define_event() method) and the use of the QoS settings on a per-event
basis in the header field of this event.

This event structure has provisions in it for defining the type and name of the
event instance; a set up quality-of-service controls, including priority. In
addition, this event structure can include event data that can be used to filter
the event message.

This type of structure might be useful in situations where event processing is
central to the overall architecture of your application structure and processes,
where not only being able to distinguish essential information about the event
occurrence itself is important, but also where being able to monitor the
handling of the event message is important, and where having sufficient
robustness to ensure the longevity of the event handling even in the presence
of further evolutions in your application is important too. However, this
structure may be overly complicated for other application situations.

The define_event() method in the sample at the end of this document
provides an example of a structured event.

When designing the contents for your event messages you should consider
the following:

* How much information do your event consumers need to know about the
event instance, and what information will they use in the handling of that
event?

* Are you likely to introduce other event consumers in the future? What
information will they likely need?

* How will you evolve the schema for the event message without affecting
backwards compatibility of existing event consumers and suppliers? Are
you willing to modify your event suppliers and consumers whenever you
change the event schema?

* How often are these events likely to occur? Will they happen so frequently
that having too much information in them will likely affect system
throughput?

* How often will consumers need all of the information you supply in the
event? Would it be better to supply only a little information in the event

58  WebSphere: Advanced Programming Guide



message, including correlation information that can be used later to obtain
the rest of the detailed information from a separate repository if and when
it is actually needed?

* How do you want to group event types in an event topic, and what is the
relationship of those event topics to event channels? Different event
channels can be used for different event topics. Likewise, different event
topics can be used to group one or more event types. All of these can be
used to separate different event types, thus reducing the amount of
information that you have to include in the event message itself.

¢ How much extra event handling information do you need? Do you need,
for instance, to track how long, on average, it takes to process an event
message from the time that it is produced to the time that it is consumed?
Is there a maximum lifetime for the event handling, a point beyond which
if the event is not handled it is no longer relevant and should be discarded?
Do you need to prioritize the event? Do you want to correlate related
events?

* Which data is filterable and which is not?

Event topics

The idea of an event topic is an abstract concept introduced by Component
Broker to help you consider the relationship between event instances, event
types, and event channels. Within the running system there may be many
occurrences of many different types of events. Likewise, you can introduce as
many different event channels as you like. Designing an effective event
schema requires achieving the right balance between system performance,
integrity, and programming and administrative simplicity.

Single event channel schemas

If you use only one event channel for all events supplied and consumed in
your application, then administration will be fairly straight-forward: you need
to define one event channel and share that same event channel with all of
your suppliers and consumers. However, using a single event channel raises
the following concerns:

* The event channel can become a single point of failure. Because you are
only dealing with one event channel, if that event channel should fail then
all of your suppliers and consumers are affected.

* Event suppliers must be able to identify the type and instance of event
message they are producing.

* Event consumers need to identify the type (or types) and instance (or
instances) of the event message they are interested in processing, filtering

Chapter 3. Notification Service 59



out all those in which they are not interested, and sorting through the
various types and instances in which they are interested, if there is more
than one type.

Multiple event channel schemas

Another strategy is to have a different event channel for every type of event
message, and possibly a different event channel for each set of event messages
coming from different groups of either or both suppliers and consumers. This
has the obvious consequence of proliferating event channels, and in the latter
case significantly increasing administrative complexity for associating groups
of either or both event suppliers and consumers to determine which ones
should be attached to which event channel instance. By extension, event
suppliers and consumers may have to connect to numerous event channels for
all of the types of events they handle.

In many cases, you will find there are a set of event types that are highly
related. For instance, you may have a different event type for each of the steps
an insurance agent performs. Each of these event types may be related by
virtue that they all pertain to the steps an agent performs. This grouping may
be relevant, for instance, if you have an event consumer that tracks all of an
agent’s actions, as a sort of audit trail to ensure they’ve followed all of the
right procedures or to monitor their productivity.

You can group these related event types into an event topic. This is an
artificial grouping, not supported in any formal sense by the Event Service,
that you can use at your discretion and for your convenience. Having
identified one or more event topics, you can determine how many event
channels you will need. A common practice is to define a distinct event
channel for each event topic. Each topic is given a label and each event
channel is registered in the system name space with this topic name. Thus a
supplier can connect to a particular event channel based on the topic (or
topics) for which it supplies events. Similarly, a consumer can connect to a
particular event channel based on the topic (or topics) the consumer handles.
Thus, if an event channel fails, only suppliers and consumers of that topic are
affected. Likewise, suppliers and consumers can concentrate on the topics that
they are programmed to handle and in doing so avoid the system overhead
associated with dealing with events not relevant to them.

Event suppliers

An event supplier is an object that supplies event messages to an event
channel. An event supplier can use either the push or pull model of
interaction with the event channel. The same object can be a supplier to more
than one event channel concurrently, however if the supplier uses the pull
model there is no way for it to distinguish which event channel is pulling an

60  WebSphere: Advanced Programming Guide



event. Push model event suppliers must support the
CosNotifyComm::StructuredPushSupplier interface. Pull model event
suppliers must support the CosNotifyComm::StructuredPullSupplier interface.
It is up to you to provide an implementation for the appropriate interface if
you are introducing an event supplier.

Event suppliers must create a connection to their event channel before they
can begin to supply events. To do this, they must first obtain the appropriate
event channel. In most cases, event channels are registered in the system
name space when they are created, and therefore obtaining an event channel
is a matter of resolving its appropriate name in the system name space. As
discussed in £ ics” , a common strategy is to register event
channels with the name of the event topic they broker. Thus you can use the
event topic name to resolve the appropriate event channel. Having located an
event channel, the supplier must then connect to it. At this point, the supplier
can supply any number of event messages, until the connection is terminated.

Push-model event suppliers can supply events using the
CosNotifyComm::StructuredPushConsumer::push_structured_event() operation

on their event channel. Pull-model event suppliers can supply events when

they are invoked with either the
CosNotifyComm::StructuredPullSupplier::pull_structured_event() or
CosNotifyComm::StructuredPullSupplier:try_pull_structured_event()

operation. The connection with the event channel can be terminated by either

the supplier or by the event channel. If the supplier is using the push-model it
can disconnect by invoking the
CosNotifyComm::StructuredPushConsumer::disconnect_structured_push_consumer()
operation on the event channel, and the event channel can disconnect the

supplier by invoking the
CosNotifyComm::StructuredPushSupplier::disconnect_structured_push_supplier()
operation on the supplier. If the supplier is using the pull-model it can

disconnect by invoking the

CosNotifyComm::Structured PullConsumer::disconnect_structured_pull_consumer()
operation on the event channel, and the event channel can disconnect the

supplier by invoking the
CosNotifyComm::StructuredPullSupplier::disconnect_structured_pull_supplier()
operation on the supplier.

As event channel connections are not retained persistently, if the event
channel fails, the connection will have to be reestablished. In the case of an
event channel failure, push model event suppliers will be notified in an
exception on their next
CosNotifyComm::StructuredPushConsumer::push_structured_event() request.
Event suppliers should catch the CosEventComm::Disconnected exception.
This is an indication that the event channel has failed. At that point, the
supplier should re-connect before re-pushing the event.

Chapter 3. Notification Service 61



Pull model event suppliers are never notified if an event channel fails.
Instead, pull model event suppliers will simply stop being invoked for any
further events. If this is an issue for the supplier, it can periodically attempt to
reconnect with the event channel. If the event channel has not failed then the
reconnect attempt will simply raise the

CosEventChannel Admin::AlreadyConnected exception with no other
consequences.

Event suppliers can reside in pure clients. However, since pure clients cannot
export object references, event suppliers in pure clients are constrained to only
use the push model of interaction. Further, pure client event suppliers will not
be notified if the event channel disconnects. If the event channel disconnects,
the event supplier is left to detect the loss of connection with the
CosEventComm::Disconnected exception raised on their next push request.

Supplying events

Supplying events requires you to first locate and connect to an event channel
that is intended to handle your event topic. The Event Service supports two
models of interaction between event suppliers and event channels: the push
model and the pull model. If your event supplier will reside in a pure client,
you must use the push model.

Supply events using the following steps:

1. Locate an event channel. You will need an event channel with which to
connect. The easiest approach is to simply obtain an already existing event
channel that has been registered in the system name space. In addition,
you can create a new event channel, or use the Component Broker System
Management facilities to configure a new event.

2. Connect to the event channel. Follow the procedure described in

IConnecting ta an event channel” on page 74 to connect with the event

channel.

3. Supply the event. As a push-model event supplier, you can use the
CosNotifyComm::StructuredPushConsumer::push_structured_event()
method to push your event on the event channel. As a pull-model event
supplier, you must implement the
CosNotifyComm::Structured PullSupplier::pull_structured_event() and
CosNotifyComm::StructuredPullSupplier:try_pull_structured_event()
methods. The pull method should block until ready to return an event.
The try_pull method should always return immediately; returning a
boolean value of TRUE and the event message if one is ready, or returning
a boolean value of FALSE and a null event message if not.

The following example demonstrates how to connect as a push supplier to the
AgentActions event channel created in “Creating an event channel” on

62  WebSphere: Advanced Programming Guide



bage 71l and supply methods using the push method. This example assumes
that you are your own push-supplier object and that you are operating in a
server process.

// Declare an intermediate Object, the AgentActions event channel,
//  a supplier admin object and a push consumer proxy.

CORBA::0bject_var intermediateObject;
CosNotifyChannelAdmin::EventChannel_var agentActionsEC;
CosNotifyChannelAdmin::SupplierAdmin_var agentActionsSA;
CosNotifyChannelAdmin::StructuredProxyPushConsumer_var agentActionsSPPC;

// Declare the ID that the StructuredProxyPushConsumer object is assigned
// when it is created.
CosNotifyChannelAdmin::ProxyID SPPCid;

// Define an event of type Structured Event that needs to be pushed.
CosNotification::StructuredEvent structuredEvent_var =
new CosNotification::StructuredEvent;

// Locate the AgentActions event channel, obtain the supplier admin,
//  and obtain a structured push consumer proxy.

intermediateObject = CBSeriesGlobal::nameService()
->resolve_with_string(
"/host/resources/notify-channels/AgentActions");
agentActionsEC=
INotifyChannelAdminManagedClient: :EventChannelFactory:: narrow(
intermediateObject);
agentActionsSA = CosNotifyChannelAdmin::SupplierAdmin:: narrow(
agentActionsEC->default_supplier_admin());
agentActionsPPC =
CosNotifyChannelAdmin::StructuredProxyPushConsumer::_narrow(
agentActionSA->obtain_notification_push_consumer(
CosNotifyChannelAdmin: :STRUCTURED _EVENT, SPPCid));

// Connect to the event channel proxy.
agentActionsPPC->connect_structured push supplier(this);

// Do some activity for the Insurance agent

// Supply an event indicating the completion of that action.
// Fill in the fields of the structured event
// (structuredEvent) Shown in the sample program at the
// end of the document.

// Push the event
agentActionsPPC->push_structured event(structuredEvent);

Chapter 3. Notification Service



Event consumers

An event consumer is an object that consumes event messages from an event
channel. An event consumer can use either the push or pull model of
interaction with the event channel. The same object can be a consumer of
more than one event channel concurrently, however, and if the consumer uses
the push model there is no way for it to distinguish which event channel is
pushing an event. Push model event consumers must support the
CosNotifyComm::StructuredPushConsumer interface. Pull model event
consumers must support the CosNotifyComm::StructuredPullConsumer
interface. It is up to you to provide an implementation for the appropriate
interface if you are introducing an event consumer.

Event consumers must first create a connection to their event channel before
they can begin to consume events. To do this, they must first obtain the
appropriate event channel. In most cases, event channels are registered in the
system name space when they are created, and obtaining an event channel is
simply a matter of resolving its appropriate name in the system name space.
As discussed in £ ics” , a common strategy is to register
event channels with the name of the event topic they broker. Thus you can
use the event topic name to resolve the appropriate event channel.

Having located an event channel, the consumer must then connect to it. If the
consumer is interested in filtering events then it should also create a filter
object and use it to connect to the supplier proxies so that only the events that
match the constraints specified in the filter objects are deliverd to it. At this
point, the consumer can consume any number of event messages, until the
connection is terminated. Push model event consumers can consume events
when they are invoked with the
CosNotifyComm::StructuredPushConsumer::push_structured_event()
operation. Pull model event consumers can consume events using either the
CosNotifyComm::StructuredPullSupplier::pull_structured_event() or
CosNotifyComm::StructuredPullSupplier:try_pull_structured_event()
operation on their event channel.

The connection with the event channel can be terminated by either the
consumer or by the event channel. If the consumer is using the push model, it
can disconnect by invoking the
CosNotifyComm::StructuredPushSupplier::disconnect_structured_push_supplier()
operation on the event channel, and the event channel can disconnect the
consumer by invoking the
CosNotifyComm::StructuredPushConsumer::disconnect_structured_push_consumer()
operation on the consumer. If the consumer is using the pull model it can
disconnect by invoking the
CosNotifyComm::StructuredPullSupplier::disconnect_structured_pull_supplier()
operation on the event channel, and the event channel can disconnect the

64  WebSphere: Advanced Programming Guide



supplier by invoking the
CosNotifyComm::Structured PullConsumer::disconnect_structured_pull_consumer()
operation on the consumer.

As event channel connections are not retained persistently, if the event
channel fails, the connection will have to be reestablished. If the event channel
fails, pull model event consumer will be notified in an exception on their next
CosNotifyComm::StructuredPullSupplier::pull_structured_event() or
CosNotifyComm::StructuredPullSupplier:try_pull_structured_event() request.
Event consumers should catch the CosEventComm::Disconnected exception.
This is an indication that the event channel has failed. At that point, the
consumer should reconnect before re-pulling the event.

Push model event consumers are never notified if an event channel fails.
Instead, they will simply stop receiving any further events. If this is an issue
for the consumer, it can periodically attempt to reconnect with the event
channel. If the event channel has not failed then the reconnect attempt will
simply raise the CosEventChannelAdmin::AlreadyConnected exception with
no other consequences.

Event consumers can reside in pure clients. However, since pure clients
cannot export object references, then event consumer in pure clients are
constrained to only use the pull model of interaction. Further, pure client
event consumers will not be notified if the event channel decides to
disconnect. The event consumer is left to detect the loss of connection with
the CosEventComm::Disconnected exception raised on their next pull or
try_pull request.

Consuming events

This procedure demonstrates how to consume an event from an event
channel. To consume an event, you have to first locate and connect to an
event channel that is intended to handle your event topic. The Event Service
supports the push and pull models of interaction between event consumers
and event channels. If your event consumer will reside in a pure client, you
must use the pull model.

Consume an event from the event channel using the following steps:

1. Locate an event channel. You will need an event channel to connect with.
The easiest approach is to simply obtain an already existing event channel
that has been registered in the system name space. In addition, you can
create a new event channel, or use the Component Broker System
Management facilities to configure a new event.

Chapter 3. Notification Service 65



2. If the consumer is interested in filtering events then it should create a filter
object, add its required constraints to the filter object and use it to connect
to the event channel.

3. Connect to the event channel. Follow the procedure described in

I'Connecting to an event channel” on page 74 to connect with the event

channel.

4. Consume the event. As a pull model consumer, you can use the
CosNotifyComm::Structured PullSupplier::pull_structured_event() or
CosNotifyComm::StructuredPullSupplier:try_pull_structured_event()
method to consume an event. If you use the pull method, your request
will block until an event is ready to be returned. If you use the try_pull
method, your request will always return immediately, and will indicate in
a boolean return value whether an event was available to return. As a
push model consumer, you must implement the
CosNotifyComm::StructuredPushConsumer::push_structured_event()
method. This method will be invoked whenever an event is available for
you to consume.

The following example demonstrates how to connect as a pull consumer to
the AgentActions event channel created in L ”
@%‘ and consume events using the pull method. This example assumes
you are your own pull-consumer object, and that you are operating in a
server process.

// Declare an intermediate Object, the AgentActions event channel,
//  a consumer admin object and a pull supplier proxy.

CORBA::0bject var intermediateObject;
CosNotifyChanneTAdmin::EventChannel_var agentActionsEC;
CosNotifyChanneTAdmin::ConsumerAdmin_var agentActionsCA;
CosNotifyChanneTlAdmin::StructuredProxyPullSuplier_var agentActionsPPS;

// Declare the ID that the StructuredProxyPullSupplier object is assigned
//  when it is created.
CosNotifyChannelAdmin::ProxyID SPPSid;

// Declare an event of type Structured Event that needs to be pulled.
CosNotification::StructuredEvent structuredEvent var;

// Locate the AgentActions event channel, obtain the consumer admin,
//  and obtain a pull supplier proxy.

intermediateObject = CBSeriesGlobal::nameService()
->resolve_with_string(
"/host/resources/notify-channels/AgentActions");

agentActionsEC=
INotifyChannelAdminManagedClient::EventChannelFactory:: narrow(

intermediateObject);
agentActionsCA = CosNotifyChannelAdmin::SupplierAdmin::_narrow(
agentActionsEC->default_consumer_admin());

66  WebSphere: Advanced Programming Guide



agentActionsPPS =
CosNotifyChannelAdmin::StructuredProxyPullSupplier:: narrow(
agentActionCA->obtain_notification_pull_supplier(
CosNotifyChannelAdmin: :STRUCTURED EVENT, SPPSid));

// Optional: create Filter object, define constraints in the Filter object,

// add the filter object to the structuredproxyPullSupplier.
// Shown in the sample program at the end of the document.

// Connect to the event channel proxy.
agentActionsPPS->connect_structured_pull_consumer(this);

// Consume an event.
// Pull the event

structuredEvent = agentActionsPPS->pull_structured_event();

// Handle the fields of the structuredEvent

Event channels

Event channels have two forms. In their abstract form, an event channel is a
broker of event messages, consuming them from their connected suppliers,
and supplying them to their connected consumers. In their concrete form, an
event channel is composed of the following object types:

CosNotifyChannel Admin::EventChannel
This is the anchor point for the other event channel objects.
EventChannel objects define the abstract event channel, and are the
objects registered in the system name space that enable you to find an
event channel.

CosNotifyChannel Admin::SupplierAdmin
SupplierAdmin objects broker connections between suppliers and the
event channel. An event channel can have more than one
SupplierAdmin.

CosNotifyChannel Admin::ConsumerAdmin
ConsumerAdmin objects broker connections between consumers and
the event channel. An event channel can have more than one
ConsumerAdmin.

CosNotifyChannel Admin::Structured ProxyPushConsumer
StructuredProxyPushConsumer objects define a specific connection
between a structured supplier and the event channel. An instance of a

Chapter 3. Notification Service 67



StructuredProxyPushConsumer is created for each structured supplier
that connects to the event channel using the push-model of
interaction.

CosNotifyChannel Admin::Structured ProxyPullConsumer
Structured ProxyPullConsumer objects define a specific connection
between a structured supplier and the event channel. An instance of a
StructuredProxyPullConsumer is created for each structured supplier
that connects to the event channel using the pull-model of interaction.

CosNotifyChannel Admin::StructuredProxyPushSupplier
StructuredProxyPushSupplier objects define a specific connection
between a structured consumer and the event channel. An instance of
a StructuredProxyPushSupplier is created for each structured
consumer that connects to the event channel using the push model of
interaction.

CosNotifyChannel Admin::Structured ProxyPullSupplier
StructuredProxyPullSupplier objects define a specific connection
between a structured consumer and the event channel. An instance of
a StructuredProxyPullSupplier is created for each structured consumer
that connects to the event channel using the pull model of interaction.

Event channels can support multiple simultaneous connections of suppliers
and consumers using any mixture of push model or pull model interactions.
In Component Broker, event channels are managed objects with persistent
references. Thus they must reside in a Component Broker server process, and
can be registered in the system name space. All suppliers and consumers that
resolve to the same event channel reference will get to the same instance of
event channel. Event channels are automatically reactivated in the Component
Broker server when they are first referenced.

As brokers of event messages, event channels are in fact both event
consumers and event suppliers (consumers to their connected event suppliers,
and suppliers to their connected event consumers), proxies are used to
mediate between consumers and suppliers, and between push and pull
models of interaction.

The transmission of events from the event channel to the consumers depend
on the filter objects that are attached by the consumers to supplier proxies.
Only the events that satisfy the constraints or conditions in the filter object
will be transmitted to that consumer (which attached the filter object). If a
consumer does not attach a filter object to the supplier proxy or if the filter
object attached does not contain any constraints then all the events received
by the event channel will be transmitted to that consumer. Also, the delivery
of the event also depends on the quality of services (QoS) attached to the

68  WebSphere: Advanced Programming Guide



message and/or to the proxy. For example, if StopTime is set in the QoS then
the event channel will discard the event if it has not been delivered before the
StopTime.

Also, in Component Broker, event channels are transient. They do not retain
either supplier or consumer connections persistently, nor do they retain event
messages persistently. Connections and pending event messages will be lost
whenever the event channel is passivated or terminated.

Component Broker automatically creates a single default event channel that is
registered in the system name space in /cell/resources/notify-
channels/cell-default. This event channel can be used for any purpose, but
to allow for proper interoperation between all of the applications that could
end up using it, all event messages using the event channel in a production
environment must follow the following structure:

module DefaultEventStructure {
typedef struct Event_s {

// Part 1: Header
const unsigned short version=1;

// structure version

string domain_type;;
string event_type;
string event_name;

CosTrading::PropertySeq quality_of services;
CosTrading: :PropertySeq filterable_data;

// Part 2: Un-filterable Event Data

any unfilterable_data;
} StructuredEvent;

}s

If you need an event channel within your application, you should introduce
our own event channel for your own purposes. See ['Event tapics” orl
for more information that may be useful in deciding how to divide
up your event system topology. Having done so, you should design an
appropriate structure for your event messages, as discussed in Eﬁm
Bvents” on page 56. You can create a new event channel programmatically
using the standard Component Broker programming model for managed

objects, as described in I’Creating an event channel” on page 71l

Having created the event channel you should be sure to register it in the

system name space so that your suppliers and consumers can find it at

run-time. This will be done for you automatically if you use the

INotifyChannel AdminManagedClient::EventChannelFactory::createVisibleEventChannel

Chapter 3. Notification Service 69



operation. Otherwise, you can use the
INotifyChannel AdminManagedClient::EventChannelFactory::createEventChannel()
operation and manually bind the event channel in the system name space.

You can also use the Component Broker System Management facility to
configure a new event channel. This is described in more detail in

’ iguri - . This process automatically
registers the event channel in the system name space so that your suppliers
and consumers can find it at run time. The Component Broker system name
space includes naming contexts where you can register event channels by
name at the following locations:

* /host/resources/notify-channels/workgroup/resources/notify-channels
* /cell/resources/notify-channels

Alternately, you can register your event channels in your own application
name tree.

Locating an event channel

This procedure demonstrates how you can locate an event channel by name in
the system name space. This is useful to both event suppliers and event
consumers who are finding an event channel they can use to exchange event
messages.

You can locate an event channel in the fashion demonstrated here only if the
event channel already exists and has been bound in the system name space.
You must know the name of the event channel to use this procedure.

Use the following steps to locate an event channel:

1. Determine the name of the event channel you want to use. This may be
the name of the default event channel automatically created and registered
in the system name space by Component Broker installation. Or it could
be an event channel that your application created and bound in the system
name space earlier.

2. Resolve the event channel from the system name space. Use the Naming
Service operations to resolve the event channel from the system name
space by the name that you determined in the previous step.

The default event channel is created automatically during Component Broker
installation. The following example shows how to obtain the default event
channel:

// Declare the targeted event channel

CORBA::0bject_var intermediateObject;
CosNotifyChannelAdmin::EventChannel_var defaultEC;

70  WebSphere: Advanced Programming Guide



// Obtain the default event channel and narrow it to an event
// channel

intermediateObject=CBSeriesGlobal::nameService()
->resolve_with_string(
" /cell/resources/notify-channels/cell-default");
defaultEC=
CosNotifyChannelAdmin::EventChannel:: narrow(intermediateObject);

Creating an event channel

An event channel is created essentially in the same way that any other
managed object is created, that is, by first obtaining a factory finder with a
desired location scope. By extension, such a factory finder must exist.
Component Broker provides a set of default factory-finders that it creates and
registers in the system name space during Component Broker installation.
These are found in the following locations:

* /host/resources/factory-finders/host-scope

» /workgroup/resources/factory-finders/workgroup-scope

» /cell/resources/factory-finders/cell-scope

In addition, Component Broker automatically creates a home for event
channels (called notify—channels in order to differentiate from the Event
Service event-channels) in every server process. However, the least granularity
of scoping that any of the default factory finders supports is a host scope.
Therefore, if you want the event channel created in a more specific server you
must create a new factory finder with a corresponding location scope that
narrows to that server.

Create an event channel using the following steps:

1. Obtain a factory finder with the desired location scope. You will need a
factory finder with which to create your new event channel. Alternately,
you can create a non-managed factory finder to use for finding the new
event channel’s factory.

2. Use the factory finder to find a factory (a Home) for event channels.
Having obtained a factory finder, you can now use it to find a factory for
factory finders. You do this with the find_factory(), find_factories(),
find_factory_from_string(), or find_factories_from_string() methods. The
event channels interface is
INotifyChannel AdminManagedClient::EventChannel.object. This is the
principal interface name that you will pass in to the find_factory* or
find_factories* methods.

3. Create the event channel. The factory specialization for event channels
introduces the createEventChannel and createVisibleEventChannel
methods which you can use to create the new event channel. You will

Chapter 3. Notification Service 71



have to narrow to the
INotifyChannel AdminManagedClient::EventChannelFactory interface to
use either of these new methods.

4. Register the event channel in the system name space. This step is optional.
When you've created an event channel, often you will want to retain this
object for future use in your application to be shared by event suppliers
and consumers. How you do this in your application is up to you, but the
typical approach is to bind the event channel in the system name space.
Again, where you bind it in the system name space is up to you. One
obvious and commonly used choice is to bind it in
/host/resources/notify-channels, /workgroup/resources/notify-
channels,or /cell/resources/notify-channels depending on what
visibility you want to give it. Another choice is to bind it under your own
application, contexts within /host/applications,
/workgroup/applications, or /cell/applications. Typically event channels
are bound with the event topic name for the types of events they're
intended to broker.

If you use the

INotifyChannelAdminManagedClient::EventChannelFactory::
createVisibleEventChannel

method, you can specify the relative name (the event channel’s topic
name), and a boolean flag for the name spaces in which you want the
event channel registered. The specialized home will automatically register
the new event channel into the name space in the indicated locations.

The following example demonstrates creating a new event channel, and
binding it in the system name space under /host/resources/notify-channels
with the name AgentActions. The event channel is created within the local
host.

// Declare an intermediate Object, the event-channels naming
// context, the targeted factory finder where the new event
// channel will be created,a event channel factory, and the
// new event channel.

CORBA::0bject_var intermediateObject;

IExtendedNaming: :NamingContext_var eventChannelsNC;
IExtendedLifeCycle::FactoryFinder_var hostScopeFF:
INotifyChannelAdminManagedClient::EventChannelFactory var factoryOfEC;
CosNotifyChannelAdmin: :EventChannel_var myNewEC;

ByteString_var key;

// Declare the ID for the event channel being created.
CosNotifyChanneTlAdmin::ChannelID cid;

// Obtain the default factory finder with a host-scope and

// narrow to an IExtendedLifeCycle::FactoryFinder so that we
// can use the find_factory_from_string operation.

72 WebSphere: Advanced Programming Guide



CBSeriesGlobal::Initialize();
//Initialize the CBSeries environment

intermediateObject = CBSeriesGlobal::nameService()
->resolve_with_string(
"/host/resources/factory-finders/host-scope");

hostScopeFF = IExtendedLifeCycle::FactoryFinder:: narrow(
intermediateObject);

// Find a factory for event channels and narrow to the factory
// specialization

intermediateObject = hostScopeFF->find_factory from string(
"INotifyChannelAdminManagedClient::EventChannel.object interface");

factoryofEC =
INotifyChanneTAdminManagedClient::EventChannelFactory:: narrow
(intermediateObject);

// Create the required default quality of services (QoS)
// Shown in the sample program at the end of the document.
CosTrading::PropertySeq qos;

// Use the factory to create a new event channel.
myNewEC = factoryOfEC->createEventChannel(key, qos, NULL, cid);
// Bind the new event channel in the system name space.

intermediateObject = CBSeriesGlobal::nameService->resolve(
"/host/resources/notify-channels");
eventChannelsNC =
IExtendedNaming: :NamingContext:: narrow(intermediateObject);
eventChannelsNC->bind_with_string("AgentActions", myNewEC);

The last four statements could have been combined into the following
statement:

myNewEC = factoryOfEC->createVisibleEventChannel (key,
"AgentActions", 0, 1, 0);

Configuring an event channel
This procedure demonstrates how to configure a new event channel using the
Component Broker System Management facility. This is useful for when you
need an event to support a new event topic. This procedure is entirely

administrative and does not involve any programming.

Configure a new event channel using the following steps:

Chapter 3. Notification Service 73



1. Navigate to the desired server. The new event channel must be configured
within a specific server. Use the System Management user interface to
navigate to the host and server on which you want the factory finder
configured.

2. Create a event channel model. Insert an event channel model within the
server.

3. Set event channel model attributes. Use the attributes notebook to fill in
the event channel model attribute value. This will include the System
Management name for the event channel (do not confuse this with the
name of the event channel in the system name space, although these can
be set to the same value), the name of the event channel in the system
name space, and the Home of the event channel.

4. Apply the model changes. Select the apply function for the server, host, or
zone where you've created the event channel model. This results in a
corresponding event channel object being automatically created in the
targeted server and registered in the system name space.

Connecting to an event channel

This procedure demonstrates how to connect to an event channel. You need to
connect to an event channel before you can supply or consume events. The
event channel must have already been created and registered in a way that
you can find it.

Connect to an event channel using the following steps:

1. Locate an event channel. You will need an event channel with which to
connect. The easiest approach is to simply obtain an already existing event
channel that has been registered in the system name space. Otherwise, you
can create a new event channel, or use the Component Broker System
Management facilities to configure a new event.

2. Acquire an event channel administration object. Use the appropriate
method from the following methods to get the required administrative
object:

* If you are an event supplier, use the default_supplier_admin() method
or the new_for_suppliers() operation to get back a
CosNotifyChannel Admin::SupplierAdmin object.

* If you are an event consumer, use the default_consumer_admin()

method or the new_for_consumers() operation to get back a
CosNotifyChannel Admin::ConsumerAdmin object.

3. Acquire an event channel proxy object. Use the appropriate method from
the following methods to get the required proxy object:
* If you are a structured supplier using the push model, then use the
obtain_notification_push_consumer() operation to get back a
CosNotifyChannel Admin::Structured ProxyPushConsumer object.

74  WebSphere: Advanced Programming Guide



* If you are a structured supplier using the pull model, then use the
obtain_notification_pull_consumer() operation to get back a
CosNotifyChannel Admin::Structured ProxyPullConsumer object.

* If you are a structured consumer using the push model, then use the
obtain_notification_push_supplier() operation to get back a
CosNotifyChannel Admin::Structured ProxyPushSupplier object.

* If you are a structured consumer using the pull model, then use the
obtain_notification_pull_supplier() operation to get back a
CosNotifyChannel Admin::Structured ProxyPullSupplier object.

4. Connect with the proxy. Use the appropriate method from the following to
connect with the proxies:

* If you are a structured push supplier, then use the
connect_structured_push_supplier() method on your
Structured ProxyPushConsumer.

* If you are a structured pull supplier, then use the
connect_structured_pull_supplier() method on your
StructuredProxyPullConsumer.

* If you are a structured push consumer, then use the
connect_structured_push_consumer() method on your
StructuredProxyPushSupplier.

* If you are a structured pull consumer, then use the
connect_structured_pull_consumer() method on your
StructuredProxyPullSupplier.

Normally, you have to supply a reference to yourself , namely your supplier
or consumer object, on the connect request. This is used either to pull or push
on you, as well as to inform you when the connection is being terminated.
However, if you are connecting from a pure-client you are not able to use the
connect_structured_pull_supplier() or connect_structured_push_consumer()
methods. Also, you will have to supply a NULL object reference in either the
connect_structured_push_supplier() or connect_structured_pull_consumer()
request. This basically indicates to the event channel that you are operating
from a pure-client and avoids the issuing of any disconnect requests.

The following example demonstrates how to connect as a push supplier to the

AgentActlons event channel that was created in ECreating an event channel’]

. This example assumes you are your own push-supplier object,
and that you are operating in a server process.

// Declare an intermediate Object, the AgentActions event
// channel, a supplier admin object, a push consumer proxy.

CORBA::0bject_var intermediateObject;
CosNotifyChannelAdmin::EventChannel_var agentActionsEC;
CosNotifyChannelAdmin::SupplierAdmin_var agentActionsSA;
CosNotifyChannelAdmin: :StructuredProxyPushConsumer_var agentActionsSPPC;

Chapter 3. Notification Service 75



// Declare the ID that the StructuredProxyPushConsumer object is assigned
// when it is created.
CosNotifyChannelAdmin::ProxyID SPPCid;

// Define an event of type Structured Event that needs to be pushed.
CosNotification::StructuredEvent structuredEvent_var =
new CosNotification::StructuredEvent;

//Initialize the CBSeries environment
CBSeriesGlobal::Initialize();

// Locate the AgentActions event channel, obtain the supplier
// admin, and obtain a structured push consumer proxy.
intermediateObject = CBSeriesGlobal::nameService()
->resolve_with_string(
"/host/resources/notify-channels/AgentActions");
agentActionsEC=
INotifyChannelAdminManagedClient::EventChannelFactory:: narrow(
intermediateObject);
agentActionsSA =
CosNotifyChannelAdmin::SupplierAdmin:: narrow(
agentActionsEC->default_supplier_admin());
agentActionsPPC =
CosNotifyChannelAdmin::StructuredProxyPushConsumer:: narrow(
agentActionSA->obtain_notification_push_consumer(
CosNotifyChannelAdmin: :STRUCTURED_EVENT, SPPCid));

// Connect to the event channel proxy.

agentActionsPPC->connect_structured_push_supplier(this);

Disconnecting from an event channel

Disconnecting from an event channel is useful for when you want to stop
supplying or consuming events. It essentially un-registers your event supplier
or event consumer with the event channel. After disconnecting, push model
suppliers can no longer push, pull model suppliers will no longer be pulled,
push model consumers will no longer be pushed, and pull model consumers
can no longer pull.

If you are already connected to an Event Channel, use the appropriate method
from the following methods to disconnect:

* As a structured push supplier, use the

CosNotifyComm::StructuredPushConsumer::
disconnect_structured_push_consumer()

method on your structured push consumer proxy.
* As a structured pull supplier, use the

76  WebSphere: Advanced Programming Guide



CosNotifyComm: :StructuredPullConsumer: :
disconnect_structured pull_consumer()

method on your structured pull consumer proxy.
* As a structured push consumer, use the

CosNotifyComm: :StructuredPushSupplier::
disconnect_structured_push_supplier()

method on your structured push supplier proxy.
* As a structured pull consumer, use the

CosNotifyComm: :StructuredPullSupplier::
disconnect_structured_pull_supplier()

method on your structured pull supplier proxy.

The following example demonstrates how to disconnect from the
AgentActions event channel that was previously connected to in

to an event channel” on page 74. This example assumes that this is being done

from a push supplier.

// Assuming we've already connected to the AgentActions event
// channel as push supplier

agentActionPPC->disconnnect_structured_push_consumer();

FilterFactory and filters

The FilterFactory creates the filter objects. The Filter encapsulates the
constraints which will be used by a proxy object associated with a notification
channel in order to make decisions about which events to forward, and which
to discard. Each object supporting the Filter interface can encapsulate a
sequence of any number of constraints. Each event received by a proxy object
which has one or more objects supporting the Filter interface associated with
it, must satisfy at least one of the constraints associated with one of its
associated Filter objects in order to be forwarded (either to another proxy
object or to the consumer, depending on the type of proxy the filter is
associated with), otherwise it will be discarded.

Each constraint encapsulated by a filter object is a structure comprised of two
main components. The first component is a sequence of data structures, each
of which indicates an event type comprised of a domain and a type name.
The second component is a boolean expression over the properties of an
event, expressed in the constraint grammar.

For a given constraint, the sequence of event type structures in the first

component nominates a set of event types to which the constraint expression
in the second component applies. Each element of the sequence can contain

Chapter 3. Notification Service 77



strings which will be matched for equality against the domain_name and
type_name fields of each event being evaluated by the filter object when
determining if the boolean expression should be applied to the event, or the
event should simply be discarded without even attempting to apply the
boolean expression.

The constraint expressions associated with a particular object supporting the
Filter are expressed as strings which obey the syntax of a particular constraint
grammar (that is, a BNF). This implementation supports constraint
expressions expressed in the constraint grammar shown in the “Appendix A.
Default Filter Constraint Language” of the WebSphere Application Server
Enterprise Edition Component Broker Programming Reference.

The Filter interface supports the operations required to manage the constraints
associated with an object instance which supports the interface, along with a
readonly attribute which identifies the particular constraint grammar in which
the constraints encapsulated by this object have meaning. In addition, the
Filter supports the match_structured() operation which can be invoked by an
associated proxy object upon receipt of an event to determine if the event
should be forwarded or discarded, based on whether or not the event satisfies
at least one criteria encapsulated by the filter object.

Create, define and attach a Filter to a proxy using the following steps:

1. Obtain a Filter Factory. This is similar to the Event Channel Factory
creation process as explained before. The following steps illustrate this
process.

CosNotifyChannelAdmin: :StructuredProxyPushSupplier_var pxyPushS;
CORBA::0bject var intermediateObject;
IExtendedLifeCycle::FactoryFinder_var hostScopeFF;
INotifyFilterManagedClient::FilterFactory_var fFactory = NULL;
CosNotifyFilter::Filter_var fi = NULL;
CosNotifyFilter::ConstraintExpSeq *cl;
CosNotifyFilter::ConstraintInfoSeq *cis;
CosNotifyFilter::FilterID fid;

// initial ORB
CBSeriesGlobal::Initialize();
// obtain the default factory finder with a host scope
intermediateObject =
CBSeriesGlobal::nameService()->resolve_with_string(
"host/resources/factory-finders/host-scope");
// narrow to a factory finder
hostScopeFF = IExtendedLifeCycle::FactoryFinder:: narrow(
sintermediateObject);
// find the filter factory
intermediateObject = hostScopeFF->find_factory from_string(
"INotifyFilterManagedClient::Filter.object interface");
// narrow to the filter factory
fFactory = INotifyFilterManagedClient::FilterFactory:: narrow(
intermediateObject);

78  WebSphere: Advanced Programming Guide



2. Create a Filter from the Filter Factory. The create_filter method is used to
create a filter. The constraint grammar is passed as the input string
parameter.

fi = fFactory->create_filter("IBM_NTF_CTG");

3. Define the contents (constraints) of the filter and add them to the filter.
The add_constraints method is used to add the constraints to the filter.
Events will be delivered to the consumers only when these constraints of
the filter match with that of the event.

CosNotifyFilter::ConstraintExpSeq *c1 =
new CosNotifyFilter::ConstraintExpSeq;
(*c1).length(1);
(*c1)[0] .constraint_expr = CORBA::string_alloc(100);
// define constraint
strcpy ((*c1) [0] .constraint_expr, "($COMPANY == IBM) and (
$PRICE > 150)");
// add constraint to the filter
cis = fi->add_constraints(*cl);

4. Add the filter to the proxy which is expected to deliver the events. The
client after creating the filter with the necessary constraints should use the
add_filter method of the appropriate proxy suppliers to attach the filter to
the proxy. Once attached only the events whose filterable data matches the
constraints in the filter will be delivered to the client by the proxy.

id = pxyPushS->add_filter(fi);

The Customer_Impl() method in the following sample illustrates the
procedure for creating, defining and attaching a Filter to a proxy.

Managed object-based sample

In this scenario a Push Supplier is created as a Component Broker server. The
Push Supplier object is called Account. This object contains two attributes.
One is the accountNumber to hold an account number. This will be the primary
key. The other attribute in this Account object is called balance which holds the
current content of this accountNumber in the bank. (We discuss only one
account in this sample.) The Account object also has a method called
changeBalance which when invoked will update the balance and push the new
balance to the event channel (The default event channel is considered in this
sample. For a user created event channel, see [1Iser-defined event channel” on

for further information.) The changeBalance method will be invoked
by a pure C++ client (called PushSupplier) which prompts the user with the
amount to be added/subtracted from the balance.

On the consumer side, a Pull Consumer is implemented as a pure C++ client
(called PullConsumer). This consumer creates a filter with the necessary
requirements (in this case to notify it if the balance is less than $1,000) and
pulls the events from the event channel using the try_pull method.

Chapter 3. Notification Service 79



Client CB Server Client

Push change Push Event Channel pull
Supplier Balance Supplier ush v oull Consumer
—_— p_> H ¢ y_p

Figure 3. Notification Service managed object-based sample

We will go through the above process in three steps. In step one, we
implement and build the server. In step two, we implement and build the
PushSupplier and the PullConsumer clients. In step three, we deploy and run
the sample.

If you want your model to be transparent across different platforms, you can
create your own containers instead of using the defaults. To create a
Cachetransient Container sample, follow these steps:

1. On the Container Definition, select Add Container Instance

2. Name the container PushsupplierContainer with the description
Notification Push Supplier sample Container and click Next.

3. Accept the Service Details page defaults and click Next.
4. On the Service page, select Use no Object Services and click Next.

5. On the Data Access Patterns page, select Caching for the business object,
and select Local copy for the data object. These two selections must match
the selection when the business object and data object were created.

The following instructions are for Windows NT and AIX. Some
platform-specific notes are included.
Step 1: Implementing the application server (push supplier server object)
Implementing the server application consists of two major steps:
1. Specifying all the interfaces and implementations of the business object
and the data object, including the helper objects using the Component

Broker Object Builder (OB).
2. Building the application by running the code emitter, compiler and linker.

Creating the model using the Object Builder

The DLL files are called shared library files and are in the format
lib*.so. For any reference to a DLL file, substitute shared library file.

80  WebSphere: Advanced Programming Guide



Note: The following instructions assume that the Object Builder is up and

running.

1. Create a new file Account.

a. Select User-Defined Business Objects > Add File.
b. Type Account.
c. Click Finish.

2. Add a new interface to the file.

a.

Select Account > Add Interface.

b. Type AccountInterface.
.
d

Click Next.

. Add an exception, NotEnough using the Constructs page of the

AccountInterface.

1) On the Constructs page, select Constructs > Add Exception.
2) Type NotEnough.

3) Click Refresh.

4) Click Next.

Add a second parent interface,
CosNotifyComm::StructuredPushSupplier, using the Interface
Inheritance page of the AccountInterface wizard.

1) On the Interface Inheritance page, select Parents > Add.

2) Type CosNotifyComm CosNotifyComm::StructuredPushSupplier for
Parent Interface.

3) Click Refresh.
4) Click Finish.

3. Add properties to the interface.

a.
b.

C.

Select AccountInterface > Properties.
Go to the Attributes page, select Attributes > Add.
1) Add the attribute accountNumber using the following procedure:
a) Type accountNumber in the Attribute Name field.
b) Select String in the Type list.
c) Type 10 in the Size field.
d) Click Add Another.
2) Add the attribute balance using the following procedure:
a) Type balance in the Attribute Name field.
b) Select double in the Type list.
c) Click Refresh.
d) Click Next.
Add the method changeBalance using the following procedure:

Chapter 3. Notification Service

81



1) On the Methods page, select Method > Add.
2) Type changeBalance in the Method Name field.
a) Select Void in the Return Type list.
b) Click Refresh.
c) Select Parameters > Add.
d) Type anAmount in the Parameter Name field.
e) Select Double from the Type list.
f) Click Refresh.
g) Select Exceptions > Add.

h) Select Account AccountInterface NotEnough for Exception
Name.

i) Click Refresh.
j) Click Finish.
4. Create a Key helper using the accountNumber as the Primary Key.
a. Select AccountInterface > Add Key.
b. Click on accountNumber on the left.
c. Click >>.
d. Click Finish.
5. Create a Copy helper with the attribute of accountNumber.
a. Select AccountInterface > Add Copy Helper.
b. Select accountNumber.
c. Click >>.
d. Click Finish.
6. Add Business Object implementation.
a. Select AccountInterface > Add Implementation.
b. Click Finish.
7. Add the StructuredProxyPushConsumer to the Business Object.
a. Select AccountInterfaceBO > Properties.
1) On the Attributes page, select Attributes > Add.
2) Type ProxyPushConsumer in the Attribute Name field.

3) Type CosNotifyChannelAdmin
CosNotifyChannelAdmin::StructuredProxyPushConsumer in the Type
field.

4) Click Refresh.
5) Click Next.

b. Override methods disconnect_structured_push_supplier and
subscription_change.

1) Go to the Methods to Override page.

82  WebSphere: Advanced Programming Guide



2) Select disconnect_structured_push_supplier and
subscription_change in the Method list on the left and move them
to the right by clicking >>.

3) Click Next.
c. Add attributes accountNumber and balance to the data object interface.

1) Select accountNumber and balance in the Business Object Attributes
list on the left and move them to the right by clicking >>.

2) Click Finish.

d. Add implementation to changeBalance(), initForCreation(), and
uninitForDestruction() methods. The implementation of these three
methods are shown below. Copy this code into three different files in
the Model directory and add them to the Model using the following
procedure:

1) Select changeBalance in the Methods window > Properties

2) Select Use an external file.

3) Click Browse, and select the file that implements the
changeBalance() method in the Model directory.

4) Repeat for initForCreation() and uninitForDestruction() methods.

changeBalance()

CORBA: :Double newBalance;
CosNotification::StructuredEvent *event;
CORBA: :Short Priority;
time_t Timeout;
tm tl;

// change the balance
newBalance = iDataObject->balance() + anAmount;

if (newBalance < 0)
throw NotEnough();
else // update the balance and generate event
{
iDataObject->balance(newBalance);
event = new CosNotification::StructuredEvent;

// Define the event
event->header.fixed_header.domain_type = CORBA::string_alloc(100);
strcpy (event->header.fixed_header.domain_type, "dt");
event->header.fixed_header.event _type = CORBA::string_alloc(100);
strcpy (event->header.fixed_header.event_type, "et");
event->header.fixed_header.event name = CORBA::string _alloc(100);
strcpy (event->header.fixed_header.event name, "en");

// Set the Quality of services (QoS)
event->header.variable_header.length(3);

// Set Priority
event->header.variable_header[0] .name = CORBA::string_alloc(100);
strepy(

event->header.variable_header[0] .name, CosNotification::Priority);
Priority = 6;
event->header.variable_header[0].value <<= Priority;

Chapter 3. Notification Service 83



// Set Timeout = 2 days in 100 nanoseconds
event->header.variable_header[1].name = CORBA::string_alloc(100);
strcpy (

event->header.variable_header[1].name, CosNotification::Timeout);
Timeout = 2%24%60%60+x10000000;
event->header.variable_header[1].value <<= Timeout;

// Set StopTime = 2005 Dec 4, 12.01
event->header.variable_header[2] .name = CORBA::string _alloc(100);
strepy(

event->header.variable_header[2] .name, CosNotification::StopTime);
tl.tm year = 99;
tl.tm_mon = 11; // month is zero-based
tl.tm mday = 4; // day is one-based
tl.tm_hour = 12;
tl.tm min = 1;
tl.tm sec = 0;
CORBA::ULong utmp = mktime(&tl);
event->header.variable_header[2].value <<= utmp;

// Set filterable data
event->filterable_data.length(2);
event->filterable_data[0] .name = CORBA::string_alloc(20);
strcpy (event->filterable _data[0].name, "accountNumber");
event->filterable data[0].value <<= "123456";
event->filterable_data[l].name = CORBA::string_alloc(20);
strcpy(event->filterable_data[l].name, "balance");
event->filterable_data[l].value <<= newBalance;

// Push the event to the event channel
iProxyPushConsumer->push_structured_event (xevent);

}

initForCreation()

CosNotifyChannelAdmin::EventChannel_var ec;
CosNotifyChanneTAdmin::SupplierAdmin_var sa;
CosNotifyChannelAdmin: :ProxyID proxy_id;
CosNotifyChanneTlAdmin: :ProxyConsumer_var proxyConsumerVar;
CORBA::0Object_var it;

iDataObject = AccountInterfaceDO:: narrow(theDO);
AccountInterfaceBO Impl::initializeState();

// initialize the CBSeries environment
CBSeriesGlobal::Initialize();

// get default event channel

it = CBSeriesGlobal::nameService()->resolve_with_string(
"cell/resources/notify-channels/cell-default"));
ec = CosNotifyChannelAdmin::EventChannel:: narrow(it);
// get default SupplierAdmin
sa = ec->default_supplier_admin();

// get ProxyPushConsumer
proxyConsumerVar = sa->obtain_notification push_consumer(
CosNotifyChannelAdmin: :STRUCTURED_EVENT, proxy_id);
iPushConsumer =
CosNotifyChannelAdmin::StructuredProxyPushConsumer:: narrow(

84  WebSphere: Advanced Programming Guide



10.

11.

12.

proxyConsumerVar) ;
// connect to the ProxyPushConsumer
iProxyPushConsumer->connect_structured_push_supplier(this);

Note: Use Object Builder generated code and add changes on top of it.

uninitForDestruction()
iProxyPushConsumer->disconnect_structured_push_consumer();

Note: Use Object Builder generated code and add changes on top of it.
Add additional include files for AccountInterfaceBO.
a. Select AccountInterfaceBO

b. At the bottom of the Methods window, select File Adornments >
Prologue.

c. Type the following in the bottom window:

#include <CBSeriesGlobal.hh>

#include <INotifyChannelAdminManagedClient.hh>
#include <IExtendedLifeCycle.hh>

#include <time.h>

Add a Data Object Implementation.
a. Select AccountInterfaceDO > Add Implementation.
b. Go to the Behavior page.
c. Select the following: BOIM with any key, Transient, Home name and
key.
d. Click Finish.
Add a Managed Object to the AccountInterfaceBO.
a. Select AccountInterfaceBO > Add Managed Object.
b. Click Finish.
Generate the code.
Select User-Defined Business Objects > Generate > AlL

Build the Server Application. In the Build Configuration folder,
implement the following steps.

AIX only: The DLL files are called shared library files and are in the
format lib*.so. For any reference to a DLL file, substitute
shared library file.

a. Add a client DLL named accountC and include all account objects in
the DLL.

1) Select Build Configuration > Add Client DLL.
2) Type accountC in the Name field.
3) Click Next.

Chapter 3. Notification Service 85



b. On the Client Source Files page, select the following and move from
Items Available (on left) to Items Chosen (on right) by clicking >>.

1) AccountCopy
2) AccountKey
3) Account

Click Finish.

€. Add a server DLL named accountS and include all account objects to
the DLL. Also, link the client library accountC to it.

1) Select Build Configuration > Add Server DLL.
a) Type accountS in the Name field.
b) Click Next.
2) On Server Source Files page, perform the following tasks:
a) Click All>> to select all Account* objects to move.
b) Click Next.

3) On the Libraries to Link With page, select the accountC, and click
>>.

4) Click Finish.

d. Generate the makefiles. Select Build Configuration > Generate > All
> C++ Default Targets.

e. Build the server application. Select Build Configuration > Build >
Out-of-Data Targets > C++.

13. Generate the DDL using procedures from the WebSphere Application
Server Enterprise Edition Component Broker Application Development Tools
Guide. The following instructions were used to generate the DDL for our
test. However, since these instructions can change you need to always
refer to the WebSphere Application Server Enterprise Edition Component
Broker Application Development Tools Guide to get the latest information.

a. Add Application Family.
1) Select Application Configuration > Add Application Family.
2) In the Name field, type AccountAppFam.
3) Click Finish.
b. Define a Server Application.
1) Select AccountAppFam > Add Application.
2) In the Application Name field, type accounts.
3) Click Finish.
c. Configuring the managed object.

1) Open AccountAppFam > Select accountS > Add Managed Object
> In the Managed Object field to ensure that
AccountInterfaceMO is selected.

86  WebSphere: Advanced Programming Guide



2) Click Next.
3) In Data Object Implementations page > Add Another.

4) Select AccountDOImpl AccountInterfaceDOImpl in the Data
Object Implementation field if not already selected.

5) Select accountS in the DLL for Data Object Implementation field,
if not already selected.

6) Click Refresh.
7) Click Finish.
d. Generate the DDL File. Open AccountAppFam > Generate.

Note: The DDL files should be generated in the
Working/NT/PRODUCTION/AccountAppFam directory for Windows
NT and Working/AIX/AccountAppFam directory for AIX.

Step 2 : Implementing the C++ client code (PushSupplier and
PullConsumer)

This section provides sample code for the PushSupplier and the
PullConsumer.

PushSupplier C++ client code

In this sample, the Account object in the server is going to generate events on
the event channel each time its changeBalance method is invoked. As
mentioned earlier, a pure C++ client (PushSupplier) is used to invoke the
changeBalance method on the Account object. The PushSupplier program
prompts the user for the amount of the balance to be changed. The balance is
then passed as a parameter to the changeBalance method. The following code
illustrates the implementation of this client.

The PushSupplier client code creates an object using AccountKey and uses the
object to call the changeBalance method in the Account application server that
then pushes the event (balance in this case) to the Event Channel. When this
code is run it prompts for the user to input an amount to be added to the
balance of the Account.

#include <CBSeriesGlobal.hh>
#include <IExtendedLifeCycle.hh>
#include <IManagedClient.hh>
#include "Account.hh"

#include "AccountKey.hh"

int main(int argc, char xargv[])

{
CORBA: :0RB_ptr op;
IExtendedLifeCycle::FactoryFinder_var myFinder;
IManagedClient::IHome_var accountHome;
AccountInterfaceKey var theKey;

Chapter 3. Notification Service =~ 87



ByteString* theKeyString;
IManagedClient::IManageable_var moPtr;
AccountInterface_var account;
CORBA: :Double anAmount;
CORBA::0bject_var it;
// Global Initializer
CBSeriesGlobal::Initialize();
op = CBSeriesGlobal::orb();
// find a Factory
it = CBSeriesGlobal::nameService()->resolve_with_string(
"host/resources/factory-finders/host-scope"));
myFinder = IExtendedLifeCycle::FactoryFinder:: narrow(it);
it = myFinder->find_factory from_string(
"AccountInterface.object interface"));
accountHome = IManagedClient::IHome:: narrow(it);
// create an instance of a AccountInterfaceKey
theKey = AccountInterfaceKey:: create();
// Set the key to ("123456789");
theKey->accountNumber("123456789") ;
// create a account from the Key class
theKeyString = theKey->toString();
// Checking to see if the object already exists
try
{
cout << "Checking to see if the object already exists on the Server"
<< endl;
moPtr = accountHome->findByPrimaryKeyString(*theKeyString);
1
catch (IManagedClient::INoObjectWKey &nowk)
{
cout << "Expected ERROR in findByPrimaryKeyString call: "
<< nowk.id() << endl;

if (!moPtr)
moPtr = accountHome->createFromPrimaryKeyString(*theKeyString);
// Narrow to the Account interface
account = AccountInterface:: narrow(moPtr);

try
while (1)
{
cout << "Enter the amount of Balance to be changed" << endl;
cin >> anAmount;
cout << "anAmount = " << anAmount << endl;
if (anAmount != 0)
account->changeBalance (anAmount) ;
1
1

catch (AccountInterface::NotEnough)

{

cout << "NotEnough exception thrown" << endl;

}
catch (...)
{

88  WebSphere: Advanced Programming Guide



cout << "Unknown Exception thrown" << endl;

}

CORBA: :release(op);
delete theKeyString;
return 0;

}
PullConsumer C++ client code

The consumer client code is also implemented in C++. The consumer in this
case is only interested in the event the balance in the account falls below
$1000. A filter is created to have this requirement so that the consumer client
will be notified in case the balance is less than $1000. In this sample the
consumer uses the try_pull method in a loop to continuously monitor the
events from the event channel (balance in this case). The following code
illustrates the implementation of this client.

The PullConsumer client code pulls events from the event channel by
invoking the try_pull_structured_event method. A filter is created with the
constraints such that it receives events only when the accountNumber is 123456
and the balance in the account is less than $1000.

#ifdef WIN32

#include <windows.h>

#endif

#include <CBSeriesGlobal.hh>

#include <CosNotifyChannelAdmin.hh>
#include <INotifyFilterManagedClient.hh>
#include <IExtendedLifeCycle.hh>
#include <IExtendedNaming.hh>

int main( )
{

CORBA: :0RB_ptr orb;
IExtendedNaming: :NamingContext_var rootNC;
CosNotifyChannelAdmin::EventChannel_var ec = NULL;
CosNotifyChannelAdmin::ConsumerAdmin_var ca;
CosNotifyChannelAdmin::ProxyID proxy_id;
CosNotifyChanneTAdmin::StructuredProxyPullSupplier_var PxyPullS;
IExtendedLifeCycle::FactoryFinder_var hostScopeFF;
INotifyFilterManagedClient::FilterFactory_var ff = NULL;
CosNotifyFilter::Filter_ptr fi;
CosNotifyFilter::ConstraintExpSeq *cl =

new CosNotifyFilter::ConstraintExpSeq;
CosNotifyFilter::ConstraintInfoSeq *cis =

new CosNotifyFilter::ConstraintInfoSeq;
CORBA: :Boolean has_event;
CosNotification::StructuredEvent* event;
CORBA: :DoubTe newbalance;
CORBA: :Object_var it;
CosNotifyChannelAdmin: :ProxyConsumer proxyConsumerVar

// call the Global Initializer

Chapter 3. Notification Service 89



CBSeriesGlobal::Initialize();
orb = CBSeriesGlobal::orb();

// get the root Naming Context
rootNC = CBSeriesGlobal::nameService( );

// get the default event channel

it = rootNC->resolve with_string(
"cell/resources/notify-channels/cell-default"));
ec = CosNotifyChannelAdmin::EventChannel:: narrow(it);

// get consumer admin
ca = ec->default_consumer_admin();
proxyConsumerVar = ca->obtain_notification_pull_supplier(
CosNotifyChannelAdmin: :STRUCTURED_EVENT, proxy_id);
PxyPul1S = CosNotifyChannelAdmin::StructuredProxyPullSupplier:: narrow(
proxyConsumerVar) ;
// get factory finder
it = rootNC->resolve with_string(
"host/resources/factory-finders/host-scope"));
hostScopeFF = IExtendedLifeCycle::FactoryFinder:: narrow(it);
// get filter factory

it = hostScopeFF->find_factory from_string(
"INotifyFilterManagedClient::Filter.object interface"));
ff = IManagedClient::FilterFactory:: narrow(it);
// create a filter
fi = ff->create_filter("IBM_NTF_CTG");

// define the constraint
(*c1).length(1);
(*c1)[0] .constraint_expr = CORBA::string_alloc(100);
strcpy ((*c1) [0] .constraint_expr, "($accountNumber == '123456') and (
$balance < 1000)");
// define the filter
cis = fi->add_constraints(*cl);
// add the filter to the Proxy
PxyPul1S->add_filter(fi);
// connect the PullConsumer to the event channel
PxyPul1S->connect_structured pull_consumer(NULL);
cout << "About to pull events" << endl;
while (1)
{
event = PxyPullS->try pull_structured_event(has_event);
if (has_event)

event->filterable data[l].value >>= newbalance;
cout << "The Account Balance is: " << newbalance << endl;

}

delete (event);
}
1

Makefile for C++ client’s code on Windows NT

WIN This makefile will compile and link the client applications on
Windows NT. Make sure you set the ACCOUNTDIR below to the Object
Builder Working directory.

90 WebSphere: Advanced Programming Guide



Note: Both AccountC.dll and AccountS.dll need to be copied into the bin
path.

ACCOUNTDIR = ..\Working\NT\PRODUCTION

LLIBS = \
$ (ACCOUNTDIR) \AccountC.1ib \
somosali.lib \
sompmgli.lib \
sompmcii.lib \
somorori.lib

Lall: |\
.\PullConsumer.exe .\PushSupplier.exe

.\Pul1Consumer.obj: \
.\Pul1Consumer.cpp
@echo " Compile "
icc.exe /Fo".\%|fF.obj" /Gm+ /Ti+ /I $(ACCOUNTDIR) /C .\PullConsumer.cpp

.\PushSupplier.obj: \
.\PushSupplier.cpp
@echo " Compile "
icc.exe /Fo".\%|fF.obj" /Gm+ /Ti+ /I $(ACCOUNTDIR) /C .\PushSupplier.cpp

.\Pul1Consumer.exe: .\PullConsumer.obj
@echo " Link "
icc.exe @<<
/B" /de" /Gm+ /Ge+ /Gd+
/FePullConsumer.exe
.\Pul1Consumer.obj
$(LLIBS)

<<

.\PushSupplier.exe: \
.\PushSupplier.obj
@echo " Link "
icc.exe @<<

/Bu /deu
/FePushSupplier.exe
.\PushSupplier.obj
$(LLIBS)

<<

clean:
erase *.exe *.obj

Makefile for C++ client’'s code on AIX

AIX This makefile will compile and link the client applications on
AIX. Make sure you set the ACCOUNTDIR below to the Object Builder
Working directory.

Chapter 3. Notification Service 91



Note: Both libaccountC.so and libaccountS.so need to be copied into the
$HOME/lib directory from the Working/AIX directory.
# The actions included in this make file are:
# Compile and Link

# include make rules file
include /usr/1pp/CBToolkit/1ib/samples.mk

ACCOUNTDIR = ../Working/AIX
LOCAL_INCDIRS = -I$(ACCOUNTDIR)
LOCAL_LIBPATH = -L$(ACCOUNTDIR)

LIBS = $(LOCAL_LIBPATH) $(LIBPATH)
INCS = $(INCDIRS) $(LOCAL_INCDIRS)
B e e

# tools and build environment
# make sure CLASSPATH is defined in the environment variable

B e e e
CC_FLAGS = $(INCS) -D__IBMCPP__ -glangvl=ansi
LDFLAGS = -brtl

CLEAN_FILES = PushSupplier.o PushSupplier PullConsumer.o PullConsumer
.SUFFIXES: .o .cpp

.cpp.o:
$(CCC) -c -o0$@ $(CC_FLAGS) $<

all: PushSupplier PullConsumer

PushSupplier.o: PushSupplier.cpp
PuTl1Consumer.o: PullConsumer.cpp

PushSuppTlier: PushSupplier.o
$(CCC) $(LDFLAGS) $(CONST LD FLAGS DEBUG) -0$@ PushSupplier.o \
$(LIBS) -1sompmci -1sompmgl -1somosal -laccountC -Tsomoror

Pul1Consumer: PullConsumer.o
$(CCC) $(LDFLAGS) $(CONST_LD_FLAGS DEBUG) -0$@ PullConsumer.o \
$(LIBS) -1sompmci -Tsompmgl -Tsomosal -TaccountC -Tsomoror

clean:
$ (REMOVE) -f § (CLEAN_FILES)

Step 3: Running the sample

The first process in running the sample is to load and configure the
application. The WebSphere Application Server Enterprise Edition Component
Broker Planning, Performance and Installation Guide provides a sample (for Claim
object) to do this. Follow the procedures to load and configure the
AccountAppFam application.

92  WebSphere: Advanced Programming Guide



The following instructions were used to load and configure the application in
our test scenario. However, since these instructions can change always refer to

the WebSphere Application Server Enterprise Edition Component Broker Planning,

Performance and Installation Guide for the latest information.

Loading the application onto System Management
1. Start the System Manager User Interface.

From the System Manager User Interface menu, select View > User Level
> Expert.

2.

3
4.
5. Click Browse, and select AccountAppFam.dd]l.

. Expand Host Images, and select myhost (that is, your hostname).

Open the menu for myhost, and select Load Application.

Configuring the application
1. Configure the application with a management zone.

a. For accountS:

1)
2)
3)

4)

Expand Available Applications and select accountS.

From the pop-up menu of the accountS application, select Drag.

Expand Management Zones > Sample Application Zone >
Configurations, and select Sample Configuration.

From the pop-up menu of Sample Configuration, select Add
Application.

b. For iDefaultCellNotifyChannel:

1)
2)
3)

4)

Expand Available Applications and select
iDefaultCellNotifyChannel.

From the pop-up menu of the iDefaultCellNotifyChannel
application, select Drag.

Expand Management Zones > Sample Application Zone >
Configurations, and select Sample Configuration.

From the pop-up menu of Sample Configuration, select Add
Application.

c. For iNotificationService:

1
2)

3)

4)

Expand Available Applications and select iNotificationService.

From the pop-up menu of the iNotificationService application,
select Drag.

Expand Management Zones > Sample Application Zone >
Configurations, and select Sample Configuration.

From the pop-up menu of Sample Configuration, select Add
Application.

Chapter 3. Notification Service

93



Note: The accountS, iDefaultCellNotifyChannel and the
iNotificationService applications were added to the Applications
folder within the Configurations folder.

2. Configure the server.

a.

f.

g.

Expand Management Zones > Sample Application Zone >
Configurations, and select Sample Configuration.

From the pop-up menu of Sample Configuration, select New > Server
Group. A dialog box is displayed.

Type AccountServerGroup as the name for the server group.

Click OK. The AccountServerGroup is displayed under Server Groups,
which is under sample configurations.

From the pop-up menu of AccountServerGroup, select New > Server
member of group. A dialog box is displayed.

Type AccountServer as the name for the server.

Click OK. The AccountServer is displayed under AccountServerGroup
> servers (member of the group).

3. Associate the configured application with the server.

a.

For accountS:

1) Expand Management Zones > Sample Application Zone >
Configurations > Sample Configuration > Applications and select
accountS.

2) From the pop-up menu of accountS, select Drag.
3) Expand Management Zones > Sample Application Zone >

Configurations > Sample Configuration > Server Groups and
select AccountServerGroup.

4) From the pop-up menu of AccountServerGroup, select Configure
Application.

For iDefaultCellNotifyChannel:

1) Expand Management Zones > Sample Application Zone >
Configurations > Sample Configuration > Applications and select
iDefaultCellNotifyChannel.

2) From the pop-up menu of iDefaultCellNotifyChannel, select Drag.

3) Expand Management Zones > Sample Application Zone >
Configurations > Sample Configuration > Server Groups and
select AccountServerGroup.

4) From the pop-up menu of AccountServerGroup, select Configure
Application.

For iNotificationService:

1) Expand Management Zones > Sample Application Zone >

Configurations > Sample Configuration > Applications and select
iNotificationService.

94  WebSphere: Advanced Programming Guide



2) From the pop-up menu of iNotificationService, select Drag.

3) Expand Management Zones > Sample Application Zone >
Configurations > Sample Configuration > Server Groups and select
AccountServerGroup.

4) From the pop-up menu of AccountServerGroup, select Configure
Application.

Note: A Configured Applications folder is displayed under AccountServer.
You can expand the folder to display the entries for accountS,
iDefaultCellNotifyChannel and iNotificationService.

4. Configure the server with the host.

a. Expand Management Zones > Sample Application Zone >
Configurations > Sample Configuration > Server Groups >
AccountServerGroup > Servers (member of group) and select
AccountServer.

b. From the pop-up menu of AccountServer, select Drag.
c. Under Hosts, select myhost for your current system.

d. From the pop-up menu of myhost, select Configure Server (member
of group).

Note: Under the myhost folder, there is now a folder called Configured
Servers (members of group) that contains an entry for the
AccountServer server.

5. Activate the configuration.

a. Expand Management Zones > Sample Application Zone >
Configurations and select Sample Configuration.

b. From the pop-up menu of Sample Configuration, select Activate.

Running the application

Make sure the client code is built.

After activating the application, run the PushSupplier client and add some
balance into the account (start with > $1000). Then, start the PullConsumer
client in another window. As soon as the balance is changed by the
PushSupplier to be below $1000 the following statement should appear on the
PullConsumer client window followed by the amount remaining in the
account. The Account Balance is:

1. To run PushSupplier:

a. From a command prompt, change directory to where the PushSupplier
is stored.

b. Type PushSupplier

Chapter 3. Notification Service 95



c. The program will prompt you to add balance to the account with the
following statement.

* Enter the amount of Balance to be changed
d. Type 3000
e. Use another command prompt window to run the PullConsumer.
2. To run PullConsumer:

a. From a command prompt, change the directory to where the
PullConsumer is stored.

b. Type PullConsumer
c. Wait for the following output: About to pull events.
d. Go to the PushSupplier window.

3. Remove money from the account.

a. In the PushSupplier window at the following prompt: Enter the
amount of Balance to be changed

* Type -1500

b. You should not see any event in the PullSupplier window since the
amount is still > 1000.

c. Next Type -1000 at the prompt.

d. You should see the following statement on the PullConsumer window.
e The Account Balance is: 500

User-defined event channel

The sample presented above uses the default event channel. If one needs to
use a user-defined event channel, they need to create a visible event channel
with a name and use it instead. For example if the name of the event channel
is “newevl” then the path name to obtain it is cell/resources/notify-
channels/newevl. Change the following code snippet in the sample above:

// obtain the default event channel

tmp = rootNC->resolve with string(
"cell/resources/notify-channels/cell-default");

Change to:

// obtain the user-defined event channel
tmp = rootNC->resolve_with_string(
"cell/resources/notify-channels/newevl");

Create a user-defined event channel: The following code can be used to
create a new user-defined event channel (called newevl).

#include <INotifyChannelAdminManagedClient.hh>

#include <IExtendedLifeCycle.hh>

#include <CBSeriesGlobal.hh>
#include <time.h>

96  WebSphere: Advanced Programming Guide



void main(int argc, char *argv[])

{

CORBA::0Object_var intermediateObject;
IExtendedLifeCycle::FactoryFinder_var hostScopeFF;
INotifyChannelAdminManagedClient::EventChannelFactory_var ecHome;
CosTrading::PropertySeq qos;
CORBA: :Short Priority;
time_t Time_out;
ByteString_var key;
CosNotifyChannelAdmin::ChannelID cid;
CosNotifyChannelAdmin::EventChannel_var ec;
// initialize the CBSeries environment
CBSeriesGlobal::Initialize();
// obtain the default factory finder with a host scope
intermediateObject = CBSeriesGlobal::nameService()->
resolve_with_string(
"host/resources/factory-finders/host-scope");
// narrow to a factory finder
hostScopeFF = IExtendedLifeCycle::FactoryFinder:: narrow(
intermediateObject);
// find the event channel factory
intermediateObject = hostScopeFF->find_factory from string(
"INotifyChannelAdminManagedClient::EventChannel.object interface");
// narrow to the event channel home
ecHome =
INotifyChannelAdminManagedClient::EventChannelFactory:: narrow(
intermediateObject);
// Create Quality of Services (QoS)
gos.length(2);
qos[0] .name = CORBA::string_alloc(20);
strcpy(qos[0] .name, "Priority"); // Priority = 6
Priority = 6;
qos[0] .value <<= Priority;

gos[1] .name = CORBA::string_alloc(20);
strcpy(qos[1].name, "Timeout"); // timeout = two days
Time_out = 2 * 24 = 60 * 60 * 10000000; // in 100 nanoseconds
gos[1].value <<= Time_out;
// use the factory in the event channel home
// to create a new event channel
ec = ecHome->createVisibleEventChannel(
key, "newevl", 1, 1, 1, qgos, NULL, cid);

Chapter 3. Notification Service

97



98  WebSphere: Advanced Programming Guide



Chapter 4. Externalization Service

The Externalization Service provides a mechanism by which objects are able
to save and restore their state in a non-object form. This allows the object’s
state to exist independent of the existence of the object itself. The state can be
maintained for an indefinite amount of time without regard to the continued
existence of the original object or the ORB process in which it existed.

Typically, when the state of an object is saved, it is later restored into a
different instance of an object of the same type, rather than into the same
object instance. The new instance of the object is independent of the original
object in regard to location, and may:

* exist in the same or a different process

* exist on the same or different physical machine

* exist on machines of the same or different hardware

* exist on machines of the same or different operation system

* be implemented in the same or a different programming language

The state of an externalized object is contained in a stream of bytes. This
stream of bytes could be:

* contained in a memory buffer

* stored in a file

* transported in a network independent of an ORB

Relationship to OMG Externalization Service

The Externalization Service in Component Broker is a relatively small subset
of the Externalization Service defined by OMG. OMG defined interfaces for
externalization are grouped by module as follows:

CosExternalization
This module contains the client usage interfaces and consists of the
Stream, StreamFactory and FileStreamFactory interfaces.

CosStream
This module contains the service construction interfaces and consists
of the StreamlO, Streamable and StreamableFactory interfaces.

CosCompoundExternalization
This module contains the interfaces for handling a graph of related
objects and contains the Node, Role, Relationship,
PropagationCriteriaFactory interfaces.

© Copyright IBM Corp. 1997, 1999 99



Component Broker only makes use of the StreamlO and Streamable interfaces
defined in the CosStream module. It does not make use of the
CosStream::StreamableFactory interface or any of the CosExternalization or
CosCompoundExternalization modules.

Use of externalization in Component Broker

Component Broker does not make use of the interfaces defined in the OMG
CosExternalization module, that are the interfaces for client usage of
Externalization. The implication is that Component Broker does not provide a
model for clients to directly use externalization in a general manner.
Component Broker does use and implement the CosStream::Streamable and
CosStream::StreamlO interfaces which are part of what OMG refers to as the
service construction interfaces. These are used internally by Component
Broker in specific usage scenarios. How externalization is used is important
for developers of managed objects to understand as this will affect some of
the code that they are required to provide. The interfaces used by Component
Broker have the following purposes:

Streamable
Objects that can be externalized inherit the CosStream::Streamable
interface. They implement the externalize_to_stream and
internalize_from_stream methods which are used to write and read
the essential state of the object.

StreamlO
A StreamlIO object is responsible for transforming data between the
format understood by an object and a format which can exist outside
of an object. A StreamlO is passed to a Streamable object on the
externalize_to_stream and internalize_from_stream methods. The
Streamable makes calls on this StreamlIO to perform the
externalization and internalization of individual elements of its state.

StreamlO objects are local only objects and they are not created by client code

or by your managed object implementations. They are only created internally

by Component Broker. The implication of this is that only Component Broker
internals ever request a Streamable object to externalize or internalize itself.

The CosStream::Streamable interface is introduced in two places by

Component Broker.

1. It is inherited by the IManagedClient:IManageable interface, thus making
all managed objects Streamable. This capability may be used by
Component Broker when moving an instance of a managed object to
another location.

100 WebSphere: Advanced Programming Guide



2. It is inherited by IManagedLocal:INonManageable which means that
Primary Key and Copy Helper objects are Streamable. Externalization’s
primary use in Component Broker is to support externalizing Primary Key
and Copy Helper objects.

For Primary Key and Copy Helper objects, the externalization methods
externalize_to_stream and internalize_from_stream provide the underlying
support for the INonManageable::toString and INonManageable::fromString
methods. The ByteString type used by these methods is actually the
externalized form of the object state. Managed object developers should see
the “MOFW Server Programming Model” chapter in the WebSphere Application
Server Enterprise Edition Component Broker Programming Guide for more
information on how these methods are used.

Chapter 4. Externalization Service 101



102  WebSphere: Advanced Programming Guide



Chapter 5. Identity Service

Component Broker derives an object identity from relative information that
positions the object within its Container, Server, Host, and ultimately Domain.
This information can be used within the Component Broker Managed Object
Framework to uniquely identify it from any other object in the distributed
system. The CosObjectIdentity::IdentifiableObject::is_identical() method is
implemented to use this information to precisely determine whether two
objects are the same object.

If you want to compare whether two objects are the same object, you can use
the is_identical() method on one of the objects, passing in the other object.
This returns a boolean value indicating whether the two objects are the same
object.

Comparing objects

Object systems, and particularly distributed object systems tend to obscure
object identities. It is natural for object oriented designs to define objects
which are in fact veneers to other objects. This is the case, for instance, where
proxies are introduced to a client process, and the proxies “stand in” for the
real object referred to by the client. The proxy appears to be the real object,
but in fact the real object is hidden behind and is obscured by the proxy.

This condition makes it difficult to know whether two objects are in fact the
same object. If your client program has two object references, you cannot
simply compare the pointers to those references to determine whether they
are referring to the same object. It is possible for two distinct references to
refer to the same object, even though the reference objects themselves (the
proxies) are two distinct objects. The references have different memory
locations, and they have different pointers. For these reasons, you cannot
reliably use the pointer values to determine whether the two objects are the
same object.

Further, it is possible that both references contain different state even though
they refer to the same object. Thus, you can’t reliably compare the values of
the references to determine whether the two objects are the same object, either.
To resolve this problem, Component Broker introduces an Identity Service. As
part of the service, all managed objects support the
CosObjectldentity::IdentifiableObject interface.

© Copyright IBM Corp. 1997, 1999 103



This interface introduces two methods, is_identical() and
constant_random_id(), which can be used to determine whether two objects
are the same object. The is_identical() method is implemented on the managed
object. It uses information intrinsic to the object to determine accurately
whether the object is the same as the object to which it is being compared.

Compare two objects

This procedure is used to determine whether two objects are the same or
different objects. This is useful for avoiding duplicate or circular references.
You can only perform object comparisons on objects that support the
CosObjectldentity::IdenticalObject interface.

To perform object comparisons, invoke the is_identical() method. Assuming
you have two object references, invoke the is_identical() method on one object,
passing in the other object. This returns a boolean value indicating whether
the two objects are the same or different.

The following example compares two objects:

// Declare two arbitrary business objects --
// this assumes both objects are derived from the CBC
// managed object framework.

SomeBusinessObject_var myB0l, myB0Z2;
// Create or obtain instances of these objects some how

// Compare the two objects.
if (myBOl->is_identical(myB02))
// Do something

Compare multiple objects

This procedure demonstrates how you can compare an object to a collection of
objects. This is useful when you maintain a number of objects and want to
compare them against another object to determine if the object is already a
member of your collection. This procedure only works for objects that support
the CosObjectldentity::IdentifiableObject interface.

Perform an optimized object comparison using the following steps:

1. Get and cache the constant_random_id for the collection members. As each
member is added to the collection, get the object’s constant_random_id
and cache in the collection.

2. Obtain the constant_random_id for the additional object. Obtain the
constant_random_id for the object you want to compare.

3. Compare constant_random_ids. Compare the constant_random_id of the
additional object with the cached constant_random_id for each member of
the collection.

104 WebSphere: Advanced Programming Guide



4. Invoke the is_identical() method on matched objects. If the

constant_random_id values are not the same, then the objects are not the
same. However, if the constant_random_id values are the same, then you

must invoke the is_identical() method on the two objects to determine

precisely whether they are the same.

The following example demonstrates comparing objects using

constant_random_ids. This example presumes the existence of a sequence of

objects, and their corresponding constant_random_id’s, as defined by the

following IDL:

struct CollectionMember {
CosObjectIdentity::0bjectIdentifier approximateldentity;
CORBA::0bject theObject;

1

typedef sequence<CollectionMember> Collection;

The remainder of the example compares a passed object with all of the
members in the Collection:

// Declare the collection (presuming it is set elsewhere), an
// index, a termination flag, and the constant_random_id of the
// passed object, and the passed object itself (presuming it is
// a managed object and is passed in from elsewhere).

Collection_var theCollection;

unsigned Tong index;

boolean matchingObjectFound = 0;

SomeBusinessObject_var myBO1;
CosObjectIdentity::0bjectIdentifier myBOlApproximateldentity;

// Get the constant_random_id for the passed object.
myBO1lApproximateldentity = myBOl->constant_random_id();

// Iterate through the collection, testing each approximate
// identity, and invoking is_identical on those that appear
// to be the same to determine exactly whether they are the
// same object.

for (index=0;
(matchingObjectFound == 0) &&
(index < theCollection.length(); index++)

if (myBOlApproximateldentity ==
theCollection[index] .approximateldentity)
{

// constant_random_ids match, so test for actual identity
if (myB0l->is_identical
(theCollection[index].theObject))

// A match was found, do something and terminate
// further searching.

Chapter 5. Identity Service

105



matchingObjectFound = 1;
Y5 // endif
}s // endif
}s // endfor

Optimizations for object collections

If you implement a collection of objects, and want to compare whether some
object passed in to you is already in your collection, you can use the
CosObjectldentity::IdentifiableObject::is_identical() operation to compare the
passed object against each object in your collection. However, since the
is_identical() operation is implemented on managed objects, this implies that
you would be invoking the operation on the managed objects themselves.

If the objects in your collection are potentially located on other servers, then
invoking the is_identical() method on each object can get expensive in terms
of the system resources it consumes. The method request has to be
communicated between the servers, potentially over the network, the object
has to be reactivated, and the response returned. The expense associated with
invoking the is_identical() method increases as more objects are added to the
collection. Furthermore, in unique collections, the comparison is destined to
return false in all cases, but, at most, one.

To improve the performance of performing object comparisons, the Identity
Service introduces the CosObjectldentity::Identifiable::constant_random_id
attribute. This attribute is defined to return a constant value with the
following properties:

* The attribute always returns the same constant value throughout the
lifetime of the object.

* The attribute is a unsigned long hash-value that approximates the identity
of the object.

In your collection, you can obtain the object’s constant_random_id when each
object is added to the collection caching the value within your collection.
Later, when you want to compare two objects, you can obtain the passed
object’s constant_random_id and compare it to each of the
constant_random_ids that you have already cached in your collection.

Since the values remain constant throughout time, you can be certain that if
the two values are not the same, then the two object are not the same.
However, if two values are the same, you can’t be certain that the two objects
are the same object. In this case, you can then invoke the is_identical()
operation on just those few objects whose values are the same.

106  WebSphere: Advanced Programming Guide



The constant_random_id value is a full unsigned long value with good
distribution properties. For most collections, the constant_random_id values
have a high probability of being unique. Thus, the set of objects on which you
actually have to perform is_identical on is very small, perhaps just one.

Chapter 5. Identity Service 107



108 WebSphere: Advanced Programming Guide



Chapter 6. LifeCycle Service

A LifeCycle Service provides operations for creating, copying, moving, and
deleting objects in a distributed environment. Because of the distributed
nature of the environment, clients need to perform lifecycle operations on
objects in various locations. Suppose client programs were required to
understand the specific configuration of the distributed environment in order
to determine where to create a new object. This would pose a serious
problem, because development of client code and the configuration of the
environment in which that code runs are separate tasks, normally done by
different people at different points in time. In addition, the configuration of
the environment is likely to change over time, and these changes should not
necessitate changes in client code. The LifeCycle Service in Component Broker
is designed to address these issues by providing a level of abstraction
between the client program wishing to create an object and the determination
of the location where that new object will exist. With Component Broker
LifeCycle Service, the location of a new object can be:
* Controlled by the client’s specific knowledge of the configuration
* Controlled by the client’s knowledge of some logical aspects of the
configuration
* Controlled by administrative policy defined outside of the client

The LifeCycle Service concerns the following types of objects and how they
are related and used by clients and administrators:

Managed Objects
The objects being created, copied, moved and deleted

Factories
The objects used by clients to create managed objects

Factory Finders
The objects used by clients to locate factories capable of creating
particular types of managed objects

Locations
The objects used by factory finders to define the location in which
managed objects will be created by the factories it finds

Although concerned with all of these objects, the major focus of the
Component Broker LifeCycle Service is factory finding through use of the
factory finder and location objects. Specifically, how these objects can be used
by client programs and administrators to abstract location concerns out of
client programs. The interfaces for the LifeCycle Service are based on the

© Copyright IBM Corp. 1997, 1999 109



CosLifeCycle module defined by the OMG CORBA services LifeCycle Service
Specification. The Component Broker implementation provides extensions to
the OMG defined service.

This chapter is organized to take the reader progressively deeper into the

details of the LifeCycle Service. There are the following major sections:

» Concepts of LifeCycle Servicd provides the high level abstract concepts of
lifecycle and introduces details relevant to the Component Broker
implementation of lifecycle.

» Minor interfaced provides information about OMG defined CosLifeCycle
interfaces which are part of Component Broker but do not play an
important role in the LifeCycle Service.

* Detailed view of location-based factory finding provides the details needed
to fully understand the semantics of factory finding in Component Broker.

» Lifecycle interfaces and implementationd provides a detailed look at the
FactoryFinder and Location interfaces and the mechanisms for accessing
and creating these objects, including code snippets.

. is a full code example of the creation and use of
LifeCycle objects.

Concepts of LifeCycle Service

This section presents the high level concepts associated with the LifeCycle
Service. The concepts are introduced at a rather high, abstract level and then a
flavor for how these concepts apply to Component Broker is given. To start
with, the explanations are segmented by the major object types, specifically
addressing the nature and characteristics of each object type and it’s
relationship to the other object types. The major object types presented are:

Managed Objects
See

Factories

See Cancepts of factaried.
Factory Finders

See Cancepts of factory finderd.
Locations

See Cancepts of locationd.

Then we proceed to look at some other concepts, including:
* Location-based factory finding)

 Tocafion obiect il ]
. Nocabu E —

- E Findera T |
. Boolcation factor 1 ized 1 l

110  WebSphere: Advanced Programming Guide



. Managpd objects and lacal only nhjpr’rcl

An understanding of these concepts will enable you to better understand and
appreciate the specifics of the Component Broker LifeCycle Service which are
presented in detail in subsequent sections.

Concepts of managed objects

Managed objects are the business objects which you implement that provide
solutions to your business problems. Examples of these would be objects such
as Policy, Claim and Customer which are presented in the “Personal Life
Insurance Application Example” described in the WebSphere Application Server
Enterprise Edition Component Broker Programming Guide. These objects are the
whole reasons for your use of Component Broker, and the Component Broker
LifeCycle Service only has value to you as it addresses issues related to your
use of these business objects.

Typically, your client applications that use these objects are interested in the
business interface these objects provide to them. Applications are not
generally interested in specifics about implementation classes nor specific
location information regarding where the object exists in the distributed
environment. However, when it is time for your client application to create a
new business object, implementation and location information must be
known. Component Broker, with the assistance of the LifeCycle Service, lets
you create business objects anywhere in the distributed environment without
being encumbered by the complexity of the distributed system and the details
of the implementation of the business objects. Let’s examine why isolating the
client applications from these considerations is important.

Although you know the interface of your business object when you create
your application, that interface may be different when you create an instance
of that object in a production system. The interface may have been specialized
and the implementation changed to add new behaviors.

The preceding may be even more true in a distributed system where the
business object is used and shared among several different applications, and
where each application may apply its own set of requirements to the business
object. This is certainly true in the Component Broker programming model
where business objects become managed objects between the time the
business objects were originally developed and when they’re finally deployed
in a production system.

The implementation of a business object is also likely to change over time to
consider additional business requirements in the form of added behavior, to
address new business conditions, priorities, policies, or constraints, or to fix
bugs in the original object implementation.

Chapter 6. LifeCycle Service 111



Different enterprises have different needs as to where their business objects
are located. In some institutions, life insurance policy objects are created at the
insurance agent’s branch office. In other institutions, those life insurance
policy objects would have been created at the central office. You may not
know exactly where (geographically) objects should be created in the
distributed system. An enterprise may require that different kinds of objects
should be created in different places.

As the enterprise grows it may add new servers to accommodate that growth.
In doing so, it may need to redistribute the location of its business objects to
maintain some balance over its computational resources. Although life
insurance policy objects continue to be created at the central office, they may
actually be created on a different server at that office.

As you can see, it would be very difficult to maintain a client application if all
of these factors necessitated changes in that application.

To summarize the key points about managed objects in Component Broker

* Managed objects (business objects) provide solutions to business problems.

* An application which creates a managed object is principally interested in
the interface that addresses the business need of the application.

* An instance of the managed object may have additional and extended
interfaces, or any combination of the preceding that are not known by the
client application.

* The implementation details of the managed object are not known by the
client application.

* Location in the distributed system is not known by the client application.

* Interface, implementation and location details are likely to change over
time.

* Client applications need to be isolated from these characteristics of
managed objects to avoid consistently needing to be updated.

The Component Broker lifecycle model separates the concern for when to
create a given kind of object from where and of what type (specific type and
implementation) to create. It does so through the introduction of factories,
factory finders, and locations. While the application is responsible for defining
the kind of object it wants created and when, the factory object is responsible
for encoding the specific type and implementation class for the kind of object
or objects it supports. It is also responsible for encoding the specific details for
how to create an object of that type. The location object is responsible for
encoding a scope of location, which is something like a geographic area
representing where objects should be created. Typically this is supplied or
configured by the enterprise. Factory finders contain a location object which
define the scope of location to be considered by that factory finder. The
factory finder is responsible for finding a factory that supports creating the
kind of specified object within that scope of location. Thus the factory finder,

112  WebSphere: Advanced Programming Guide



in collaboration with a location object, is responsible for establishing where to
create the object. The following sections look at these concepts in more detail.

Concepts of factories

The term factory is used loosely to refer to any object that is responsible for
creating other objects. For example, a family may decide they need a life
insurance policy. They would contact their insurance agent, who would then
create their policy. From the perspective of this family, the agent can be
thought of as a factory, or perhaps more accurately, a factory representative.

From the perspective of the insurance agent, creating the insurance policy for
the family means filling out paperwork (to open the customer account and
policy, and to declare the beneficiary), and adding the family to a list of
clients. The insurance agent’s insurance application form is the agent’s factory
for the new policy.

A data entry operator might then enter the information from the form into an
application program. From the perspective of the insurance application
program, creating the insurance policy means creating a PolicyHolder object,
Beneficiary object, and Policy object, and adding the PolicyHolder as a
Customer to the Agent object. The insurance application needs factories for
each of the new objects that it creates.

Because PolicyHolder, Beneficiary, and Policy are all managed objects they
each have, by definition of the Component Broker programming model, a
corresponding home. Homes are in fact managed object factories, responsible
for creation of a single managed object type and implementation in a
particular location. This is the most rudimentary form of a factory, being
directly responsible for creating the low level implementation instances that
make up the managed object and allocating system resources required by the
managed object, such as the memory the object occupies and its persistent
storage. It defines what constructors or initialization methods to invoke and in
what order, as well as any other activities that need to be performed for the
enterprise or in the distributed system for that kind of object.

A managed object may be dependent upon the existence of another object or
objects. When it is, it may need these other objects created at the same time it
is created. To assure the consistency and integrity of the system, all managed
objects must be created by a corresponding managed object factory, their
home. Consequently, when one managed object depends on another managed
object being created at the same time, then the subordinate object should also
be created through its corresponding managed object factory. One way to
accomplish this is for the superior object to interact with the subordinate
object’s factory itself, perhaps within superior object’s initialization method.
Another approach would be for the superior object’s factory to interact with

Chapter 6. LifeCycle Service 113



the subordinate objects factory to create the subordinate object. In Component
Broker, this might be accomplished through the implementation of a
specialized home.

Factories other than managed object factories can exist also. When the life
insurance application creates the PolicyHolder, Beneficiary and Policy objects,
it is in effect acting as a factory. It may collect all of this logic into an object of
its own that understands the mechanics of creating managed objects (through
their corresponding homes), thus becoming what can be referred to as an
application factory. It is common for application factories to deal with the
creation of several interrelated objects as a single operation, thus abstracting
object creation to be viewed more as a business process.

To summarize the key points about factories in Component Broker
* All managed objects must have a managed object factory (a home)
* A home creates managed objects of a single type and implementation in a
very specific location
* A home isolates the client from needing to know specifics about the
implementation of the managed object
* A managed object which as dependencies on the existence of other objects
may:
— Interact directly with the home of the other object itself
— Have a specialized home which interacts with the home of the other
object
— Be created by an application factory which interacts with the homes of
both objects

Concepts of factory finders

As we have seen, managed objects are created by managed object factories.
When a client (client program, an application factory or a business object)
needs to create a managed object, it must locate the managed object factory
(the home) which it will use to create the managed object. A client interacts
with a factory finder in order to locate an appropriate managed object factory.
Locating the appropriate managed object factory involves two considerations:

What What kind of managed object is created by the factory
Where Where should the factory create the managed object

The answer to “what” must be provided by the client of the factory finder.
The client is required to provide the factory finder with the type of managed
object the requested factory will create. The client does not need to know the
specific implementation of that type of managed object. In fact, if managed
object factories exist for more than one implementation of that managed object
type, either of the factories can be returned. However, if the underlying
implementation of the managed object is important to the client, he can

114  WebSphere: Advanced Programming Guide



provide additional information to the factory finder that will limit the
factories returned to those creating managed objects of the requested type and
implementation.

The answer to “where” is not provided by the client, but is specified through
how the factory finder is configured. Each factory finder is configured with a
location object which defines what parts of the distributed environment will
be considered when looking for a factory that satisfies the “what”. For
example, one factory finder may only look for factories in server process A on
host X whereas another factory finder may look for factories in all server
processes in host X, Y and Z. Truly understanding factory finders requires an
understanding of the location objects which are used to define the “where”.
This will be covered in i

Within a distributed environment, there may be many managed object
factories which create objects of a particular type. Clients can ask a factory
finder to return one factory or all factories which satisfy the request. The most
common usage of factory finders is to ask for a single factory. However, there
may be some situations where a client wants to examine all the managed
object factories for a particular object type, and then select for himself an
appropriate one to use from the set of factories returned.

The key points to remember about factory finders are:

* The client tells the factory finder “what” type of objects the returned
factories should create.

* The factory finder determines “where” the returned factories create the
objects.

Because the factory finder determines where the returned factories create
objects, choice of which factory finder a client uses should be a consideration
if the location where the managed object is to be created is important.

Concepts of locations

Component Broker strives to make managed objects local or remote
transparent. This makes it possible for you to program your application
without regard to whether the objects you are using are local to your
application or remote in another process, or even in another host somewhere
across the network. The proximity of the objects you are using only becomes
evident when you consider side effects, such as the latency associated with
invoking requests on the object.

However, there are times when location does matter, most notably when the
object is being created. For a variety of reasons, including performance in the
overall system, enterprises want certain kinds of objects created in certain
places. Since managed objects do get created by their home in a specific
location (for example, in a particular container in a particular server process

Chapter 6. LifeCycle Service 115



in a specific host machine), control of where a managed object gets created is
possible through proper selection of a home. However, container, server and
host is most often not the terms in which an enterprise wants to talk about
location and proximity of objects. Considering this, it is desirable to retain a
degree of ambiguity in the way that proximity is communicated, while at the
same time being able to translate that into the precise information needed to
determine exact location, such as a particular server process on a particular
host. To enable this, Component Broker introduces the concept of a location
object. A location object is intended to be an abstraction for proximity. As an
abstraction, location objects help in establishing a vocabulary with which
proximity can be communicated, and yet they encapsulate the precision that is
needed to make concrete decisions in the distributed computing system. The
following categories represent possible scopes of location and types of
proximity, or any combination of the preceding, that could be introduced into
the enterprise’s vocabulary through the use of location objects.

Infrastructural
homes, containers, and servers

Topological
hosts, workgroups, and cells

Physical
rooms, floors, buildings, sites

Political
departments, projects, companies, governments

Geographical
cities, time zones, countries, continents

Proximal
here, near, far

Temporal
now, soon, later

Compound
combining any of the above

Compound-conditional
representing different scopes based on some condition

Compound-temporal-conditional
representing different scopes at different times

Component Broker location objects specifically identify “infrastructural”
(home, container, server) and “topological” (host, workgroup, cell) information
to specify location within the distributed environment. It is this very specific
information that location objects provide to factory finders during a search for
a factory. The other forms of proximity in the above list are realized through

116  WebSphere: Advanced Programming Guide



encapsulating the appropriate infrastructural and topological information in a
location object and then treating that location object as an abstract
representation of an alternate type of location. This idea will be expanded
upon in imi

The key points to remember about location objects are:

* They deal with specific location information, such as hosts and servers.

* The are used by factory finders to define where to look for a factory.

* They provide an abstraction by which location can be communicated and
discussed in terms which are more likely to align with the enterprise’s
needs and application concerns about location.

Location-based factory finding

Now that we have examined the concepts of managed objects, factories,
factory finders and location objects it is time to take a more in depth look at
how factory finders and location objects work together to find appropriate
factories for applications to use to create managed objects. To understand this,
we need to look at:

* The infrastructural and topological elements provided by a location object

* The interaction between factory finders and location objects

¢ The use of the lifecycle repository by factory finders

Infrastructural and topological elements of location objects

Location objects encapsulate very specific information about location, which is
referred to as a scope of location. The scope of location provides topological
scope boundaries and infrastructural scope boundaries. This information is
contained in a Scope structure with six elements, three elements for each of
the topological and infrastructural scope boundaries, as follows:

+ Topological scope boundaries (cell, workgroup and host) relate to the
configuration of hosts within your distributed environment. Hosts are
addressable machines and cell and workgroup are logical groupings of
these machines, as have been defined in your Component Broker System
Manager configuration.

¢ Infrastructural scope boundaries (server, container, home) relate to the
deployment of managed object applications within a host machine. The
container and home are defined as part of your application developed with
Component Broker Object Builder and the server is where you have
installed that application with Component Broker System Manager.

Topological scope boundary elements can be specified by name, by reference
to a local default or be ignored. Infrastructural scope boundary elements can
be specified by name or specified to include all possible instances. By
combining values for the six elements into a Scope structure, a scope of

Chapter 6. LifeCycle Service 117



location can be defined which is very broad, very narrow or anywhere in
between. The use of these scope boundaries will be explained in EDefining

hmp&oﬂﬂcm_m_pagﬂzg’ ” .

Interaction between FactoryFinder and location objects

The Location interface is defined to return a sequence of Scope structures,
each of which contain the six scope of location boundary values (cell,
workgroup, host, server, container, home). Factory finder objects are
configured to contain a Location object which defines the scope of location
boundaries for that factory finder. The FactoryFinder is defined to look for
factories by taking each Scope structure in the sequence and searching for
factories registered in the factory repository according to the values of these
six items. Since a sequence has order, the order in which these Scope
structures appear in the sequence is the order in which the factory finder will
proceed to search for factories. The Location interface has a get_scopes
method which returns this sequence. Therefore, the actual logic in the
FactoryFinder is to do a get_scopes on it’s location object and then proceed to
use that sequence of scopes to do the factory finding, a scope at a time.

How a Location object determines what the sequence of scopes is that it
returns is up to the implementation of that particular location object. The
Location interface itself is abstract. In Component Broker we provide two
specific implementations of this interface, SingleLocation and
OrderedLocation, which will be explained in detail in [‘Lifecycle interfaces and

i.m.pl&m.enlaﬁons_on_p.a.gﬂ.ﬂ' ” .

The lifecycle repository and factory finding

To assist in finding factories, the Component Broker LifeCycle Service
maintains a factory repository. Managed object factories (homes) are
automatically registered in the factory repository when they’re created, The
factory repository is partitioned over all three portions (cell, workgroup and

host branches) of the Bystem name space. This partitioning reflects the

topological elements within a scope of location.

When homes register with the LifeCycle Repository, they provide information
about themselves and the objects they create, including server name, container
name and home name that will contain the managed objects they create. This
information is retained in the repository and reflects the infrastructural
elements within a scope of location. The home also provides information
which is used to control within which of the topological branches of the tree
the home’s information will be maintained.

The client of the factory finder provides a factory key (see IEactory keys” orl
with information about the type of object it wants the factory to

118  WebSphere: Advanced Programming Guide



create. The scope information obtained from the location object controls where
in the lifecycle repository the factory finder will look for the factory. For each
individual Scope structure returned by the location object, the factory finder
will look in one branch of the lifecycle repository, based on the values for the
topological elements. Within that branch of the repository, the information
provided by the client and the infrastructural elements of the scope of location
control what the factory finder searches for.

Within each of the topological branches of the lifecycle repository, there are
two sub branches. The first, called the FactoryBranch, is only used for
searches where the scope of location has indicated that infrastructural
elements are not limited (that is, all servers, containers and homes are to be
considered). The second, called the ServerBranch, is only used when the
infrastructural elements indicate server by name (and possibly container and
home name), indicating they are to be specifically considered in the search.
Homes will be registered in both of these branches. This separation is partly
for efficiency reasons, but as we will see in the Lifecycle repository structurd
and Eactory finding specificd sections, this does affect under what conditions a
home will be found.

Summary of location-based factory finding

By using the infrastructural and topological location scope information
provided by the Location object, the factory finder limits where it searches for
factories, and by controlling where they are registered, homes and servers
control their visibility to the factory finder. If you consider your entire
Component Broker distributed network as the universe within which factories
can be found, the location object defines a scope of location which is a subset
of that universe. The subset it defines can be as large as the entire cell, as
small as identifying a specific home, or anywhere in between. Therefore, you
can think about factory finding as an operation looking for a factory which
satisfies what the client has specified in the factory key, where that factory
exists in the subset of the Component Broker distributed network defined by
the scope of location specified by the FactoryFinders contained Location
object.

Location object implementations

So far we have only looked at location objects in terms of the abstract
Location interface. We know that objects supporting the Location interface
return a sequence of scope structures. How a Location object determines what
the sequence of scopes is that it returns it up to the implementation of that
particular Location object. Because the Location interface is abstract, there is
no implementation of an object that is just a Location. The approach it is
define a new interface which inherits from Location and implement that
interface to have some mechanism for determining the sequence of scopes it

Chapter 6. LifeCycle Service 119



will return for the get_scopes method. In Component Broker we provide two
such object implementations, SingleLocation and OrderedLocation.

The SingleLocation implementation is defined to be configured with specific
values for the six items of a single scope structure. As such, when a
get_scopes is called on it, it simply returns a sequence of scopes with just one
element, the scope structure containing the six values it is configured with.

The OrderedLocation implementation is defined to be configured with a
sequence of Location objects. What the OrderedLocation does for get_scopes is
call get_scopes on each of the Location objects in it’s sequence of Locations
and builds a sequence of scopes that is essentially the concatenation of the
sequence of scopes returned by each of the other Location objects. Since an
OrderedLocation is only dependent upon it’s contained objects being of type
Location, it can contain SingleLocations, other OrderedLocations or other
implementations of the Location interface.

In addition to these two implementations, a user of Component Broker can
take the Location interface, inherit it into some other interface (for example,
MyLocation) and then implement MyLocation to return something for
get_scopes, based on some useful algorithm. A MyLocation object can now be
used by a FactoryFinder or be contained within an OrderedLocation.

Vocabulary of proximity

In the Cancepts of lacationd section, we introduced the idea that a location

object is an abstraction which provides a way to establish a vocabulary by
which proximity can be communicated. We have seen how the infrastructural
and topological categories are directly specified by a location object and how
they are used within Component Broker to assist in the factory finding
process. Several different categories of proximity were also defined, such as
physical, political and geographical.

You can use the Component Broker supplied implementations to create
instances of location objects which satisfy some of these other categories of
proximity within your environment. For example, suppose you wanted to
have a location object which represented all of the hosts within a department
(political proximity). This can be done by having a single object for each host
within the department and then have an ordered Location object which
contained all of these single location objects. You can now refer to this ordered
location as being the department location and could use it whenever you
wanted to find a factory within the departments computing resources. As the
mix of hosts change within the department, the ordered location can be
updated to reflect the changes. This same approach could be used for
representing physical proximity (all the hosts in the 3rd floor lab) and
geographical proximity (all the hosts in Texas).

120 WebSphere: Advanced Programming Guide



There are times when you might want to create your own implementation of
a location object. Suppose you wanted a compound-conditional location object
which found factories within the departmental resources of the user for whom
the request is being made. You could start by having several of the
departmental locations described above. Then provide an implementation of
the location interface which contained these departmental location objects
along with a table relating user’s principal IDs to the department they were
in. Your implementation could then determine which departmental location to
use, based on the principal ID contained within the context of the current
request.

In the Concepts of locationd section it was also stated that a proximal

proximity could represent things like here, near and far. These things have
different meanings in different contexts. For example, suppose I wanted two
objects to be “near” each other. This might mean they reside in the same
server, or that they reside in servers which are on the same host, or that they
reside in servers on hosts attached to the same LAN, and so on. An
interesting use of locations objects would be to enable an object to be created
“near” another object, where near is interpreted by the creator of the second
object. A possible implementation of this would be to have managed objects
know about location objects which represented “nearness” to themselves (for
example, the location object scoped to the server they reside in, the location
object scoped to the host they reside in and a location object scoped to all the
hosts in the LAN they reside in). You can then imagine the ability to have an
operation on the managed object such as get_location which took a parameter
of “server”, “host” or “LAN”". I can now get an appropriate location object
which I can use with a factory finder to enable me to get a factory which can
create a second object “near” the first object, where I define if “nearness” is
the same server, same host or same LAN.

FactoryFinders bound in the name space

Although you can imagine various uses for location objects, the primary use
of them is to enable factory finding. As we discussed earlier, a client asks a
factory finder for a factory which creates a certain type of object, but where in
the distributed environment the factory finder looks for that factory is
determined by the location object the factory finder is configured with.
Therefore, it is often very important for a client creating an object to have a
way to get a reference to a specific factory finder. The most common way for
this to be done is to have factory finders bound into the Bystem name spacd.

We have seen how location objects enable us to introduce the vocabulary of
proximity. It is therefore reasonable to bind a factory finder into the name
space using a name that is an indicator of the type of proximity it represents.

Chapter 6. LifeCycle Service 121



For example, you could bind factory finders configured with the departmental
locations described previously into
/cell/resources/locations/cell/resources/factory-finderswith names like
accounting-dept, purchasing-dept, and so on. You can now make statements
about creating an object within the accounting department and have a specific
programming mechanism to find the appropriate factory (that is, code your
application to use the factory finder bound at /cell/resources/factory-
finders/accounting-dept). In addition, when new hosts are added to the
accounting department, the single-location objects defining those hosts can be
added to the departmental ordered location. The result is that no changes
need to be made to any code to accommodate the configuration changes
within the department, yet all the factories on those new hosts are available
for use by your applications.

Component Broker provides a variety of default location objects and default
factory finder objects which are directly associated with the topological and
infrastructural views of proximity. Both the default location and factorv finder
objects are bound into the system name space. (See

for a complete list of these objects and where they are bound). Applications
will often use these factory finders directly rather than creating their own.
Also, the default locations can be used as building blocks for other locations.
For example, if you needed to create an accounting department factory finder,
that can be done by your creating the factory finder and ordered location
representing the accounting department, but initializing the ordered location
with the default host scoped single location objects for the hosts in the
accounting department. The binding of a factory finder into the name space
enables a separation of development concerns from configuration concerns.
An example of this might be a software vendor who is developing a
Component Broker application which will be used by several different
companies, all with different distributed system configurations. A way to
isolate the application from the configuration concerns is through an
appropriately defined factory finder. The application might be coded to
always use a factory finder obtained from the name space at
/host/resources/factory-finders/xyzApplication. The software vendor does
not supply this factory finder, but instead makes its existence a responsibility
of each company installing the application. Each company configures this
factory finder to reflect their environment as it should be seen by the
xyzApplication. With this approach, the software vendors application can be
isolated from the configuration differences of the various environments.

Application factories and specialized homes

In the Concepts of factoried section, we discussed managed object factories
(homes). Also introduced was the idea of using specialized homes or
application factories when a managed object had a dependency on another
object’s existence. In actuality, specialized homes and application factories

122 WebSphere: Advanced Programming Guide



could be introduced for a variety of reasons (see the WebSphere Application
Server Enterprise Edition Component Broker Programming Guide for information
about specialized homes). Whatever the reason for introducing a specialized
home or application factory, you need to understand and take into
consideration differences in how they would be handled by your code.

Any application can introduce its own application factories for its own
purposes. As an example, lets look at the case where a Policy object must
always have a corresponding Beneficiary object. This can be done with an
application factory that finds a Policy home, finds a Beneficiary home, creates
both objects and establishes their relationship to each other. It would be
appropriate for you to introduce this as a managed object and to bind it in the
system name space under your own application naming context (for example,
bind it at /host/applications/myApplication/myApplicationFactory). As such
you can create one instance of the factory and continue to use that in each
invocation of your application. Notice that this approach does not make use
of factory finding by your application, but instead you directly do a naming
resolve to access the application factory. Component Broker does not yet
provide any support or assistance for distinctly managing application factories
with the LifeCycle Service.

Alternately, you could use a specialized home and embed the logic for
creating the Beneficiary as a side-effect of creating the Policy object. Doing so
requires that you specialize the home for the Policy object to find the
Beneficiary home, create the Beneficiary object and establish it’s relationship
with the Policy object. A specialized home is distinguished from an
application factory only in that a customized home continues to benefit from
the distinct support provided to homes by Component Broker. In particular, a
factory finder can be used to find a specialized home, but cannot be used to
find an application factory.

Managed objects and local only objects

Component Broker enables development, deployment and use of managed
objects. However, Component Broker actually allows for two fundamental
kinds of objects, managed objects and local only (non-managed) objects.
Generally, the local only objects have some specialized use or purpose related
to the enabling of managed objects (for example, PrimaryKey objects). For
complete information on managed objects and local only objects, see the
WebSphere Application Server Enterprise Edition Component Broker Programming
Guide.

There are differences between these kinds of objects in terms of their lifecycle
(creation, existence and destruction) and therefore they are worth comparing
here. More importantly, however, is the fact that the LifeCycle Service
provides both managed and local only versions of FactoryFinder,

Chapter 6. LifeCycle Service 123



SingleLocation and OrderedLocation objects. Because of this, the nature of the
differences between these kinds of objects is important to understanding
details that will be presented in later sections.

We have already covered most aspects of the creation of managed objects.
They are created by managed object factories, called homes. The home is
responsible for allocating system resources needed by the managed object.
Typically this includes the memory it occupies when active, and any storage
used to retain its state persistently. The default implementation of home
provided by Component Broker can be specialized and extended to perform
any other functions that need to occur when the object is created, such as
registering the object with other objects and resource managers as needed by
the system. Alternately, this function can be embedded in the initialization of
the object, or it can be performed by an application factory. Introducing an
application factory provides more relevance to applications that use it to
perform a business function. However, it still ultimately results in invoking
one of the creation methods on a home for creating the actual managed object
instance.

local only objects are created directly from their native language class. Most
often this is done using the mechanisms provided with your programming
language for creating native language objects, for instance using the new
operator in C++. However, to preserve some language neutrality, local only
objects provided by Component Broker support a more general approach.
Normally this involves using the static class function _create for the class of
the local only object. There may in fact be multiple _create methods which
take different combinations of initialization parameters, similar in concept to
overloaded C++ constructors. The specifics for creating instances of local only
objects supplied by Component Broker is detailed in the documentation for
each of those types of objects.

Similar differences exist for the destruction of objects. Managed objects all
support the “remove” operation. When a managed object is asked to remove
itself, it cooperates with it’s home to ensure that all resources allocated to it
during creation are appropriately released. For local only objects, the native
language delete method is used.

Finally, the existence of these two kinds of objects varies. Managed objects can
only exist in Component Broker server processes, are accessible for use by
objects in other processes and generally do not cease to exist when the server
process is stopped and restarted. On the other hand, local only objects can
exist in either Component Broker server or client processes, are only available
to other objects in that process and will not continue to exist upon termination
of the process in which they were created.

124  WebSphere: Advanced Programming Guide



From a LifeCycle Service perspective, the service itself only relates to
providing support of lifecycle concerns of managed objects. However, for
factory finding purposes, local only versions of factory finder objects and
location objects are provided. These can be useful when there is no existing
managed factory finder with the scope of location you need, and you happen
to know the specifics of what the scope of location should be. An example of
this need would be within the Component Broker bootstrapping mechanism,
where the home of factory finders must be found in order to create the first
managed factory finder. Detalls of the use of local only factorv finder and
location objects is provided in ”

Creating and obtaining lifecycle objects

When your application has need to find a factory, you need to obtain a
reference to a factory finder. There are generally two ways that this is done:
* Create a local only factory finder.

* Obtain a managed factory finder which is bound in the name space.

When getting a managed factory finder by doing a resolve to the name space,
there is always the question of how did that factory finder get created and
placed in the name space. There are basically three ways in which this
happens
It is a default factory finder created by the Component Broker LifeCycle
Service.
* Is was created by an application (your application or some other
application on which your application depends).
¢ It was configured using the System Manager (by a system administrator).

Factory finders have the capability to bind themselves into the name space
when they are created, so the binding itself is normally a part of the creation
process.

When you are running code during development, you will most likely make
use of the default factory finders for most things. However, when an
application is deployed, you are more likely to need a factory finder whose
scope of location is different than that provided by the default factory finders.
There are generally two approaches to the definition of these factory finders:

* Your application defines the need for one or more factory finders which
reflect certain things about the configuration relevant to your application.
You either provide a setup application which creates them or you provide
instructions to a system administrator on how they should be created using
the System Manager when he is installing your application, and where they
should be bound into the name space.

* The enterprise within which your application is being installed has policies
regarding the creation of objects and the factory finders that should be
used. In this case, you were probably given the information as to which
factory finders your application should use and where they will be bound

Chapter 6. LifeCycle Service 125



in the name space. These factory finders will already exist prior to the
installation of your application. The enterprise may have created these with
an application program or configured them with the System Manager.

These ideas also apply to location objects. However, there is generally not a
need for the location objects to be bound into the name space and it is only
under certain limited application scenarios that you would need to directly
access a location object from the name space. However, when a setup
application creates (or system administrator configures) a factory finder, they
generally also have to create appropriate location objects for use by the
factory finder.

The l'Lifecycle interfaces and implementations” on page 153 section provides

details about creating local only and managed lifecycle objects.

Minor interfaces

The interfaces documented in this section are, from an interface definition
standpoint, part of the LifeCycle Service. However, implementation of these
interfaces occurs outside of the LifeCycle Service. The documentation here is
intended to provide some background information and identify where these
interfaces are implemented within Component Broker.

LifeCycleObiject interface on managed objects

The OMG CosLifeCycle module introduces an interface called LifeCycleObject
which provides the operations needed to move, copy and delete an object. It
introduces the operations:

° copy

* move

* remove

All managed objects in Component Broker are lifecycle objects. The
CosLifeCycle::LifeCycleObject interface is inherited by the programming
model interface IManagedClient::IManageable, which is the base interface for
all managed objects.

Other than definition of the interface, the Component Broker LifeCycle Service
does not provide any implementation support for this interface. Rather,
implementations are provided by the application adaptors which support the
infrastructure in which managed objects are created and exist.

In general, the application adaptors do not support implementations of the

two operations, move and copy. The remove operation is supported and is the
way defined by the programming model to delete a managed object.

126  WebSphere: Advanced Programming Guide



A definition of this interface and it’s operations can be found in the WebSphere
Application Server Enterprise Edition Component Broker Programming Reference in
the CosLifeCycle module. Discussion of usage can be found in the WebSphere
Application Server Enterprise Edition Component Broker Programming Guide.

GenericFactory interface on homes

The OMG CosLifeCycle module introduces a interface called GenericFactory
which provides operations used to create objects. It introduces the operations:
* supports

* create_object

All homes in Component Broker are generic factory objects. The
CosLifeCycle::GenericFactory interface is inherited by the programming model
interface IManagedClient::IHome, which is the base interface for all homes.
However, this interface is not the interface typically used for creating an object
on a home. The IHome interface introduces the operation
createFromPrimaryKeyString which is the preferred creation operation to
create_object.

The create_object interface as defined by OMG provides a mechanism for
passing input parameters to the factory which are name value pairs, where
the value can be of any type. However, the OMG does not define what any of
the name value pairs should be. Therefore this is a standard method that can
be completely different in usage based on the name value pairs a particular
generic factory chooses to accept as input.

Other than definition of the interface, the Component Broker LifeCycle Service
does not provide any implementation support for this interface that is used by
all homes. Rather, implementations are provided by the application adaptor
implementations of the IHome interface, which also define the appropriate
name value pairs that they accept.

Any implementation of a specialized home may provide implementation
support for additional name value pairs as input parameters. LifeCycle does
introduce some specialized home implementations for it’s own objects
(FactoryFinder, SingleLocation, OrderedLocation) which define additional
parameters that can be passed on create_object.

A definition of this interface and it’s operations can be found in the WebSphere
Application Server Enterprise Edition Component Broker Programming Reference in
the CosLifeCycle module. Implementations of homes described in the
WebSphere Application Server Enterprise Edition Component Broker Programming
Reference should provide the information about the name value pairs they
support.

Chapter 6. LifeCycle Service 127



Detailed view of location-based factory finding

Concepts of LifeCycle Servicd has provided much of the background
information needed to understand the basics of factory finding based on
scopes of location defined in location objects. Assuming that the reader has
read that section, we now go deeper and deal with many of the specifics in
the Component Broker implementation. This knowledge is essential to be able
to effectively use the LifeCycle Service in Component Broker.

The following section discusses these topics:

* Defining scope of location

. -
. IE-nr‘fnrv ](pvs

o Eactory finding Qpr—\rifir‘c‘

Defining scope of location

Starting with a quick review, location objects define a scope of location within
the distributed environment. This scope of location is more specifically
defined by a sequence of Scope structures which the location object returns.
This section takes a detailed look at the specific values that can be used in the
six elements of a Scope structure.

A Scope structure contains six state variables, three of which represent
infrastructure scope boundaries, home, container, and server and three of which
represent topology scope boundaries, host, workgroup, and cell. The rules and
meaning for the infrastructure scope boundaries are different than those for
the topological scope boundaries, as described in the following sections.

Infrastructure scope boundaries

Any of the infrastructure boundary-elements can be set with either a name or
the keyword *ANY, with the following rule: Once *ANY has been specified
for a higher level scope boundary, each of the lower level boundary elements
must be set to *ANY as well. The following table defines valid values and the
resulting scope of location that can be specified for the infrastructure
boundary elements of a Scope structure:

Table 9. Infrastructure boundary-element values

Server Container Home Resulting Infrastructure Scope
A specific home creating objects in a
name name name specific container in a specific server or

server -group

128 WebSphere: Advanced Programming Guide




Table 9. Infrastructure boundary-element values (continued)

Server

Container

Home

Resulting Infrastructure Scope

name

name

*ANY

Any home creating objects in a specific
container in a specific server or
server-group

name

*ANY

*ANY

Any home creating objects in any
container in a specific server or
server-group

*ANY

*ANY

*ANY

Any home creating objects in any
container in any server or server-group

The name specified for home and container is the name given to these when
they were defined using the Component Broker Object Builder. The name
specified for server is the server or server group name as defined for it when
it was configured with the Component Broker System Manager.

Although it is possible to have a location object which specifies a specific
container or home by name, in actual practice this is unusual. In most
instances, these two boundary elements are specified as *YANY.

Topology scope boundaries

Any of the topology boundary elements can be set with either a name or one

of the keywords *LOCAL, or *IGNORE, with the following rules:

* Once *LOCAL has been specified for a lower-level scope boundary, each of
the higher-level boundary elements must be set to *LOCAL as well.

* Because Component Broker currently only supports a single cell, the cell
boundary element must always be set to *LOCAL.

The topology boundary-element values are used to form a name path. The
resulting name path is used to resolve to a portion of the system name space
representing a different portion of the distributed system topology. In this
way, when used with factory finding, the location object can be used to
narrow or expand the scope over which factories are found; finding only
factories which have been registered with the corresponding level of visibility.

The following table defines the valid values and resulting scope of location
that can specified for the topology boundary-elements of a location object:

Table 10. Topology boundary-element values

Cell Workgroup Host Resulting Topology Scope (As a Name Path)
*LOCAL name name /cell/workgroups/<workgroup-
name>/hosts/<host-name>
*LOCAL name *IGNORE /cell/workgroups/<workgroup-name>

Chapter 6. LifeCycle Service 129



Table 10. Topology boundary-element values (continued)

Cell Workgroup Host Resulting Topology Scope (As a Name Path)
*LOCAL *IGNORE name /cell/hosts/<host-name>
*LOCAL *IGNORE *IGNORE /cell
*LOCAL *LOCAL name /workgroup /hosts/<host-name>
*LOCAL *LOCAL *IGNORE /workgroup
*LOCAL *LOCAL *LOCAL /host

The name specified in each case in the above table is the name for the
corresponding element in the topology as defined for it in the system name
space. The resulting name paths represent where resources are located in the
system name space, and by extension implying where they are located in the
system topology.

Lifecycle repository structure

In review, we have seen that factory finding utilizes a lifecycle repository that
is constructed in the Bystem name spacd. This repository has three major
branches, one for each of the topological elements of location (cell, workgroup
and host). Each major branch has two sub branches, a factory branch and a
server branch, within which information about registered homes is
maintained. Both homes and servers have some control over where in the
lifecycle repository information about them appears.

For a complete understanding of the factory finding process, it becomes
important to know specifics about how homes are registered, where they
appear in the repository and how that affects the conditions under which they
will be found. This section provides the details of this structure. It is
important to note that the structure of the lifecycle repository is really an
implementation detail of the LifeCycle Service and is not part of the public
interfaces provided by the service. The structure presented here is logical view
and is not meant to imply that what is documented are actual name paths in
the Bystem name spacd. However, we go into the high level details of the
structure in this section as it becomes an important piece of the puzzle in
understanding factory finding.

There is another point to bring up before getting started. It is important to
point out that workload managed server groups and homes which are work
load management enabled are handled differently than servers and homes
which are do not participate in workload management. We will address the
workload management specific issues after covering all the other ground.

There are six branches in repository, three major branches, each of which has
two minor or sub branches. We can represent these branches of the tree as

130 WebSphere: Advanced Programming Guide



follows:

BRANCH SUB BRANCH
factor
cell Y
server
factory
workgroup
server
factor
host Y
server

We will start with the registration of servers. All servers are registered in the
host/server branch. Therefore we can envision server Abc appearing as:

BRANCH SUB BRANCH ENTRY

host server Abc

Next, all homes which are registered with lifecycle appear in both the
host/factory branch and the host/server branch. Therefore, we would see the
home of Policy objects which is deployed in the Abc server to be registered as:

BRANCH SUB BRANCH ENTRY
factor Polic
host Y Y
server Abc Policy

Now, homes have the ability to say that they want to be visible within the
workgroup and cell lifecycle repositories, or any combination of the
preceding, as well. This is specified for the home when it is defined in
Component Broker Object Builder. So, if the above Policy home had also
specified visible in the cell lifecycle repository, it would appear in the
cell/factory branch, as follows:

BRANCH SUB BRANCH ENTRY

cell factory Policy

Note that this did not result in the home being placed in the cell/server
branch. That is only accomplished by having the server request that it be
placed in the cell/server branch. This can be specified for the server when it
is configured with the Component Broker System Manager. To make the
example interesting, lets assume that the server requested to be visible in the
workgroup lifecycle repository but not the cell. The resulting repository,
considering all the above, would look like this:

Chapter 6. LifeCycle Service 131



BRANCH SUB BRANCH ENTRY

factory Policy

cell
server
factory

workgroup

server Abc Policy
factor Polic

host Y Y
server Abc Policy

Notice that the visibility of the Policy home in the cell and workgroup branch
is not entirely under it’'s own control. It does control it’s appearance in the
factory branch at these levels, but it is the server that controls it’s visibility in
the server branch at these levels. We will see in the section on m

how this affects the conditions under which the Policy home will be
found.

So now it is time to introduce workload management enabled homes in
workload managed server groups. When you configure a server group using
Component Broker System Manager, it may or may not be workload
managed. If it is a workload managed server group, it is placed into the
lifecycle repository in a similar manner to a server, except that it is not placed
at a host level, is always placed at a workgroup level and can optionally be
placed at the cell level. So, if we add the Xyz workload managed server group
it would appear as:

BRANCH SUB BRANCH ENTRY

workgroup server Xyz

A home can be enabled for workload management when it is defined using
Component Broker Object Builder. When a home is so enabled, and when that
home is deployed in a workload managed server group, the home is
registered at the workgroup level rather than the host level and is registered
as part of the server group rather than part of the individual servers within
that server group. So, a workload managed home for Agent objects configured
in the Xyz server group would appear in the lifecycle repository as follows:

BRANCH SUB BRANCH ENTRY
factory Agent
workgroup
server Xyz Agent

132 WebSphere: Advanced Programming Guide



Considering all of the above, the repository would now look like this:

BRANCH SUB BRANCH ENTRY
factory Policy
cell
server
factory Agent
workgroup Abc Policy
server
Xyz Agent
factor Polic
host Y Y
server Abc Policy

Notice that there is no differentiation between the Abc server and the Xyz
server group at the workgroup level of the repository. From a factory finding
perspective, other than where they are initially registered, server groups are
handled exactly as servers are for factory finding purposes.

This covers the structure of the lifecycle repository. The m

section will have an expanded example of the lifecycle repository
and will describe how factory finding is affected by where homes, servers and
server groups register themselves.

Factory keys

As you recall, the process of factory finding involves both “what” factory to
find and “where” in the distributed environment to look for that factory. It is
the client of a factory finder that provides the “what” and the location object
contained by the factory finder that determine the “where”. This section takes
a look at factory keys, the mechanism by which the client specifies “what”
factory they want to find.

A factory key is specified as an argument in each of the factory-finder
operations. This key is used to provide information about the factory that you
want to get. With Component Broker, you can identify the desired factory
based on the following parameters:

* The type of object that the factory creates

¢ The home in which the objects created by the factory exist

* The implementation of the object that the factory creates

* The interface name of an interface supported by the factory itself

object interface

Specification of this parameter is always required for a factory finding
operation. It is defined to be the fully qualified IDL name given to the
principal interface for your business object. This is what we have
referred to up to this point as the objects type. For instance, in the

Chapter 6. LifeCycle Service 133



Personal Life Insurance Application Example (in WebSphere Application
Server Enterprise Edition Component Broker Programming Guide),
PolicyHolder is the principal interface name for the policy holder
object, which is derived from the Customer and Person interfaces.
Note that this interface name is the abstract interface inherited by
your business object and not the name of the business object itself,
which would be PolicyHolderBO. If the PolicyHolder interface had
been embedded in the Lifelnsurance module, its fully qualified
principal interface name would have been Lifelnsurance::PolicyHolder.
This is the value by which the home is registered with the lifecycle
repository.

object home

Specification of this parameter is optional. It is defined to be the name
given to the home when you defined it using Component Broker
Object Builder, specifically the “Name as Factory” value. This can be
used to distinguish between implementations of the same principal
interface which have differing characteristics. For example, if you
defined an interface called MyCollection and then provided both a
transient and persistent implementation of the interface, you might
call the homes MyCollectionPersistFactory and
MyCollectionTransFactory. When a client needs to create a
MyCollection and cares about the persistence or lack of persistence, he
can qualify the request with this parameter to get the appropriate
home.

object implementation
Specification of this parameter is optional. It is defined to be the name
given to the managed object class generated by Component Broker
Object Builder. This can be used to distinguish between specific
implementations of the same principal interface. To continue the
example from above, suppose there was a DB2 and and Oracle
implementation of the persistent MyCollection. It would be reasonable
to name both homes MyCollectionPersistFactory. For example, if a
client wanted to create a persistent MyCollection, and specifically
wanted it to be the DB2 implementation, he would use this parameter
with a value such as MyModuleDB2MO::MyCollectionDB2MO to
accomplish finding the right home.

factory interface
Specification of this parameter is optional. It allows you to ensure that
the home returned supports a particular IDL interface. For example,
you might have Policy objects configured with a standard IHome
implementation, and then you develop a specialized home for Policy
objects with an interface of MyPolicyHome that introduces new
creation methods. In your distributed environment, you convert to the
new home over time, so there is a period of time when some Policy

134  WebSphere: Advanced Programming Guide



object homes may be only IHome homes and others are
MyPolicyHome homes. Old client code that finds Policy object homes
can use either, because MyPolicyHome is also an IHome. However,
new client code may be written that takes advantage of the new
creation methods on MyPolicyHome. When getting a Policy home,
this new client code needs to be assured that the home he gets
supports the MyPolicyHome interface. That is accomplished with this
parameter.

As you can see, only “object interface” is required and thus the client code
requesting the factory is isolated from having to know implementation
specifics. However, the use of the other parameters gives the client control
over the home returned when he does have concerns about the
implementation of the objects created by the home or the interface supported
by the home.

Factory finding specifics

This section presents detailed examples of factory finding. It relies heavily on
an understanding of the information provided in the previous three sections
(Defining scope of lacation), Lifecycle repository structurd and Factory keys).
Each example starts by presenting a LifeCycle Repository with a variety of
homes registered. Based on the contents of this LifeCycle Repository, examples
are walked through, showing which factories would be found when a
FactoryFinder processes a request with a specific factory key, given a
particular scope of location defined by the Location object contained in the
Factory Finder.

Before we start with the examples, there is another point to be made about
the branches in the lifecycle repository. There is a host branch for each host
within your Component Broker environment, and there is a workgroup
branch for each workgroup in your Component Broker environment. In the
following examples, we will name the hosts and workgroups as there are
cases where we show multiple host or workgroup branches to illustrate
location scope capabilities of using a specific name rather then *LOCAL.

Example 1- one application on two servers on two hosts

In this example, we have the following situation:

* A Policy application which is not workload managed. The Policy home is
specified to be visible at the workgroup level.

¢ Two hosts, H1 and H2, and each host is part of the same cell and
workgroup (W1).

* Two free standing servers configured with the Policy application. S1 is on
H1 and S2 is on H2. S2 is specified to be visible at the workgroup and at
the cell level, but S1 is not.

Chapter 6. LifeCycle Service 135



In the example, the actual Policy homes in S1 and S2 will be called PH1 and
PH2, respectively. The resulting repository is as follows:

BRANCH SUB BRANCH ENTRY ACTUAL HOME
factory
cell
server 52 Policy PH2
Policy PH1
factory
workgroup -W1 Policy PH2
server 52 Policy PH2
factory Policy PH1
host-H1
server S1 Policy PH1
factory Policy PH2
host-H2
server 52 Policy PH2

A find factories request is made with object interface = Policy and no
other parameters. The request is made to a factory finder which resides on H1
(resulting in *LOCAL being the same as H1). The following table shows which
Policy homes will be returned for each specified scope of location. All possible
legal scopes are shown (although some do not make sense, such as S2 with
H1). Notation such as *LOCAL/H1 means either has the same meaning and

result.

Cell Workgroup Host Server Homes Found | Example#
*LOCAL *LOCAL/W1 *LOCAL/H1 *ANY PH1 1
*LOCAL *LOCAL/W1 *LOCAL/H1 S1 PH1 2
*LOCAL *LOCAL/W1 *LOCAL/H1 S2 none 3
*LOCAL *LOCAL/W1 H2 *ANY PH2 4
*LOCAL *LOCAL/W1 H2 S1 none 5
*LOCAL *LOCAL/W1 H2 S2 PH2 6
*LOCAL *LOCAL/W1 *IGNORE *ANY PH1 PH2 7
*LOCAL *LOCAL/W1 *IGNORE S1 none 8
*LOCAL *LOCAL/W1 *IGNORE S2 PH2 9
*LOCAL *IGNORE H1 *ANY PH1 10
*LOCAL *IGNORE H1 S1 PH1 11
*LOCAL *IGNORE H1 52 none 12
*LOCAL *IGNORE H2 *ANY PH2 13
*LOCAL *IGNORE H2 S1 none 14
*LOCAL *IGNORE H2 S2 PH2 15

136  WebSphere: Advanced Programming Guide




Cell Workgroup Host Server Homes Found |Example#
*LOCAL *IGNORE *IGNORE *ANY none 16
*LOCAL *IGNORE *IGNORE S1 none 17
*LOCAL *IGNORE *IGNORE 52 PH2 18

There are some points illustrated by this example that are worth stating.
Although these points may have been stated or implied in previous sections,
the example should help bring them into clear understanding.

* Cell does not equal everything - Using a cell scope of location (example 18)
does not mean find all homes in the cell (every home on every server in
every host in the cell). It simply means that you are looking for individual
homes which have advertised themselves as being willing to be found in a
cell scoped search.

* Server name versus *ANY - Using a server name at workgroup and cell
levels is semantically different than using *ANY at these levels. Examples 7
through 9 and 16 through 18 illustrate this. *ANY only looks for homes
which have specifically advertised themselves to be available at that level.
Using a server name only looks for home which are in servers where the
server has specifically advertised itself to have it’s homes available at that
level.

* Homes configured in Object Builder - Whether a home advertises itself at
the workgroup and cell level is defined for the home with Object Builder.
This means that whatever is specified holds true for all servers in which
that application is deployed. Note example 7 finds both Policy homes
because the Policy application said the Policy home would be visible in the
workgroup

* Servers configured with the System Manager - Whether a server advertises
itself at the workgroup and cell level is defined for the server in the System
Manager. This means two servers with the same application can handle
advertising themselves differently. Examples 8 and 9 and examples 17 and
18 illustrate this point, with the Policy home in S2 being found, but not the
Policy home in S1.

Understanding these concepts can open the door to a variety of configuration

possibilities. This enables powerful use of factory finding by your applications
to deal with various goals in your distributed object deployment. However, it

takes careful planning of how you want to configure your homes and servers

along with defining the scopes of location that will be used with your factory

finders in order to come up with a powerful solution.

Exampl e 2 - one interface with three implementations

In this example, we will expand on the MyCollection example discussed in
the “ section. We have the following situation:

Chapter 6. LifeCycle Service 137



* A single interface definition called MyCollection
* Three applications, each of which provides a different managed object
implementation of the MyCollection interface.
— A transient implementation
— A persistent implementation which is backed by DB2
— A persistent implementation which is backed by Oracle
— None of the applications are workload managed.

The scenario is this. Some applications do not care which kind of collection
they get, some care if it is transient or persistent and others care if it is
persistent DB2 or persistent Oracle. All hosts will be configured with the
transient implementation and one of the persistent implementations. For those
who care about DB2 vs. Oracle, they will have to find the appropriate factory
at the workgroup level. So following is the configuration information:

* Two hosts, H1 and H2, and each host is part of the same cell and
workgroup (W1)

* Two free standing servers. S1 on H1 configured with the transient and
DB2-backed applications. S2 on H2 configured with the transient and
Oracle backed applications.

* The transient home is named TransientCollectionFactory (TCFact for short)
and it’s implementation is named TransientCollectionMO (TCMO).

* The DB2 persistent home is named PersistentCollectionFactory (PCFact) and
it’s implementation is named DB2CollectionMO (DCMO)

* The Oracle persistent home is also named PersistentCollectionFactory
(PCFact) and it’s implementation is named OracleCollectionMO (OCMO).

* The persistent homes are defined to be visible in workgroup, but the
transient home is not.

In the example, the actual instances of the MyCollection homes in S1 will be
TCH1 and DCHI1 and in S2 will be TCH2 and OCH2. The resulting repository
is as follows:

BRANCH SUB BRANCH ENTRY ACTUAL | HOME |IMPL
HOME NAME
factor
cell Y
server
MyCollection DCH1 PCFact | DCMO
factory
workgroup-W1 MyCollection OCH2 PCFact | OCMO
server
MyCollection TCH1 TCFact TCMO
factory
MyCollection DCH1 PCFact | DCMO
host-H1
S1 MyCollection | TCH1 TCFact TCMO
server
MyCollection | DCHI1 PCFact | DCMO

138  WebSphere: Advanced Programming Guide



BRANCH SUB BRANCH ENTRY ACTUAL | HOME |IMPL
HOME NAME

MyCollection TCH2 TCFact TCMO

factory
MyCollection OCH2 PCFact | OCMO

host-H2

52 MyCollection | TCH2 TCFact TCMO

server
MyCollection | OCH2 PCFact | OCMO

To describe these scenarios we will use two different flavors of factory finders,
which are:

* A local host scoped factory finder - cell=*LOCAL, workgroup=*LOCAL,
host=*LOCAL, server=*ANY

* A local workgroup scoped factory finder - cell=*LOCAL,
workgroup=*LOCAL, host=*IGNORE, server=*ANY

Clients may know some or all of the following about the configuration:
* All hosts have a collection home.

* All hosts have a transient collection home.

* All hosts have a persistent collection home.

¢ DPersistent collections may be DB2 or Oracle.

* Persistent collection homes are visible at the workgroup level.

The following are the scenarios we indicated earlier along with all the details
about the scenario:

1. Client wants any MyCollection

Client knows: All hosts have a collection home
Factory key: Object interface=MyCollection

Object home=TCFact
Local host: H1 H2
FactoryFinder used: Local host on H1 Local host on H2
Factories returned: TCH1 TCH2

2. Client wants transient MyCollection

Client knows: All hosts have a transient collection home
Factory key: Object interface=MyCollection

Object home=TCFact
Local host: H1 H2
FactoryFinder used: Local host on H1 Local host on H2
Factories returned: TCH1 TCH2

Chapter 6. LifeCycle Service 139



3. Client wants persistent MyCollection

Client knows: All hosts have a persistent collection home
Factory key: Object interface=MyCollection

Object home=PCFact
Local host: H1 H2
FactoryFinder used: Local host on H1 Local host on H2
Factories returned: DCH1 OCH2

4. Client wants persistent DB2 backed MyCollection

Client knows: Persistent collections may be DB2 or Oracle and
persistent collection homes are visible at the workgroup
level

Factory key: Object interface=MyCollection
Object implementation=DCMO

Local host: H1 H2

FactoryFinder used: Local workgroup Local workgroup

Factories returned: DCH1 DCH1

It is worth noting that the factory finders used in the above examples all have

equivalent instances provided as part of the set of [Default lifecycle abjectd

described in the next section.

As in the previous example, some points illustrated by this example are worth

stating even if they have been stated or implied in previous sections.

* Clients do not have to know implementation specifics about objects to get
their homes, but can make use of implementation information if they have
a need to.

* The enterprise in this example had a strategy for how they would configure
their environment for these differing implementations of the same interface.
This strategy was known by client programs so that they could select
factory finders which had appropriate scopes of location. Scenarios 1-3
knew to use local host factory finders while scenario 4 knew to use a
workgroup scoped factory finder.

* The strategy selected still provides a lot of flexibility for changing specifics
of the implementations and their deployment without affecting client code.

The key is that in a distributed environment you need to have a strategy for
deployment of applications and associated configuration of factory finders.
This strategy needs to be known by the client programs which will be
accessing the homes.

140 WebSphere: Advanced Programming Guide



Exampl e 3 - workload managed server group and homes

This example takes a look at a workload managed server group. This is the

situation:

* A Policy application which is not workload managed. The Policy home is
specified to be visible at the workgroup level.

* An Agent application which is workload managed.

* Two hosts, H1 and H2, and each host is part of the same cell and
workgroup (W1)

* A server group (SG) which is configured with both the Policy and the
Agent applications.

* Server group SG has two servers, S1 on H1 and S2 on H2. The server group
is specified to be visible at the cell level and also specifies that it’s servers
are visible at the cell level.

In the example, the actual Policy homes in S1 and S2 will be called PH1 and
PH2, respectively. Now, there are real Agent homes on both S1 and S2, but
references to them can actually get routed to either because they are work
load management enabled. Therefore, we will call the Agent home AHsg. The
resulting repository is as follows:

BRANCH SUB BRANCH ENTRY ACTUAL HOME
cell factory

S1 Policy PH1

server S2 Policy PH2
SG Agent AHsg

workgroup-W1 Policy PH1
factory Policy PH2

Agent AHsg

server SG Agent AHsg

host-H1 factory Policy PH1
server S1 Policy PH1

host-H2 factory Policy PH2
server S2 Policy PH2

The purpose of this example is to point out the specifics of factory registration
for workload managed server groups and homes. These are the points that
need to be understood:

 Although Policy is configured as part of the workload managed server
group SG, the Policy home is not enabled for workload management. It is

Chapter 6. LifeCycle Service 141



therefore registered in the repository in the same way as if both S1 and S2
were free standing servers and not part of a workload managed server
group.

* Although both S1 and S2 actually have instances of the Agent home, these
Agent homes are not registered in the S1 or S2 server branches nor are they
registered in the factory branch of the H1 and H2 host branches. The
rational for this has to do with honoring scope of location specifications.
Suppose there was a factory finder with host=H1 and it returned a
reference to the Agent home on H1. When the client then invoked a method
on the Agent home, it could be processed by the H2 Agent home or the H1
agent home because the Agent home reference is a workload managed
reference. This would violate the scope of location in the factory finder used
to find the home.

* Workload managed server groups are supposed to have all of the servers
they contain be on hosts within the same workgroup. Therefore, it is valid
to return workload managed object references from a factory finder which
is scoped with workgroup=W1, host=*IGNORE. Specifically, we know that
a create request sent to an Agent home will result in an object being created
within the workgroup (handled by some Agent home instance on a server
on a host in the workgroup).

* At the workgroup level, in the factory branch, there is no distinction
between the Agent and the Policy homes. A factory finder with
workgroup=W1, host=*IGNORE will return AHsg for a factory key of object
interface=Agent and will return PH1 and PH2 for a factory key of object
interface=Policy.

* At the workgroup or at the cell level, in the server branch, there is no
distinction made between a server and a server group, provided the server
has been make visible in the workgroup or cell and the server group has
been made visible in the cell. Remember that a server group never shows
up in a host server branch and always shows up in a workgroup server
branch.

* When using a scope of location that contains a server name or server group
name, only non workload managed homes will be found if it is a server
name and only workload managed homes will be found if it is a server
group name.

These points bring out the question of strategy for home registration and
factory finding when you have a mix of workload managed and non
workload managed homes, and you want to isolate your client code from the
distinction between the two. Assuming you do not have multiple workgroups
with differing configurations, the simplest approach is to have all homes make
themselves visible at the workgroup level. Then use a workgroup scoped
factory finder for all of your factory finding. This will give you access to all of
your homes and you will not have to deal with server names and server
group names. Of course, there may be other factors than workload

142  WebSphere: Advanced Programming Guide



management that enter into your consideration. In that case, the workload
management factors presented here need to be understood as you analyze
your situation.

Exampl e 4 - using a widening of scope

Up until now, the examples have all dealt with factory finding operations
where the factory finder’s scope of location was specified with one Scope
structure. Remember, however, that location objects return a sequence of
Scope structures, each of which is considered in the factory finding operation.
We will look at a technique referred to as widening of scope, where the
factory finder contains a location object whose sequence of scopes are each at
progressively wider scope. This can be used to locate factories that are as
“near as possible” to you.

This is the configuration information for this example:
¢ There is one server group (SGroup) which has only 1 server (S1sg)
* There are three hosts:
— H1 - contains server group server Slsg and a free standing server Slfs
— H2 - contains free standing server S2fs
— HB3 - contains free standing server S3fs
* There are two workgroups:
— Wx - contains host H1 and H2
— Wz - contains H3
* There are five applications, configured as follows:
— Agent - workload managed home in SGroup
— Customer - non workload managed home in the server groups server
Slsg
— Policy - in free standing server Slfs
— Claim - in free standing server S2fs
— Account - in free standing server S3fs

All of the application homes are defined to be visible in cell and visible in
workgroup (visible in workgroup is irrelevant for the workload managed
home, but it is not inappropiate, simply redundant).

* None of the servers nor the server group are defined to be visible at any
level other than their default.

Given all of the above, we end up with a factory repository that looks like the
following:

Chapter 6. LifeCycle Service 143



BRANCH SUB BRANCH ENTRY ACTUAL HOME
Agent AgentSGroup
Customer CustomerSlsg
factory Policy PolicyS1fs
cell
Claim ClaimS2fs
Account AccountS3fs
server
Agent AgentSGroup
Customer CustomerSlsg
factory
workgroup-WxD Policy PolicyS1fs
Claim ClaimS2fs
server SGroup Agent AgentSGroup
factory Account AccountS3fs
workgroup-Wz
server
Customer CustomerSlsg
factory
Policy PolicyS1fs
host-H1
Slsg Customer CustomerSlsg
server
Sifs Policy PolicyS1fs
factory Claim ClaimS2fs
host-H2
server S2fs Claim ClaimS2fs
Account AccountS3fs
host-H3 factory
S3fs Account AccountS3fs
We will now introduce one of the default lifecycle objects that will be
described in the next section, Default lifecycle ohjectd. This factory finder is
referred to as the server-scope-widened factory finder, and there is one of
these for every server in your configuration. It is defined to have a scope of
location defined by the following five scope structures:
Order Cell Workgroup Host Server Comments
1 *LOCAL *IGNORE host name server name
2 *LOCAL workgroup name |*IGNORE servergroup |only if workload
name managed server
3 *LOCAL *IGNORE host name *ANY
4 *LOCAL workgroup name |*IGNORE *ANY
5 *LOCAL *IGNORE *IGNORE *ANY

144  WebSphere: Advanced Programming Guide



So now lets assume I have some code running in server Slsg. Possibly it is an
application factory that has been developed which encapsulates business logic
about the creation of Agent, Customer, Policy, Claim and Account objects. This
application factory wants to be independent of the configuration, but would
like to create objects as close to itself as possible. Therefore, it uses the
Slsg-server-scope-widened factory finder. It will make find_factory calls on
the factory finder rather than find_factories because it wants the factory finder
to only return the first factory that it finds that satisfies the request rather
than all possible factory finders that satisfy the request. Lets look at how the
homes for each of these object types would be found.

Customer
Home is in the same server. Using the first scope (host H1, server
Slsg) the Customer home is found in the H1 server branch Slsg.

Agent Workload managed home is in the same server group that this server
is in. The first scope fails to locate the Agent home. The second scope
(workgroup Wx, server SGroup) finds the Agent home in the Wx
server branch SGroup.

Policy Home is in a different server on the same host. The first and second
scopes fail to locate the Policy home. The third scope (host H1, server
*ANY) finds the Policy home in the H1 factory branch.

Claim Home is in a different host but in the same workgroup. The first
through third scopes all fail to locate the Claim home. The fourth
scope (workgroup WX, server *ANY) finds the Claim home in the Wx
factory branch.

Account
Home is in a different host and workgroup. The first through fourth
scopes all fail to location the Account home. The fifth scope (cell
*LOCAL, server *ANY) finds the account home in the cell factory
branch.

As you can see, by using the one factory finder the application factory was
always able to find the home that was closest to himself.

This example may seem contrived because there is only one instance of each
home, and using a cell scoped factory finder would have located the exact
same homes just fine. However, this was only to simplify the table showing
the lifecycle repository for the example. Imagine there are several server
groups, each containing several servers and there are many more free
standing servers, all across ten or twenty hosts organized into several
workgroups. Or imagine a configuration an order of magnitude larger than
that. Let’s also assume there is no consistency to how the applications are
configured across these servers and server groups. The technique described in

Chapter 6. LifeCycle Service 145



this example will work just as well in that environment, provided all homes
are made visible in workgroup and visible in cell.

There is another point about the application factory knowing to use the
Slsg-server-scope-widened factory finder. Would this pose a problem if this
same application factory were deployed in tens or hundreds of servers in the
environment? The implementation of the application factory handles this by
accessing the name of the server it is running in, getting the
<servername>-server-scope-widened factory finder from the name space and
using that. This way, the application factory is always looking for homes that
are closest to itself, no matter where it exists in the environment.

Default lifecycle objects

The default lifecycle objects are your starting point for factory finding.
Component Broker creates several different default factory finder objects
(configured with the appropriate location objects) which are generally useful.
While doing development, these default factory finders may supply all of the
factory finding capability that you need. When it comes to deployment of
your applications in a distributed environment, it is more likely that you may
have to create or configure some factory finder and location objects that reflect
your particular strategy for factory finding. However, even in this case, the
default location objects may well be used as building blocks to the definition
of the location objects you need to define.

Whenever a new server is started for the first time, there are default lifecycle
objects created that represent that server. All application and name servers get
default lifecycle objects whose scope of location is specific to that server. If the
server is a name server, additional default lifecycle objects are created,
providing scope of location to the major branches in the

(that is, host, workgroup and cell). In addition, if you have a workload
managed server group, there will be default lifecycle objects whose scope of
location is specific to the server group.

All of these default lifecycle objects are bound into the system name space so
that they can be easily accessed by your client applications and business
object applications. The scheme for how they are named and where they are
bound provides an easy and intuitive way for you to know how to construct
the name for the factory finder that you want to use.

The default lifecycle objects occur in pairs, a FactoryFinder object with it’s
contained SingleLocation or OrderedLocation object. Although we have seen
that it is almost always the factory finder that you want to access from the
name space, both the factory finder and location objects are bound into the
name space. Each pair has the equivalent name, with the factory finder being
bound into a context for factory finders and the location object being bound

146  WebSphere: Advanced Programming Guide



into a context for location objects. You might want to access a location object
from the system name space if it was being used as one of the locations for
initializing an OrderedLocation.

There are two basic flavors of factory finder with location object pairs. The
first uses a SingleLocation object and is used to define a scope of location
with only one Scope structure. These are used to scope to a specific server,
server group or branch of the system name tree. The other flavor are the
widened locations (see Using a Widening of Scope) which start with a Scope
structure for some specific point and then have progressively broader scopes
defined. These widened locations are OrderedLocation objects which are
configured with an appropriate sequence of the default SingleLocation objects.

The following documentation of the default lifecycle objects presents them in

their factori finder and location object pairs. The pairs are:

° kQPT‘??P‘VVIﬂ‘IMP -QPYVPY-Q(‘{'\II’)P—‘AH- den F‘l"i

A description of each is given, followed by the exact specification of the Scope
structure(s) with which they operate. Then a list of the names where the
factory finder and location object are bound into the name space is given.

host-scope

The host-scope lifecycle objects are used to define a scope of location which
includes an entire host. They can be used to find a home from the factory
branch of the host lifecycle repository. This includes all non workload
managed homes in all the servers configured on that host. The Scope structure
for the location object contains:

Cell

Workgroup Host Server Container Home

*LOCAL

*IGNORE hostname *ANY *ANY *ANY

They are bound into the name space at:

/host/resources/factory-finders/host-scope
/host/resources/locations/host-scope

Chapter 6. LifeCycle Service 147



workgroup-scope

The workgroup-scope lifecycle objects are used to define a scope of location
which includes an entire workgroup. They can be used to find a home from
the factory branch of the workgroup lifecycle repository. This includes, from
all hosts in this workgroup, all workload managed homes in server groups
and all non workload managed homes which are defined to be visible in
workgroup. The Scope structure for the location object contains:

Cell Workgroup Host Server Container Home
*LOCAL workgroup name | *IGNORE *ANY *ANY *ANY
They are bound into the name space at:
/workgroup/resources/factory-finders/workgroup-scope
/workgroup/resources/locations/workgroup-scope
cell-scope
The cell-scope lifecycle objects are used to define a scope of location which
includes an entire cell. They can be used to find a home from the factory
branch of the cell lifecycle repository. This includes, from all hosts in this cell,
all homes (workload managed and non workload managed) which are
defined to be visible in cell. The Scope structure for the location object
contains:
Cell Workgroup Host Server Container Home
*LOCAL *IGNORE *IGNORE *ANY *ANY *ANY

They are bound into the name space at:

/cell/resources/factory-finders/cell-scope
/cell/resources/Tocations/cell-scope

<servername>-server-scope

The <servername>-server-scope lifecycle objects are used to define a scope of
location which includes an entire server. They can be used to find a home
from the server branch of the host lifecycle repository. This includes all homes
in the server which are non workload managed. These objects are registered
in the cell, workgroup and host branches of the system name space. This
allows you to find them with only knowledge of the server name without
having to know which host they are on. However, it makes no difference if
you access them from the cell, workgroup or host branch. The resulting scope
of location is always to the host server branch of the lifecycle repository. The
Scope structure for the location object contains:

148 WebSphere: Advanced Programming Guide




Cell

Workgroup Host Server Container Home

*LOCAL

*IGNORE hostname servername *ANY *ANY

They are bound into the name space at:

/host/resources/factory-finders/<servername>-server-scope
/workgroup/resources/factory-finders/<servername>-server-scope
/cell/resources/factory-finders/<servername>-server-scope

/host/resources/locations/<servername>-server-scope
/workgroup/resources/locations/<servername>-server-scope
/cell/resources/locations/<servername>-server-scope

<servergroupname>-server-scope

The <servergroupname>-server-scope lifecycle objects are used to define a
scope of location which includes an entire servergroup. They can be used to
find a home from the server branch of the workgroup lifecycle repository. This
includes all homes in the server group which are workload managed. These
objects are registered in the cell and workgroup branches of the system name
space. This allows you to find them with only knowledge of the server group
name without having to know which workgroup they are in. However, it
makes no difference if you access them from the cell or workgroup branch.
The resulting scope of location is always to the workgroup server branch of
the lifecycle repository. The Scope structure for the location object contains:

Cell

Workgroup Host Server Container Home

*LOCAL

workgroupname *IGNORE servergroupname *ANY *ANY

They are bound into the name space at:

/workgroup/resources/factory-finders/<servergroupname>-server-scope
/cell/resources/factory-finders/<servergroupname>-server-scope

/workgroup/resources/locations/<servergroupname>-server-scope
/cell/resources/locations/<servergroupname>-server-scope

host-scope-widened

The host-scope-widened lifecycle objects are used to define a scope of location
which starts at the host, then goes to the workgroup and finally the cell. An
explanation of each scope in this sequence can be found above at lhost-scapd,
workgroup-scopd and kell-scopd. The OrderedLocation is simply a sequence of
these other locations. The following chart shows these locations along with
the Scope structure defined by each:

Location

Cell Workgroup Host Server Container |Home

host-scope

*LOCAL *IGNORE hostname *ANY *ANY *ANY

Chapter 6. LifeCycle Service 149



Location Cell Workgroup Host Server Container |Home
workgroup-scope | *LOCAL workgroupname | *IGNORE *ANY *ANY *ANY
cell-scope *LOCAL *IGNORE *IGNORE *ANY *ANY *ANY
They are bound into the name space at:
/host/resources/factory-finders/host-scope-widened
/host/resources/Tocations/host-scope-widened
workgroup-scope-widened
The workgroup-scope-widened lifecycle objects are used to define a scope of
location which starts at the workgroup and then goes to the cell. An
explanation of each scope in this sequence can be found above at
'warkgroup-scope” on page 148 and kell-scopd. The OrderedLocation is
simply a sequence of these other locations. The following chart shows these
locations along with the Scope structure defined by each:
Location Cell Workgroup Host Server Container Home
workgroup- *LOCAL workgroupname | *IGNORE *ANY *ANY *ANY
scope
cell-scope *LOCAL *IGNORE *IGNORE *ANY *ANY *ANY
They are bound into the name space at:
/workgroup/resources/factory-finders/workgroup-scope-widened
/workgroup/resources/locations/workgroup-scope-widened
<servername>-server-scope-widened
The <servername>-server-scope-widened lifecycle objects are used to define a
scope of location which starts at the server, then goes to the server group (if
this is a workload managed server), then the host, the workgroup and finally
the cell. An explanation of each scope in this sequence can be found above at
Kservername>-server-scapd, kservergroupname=-server-scapd, host-scopd,
workgroup-scopd and helLsco.pel These objects are registered in the cell,
workgroup and host branches of the system name space. This allows you to
find them with only knowledge of the server name without having to know
which host they are on. The OrderedLocation is simply a sequence of these
other locations. The following chart shows these locations along with the
Scope structure defined by each:
Location Cell Workgroup Host Server Container
<servername>-server-scope | *LOCAL | *IGNORE hostname | servername *ANY

150 WebSphere: Advanced Programming Guide




Location Cell Workgroup Host Server Container
<servergroup>-server-scope |*LOCAL |workgroupname |*IGNORE |servergroupname |*ANY
(only if workload managed
server)
host-scope *LOCAL |*IGNORE hostname | *ANY *ANY
workgroup-scope *LOCAL |workgroupname |*IGNORE |*ANY *ANY
cell-scope *LOCAL |*IGNORE *IGNORE |*ANY *ANY
They are bound into the name space at:
/host/resources/factory-finders/<servername-server-scope-widened
/workgroup/resources/factory-finders/<servername-server-scope-widened
/cell/resources/factory-finders/<servername-server-scope-widened
/host/resources/locations/<servername-server-scope-widened
/workgroup/resources/locations/<servername-server-scope-widened
/cell/resources/locations/<servername-server-scope-widened
<servergroupname>-server-scope-widened
The <servergroupname>-server-scope-widened lifecycle objects are used to
define a scope of location which starts at the server group, then goes to the
workgroup and finally the cell. An explanation of each scope in this sequence
can be found above at kservergroupname-server-scopd, = and
. These objects are registered in the cell and workgroup branches of
the system name space. This allows you to find them with only knowledge of
the server group name without having to know which workgroup they are in.
The OrderedLocation is simply a sequence of these other locations. The
following chart shows these locations along with the Scope structure defined
by each:
Location Cell Workgroup Host Server Container
<servergroupname>-server- | *LOCAL workgroupname | IGNORE servergroupname | *“ANY
scope
workgroup-scope *LOCAL workgroupname | *IGNORE *ANY *ANY
cell-scope *LOCAL *IGNORE *IGNORE *ANY *ANY

They are bound into the name space at:
/workgroup/resources/factory-finders/<servergroupname>-server-scope-widened
/cell/resources/factory-finders/<servergroupname>-server-scope-widened

/workgroup/resources/locations/<servergroupname>-server-scope-widened
/cell/resources/locations/<servergroupname>-server-scope-widened

Chapter 6. LifeCycle Service 151



Tips for using the default lifecycle objects

This section points out a few things that are good to know if you are to take
full advantage of the capabilities provided by the default lifecycle objects.

1. Accessing Default LifeCycle Objects on Other Hosts and Workgroups In
Component Broker, the code you run will be associated with a bootstrap
host. When you use something like /host or /workgroup to start a name
path, you are looking in the host or workgroup branch of the system name
space that is associated with your bootstrap host. There are times that you
would like to obtain a resource from the host or workgroup tree of a
different host or workgroup (assuming that you know the name of the
host or workgroup). For example, you might want to obtain the host-scope
factory finder for host abc.austin.ibm.com. To do this, you would
substitute /cel1/hosts/abc.austin.ibm.com for /host that appears in the
above documentation. Specifically, rather than specifying:

/host/resources/factory-finders/host-scope

you would specify:
/cell/hosts/abc.austin.ibm.com/resources/factory-finders/host-scope

Similarly, if you wanted the workgroup-scope factory finder for
WorkgroupXYZ, you would specify:

/cell/workgroups/WorkgroupXYZ/resources/factory-finders/workgroup-scope

See the documentation for the System name spacd to see how this name

path gets you to the desired factory finder.

2. Best Way to Access a Server Scope Factory Finders There are times when
you will want to access the <servername>-server-scope factory finder, or
it’s widened counterpart, for a specific server. If you do this using the
local host tree (that is, using /host) you have made the assumption that
the server is on the same host that is your bootstrap host. In order to
avoid this dependency, and since all of the server scope factory finders are
registered at the cell level as well, you should access it using the cell name
tree. For example, to access the server called knownServerName, you
should specify: /cell/resources/factory-finders/knownServerName-
server-scope. This practice also holds true for server group names,
isolating you from having to be in the same workgroup.

3. Determining the Name of the Current Server In the previous tip, you
need to know the name of the server whose factory finder you are
accessing. However, very often the scenario is that you develop a business
object that will run in many servers, and you want to obtain the
<servername>-server-scope factory finder for the server your business
object is running in. You can dynamically determine the name of the
server your code is running in by using the CBSeriesGlobal::serverName()
method. Once you have obtained the server name you can build the

152  WebSphere: Advanced Programming Guide



appropriate name path, for example: /host/resources/factory-
finders/myCurrentServer-server-scope. Unlike our previous tip which
utilized the cell name tree, we know that in this case, using the local host
name tree will work fine because our code is running in that server on
that host, and therefore it is our local host.

Lifecycle interfaces and implementations

The Detailed view of location-based factory finding section has provided
information for an in depth understanding of the underlying behavior and
semantics of factory finding operations. This section continues on, providing
the details about the interfaces used in factory finding, specifically the
FactoryFinder, SingleLocation, and OrderedLocation interfaces. In addition to
the interfaces, we will look at the different implementations, specifically the
managed object versions and the local only versions. A major part of looking
at the implementations will be how you actually create instances, addressing
the use of specialized homes for the managed object versions. For local only
implementations, we will look at the C++ creation methods. There is currently
not a local only implementation of these objects in Java, so Java clients should
use the managed object versions.

The section is written to provide you with an understanding of the interfaces
and how to use them. However, full details of the syntax for all of the
operations should be obtained from the WebSphere Application Server Enterprise
Edition Component Broker Programming Reference, specifically the chapters on
the CosLifeCycle, IExtendedLifeCycle, ILifeCycleLocalObjectImpl and
ILifeCycleManagedClient IDL modules. This section is intended to provide the
bridge needed to tie the semantics of factory finding presented in the previous
sections of this Advanced Programming Guide with the detailed syntax
specification in the WebSphere Application Server Enterprise Edition Component
Broker Programming Reference. In addition, a detailed programming example
will be provided in the section following this one.

The following topics are discussed in this section:
o Lifecycle abject interfaced

o — acd

. Dnlord — ocd

o FEactorv kev structiires and Q’rringd

o FEactorvFinder interfacd

Chapter 6. LifeCycle Service 153



. r’rpafing managed lifecycle nhjpcfcl
D qung the FactorvFinderHome interfacd

These sections will show code snippets. A complete coding example follows in
the Lifecycle exampld section.

Lifecycle object interfaces

The interfaces in this section are presented in an order determined by usage,
building such that each subsequent sections has all prerequisite knowledge
previously defined.

Scope structures and strings

The Scope structure contains six strings representing the six topological and
infrastructural boundary elements which define a scope of location. We have
already looked extensively at the contents and meaning of a scope of location,
particularly in the Defining scope of lacationl section. Therefore, we will not
reiterate the appropriate values contained by these fields. We also know that
location objects return a sequence of these scope structures. The Scope
structure and OrderedScopes sequence are defined in the IExtendedLifeCycle
module as follows:

struct Scope

{
CosNaming::Istring cell;
CosNaming::Istring workgroup;
CosNaming::Istring host;
CosNaming::Istring server;
CosNaming::Istring container;
CosNaming::Istring home;

}s

typedef sequence OrderedScopes;

In addition to the structure form of Scope, there is also a string form that is
constructed using the name string syntax which is supported by the Naming
Service. The string form, ScopeString, represents the contents of a single scope
structure. There is also an OrderedScopeStrings to represent of sequence of
scopes. They are defined in the IExtendedLifeCycle module as follows:

typedef CosNaming::Istring ScopeString;
typedef sequence OrderedScopeStrings;

The syntax for expressing scope boundary values scope boundary values in
the string form is illustrated in the following example:

<cell-value>.cell/<workgroup-value>.workgroup/
<host-value>.host/<server-value>.server/
<container-value>.container/<home-value>.home

154  WebSphere: Advanced Programming Guide



Since this form is the name string syntax, we can think of the this in terms of
a CosNaming::Name. In each name component, the kind field is used to
identify the boundary value, and the ID field is used to specify the value
(denoted in angle-brackets in the above example). Assuming we needed a
scope which identified a specific server in a specific workgroup, the scope
boundary could be expressed as in the following example:

*LOCAL.cel1/consumer insurance.workgroup/+*IGNORE.host/
whole Tife.server/+ANY.container/*ANY.home

The string forms of the scope structure and sequence are introduced to
provide a convenient way to pass this information when creating a lifecycle
object. When doing so, not all six fields of the structure need to be specified.
Unspecified fields will be given the following default values:

Cell

Workgroup Host Server Container Home

*LOCAL

*LOCAL *LOCAL *ANY *ANY *ANY

Scope manipulator interface

The ScopeManipulator interface provides mechanisms to convert between the
structure and string forms of a scope. This interface, which is defined in the
IExtendedLifeCycle module, provides the operations:

* scope_to_string

* string to_scope

These operations are typically not needed by your client code using the
LifeCycle Service. See the WebSphere Application Server Enterprise Edition
Component Broker Programming Reference if you need additional information on
these operations.

Location interface

The Location interface provides everything that is needed for a factory finder
object to obtain scope information from any location object. As we have
already discussed in [nteraction hetween FactaryFinder and lacation nhjprfd
and in Location object implementationd, the [Lacation interfacd is an abstract
interface. There is never an implementation which is just a Location, but it is
always sub typed and an implementation for the sub type is provided.
Component Broker provides implementations of two sub types of this
interface, SingleLocation and OrderedLocation. In addition, you can sub type
and implement your own form of Location objects if you have unique
requirements for determination of scope of location that is not satisfied by the
Component Broker provided implementations.

The Location interface is defined in the IExtendedLifeCycle module, and
provides the single operation:
* get_scopes

Chapter 6. LifeCycle Service 155



This operation returns an OrderedScopes sequence, which is used by the
factory finder object to define the scope of location where it will perform
factory searches. There should be no preconceived notion of how the location
object implementation determines the values in the Scope structures of the
returned OrderedScopes. An implementation might have fixed values or
values which are dynamically determined at run time based on some
condition or constraint.

This operation is typically not needed by your client code using the LifeCycle
Service. See the WebSphere Application Server Enterprise Edition Component
Broker Programming Reference if you need additional information on this
operation.

SingleLocation interface

The SingleLocation interface is defined in IExtendedLifeCycle and it inherits
the Location interface. SingleLocation is simply an interface which specifies
that an implementation of this interface will limit itself to returning a single
Scope structure within the OrderedScopes sequence returned by get_scopes.
The Component Broker implementations of this interface are initialized when
created to contain a static set of the six boundary values contained in a scope.
As with the Location interface, someone could conceivably provide an
implementation of the SingleLocation interface which dynamically determined
the scope values.

The SingleLocation interface introduces one new operation:
* get_scope()

This operation is intended to make it easier to query the SingleLocation,
asking it to return a Scope structure rather than an OrderedScopes. This
operation is typically not needed by your client code using the LifeCycle
Service. See the WebSphere Application Server Enterprise Edition Component
Broker Programming Reference if you need additional information on this
operation.

OrderLocation interface

The OrderedLocation interface is defined in IExtendedLifeCycle and it inherits
the Location interface.

OrderedLocation is an interface which specifies that an implementation
should maintain a sequence of other Location objects. In response to a
get_scopes, an ordered location will return an OrderedScopes which is the
concatenation of all the OrderedScopes, obtained in sequence, returned by the
Location objects it contains. The Component Broker implementations of this
interface are initialized when created to contain a static set of other Location
objects.

156  WebSphere: Advanced Programming Guide



The SingleLocation interface introduces one new operation:
 get_locations()

This operation returns the sequence of location objects it contains. This
operation is typically not needed by your client code using the LifeCycle
Service. See the WebSphere Application Server Enterprise Edition Component
Broker Programming Reference if you need additional information on this
operation.

Factory key structures and strings

Factory finding operations take a factory key as input. We have alreadi

extensively covered the semantic meaning of a factory key in the

section, and we will now take a look at the syntax. The type Key is
introduced in the CosLifeCycle module and is defined to be structured the
same as a CosNaming::Name. They are defined as follows:

From CosNaming:
struct NameComponent

{
Istring id;
Istring kind;
}s
typedef sequence Name;
From CosLifeCycle:

typedef CosNaming::Name Key;

As you can see, the CosLifeCycle::Key is actually a sequence of structures
where each element contains two string fields: an ID and a kind field. These
are treated as name value pairs, where the ID field contains the value and the
kind field contains the name. The valid names that can be used in the kind
field are:

* Object interface

* Object home

* Object implementation

* Factory interface

When the kind-field of the element is set to “object interface”, then the
ID-field should be set with the fully qualified interface name of the object
type the factory creates. This key type is required. When the kind-field of the
element is set to “object home”, then the ID-field should be set with the name
of the home. This key type is optional. When the kind-field of the element is
set to “object implementation”, then the ID-field should be set with the name
of the implementation class of the objects created by the factory. When the
kind-field of the element is set to “factory interface”, then the ID-field should
be set with the interface ID of the factory itself. The interface ID is a string
which is generated by the IDL compiler for each interface in the IDL. This

Chapter 6. LifeCycle Service 157



string can be accessed using the <interface name>_RID variable. This key type
is optional. See the m section for more complete explanation of
these name value pairs.

Referring back to Example 2 - one interface with three implementations,
suppose we wanted to get a factory for a persistent MyCollection which was
backed by DB2 and we also wanted to make sure the factory returned
supported the MyModule::MyCollectionHome interface. To do this, you could
create a key as follows:

CosLifeCycle::Key key(4);

key.length(4);

key[0] .kind = CORBA::string_dup("object interface");

key[0].id = CORBA::string_dup("MyModule::MyCollection");
key[1].kind = CORBA::string_dup("object home");

key[1].id = CORBA::string_dup("PersistentCollectionFactory");
key[2] .kind = CORBA::string_dup("factory interface");
key[2].id = CORBA::string_dup

(::MyModule::MyCollectionHome:MyCollectionHome RID);
key[3].kind = CORBA::string_dup("object implementation");
key[3].id = CORBA::string_dup("MyModuleDB2MO: :MyCollectionDB2M0");

The elements of the key structure may appear in any order. If the kind-field of
a key element is not one of the four recognized strings, that element is
ignored. No error is generated in this case. Also, typically you would not
create a key with all four of these items specified. Most usage of the key only
has “object interface” specified, and in some cases one of the other values is
added.

As you can see, the setup of a factory key structure does not look like the
simplest thing to do when all you want is to provide an input argument that
you will be passing to a factory finding operation. Because of this, Component
Broker provides a string form of the CosLifeCycle::Key definition. The string
form is called a FactoryKeyString and is defined in the IExtendedLifeCycle
module, as follows: CosNaming::Istring FactoryKeyString;. Similar to the
ScopeString described earlier, the FactoryKeyString follows the name string
syntax. Therefore, the factory key string used to find a factory for any kind of
a MyModule::MyCollection would be: "MyModule::MyCollection.object
interface". To find a factory for the persistent version of a
MyModule::MyCollection, the factory key string would look like this:
"MyModule: :MyCollection.object
interface/PersistentCollectionFactory.object home"

FactoryFinder interface

The FactoryFinder interface is introduced by the CosLifeCycle module and
extended by the IExtendedLifeCycle module. This is the interface you will be
using for finding factories (homes) which you will use for the creation of
managed objects.

158 WebSphere: Advanced Programming Guide



In the CosLifeCycle module, FactoryFinder introduces one operation,
find_factories. This operation uses a CosLifeCycle::Key for input and returns
all factories which satisfy the request. In Component Broker, the FactoryFinder
interface has been extended in the IExtendedLifeCycle module to introduce
operations that can return a single factory and also to make use of the simpler
FactoryKeyString as input. This section does not differentiate between the
modules which introduce the operations, but when you refer to the WebSphere
Application Server Enterprise Edition Component Broker Programming Reference
you will have to consider both the CosLifeCycle and IExtendedLifeCycle
documentation for FactoryFinder. The operations supported by the
FactoryFinder interface are:

* find_factories

* find_factory

¢ find_factories_from_string

¢ find_factory_from_string

* get_location

The first two operations, find_factories and find_factory, each take a
CosLifeCycle::Key as input. As the names imply, find_factory returns a single
factory (the first found which satisfies the request) and find_factories returns
all factories that satisfy the request. They throw the CosLifeCycle::NoFactory
exception if they are not able to find an appropriate factory.

The next two operations. find_factories_from_string and
find_factory_from_string, each take an IExtendedLifeCycle::FactoryKeyString
as input. The operations work in exactly the same way as their counterparts
which take a CosLifeCycle::Key.

The last operation, get_location, can be used when you want to obtain a
reference to the location object that the factory finder contains.

The scope of location within which factory finders search for a factory is
defined by the contained location object. When a find_factories or
find_factories_from_string operation returns all factories, it specifically means
all factories within the scope of location configured for the factory finder, not
all factories in the environment. It is possible for a particular factory to occur
more than once in the sequence of factories returned from these operations.
This can occur when the configured location object returns multiple scopes in
the OrderedScopes sequence. As we learned in the Lifecycle repositoryl

section, a factory may be registered into many branches of the
repository. Therefore, it may be found for more than one scope of location
during the find_factories operation. The implementation of this interface in
Component Broker makes no attempt to remove duplicates from the returned
sequence of factories.

Chapter 6. LifeCycle Service 159



The following examples shows usage of these factory finding operations. The
find_factory and find_factories_from_string operations are shown. The
find_factory_from_string and find_factories handling can be extrapolated from
the two examples given. In general, the find_factory_from_string operation is
the one that is most often used. It returns one factory (generally all you want)
and has the simplest input argument.

Since we have not yet discussed how to obtain or create an instance of a
factory finder, the examples assumes that we already have a reference to one.

Example 1 - find_factory: This example does a find_factory operation to get
a reference to a home that makes PolicyModule::Policy objects. This operation
takes a CosLifeCycle::Key as input and returns a CosLifeCycle::Factory. The
return value must be narrowed to the IManagedClient::IHome interface before
it can be used as a home in subsequent code. The appropriate error handling
code has been included. The try catch block handles the
CosLifeCycle::NoFactory exception in the case where the factory finder didn’t
find a factory to return. The if else clause tests to see if the _narrow operation
failed or if the catch block was entered.

// Declare the variables (assume myFF initialized)
IExtendedLifeCycle::FactoryFinder_var myFF;
CosLifeCycle::Factory_var homeAsFactory;
IManagedClient::IHome_var policyHome;
CosLifeCycle::Key key(1);

// Initialize factory key

key.length(1);

key[0] .kind = CORBA::string_dup("object interface");
key[0].id = CORBA::string_dup("PolicyModule::Policy");

// Find the home and narrow to appropriate reference
try
{
homeAsFactory = myFF->find_factory(key);
policyHome = IManagedClient::IHome:: narrow(homeAsFactory);

catch(CosLifeCycle::NoFactory &e)
{

}

// Test if we were successful
if (CORBA::is_nil(policyHome))
cout << "failed";

else

cout << "success";

policyHome = IManagedClient::IHome:: nil();

Example 2 - find_factories_from_string: This example does a
find_factories_from_string operation to get a sequence of references to homes
that make PolicyModule::Policy objects. This operation takes an
IExtendedLifecycle::FactoryKeyString as input and returns

160 WebSphere: Advanced Programming Guide



CosLifeCycle::Factories sequence. Each element of the return value must be
narrowed to the IManagedClient:IHome interface before they can be used as
a home in subsequent code. The appropriate error handling code has been
included. The try catch block handles the CosLifeCycle::NoFactory exception in
the case where the factory finder didn’t find a factory to return. The if else
clause inside the loop tests to see if the _narrow operation failed.

// Declare the variables (assume myFF initialized)

IExtendedLifeCycle::FactoryFinder_var myFF;

CosLifeCycle::Factories_var factories;

IManagedClient::IHome_var policyHome;

IExtendedLifeCycle::FactoryKeyString key;

// Initialize factory key
key = CORBA::string_dup("PolicyModule::Policy.object interface");

// Find the homes
try
{

1
catch(CosLifeCycle::NoFactory &e)

{

factories = myFF->find_factories_from string(key);

cout << "failed";
exit;

}

// Narrow each home to the appropriate interface
for (int i=0; i < factories->length(); i++)
{
policyHome = IManagedClient::IHome:: narrow(factories[i]);
if (CORBA::is_nil(policyHome))
cout << "failed";
else
cout << "success";

}

CosLifeCycle::NoFactory exceptions: When you get a
CosLifeCycle::NoFactory exception, there are a couple of things you may want
to check to determine why. First the factory finder looks only within its scope
for a factory that supports the type of object specified in the factory key. If
this happens you should expand the scope of location boundary to obtain a
factory finder with a broader scope of location and try the request again.

Also, to find the factory, the principal interface name (the object interface)
specified to the factory finder must match exactly the name of the interface
registered with the factory. If you cannot find the factory that you expect,
check the spelling and case of the principal interface you specified in the
factory key. You can use the System Management facilities to examine the
interface name registered with the corresponding Home if you are uncertain
of the exact spelling.

Chapter 6. LifeCycle Service 161



Managed vs. local only implementations

In the previous sections on lifecycle object interfaces, we have been examining
the interfaces without much consideration for the implementation of these
interfaces. We are now ready to delve into the implementation aspects.

The LifeCycle Service provides both managed and local only implementations
of the Factoerinder SingleLocation and OrderedLocation interfaces In the

m sectlons we dlscussed the nature of these two types of objects, both in
general and also how they apply to lifecycle. A summary of the important
points regarding these two types of objects is appropriate at this point:

Managed Obijects Local Only Objects

Accessible by remote processes Only accessible within a process

Can be bound into the system name space Cannot be bound into the system name
space

Usually persistent Always transient

Can only exist in server processes Can exist in server or client processes

Need reference to a home to create, which implies you also | Can be created independent of other
had a reference to a factory finder in order to find the home. |objects, using native language
capabilities

Suited for long term and/or shared use Suited for one time only use

In the subsequent sections, we will be looking at how to obtain references to
lifecycle objects. From a client program perspective, there are two ways to do
this:

* Resolve to an existing managed object bound into the name space
* Create a local only object directly in C++

There are three ways that managed lifecycle objects get bound into the name
space for use by client programs.

* Created by Component Broker as one of the Default LifeCycle Objects

* Created by one of your programs

* Configured using the Component Broker System Manager

Of course, you could have a program create a managed lifecycle object and
then use it immediately rather than bind it into the name space for later use.
However, you would be more likely to use a local only lifecycle object if you
were going to simply create it for immediate use.

In the following sections we will look at how you access lifecycle ob]ects by

exammmg Local only creation mechanismd and

. Then we will look at the mechanisms to create

162  WebSphere: Advanced Programming Guide



and configure managed hfecycle objects and bind them into the name space in

the sections and Configuring managed|

Local only creation mechanisms

The local only creation mechanisms can be used from your VisualAge C++
code, be it client application or business object implementation. There is
currently no implementation of local only lifecycle objects in Java, which
means you cannot use them from your Java client code. However, they can be
created and used from Java business objects using the normal Java local only
creation mechanisms which support cross language bindings.

When creating a local only factory finder for use by your program, you
typically just need to create the factory finder. You can initialize it with scope
of location information during creation, and the creation of the factory finder
will also create the appropriate location object for you. Alternatively, you can
explicitly create the location object(s) needed and then use them when
creating the factory finder. In the following sections we discuss the specifics of
creating local only SingleLocation, OrderedLocation and FactoryFinder objects.

Local only SingleLocation creation: There are three static functions for
creating local only SingleLocation objects. All of these are overloaded C++
static class functions and can only be invoked locally from a VisualAge C++
program or from a Java Business Object implementation.

The following are the static functions which enable three different ways to
create a local only SingleLocation object:

_create()
The function ILifeCycleLocalObjectImpl::SingleLocation::_create creates
a SingleLocation with the default scope of boundary values as shown
in the following table:

Cell Workgroup Host Server Container Home
*LOCAL *LOCAL *LOCAL *ANY *ANY *ANY
_create(Scope)

The function ILifeCycleLocalObjectImpl::SingleLocation::_create(Scope)
creates a SingleLocation with a scope of location set to the boundary
values supplied in the Scope structure.

_create(ScopeString)
The function
[LifeCycleLocalObjectImpl::SingleLocation::_create(ScopeString) creates
a SingleLocation with a scope of location values supplied in the
ScopeString.

Chapter 6. LifeCycle Service 163



The following example creates a new local only SingleLocation object using
the _create(ScopeString) function and sets it with a server scope: of myServer
on host abc.austin.ibm.com. Take special note that the name of the host is
placed into single quotes because it contains the dot character, which is also a
separator in the string syntax. Also note that we do not specify all six of the
scope of location boundary values, letting the non specified values take on
their respective defaults.

IExtendedLifeCycle::SingleLocation_var myNewSL;

myNewSL = ILifeCycleLocalObjectImpl::SingleLocation:: create(
"*IGNORE.workgroup/'abc.austin.ibm.com'.host/myServer.server"

Local only OrderedLocation creation: There are three static functions for
creating local only OrderedLocation objects. All of these are overloaded C++
static class functions and can only be invoked locally from a VisualAge C++
program or from a Java Business Object implementation.

The following are the static functions which enable three different ways to
create a local only OrderedLocation object:

_create(Scopes)
The function
ILifeCycleLocalObjectImpl::OrderedLocation::_create(Scopes) creates an
OrderedLocation object with a scope of location boundary set to the
first scope structure supplied in the sequence of scopes, followed by
he second scope structure, and so on.

_create(ScopesStrings)
The function
ILifeCycleLocalObjectImpl::OrderedLocation::_create(ScopeStrings)
creates an OrderedLocation object with a scope of location boundary
set to the first scope supplied in the ScopeStrings sequence, followed
by the second scope, and so on.

_create(SequenceOfLocations)
The function
LifeCycleLocalObjectlmpl::OrderedLocation::_create(SequenceOfLocations)
creates an OrderedLocation whose scope of location is defined by the
sequence of locations passed on input. The locations in the sequence
can be either local only or managed. They can be SingleLocations,
other OrderedLocations, or any implementation of the
IExtendedLifeCycle::Location abstract interface. This produces an
OrderedLocation object with a scope of location boundary set to the
scope of location of the first Location in the SequenceOfLocations,
followed by the scope of location of the second, and so on.

The example below creates a new local only OrderedLocation object using the

_create( ScopeStrings) function and sets it with the host scope for host
xyz.rchland.ibm.com, followed by the host scope for abc.rchland.ibm.com. As

164 WebSphere: Advanced Programming Guide



in the previous example, the host names must be enclosed in single quotes
because they contain the dot character, and non specified scope of location
boundary values will be allowed to default.

IExtendedLifeCycle::OrderedLocation_var myNewOL;
IExtendedLifeCycle::OrderedScopeStrings oss(2); // 2 scope strings

0ss[0] = CORBA::string_dup(
"+*IGNORE.workgroup/'zyx.rchland.ibm.com'.host");

oss[1] = CORBA::string_dup(
"+*IGNORE.workgroup/'abc.rchland.ibm.com'.host");

oss.length(2);

myNewOL = ILifeCycleLocalObjectImpl::OrderedLocation:: create(oss);

Local only FactoryFinder creation: There are seven static functions for
creating local only FactoryFinder objects. All of these are overloaded C++
static class functions and can only be invoked locally from a VisualAge C++
program or from a Java Business Object implementation. As we have
previously mentioned, the creation mechanisms for local only factory finders
provide ways for you to create the factory finder and have it implicitly create
the contained location object for you. You will notice that of the seven creation
methods, three are similar to the SingleLocation creation methods, three are
similar to the OrderedLocation methods and the seventh is unique, taking a
location object an input argument.

You can create a local only factory finder in any one of the following ways:

_create()
The function ILifeCycleLocalObjectImpl::FactoryFinder::_create creates
a factory finder whose location object is created using the
ILifeCycleLocalObjectImpl::SingleLocation::_create() function.

_create(Location)
The function
ILifeCycleLocalObjectImpl::FactoryFinder::_create(Location) creates a
factory finder which contains the Location object passed as input to
the function.

_create(Scope)
The function ILifeCycleLocalObjectImpl::FactoryFinder::_create(Scope)
creates a factory finder whose location object is created using the
ILifeCycleLocalObjectImpl::SingleLocation::_create(Scope) function.

_create(ScopeString)
The function
[LifeCycleLocalObjectImpl::FactoryFinder::_create(ScopeString) creates
a factory finder whose location object is created using the
ILifeCycleLocalObjectImpl::SingleLocation::_create(ScopeString)
function.

Chapter 6. LifeCycle Service 165



_create(SequenceOfLocation)
The function
ILifeCycleLocalObjectImpl::FactoryFinder::_create(SequenceOfLocation)
creates a factory finder whose location object is created using the
ILifeCycleLocalObjectImpl::OrderedLocation::_create(SequenceOfLocation)
function.

_create(OrderedScopes)
The function
ILifeCycleLocalObjectImpl::FactoryFinder::_create(OrderedScopes)
creates a factory finder whose location object is created using the
ILifeCycleLocalObjectImpl::OrderedLocation::_create(OrderedScopes)
function.

_create(OrderedScopeStrings)
The function
ILifeCycleLocalObjectImpl::FactoryFinder::_create(OrderedScopeStrings)
creates a factory finder whose location object is created using the
ILifeCycleLocalObjectImpl::Ordered Location::_create(OrderedScopeStrings)
function.

The example below shows the creation of a factory finder that looks first in
the server Preferred and then in the server Backup, both of which are on host
myHost. This is the _create(OrderedScopeStrings) creation method.

IExtendedLifeCycle::FactoryFinder_var myNewFF;
IExtendedLifeCycle::OrderedScopeStrings oss(2); // 2 scope strings

0ss[0] = CORBA::string dup(
"+IGNORE.workgroup/myHost.host/Prefered.server");

oss[1] = CORBA::string_dup(

"*IGNORE .workgroup/myHost.host/Backup.server");

oss.length(2);

myNewFF = ILifeCycleLocalObjectImpl::FactoryFinder:: create(oss);

Accessing managed lifecycle objects from the name space

The typical programming model for obtaining a factory finder is to obtain one
from the system name space by doing a resolve operation. In Default lifecycld

we learned about the many default lifecycle objects created by
Component Broker and where they are bound into the name space. In the
subsequent sections we will see how you can create and configure managed
lifecycle objects and have them bound into the name space.

There are fixed locations in the name space where lifecycle objects are bound.
They are:

/host/resources/factory-finders
/workgroup/resources/factory-finders
/cell/resources/factory-finders

166  WebSphere: Advanced Programming Guide



/host/resources/Tocations
/workgroup/resources/lTocations
/cell/resources/locations

When wanting to obtain a factory finder or location object from the name

space:

* It must already exist and be bound into the name space.

* You need to know the name by which it was bound into the name space.

* You need to know which branch of the system name space it was bound
into.

It is highly likely that your programs will want to obtain a factory finder from
the name space. The following example takes a look at obtaining the default
server scope factory finder for myServer from the host branch of the system
name space. We use the CBSeriesGlobal::nameService() operation to get a
reference to the root naming context for the host we have bootstrapped to.
The appropriate error detection for a NotFound exception and for the
returned object not being a factory finder has been included.

// Declare the variables

IExtendedLifeCycle::FactoryFinder_var myFF;
CORBA: :0Object_var ffAsObject;

// Get object from name space and narrow to factory finder

try

{
ffAsObject = CBSeriesGlobal::nameService()->resolve with_string(
"host/resources/factory-finders/myServer-server-scope");
myFF = IExtendedLifeCycle::FactoryFinder:: narrow(ffAsObject);

}

catch(CosNaming: :NamingContext: :NotFound &e)

{
}

// Test if we were successful
if (CORBA::is_nil(myFF))
cout << "failed";

else

cout << "success";

myFF = IExtendedLifeCycle::FactoryFinder:: nil();

Creating managed lifecycle objects

When the default lifecycle objects do not provide the scopes of location
needed by some or all of your applications, you will have to either create
(with a program) or configure (using the System Manager) them into your
system. This section looks at how you would write code in a program to
create managed lifecycle objects. The creation of managed lifecycle objects
would normally be considered to be part of setting up your environment, so

Chapter 6. LifeCycle Service 167



typically this type of code would appear in code that you would run once as
part of setting up your environment or as a step in installing an application.

There are some common elements to creating managed lifecycle objects. To
begin with, they are created in a similar manner as all managed objects are
created. Your code will have to obtain a reference to a factory finder, use that
factory finder to find an instance of the home for the type of lifecycle object
you want to create, and then invoke some method on that home to create the
object.

All of the lifecycle objects have implementations of specialized homes which
provide creation methods other then the standard
createFromPrimaryKeyString supported by the IManagedClient:IHome
interface. These creation methods allow you to create lifecycle objects without
having to create and initialize a primary key object as you often do when
creating business objects. In addition, they allow you to pass parameters used
in the initialization of the newly created object, similar to how the _create
functions take parameters when creating local only lifecycle objects. However,
unlike the local only _create methods, creation of a managed factory finder
will not implicitly create the corresponding location. You always must obtain
a reference to or create the location object used to initialize the factory finder.
This location object must be a managed object itself; (that is, you cannot
initialize a managed factory finder with a local only location object).

All managed lifecycle objects have the ability to bind themselves into the

system name space. The creation methods on the specialized homes allow you

to pass in a “relative name” and three boolean indicators of where the object

should bind itself into the system name space. This means that the binding of

the lifecycle object you create can occur as a side effect to creation rather than

your having to explicitly do it after creation. For example, if you were to

create a factory finder with a relative name of myFF and indicated that you

wanted it bound into the workgroup tree (but not the host and cell trees), the

new factory finder would bind itself into: /workgroup/resources/factory-

finders/myFF. The following sections look at the specifics of creating each of

types of lifecycle objects. To be complete examples, they would need to show

the following steps:

1. Obtaining a reference to a factory finder from the name space

2. Using the factory finder to obtain a reference to the specialized home

3. Obtain a reference to other objects used to initialize the new object (if
needed)

4. Make the call on the home to create the object

The following examples will only show complete code for step four. For each
of the first three steps, a reference to the appropriate example will be given
along with any additional type specific information that would be needed.

168 WebSphere: Advanced Programming Guide



Using the SingleLocationHome interface

This example shows you how to create a SingleLocation object using a home
supporting the SingleLocationHome interface. The steps which are not shown
in detail are:

Obtain a factory finder
Follow the example in
, using a name path in the resolve_with_string that will

get you the host scoped factory finder for the host on which you want
to create the SingleLocation (for example,
/cel1/hosts/desiredHost/resources/factory-finders/host-scope). If
you have special requirements that it be created in a particular server,
get the appropriate server scoped factory finder instead.

Find the home
Follow the examples in EactoryFinder interfacd. The value used for
“object interface” should be ILifeCycleManagedClient::SingleLocation.
The other qualifiers should not be needed. The object returned needs
to be narrowed to IExtendedLifeCycle::SingleLocationHome.

Obtain references to other objects
Not needed for SingleLocation creation.

Now we are ready to create the SingleLocation. There are two methods
provided by the SingleLocationHome, which are createWithScope() and
createWithScopeString(). This example uses the createWithScopeString()
method. See EDefini ion” for valid values and
Scope Structures and Strings for valid syntax of the string. Similar to the local
only example, we will initialize the single location to have a server scope of
myServer on host abc.austin.ibm.com. We will not ask the new
SingleLocation object to register itself in the name space.

// Declare the variables (SLHome assumed initialized)
IExtendedLifeCycle::SingleLocationHome_var SLHome;
IExtendedLifeCycle::SingleLocation_var myNewSL;

// Create the Single Location

myNewSL = SLHome->createWithScopeString(
"+«IGNORE.workgroup/'abc.austin.ibm.com'.host/myServer.server",
"", // no relative name for binding to name space
0, // not bound into the cell tree

0, // not bound into the host tree

0); // not bound into the workgroup tree

// Test if we were successful

if (CORBA::is_nil(myNewSL))

cout << "failed";

else

cout << "success";

Chapter 6. LifeCycle Service 169



Using the OrderedLocationHome interface

This example shows you how to create an OrderedLocation object using a
home supporting the OrderedLocationHome interface. The steps which are
not shown in detail are:

Obtain a factory finder
Follow the example in
, using a name path in the resolve_with_string that will

get you the host scoped factory finder for the host on which you want
to create the OrderedLocation. (for example,
/cel1/hosts/desiredHost/resources/factory-finders/host-scope). If
you have special requirements that it be created in a particular server,
get the appropriate server scoped factory finder instead.

Find the home
Follow the examples in EactoryFinder interfacd. The value used for
“object interface” should be
ILifeCycleManagedClient::OrderedLocation. The other qualifiers
should not be needed. The object returned needs to be narrowed to
IExtendedLifeCycle::Ordered LocationHome.

Obtain references to other objects
Some of the operations on the OrderedLocationHome require you to
pass in a sequence of locations. Follow the directions in m
I‘nanagpd lifecycle objects from the name sz\r‘pl or LI_smg_ﬂ;Ld

Binglel acationHome interfacd to obtain or create references to the
appropriate managed location objects. In addition, if you have your
own managed object implementation of the Location interface,
references to instances of that type could be used as well.

Now we are ready to create the SingleLocation. There are three methods
provided by the OrderedLocationHome. The first two, createWithScopes and
createWithScopeStrings, allow you to pass in a sequence of Scope structures or
sequence of ScopeStrings which will implicitly result in the creation of
managed SingleLocation objects to be contained in the OrderedLocation object.
The third method is createWithLocations which takes a sequence of Location
objects. The location objects in the sequence must be managed objects.

The following example uses the createWithLocations method. The
OrderedLocation will be initialized with two server scope single locations,
thus creating an object whose scope of location is ServerA followed by
ServerB. The example assumes the variables holding references to these have
already been initialize. We will not ask the new OrderedLocation object to
register itself in the name space.

// Declare the variables

IExtendedLifeCycle::SequenceOfLocations seqOflLoc(2); // two locations
IExtendedLifeCycle::SingleLocation_var SLServerA; // already initialized

170  WebSphere: Advanced Programming Guide



IExtendedLifeCycle::SingleLocation_var SLServerB; // already initialized
IExtendedLifeCycle::OrderedLocationHome var OLHome; // already initialized
IExtendedLifeCycle::OrderedLocation_var myNewOL;

// Initialize the input parameter

seq0fLoc[0] = IExtendedLifeCycle::SingleLocation:: duplicate(SLServerA);
seqOfLoc[1] = IExtendedLifeCycle::SingleLocation:: duplicate(SLServerB);
seqOfLoc.length(2);

// Create the Ordered Location

myNewOL = OLHome->createWithLocations(

seqOfLoc,

"", // no relative name for binding to name space
0, // not bound into the cell tree

0, // not bound into the host tree

0); // not bound into the workgroup tree

// Test if we were successful
if (CORBA::is_nil(myNewOL))
cout << "failed";

else

cout << "success";

Using the FactoryFinderHome interface

This example shows you how to create a FactoryFinder object using a home
supporting the FactoryFinderHome interface. The steps which are not shown
in detail are:

Obtain a factory finder
Follow the example in [Accessing managed lifecycle ohjects from thd
m, using a name path in the resolve_with_string that will
get you the host scoped factory finder for the host on which you want
to create the FactoryFinder. (for example,
/cell/hosts/desiredHost/resources/factory-finders/host-scope). If
you have special requirements that it be created in a particular server,
get the appropriate server scoped factory finder instead.

Find the home
Follow the examples in EactaryFinder interfacd. The value used for
“object interface” should be ILifeCycleManagedClient::FactoryFinder.
The other qualifiers should not be needed. The object returned needs
to be narrowed to IExtendedLifeCycle::FactoryFinderHome.

Obtain references to other objects
You must have a reference to a location object. Follow the directions
in |Arre¢.qm¢ manaoed hfervr]e nhler’rq from the name qnacel or US.LD.Q

ILlsm,g_the_Qtd.etedLQca.uonHde

to obtain or create a reference to an appropriate managed

Chapter 6. LifeCycle Service 171



location object. Alternatively, if you have your own managed object
implementation of the Location interface, a reference to an instance of
that type could be used as well.

Now we are ready to create the FactoryFinder. There is just one method
provided by the FactoryFinderHome, createWithLocation. In the example, the
FactoryFinder will be created with a reference to an existing OrderedLocation
object to which we already have a reference. We will ask the new
FactoryFinder object to register itself in the name space at
/cell/resources/factory-finders/myFF1 and also at
/host/resources/factory-finders/myFF1.

// Declare the variables

IExtendedLifeCycle::OrderedLocation_var existingOL;// already initialized

IExtendedLifeCycle::FactoryFinderHome var FFHome; // already initialized
IExtendedLifeCycle::FactoryFinder_var myNewFF;

// Create the Factory Finder

myNewFF = FFHome->createWithLocation(

existingOL,

"myFF1", // relative name for binding to name space
1, // bound into the cell tree

1, // bound into the host tree

0); // not bound into the workgroup tree

// Test if we were successful
if (CORBA::is_nil(myNewFF))
cout << "failed";

else

cout << "success";

Configuring managed lifecycle objects

Another approach to establishing managed lifecycle objects in your
environment is to configure them using the Component Broker System
Manager. When you use the System Manager to configure a managed
FactoryFinder object, the location object which it contains must also be
configured by the System Manager. Also, any location objects contained in a
System Manager configured OrderedLocation object must also be configured
using the System Manager. The implication to this is that you cannot use any
of the default location objects or user developed implementations of the
Location interface for a factory finder which is being configured with the
System Manager.

For complete information about how to use the System Manager to configure

lifecycle objects, See the WebSphere Application Server Enterprise Edition
Component Broker System Administration Guide.

172 WebSphere: Advanced Programming Guide



Lifecycle example

This section takes a look at an example program which illustrates principles of
the LifeCycle Service as well as syntax of the operations. The example is a
fully functional client application that creates a managed factory finder which
is bound into the name space. We will start by explaining the scenario of what
the enterprise is trying to accomplish with this factory finder. Although the
example may be somewhat contrived, it illustrates many of the points
important to the LifeCycle Service. Hopefully this illustration will lead you to
practical uses of lifecycle within your own enterprise.

This factory finder is to be used by client programs of a Customer Support
Administration application, which is composed of a specific set of interrelated
business objects (BOs) in individual applications generated by Object Builder.
The applications defining these BOs are deployed in various servers within
the Component Broker environment. They want the factory finder to be
available to all clients without regard to where these clients are running and
without requiring configuration knowledge on the part of the clients.
Therefore, it will be bound into the name space in the cell branch of the
using the name of the application, specifically at
/cell/resources/factory-finders/customerSupportAdministration.

The strategy for deployment of these business object applications is as follows:

* There will be one server within the configuration that will house the most
critical BOs that have a high degree of interaction (that is, the BOs need to
be “near” each other) This server will be called the “preferedServer”.
However, which BOs will be in here might hang over time as the
application performance is evaluated. This server could be deployed on any
of a number of different hosts in the environment.

* There is a host whose servers house many of the transient BOs (sometimes
called Application Objects, or AOs). However, there will be times when this
host needs to be removed from the configuration without interrupting the
Consumer Support Administration application, and therefore it cannot be
absolutely depended upon. We will call this the “optionalHost”.

* There is another host which will always be in the configuration. It has
servers which house some of the more important BOs which are not
required to be in the preferedServer. It may also house some of the same
AOs from the optionalHost. We will call this the “requiredHost”. There are
some number of other hosts whose servers house additional BOs and AOs
for the application.

So now we will look at how to configure the customerSupportAdministration
factory finder to take into account these objectives. Let’s look at the pieces
needed to make up this factory finder:

Chapter 6. LifeCycle Service 173



* These requirements are outside the scope of any of the default lifecycle
objects, so we know we need a created factory finder configured with a
created location object.

* The location involves several different scopes of location, therefore the
created location object needs to be an OrderedLocation object.

* The first scope of location, the “preferedServer”, can be defined using a
default server scoped SingleLocation, that is the preferedServer-server-scope
location object.

* The second scope of location, the “optionalHost” might be satisfied by the
default host scoped SingleLocation. However, we said that the host might
not be in the configuration at times, and the default host-scope location
object for it would not be available at those times. Therefore, we will need
to create a host scoped SingleLocation for the optionalHost. This location
object will enable things to be found on this host when it is in the
configuration, but it’s presence will not cause a problem with factory
finding when the host is not configured.

* The third scope of location, the “requiredHost” can be satisfied by the
default host scoped SingleLocation, that is the host-scope location object for
requiredHost. However, we see that the fourth scope of location is “some
number of other hosts”. Therefore, we probably want to make this the
default host-scope-widened location object for requiredHost, thus taking in
the rest of the workgroup and cell (we will assume that all the homes for
these BOs and AOs will be visible in the workgroup and cell branches of
the lifecycle repository).

To summarize, we need a factory finder which is configured as follows
(indentation indicates containment):

created FactoryFinder (Consumer Support Administration)
created OrderedLocation (Consumer Support Administration)
default SingleLocation (preferedServer-server-scope)
created SingleLocation (host scoped for optionalHost)
default OrderedLocation (host-scope-widened for requiredHost)
default SingleLocation (host-scope for requiredHost)
default SingleLocation (workgroup-scope)
default SingleLocation (cel1-scope)
Our example program builds this factory finder, configured as above and
binds it into /cel1/resources/factory-
finders/customerSupportAdministration. Each section of the example has a

Step number for reference purposes. We will explain each of the steps of the
program here:

Step 1 - Demonstrates creation of a local only factory finder
We will need to create lifecycle objects in our example, and therefore
need to find the homes for lifecycle objects. We will make an

174  WebSphere: Advanced Programming Guide



assumption that this example program will be run with its bootstrap
host specifying the machine where we want this factory finder to be
created. Therefore, we will just need the host-scope factory finder for
our bootstrap (local) host. We choose to do this with a local only
factory finder created with all the default scope of location boundary
values (that is local host scope). You will notice that we do this using
the _create() method with no parameters. Alternatively, we could have
done a resolve to the name space to get a reference to the default
host-scope factory finder.

Step 2 - Demonstrates factory finding operations
In our example, we need to create a FactoryFinder, a SingleLocation
and an OrderedLocation. In this step, we use the local only factory
finder to find the FactoryFinderHome, SingleLocationHome and
OrderedLocationHome. Note that the code would be no different in
this step if the factory finder was a reference to a managed factory
finder.

Step 3 - Demonstrates obtaining lifecycle objects from the name space
We will need references to a couple of the default location objects,
specifically the preferedServer-server-scope location and the
host-scope location for the requiredHost. We do this by doing a
resolve_with_string to the name space. Although this example shows
getting location objects, the same mechanism would be used to get
factory finders from the name space, with the only difference being
the name path specified to resolve_with_string.

Step 4 - Demonstrates the creation of a SingleLocation object
In this step we create the single location for the optionalHost. This is
done using the createWithScopeString call on the
SingleLocationHome. We do not bind the new object into the name
space.

Step 5 - Demonstrates the creation of an OrderedLocation object
In this step we create the ordered location for the Consumer Support
Administration application. This is done using the
createWithLocations call on the OrderedLocationHome. The sequence
of locations we initialize it with contains a default SingleLocation, a
created SingleLocation and a default OrderedLocation. We do not bind
the new object into the name space.

Step 6 - Demonstrates the creation of a FactoryFinder object
In this step we create the factory finder for the Consumer Support
Administration application. This is done using the createWithLocation
call on the FactoryFinderHome. We request that the new factory
finder bind itself into the cell branch of the name space using the
name consumerSupportAdministration (that is at
/cell/resources/factory-finders/consumerSupportAdministration).

Chapter 6. LifeCycle Service 175



Before looking at the example, note a couple of other items. We provide a
minimal level of error checking. There is a try catch block around the entire
program which will catch and report any unexpected exception returned from
anywhere within the try block. Then, when we might expect specific
exceptions (for example, CosLifeCycle::NoFactory from a
find_factory_from_string call) we also handle these with a try catch block.
Lastly, the _narrow operation is defined to return a nil object reference if it
fails, so we check for that also. This could be considered a minimally
acceptable level of error handling. As this is intended to be a run once
program, it is probably sufficient.

The example follows:

#include <CBSeriesGlobal.hh>
#include <ILifeCycleManagedClient.hh>
#include <ILifeCyclelLocalObjectImpl.hh>

int main(int argc, char * argv[])

IExtendedLifeCycle::FactoryFinder_var localHostFF;
IExtendedLifeCycle::SingleLocationHome_var SLHome;
IExtendedLifeCycle::OrderedLocationHome_var OLHome;
IExtendedLifeCycle::FactoryFinderHome var  FFHome;

IExtendedLifeCycle::Location_var defaultSL;
IExtendedLifeCycle::Location_var defaultOL;

IExtendedLifeCycle::SingleLocation_var createdSL;
IExtendedLifeCycle::OrderedLocation_var createdOL;

IExtendedLifeCycle::FactoryFinder_var createdFF;

—
// Use try/catch to handle unexpected errors
S ——
try
{
] = mm e
// STEP 1 - create a local only FactoryFinder
== e

cout << "Step 1 - create a local only FactoryFinder" << endl;
TocalHostFF = ILifeCycleLocalObjectImpl::FactoryFinder:: create();

fm e e e e e e
// STEP 2 - get homes of Tifecycle objects by factory finding

J [ mmm e e e e
cout << "Step 2 - get homes of lifecycle objects by factory finding"

<< endl;

176  WebSphere: Advanced Programming Guide



CosLifeCycle::Factory var homeAsFactory;

// Find all three homes and narrow to correct interfaces
try
{
homeAsFactory = localHostFF->find factory from string(
"ILifeCycleManagedClient::SinglelLocation.object interface");
SLHome =
IExtendedLifeCycle::SingleLocationHome:: narrow(homeAsFactory);

homeAsFactory = TocalHostFF->find_factory from string(
"ILifeCycleManagedClient::0rderedLocation.object interface");
OLHome = IExtendedLifeCycle::OrderedLocationHome:: narrow(
homeAsFactory);

homeAsFactory = TocalHostFF->find_factory from string(
"ILifeCycleManagedClient::FactoryFinder.object interface");
FFHome = IExtendedLifeCycle::FactoryFinderHome:: narrow(
homeAsFactory);
1

catch(CosLifeCycle::NoFactory &e)
{
cout << "could not find one of the lifecycle object homes" << endl;
exit(-1);

if (CORBA::is nil(SLHome) ‘
{

// Now check to make sure all the narrows worked

CORBA::is_nil(OLHome)

CORBA::is_nil(FFHome))

cout << "could not narrow to lifecycle object homes" << endl;
exit(-1);
}

cout << "Step 3 - get default Location objects by naming resolve"
<< endl;
CORBA: :0Object_var locationAsObj;

// Get objects from name space and narrow to Location interface
try
{
TocationAsObj = CBSeriesGlobal::nameService()->resolve with_string(
"cell/resources/locations/preferedServer-server-scope");
defaultSL = IExtendedLifeCycle::Location:: narrow(locationAsObj);

TocationAsObj = CBSeriesGlobal::nameService()->resolve with_string(

"cel1/hosts/requiredHost/resources/locations/host-scope-widened");

defaultOL = IExtendedLifeCycle::Location:: narrow(locationAsObj);

catch(CosNaming: :NamingContext: :NotFound &e)

Chapter 6. LifeCycle Service

177



{

cout << "one of the location objects not found in name space" << endl;
exit(-1);

}

// Now check to make sure the narrows worked
if (CORBA::is_nil(defaultSL) ||
CORBA::is_nil(defaultOL))
{
cout << "could not narrow Tocation objects from name space" << endl;
exit(-1);

cout << "Step 4 - create a SinglelLocation object" << endl;

createdSL = SLHome->createWithScopeString(
"*IGNORE.workgroup/optionalHost.host",
"y // no relative name for binding to name space
0, // not bound into the cell tree
0, // not bound into the host tree
0); // not bound into the workgroup tree

// Make sure it was created 0K
if (CORBA::is_nil(createdSL))

{

cout << "creation of single location object failed" << endl;

exit(-1);

1
[ mmmmmmmeemem e eeee e eae e e eaeee e
// STEP 5 - create an OrderedLocation object
e

cout << "Step 5 - create an OrderedLocation object" << endl;
IExtendedLifeCycle::SequenceOfLocations seqOfLoc(3);

// Initialize the input parameter

seq0fLoc[0] = IExtendedLifeCycle::Location:: duplicate(defaultSL);
seq0fLoc[1] = IExtendedLifeCycle::Location:: duplicate(createdSL);
seq0fLoc[2] = IExtendedLifeCycle::Location:: duplicate(defaultOL);
seq0fLoc.length(3);

// Create the Ordered Location
createdOL = OLHome->createWithLocations(

seqOflLoc,

"y // no relative name for binding to name space
0, // not bound into the cell tree

0, // not bound into the host tree

0); // not bound into the workgroup tree

// Make sure it was created OK
if (CORBA::is_nil(createdOL))

178  WebSphere: Advanced Programming Guide



{
cout << "creation of ordered location object failed" << endl;
exit(-1);

cout << "Step 6 - create the FactoryFinder object" << endl;

createdFF = FFHome->createWithLocation(
createdOL,
"consumerSupportAdministration",
// relative name to bind in name space
1, // bound into the cell tree
0, // not bound into the host tree
0); // not bound into the workgroup tree

// Make sure it was created 0K

if (CORBA::is_nil(createdFF))
{
cout << "creation of factory finder object failed" << endl;
exit(-1);

cout << "failed - unknown exception occured" << endl;
exit(-1);

cout << "Success - FactoryFinder created & bound in name space"
<< endl;
exit(0);

Chapter 6. LifeCycle Service

179



180 WebSphere: Advanced Programming Guide



Chapter 7. Naming Service

A Naming Service is the main mechanism for objects on the ORB to locate
other objects by name. A name is a recognizable value that identifies an object.
The Naming Service maps names to object references.

A name-to-object association is called a name binding. A naming context is a
namespace in which the object name is unique. Every object has a unique
reference ID.

You can optionally associate one or more names with an object reference. You
always define a name relative to its naming context.

The Naming Service lets you create naming hierarchies so you can easily
locate objects. Clients can navigate through different naming context trees in
search of objects they want.

How you decide to implement a Naming Service depends on how you plan to
use the service in conjunction with other services to locate objects. A Naming
Service can be used as the backbone of an enterprise-wide filing system to
construct large naming graphs where Naming Contexts model “directories” or
“folders” and other names identify “document” or “file” kinds of objects. A
Naming Service can also be used in a more limited role and have less
sophisticated implementation, where naming contexts represent the types and
locations of services that are available in the system.

You can implement a Naming Service to be application specific, or to be based
on a variety of naming systems currently available on system platforms.

Naming objects in the distributed object system

Business objects and other resources can be assigned a name in the system
name space. This is called binding an object. After you bind an object with a
name you can find that object or resolve it by its name.

Binding an object has several advantages. Most notably it provides end-users
and programmers a way to talk about particular objects. Names essentially
form identities for objects. These names can be passed between people and
their programs either through user interfaces or in program code.

The Naming Service has these primary uses for locating:
 System resources, including collections of business objects.

© Copyright IBM Corp. 1997, 1999 181



* Business objects grouped in application naming contexts.

In both instances, the Naming Service is used to form an enterprise-wide (or
at least workgroup-wide) name space from which named objects can be
reliably found.

A fundamental concept in the Component Broker Naming Service is that the
entire name space is composed of objects bound in one or more naming
contexts. Each naming context is itself an object and can be bound to other
naming contexts to form a tree. In this fashion, the name space can be
structured into a hierarchy of names. Any object then has both a relative
name, their name within a naming context, and a compound name, the name
path representing a particular traversal through the name hierarchy from a
higher-level naming context to that object.

To further exemplify the placement of objects and naming contexts in the
name tree consider the name tree depicted in the diagram that follows. This
name tree is composed of a hierarchy of naming contexts and objects (naming
contexts contain other naming contexts and/or objects). Notice that only the
object bindings have names and not the objects themselves. Thus an object
name is by its very nature contextual. The name of an object only exists
within a given context, and then only if the object is bound to that context.
The context at the top of the tree does not have a name at all (by virtue of not
being bound to any other context). This document refers to this as the root of
the tree.

182  WebSphere: Advanced Programming Guide



/IB/FIM —»

Figure 4. General name tree organization

Name trees are useful for managing large numbers of named-objects. You can
partition the name space into categories of related objects that are meaningful
to you or your application. Such categorization makes it easier to find an
object because you only have to remember the category and the name of the
object within that context.

A consequence of instituting name trees in this fashion is that the same object
can be bound multiple times with different names or in different contexts.

Chapter 7. Naming Service 183



There are potentially positive and negative aspects to this. An object can have
different names for different applications. This might be useful for aliasing or
transparent resource sharing. In particular, if an object falls naturally within
more than one category it can be bound by the same or different name in all
categories to which it pertains. On the other hand, being bound multiple
times introduces graphs and potential cycles in the name space. This can
make traversing the name space more complex.

System name space

The system name space is the predefined name space structure that is
delivered and installed with Component Broker. This is useful for ensuring
that objects can be bound and located by well known name paths. The system
name space is depicted in the diagrams that follow.

graphic to be completed

184 WebSphere: Advanced Programming Guide



N

resources

factories

factory
finders

notify-
channels

query-
evaluators
— O

collections

locations

event-
channels

servers

o

<server-name>

applications
—» O

i

Host Name Tree

I.___.}\)

query-
evaluators

_’\)

collections

Workgroup Name Tree

_>J

J
T

Figure 5. Name space (continued)

L

Cell Name Tree \
urces
>0 urces
factories > O
factor: factories
finderg ?
—> ory
ifyn L4 finders
notify
channels .
notify-
query- channels
evaluators —
> query-
o evaluators
collections — O
collections
locations v
locations
event-
channels
event-
channels
servers
\ servers
<server-name> 9
1 .
Lo <server-name>
» O . ’
query- - » 0
ications evaluators
query-
| ——» O lications evaluators
»> O —» O
collections
—> \) collections
Y — 0

J

Chapter 7. Naming Service

185



>\

development

resources

Host Name Tree

factories

factory
finders

notify-
channels

query-
evaluators

collections

locations

event-
channels

servers
Q

1
<server-name>

:'">\)

~

Workgroup Name Tree

urces
» O

factories

factory
finders

notify-
channels

query-
evaluators

collections

locations

event-
channels

servers
Q

1
<server-name>

applications

—»0

query-
evaluators

_>Q

N

collections

Cell Name Tree

urces

» O

factories

factory
finders

notify-
channels
query-
evaluators

_>Q

collections

locations

event-
channels

servers
o

1
<server-name>

|___>o

~

cations

uery-

_>O

>0

q
evaluators

_>\)

-

1
e |
) uery-
cations gvall}llators
>0 — O
collections
—» O

Figure 6. Name space (continued)

-

collections

—e)

186  WebSphere: Advanced Programming Guide



Cell Name Tree

cell-profile ®

lan-profil
an-profile ®

Sec

fs

subsys 5
\ J

Figure 7. Name space (continued)

The name space is composed of three distinct parts, a local name tree, a
workgroup name tree, and a cell name tree. In addition, the inter-domain root can
be used to locate resources across cells. The system name space is modeled
somewhat on the UNIX file system, that is every host is intended to contain a
local name space in which a distributed name space can be mounted. The
local name tree contains the local name space. The workgroup and cell name
trees are distributed and shared name spaces. These other name trees are in
effect mounted to the local name tree.

Choosing where to bind or find named objects in the system name space is a
function of the type of the resource in question, and the visibility that should
be attributed to the resource.

Visibility of named objects

Each portion of the system name space, the host name tree, workgroup name
tree, and cell name tree, provides a different scope of visibility or sharing for
named objects. Objects bound in the host name tree are specific to the host
machine on which the host name tree resides. Objects bound in the
workgroup name tree are specific to that workgroup. And likewise, objects
bound in the cell name tree are specific to the cell. Conversely, these name
trees also represent the scope over which resources bound in each respective
tree can be shared.

Chapter 7. Naming Service 187



Before binding an object in the system name space, you should first consider
the extent to which you want that object shared. If you want to keep it
relatively specific to your host machine, then bind it in the appropriate
context under the host name tree. If you want it shared within your
workgroup, then bind it in the workgroup name tree. And if you want it
shared across your cell, then bind it in the cell name tree.

Likewise, when you go to resolve a named object, consider what scope you
want to find it in. You may find different objects bound with the same name
in different name trees. You may have to look at more than one name tree to
find the named object. One strategy you may find useful is to always start by
looking in the host name tree. If the object is not found there, then look in the
workgroup name tree, and finally the cell name tree. In this way, you can find
an object that is most specific to where your program is running.

Local and host name tree

An instance of the local name tree exists on every (server) host. In general this
includes any node capable of being configured to contain server processes,
including machines that are otherwise clients. Local name trees can be shared
amongst a group of pure client machines, that is machines that are configured
to not have any server processes. However, this latter approach may limit the
ability for client machines to build and maintain private name spaces. Thus, if
it is necessary for a client machine to have a private name space, this should
be created under a pseudo-host root for that machine within the
workgroup/hosts and/or cell/hosts contexts.

The sub-tree in the local name tree bound to host, while local to the host, is
distinguished and can be made visible to other hosts. This is referred to as the
host name tree.

Resources belonging to a host should be bound in the host/resources context
of the local name tree. This context can be further organized by resource type
or whatever is appropriate for an installation, according to the following rules:

* Factories should be bound in the resources/factories context.

* Factory finders should be bound in the resources/factory-finders context.
* Location objects should be bound in the resources/locations context.

* Event channels should be bound in the resources/event-channels context.

* Notification channels should be bound in the resources/notify-channels
context.

* Query evaluators should be bound in the resources/query-evaluators
context.

¢ Collections should be bound in the resources/collections context.

188  WebSphere: Advanced Programming Guide



A naming context for each server in the host is bound in resources/servers by
the server name. This can be used to bind resources that are specific to a
particular server. Query evaluators are bound in resources/servers/<server-
name>/query-evaluators for the server in which they exist. Collections are
bound in resources/server/<server-name>/collections for the server in which
they exist.

Prior to deployment, resources which are used in a development environment
can be bound under host/development/resources context to keep them
separate from production resources. The resources sub-tree is repeated under
the host/development/resources context to assist to binding development
resources there.

A naming context for each application installed on the host can be bound in
applications by the application name. This can be used to bind resources that
are specific to that particular application.

Every local name tree contains a binding to the inter-domain root at "...", a
binding to the cell root at both ".:" and at cell, and to the workgroup root at
workgroup. These can be used to navigate to other parts of the system name
space.

Note that the local root context is not bound to any other naming context.
This is also referred to as the absolute root for the host machine on which the
local name tree resides. The ORB::resolve_initial_references("NamingService”)
operation returns the local root for the host machine. In Component Broker,
CBSeriesGlobal::nameService() is the more commonly used mechanism to
obtain the local root naming context.

Note in particular that the local root is not bound to any other name tree. Any
object bound under the local root naming context and not under the host
name tree (that is host) cannot be accessed from any other host through
traversal of the name tree. For a remote machine to access the local root
context, the bootstrapping mechanism must be used.

Workgroup name tree

A workgroup is a logical collection of hosts whose aggregation creates some
administrative or operational synergy for the business. There is no concrete
definition for a workgroup: typically it consists of a departmental or
organizational unit of 5 to 200 hosts, although it is certainly not restricted to
either of these boundaries.

One workgroup name tree exists per workgroup. Each host belongs to only

one default workgroup bound to workgroup in the local name tree. Also, each
host name tree in a workgroup is bound by host name in the hosts context of

Chapter 7. Naming Service ~ 189



the workgroup name tree. Thus any host can get to the host name tree of any
other host in a workgroup. The workgroup binding of the local name trees
and the hosts context of the workgroup name trees are not strictly
synchronized, and so it is possible for the same host to appear in the hosts
context of more than one workgroup. A host could only discover its complete
containment relationship by examining each of the workgroup name trees
within a cell.

In the case that a pure client host needs a host name tree that pertains to it,
since by definition it does not have a host name tree of its own, can create one
in the workgroup name tree. The host name tree should be bound with the
host name in the hosts context of the workgroup name tree. This is referred to
as a pseudo-host name tree as the host name tree really does not exist on the
host machine, a pure client machine in this case.

Resources belonging to a workgroup should be bound in the resources
context of the workgroup name tree. As with the resources context in the host
name tree this context can be further organized by resource type or whatever
is appropriate for an installation. Likewise, prior to deployment, resources
that are used in a development environment can be bound in the
development/resources context to keep them separate from production
resources.

Cell name tree

A cell represents an administrative boundary for the name space. A cell
contains one or more workgroups, thus it is a super-set of workgroups.

Note that there is no binding in the workgroup name tree to the workgroup
cell. Even though only one workgroup name tree exists in a workgroup, it
exists physically under one of the local name trees, and logically under the
local name trees of all of the hosts in the workgroup. Thus, the cell for the
workgroup can always be determined from the local name tree.

Nonetheless, for administrative and visibility purposes, workgroups are
bound by workgroup name within the workgroups context of one or more
cell name trees. Thus, a host can get to the workgroup name tree of any other
workgroup in the cell to which they belong.

Similarly, the host name tree for each host in the cell is bound by host name

in the hosts context of the cell name tree. Thus any host can get to the host
name tree of any other host in the cell.

190 WebSphere: Advanced Programming Guide



Resources belonging to a cell should be bound in the resources context of the
cell name tree. As with the resources context in the host name tree this
context can be further organized by resource type or whatever is appropriate
for an installation.

Likewise, prior to deployment, resources which are used in a development
environment can be bound in the development/resources context to keep
them separate from production resources.

The remaining contexts of the cell name tree, that is, cell-profile, lan-profile,
sec, fs, and subsys, match the contents of a standard DCE cell directory name
space and can be left empty.

Navigation in the system name space

A host name tree exists on every server host machine. Typically one
workgroup name tree exists for each business group. This could be a project
area, or product, or related business activity. And a cell name tree exists for
each major business organization over which administration of information
systems is shared, for example, a site in a multi-site enterprise.

The name trees are loosely related in a hierarchy, although this is not
necessarily a strict hierarchy, and are interconnected by various bindings. For
a given host, the default cell is bound into the host’s root context at the both
cell and at ".:". The default workgroup is bound into the host’s root context at
workgroup. Each host in a workgroup is bound by its host name in the hosts
context of the workgroup name tree. Also, each host in a cell is bound by its
host name in the hosts context of the cell name tree. Similarly, each
workgroup in a cell is bound by its workgroup name in the workgroups
context of the cell name tree.

A program can resolve to an object on any host in any workgroup. For
instance, consider the case where you have two hosts, “host-A” and “host-B”,
in the same workgroup. In addition, assume you have object “object-O”
bound in the applications/LifeInsurance/Claim context on host-B. If a
program on host-A wants to find object-O on host-B it can resolve to it from
its local root context with the path

cell/workgroup/hosts/host-B/application/Lifelnsurance/Claim/object-0

As another example, consider the case where there is a third host, “host-C”,
which is in a different workgroup, “workgroup-X”. Also assume you have an
object, “object-P”, also in the applications/LifeInsurance/Claim context on
host-C. You can navigate from the local root context on host-A to object-P
with the path

cell/workgroups/workgroup-X/hosts/host-C/application/Lifelnsurance/
Claim/object-P

Chapter 7. Naming Service 191



This could have also been done with the path
cell/hosts/host-C/application/Lifelnsurance/Claim/object-P

Because host-C is also a member of the same cell.

Integration of system name spaces

In the current implementation, the system name space as built by Component
Broker has only one cell and does not provide an inter-domain root as shown
in Figure 5 on page 183, As a result, the name space enables you to traverse
only through the cell, workgroups, and hosts defined and managed by a
single System Manager. This is referred to as your Component Broker
network.

It is possible to integrate the name space of your Component Broker network
with the name spaces of other Component Broker networks, or even with
non-Component Broker name spaces. One way to do this is for your program
to obtain an object reference to a name context in another name space (for
example, using a stringified object reference) and bind it into a name context
within your Component Broker network. However, the Component Broker
System Manager provides a mechanism to do this as a configuration option
rather than your having to provide a program to accomplish the binding
between different name spaces. This is done through an object called a
Remote Name Context Binding.

Details of how to configure a Remote Name Context Binding are provided by
the WebSphere Application Server Enterprise Edition Component Broker System
Administration Guide. You are required to provide:

* IP address and port used to bootstrap to the remote host

* The name path to a remote name context (from the local root of the remote
host)

* The name path to a local name context (from the local root of the host on
which you configured the Remote Name Context Binding)

¢ Whether the local context is to be bound into the remote context or the
remote context is to be bound into the local context

¢ The name used to bind one context into the other

For example, suppose you wanted to bind a host tree for a host in another
Component Broker network into a workgroup called CB390hosts in your own
Component Broker network. The information you supply would be similar to
the following:

* Bootstrap information: bighostl.pok.ibm.com, port 900

* Remote name context: host

* Local name context: .:/workgroups/CB390hosts

192  WebSphere: Advanced Programming Guide



* Binding direction: remote into local
* Name: bighostl

Another example would be if you wanted to tie several Component Broker
networks together using an inter-domain root. In this case, you would first
have to create a name context within one of the Component Broker networks
and bind it at “...” in the local root of one of the hosts. You can then bind the
cell context for each of the Component Broker networks into the inter-domain
root as follows:

* Bootstrap information: domainmanager.austin.ibm.com, port 900

* Remote name context: ...

* Local name context: .:

* Binding direction: local into remote

e Name: cell3

Then for each of the hosts in all of the Component Broker networks you
would specify:

* Bootstrap information: domainmanager.austin.ibm.com, port 900

* Remote name context: ...

* Local name context: /

* Binding direction: remote into local

¢ Name: ...

Naming contexts

Names are bound to objects in a naming context. Naming contexts are
collections of named objects. Within the naming context, each name must be
unique. Naming contexts can be used to collect named objects that are related
by some common business purpose. This can include, for instance, the
customers, policy, and product-derivatives objects that an insurance agent has
produced as part of a prospecting analysis.

In some sense, naming contexts are very analogous to file directories that
have been expanded to include more than just file-objects. In the same way
that a UNIX file directory can contain other directories, so can a naming
context. Thus a naming context that is formed to group related named
business objects can in turn be grouped into a larger category of related
groups.

As each naming context is an object, its implementation is independent of any
other naming context object. You can, in fact, introduce different
implementations of naming contexts and bind them together within the same
name tree. This is referred to as a federated name tree. The tree forms a loose

Chapter 7. Naming Service 193



federation of naming context implementations. In this way the name tree can
be backed by different qualities of service for the variety of requirements that
may be needed.

The naming contexts that form the trunk of the system name space may
represent an intolerable potential single point of failure. These contexts may
need to be backed by a replicated data store, even at the expense of some
performance penalty. Other naming contexts may change more frequently and
therefore may need to be backed by a high-performance data store, even at
the risk of some potential failure.

Component Broker provides one implementation of naming contexts, based
on the DCE Cell Directory Service.

Object names

Objects are named within a naming context. Naming contexts are named
within other naming contexts. All names are relative names, and always
identify an object relative to a given naming context. An object can either have
a simple name (the object name within its naming context) or a compound name
(the object name within a higher-level naming context whose path leads to the
object).

The name of an object within its naming context is a simple name. In the
example name tree depicted in Naming objects in the distributed object
kystem” on page 181, “M” is a simple name referring to the object bound with
the name “M” in its naming context. This is a one-part name that is divided
into two fields: an id and a kind field. Both the id and the kind fields make up
the object name and both contribute to the uniqueness of the name in a
naming context. However, the kind field is optional and if not specified is
dealt with as a null string.

A simple name can be combined with other simple names to form a
compound name. For this reason, a simple name is also referred to as a name
component.

When a naming context is bound in another naming context, the objects it
contains can be referred to from higher-level naming context with a
compound name. A compound name is a multi-part name, composed of the
names of the intermediate naming contexts, plus the name of the object within
its naming context. Referring to the example name tree depicted in m

12

, the compound names
"B"::"F"::"M" and "F"::"M" can refer to the same object relative to different
naming contexts. The components of a compound name are themselves the
simple names of each intermediate naming context or target object in the path
to the target object.

194  WebSphere: Advanced Programming Guide



Any naming context operation accepts either a simple or compound name; the
difference is strictly in whether you supply a one or multi-part name. If you
supply a compound name in any of the naming context operations, the
naming context recursively resolves the intermediate naming contexts before
finally performing the operation on the naming context in which the target
object is bound.

The CosNaming::NamingContext interface defined by the OMG requires that
all names be supplied in the form of a sequence of structures of strings. More
specifically, the IDL for a name is as follows:

module CosNaming

{
typedef string Istring;
struct NameComponent

{
Istring id;
Istring kind;
}s

typedef sequence<NameComponent> Name;

}s

As you can imagine, constructing a name can be somewhat cumbersome. For
instance, to construct the compound name for "B"::"F"::"M" requires something
like the following code in C++:

CosNaming: :Name_var myName;

myName = new CosNaming::Name;

myName.length=3; // myName will have 3 components.

myName[0] .1d="B"; // Component 1

myName[0] . kind="";

myName[1].id="F"; // Component 2

myName[1] .kind="";

myName[2] .id="M"; // Component 3

myName[2] . kind="";

// Perform some naming context operation with myName ...

As you can see, this can make your code somewhat awkward. Component
Broker introduces support for name strings. This allows you to form your
names into a single string where the components are delimited by a forward
(/) or back-slash (\), and where the id and kind fields of a name component
are delimited by a period (.). With name strings, the name in the preceding
example can be coded as:

const char* myName = "B/F/M";
// Perform some naming context operation with myName ...

The name components “B”, “F”, and “M” are delimited with forward slashes.

Since all of these name components have a null kind field, then the kind field
can be omitted and initializes to null automatically.

Chapter 7. Naming Service 195



For every operation introduced by the CosNaming::NamingContext interface,
Component Broker has augmented the interface with a corresponding
operation, distinguished with the _with_string suffix, that takes a name string.
These operations then use the NamingStringSyntax::StandardSyntaxModel
object to convert the name string to a CosNaming::Name sequence.

The NamingStringSyntax::StandardSyntaxModel object is a local only helper
object that can be used directly on the Component Broker server. While it is
used under the covers of the Component Broker naming context, it can also
be used for other purposes as well.

As described previously, name components can be composed of two fields: an
id and a kind. This separation was introduced by the OMG to help create a
separation between a name and its semantic. The kind is intended to add
descriptive power to the name. Traditionally, operating systems and certain
applications establish naming conventions to group related names, usually as
part of a name extension. The Naming Service does not assign its own
meanings to the kind field, but both the id and kind contribute to the
uniqueness of the name.

The kind field could be used, for instance, to distinguish prospecting folders
for new accounts versus established customers. Similarly, the kind field could
also be used to distinguish different policy scenarios as follows: Given the
existence of several prospecting folders such as Heidi Sutter.new prospect,
Becky Newcombe.new prospect, and Jordan High.established prospect, and
several policy scenarios such as early retirement.base line, career
change.variation, and late retirement.variation, a compound name could be
formed to Becky’s career change policy scenario with the following name
string:

prospecting folders/Becky Newcombe.new prospect/career change.variation

Notice that names can have embedded blanks, and the id and kind field for
each name component is separated by a period.

Binding an object with a name

The following procedure demonstrates how you can bind an object in the
system name space. This is useful for giving an object a readable name.

You can only bind an object in an existing naming context. If you use a
compound name, all of the naming contexts identified in the name-path must
already exist before the object can be bound. The name that you bind must be
unique within the naming context. If the name you use is not unique within
the target naming context then a CosNaming::AlreadyBound exception is
raised.

196  WebSphere: Advanced Programming Guide



1. Decide where you want to bind the object name: Where you decide to
bind your object in the system name space can result in the requirement to
create other naming contexts to build an appropriate name tree for the
new object binding. The scope of visibility that you want the new binding
to have determines whether the binding should be placed within the Host,
Workgroup or Cell name-trees. If necessary, use the procedure described in
. i i i to create a new naming

context.

2. Resolve to the target naming context: The target naming context is the
naming context in which you want the object to be bound. You can resolve
to the target name context with the resolve() operation by means of one of
the following choices:

* If you alreadér have a reference to the target naming context you can
skip to step B without doing anything further.

* If you already have a reference to a naming context that is superior to
the target naming context then you can invoke the resolve() operation
on the superior naming context, supplying the name of the target
naming context. This principle can be applied recursively for any of the
successively more superior naming contexts.

* If you do not already have a naming context, you can get the root to the
system name space using the
ORB::resolve_initial_references(“NamingService”) operation (the CORBA
standard approach) or by obtaining it from the
CBSeriesGlobal::nameService static function.

Having acquired the root naming context, you can resolve directly to the
intended naming context by invoking the resolve() operation and
passing the complete path of intermediate naming context names as a
compound name.

3. Bind the object: Once you are positioned at the target naming context, you
can bind the object with a new name using the bind() or
bind_with_string() operation on the target naming context.

You can combine steps Bland B by supplying a compound name that includes
the path to the target name context and the name of the object being bound in
the name argument on the bind() or bind_with_string() operations. In this
case, step Pl is performed implicitly.

The example that follows shows how to create a binding to a Policy object at
the root of the system name space with the name “myPolicy”:

// Declare a reference to the Policy object
Policy var myPolicyObject;
// Create an instance of Policy object in the normal manner

Chapter 7. Naming Service 197



// Bind my Policy object at the root of the system name space.
CBSeriesGlobal::nameService()->bind_with_string(
"myPolicy", myPolicyObject);

The previous example is not particularly interesting because it does not
consider scoping or visibility. The following, more interesting, example binds
the object in the cell name tree for use by the life insurance application.
Specifically, the following example creates a binding to a Claim object with
the name “myClaim” in the “Lifelnsurance/Claims” naming context.

// Declare a reference to the Claims naming context,

// and to a Claim object.

IExtendedNaming: :NamingContext_var claimsNamingContext;
Claim_var myClaimObject;

// Create an instance of Claim object in the normal manner

// Resolve to the "Claims" naming context in the cell name tree.
claimsNamingContext =
CBSeriesGlobal: :nameService()->resolve_with_string(
"cell/applications/LifeInsurance/Claims");
// Bind my claim object in the Claims naming context.
claimsNamingContext->bind_with_string("myClaim", myClaimObject);

The last two statements in the previous example could be combined to form
the following single statement:

CBSeriesGlobal::nameService()->bind_with_string(
"cell/applications/LifeInsurance/Claims/myClaim", myClaimObject);

Resolving a named object

This procedure demonstrates how you can resolve an object in the system
name space. This is useful for finding an object with a readable name. Only
an object from an existing naming context can be resolved. If you use a
compound name, all of the naming contexts identified in the name-path must
already exist before the object can be resolved. The name you are resolving
should already have been bound.

1. Resolve to the naming context: The target naming context is the target
naming context in which you want resolve the object, that is where you
expect the object to have been bound. You can resolve to the target name
context with the resolve() operation using the following choices:

* If you already have a reference to the target naming context you can
skip to step two without doing anything further.

* If you already have a reference to a naming context that is superior to
the target naming context, you can invoke the resolve() operation on the
superior naming context, passing in the name of the target naming
context. This principle can be applied recursively for any of the
successively more superior naming contexts.

198 WebSphere: Advanced Programming Guide



* If you do not already have a naming context, you can get the root to the
system name space using the
ORB::resolve_initial_references(“NamingService”) operation (the CORBA
standard approach) or by obtaining it from the
CBSeriesGlobal::nameService static function.

Having acquired the root naming context, you can resolve directly to the
intended naming context by invoking the resolve() operation and
passing the complete path of intermediate naming context names as a
compound name.

2. Resolve the object: Once you are positioned at the target naming context,
you can resolve the object by its name using the resolve() or
resolve_with_string() operation on the target naming context.

You can combine steps i ana O by supplying a compound name that includes
the path to the target name context and the name of the object being resolved
in the name argument on the resolve() or resolve_with_string() operations. In
this case, step Wl is performed implicitly.

The following example shows how to resolve a binding to a Policy object at
the root of the system name space with the name “myPolicy”:

// Declare a reference to the Policy object, and
// a general CORBA object for intermediate use.

CORBA::0bject_var myObject;
Policy _var myPolicyObject;

// Resolve my Policy object at the root of the system name space.
myObject = CBSeriesGlobal::nameService()->resolve_with_string("myPolicy");

// Initially, the object coming back from the name context is a
// general CORBA object. It must then be narrowed to a Policy object.
myPolicyObject = Policy:: narrow(myObject);

// Verify that the narrow was successful

if (CORBA::is_nil(myPolicyObject) {
cout << "The narrow operation failed" << endl;
// do error processing here

}

The next example resolves an object in the cell name tree used by the life
insurance application. Specifically, the following example demonstrates how to
resolve a binding to a Claim object with the name “myClaim” in the
“Lifelnsurance/Claims” naming context.

// Declare a reference to the Claims naming context,

// a general CORBA object for intermediate uses

// and to a Claim object.

IExtendedNaming: :NamingContext_var cTaimsNamingContext;

CORBA::0bject_var myObject;

Claim_var myClaimObject;

Chapter 7. Naming Service 199



// Resolve to the "Claims" naming context in the cell name tree.
// Narrow to Naming Context interface
myObject = CBSeriesGlobal::nameService()->resolve with _string(
"cell/applications/LifeInsurance/Claims");
claimsNamingContext = IExtendedNaming::NamingContext:: narrow(myObject);
if (CORBA::is_nil(claimsNamingContext) {
cout << "The narrow operation failed" << endl;
exit(-1);
1

// Resolve my claim object in the Claims naming context.
myObject = claimsNamingContext->resolve_with_string("myClaim");

// Initially, the object coming back from the name context is a
// general CORBA object. It must then be narrowed to a Policy object.
myClaimObject = Claim::_narrow(myObject);

// Verify that the narrow was successful

if (CORBA::is_nil(myClaimObject) {
cout << "The narrow operation failed" << endl;
// do error processing here

}

The previous two resolve statements can be combined into the single
statement:

myObject = CBSeriesGLobal::nameService()->resolve with_string(
"cell/applications/LifeInsurance/Claims/myClaim");

Creating a new naming context

This procedure demonstrates how you can create new naming contexts bound
in the system name space. This is useful for creating a context for binding
related objects, for instance, a prospecting analysis folder or a list of brokerage
services.

You can only create a new naming context from an existing naming context.
This means you can only create new naming contexts within the system name
space. You can get a reference to any naming context in the system name
space by first getting the local root context using
ORB::resolve_initial_references (“NameService”) and subsequently resolving to
the naming context where you want to create (and bind) a new naming
context.

1. Decide where you want to create the new naming context: Your new
naming context is bound in the system name space, but you need to
decide where. This may result in needing to create other naming contexts
to build an appropriate name tree for the new naming context. Also, be
sure to consider the scope of visibility that you want the new context to
have . This determines whether the naming context should be placed
within the Host, Workgroup, or Cell name-trees.

200  WebSphere: Advanced Programming Guide



2. Resolve to the target naming context: The target naming context is the
naming context in which you want the new naming context to be bound.
You can resolve to the target name context with the resolve() operation
using one of the following choices:

* If you already have a reference to the target naming context, you can
skip to step 3 without doing anything further.

* If you already have a reference to a naming context that is superior to
the target naming context then you can invoke the resolve() operation
on the superior naming context, passing in the name of the target
naming context. This principle can be applied recursively for any of the
successively more superior naming contexts.

* If you don’t already have a naming context, you can get the root to the
system name space using the
ORB::resolve_initial_references(“NamingService”) operation (the CORBA
standard approach) or by obtaining it from the
CBSeriesGlobal::nameService static function.

Having acquired the root naming context, you can resolve directly to the
intended naming context by invoking the resolve() operation and
passing the complete path of intermediate naming context names as a
compound name.

3. Create and bind the new naming context: Once you are positioned at the
target naming context, you can create a new naming context and bind it
with a new name at the same time using the bind_new_context() or
bind_new_context_with_string() operation on the target naming context.

You can combine steps P and B by supplying a compound name that includes
the path to the target name context and the name of the new naming context
in the name argument on the bind_new_context() or
bind_new_context_with_string() operation. In this case step Bis performed
implicitly.

A bind_new_context that is passed a compound name is defined as follows:
namingContext_X->bind_new_context(<ncl;nc2;...;ncn>)

and is identical to:
(namingContext_X->resolve(<ncl;nc2;...;ncn-1>)->bind_new_context(<ncn>)

where ncl, nc2, ..., ncn-1, and ncn are NameComponents. All the
NameComponents prior to ncn need to be created first and exist in the system
name space before bind_new_context can create ncn.

The following example creates the new naming context named

“myNamingContext” using a compound name and binds it starting at the
root of the system name space:

Chapter 7. Naming Service 201



// Declare references to the new naming context.
IExtendedNamingContext: :NamingContext_var tempNamingContext;
IExtendedNamingContext: :NamingContext_var myNewNamingContext;

// Bind a new naming context named "Depts" at the root of the system

// name space.

tempNamingContext = CBSeriesGlobal::nameService(
)->bind_new_context_with_string( "Depts" );

// Bind a new naming context using compound name "Depts/myNamingContext"

// start at the root and assign the resulting new naming context to my

// reference.

myNewNamingContext = CBSeriesGlobal::nameService(
)->bind_new_context_with_string(
"Depts/myNamingContext" );

Since the bind_new_context_with_string operation was used, the returned
naming context is of type IExtendedNamingContext::NamingContext, and
therefore does not need to be narrowed to this interface. If the
bind_new_context operation was used, then the returned naming context
would be of type CosNaming::NamingContext and would have to be
narrowed if you wanted to use it as an IExtendedNaming::NamingContext.

A more interesting example would consider scoping and visibility to create a
new naming context in the cell name tree for use by the life insurance
application. Specifically, the following example names the new naming context
“Claims” in the “Lifelnsurance” naming context. By extension, it also creates
the “Lifelnsurance” naming context in the “applications” naming context.

// Declare a reference to the new naming contexts, and the application

// naming context.

IExtendedNaming: :NamingContext_var aNewNamingContext;
IExtendedNaming: :NamingContext_var applicationsNamingContext;

// Resolve to the "applications" naming context in the cell name tree.
applicationsNamingContext = CBSeriesGlobal::nameService(
)->resolve_with_string("cell/applications");

// Create and bind the LifeInsurance naming context.
aNewNamingContext =
applicationsNamingContext->bind_new_context_with_string(
"LifeInsurance");

// Create and bind the Claims naming context.
aNewNamingContext =
aNewNamingContext->bind_new_context_with_string("Claims");

The last statement utilized the aNewNamingContext variable. On the right
side of the assignment it was used it to reference the 'Lifelnsurance” naming
context. Having created and bound the new naming context to Lifelnsurance,
aNewNamingContext was then reassigned to refer to the Claims naming
context.

202  WebSphere: Advanced Programming Guide



As with any object that you bind to a naming context, new naming context
names must also be unique within the target context. If the name you assign
to the naming context you are creating is not unique within the target naming
context then a CosNaming::AlreadyBound exception is raised.

Listing the contents of a naming context

The procedure that follows demonstrates how you can list out the contents of
a naming context using the CosNaming::NamingContext::list() operation. This
is useful if you want to determine what bindings exist or to perform some
function iteratively over each entry of the naming context. The operation must
target an existing naming context.

1. Determine the maximum number of entries you want to handle at a time:
When you perform the list() operation in step 3, all of the entries in the
target naming context are set aside in an iterator object. You are iterating
through this object one or multiple entries at a time, getting that many
entries back in a sequence (a subset of the iterator) through which you can
then sub-iterate. You need to determine the number of entries you want to
get back in the sequence at a time.

Memory and performance should both be considered when determining
how many entries you want to handle at a time. Memory for the subset
sequence is allocated based on the number of entries requested. To
conserve memory, request fewer entries at a time.

Normally, the naming context you are listing, and therefore the iterator
that is returned from the list request exists in a different process than your
program, often on a different machine. Each request for another subset of
entries is affected by network latency. The higher the number of requests
required to get all of the entries in the iterator, the greater the impact on
the performance of your program. Requesting fewer entries at a time
increases the number of requests you have to make to the iterator to get
all of the entries in the iterator. If performance is an issue, request more
entries at a time. Requesting 1000 entries at a time may be a reasonable
number for many situations.

2. Resolve to the target naming context: The target naming context is the
naming context whose contents you wish to list. You can resolve to the
target name context with the resolve() operation, using one of the
following choices:

* If you alreadé/ have a reference to the target naming context you can
skip to step B.

* If you already have a reference to a naming context that is superior to
the target naming context, then you can invoke the resolve() operation
on the superior naming context, passing in the name of the target
naming context. This principle can be applied recursively for any of the
successively more superior naming contexts.

Chapter 7. Naming Service 203



* If you do not already have a naming context, you can get the root to the
system name space using the
ORB::resolve_initial_references(“NamingService”) operation (the CORBA
standard approach) or by obtaining it from the
CBSeriesGlobal::nameService static function.

Having acquired the root naming context, you can resolve directly to the
intended naming context by invoking the resolve() operation and
passing the complete path of intermediate naming context names as a
compound name.

3. List out the contents of the naming context into an iterator: Once you are
positioned at the target naming context, you can list its contents using the
list() or list_with_string() operation on the target naming context. To keep
your logic relatively simple do not extract any of the entries into a subset
sequence; leave that to be included within your while loop. However, at
the cost of some additional complexity, you can go ahead and extract the
initial subset of entries on this request to reduce (by one) the number of
times that you have to return to the iterator.

4. Get the next subset of entries from the iterator: You can do this with either
the next_one() or next_n() operation on the iterator, depending on whether
you want just one entry or more than one entry at a time.

5. Process a subset of the entries: Iterate through the sub-set of entries
performing your function on each entry as appropriate for your
application.

6. Repeat steps l and B until all of the entries in the iterator are exhausted:
The next_one() and next_n() operations return a value of True if there are
still more entries left in the iterator after the operation returns. Steps H and
B should be repeated as long as these operations continue to return True,
and B should be performed a final time when false is returned.

You can combine steps Pl and £ by supplying a compound name that includes
the path to the target name context and the name of the new naming context
in the name argument on the list() or list_with_string() operation. In this case

step fis performed implicitly.

The example that follows demonstrates listing out the contents of a naming
context, 1000 entries at a time:

// Declare the claims naming context, a bindings

// list, bindings iterator, and sundry control variables.
IExtendedNaming: :NamingContext_var claimsNamingContext;
IExtendedNaming::BindingStringlList_var bindingsList;
IExtendedNaming::BindingStringIterator_var bindingsIterator;
CORBA::ULong i;

CORBA::Boolean continueFlag = 1;

const CORBA::ULong maximumEntries = 1000;

CORBA::0bject_var tempObj;

204  WebSphere: Advanced Programming Guide



// Resolve to the claims naming context
tempObj = CBSeriesGlobal::nameService()->resolve with_string(
"cell/applications/LifeInsurance/Claims");
claimsNamingContext = IExtendedNaming::NamingContext:: narrow(tempObj);
if (CORBA::is_nil(claimsNamingContext) {
cout << "The narrow operation failed" << endl;
exit(-1);
1

// List the contents of the claims naming context into an iterator.
// Don't extract any of the entries yet.
claimsNamingContext->1ist_with_string(0, bindingsList,bindingsIterator);

// Process the returned entries in bindingsList
while (continueFlag == 1) {
// Get the next sub-set of entries
continueFlag = bindingsIterator->next_n(maximumEntries,
bindingsList);
// Process each entry in bindingsList one at a time
for (i=0; i < bindingsList->length; i++) {
// Process bindingsList[i] ...
}s // end for
}; // end while

Unbinding an object from a naming context

This procedure demonstrates how you can unbind an object from the system
name space. You can use this to remove a binding, perhaps as a part of
destroying the object itself. You can only unbind an existing object binding. If
you use a compound name, all of the naming contexts identified in the
name-path must already exist before the object can be unbound.

1. Resolve to the target naming context: The target naming context is the
naming context in which you want to unbind an object. You can resolve to
the target name context with the resolve() operation using one of the
choices that follow:

* If you alreadlir have a reference to the target naming context,you can
skip to step D.

* If you already have a reference to a naming context that is superior to
the target naming context, you can invoke the resolve() operation on the
superior naming context, supplying the name of the target naming
context. This principle can be applied recursively for any of the
successively more superior naming contexts.

* If you don’t already have a naming context, you can get the root to the
system name space using the
ORB::resolve_initial_references(“NamingService”) operation (the CORBA
standard approach) or by obtaining it from the
CBSeriesGlobal::nameService static function.

Chapter 7. Naming Service 205



Having acquired the root naming context, you can resolve directly to the
intended naming context by invoking the resolve() operation and
passing the complete path of intermediate naming context names as a
compound name.

2. Unbind the object: Once you are positioned at the target naming context,
you can unbind the object using the unbind() or unbind_with_string()
operation on the target naming context.

You can combine steps f ana B by supplying a compound name that includes
the path to the target name context and the name of the object being unbound
in the name argument on the unbind() or unbind_with_string() operation. In
this case, step lll is performed implicitly.

The example that follows demonstrates unbinding an object at the root of the
system name space. It assumes that a binding to a Policy object at the root of
the system name space with the name “myPolicy” already exists. The
unbind() operation requires only the name of the binding as an argument.

// Unbind my Policy object at the root of the system name space.
CBSeriesGlobal::nameService()->unbind with_string("myPolicy");

The example that follows demonstrates unbinding an object in the cell name
tree, specifically a Claim object with the name “myClaim” in the
“Lifelnsurance/Claims” naming context.

// Declare a reference to the Claims naming context.

IExtendedNaming: :NamingContext_var claimsNamingContext;
CORBA::0bject_var tempObj;

// Resolve to the "Claims" naming context in the cell name tree.
tempObj = CBSeriesGlobal::nameService()->resolve_with_string(
"cell/applications/LifeInsurance/Claims");

claimsNamingContext = IExtendedNaming::NamingContext:: narrow(tempObj);
if (CORBA::is_nil(claimsNamingContext) {

cout << "The narrow operation failed" << endl;

exit(-1);
1

// Unbind my claim object in the Claims naming context.
claimsNamingContext->unbind_with_string("myClaim");

The last two statements can be combined in to the single statement could be
combined as follows:

CBSeriesGlobal::nameService()->unbind_with_string(
"cell/applications/Lifelnsurance/Claims/myClaim");

Two caveats apply when unbinding an object from a naming context:

* The name that you unbind must already exist. If the name you specify does
not exist then a CosNaming::NotFound exception is raised.

206 WebSphere: Advanced Programming Guide



* Naming contexts can be unbound from a superior naming context only if
the target naming context had been previously bound using the bind,
rebind, bind_context or rebind_context operations (or their _with_string
variations). In other words, for two naming contexts A and B, if you create
a new naming context, called C, in A (using A->
create_new_context_with_string(“C”), for instance) and later bind C in B,
then you can unbind C from B. However, you cannot unbind C from A.
You can only remove C from A by destroying C, and only after C has been
emptied of any bindings it may have contained.

Local root naming context and the bootstrap host

The local root context is at the top of the name tree for every host. This is an
entry in the system name space and is the reference returned from the
ORB::resolve_initial_references(“NameService”) method and from the
CBSeriesGlobal:nameService() method.

In some sense, the local root context is like the root of a UNIX file system.
Workgroup and cell name trees are bound to the root of the host name tree
(the local root context) in the same way that remote, distributed file systems
are mounted to the root of the local file system.

Each host machine (each machine with one or more server processes) has its
own name tree. Thus, each host has a local root context. When the
resolve_initial_references() method is invoked on a host machine (in a client
or server process on that machine), that method returns a reference to the
local root context for the name tree on that host.

However, client machines (those without any server processes) do not have a
local name tree. When invoked on a client machine, the
resolve_initial_references() method must return a reference to a root naming
context on a remote host machine. It does this using a bootstrapping
mechanism.

For this to work, you must identify the name of the host whose local root
context you want to use. This host then is referred to as the bootstrap-host for
that client machine, the host from which the client is bootstrapped in to the
distributed system. The name tree local to that host, in effect, ends up being
shared by all of the client machines that identified that host as their
bootstrap-host.

You identify your bootstrap-host when you install Component Broker on the
client machine. The install utility prompts you for your bootstrap-host, and
records that information for later use by the run time. In addition, the use of
Client Styles defined with the System Manager allow for specification of a
bootstrap-host other than the one designated at install time.

Chapter 7. Naming Service 207



Since a number of client machines can resolve their local root context from a
common bootstrap host the local name tree on that host effectively becomes a
shared resource for those machines. It also becomes a potential single point of
failure. If the bootstrap-host is down then the client cannot resolve its initial
Naming Service reference, and thus cannot resolve any other resource from
the system name space. Modification of the bootstrap host specification within
the Client Style can be used to redirect the client to a different bootstrap host
when needed to bypass a failing bootstrap host.

To prevent the bootstrap-host from becoming a performance bottle-neck, the
number of client machines that target the same bootstrap-host should be
limited. As a rule of thumb, no more than 5-10 client machines should use the
same bootstrap-host. The actual limit depends on a number of factors such as
the reliability and capacity of the bootstrap-host, and the nature of your client
programs, therefore you may be able to significantly exceed this rule of thumb
in some cases.

Another approach to avoiding the potential single point of failure and
performance bottleneck problems is to configure your client as a server
machine when you install Component Broker. This results in one or more
server processes being configured, and a host name tree being automatically
built for your machine. However, this also increases the footprint
requirements for your client machine as well.

Absolute and relative names

As with traditional file systems, the Naming Service handles both absolute
and relative paths. In fact, all compound names are handled as relative names
since they are always used in the context of a specific naming context.
However, the Component Broker Naming Service has been implemented to
recognize a leading “/” (forward-slash) or “\"” (back-slash) as a special case.

If the first character in a name string is a “/” (forward-slash) or “\”
(back-slash) any naming context resolves the local root context, and continues
to resolve the remaining name from the local root context. Thus, resolving the
name applications/LifeInsurance/Claim from the local root context
navigates to the same object as resolving /applications/LifeInsurance/Claim
from the hosts context in the cell name tree.

The special case mechanism of using “/” or “\” to refer to the local root will
generally give you the result you want if you have been traversing the name
tree by starting from your local root. However, be aware that this mechanism
really means to start at the local root relative to the name context on which
the operation was invoked, which is not necessarily your local root. Therefore,
this mechanism should be avoided. In order to avoid this potential

208 WebSphere: Advanced Programming Guide



inconsistency, it is preferable to use CBSeriesGlobal::nameService() to refer to
your local root rather than using the leading “/” or “\”.

Summary of the naming context interface

The complete Component Broker naming context interface is described in the
combination of the CosNaming::NamingContext and
IExtendedNaming::NamingContext interfaces. The
CosNaming::NamingContext interface is the standard interface for naming
contexts and introduces the following operations:

* void bind(name, obj)

* void rebind(name, obj)

* void bind_context(name, naming_context)

* void rebind_context(name, naming_context)

* Object resolve(name)

* void unbind(name)

¢ NamingContext new_context()

¢ NamingContext bind_new_context(name)

* void destroy()

¢ void listthow_many, binding_list, binding_iterator)

The bind() operation can be used to bind a name to any managed object, and
the bind_context() operation can be used to bind a name to a sub-context. The
rebind() operation can be used to change the object to which a name is bound,
and the rebind_context() can be used to do the same for a sub-context. The
unbind() operation can be used to remove a binding between a name and an
object. The unbind() operation removes the binding from the naming context,
but does not remove or destroy the object itself.

The resolve() operation can be used to find what object has been bound to a
name. The new_context() operation is generally used to create a new naming
context which is not bound to any other naming context.

The bind_new_context() operation can be used create a new naming context
which is bound to a name. The destroy() operation can be used to remove the
naming context. This is functionally equivalent to the remove() operation on
any managed object. The naming context must not contain any bindings when
it is destroyed. Neither the remove() nor the destroy() operation removes any
bindings contained in the naming context: these must be un-bound separately
using the unbind() operation. The list() operation can be used to return an
iterator for all of the bindings in the naming context.

In addition, Component Broker extends the CosNaming::NamingContext
interface with the sub-interface IExtendedNaming::NamingContext. The
IExtendedNaming::NamingContext interface introduces the following
operations:

Chapter 7. Naming Service 209



* void bind_with_string(name, obj)

* void rebind_with_string(name, obj)

* void bind_context_with_string(name, naming_context)

* void rebind_context_with_string(name, naming_context)
* Object resolve_with_string(name)

* void unbind_with_string(name)

* NamingContext bind_new_context_with_string(name)

* void list_with_string(how_many, binding_list, binding_iterator)

All of these operations accept names in the form of a name-string and
perform exactly the same functions as their counterparts introduced in the
CosNaming::NamingContext interface.

To support converting between name-strings and the standard
CosNaming::Name name-structures, Component Broker introduces the
NameStringSyntax::StringName and accompanying
NameStringSyntax::StandardSyntaxModel interfaces with the following
operations:

* NameString name_to_string(name)

* CosNaming::Name string_to_name(name)

Implementing the Naming Service

The Component Broker Naming Service has very few configuration
requirements. Most of the configuration work that needs to be performed is
done automatically during installation and server initialization

Component Broker naming contexts map to DCE/CDS directories. Using the
DCE Director, you can navigate and examine the Component Broker system
name space. See the WebSphere Application Server Enterprise Edition Component
Broker System Administration Guide for information on the structure of the
Component Broker system name space within DCE/CDS.

You have control over which bootstrap-host is used by which client machine
by specifying this when the client machine is installed. Component Broker
administrators should plan out their system topology, denoting which hosts
will be server hosts (containing one or more server processes) and which will
be client machines (containing no server processes). This can be configured
with the Component Broker System Management application, see the
WebSphere Application Server Enterprise Edition Component Broker System
Administration Guide for more information. As new client machines are added
to the topology, the administrator should explain which bootstrap-host that
particular client should be using so that this can be entered in during client
installation.

210  WebSphere: Advanced Programming Guide



Integrity of the system name tree

The integrity of the name space is compromised whenever the state of the
name space and the state of the objects in the system do not agree, for
whatever reason. For example, there may be objects which exist that are
supposed to be bound into the name tree for which the bindings no longer
exist. This leads to the object not being found by the requester when the name
tree is used to locate it. Another problem occurs when a binding in the name
space exists and the object to which it refers no longer exists. When the
reference is found from the name space, the subsequent usage of the object by
the requester fails because the object no longer exists. In addition, there are
other more subtle inconsistencies which can also cause problems.

One approach to handling the potential integrity problem would be to back
up the entire system state and name tree state at a point in time when there
were no integrity problems. However, this is impractical in any environment
that has more than a few hosts in it, and is intolerable in a production
environment. The entire system would have to be quiesced at one time,
backed up and then restarted. Even if this was acceptable, a subsequent minor
inconsistency in the name tree would require reverting the entire system back
to the previous state when it was last backed up.

Another approach is to subdivide the environment so that it can be backed up
a piece at a time, such as an individual host or even an individual server. The
problem with this approach is that the structure of the name tree is such that
the bindings in the name tree cannot be accurately associated with a
particular host or server.

The Component Broker System Manager provides facilities to address these
issues. The system name space can be resynchronized with the state of objects
in the running system when an integrity problem is encountered. See the
WebSphere Application Server Enterprise Edition Component Broker System
Administration Guide for a more in depth explanation of the potential
situations that can be encountered and the facilities provided to resynchronize
the name space with the rest of the object environment.

The string syntax object

The [ExtendedNaming::NamingContext interface introduced by Component
Broker utilizes a string syntax form of the CosNaming::Name (which is a
sequence of structures) that is used by the CosNaming::NamingContext
interface. The string syntax is a much easier form to use than the
CosNaming::Name and simplifies the code you need to write to invoke
methods on a naming context object. It also provides a simpler way to
document and discuss specific name paths, such as we have done in the other
sections of this Naming Service documentation.

Chapter 7. Naming Service 211



For the majority of your usage of string syntax names, you will simply define
the appropriate string and pass it to an IExtendedNaming::NamingContext
object using one of the xxxx_with_string methods. However, Component
Broker also provides an object which you may choose to use to do
conversions between the string form and CosNaming::Name form of names if
needed. The string syntax object is a helper, local only object that can be
instantiated strictly to convert names back and forth between their two forms.
This object was introduced to let you specify names as a string, using
embedded delimiters and separators, and easily convert these into a
name-structure by parsing the string based on a particular syntax model.

Architecture of the string syntax object: The interfaces introduced by
Component Broker are intended to provide an architectural basis by which
many different syntaxes can be introduced for the representation of the string
form of a name. However, the current implementation of Component Broker
only supports a single syntax, which is modeled after the X/Open Federated
Naming (XEN) specification standard Composite Name String Syntax. We will
refer to this syntax supported by Component Broker as the Default Syntax
Model. The extensible architecture introduced by Component Broker enables
two forms or variation from the default syntax model:

1. Using a totally different parsing algorithm

2. Using the same parsing algorithm but with a customized set of characters

The following is a diagram of the hierarchy of interfaces used to provide this
architecture:

NamingStringSyntax::StringName

? ?

NamingStringSyntax::StandardSyntaxModel MySyntax::MyParsingAlgorithm

7

IExtendedNamingStringSyntax::StandardSyntaxModel

Figure 8. String syntax object architecture

The NamingStringSyntax::StringName is a base-interface that introduces two
methods for converting names between their two forms. At this level, the
actual syntax of the string form of the name is not defined. The
NamingStringSyntax::StandardSyntaxModel interface introduces the string
syntax which is parsed similar to the XFN syntax, but with the ability to
customize the characters used by the parsing algorithm. The

212 WebSphere: Advanced Programming Guide



IExtendedNamingStringSyntax::StandardSyntaxModel interface defines the
actual implementation used by Component Broker, and it customizes the
characters such that the syntax is similar to the XFN syntax. The
MySyntax:MyParsingAlgorithm shows how the
NamingStringSyntax::StringName interface could be extended with a totally
different set of parsing rules (this is not an actual interface in Component
Broker).

The NamingStringSyntax::StringName interface introduces two methods used
for conversion between the two forms of names. The methods are:

* string_to_name

* name_to_string

The NamingStringSyntax::StandardSyntaxModel interface introduces attributes
which are used to define the customizing aspects of the parsing rules. The
attributes are:

e syntax_direction

* syntax_absolute_prefix

s syntax_reserved_names

* syntax_delimiter

* syntax_separator

* syntax_begin_quote

* syntax_end_quote

* syntax_escape

e syntax_code_set

* syntax_locale_info

The IExtendedNamingStringSyntax::StandardSyntaxModel interface introduces
the _create static function which is used to instantiate an instance of the local
only helper object configured as the default syntax model.

Standard syntax model grammar: This section describes the full grammar for
the standard syntax model. In this syntax model, name strings can be used to
specify a compound name, that is, a name that represents a traversal path
through the name tree. The parsing rules for the strings are customized by
values specified as attributes. Component Broker implements this grammar
with a single set of values for the attributes, which is referred to as the default
syntax model.

As an overview of the default syntax model, the grammar is straight forward.
Name components are delimited by either a forward-slash (/) or a back-slash
(\). The id and kind fields are separated by a period (.). Special characters such
as quotes, double quotes, forward-slashes, back-slashes, and periods can be
escaped in unquoted strings. Alternately, name components containing any of
these special characters can be quoted with either single or double quotes.

The standard syntax model rules for parsing string names are defined as:

Chapter 7. Naming Service 213



10.

11.

12.

13.

14.

Absolute-prefix, reserved-name, delimiter, separator, begin-quote,
end-quote and escape strings are distinguished elements.

An absolute-prefix at the beginning of the string is parsed as is. That is, it
forms its own name component.

The escape string immediately preceding a delimiter, separator,
begin-quote, end-quote or escape string escapes those elements even
within a quoted string.

In an unquoted string, an unescaped delimiter separates two name
components.

Within a name component, unquoted reserved names are parsed as is.
That is, they are not separated even if they contain a separator.

If an escaped delimiter occurs within an unquoted name component, the
delimiter is treated as a character value in the name component.

Within an unquoted name component, the first unescaped separator
separates the id and kind fields of the name component.

If an escaped separator occurs within an unquoted string, the separator is
treated as a character value in the name component.

An unescaped begin-quote preceding an id or kind field of a name
component must be matched by a unescaped end-quote at the end of the
field. If there are multiple values for begin-quote and end-quote, a
specific begin-quote value must be matched with its corresponding
end-quote value. An unmatched quotation raises an exception.

Other quotes (not including the end-quote used to close the quotation)
embedded in a quoted string are treated as character values in the id or
kind field.

Begin-quotes or end-quotes within an unquoted name component id or
kind field are treated as simple characters and do not need to be matched.

If an escaped or unescaped delimiter occurs within a quoted string, the
delimiter is treated as a character value in the name component id or kind
field.

If an escaped or unescaped separator occurs within a quoted string, the
separator is treated as a character value in the name component id or kind
field.

If an escaped escape occurs within a quoted or unquoted string, the
escape is treated as a character value in the name component id or kind
field.

The following attributes apply to the standard syntax model and are
described with the default values which make up the default syntax model
(the only model currently supported by Component Broker).

214  WebSphere: Advanced Programming Guide



syntax_direction
Indicates the direction in which the parsed string is loaded into
components of the CosNaming::Name. (Default value: kLeftToRight)

syntax_absolute_prefix
The string(s) that define absolute prefixes. Absolute prefixes are used
to denote an absolute name that is applied to a local root context.
(Default value: “/”, “\"”)

syntax_reserved_names
The string(s) that define reserved names. Reserved names are not

7an

parsed, even if they contain separator characters. (Default value: “.:”,

n //)

syntax_delimiter
The string(s) that are used to separate name components. If more than
one character is specified then either can be used interchangeably.
(Default value: “/”, “\"”)

syntax_separator
The string(s) that are used to separate the id and kind fields of a name
component. If more than one character is specified then either can be
used interchangeably. (Default value: “.”)

syntax_escape
The character that is used to escape the parsing rules. Only one
character can be specified. (Default value: “\”)

syntax_begin_quote
The string(s) that define the beginning of a quoted string. If more than
one character is specified then either can be used interchangeably, but
they must be matched with a corresponding syntax_end_quote
character (as determined by their index position within the character
set). (Default value: """ (double quote), """ (single quote))

syntax_end_quote
The string(s) that define the end of a quoted string. The number of
characters specified must match the number of characters specified in
syntax_begin_quote. If more than one character is specified then either
can be used interchangeably, but must match the corresponding
syntax_begin_quote character used. (Default value: """ (double quote),
""" (single quote))

syntax_code_set
Defines the code set used for parsing the string. (Default value:
kISOLatin1)

syntax_locale_info
Defines the locale used for parsing the string. (Default value:
kUS_ENG)

Chapter 7. Naming Service 215



The preceding syntax rules and attributes are represented by the following
modified BNF:

<name_string>::= [ <absolute prefix> ] <relative_name>;
<relative_name>::= { <name_component> <delimiter> }*
<name_component>;
<name_component>::= <reserved_name>
<name_id> [ <separator> [ <name_kind> ]];
<name_id>::= <component_string>;
<name_kind>::= <component_string>:
<component_string>::= <unquoted_string>
| <begin quote> <quoted string> <end quote>;
<unquoted_string>::= <opening_char> <unrestricted_char>x;
<quoted_string>::= <nonclosing_char>+;
<opening_char>::= any character, including
<escape_sequence>, except
<begin_quote>, <end quote>, <delimiter>, or
<separator>;
<unrestricted char>::= <opening_char> | <begin quote> | <end quote>
|<delimiter> ;
<nonclosing_char>::= any character, including
<escape_sequence>, <begin_quote>,
<delimiter>, or <separator>,
except <end_quote> corresponding
to <begin_quote> of
<quoted_string>;
<escape_sequence>::= <escape> <delimiter>
<escape> <separator>
<escape> <begin_quote>
<escape> <end_quote>
<escape> <escape>;
<absolute_prefix>::= defined in syntax_absolute_prefix
attribute;
<delimiter>::= defined in syntax_delimiter attribute;
<reserved_name>::= defined in syntax_reserved names attribute;
<separator>::= defined in syntax_separator attribute;
<begin_quote>::= defined in syntax_begin_quote attribute;
<end_quote>::= defined in syntax_end quote attribute;
<escape>::= defined in syntax_escape attribute;

Converting between a name-string and a name-structure: This procedure is
used to convert a name-string to a name-structure, or vice versa, using the
string-syntax object. This is useful when you want to limit yourself to using
only the standard CosNaming::NamingContext interface, but want to allow
the user to specify names in the form of a string. The string-syntax object can
be used to convert the user-specified string-name to a name-structure as
required by the standard CosNaming::NamingContext() operations. The
string-syntax object is a local only object and can only be created on a CORBA
C++ client or in a Component Broker server (from a C++ or Java business
object). The usage scenario is as follows:

1. Create an instance of a string-syntax object: The string-syntax object is a
local only object and should be created using the normal Component
Broker lifecycle model for local only objects. That is, invoke the _create

216  WebSphere: Advanced Programming Guide



static member function on the
IExtendedNamingStringSyntax::StandardSyntaxModel class.

2. Convert the name-string to a name-structure: Given a name-string
conforming to the default syntax model grammar, you can convert it to a
name-structure (a CosNaming::Name) using the string_to_name()
operation.

3. Or, convert the name-structure to a name-string: Conversely, you can
convert a name-structure to a name string that conforms to the default
syntax model grammar using the name_to_string() operation.

The following example demonstrates conversion of
/cell/applications/Lifelnsurance/Claims/myClaim, from a name-string into
a name-structure:

// Declare a string-syntax object, and a name-structure

IExtendedNamingStringSyntax::StandardSyntaxModel var anSSO;
CosNaming: :Name_var aNameStructure;

// Create a string-syntax object
anSSO = IExtendedNamingStringSyntax::StandardSyntaxModel:: create();

// Set and convert the name-string to a name-structure
aNameStructure=anSS0->string_to_name(
"cell/applications/Lifelnsurance.app/Claims/myClaim");

At this point, the name-structure is composed of the five elements with the id
and kind field for each element set as follows:

1) id = "cell"

kind = ""

2) id = "applications"
kind = ""

3) id = "LifeInsurance"
kind = "app"

4) id = "Claims"

kind = ""

5) id = "myClaim"

kind = ""

The corresponding kind field in each case is an empty string (i.e. “”). Note that
if the name-string is not formed in accordance to the standard syntax model,
an lllegalStringSyntax or UnMatchedQuote exception is raised.

The following example demonstrates conversion of a name-structure into a
name-string:
// Declare a string-syntax object, a name-string and a name-structure
IExtendedNamingStringSyntax::StandardSyntaxModel_var anSSO;

string aNameString;
CosNaming: :Name_var aNameStructure;

// Create the string syntax object and name structure

Chapter 7. Naming Service 217



anSS0 = IExtendedNamingStringSyntax::StandardSyntaxModel:: create();
aNameStructure = new CosNaming::Name;

// Initialize the name-structure
aNameStructure->length=5;// The name-structure will have 5 elements

aNameStructure[0].id =CORBA::string_dup("cell");
aNameStructure[0] .kind=CORBA: :string_dup("");

aNameStructure[1].id =CORBA::string dup("applications");
aNameStructure[1].kind=CORBA::string_dup("");

aNameStructure[2].id =CORBA::string dup("Lifelnsurance");
aNameStructure[2] .kind=CORBA: :string_dup("app");

aNameStructure[3].id =CORBA::string dup("Claims");
aNameStructure[3].kind=CORBA::string_dup("");

aNameStructure[4].id =CORBA::string_dup("myClaim");
aNameStructure[4] .kind=CORBA: :string_dup("");

// Convert the name-structure to a name-string
aNameString=anSSO->name_to_string(aNameStructure);

At this point, aNameString should be
cell/applications/Lifelnsurance.app/Claims/myClaim.

One aspect of conversion between name strings and name structures to be
aware of is the proper handling of names which contain imbedded delimeter
or separator characters. This is most often seen with host names. For example,
given myHost.austin.ibm.com as a host name within a name string, the dot
(”.”) between myHost and austin will be interpreted as a separator. Therefore,
the string: cel1/hosts/myHost.austin.ibm.com/applications would be
converted to:

1) id = "cell"
kind = ""
2) id = "hosts"
kind = ""

3) id = "myHost"

kind = "austin.ibm.com"
4) id = "applications"
kind = ""

However, when a host binds itself into the hosts context of the cell name tree,
the entire host name is used for the id field, such as:

id = "myHost.austin.ibm.com"
kind = ""

218  WebSphere: Advanced Programming Guide



This does not match element three in the above name, and therefore the
appropriate string syntax for the above string would be
cell/hosts/'myHost.austin.ibm.com'/applications which results in a name
of:

1) id = "cell"

kind = ""

2) id = "hosts"

kind = ""

3) id = "myHost.austin.ibm.com"
kind = ""

4) id = "applications"

kind = ""

Chapter 7. Naming Service 219



220 WebSphere: Advanced Programming Guide



Chapter 8. Security Service

This section includes the following topics:

e Principals credentials and secure associationd
-

Security in the distributed object system

A fundamental concern in distributed systems in general is how to protect
data and business assets available through the information system. This is no
less true in distributed, object-oriented systems. Valuable information exists in
business objects. This information can be manipulated and accessed remotely
and therefore must be protected from unauthorized use.

Component Broker provides the Security Service to help protect these assets.
The Security Service is used primarily to prevent end users from accessing
information and resources that they’re not authorized to use. This
predominantly covers distributed objects, but by extension includes any of the
information and resources from other non-OO, or non-distributed sources that
those business objects use.

In many cases Component Broker is used to wrapper legacy information
system resources, such as business applications and enterprise data. Often,
those resources have always been centralized resources, held in a physically
secure environment or with restricted access over controlled access channels.

A key objective of object-oriented programming and business re-engineering is
to provide for the abstraction of business resources that enables them to be
used more readily in new applications. This has the effect of proliferating
access to those legacy resources. Access may be increased to resources that
have been traditionally (either intentionally or due to the limitations of
technology) more restricted. Thus, the solution has the potential for
undermining the protection that these resources require and have traditionally
enjoyed.

The Security Service must compensate for any protections that may be
otherwise lost due to the increased accessibility of business objects in a
distributed object system. At the same time, any benefit an application
programmer receives by using Component Broker should not be taken away

© Copyright IBM Corp. 1997, 1999 221



by the Security Service, except to prevent unauthorized access to resources. By
extension, this means that if security policies for a set of legacy resources have
already been established and are in use in existing production systems, then it
should be possible to use those same policies to protect resources in the object
system; it shouldn’t be necessary to re-specify existing security policies or to
keep two sets of policies in sync.

Object systems tend to introduce many more independent objects than
equivalent procedural systems. Procedural systems tend to wrap up
individual objects into larger-grained artifacts, such as resources managers or
database tables. The presence of so many objects introduces the potential for
administrative scalability issues that present their own security exposures:
when administration becomes overwhelming, administrators just stop
administering and objects remain unprotected. The Security Service guards
against this threat by factoring security policies across a server, thus forming
an administrative boundary for controlling unauthorized access to the objects
contained within that server, and to the resources that are used by that server.

Component Broker security provides support for authenticating users to
prevent unauthenticated access to secure servers. It can certify to business
objects the principal on whose behalf any given method request is being
made. The Security Service also provides support for protecting message
traffic between clients and server, and between servers and servers.

Principals, credentials, and secure associations

Both users and servers can be authenticated to the system. Either users or
servers can have identities, meaning either can be identified and
access-controls exercised for any resources that are accessed on their behalf.
Any entity that can be identified and authenticated in the system is referred to
as a principal. A principal can be either a client-user or a server process. It can
also be other software or abstract entities if those things can be associated
with an identity and they have the means for authenticating themselves.

When a principal has been authenticated, the Security Service creates a
credential for that principal. A credential is an object that represents the
authenticity of a given principal. As such, it represents the principal, but only
after the principal has been certified as being authentic.

In a secure server, all activities occur on behalf of a given principal. This is
achieved in the following manner: When a principal is authenticated at a
client (a client-principal), a credential is formed for that client. The credential
is associated with the process. The credentials are communicated to the server
along with any method requests that originate from that server, and the

222 WebSphere: Advanced Programming Guide



thread of execution in the server is tagged with the credentials of the
client-principal that originated the request.

The Security Service is able to efficiently and safely communicate the
credentials for the client-principal by establishing a secure association between
the client and the server. Each client-server forms a unique association, even
when the server acts as a client to another server. The secure-association is
also used to protect any message traffic between the client and the server
processes.

Manipulating credentials

As discussed in EPrinci i iations”

when a principal is authenticated, a credential is formed to represent that
principal. At a client, the credential formed when you authenticate the
principal becomes the default credential for the process. It is theoretically
possible for each object to have its own-credentials, but in this release of
Component Broker any object’s own-credentials are synonymous with the
default-credential for the process. In the absence of a thread-specific credential
the default-credential is used for any activities performed in the client, or for
any method requests invoked on a remote object.

If another principal is authenticated, the new credential replaces the previous
as the process” default credential. However, unless the previous credential is
destroyed, it remains a valid credential, at least until the credentials expire or
are explicitly removed by a program. Once a credential is formed, it can be
obtained by a local program.

Developing applications that use the Security Service
VisualAge C++
For client applications that will run as a pure Component Broker C++

clients, the Security Service client library, somsccli.lib, should be
linked in your client application makefile.

For server applications that will run inside a Component Broker C++
server process, the Security Service server library, somscsli.lib, should
be linked in your server application makefile.

Microsoft Visual C++

The Security Service client library is not available for ActiveX clients
due to a packaging problem. Even though the Security Service APIs
are not available, ActiveX clients can still be enabled with security.

Chapter 8. Security Service 223



Getting a current object

This procedure demonstrates how you can obtain a security Current object
with which you can obtain or manipulate the credentials that you want to use
in your program.

You can obtain a Current at either the client or in the server. However, you
can only get a Current object if the Security Service run time has been
installed and the ORB has been initialized.

Obtain a Current object using the following steps:

1. Obtain a reference to the CORBA::ORB object. You can obtain a reference
to the CORBA::ORB object by invoking the CORBA::ORB_init static
function (the CORBA standard approach) or by obtaining it from the
CBSeriesGlobal::orb static function (this static function is set by the
CBSeriesGlobal::Initialize() method).

2. Get a CORBA::Current. Use the CORBA::ORB::resolve_initial_references()
method to get a Current object, passing in the name of the security
current: “SecurityCurrent”.

3. Narrow to the security Current interface. Narrow the Current to the
security Current interface. In fact the Security Service introduces two
derivatives of the Current interface: SecurityLevell::Current, and
SecurityCurrent. You should narrow to the SecurityCurrent interface as a
matter of practice.

The following example demonstrates how to obtain a SecurityCurrent object:

// Declare a reference to the CORBA::Current and the
// SecurityCurrent objects.

CORBA::0bject_var object;
SecurityCurrent_var securityCurrent;

// Use the CBSeriesGlobal::orb to get a CORBA::Current

object = CBSeriesGlobal::orb()->resolve_initial_references(
"SecurityCurrent");

// Narrow to the SecurityCurrent.

securityCurrent = SecurityCurrent:: narrow(current);

Acquiring the security attributes of a credential

This procedure demonstrates how you can acquire the security attributes of a
credential. This is used to determine the security name and host identity of
the principal that invoked the current method request, including the host
where the principal is logged in.

224  WebSphere: Advanced Programming Guide



This procedure is performed on a Credentials object. The security name and
host name are security attributes that have been introduced by Component
Broker. Therefore, they are identified by the IBM_BOSS_FAMILY_DEFINER, in
attributes family 2. The security run time must be installed and the ORB must
be initialized.

Acquire the security attributes of a credential using the following steps:

1. Get a credentials object. Use the procedure described in m

2. Get the desired attribute. Use the
SecurityLevel2::Credentials::get_attributes() method to get the desired
attributes from the credentials. Component Broker introduces two security
attributes, CredAttrSecName, and CredAttrHostName. These are defined
in family 2 where IBM_BOSS_FAMILY_DEFINER is the definer of this
family.

The following example demonstrates how to acquire the received-credentials,
and then acquire the principals security name and host name:

#include <IExtendedSecurity.hh>

#include <CBSeriesGlobal.hh>

// Declare a reference to the CORBA::Current, SecurityCurrent,

// Credentials and CredentialsList objects, and Atributes, AttributeList,
// and AttributeTypelLists.

CORBA::0bject_var object;

SecurityCurrent_var securityCurrent;
SecuritylLevel2::CredentialsList_var receivedCredentialsList;
SecuritylLevel2::Credentials_var receivedCredentials;
::CORBA: :String securityName;

::CORBA: :String hostName;

Security::AttributelList_var attributesList;
Security::AttributeTypelList attributesTypeList(2);

// Use the CBSeriesGlobal::orb to get a CORBA::Current

object = CBSeriesGlobal::orb()->resolve_initial_references(
"SecurityCurrent");

// Narrow to the SecurityCurrent.

securityCurrent = SecurityCurrent:: narrow(current);

// Get the received-credentials list

receivedCredentialsList = securityCurrent->received_credentials();
// Pull out the received-credentials from the first (0th) position
receivedCredentials = (*receivedCredentialsList)[0];"

// Get the principal’s security name and host name.

Chapter 8. Security Service 225



// Set the length to 2
attributesTypeList.length(2);
// Create an entry for security name

attributesTypelList[0].attribute_family.family definer=
IExtendedSecurity::IBM_BOSS_FAMILY_DEFINER;

attributesTypelList[0].attribute_family.family=2;

attributesTypeList[0].attribute_type=
IExtendedSecurity::CredAttrSecName;

// Create an entry for host name

attributesTypeList[1].attribute_family.family definer=
IExtendedSecurity::IBM BOSS_FAMILY DEFINER;

attributesTypelList[1].attribute_family.family=2;

attributesTypelList[1].attribute type=
IExtendedSecurity::CredAttrHostName;

// Get the attributes

attributesList = receivedCredentials->get attributes(
attributesTypelList);

// Extract the security name

securityName = CORBA::string_dup(
(::CORBA::String) &(*attributesList)[0].value[0]);

// Extract the host name

hostName = CORBA::string_dup(
(::CORBA::String) &(*attributesList)[1].value[0]);

The following is the proper way to create a valid Security::AttributeTypeList
for get_attributes() of a Credentials object:

org.omg.Security.AttributeType[] attrTypelList =
new org.omg.Security.AttributeType[2];

org.omg.Security.ExtensibleFamily attribute_family0® =
new org.omg.Security.ExtensibleFamily((short)8, (short)2);

org.omg.Security.ExtensibleFamily attribute_familyl =
new org.omg.Security.ExtensibleFamily((short)8, (short)2);

attributeTypelList[0] =

new org.omg.Security.AttributeType(

attribute_family0, com.ibm.IExtendedSecurity.CredAttrSecName.value );
attributeTypeList[1] =

new org.omg.Security.AttributeType(

attribute_familyl, com.ibm.IExtendedSecurity.CredAttrHostName.value);

226  WebSphere: Advanced Programming Guide



Acquiring a credential on a thread

This procedure demonstrates how you can acquire a credential on a thread of
execution. This is used to determine the identity of the principal that issued
the request, the identity of the server, or the identity used for any further
method requests on downstream servers.

Any given thread of execution at either the client or the server may be
associated with one of the following credentials:

Received-credential
The received-credential identifies the principal for whom this request
is being performed. In the server, the received-credential is the
credential received with the currently executing method request. In
the client, the received credential is the client’s own-credential (since
no up-stream method request drove the current thread of execution).

Invocation-credential
The invocation-credential is the credential that accompanies any
further down-stream method requests made from this thread of
execution. In the server, when delegation is enabled, the
invocation-credential is automatically set to the received-credential.

Own-credential
The own-credential is also known as the process’ default-credential.
This credential identifies the principal associated with the process. In
the server, this is the server-principal. In the client, this is the
client-principal. Note, that in the server, the own-credential can
become the invocation-credential when delegation is disabled

To perform this procedure you need to decide which credential you want, the
security run time must be installed and the ORB must be initialized.

To acquire a credential on a thread of execution, use the following steps:
1. Obtain a security Current object: Get a security Current object.

2. Acquire the desired Credential: Use the
SecurityCurrent::received_credentials attribute, or the
SecurityCurrent::get_credentials() method to get the credentials. Use the
former attribute if you want the received-credentials. Use the latter
method if you want the invocation- or own-credentials.

3. If acquiring received-credentials, select the first credentials from the
credentials list: The SecurityCurrent::received_credentials attribute returns
a CredentialsList. Component Broker only carries one received-credentials.
The received-credentials is in the first position of the credentials list.

Acquire the received-credentials using the following steps:

Chapter 8. Security Service 227



#include <IExtendedSecurity.hh>

#include <CBSeriesGlobal.hh>

// Declare a reference to the CORBA::Current, SecurityCurrent,
// and Credentials and CredentialsList objects.

CORBA::0bject_var object;

SecurityCurrent_var securityCurrent;
SecuritylLevel2::CredentialsList_var receivedCredentialsList;
SecuritylLevel2::Credentials_var receivedCredentials;

// Use the CBSeriesGlobal::orb to get a CORBA::Current

object = CBSeriesGlobal::orb()->resolve_initial_references(
"SecurityCurrent");

// Narrow to the SecurityCurrent.

securityCurrent = SecurityCurrent:: narrow(current);

// Get the received-credentials list

receivedCredentialsList = securityCurrent->received credentials();

// Pull out the received-credentials from the first (0th) position
receivedCredentials = receivedCredentialsList[0];

Acquire the invocation-credentials using the following steps:

#include <IExtendedSecurity.hh>

#include <CBSeriesGlobal.hh>

// Declare a reference to the CORBA::Current, SecurityCurrent,
// and Credentials objects.

CORBA::0bject var object;
SecurityCurrent_var securityCurrent;
Securitylevel2::Credentials_var invocationCredentials;

// Use the CBSeriesGlobal::orb to get a CORBA::Current

object = CBSeriesGlobal::orb()->resolve_initial_references(
"SecurityCurrent");

// Narrow to the SecurityCurrent.

securityCurrent = SecurityCurrent:: narrow(current);
// Get the invocation-credentials

invocationCredentials = securityCurrent->get credentials(
Security::InvocationCredentials);

Acquire the own-credentials using the following steps:

#include <IExtendedSecurity.hh>

#include <CBSeriesGlobal.hh>

// Declare a reference to the CORBA::Current, SecurityCurrent,
// and Credentials objects.

228  WebSphere: Advanced Programming Guide



CORBA: :0Object_var object;
SecurityCurrent_var securityCurrent;
SecuritylLevel2::Credentials_var ownCredentials;

// Use the CBSeriesGlobal::orb to get a CORBA::Current

object = CBSeriesGlobal::orb()->resolve_initial_references(
"SecurityCurrent");

// Narrow to the SecurityCurrent.
securityCurrent = SecurityCurrent:: narrow(current);
// Get the own-credentials

ownCredentials = securityCurrent->get_credentials(
Security::SecOwnCredentials);

Access control

Component Broker, in this release, supports a coarse-grained access control
model and a fine-grained access control model. The access to business objects
is controlled at the server level based strictly on whether the client principal
has been authenticated in the coarse-grained access control model. More
specifically, the enterprise determines whether your business object must be
secured or not. If so, an enterprise administrator should configure the server
where your objects reside to be secure using the Component Broker system
management facility.

Any objects created in a secure server are protected. The client principal must
be authenticated prior to being allowed to invoke method requests against
objects in the secure server. The same policy applies to all principals for any
object in the server. The fine-grained access control model in Component
Broker allows the enterprise administrators to control access to the individual
method on each object. The fine-grained access control model is provided by
the Component Broker authorization service which is based on the IBM policy
Director authorization service, and so fine-grained access control can only be
enabled if the IBM PolicyDirector has been installed in your configuration. In
fact, while the fine-grained access control model we’re introduced here is
much finer-grained than what we had in the coarse-grained access control
model, it is just one refinement of control. The fine-grained access control
model, for example, will not allow the customers to define their own
required-rights on individual method (beyond those that are assigned by
default by the system), nor will it allow the customer to apply different
authorization policies to different object instances of the same class of object.
Conversely, it is sometimes useful to simply control who can access the objects
in a given server.

Chapter 8. Security Service 229



Finer grained control over who can access functions in your object can be
obtained by acquiring the credentials of the principal on whose behalf the
request is being made, and testing that against access policies that are relevant
to your application. For instance, if you are developing a claims-inquiry
function, you might want to test for whether the person requesting the
inquiry is a beneficiary of the claim. If so, then you might allow the requestor
to receive personal information about the claimant that you do not allow an
adjuster to see.

Other security considerations for the server

Component Broker can protect your business objects in a secure server by
authenticating any access to them. However, this protection can be
undermined if rogue or untrusted software is loaded in to the server. Since
the implementations for business objects are captured in dynamic link
libraries (DLLs), then an attacker can subvert the security of the system by
changing or superceding the implementation of your business objects, perhaps
handing out valuable information to other, unauthorized parties by replacing
your DLLs.

To prevent this, you should protect the file system in which DLLs and EXEs
(in general, any executable) are stored, and prevent the server from loading
DLLs from anywhere but that protected file system. The LIBPATH for your
server should be set to only those directories containing the DLLs that you
want loaded in your server. This includes the Component Broker server EXE,
the Component Broker system DLLs those that are needed to run the server
process, and your business object DLLs.

WIN

The default locations for Component Broker DLLs are the following
directories:

* \Program Files\IBM\ComponentBroker\bin
* \OPT\Digital\dce\bin

AIX

The default locations for Component Broker shared library files are the
following directories:

* /usr/lpp/CBServer/bin
* /usr/lpp/CBServer/lib
* /usr/lpp/dce/bin

The system administrator may elect to install these files elsewhere. In any
event, you should set the access controls on the directories containing the

230  WebSphere: Advanced Programming Guide



Component Broker DLL files so that only the servers can read files in those
directories, and so that only selected administrators can put DLLs or other
executable files in those directories.

Depending on how you have implemented your business objects, if you make
use of other data files that affect the way your business objects perform their
tasks, such as configuration files or policy rules files, then an attacker could
modify these types of files as well to subvert your business objects. The above
principle regarding the protection of the file system should be applied to any
directories that contain data files that affect the behavior of your business
objects.

Authentication

and end-users

Security systems are generally composed of several related concepts. This
includes things like authorization, confidentiality, auditing and administration.
While all security concepts are fundamentally built on the foundations of a
cryptographic system, most security concepts are preconditioned by
establishing who end users are, and certifying they are who they claim to be.
Certifying that a person is authentic is known as authentication.
Authenticated end users have identities. Those identities can be used to
determine what resources the end-user is allowed to access, and how. Message
traffic can be encrypted in a way that only an authenticated end-user can
decipher. Identities of anyone challenging the integrity of the security system
can be obtained.

Authentication of a person can be based on a variety of techniques that
challenge what that person possesses, what they know, or who they are, or
any combination of the three. For instance, you can assert who a person is by
the fact that they possess a key to your house or employee-badge to your
enterprise. This is typically a weak authentication scheme, as it can be easily
defrauded by stealing the possession. The strongest technique is to base
authentication on something that biometrically defines a person such as a
finger-print, voice-print, DNA-print, or signature. Typically biometric-based
authentication can be very reliable, but also somewhat intrusive.
Biometric-based authentication schemes also typically require specialized
hardware. The middle road is to base authentication on a secret that only that
person should know, such as a password or your mother’s maiden name. This
is only as strong as it is difficult to guess the secret. However sufficiently
obscure passwords can be reasonably difficult to guess making this technique
quite strong. The first release of Component Broker supports password-based
authentication relying on a secret that only that end-user should know.

When a User is not an End-User

Chapter 8. Security Service 231



Not all users are in fact people. More specifically, not all activity in the system
is performed strictly on behalf of a specific person. Other entities in the
system need to be authenticated too.

For instance, before using a particular server, you might like to be certain that
the server is legitimate, that it is the server you expect to be working with.
Component Broker provides support for authenticating servers certifying that
the server is what it claims to be. To achieve this, server processes are given
identities and are required to prove themselves to the system. Obviously,
biometric or possession-based authentication schemes would not be very
practical, and so servers are expected to authenticate themselves based on a
password. Administration of a user’s identity and password is discussed
further in I'Server key-tab file’l. For any method request between a client
process and a server process (or between server processes) Component Broker
attempts to authenticate both the the client to the server, and the server to the
client. This is known as mutual-authentication.

User IDs and passwords

Authentication is based on user-identities (user-ids) and passwords. The
end-user is expected to enter a user-id and a password to log-in to the system.
If the password is valid for the given user-id, then the user is deemed to be
authentic. Component Broker offers a variety of ways of supplying the user
ID and password (logging in), including the following:

° 7 . PN

Server key-tab file

A key-tab file can be used to store a user-id and password for a particular
principal. While this can be used for client-principals (end-users), it is
normally used to identify server-principals. A key-tab file is a convenient
mechanism for storing log-in information; information that only a server
should possess in order to authenticate itself to the security system.

When placed in a secure file system and protected with restrictive access
policies, the key-tab file itself can be maintained safely. The policies governing
access to the key-tab file should be set so that only the server’s identity (the
local identity under which the server runs) can access the key-tab file. If the
server is activated automatically, then the local identity of the server is the
same as the ORB daemon that starts it. If the server is started manually by an
administrator, then the server’s local identity is the identity of the
administrator that starts it.

232 WebSphere: Advanced Programming Guide



As the log-in information is kept in a well-known place, the server can be
authenticated automatically. Also, the log-in information can be automatically
updated thus helping to preserve the integrity of the log-in information and at
the same time facilitating server automation. (See the DCE Administration
Reference, particularly the subcommands of the rgy-edit Security Service
commands for more information on key-tab file management.)

Key-tab File

Establishing a server’s identity can most often be accomplished with the use
of a key-tab file. The key-tab file is essentially used to retain the server’s
identity and password. By being isolated in this way, it can be administered
more easily: for instance, the password can be automatically changed
periodically to decrease the vulnerability of the server’s identity.

However, since this vital information is stored in a file it must be protected to
prevent other user’s of the server host from accessing it and exploiting it for
unauthorized purposes. This is achieved by putting the key-tab file in a
protected file system, and setting the access controls on the file so that only
the server can access it. This in turn requires that the server be started by an
administrator or daemon process whose operating-system identity, inherited
by the server, has the authority to access the file. The inherited operating
system identity is used to provide access to the key-tab file from which the
server’s distributed system identity is established.

Each server on the same host can have its own entry in the key-tab file and
establish its own distributed system identity. Nonetheless, any server started
by the server activation daemon inherits the same operating system identity.
The key-tab file should be set so that the daemon’s operating system identity
can access the file. This form of authentication is only exercised if this option
has been enabled in the configuration, and the key-tab file has been created
and can be accessed by the server process. This option can also be used by
client processes and is subject to the same conditions and procedures as server
processes. The server must be authenticated from a key-tab file.

Protecting the key-tab file

This procedure demonstrates how you can protect your server’s key-tab file
from unauthorized tampering. A key-tab file can be used for authenticating a
server without requiring a local administrator to log-in for the server. Thus
the key-tab contains sensitive security information, specifically the server’s
user-identity and password. It is essential for the integrity of the server that
this file be protected.

Chapter 8. Security Service 233



The primary means of protecting the key-tab file resides with the file system
where it is stored. The file permissions for the key-tab file should be set so
that only the server can access it.

The server actually assumes the local operating-system identity of either the
administrator that manually started the server, or more often, the identity of
the ORB daemon that started the server automatically. In turn, the ORB
daemon assumes the local operating system identity of either the
administrator that manually started the ORB daemon (somorbd.exe), or more
likely the Component Broker system management agent that started the ORB
daemon. Finally, the system management agent assumes the local
operating-system identity of the administrator that manually started the agent
(bgmain.exe and bgsrvctl.exe), or the local operating-system identity of the
administrator registered with Component Broker in the NT Registry, if the
Component Broker is started automatically at system start-up.

Thus, the local-operating system identity of your server depends on your
configuration and the process you use for starting the server. Most often, it
assumes the identity of the administrator registered with Component Broker
in the NT Registry. However, it could be the identity of another administrator
if portions of the Host system are started manually. It is up to you to resolve
which administrator’s identity is used ultimately to start the server.

Knowing the local operating system identity under which your server runs is
important because it is this identity that you must enable to access the key-tab
file. Any other identity that you enable to this file has the ability to see and
possibly change the DCE user ID and password for the server. Thus, the
permissions for the key-tab should be as restrictive as possible.

Component Broker automatically creates a single default key-tab file per host.
The server principal information for every server on that host is entered into
that key-tab file. Thus, if different servers on the host are started under
different local operating systems (OS) identities, then each of these identities
needs to be enabled to access that key-tab file.

If this is unacceptable, that is if you have some servers that are started
manually by different administrators and you do not want them to all have
access to the default key-tab file, then you must use the DCE administration
tools (rgy_edit) to create a unique key-tab file for that server and protect it
separately. In doing so, you need to supply the name of the server for which
an account should be created in the DCE user registry. Component Broker
establishes the principal name for the server; you can obtain this from the
Component Broker system management facility, but the corresponding
account for the server in the DCE user registry should be created
automatically. In addition, you need to modify the Component Broker system

234  WebSphere: Advanced Programming Guide



management configuration properties for that server to indicate the name of
the key-tab file so that Component Broker can find it to log-in the server
during server start up.

In Windows/NT, files can only be protected if they are installed in the NT file
system (NTEFS).

WIN

Protect the server key-tab file using the following steps:

1. Log in to the host machine. Sign on to the host machine where your server
resides, either as the administrator that normally starts the host machine,
or the administrator that manually starts the part of the Component
Broker whose local operating system identity is assumed by the server.

2. Create the key-tab file. If necessary, create a unique key-tab file for the
server. Otherwise, assume the default key-tab file, v5srvtab.

3. Use explorer to navigate to the key-tab file and set the permissions:

a. From the Windows NT Start menu, select Programs > Windows NT
Explorer.

b. In NT Explorer, select: C: > Opt > Digital > dcelocal > krb5.

c. Right mouse click on the key-tab file, v5srvtab or the key-tab file you
created in step 2.

Select Properties.
Select the Security tab.
Click Permissions.

@ -0 o

Ensure only System and the group representing your administrator
(that is, Administrators) has Full Control (All). Everyone should only
have Execute (X). All other user groups and users should have No
Access, or be removed from the ACL.

h. Select OK to accept the file permissions.
i. Select OK to close the Properties window.

AIX

Protect the server key-tab file using the following steps:

1. Log in to the host machine. Sign on the host machine where your server
resides as root.

2. Create the key-tab file. If necessary, create a unique key-tab file for the
server. Otherwise, assume the default key-tab file, v5srvtab.

3. The key-tab file should already have the correct permissions. DCE on AIX
sets the permissions automatically. If necessary, change directory (cd) to

Chapter 8. Security Service 235



/krb5, and use chown to set the owner to your administrator’s ID or root,
and use chmod to set the permissions so that only the owner can read or
write the key-tab file.

Logging in with environment variables

You can specify the user ID, password, and cell in the environment variables
SCSPRINCIPAL, SCSPASSWORD and SCSCELLNAME, respectively. The ID,
password and cell values only have significance in the scope established for
these variables. Depending on how these variables are created, the scope can
be simply just the client process they are created in, or it can be any client
process on the client machine, unless specifically modified in an individual
process. These variables are then used by Component Broker to automatically
log-in the specified user for any requests that are initialized from that client.
This mode of log-in is only exercised if this option is enabled in the
configuration, and the variables have been created and assigned a value in the
client environment.

Note: This approach to logging in a user can be somewhat vulnerable to
attack. A common practice is to use this option by setting the
environment variables in a shell-script. If you hard-code the user-id and
password variables in the shell-script, not only are you exposing the
values to anyone else who has access to the file-system on which the
script is stored, but if someone else is allowed to invoke the script they
can use it to masquerade as the person identified in the shell script.
Caution should be taken when using this log-in approach.

Using environment variables to establish authenticity

This procedure demonstrates how you can create a credential for a principal
by supplying the principal’s userid and password in environment variables.
The values supplied in these variables are used to log-in the specified user
when a credential is first required, when this option has been enabled in the
configuration of the process.

The credentials produced for the principal specified in the environment
variables are always local to the process where the log-in occurs. However,
the same environment variables are used in all processes that fall within their
scope. For instance, if you set these environment variables in the start-up
script for the machine (for example, config.sys) then they are available to all
processes started on the machine, unless explicitly nulled out in specified
processes before they are used to log-in.

Note: This process is useful for certain circumstances such as when a
shell-script is used outside of the application program to perform a
log-in of the principal. However, this approach should be used with
some care to avoid exposing the userid and password to potential

236  WebSphere: Advanced Programming Guide



attacks. For instance, it may be dangerous to set the environment
variables from hardcoded values in a shell-script. Shell-scripts are
stored in a file and therefore can be attacked if the shell-script file is not
protected in a secure file system.

To log in to Component Broker, you need a user ID that has been registered
with DCE. You should use the DCE administration tools to create an account
for the corresponding user ID. DCE must be installed.

The following steps demonstrate how to create a credential for a principal by
supplying the principal’s userid and password in environment variables:

1. Set the SCSPRINCIPAL environment variable with the userid of the
principal you want logged-in. The userid must have been registered with
the DCE user registry.

2. Set the SCSPASSWORD environment variable with the password of the
principal you want logged-in. The password must be valid for the
principal identified in SCSPRINCIPAL.

3. Set the SCSCELLNAME environment variable with the cell in which you
want to authenticate the principal specified in SCSPRINCIPAL.
Component Broker supports a single cell, and so the SCSCELLNAME
should be set with the cell used for the Component Broker installation.

The following example is an excerpt from an NT command file. This example
specifies the user ID and password information for Jane Austin (user ID
jaustin) in the Winchester cell.

set SCSPRINCIPAL=jaustin

set SCSPASSWORD=sensible
set SCSCELLNAME=winchester

The actual log in of the principal specified in the environment variables
occurs well after the variables themselves are set. No error indication occurs
when these variables are set, even if the principal name, password, or cell
name are invalid. The first indication of this type of error generally occurs on
the first method request initiated (or received) by the process and is reported
back to the application with a NO_PERMISSION exception on the request.
Any errors that occur while logging-in the user are reported in the
Component Broker error log. If you suspect an error has occurred during
log-in, perhaps due to the principal or password supplied in the environment
variables being incorrect, then you should check in the Component Broker
error log.

Message protection
Component Broker authentication services can provide you protection from

unauthorized access to your server. However, you may also need to protect
the method requests themselves as they flow over the network. This is

Chapter 8. Security Service 237



particularly true in untrusted networks where the network flows over
unguarded or publicly accessible wires. For instance, it is relatively easy to tap
into a local area network (LAN) to monitor network traffic. An attacker can
attach a monitor to see the content of every message. If your method requests
pass monetary, personal, or business information that is sensitive, this can be
viewed and even changed by the attacker. Component Broker provides
different qualities of protection (QOP) for message traffic between client and
server processes, including the following;:

Integrity Protection
The message is digitally signed. Component Broker verifies the
signature of the message to ensure that no one has modified the
content of the message en-route. This can prevent the message from
being tampered with, but does not prevent an eavesdropper from
viewing the message.

Confidentiality Protection
The message is encrypted. Component Broker encrypts the message to
ensure that no one can view the message en-route. This can prevent
the message from being read, but it does not necessarily prevent the
message from being modified, even if only to damage the message by
setting it with an unencrypted value.

Confidentiality and Integrity Protection
The message is encrypted and digitally signed. This can prevent the
message from being read or modified.

None (Out-of-Sequence and Replay Protection)
The message is neither encrypted nor digitally signed. This leaves the
message vulnerable to being read and modified. However, as with all
of the previous modes, the message is always out-of-sequence and
replay protected. That is, Component Broker always assigns a
secure-sequence number to all messages and detects when two
messages are received out of order or if the same message is replayed.
This prevents an attacker from reordering method requests so that, for
instance, a withdrawal is processed before a deposit, when in fact the
deposit was intended to be processed before the withdrawal.
Likewise, this protection prevents an attacker from sending the same
withdrawal method twice.

Out-of-Sequence and Replay protection is performed on all messages to a
secure server.

Message protection is performed using a session key, which is exchanged as
part of creating a secure association between a client-principal and a server.
These session keys are always unique to every client-principal and server pair,
and so different keys are used even if method requests are passed between
two servers operating on behalf of different client-principals. All message

238  WebSphere: Advanced Programming Guide



confidentiality is performed with the Data Encryption Service (DES) using a
56-bit key (plus 8-bit parity). All message integrity is performed with MD5.

The desired quality of protection is set at the secure server as a configuration
option in the server image. The selected quality of protection specified for the
server is used for all method requests invoked on objects in that server,
irrespective of where the requests originate.

Note: Both integrity and confidentiality qualities of protection make use of a
cryptographic algorithm to sign or encrypt the message. If you select
either of these qualities your system performance is affected and the
rate at which you can invoke methods decreases. Encryption protection
affects performance more than integrity. The extent to which your
system is affected depends on the size and frequency of method
requests that you perform in your application and the overall workload
on your client or server machine. You should evaluate this effect in any
risk/benefit analysis you perform.

Delegation

Delegation is a process of a principal acting on behalf of another principal. In
Component Broker, delegation is done by transferring credentials of a
requesting client between server processes. In the current release, only
“simple-delegation” (impersonation) is supported. It means that every
downstream method request on a secure server is performed strictly under
the credentials of the requesting client.

Enabling delegation for a secure server

This procedure demonstrates how you can enable delegation for a secure
server. When delegation is enabled, every downstream method request on the
server is performed strictly under the credential of the requesting client. If
delegation is disabled, the request is then performed under the credential
associated with the process.

To enable delegation for a secure server, complete the following steps.

1. Define a new server group or a new free-standing server, or select an
existing one. For a new server group or server, use the Component Broker
system management facility to define the new server group or server. If
you are enabling an existing group or server to be secure, locate the
corresponding server in the system management facility.

2. Open the Properties notebook and tab to the Security Service page.

3. Enable Server delegation. Edit the delegate credentials property by setting
it to simple.

Chapter 8. Security Service 239



Note: In the WLM environment, you should enable delegation for the

controlled server group that you have defined. This ensures that every
downstream method request from the server Group Control Point
server is performed under the credential of the requesting client.

Security Service objects

The Component Broker Security Service introduces the following object types:

Object Type Related Interface(s)
ncipal obie CORBA::Principal
IExtendedSecurity::Principal
t‘Credentials ohject’] SecurityLevel2::Credentials

IExtendedSecurity::Credentials

SecurityLevell::Current

SecurityLevel2::Current

IExtendedSecurity::LoginHelper

Principal object

Important: Please do not use the principlal object, it will be removed in a

future release.

Credentials object

A Credentials object represents a principal that has been authenticated to
Component Broker. The SecurityLevel2::Credentials interface is introduced by
the CORBA Security Service, and includes the following:

Credentials copy()
get_security_features(direction)
get_attributes(attributes)
is_valid(expiry_time)

refresh()

Component Broker combines the CORBA::Principal and the
SecurityLevel2::Credentials interfaces in the IExtendedSecurity::Credentials
interface.

Current object

The Current object provides your application access to the Security Service
context associated with any given thread of execution. You can access any of
the credentials associated with the thread of execution through a Current

240  WebSphere: Advanced Programming Guide




object. The CORBA Security Service introduces SecurityLevell::Current, and
SecurityCurrent, which inherits from the SecurityLevell::Current interface.

The SecurityCurrent interface adds the following methods:
* received_credentials()

* received_security_features()

* principal_authenticator()

* get_credentials(cred_type)

LoginHelper object

The LoginHelper object can be used to log-in a user programmatically. The
IExtendedSecurity::LoginHelper interface introduces the following method:

SecuritylLevel2::Credentials: request_login(security name,
realm_name,
password,
creds,
auth_specific_data)

Security and servlets in WebSphere Enterprise

One of the primary clients to WebSphere Enterprise Servers is expected to be
servlets. Servlets will leverage the WebSphere Java client and can be expected
to do normal client tasks such as creating, finding and using business objects
within a WebSphere system. In this scheme, servlets function as the
middleman by translating HTTP requests from a user’s browser to IIOP
requests to downstream WebSphere Enterprise servers. Inside the servlet, the
Java Client is used to flow IIOP requests to the WebSphere Enterprise Servers.

This section is focused on providing a description of using SSL security to
protect the requests and responses between a servlet using the Websphere
Java client and WebSphere Enterprise servers. In particular we will focus on
the storing the client’s DCE userid and password in a credential and
associating that credential with a session.

Note: Servlets are not supported in the WebSphere Enterprise DCE Java client
because the WebSphere Enterprise DCE Java client is not thread safe.

Configuring the WebSphere Enterprise Servers

Install and configure the WebSphere Servers for SSL security as described in
“Administer Security in your Enterprise” chapter of the WebSphere Application
Server Enterprise Edition Component Broker System Administration Guide. For
testing purposes only, we have provided a sample SSL keyring file called
CBDevTest.kdb which contains a private key and a self-signed server
certificate. You can use this keyring file or build your own keyring file and
obtain your own server certificates. Building your own keyring is described in

Chapter 8. Security Service 241



the section, Create and Install Server Certificates, of the WebSphere Application
Server Enterprise Edition Component Broker System Administration Guide. We
strongly suggest that you follow the procedures for obtaining your own server
certificates when you deploy your business objects.

Note: For public-private key technology to be effective, each server should
have it’s own unique public-private key pair, and therefore, each server
should have it’s own SSL keyring file containing a certificate which
uniquely identifies itself. Using the sample keyring file, CBDevTest.kdb,
when you deploy your application is strongly discouraged as each
WebSphere Enterprise Server will essentially have the same identity.
This represents an unsecure environment and should be avoided.

Configuring the Java client servlet

Install the WebSphere Java Client on your Web Server machine and configure
it for SSL security as described in the “Enable Java Client with SSL Security”
section of the WebSphere Application Server Enterprise Edition Component Broker
Planning, Performance and Installation Guide.

Installing the WebSphere Java Client adds the following two files, which are
required by the servlet (since it is functioning as a WebSphere Java client):

somojsd.zip
The domestic version of the SSL security java implementation zip file.

somojse.zip
The export version of the SSL security java implementation zip file.

CBDevTestClKeyRing.class
The sample Java class with the client-side keyring for SSL support. It
contains the server certificates from the CBDevTest.kdb file which you
might have used to configure SSL on the server. This Java class will be
accessed by the servlet, since it is acting as the “Java Client” in this
configuration. If you have obtained your own server certificates, you
will have to create your own Java keyring class and import the
certificates for each server.

By default, the WebSphere Java Client SSL service displays a prompt to ask
for the client’s DCE userid and password to log the client in at the WebSphere
Enterprise Server. While this default might work fine for a client workstation,
this is not what we want when running the Java Client inside a servlet.
Therefore, to prevent this dialog from appearing, change the login source
attribute of the Client Style from “prompt” to “none”. You can then use the
properties file generated from this Client Style as the value of the
com.ibm.CORBA.ClientStyleImageURL property.

242  WebSphere: Advanced Programming Guide



Another option is to directly edit the properties file you want to use and
change the following line:

com.ibm.CORBA.1oginSource=prompt

to
com.ibm.CORBA.1oginSource=none

Installing and configuring servlets in WebSphere Enterprise

After you've installed the servlet, you will also have to do the following to
configure the WebSphere Java Client to run as a servlet:
+ Update the Application Server Classpath to include two of the following
files:
1. somojsd.zip or somojse.zip
2. somojor.zip
* The somojsd.zip or somojse.zip file should precede the somojor.zip.
* Add the “-nojit” option to the Java Compiler Directives.

Example code source

There are several steps, illustrated by the code snippet below, to
programmatically creating a credential with a DCE userid and password and
associating it with a servlet session. First, the _LoginHelper must be
instantiated after the ORB has been created with CBSeriesGlobal.Initialize().
When initializing the ORB, you can pass Properties object into Initialize()
which can define the com.ibm.CORBA.CTientStyleImageURL property to point to
your properties file.

Second, you must obtain an initial DCE userid and password and form a
credential before the first request flows to the Name Server. Typically, the call
to CBSeriesGlobal.nameService() initiates the first request.

Third, you will also want to catch org.omg.CORBA.NO_PERMISSION
exceptions on calls to methods which create a remote object or on calls to
methods to get a FactoryFinder for the remote object. Either may result in a
request flowing to that application server for the first time. The client
credentials, userid and password, are sent to the application server on the first
request and the user is logged in at the application server at that time.

The following code snippet represents a base servlet class which provides
some common functionality to other sibling servlets.

//Standard java imports
import javax.servlet.x;
import javax.servlet.http.=*;
import java.io.*;

import java.util.=*;

import java.text.x;

Chapter 8. Security Service 243



import java.net.=;
import java.lang.reflect.*;

//WebSphere Imports start here

// Java Client
import com.ibm.CBCUti1.CBSeriesGlobal;
import com.ibm.CORBA.iiop.0ORB;

//For Factory Finder & Naming Context
import com.ibm.IExtendedNaming.*;
import com.ibm.IExtendedLifeCycle.x*;

//Security
import org.omg.SecuritylLevel2.x;

~
*
*

Base class to support commonly used WebSphere Enterprise Servlet
functions. This servlet does not override any functions dispatched by
service(), such as doPost, doGet, etc. It is expected that you will
have other servlets which will override those methods accordingly.
such servlet might override doPost() to receive a form with a userid
and password and call createCredentials() below to create a credential
and associate it with a session.

* %k Sk X X X ok %

*/
public class CBHttpServlet extends HttpServiet {

//************************************************************************
[ [#%%xwxsxx CHANGE THE FOLLOWING CONSTANTS FOR YOUR INSTALLATION -k
final protected String BOOTSTRAP = "your.cb.bootstrap.server";
final protected String CLIENTSTYLE =
"file:<DRIVE>:/your/ClientStyle.properties";
final protected boolean USE_SSL = true;

//************************************************************************

// ORB Instance
protected ORB orb;

//Factory Finder
protected FactoryFinder factoryFinder = null;

//Session
protected HttpSession session = null;

//LoginHelper class for programmatic Togins
com.ibm.IExtendedSecurity. LoginHelper _loginHelper = null;

244  WebSphere: Advanced Programming Guide



[ **

* Called once for initialization

public void init(ServietConfig config) throws ServletException

{

[ **
* Process the request with the userid and password. One way this
* method might be used is to call it from another servlet which
% overrides doPost() and receives the form with the userid and

super.init(config);

Properties props = new Properties();

String[] args = new String[0];
props.put("com.ibm.CORBA.BootstrapHost", BOOTSTRAP );

if (USE_SSL)
props.put (
"com.ibm.CORBA.ClientStyleImageURL","file:" + CLIENTSTYLE);

// Initialize the Java Client environment

try {
CBSeriesGlobal.Initialize(args, props);

catch ( java.lang.Exception e ) {
System.out.printin(

"exception caught from CBSeriesGlobal.Initialize, exiting...");

e.printStackTrace();
1

// Save the Java Client ORB instance in a class variable for
// future use
orb = (com.ibm.CORBA.iiop.0RB) CBSeriesGlobal.orb();

/1l

// It is important to note that to do programmatic logins, the

// _LoginHelper object must be instantiated and a credential

// created for that client before CBSeriesGlobal.nameService() is
// called. The call to nameService() flows the first request to
// the Name Server and if no credentials are set for the user the
// Security Service will assume that the request is intended to

// be unauthenticated. Unauthenticated requests to a secure server

// will unauthenticated with a NO_PERMISSION exception.
//

// Also the LoginHelper must be created after ORB has been created.

//
//
// The following line is provided as a convenience for those who
// would 1ike to instantiate a _LoginHelper during the init().
//
// _loginHelper =

com.ibm.IExtendedSecurity. LoginHelperHelper. create();

Chapter 8. Security Service

245



* password. The method returns true if the credentials have been
* created.

*/

public boolean createCredentials( HttpServletRequest req )

{
if (USE_SSL) {

// Create a _LoginHelper if we don't have one already.
if( _ToginHelper == null ) {
_loginHelper =
com.ibm.IExtendedSecurity. LoginHelperHelper. create();

}

String[] values;
String userID = null;
String password = null;

//Get the Session object
session = req.getSession(true);

//Retreive the userid from the form fields
values = req.getParameterValues("userid");
if (values != null) {

userID = values[0];

1
values = req.getParameterValues("password");
if (values != null) {
password = values[0];
1
System.out.printIn("login: " + userID + "-" + password);

//Create the credentials and set the session data value
try {
org.omg.SecuritylLevel2.Credentials myCreds =
_ToginHelper.request_Togin(userID,

(String)null,
password,
(org.omg.SecuritylLevel2.CredentialsHolder)null,
(org.omg.Security.OpaqueHolder)null );

// Put credentials in session object for future use
session.putValue("your.package.or.class.name.credentials",
myCreds) ;

return true;
}
/]
// Note that when using SSL, request_login() will fail only if the
// password is provided but no userid is provided. The userid and
// password are passed to the WebSphere Enterprise Server on the
// first method request and are validated at the server at that
// time, not during the request_login method. An example of how
// to catch the NO_PERMISSION exception is shown in

246  WebSphere: Advanced Programming Guide



// getFactoryFinder().
//
catch ( org.omg.SecuritylLevel2.LoginFailed 1f) {
System.out.printin(
"request_login() failed with " + userID + " - " + password);
return false;
1
} else {
return true;
1

[ **

The credentials for a user were stored in that user's session object
by the Togin servlet. This method retrieves them from the session
object and uses them as input to the SecuritylLevel2.Current object.
Setting them in the Current object causes the Java client ORB to flow
them on subsequent method requests.

* Ok X X X

*/
public boolean setCBCredentials(

HttpServletRequest req, HttpServletResponse res)
{

boolean ret = false;

if (USE_SSL) {
session = req.getSession(true);
//create session if not already created

//The credentials are retrieved from the loginServiet

org.omg.SecuritylLevel2.Credentials myCreds =
(org.omg.SecuritylLevel2.Credentials)session.getValue(
"your.package.or.class.name.credentials");

//Get the current security level
org.omg.SecuritylLevel2.Current sL2Curr = null;

try {
sL2Curr = org.omg.SecuritylLevel2.CurrentHelper.narrow(
orb.resolve initial_references("SecurityCurrent") );
if (sL2Curr != null) {
sL2Curr.set_credentials(
org.omg.Security.CredentialType.
SecInvocationCredentials, myCreds );
ret = true;
1
1

catch (Exception exc) {

// Some problem occurred while trying to set the credentials.
// Post an appropriate error to the user and proceed

// accordingly.

//

Chapter 8. Security Service 247



/...

}
} // if use_ ssi

else {
ret = true;
1
return ret;
1
[**

Get the FactoryFinder. The first request to the Name Server
flows on CBSeriesGlobal.nameService(). The _LoginHelper and
client's credentials should have been created before this
method is called. If no credentials are set for the user, the
Security Service will assume that the request is intended to be
unauthenticated. Unauthenticated requests to a secure server
will typically fail with a NO_PERMISSION exception.

L T T

*/
public FactoryFinder getFactoryFinder()
{
org.omg.CORBA.Object obj = null;
NamingContext iExtendedNC = null;

//1f null, try to obtain it.
if (factoryFinder == null) {
try {
iExtendedNC = CBSeriesGlobal.nameService();
obj = iExtendedNC.resolve with_string(
"host/resources/factory-finders/host-scope");
factoryFinder = FactoryFinderHelper.narrow(obj);

}
catch (org.omg.CORBA.NO_PERMISSION np) {

// The DCE login at the Name Server failed. One option is
// to post an html page which explains that the Togin

// failed and ask for the userid and password again.

/1

/] ...

}

catch (Exception e) {

// Some other problem occurred. Post an appropriate
// error to the user and proceed accordingly.

//

/] ...

}
}

return factoryFinder;

248  WebSphere: Advanced Programming Guide



//
//
// Other methods common to sibling serviets follow.
//
//

} // CBHttpServlet

Java client programming note

Each Security Java client application program has to invoke
CBSeriesGlobal::initialize() to initialize the ORB which is the default ORB that
will be referenced by the Security Service. CBSeriesGlobal::orb() will return
the object reference of the default ORB.

Please do not invoke the CORBA::ORB_init() method to initialize the ORB
because it will create a new instance of ORB which is different from the
default ORB.

For more information of the CBSeriesGlobal interface, please refer to the

WebSphere Application Server Enterprise Edition Component Broker Programming
Reference.

Chapter 8. Security Service 249



250  WebSphere: Advanced Programming Guide



Chapter 9. Transaction Service

The Transaction Service enables programmers to implement transactions using
standard object-oriented interfaces in a distributed environment.

The provision of a Transaction Service has always been an essential part of the
software for mainframe systems because these systems run business critical
applications. Now that such applications are also being written for a
distributed environment, the software in this environment must also support a
Transaction Service.

One of the features of business critical applications is that they often make a
number of updates (changes) to the data to complete a task. At the same time,
a number of different tasks are normally running that are also making
updates to this data. The most difficult part of writing a business application
is to keep the updates that belong to a single task together, while keeping
them separate from the updates being made by other tasks. This is hard
enough when the system is running properly; once you start considering all
the different ways the system may completely or partially fail, the effort
required to design and write the application becomes truly daunting.

This is where the Transaction Service is useful. The objects within an
application group the updates required for a single task into a transaction and
the Transaction Service ensures that either all of these updates occur or none
of them do (this is called atomicity). Provided that the application has
correctly grouped the updates in the transaction, then the data is always
updated consistently. If the application uses the Transaction Service in
conjunction with the Concurrency Service these updates are also not affected
by updates being performed for other tasks. Finally, if persistent objects, or a
database, are used to store the data, these updates will be permanent
(durable) even if the system crashes.

An example of a transaction

Suppose you have two bank accounts, A and B, with balances of 300 and 100
dollars, and that you want to transfer 50 dollars from account A to account B.
You might do this as follows:

1. A=A-50

2. B=B+50

3. Result: A = 250, B = 150

© Copyright IBM Corp. 1997, 1999 251



The result is correct. Suppose, though, that an error such as a system crash
occurs just after account A is updated. If you are not using a transaction, the
following would occur:

1. A=A-50

2. System crash and restart

3. Result: A = 250, B = 100

Account A has been correctly debited but, because processing was interrupted
by the system crash, the corresponding credit to account B has not been made.
Apparently, 50 dollars have been lost. You can avoid this type of problem by
using transactions.

You can implement the same bank transfer as a transaction:

Begin transaction
A=A-50
B =B +50

Commit transaction
Result: A = 250, B = 150

apNE

As expected, the result is correct. More importantly, if a system crash occurs
after A is updated, the result is still correct:

1. Begin transaction

2. A=A-50

3. System crash, system restart, transaction recovery

4. Result: A =300, B =100

This time, because the transaction was not committed, any changes made to
the accounts before the system crash are discarded and both accounts return
to their original state. The transaction can then be run again to get the correct
results. Similarly if B is updated, but the transaction is not committed, the
changes are discarded.

Top-level and flat transactions

The most common type of transaction used by applications is the top-level
transaction. For example, the first transaction created by an application is
always a top-level transaction.

Top-level transactions are independent of one another; the updates that the
application associates with one top-level transaction (see m
transaction” on page 253) appear as an atomic update to other top-level
transactions. They are also recoverable. This means that if some (or all) of the
objects associated with the transaction terminate while the top-level

252 WebSphere: Advanced Programming Guide



transaction is still active (running) then the transaction waits until these
objects have been recreated to allow them to participate in determining the
outcome of the transaction.

An application can set a time limit for a top-level transaction. If it does not
complete within this time limit, the transaction is said to have timed out and
the Transaction Service causes it to rollback.

A top-level transaction is often referred to as a flat transaction.
The CORBA specification also describes another type of transaction, called a

subtransaction, often referred to as a nested transaction. Component Broker does
not currently support subtransactions.

Lifetime of a transaction

Applications use transactions to group related updates to data such that all of
the updates occur or none do.

Typically, an application:

1. Starts a transaction.

2. Makes the updates and associates them with the transaction.
3. Terminates the transaction

When an application terminates a transaction, it can request that the
transaction is either rolled back or committed. If the application requests
rollback, all of the updates it has made are undone. If the application requests
that the transaction is committed, the Transaction Service checks that each
object involved in the transaction is able to make its updates permanent. If all
objects indicate that they can, the transaction is committed. Otherwise the
updates are undone just as if the application requested rollback. The result of
a transaction (that is, whether it committed or rolled back) is referred to as its
outcome.

Transaction scope and context

The Transaction Service allows multiple objects to participate in a transaction.
These objects can be distributed across multiple operating system processes
and threads and each object can be working with more than one transaction at
once. To control which transaction an object is working on at a particular
point in the code, the Transaction Service provides a transaction context. This is
a collection of Transaction Service objects that represents the transaction.

Chapter 9. Transaction Service 253



The scope of a transaction is made up of all the locations within your
application where the transaction context is in use. In general, the scope of the
transaction increases over the lifetime of the transaction as the transaction
context is passed from object to object.

The Transaction Service provides two mechanisms for passing transaction
context:

* The most common method is implicit propagation, where the transaction
context is associated with a thread and is available to each method called
within this thread that understands transactions. If a remote method is
called, the Transaction Service automatically passes the transaction context
to the thread in the remote server process where the method is run.

* An alternative method is for the application to pass the transaction context
as a parameter on method calls. This is called explicit propagation and allows
access to the transaction context without associating it with the remote
object’s thread. Explicit propagation is not used as widely as implicit
propagation because it requires Transaction Service objects to be passed as
parameters to application objects and prevents the Transaction Service from
exploiting its own internal performance enhancements.

Recoverability

One of the main reasons for using the Transaction Service is that it removes
the need for an application to manage the correction of its data if some, or all,
of the operating system processes involved in a series of updates abnormally
terminate. If the application associates the series of updates in a transaction,
the Transaction Service is able to coordinate the objects responsible for these
updates to ensure that either all or none of these updates occur, even in the
event of system failures.

To do this, the Transaction Service requires that the objects that represent the
updates made to the data are recoverable. This means they are capable of
surviving, and of preserving their internal state, across a system or software
failure. In the Component Broker programming model, these objects must be
managed objects with persistent references and persistent state. These objects
must also inherit from particular CORBA defined interfaces to allow the
Transaction Service to call them when it is coordinating the updates. Refer to

Recoverability is a quality of service that is provided by certain Component
Broker application adaptors. The RDB adaptor is one such example.

254  WebSphere: Advanced Programming Guide



Transaction outcomes

When the Transaction Service is terminating a transaction, it uses the
two-phase commit ([The two-phase commit process” on page 257) or

one-phase commit (The one-phase commit process” on page 258) process to
ensure the objects that have made updates to data during the transaction take
the same action, committing (making permanent) the updates or rolling back
(undoing them). The decision that is made, and the action the objects actually
take, is referred to as the transaction outcome.

7

A top-level transaction ((Iop- i ) can
have one of the following outcomes:

Commit
All of the updates have been completed successfully and the changes
are now permanently recorded in the data.

Rolled back
None of the updates requested for the transaction have been made.
The data is left in the same state as if the transaction had not run.

Heuristic Mixed
Only some of the updates for the transaction have been permanently
recorded in the data. The rest have been undone. In an ideal world,
this outcome would never occur. However if:

e an application does not implement its resource objects (@
i i j i " correctly, or

* one of more objects are temporarily unable to contact the other
objects involved in the transaction,

They may be forced to end the transaction by taking a heuristic
decision (MHeuristic decisions” on page 258) to release critical locks or
resources. If this decision is inconsistent with the action chosen by the
other objects then the outcome of the transaction is heuristic mixed.

In addition, if the top-level transaction is not able to contact all the objects, it
can report heuristic hazard. This is a temporary result that changes to one of
the outcomes described previously when all objects involved in the
transaction are consulted.

The following table summarizes how the actions of the objects responsible for
data updates within a transaction are aggregated into a transaction outcome.

Chapter 9. Transaction Service 255



Table 11. Transaction outcomes

Action of Objects

Commit

Rollback

Heuristic
Commit

Heuristic
Rollback

Heuristic
Hazard

Heuristic
Mixed

Transaction
Outcome

yes

Commit

yes

yes

Heuristic
Mixed

yes

yes

yes

Heuristic
Mixed

yes

yes

yes

yes

Heuristic
Mixed

yes

yes

yes

Heuristic
Mixed

yes

yes

Heuristic
Hazard

yes

yes

yes

Heuristic
Mixed

yes

yes

Heuristic
Mixed

yes

Rollback

yes

yes

Heuristic
Mixed

yes

yes

yes

Heuristic
Mixed

yes

yes

yes

yes

Heuristic
Mixed

yes

yes

yes

Heuristic
Mixed

yes

yes

Heuristic
Hazard

yes

yes

yes

Heuristic
Mixed

yes

yes

Heuristic
Mixed

yes

Commit

yes

yes

Heuristic
Hazard

yes

yes

yes

Heuristic
Mixed

256  WebSphere: Advanced Programming Guide




Table 11. Transaction outcomes (continued)

Action of Objects Transaction

Commit

Rollback Heuristic Heuristic Heuristic Heuristic

Outcome

Commit Rollback Hazard Mixed

yes yes Heuristic
Mixed

yes Rollback

yes yes Heuristic
Hazard

yes yes yes Heuristic
Mixed

yes yes Heuristic
Mixed

yes Heuristic
Hazard

yes yes Heuristic
Mixed

yes Heuristic
Mixed

The two-phase commit process

Two-Phase commit is a protocol used by the Transaction Service during
transaction termination to enable all updates to data associated with the
transaction to be made permanent (committed) or undone (rolled back).

In the first phase of the two-phase commit protocol, the Transaction Service
sends a “prepare” message to each of the objects representing updates to the
data made during the transaction. These objects respond by voting either to
“Commit”, “Rollback” or “ReadOnly”.

A vote for “ReadOnly” means the object is not interested in the outcome of
the transaction. It is therefore no longer involved in the two-phase commit.

A vote to “Rollback” causes the whole transaction to roll back. This object is
not called again.

A vote to “Commit” means the object guarantees that it is in a state where it
can either make its updates permanent or undo them, even if the system
crashes before the Transaction Service can pass a message indicating which of
these action to take. Because an object that has voted “Commit” is waiting for
a decision from the Transaction Service, it is said to be “in doubt”.

Chapter 9. Transaction Service 257



If the Transaction Service receives a “Commit” or “ReadOnly” vote from all
objects, it sends the “Commit” message to all objects that voted commit. These
objects should make their updates permanent. They are not called again.

If the Transaction Service receives a “Rollback” vote from one or more objects
it sends a “rollback” message to each object that voted “Commit”. These
objects should undo their updates and they are not called again.

If all resources follow the protocol correctly (and none of the servers have a
transaction retry limit set), the Transaction Service guarantees that all objects
take the same action so that the updates for the transaction appear atomic.
However, in exceptional circumstances, it might be necessary for some of the
objects involved in the transaction to take a heuristic decision that might
result in a loss of atomicity. This is referred to as heuristic damage or a heuristic
mixed outcome.

If only one object is responsible for data updates in a transaction, the
Transaction Service can use the one-phase commit optimization (refer tol'Thd

bne-phase commit process” on page 257.)

The one-phase commit process

If all of the data updates for a transaction occur in a single object, the
Transaction Service can optimize the termination of a transaction by using a
one-phase commit protocol with this object rather than the two-phase commit
(refer to I'The twa-phase commit pracess” an page 257.) With a one phase
commit, a single message is sent to the object controlling the data updates and
it reports whether it committed or rolled back. This result becomes the

outcome of the transaction (refer to L"Etan.sa.atl.on_(m.tcom.es_on_pa.gdiﬂ)

Heuristic decisions

If all objects involved in making updates to data within a transaction correctly
follow either the two-phase commit or one-phase commit protocol selected by
the Transaction Service, and none of the servers have a transaction retry limit
set, the Transaction Service guarantees that all objects take the same action
during the completion of a transaction.

However, in exceptional circumstances, it might be necessary for some of the
objects involved in the transaction to “guess” the outcome of the transaction
in order to release critical locks or resources. This guess is called a heuristic
decision.

258  WebSphere: Advanced Programming Guide



If, at the end of the transaction, the heuristic decision matches the action
taken by the other objects then the transaction is still atomic. However, if this
guess is inconsistent with the action chosen by the other objects in the
transaction, some of the updates will have been made permanent while others
were undone. This is referred to as heuristic damage or a heuristic mixed
outcome.

No heuristic decision is safe. Even if all objects are programmed to take the
same heuristic decision on detection of a potential failure (for example a
timeout), heuristic damage can still occur as it is possible that only some of
the objects are affected by the failure and will take a heuristic decision.

Here is an example:

Chapter 9. Transaction Service 259



Transaction Application Application Application

Service Object 1 Object 2 Object 3
prepare >
vote=commit
»
al
prepare
Ll
vote=commit
<
prepare
Ll
vote=commit
»
al
commit
»
Ll
OK
»
al
commit
Time limit exceeded
failure assumed -
- OK take rollback action
al
commit
.
heuristic rollback
<
heuristic
outcome = decision
heuristic mixed . .
inconsistent

This example shows that object 3, which has voted to commit and takes a
heuristic decision to roll back, can cause heuristic damage. The heuristic
damage occurs because the other objects within the transaction do not detect a

260  WebSphere: Advanced Programming Guide



failure and so do not make the heuristic decision. Therefore atomicity can
only be guaranteed by the Transaction Service if heuristic decisions are not
used.

Transaction retry limits

If a server containing objects that are involved in a transaction terminates
unexpectedly during the two-phase commit or one-phase commit process, the
outcome of the transaction cannot be resolved until the failing server is
restarted. While the server is unavailable the rest of the objects involved in the
transaction might be holding locks to critical resources. This could affect many
users and even bring the entire system to a halt.

For some applications, an indefinite halt is a more serious problem than the
possible loss of data integrity if the Transaction Service ignored the objects in
the failing server. The Transaction Service can be configured to limit the
number of times it attempts to contact a server during the two-phase commit
or one-phase commit. If this limit is reached, the Transaction Service uses a
pre-configured value as the “action” taken by the unavailable objects. This is
factored into the transaction outcome as if the objects had reported it as
normal.

The retry limit and the heuristic action assigned to an unavailable object are
configured in each server using the retry restricted, commit retry limit and
heuristic direction attributes. These values must be used with care as any type
of heuristic decision can result in a loss of data integrity.

Transaction time limits (timeouts)

An application can set a time limit for its transactions. This time limit applies
in all operating system processes and threads that are part of the transaction’s
scope. It is specified as the transaction is started and runs until the call is
made to terminate (commit or rollback) the transaction.

When the time limit is reached, the transaction is said to have timed out and if
the call to terminate the transaction has not been made, the Transaction
Service rolls back the transaction.

As this rollback can occur while the application is still using the transaction, it
might receive responses from the Transaction Service indicating that the
transaction is no longer valid because it has rolled back.

Time limits are useful mechanisms for recovering from deadlocks, or other

failures that introduce delays into the transaction, especially if the transaction

Chapter 9. Transaction Service 261



is holding critical locks. They are safe to use and do not result in heuristic
decisions because the time limit is ignored once the two-phase or one-phase
commit process starts.

Application programming using the Transaction Service

Architecture and design of a Transaction Service application

This section describes some suggested architectures for applications that use

the Transaction Service. The Transaction Service itself places no restrictions on

the architecture of applications (refer to !Chapter 9 Transaction Service” onl
for more information.)

The following diagram shows the basic elements that make up a Transaction
Service application. These are the transaction originator and a recoverable
server. The transaction originator is the process that starts the transaction.
Usually it is a non-recoverable client but it can also be a server process. Once
it has started the transaction, the transaction originator invokes methods on
objects in the recoverable server. These objects manage the updates to data
during the transaction.

Transaction .| Recoverable
Originator Server
A
A A 4

Transaction Service

A makes requests on B

Legend: Process Library A > B

The objects containing the recoverable data need not all reside in the same
recoverable server as indicated in the previous diagram. The transaction
originator might invoke methods on recoverable objects residing in more than
one recoverable server and these can all be involved in the same transaction.

Another alternative architecture, which is illustrated in the following diagram,
involves an intermediate server that contains no recoverable data. This type of

262  WebSphere: Advanced Programming Guide



server is called a transactional server (refer to [‘Transactional server” onl

for more information.) Typically, the transactional server would
contain the business logic and the recoverable server would be responsible for
data updates.

Transaction Transactional .| Recoverable
Originator "l Server " Server
A
A 4 A

Transaction Service

As an alternative, the recoverable server can be replaced with an XA database.
The following diagram illustrates this.

Transaction Transactional‘ DB2
Originator Server database

Transaction Service

The Transaction Service inter-operates with the DB2 XA Resource Manager to
ensure that data contained in the database is involved appropriately in the
application’s transactions.

Non-recoverable client

The Transaction Service requires the Component Broker server environment to
manage transactions. However, it also offers a client library that allows other
processes to access the Transaction Service. This library is called “somosai”,
for the IBM VisualAge C++ compiler, and “somosam” for the Microsoft Visual
C++ compiler. Component Broker also provides a Java Client SDK zip file,
somojor.zip, with Java client implementations of the Transaction Service
interface. Processes that use the C++ libraries or Java zip file are called

Chapter 9. Transaction Service 263



non-recoverable clients. Note that, in the case of a Java client that runs on a
machine capable of also supporting a Component Broker server, the
SOMOJOR:.zip file must be at the start of the CLASSPATH otherwise the
business object (server) Java bindings will be loaded when a CORBA Object
Service interface is called and a CORBA:NO_IMPLEMENT exception will be
thrown.

A non-recoverable client can use the Transaction Service objects and interfaces
in the normal way to start and end transactions. It can also propagate the
transaction to objects located in servers. The Transaction Service ensures that
the objects it needs to be located in a server are created in the server.

The restrictions for using the client library are:
* It cannot be implemented within a Component Broker server process.

* It must be implemented in conjunction with at least one available
Component Broker server process. The Component Broker server process is
required to maintain transactional information about transactions started in
the client.

* Non-recoverable client processes cannot receive transactional requests.

When the non-recoverable client originates a transaction, it needs to choose a
Component Broker server on which to create the Transaction Service objects.
The choice of this server can have a significant impact on performance. For
example, if the client chooses a server that would not normally be involved
with the transaction, performance will be adversely affected. To avoid this, the
client will attempt to choose the same server as the first transactional object,
by delaying the creation of the Transaction Service objects until needed by the
transaction. In some circumstances, however, (for example, if the application
asks for the name of a transaction), the client must create the Transaction
Service objects before it can determine the location of the first transactional
object.

When the client must determine the server before any transactional objects are
used, the client uses the client style image stored in the System Management
configuration data files. The factoryFinder attribute of the client style names the
default factory finder that will be used by the client to find a transaction
factory, and hence determine the server on which the transaction will be
created. If no transaction factory can be found using this method, an arbitrary
transaction factory will be chosen using the host-scope factory finder.

It is also worth noting that a Component Broker server cannot detect when a
client process terminates. Therefore it is recommended that all transactions
that are controlled from a non-recoverable client process are created with a
time limit. This means that if the client process terminates unexpectedly while
it has incomplete transactions running in the server, these will be rolled back

264  WebSphere: Advanced Programming Guide



when the time limit expires. Without this safeguard, the incomplete
transactions would hold any locks on your application’s data until the server
was shutdown.

Transactional server

A transactional server is a Component Broker server that contains objects that
inherit from the CosTransactions::TransactionalObject interface. Thus, if these
objects are called within the scope of a transaction, the object’s work is
considered part of the transaction.

If a server has objects that update data as part of a transaction, it is called a
recoverable server rather than a transactional server even if it also contains
objects that inherit from the CosTransactions::TransactionalObject interface.
The reason for this distinction is that a server that manages updates to data
has additional responsibilities when it is using the Transaction Service.

Note that in the Component Broker programming model, all managed objects
inherit from CosTransactions::TransactionalObject.

Recoverable server

A Component Broker server may be recoverable or transactional. If the server
is configured with a persistent data store such as DB2, and contains objects
that manage updates to data during a transaction, then it is recoverable. If it
is not configured with a persistent data store, then it is transactional.

Visibility rules

Transactions can be run concurrently from different applications, sometimes
competing for the same data. Each transaction isolates the data updates it
encompasses from concurrent transactions. No intermediate states of
persistent data are visible outside the transaction that modifies those states.
Only when a transaction has been successfully committed are the data
updates encompassed within that transaction made visible outside the
transaction. This is true of all transactions in Component Broker, although the
manner in which data may be accessed concurrently by different transactions
varies, depending on the container in which the data’s managed object is
configured. The behavior of components with regard to concurrent access to
their state data may be categorized as follows:

DB2 Embedded SQL Components, MQ Components, and Shared Transient
Transactional Components
Serialization of access to the state data of these types of components is
accomplished by a concurrency lock which locks the component on a

Chapter 9. Transaction Service 265



transaction basis and is not unlocked until the transaction commits or
rolls back. Other transactions are forced to wait for their turn to access
the component.

DB2 Caching, Oracle, and PAA (APPC) Components

Each transaction is given its own copy of the persistent state of
components of these types, and conflicts are resolved by the
underlying Cache Service associated with the particular type of
component. When conflicts occur, the Cache Service will pick a
winning transaction and force the losing transaction to rollback.
Multiple transactions can have read access to these components
without causing conflicts.

Design a Transaction Service application

There are two parts of an application design that are affected by the use of the
Transaction Service:

1. The objects that contain the business logic that understands how the
updates to different pieces of data relate to the same user task.

2. The objects that actually perform the updates to the data.

Before carrying out this procedure, make sure you are familiar with:

° ’/ . ”

° 7 ”

° 7 . 7

The following steps explain how to identify which parts of your application
need to call the Transaction Service.

1. Identify all of the updates for each of the user tasks that your application
performs.

Group these updates so that the data is consistent after each entire group
have been performed. These form the basis of your application’s
transactions.

2. Locate the points in the code where the processing starts and ends for
each group of updates.

These are the places where the application should call the Transaction
Service to start and end the transaction.

3. Identify all of the objects called between the start and end point of the
transaction.

If they cause data to be updated for the transaction, or call other objects
that update data for the transaction, they need to implement within the
scope of the transaction. Methods that are called in the same thread as the
transaction was started in, or in a thread with which the transaction has

266  WebSphere: Advanced Programming Guide



been associated, are automatically included within the scope of the
transaction. However, objects located in remote servers need to inherit
from CosTransactions::TransactionalObject to inform the Transaction
Service that the transaction needs to be implicitly propagated and
automatically associated with the thread in the remote server where the
method runs.

4. Identify the objects that actually make some or all of the updates for the
transaction. Design resource objects for these objects.

See 'Manage transactions in your application” on page 264 for further

information.

The Transaction Service objects and interfaces

The following table shows the interfaces defined by CORBA for managing
transactions. These interfaces represent the various roles and responsibilities
required to make updates that are distributed across a number of servers
appear atomic. Some of these roles are fulfilled by the Transaction Service and
the others by the application itself, as shown in the following table. Thus the
Transaction Service and the application cooperate when transactions are in
use.

Table 12. Interfaces defined by CORBA for managing transactions

CORBA Interface Implemented by
CosTransactions::Current Transaction Service
CosTransactions::Control Transaction Service
CosTransactions::TransactionalObject Application Adaptor
CosTransactions::Coordinator Transaction Service
CosTransactions:: Terminator Transaction Service
CosTransactions::Resource Application Adaptor
CosTransactions::RecoveryCoordinator Transaction Service
CosTransactions::Synchronization Application Adaptor
CosTransactions::TransactionFactory Transaction Service

There is a CosTransactions::Current object in every process. It is used by the
application to start and end transactions.

When a transaction is started, the CosTransactions::Current object returns a
CosTransactions::Control object. This is used by the application to represent
the transaction context. The CosTransactions::Current object also associates the
CosTransactions::Control object with the thread that created the transaction.
This association is used to implicitly propagate the transaction context to any

Chapter 9. Transaction Service 267



object that is called in this thread if the object inherits from
CosTransactions::TransactionalObject. (Note that in the Component Broker
programming model, all managed objects inherit from
CosTransactions::TransactionalObject.)

The CosTransactions::Control object also provides access to the
CosTransactions::Coordinator object and CosTransactions::Terminator object
created by the Transaction Service for the transaction. The
CosTransactions::Coordinator object is responsible for keeping a record of
application objects that implement the CosTransactions::Resource interface.
These resource objects represent updates to data that the application has
performed that belong to the transaction. Under the instructions of a
CosTransactions::Coordinator object, they are able to make these updates
permanent or they can undo them.

While the application is making the updates, it explicitly registers its resource
objects with the CosTransactions::Coordinator object. This returns a
CosTransactions::RecoveryCoordinator object for use by the resource object if
the server process fails.

When the application has registered all its resource objects and has completed
all the updates required for the transaction, it ends the transaction either by
calling the CosTransactions::Current object, or by calling the

CosTransactions:: Terminator object extracted from the CosTransactions::Control
object. It can request either that the transaction commits or that it rolls back
(see F'Lifetime of a transaction” on page ’7"‘\’1])_ This results in the
CosTransactions::Coordinator object making calls to the application’s resource
objects. Using either the two-phase commit or one-phase commit process, the
CosTransactions::Coordinator object ensures that the application’s resource
objects are either all told to make their updates permanent, or all told to undo
their updates even if some or all of the servers abnormally terminate during
this operation.

If an application wishes to be called just before the resource objects are called
during a commit operation and just after all of the resource objects are either
committed or rolled back, it can create an object that implements the
CosTransactions::Synchronization interface and register it with the
transaction’s CosTransactions::Coordinator object. Such
CosTransactions::Synchronization objects are normally only required when
using a database such as DB2

When all of the application’s resource and CosTransactions::Synchronization
objects have been called, the transaction is complete. The transaction’s
CosTransactions::Control, CosTransactions::Coordinator,
CosTransactions::Terminator objects and all the application’s resource and

268  WebSphere: Advanced Programming Guide



synchronization objects are destroyed. The application can then use the
CosTransactions::Current object to start another transaction.

The CosTransactions:: TransactionFactory object provides an alternative
operation for creating a transaction. It creates a transaction and returns a
CosTransactions::Control object to an application without associating it with a
thread. This might be required for some specialized applications that do not
wish the transactions it is using to be associated with a thread.

CosTransactions::Current

CosTransactions::Control

CosTransactions::Synchronization [—| CosTransactions::Coordinator CosTransactions::Terminator
. CosTransactions::Subtransaction CosTransactions::Recovery
CosTransactions::Resource AwareResource Coordinator

Manage transactions in your application

Applications manage transactions primarily by using the
CosTransactions::Current interface. The WebSphere Application Server Enterprise
Edition Component Broker Programming Reference describes all the Transaction
Service interfaces and describes which ones are appropriate for use within the
Component Broker Programming Model. Some of the later sections in this

Chapter 9. Transaction Service 269



chapter go beyond the Programming Model and are appropriate only for
application adaptor writers. This material is provided for background
information.

There is one CosTransactions::Current object in each operating system process,
and it provides the operations to access the main facilities of the Transaction
Service. More information on the use of these operations is given in the
following steps.

Before carrying out this procedure, make sure you are familiar with:

7 . ”

To manage transactions in your application, follow these steps:

1. Access the CosTransactions::Current interface. (See m
CosTransactions::Current Interface’].)

2. Set a time limit for all new transactions. (See [‘Setting a time limit for all
I | | 3 7 22][)

3. Start a transaction using the CosTransactions::Current interface. (See

” . . . . . . 17

4. Pass the transaction to a remote object. (See FImplicitly propagate a
l I' I I I I ] . I// sz.)

5. Update data.
6. End a transaction using the CosTransactions::Current interface. (See

7 . . . . . . 77

)

Accessing the CosTransactions::Current Interface

The CosTransactions::Current object is available in every process where the
Transaction Service is located. It provides access to most of the operations you
require to control the transactions used by your application.

The following information describes how to extract a reference to the
CosTransactions::Current object.

Before carrying out this procedure, make sure you are familiar with [Thd

”

To access the CosTransactions::Current object, follow these steps:

270  WebSphere: Advanced Programming Guide



=

Get access to the ORB.

2. Get a reference to the CORBA::Object registered with the name
“TransactionCurrent”.

3. Narrow this CORBA::Object to a CosTransactions::Current object.

Here is an example:

#include <CBSeriesGlobal.hh>

#include <CosTransactions.hh>

// Function to return the CosTransactions::Current object for this process
CosTransactions::Current *get CosTransactions_Current()

{
CORBA::0bject_var theCurrent;
// Get access to the orb and retrieve the transactions current object
theCurrent = CBSeriesGlobal::orb()->resolve_initial_references(
"TransactionCurrent");
// Narrow the to a CosTransactionsCurrent object
return CosTransaction::Current:: narrow(theCurrent);

}
Setting a time limit for all new transactions

The CosTransactions::Current interface has a set_timeout() operation that
enables your application to set a time limit for all transactions that are
subsequently started.

The default time limit value is set to 300 seconds but is can be configured
using the Systems Management interfaces. If the time limit has a value of “0”,
transactions subsequently started using the CosTransactions::Current interface
does not have a time limit set.

Before carrying out this procedure, make sure you are familiar with:

0 ”

. f’ArrpQQing the CosTransactions:-Current Interface” on page 270)

To set a time limit for all new transactions, follow these steps:

1. Obtain a reference to the CosTransactions::Current object in this process.

2. Invoke the set_timeout() operation on the CosTransactions::Current object,
passing the time limit required as a parameter in seconds.

#include <CosTransactions.hh> // CosTransactions module

// Access the CosTransactions::Current object.

CORBA::0Object_ptr orbCurrentPtr =
CBSeriesGlobal::orb()->resolve_initial_references("TransactionCurrent");

CosTransactions::Current_ptr current =
CosTransactions::Current::_narrow(orbCurrentPtr);

// Invoke the set timeout operation on the CosTransactions::Current object.

Chapter 9. Transaction Service 271



current->set_timeout(60 /* seconds */);

// Start a transaction

If a transaction exceeds the time limit set, the Transaction Service rolls back
the transaction and removes the CosTransactions::Coordinator object. When
the application subsequently calls a remote object or the
CosTransactions::Control::get_coordinator() method, the
CORBA:TRANSACTION_ROLLEDBACK exception is raised. If this occurs,
the application should call CosTransactions::Current::rollback() to remove the
CosTransactions::Control object and CosTransactions::Terminator object.

Starting a transaction using the CosTransaction::Current interface

To start a transaction, an application uses the begin operation of the
CosTransaction::Current object. Invoking the begin() operation causes a
transaction to be created and to be associated with the current thread of
execution. The thread is then said to be running within the scope of the newly

created transaction. (See i or more
ted t t S ‘ ” fi

information.)

If a transaction was not associated with the current thread when the beiin()

operation was called, a top-level transaction is created. (See

H.a.Lttansamons_on_p.a.ge_M for more information.)

Before carrying out this procedure, make sure you are familiar with:

o ['Lifetime of a transaction” on page 253

o [’ _ . ”

. l’Arrquing the CosTransactions::Current Interface” on page 270

To start a transaction using the CosTransactions::Current Interface, follow
these steps:

1. Access the CosTransactions::Current object.
2. Invoke the begin() operation on the CosTransaction::Current object.

Here is an example:

#include <CosTransactions.hh> // CosTransactions module...
// Access the CosTransactions::Current object.
CORBA::0bject_ptr orbCurrentPtr =
CBSeriesGlobal::orb()->resolve_initial_references("TransactionCurrent");
CosTransactions::Current_ptr current =
CosTransactions::Current:: narrow(orbCurrentPtr);

272 WebSphere: Advanced Programming Guide



// Invoke the begin operation on the CosTransactions::Current object.
current->begin();

If the Transaction Service is unavailable, it will throw one of the following
standard exceptions:

CORBA:INITIALIZE
This means that a problem in recovery was detected while the server
was starting. For example, the server was unable to open its log file.
Error messages describing the problem were logged in the activity log
when the problem was detected.

CORBA::PERSIST_STORE
This means that while running transactions the server found it was
unable to use its log file. For example, because of insufficient disk
space. Once the problem with the log file is fixed, the server will need
to be restarted before new transactions can be created.

CORBA:INVALID_TRANSACTION
This means the Transaction Service is unable to start a transaction.

All of these exceptions are written to the activity log with a minor error code.
This minor error code gives more detail on the cause of the problem.

Suspending a transaction from the current thread

When a thread is associated with a transaction, an application can use the
suspend() operation of the CosTransactions::Current object to remove the
association between the thread and the transaction. Following transaction
suspension, the transaction still exists but is no longer automatically
propagated to other objects in the application - that is, the current thread is no

longer running within the scope of the transaction. (See I'Transaction scopd
d for more information.

The CosTransactions::Current::suspend operation returns a
CosTransactions::Control object reference that represents the transaction that
has been suspended. This reference can be passed to another thread and used
to resume the transaction later. See ['Passing a transaction context to anothed

thread” on page 275 and LRﬂsumm.g_a_ttansamon_on_thmmenLmea.d_oﬂ
bage 274 for more information.

Before carrying out this procedure, make sure you are familiar with:

Chapter 9. Transaction Service 273



To suspend a transaction from the current thread, follow these steps:
1. Obtain a reference to the CosTransactions::Current object in this process.
2. Invoke the suspend() operation on the CosTransactions::Current object.

Here is an example:

#include <CosTransactions.hh> // CosTransactions module...
CosTransactions::Control_ptr control = NULL;

// Access the CosTransactions::Current object.
CORBA::0bject_ptr orbCurrentPtr =
CBSeriesGlobal::orb()->resolve_initial references(
"TransactionCurrent");
CosTransactions::Current_ptr current =
CosTransactions::Current:: narrow(orbCurrentPtr);

// Invoke the begin operation on the CosTransactions::Current object.
current->begin();

// Suspend the association between the transaction and the thread.
control = current->suspend();
if (!control)

{

// There was no transaction associated with this thread prior to
// the suspend. Perform appropriate action.
cout << "Error": No transaction prior to suspend" << endl;

}
Resuming a transaction on the current thread

If an application has a pointer to a CosTransactions::Control object that
represents an active transaction, it can use the resume() operation of the
CosTransactions::Current object to associate the transaction with the current
thread of execution (in place of any previous transaction). Following the
resume, the current thread runs within the scope of the transaction.

An application can also pass a NULL pointer on the resume() operation to
clear the thread of any association with transactions.

Before carrying out this procedure, make sure you are familiar with:

s ”

e [‘The Transaction Service nhjprf@ and interfaces” on page 267

o I’Arrpeqing the CosTransactions::Current Interface” on page 2701

To resume a transaction on the current thread, follow these steps:
1. Obtain a reference to the CosTransactions::Current object in this process.

274  WebSphere: Advanced Programming Guide



2. Invoke the resume() operation on the TransactionCurrent object, passing
the reference of the CosTransactions::Control object representing the
transaction to be suspended.

Here is an example:

#include <CosTransactions.hh> // CosTransactions module...
CosTransactions::Control_ptr control = control_parameter;

// Access the CosTransactions::Current object.
CORBA::0bject_ptr orbCurrentPtr =
CBSeriesGlobal::orb()->resolve_initial_references("TransactionCurrent");
CosTransactions::Current_ptr current =
CosTransactions::Current:: narrow(orbCurrentPtr);

// Resume the association between the transaction and the thread.
try
{

current->resume(control);

}

catch(CosTransactions::InvalidControl)

{

cout << "Error: control object passed to resume was invalid" << endl;

}
Passing a transaction context to another thread

The Transaction Service allows an application to pass a transaction between its
threads. The application does this by extracting the CosTransactions::Control
object using the CosTransactions::Current object and passing it to the other
thread. The other thread can then use the resume() operation of
TransactionCurrent to associate the transaction with the itself.

When extracting the CosTransactions::Control object from the
CosTransactions::Current thread, the thread that is passing the transaction has
two options:

* To use the CosTransactions::Current get_control() operation to retrieve a
reference to the CosTransactions::Control object while leaving the
transaction still associated with the thread, or

* To use the CosTransactions::Current suspend() operation to retrieve a
reference to the CosTransactions::Control object. This removes the
association between the current thread and the transaction.

Applications would use get_control() operation when both threads are to
continue using the transaction, and suspend if the aim was to completely
transfer execution for the transaction to another thread.

Before carrying out this procedure, make sure you are familiar with:

7 7

Chapter 9. Transaction Service 275



o ['The Transaction Service nhjprfe and interfaces” on page 267

o I’Arcpqqing the CosTransactions::Current Interface” on page 2701

7 : : ”

v : : ”

To pass a transaction context to another thread, follow these steps:
1. Obtain a reference to the CosTransactions::Current object in this process.

2. Invoke the suspend or get_control() operation on the
CosTransactions::Current object.

3. Put the pointer in a location where it can be accessed by another thread.
4. Start a new thread.

5. Within the new thread, retrieve the pointer to the Control object and use
the CosTransactions::Current resume() operation to associate the thread
with the transaction.

Here is an example:
#include <CosTransactions.hh> // CosTransactions module

CosTransactions::Control_ptr control = NULL;

// Access the CosTransactions::Current object.
CORBA::0bject_ptr orbCurrentPtr =
CBSeriesGlobal::orb()->resolve_initial_references("TransactionCurrent");
CosTransactions::Current_ptr current =
CosTransactions::Current:: narrow(orbCurrentPtr);

// Suspend the association between the transaction and the thread.
global_control = current->suspend();
// Start a new thread

void new_thread(void *parameter)

{
// Associate the transaction with my thread.
try
{

current->resume(_global_control);

}

catch(CosTransactions::InvalidControl)

{

cout << "Error: control object passed to resume was invalid" << endl;

}

276  WebSphere: Advanced Programming Guide



Implicitly propagate a transaction context to a remote object

Having started the transaction, your application is ready to perform work as
part of that transaction. This typically involves invoking methods on other
objects that can be either local and remote.

When an application has a transaction associated with a thread, the
Transaction Service automatically propagates the transaction to all objects
invoked in the same thread and all remote objects invoked from this thread
that inherit from the CosTransactions:: TransactionalObject interface. These
objects are then able use the CosTransactions::Current operations to control
the transaction.

The Transaction Service does however place one restriction on the use of the
transaction in servers other than the one that started the transaction: they
cannot end the transaction. Only threads in the operating system process
where the transaction was started can call any of these operations.

* CosTransactions::Current::commit

* CosTransactions::Current::rollback

* CosTransactions:: Terminator:commit

* CosTransactions:: Terminator::rollback

Before carrying out this procedure, make sure you are familiar with:

7 ”

° s 7

To pass a transaction context to a remote object, follow these steps:

1. Derive your remote object class from the
CosTransactions::TransactionalObject interface. This will happen
automatically if the remote object resides on a Component Broker server,
as all managed objects inherit from CosTransactions::TransactionalObject.

2. If you invoke a method on the remote object from within the scope of a
transaction, it propagates the transactional context.

Forcing a transaction to rollback

The TransactionCurrent interface has a rollback_only() operation, which
enables your application to ensure that an active transaction rolls back even if
the TransactionCurrent commit() operation is called. Applications use this
operation if they detect an error that means all the updates could not be
completed successfully.

Once the rollback_only() operation has been called, the application is no
longer able to invoke methods on some remote transactional objects or register

Chapter 9. Transaction Service 277



resource objects with the transaction’s CosTransactions::Coordinator object. See
7 L . . 173 for
more information.

Before carrying out this procedure, make sure you are familiar with:

To force a transaction to rollback, follow these steps:
1. Obtain a reference to the TransactionCurrent object in this process.
2. Invoke the rollback_only() operation on the TransactionCurrent object.

Here is an example:
#include <CosTransactions.hh> // CosTransactions module

// Access the CosTransactions::Current object.

CORBA::0bject_ptr orbCurrentPtr =
CBSeriesGlobal::orb()->resolve_initial_references("TransactionCurrent");

CosTransactions::Current ptr current =
CosTransactions::Current::_narrow(orbCurrentPtr);

// Invoke the rollback_only operation on the TransactionCurrent object.

current->rollback_only();

Ending a transaction using the CosTransactions::Current interface

If the work has been done correctly inside the transaction, the application
ends the transaction by committing the changes to the resources. Typically,
this is done by invoking the TransactionCurrent commit() operation on a
thread that is running within the scope of the transaction. A boolean
parameter passed to the commit() operation indicates whether the application
requires heuristic exceptions to be reported (a value of TRUE indicates that they
should).

If the application cannot commit all the changes made to resources (for
example, if an attempt to update a resource in the transaction resulted in an
error code being returned), the application might choose to rollback the
changes it made as part of the transaction. Typically, this is done by invoking
the TransactionCurrent rollback() operation from a thread that is running
within the scope of the transaction that is to be rolled back.

Before carrying out this procedure, make sure you are familiar with:

B ”

278  WebSphere: Advanced Programming Guide



To end a transaction using the TransactionCurrent interface, follow these
steps:

1. Access the CosTransactions::Current instance by narrowing the
CORBA::Current object.

2. Invoke the commit() or rollback() operation on the TransactionCurrent
instance.

Here is an example:
#include <CosTransactions.hh> // CosTransactions module

::CORBA: :Boolean rollback required = FALSE;

// Access the CosTransactions::Current object.
CORBA::0Object_ptr orbCurrentPtr =
CBSeriesGlobal::orb()->resolve_initial_references(
"TransactionCurrent");
CosTransactions::Current_ptr current =
CosTransactions::Current:: narrow(orbCurrentPtr);

// Invoke the begin operation on the TransactionCurrent object.
current->begin();

// Perform work for the transaction and set rollback required to TRUE if
// an error is detected.

// Invoke commit or rollback depending on whether rollback_required is
// set. This must be called within a try...catch structure as the
// transaction service may raise an exception if an error occurs.

try

{
if (rollback_required == TRUE)
{

current->rollback();

else // commit required
{

current->commit(/* report_heuristics = */ TRUE);
}

}
catch (CORBA::TRANSACTION_ROLLEDBACK &exc)

// The application called commit, but the transaction service rolled
// the transaction back because an error was detected.

}

catch (CosTransactions::HeuristicMixed &exc)

{
// The transaction service has reported that some or all of the resource
// objects have made a heuristic decision. This has resulted in
// heuristic damage.

Chapter 9. Transaction Service 279



}

catch (CosTransactions::HeuristicHazard &exc)

{

// The transaction service has reported that not all of the resource
// objects could participate properly in determining the outcome of the
// transaction. There is a possibility of heuristic damage.

}
catch (CORBA::UserException &exc)

{

// Another type of user exception has occurred.

}
catch (CORBA::SystemException &exc)

{

// The application called commit, but the transaction service rolled
// the transaction back because an error was detected.

}
catch (...)

{

// A general exception has occurred.

If a transaction rolls back unexpectedly, then the problem may be:

There are requests to remote objects still outstanding.
The time limit for the transaction has been exceeded. See [‘Transaction timd

An object in your application has set the transaction to rollback. See

”

A server that houses some of your application’s objects has failed.
A standard exception was raised and not caught during a remote method

request. See 'Handle exceptions”]

Handle exceptions

As with other CORBA Object Services, the Transaction Service may return a
CORBA exception from a call. There are two types of CORBA exception

User exceptions
System exceptions

User exceptions can only be returned from an interface if it is specified on the
definition of the interface. For an example, see the
CosTransactions::Current::begin interface in the Programming Reference.

The Transaction Service user exceptions are:

CosTransactions::SubtransactionsUnavailable

280  WebSphere: Advanced Programming Guide



* CosTransactions::
* CosTransactions::
* CosTransactions::
* CosTransactions::
* CosTransactions:
* CosTransactions::
* CosTransactions::
* CosTransactions::
* CosTransactions::
* CosTransactions::

Inactive
NotPrepared
NoTransaction
InvalidControl

:Unavailable

SynchronizationsUnavailable
HeuristicCommit
HeuristicRollback
HeuristicHazard
HeuristicMixed

System exceptions may be returned from any call. They are defined as part of
the CORBA module. The system exceptions that are specific to the use of the
Transaction Service are:

CORBA:TRANSACTION_ROLLEDBACK
If this exception is returned by either of the following methods:
* CosTransactions::Current::commit
* CosTransactions:: Terminator::commit

The transaction has rolled back. If it is returned by any other method
then the transaction has either been marked rollback only

transaction to rallback” on page 277) or is about to rollback. The

transaction initiator (normally the client process) should then call

either:

¢ CosTransactions::Current::rollback
¢ CosTransactions:: Terminator::rollback

To complete the rollback process. (See ‘Ending a transaction using thd

CosTransactions:Current interface” on page 278
CORBA:INVALID_TRANSACTION

If this exception occurs, the state of the transaction does not allow the

requested operation. If a transaction has been successfully started, the

transaction initiator (normally the client process) should then call

either:

¢ CosTransactions::Current::rollback
¢ CosTransactions::Terminator::rollback

To end the transaction. (See 'Ending a transaction using thd

7 ‘)

CORBA:TRANSACTION_REQUIRED
If this exception occurs, the requested operation requires a transaction
and no transaction exists. The application should start a transaction

”

and retry the operatlon (See LSta.Ltm.g_a_tLa.nsac.tmn_usm.g_thd

for more information.)

Chapter 9. Transaction Service 281



Whenever a system exception is raised, it is associated with a minor error
code. These give more detail as to the cause of the error and are documented
in Exceptions Defined by Minor Error Code, in the reference section.

Prevent memory leaks in the Transaction Service

Memory leaks occur when objects are created and not deleted, or storage is
acquired and not freed. If memory leaks occur continuously in a process, the
size of the process increases, making it run slower and eventually fail. The list
below describes how to avoid memory leaks of Transaction Service objects.

Make sure that a process that starts a transaction alwavs ends the transactlon

(See L
| and LEndm.g_a_tnansam.nnJm.g_tbe_CnsItansachnns_Clmenﬂ
.\:.tenﬁacp_an_pa.geﬂﬂ for more information.)

If your application uses an interface that returns a Transaction Service object
such as:

* CosTransactions::Current::get_control
* CosTransactions::Control::get_terminator
* CosTransactions::Control::get_coordinator

then ensure it also calls CORBA::release() to release the object reference once it
is no longer required.

Always specify a time limit (timeout) for transactions started from a client so
that the transaction is rolled back if the client terminates before ending the

transactlon (See I'Transaction time limits (timeouts)” on page 261 and

”

= i for more information.)

Controlling the Transaction Service in a running system

This section includes the following information:

. ""vppq of server qfarf-nrl

. 7 n - N - 77

. Priohlemd i
The transaction service log

The Transaction Service creates a log for every server. This records
information about transactions running in the server and is used for recovery.

Important:

282  WebSphere: Advanced Programming Guide



The log here is not the same as a message log (such as the
Component Broker activity log), audit trail or journal service. It is
only used for transaction state information and is not in a
readable format.

The name of a server’s log is assigned by the Transaction Service the first time
the server is started, and appears in one of the messages written to the
Component Broker activity log as the server starts up. The name is of the
form somtrnnn; for example, somtr0000. This name is used as a prefix to all
files that belong to the log. The log itself is split into two parts. Files that
begin somtrnnn.p contain information about the databases and any other
server that the local server is coordinating transactions on. Files that begin
somtrnnn.t describe the transactions that are running in the server.

Each part of the log consists of three types of files, qualified by the file
extension:

.ctl A control file (for example, somtr000.t.ctl).
.csh A cushion file (for example, somtr000.t.csh).

.nnn Any number of extent files (for example, somtr000.t.001,
somtr000.t.002, and so on). The number of extent files used is
dependent on the number and age of the running transactions in the
server.

The amount of disk space required for the log depends on the number of
transactions running in the server, the type of work involved in these
transactions, and their duration. It is recommended that you initially allow
about 1IMB of disk space per server. This amount can be revised once the load
on the server can be assessed. If the transaction log runs out of disk space,
your server will stop processing transactions until you make more disk space
available, and have then restarted the server.

The location of the log is defined in the log directory attribute found in the
Transaction Service part of the server’s server image. The directory specified
must exist and be on a local file system. It is also advisable to use a file
system where any other data on it is reasonably static. This will ensure there
is always sufficient disk space for the log.

As transactions running within the server complete, their entry is removed
from the log. There is no need to perform housekeeping functions on the log
files. If a server fails because of insufficient space in the file system, make
more space without deleting any of the log files. The only time it is safe to
delete a log file is if the file is for a server that has been deleted.

Chapter 9. Transaction Service 283



A server stores the name of its log in the Component Broker System
Management configuration data files. If you recreate your configuration data
files, the server will no longer have the name of the log file and will be
allocated a new log name. Therefore, before recreating your configuration data
files, start up each server and ensure the Transaction Service starts
successfully. Then, without allowing any new transactions to be started, shut
the servers down. There will then be no partially-complete transactions in
your servers. Now you can safely delete the log files and recreate the System
Management configuration data files.

Types of server start-up

The first time a server is started, the Transaction Service creates a Transaction
Service log (& i i Z ) for recording
information about running transactions. The name of this log appears in a
message written to the Component Broker activity log:

Opening new transaction service Tog <logfilename> in server <serverName>
The transaction service started successfully in server <serverName>

It is then possible to view a server’s log name using the System Manager User
Interface. The name of the log file is also displayed in a message written to
the Component Broker activity log at each subsequent start of the server.

Opening transaction service log <logfilename> in server <serverName>
The transaction service started successfully in server <serverName>

If the Transaction Service discovers that there were transactions running when
the server was last terminated, messages appear in the Component Broker
activity log indicating that the Transaction Service is recovering incomplete
transactions:
Opening transaction service log <logfilename> in server <serverName>
Recovering incomplete transactions from the transaction service log for

server <serverName>
< a delay may occur here if other servers are not available >

A1T recovered transactions are now complete in server <serverName>
The transaction service started successfully in server <serverName>

The process of completing recovered transactions is called resynchronization.
The server can only work with new transactions when resynchronization is
complete.

If the Transaction Service cannot create or open its log, messages such as those
shown below are logged in the Windows NT application:

The transaction service in server <serverName> could not open its log.
Error was <errorCode>
The transaction service is unavailable in server <serverName>

284  WebSphere: Advanced Programming Guide



Any attempt to start a transaction in the server once this message has been
logged results in a CORBA:INITIALIZE exception.

A description of these messages, and the correct action to take when they
occur, can be found in the “Understand Transaction Service Messages” topic
in the “Problem Determination” section of the WebSphere Application Server
Enterprise Edition Component Broker Problem Determination Guide .

Configuring a server to use the Transaction Service

The default configuration for each application server is set so that the
Transaction Service is enabled.

If you wish to change the default attribute settings, you should use the
System Manager, as described in the following steps:

1. Edit the Server Model for the server.

2. In the Object Editor Notebook, select the Transaction Service tab. The
following attributes relate to the Transaction Service:

Retry restricted

Commit retry limit

Heuristic direction

Log directory

Log file size
f. Transaction timeout

3. To save the changes and exit the Object Editor Notebook, click OK.

4. To apply the changes to the server, activate the configuration containing
the Server Model.

®ooop

Note: The Transaction Service will not be available in an application server if
the log directory attribute specifies a directory that does not exist. This is
because the Transaction Service creates log files in this directory that
are required to preserve transaction integrity in the even of server
failure. You must therefore check that the directory specified is valid. If
the directory does not exist the Transaction Service will fail to initialize
and it will not be possible to begin a transaction.

Problem determination

While it is running, the Transaction Service writes out a number of messages.
For an explanation of the Transaction Service messages, please see the
“Understand Transaction Service Messages” topic in the “Problem
Determination” section of the WebSphere Application Server Enterprise Edition
Component Broker Problem Determination Guide.

While the Transaction Service is running, Component Broker may also issue
messages relating to XA Resource Managers. For an explanation of the XA

Chapter 9. Transaction Service 285



messages, please see the “Understand XA Messages” topic in the “Problem
Determination” section of the WebSphere Application Server Enterprise Edition
Component Broker Problem Determination Guide.

Summary of the Transaction Service

* The Transaction Service enables programmers to implement transactions
through standard CORBA interfaces.

* A transaction simplifies applications that need ACID (atomicity, consistency,
isolation and durability) properties.

* The Transaction Service provides support for top-level transactions only,
and only top-level transactions can be used when accessing databases.

* Applications that use the Transaction Service normally have a client/server
design and use managed objects to implement recoverable objects.

286  WebSphere: Advanced Programming Guide



Chapter 10. Session Service

The following chapter is platform-dependent and does NOT apply to OS/390
Component Broker.

The Session Service is provided as part of the procedural application adaptor
(PAA) software. The following sections describe what the Session Service is,
and how to use it.

What is the Session Service?

PAA introduces the notion of a session to help manage resources within the
context of a unit-of-activity scope. A session context is similar to a transaction
context. For example, a session defines a scope and associated consistency and
visibility semantics under which a set of activities is performed.

A session is started and ended by a client program (or something on its
behalf). Sessionable objects that are invoked within the session context can
register a sessionable-resource with a session coordinator.
Sessionable-resources are then notified to participate in the completion of that
session. In addition, the client can initiate intermediate checkpoints and resets
of the session. These operations are discussed later in this chapter.

The scope of sessions

The Session Service provides primitives for applications in a distributed object
environment to control the scope of a session and the session profile and
arbitrary session properties that are relevant within the scope of that session.

The scope of the session is defined to exist between the point when the
session is started and the point when the session is ended (with the
beginSession() and endSession() methods). Within the bounds of the session,
the application can suspend a session, copy or move a session to a different
thread of execution, and resume the session. In general, an application can
only end a session that is active on their thread of execution. Also, generally, a
session can only be ended by the client (or server) thread and process that
started the session. However, a session can time out any thread with access to
the session context and force a reset (and termination of the session), and
multiple threads in the top-level session can collaborate on the outcome of the

© Copyright IBM Corp. 1997, 1999 287



session, superseding either of the previous two rules. For more information
about timeouts, see [‘The tfimeout value associated with a session” onl

A session scope can be used by the server run time for a variety of purposes:

* Loose atomicity

* Loose consistency
e Isolation

* Reuse of resources
* Resource cleanup

In terms of atomicity, the Session Service does not guarantee atomic updates.
However, the session can be used to synchronize the checkpointing of state
among multiple, non-collaborating resources. Since all registered resources are
synchronized on the session checkpoint event, the Session Service can be used
to achieve loose-consistency among these otherwise disparate resources.
Again, the consistency is not guaranteed, and no consistency is attempted
between transactional resources and non-transactional resources operated on
in the same session, except at the termination of the session. The Session
Service will only attempt to synchronize transactional and non-transactional
resources at the end of the session, essentially by preventing the session from
being terminated until all outstanding transactions have completed.

In terms of isolation, the session provides the ability, outside a transaction
context, to isolate particular instances of objects from other sessions; each
session can have its own view of object data.

In terms of reuse, resources may be allocated during a session and carried
forward from one method request to another in the same session context. An
example of this is to reuse a CICS terminal from one method request to
another. This would allow a pseudo-conversational set of CICS transactions to
occur with the passing of COMMAREA data from one CICS transaction to the
other. With resource cleanup, any resources allocated on behalf of the session
can be cleaned up at the completion of the session.

Although this appears very similar to what a transactional context would
define, it is different in one significant way: there is no commit/rollback

support at all.

Sessions cannot be nested. There is at most one session context associated
with a current thread at any time.

288  WebSphere: Advanced Programming Guide



The relationship between transactions and sessions

The relationships between sessions and transactions are outlined briefly below.
Specifically, a transaction is either completely inside one session, or is outside
all sessions.

* Transactions can be started outside of the scope of a session. However, if
that transaction is suspended it cannot be resumed in the context of an
active session.

* A session cannot be started in the middle of an active transaction.

* Multiple transactions can be implemented within a single session context.
However, if a transaction is started within a session context and then
suspended, it cannot be resumed within a different session.

* A session cannot be terminated while any transactions are active within it.
The transaction must be terminated before the session can be terminated.
However, ending a session with the Reset-Force end-mode will
automatically roll back any pending transactions before terminating the
session.

* If the session is suspended on a thread of execution, then the active
transaction, if any, is suspended on that thread of execution as well. When
the session is resumed, the suspended transaction is resumed on that thread
of execution as well.

* Sessions cannot be nested; a transaction can be involved with one session at
most.

Note: Client application writers must not use the TransactionFactory directly
to create a transaction, or the transaction Terminator directly to end the
transaction. The checking of the relationships is done by the
transactions Current and sessions Current objects, so these must be
used.

The timeout value associated with a session

A session carries with it a timeout value which is established when the
session is initially begun. This value defines the maximum duration of the
session in seconds. If the timeout value is exceeded, the session is
automatically ended (timed out). Setting the timeout value to zero (0) means
that the session will not time out.

The timeout value is part of the session context and is propagated on remote
method calls to other servers involved in the session. Any server involved in
the session is capable of determining that the timeout value has elapsed and
initiating the timeout of the session.

The action taken when a session timeout condition occurs is to cause the
session to be ended with the "EndModeResetForce” end mode.

Chapter 10. Session Service 289



Resource priorities

When registering a Resource, a priority value is specified. The following table
lists the priority values:

Range Meaning Recommended Use
0x0000 - OxOFFF Top priority BO-supplied resources
0x1000 - Ox3FFF High priority

0x4000 MOs

0x4001 - OxBFFF

Medium priority

0xC000

Connections

0xC001

PAO cache

0xC002 - OxFFFF

Low priority

Using the Session Service

290  WebSphere:

There are two perspectives on why a Session Service is useful:

* From the perspective of a client programmer, a session is useful for
demarcating the beginning and end of related activity.

* From the perspective of a managed object, a session is useful for controlling
the lifecycle of their objects when their objects cannot adhere to the strict
ACID properties required in a transaction context.

Client use of the Session Service

A client programmer can use the Session Service to begin and end a session

context. The session context:

* Has a beginning and an ending.

* Has state.

* Is associated with the thread of execution on which it was begun.

* Propagates implicitly with any method requests initiated within that session
context.

The client program can associate an session profile with the session, and in
doing so, indicates the way that it intends for resources to behave or be
handled within that session context. This can include whether the application
requires pessimistic or optimistic locking of data, whether it can tolerate
deferred consistency, etc. In addition, the application can establish arbitrary
name-value pairs (session properties), that act as global, distributed,
environment variables. Session properties also propagate implicitly with any
method requests initiated within that session context, and dissipate them at
the end of the session context.

Advanced Programming Guide




More importantly, the application can indicate when it is through with any
resources that it was using within the session. The system can take this cue to
clean up any transient or other resources that were allocated for the session
that were not otherwise cleaned up as part of some other, more strict
context-binding mechanism, such as a transaction context.

Finally, the application can use the session to control the checkpointing of
persistent state for any resources it used within the session, in a
loosely-consistent fashion. When the application issues a checkpoint request, a
best-effort attempt will be made to transition object state into the persistent
storage systems underlying those objects that are not controlled with a
transaction context.

Client applications should begin a session when they want to perform a set of
activities under a common session profile, and as a single logical activity.
They should then perform their work, and then end the session when they
have completed that activity and want to free up any system resources that
were allocated for use within that activity. In between, the client application
can issue a checkpoint request to push out any changes that have been made
to those resources, to the back-end data systems that back up those resources.
Having checkpointed the object-system, the application can also reset the state
of the back-end data systems back into their object-system resources. In
addition to controlling the session, the application can also control any
number of transaction contexts, either completely within, or completely
outside of, the session context.

When a client originates a session, it needs to choose a Component Broker
server on which to create the Session Service objects. The choice of this server
can have a significant impact on performance. For example, if the client
chooses a server that would not normally be involved with the session,
performance will be adversely affected. Unlike the Transaction Service client,
the Session Service client creates a session as soon as the beginSession()
method is called. At that point in time the client has no knowledge of which
servers any of the business objects will be created on. In order to determine
which server a session is created on, the Session Service client uses the client
style image stored in the System Management configuration data files. The
factoryFinder attribute of the client style names the default factory-finder that
will be used by the client to find a session factory, and then determine the
server on which the session will be created. If no session factory can be found
using this method, an arbitrary session factory will be chosen using the
host-scope factory finder.

The Session Service client library is part of the Object Services library, called
“somosai”, for the IBM VisualAge C++ compiler, and “somosam” for the
Microsoft Visual C++ compiler. Component Broker also provides a Java Client
SDK zip file, somojor.zip, with Java client implementations of the Session

Chapter 10. Session Service 291



Service interface. Note that, in the case of a Java client that runs on a machine
capable of also supporting a Component Broker server, the SOMOJOR.zip file
must be at the start of the CLASSPATH otherwise the business object (server)
Java bindings will be loaded when a CORBA object service interface is called

and a CORBA:NO_IMPLEMENT exception will be thrown.

Managed object developer use of the Session Service

From the perspective of a managed object developer, transactional resources
are generally orthogonal to sessionable resources. That is, a resource is either a
transactional resource, and subject to the strict ACID properties that
characterize transactional semantics, or the resource is a sessionable resource.
Sessions, however, do not guarantee atomicity, consistency, or durability of
updates, although they can be used to ensure isolation or visibility. Sessions
operate with best-effort semantics.

Consequently, each managed object implementation must decide whether it
can support the stricter ACID properties associated with a transactional object.
If it can, then it should be implemented, and register a transactional-resource
object with the Transaction Service. However, for objects that are implemented
over many legacy procedural systems, such as CICS or IMS transactions, the
strict ACID properties of a transactional resource may be difficult, if not
impossible, to achieve. These objects should be implemented as sessionable
objects, and register a sessionable-resource object with the Session Service.

Managed object developers can choose to implement their objects with the
more stringent ACID properties of a transactional resource, or with the
loose-consistency properties of a sessionable object. Typically this will be
driven by the capabilities of the data system over which the managed object is
implemented, and as instituted by the qualities of service support provided by
the corresponding application adaptor. Depending on which is selected, the
managed object will then be governed by either the session context and
lifecycle, or the transaction context and lifecycle.

Visibility rules

Sessions can be run concurrently from different applications. Some complexity
is involved when some of these concurrently running applications are
accessing the same data from the same data store. Visibility rules define how
the data interactions between these concurrent sessions are defined.

The Session Service is provided as part of a solution to provide Component
Broker applications access CICS or IMS based applications on the third tier of
a three-tiered architecture. Component Broker uses different mechanisms to
attach to CICS and IMS applications, and these mechanisms have a slightly
different behavior. Unfortunately, this behavior can reflect back into the client

292 WebSphere: Advanced Programming Guide



application and provide slightly different results for concurrently running
applications. The following sections describe the different behavior relative to
the following categories:

* Attribute getters and setters - those methods that read or update the
attributes of a business object.

* Create, retrieve, update and delete methods.

¢ Pushdown methods - some methods cause interactions with the data store.
For example, a method may need the value of an attribute from the data
store. This will cause a retrieve operation to be performed. These methods
that can indirectly cause communication with the data store are referred to
as pushdown methods. It is the responsibility of the application developer
to document which attributes may be read or modified for each pushdown
method.

* Checkpoint and end session methods.

It should be noted that although these methods may make changes visible to
other sessions or other applications, these changes are not forced on these
sessions or applications. These sessions or applications must take some action
to refresh their state or read the changed data before the changes are evident
in these other sessions or applications. Visibility should be viewed as making
the changes available to other sessions or applications.

Using HOD to access to CICS and IMS applications

Host on Demand (HOD) is the mechanism used to provide access to CICS
and IMS 3270 applications. The categories behave in the following manner:

Attribute getters and setters
When these methods are implemented, they only affect the session in
which they are used. They are not visible to other sessions.

Create, retrieve, update and delete methods
When these methods are implemented, the changes are visible to other
sessions.

Pushdown methods
When these methods are implemented the changes are visible to other
sessions.

Checkpoint and end session methods
When these methods are implemented the changes are visible to other
sessions.

When using this mechanism, many of the methods that are implemented

result in changes that are immediately visible to other sessions or other
applications.

Chapter 10. Session Service 293



Using ECI to access to CICS applications

ECI (External Call Interface) is one of the mechanisms used to provide access
to CICS COMMAREA applications. The categories behave in the following
manner.

Attribute getters and setters
When these methods are implemented they only affect the session in
which they are used. They are not visible to other sessions.

Create, retrieve, update and delete methods
When these methods are implemented the changes are not visible to
other sessions.

Pushdown methods
When these methods are implemented the changes are not visible to
other sessions.

Checkpoint and end session methods
When these methods are implemented the changes are visible to other
sessions.

When using this mechanism, many of the methods that are implemented will
result in changes that are not immediately visible to other sessions or other
applications.

Transactional access to CICS and IMS

Transactional access to CICS and IMS applications is also provided in the PAA
APPC support. Transactional visibility rules are discussed in the
i icd chapter.

Toward a more common client programming model

In some instances, it is important for the application developer to have a more
common programming model that is more independent of the attachment
mechanism being used. In these cases, the following technique could be
implemented. It can be deduced from the previous information that
checkpoint or endSession operations could be used to bring these two models
closer together.

A simple approach would be to code more checkpoint operations throughout
the client application. This would bring the visibility of these two mechanisms
very close. However, this technique should only be used if a more common
programming model is desired since it removes the capability of reversing a
set of operations through the use of an endSession(EndModeReset) operation.

294  WebSphere: Advanced Programming Guide



Session Service tasks

Setting

The following sections outline the fundamental tasks that you can perform
using the Session Service.

a time limit for all new sessions

The ISessions::Current interface has a setSessionTimeout() operation which
enables your application to set a time limit for all sessions that are
subsequently started.

The default time limit is set to zero. That is, sessions may run indefinitely.

Before performing this task, make sure you are familiar with:

7 ”

. ” . . . . ”

To set a time limit for all new sessions, follow these steps:

1. Access the ISessions::Current object by narrowing on the CORBA::Current
object returned from the ORB.

2. Invoke the setSessionTimeout()operation on the ISessions::Current object,
passing the new timeout value.

Here is an example:

CORBA: :0Object_var object;

ISessions::Current_var sessionCurrent;

// Get the current for this thread of execution

// from the ORB and narrow to the session current.

object = CBSeriesGlobal::orb()->resolve_initial_references(
"SessionCurrent");

sessionCurrent = ISessions::Current:: narrow(object);

// Set the session timeout.

sessionCurrent->setSessionTimeout (100);

Beginning and ending a session

Support for the session profile is provided for future expansion of the Session
Service and is not enabled in the current release. Any value specified for the
session profile is ignored and beginSession always returns FALSE.

Beginning a session

You begin a session by invoking the beginSession() operation on the
ISessions::Current object. You should supply a text string representing the
name of your application, or the session profile under which you want the
session to operate. If the specified profile cannot be found, or if you specify
an empty string, then a default session profile is used.

Chapter 10. Session Service 295



The session profile is intended to allow specification of certain expectations
about how the session will behave. This information can be used in
combination with the capabilities and policies of the running system to
produce a set of execution decisions that optimize the total performance and
throughput of the system.

Once the session has been started, you can perform any number of operations
on business objects within the session. All operations invoked within the
session are performed with the same session context.

Before performing this task, make sure you are familiar with:

7 ”

. " . . . 77

To start a session, follow these steps:

1. Decide on the application name or session profile name under which you
want the session to operate.

2. Get access to the ORB.

3. Get a reference to the CORBA::Object registered with the ORB with the
name “SessionCurrent”.

4. Narrow the CORBA::Object to an ISessions::Current object.

Here is an example:

CORBA::0bject_var object;

ISessions::Current_var ISessions::Current;

// Get the current for this thread of execution

// from the ORB and narrow to the session current.

object = CBSeriesGlobal::orb()->resolve_initial_references(
"ISessions::Current");

ISessions::Current = ISessions::Current:: narrow(current);

// Begin a session context.

ISessions::Current->beginSession("LifeInsuranceApplication");

If the Session Service is unavailable, it will throw the following standard
exception:

CORBA:INITIALIZE
This means that the Session Service initialization failed. For example,
because a factory could not be found to create the objects needed for
the session context.

CORBA:UNKNOWN
This means that the Session Service encountered an unexpected error
such that initialization could not continue.

These exceptions are written to the activity log with a minor error code. This
minor error code gives more detail on the cause of the problem.

296  WebSphere: Advanced Programming Guide



Ending a session

You complete the session by invoking the endSession() operation on the
session Current. Normally, you specify the EndModeCheckpoint end-mode
with this operation. This drives all the sessionable resources used within the
session to save their state changes persistently, through embedded operations
on the underlying data system.

To reset the session, end it without saving any of the changes that occurred
since your last checkpoint (or since the beginning of the session if you did not
perform any checkpoints). Specify the EndModeReset end-mode with the
endSession request.

EndModeCheckpoint and EndModeReset have no bearing on any transactions
issued within the session, other than to ensure that the session is terminated
before the session can end. However, if you encounter severe errors in your
processing, you can end the session with EndModeResetForce. This will force
the session to be reset immediately, including rolling-back any outstanding
transactions.

To end a session, follow these steps:

1. Access the ISessions::Current object as described previously. You may also
use an ISessions::Current object obtained from a previous operation.

2. Decide on the way in which the session should end: checkpoint, reset or
reset-force.

3. Decide whether the endSession() operation should return immediately in
the case where other threads in the same process still have the session
context active, or whether to wait until the session context has ended on
all threads.

4. Invoke the endSession() operation on the ISessions::Current object, passing
the end mode value and the wait flag value.

Here is an example:

CORBA::0Object_var object;

ISessions::Current_var ISessions::Current;

// Get the current for this thread of execution

// from the ORB and narrow to the session current.

object = CBSeriesGlobal::orb()->resolve initial references(
"ISessions::Current");

ISessions::Current = ISessions::Current:: narrow(current);

// End the session context, returning immediately in the case

// that there are other threads with the session context active.

ISessions::Current->endSession(ISessions::EndModeCheckPoint,1);

Chapter 10. Session Service 297



Full example

The following example demonstrates how a single-thread client can begin a
session, perform some work, and then end the session, checkpointing any
non-transactional work that occurred within the session.

CORBA::0bject var object;

ISessions::Current_var ISessions::Current;

// Get the current for this thread of execution

// from the ORB and narrow to the session current.

object = CBSeriesGlobal::orb()->resolve_initial_references(

"ISessions::Current");

ISessions::Current = ISessions::Current:: narrow(current);

// Begin a session context.

ISessions::Current->beginSession("LifeInsuranceApplication");

try {

// ... do the methods that will be implemented under the
// session ...

}

catch (ISessions::SessionResetForced) {
// The session was forced to reset mid-stream, probably the
// session timeout tripped, or a session resource

// encountered a significant error and had to force the session
// reset.

}s

// End the session context, including checkpointing any activity that
// occurred during the session.

try {
}

catch (ISessions::DifferentEndModeForced) {

ISessions::Current->endSession(EndModeCheckpoint,1);

// The end-session was forced to reset instead of checkpointing.

catch (ISessions::IncompleteProcess) {

// Something failed to checkpoint. Identify the resource that
// failed. Try opening a new session, driving

// the set of changes to that resource again, and attempt to
// checkpoint the session again.

catch (ISessions::SubThreadPending) {

// Something in the work that was done must have spawned an

// asynchronous thread which is operating within the session and
// has not completed yet. Wait some more time to give the thread a
// chance to complete, and try to end the session again. This can

298  WebSphere: Advanced Programming Guide



// be retried a number of times (although look out for the session
// timeout tripping). Eventually, if the thread never ends, you
// will have to force the session to reset.

catch (ISessions::TransactionPending) {

// Something in the work that was done must have started a

// transaction and has not ended it. This could be a programming
// error, although it could happen in an asynchronous thread that
// has not completed yet. Try taking the same action as with

// SubThreadPending.

}s
Suspending and resuming a session

There may be occasions when you want to switch the session under which
you are operating. You can do this by suspending the current session, and
starting a new one. Later, you can resume the original session. Each session is
represented by an ISessions::Control object. By maintaining separate references
to each Control, you can multiplex multiple sessions. The sessions can be
resumed and suspended each for the period under which you want to
operate.

Before performing this task, make sure you are familiar with:

s ”

o ['Client use of the Session Service” on page 294

o 7 . . . . 77

You can suspend a session with the suspendSession() operation on the session
Current, using the following steps:

1. Access the ISessions::Current as described previously. You may also use an
ISessions::Current object obtained from a previous operation.

2. Invoke the suspendSession() operation on the ISessions::Current object.

3. Store the returned Control object to be used later to resume the session
context.

Here is an example:

CORBA::0bject_var object;

ISessions::Current_var ISessions::Current;

ISessions::Control_var sessionControl;

// Get the current for this thread of execution

// from the ORB and narrow to the session current.

object = CBSeriesGlobal::orb()->resolve initial_references(
"ISessions::Current");

Chapter 10. Session Service 299



ISessions::Current = ISessions::Current:: narrow(current);
// Suspend the session context.
sessionControl = ISessions::Current->suspendSession();

You can resume the session with the resumeSession() operation on the session
Current, using the following steps:

1. Access the ISessions:Current object as described previously. You may also
use an ISessions::Current object obtained from a previous operation.

2. Identify the ISessions::Control object which represents the session context
to be resumed.

3. Invoke the resumeSession() operation on the ISessions::Current object,
passing the Control object.

Here is an example:

CORBA::0bject_var object;

ISessions::Current_var ISessions::Current;

ISessions::Control_var sessionControl; // obtained from elsewhere.

// Get the current for this thread of execution

// from the ORB and narrow to the session current.

object = CBSeriesGlobal::orb()->resolve_initial_references(
"ISessions::Current");

ISessions::Current = ISessions::Current:: narrow(current);

// Resume the session context.

ISessions::Current->resumeSession(sessionControl);

Explicit and implicit propagation of session context

Before performing this task, make sure you are familiar with:

° 7 : ”

If you begin a session, then the session will automatically be propagated with
any method request you invoke on any other managed object, regardless of
whether the targeted object is local or remote. This is referred to as implicit
session context propagation.

There may be occasions when you want to propagate a session context
between threads, outside of a method request. You can do this with explicit
session propagation. You can get a session Control object, representing a
particular session context, using the getSessionControl() operation on a session
Current. You can then pass a reference to this Control object to another thread
of execution and use that as input to the resumeSession() operation. This will
register the other thread’s participation in the session. This is referred to as
explicit session propagation and can be performed inside or outside a method
request.

Note that methods with the following names do not have session context
propagated on them:

300 WebSphere: Advanced Programming Guide



e _is_a

* _non_existent

¢ getSessionCoordinator
* getSessionName

* registerResource

* getSessionContext

* decrementUseCount
* incrementUseCount

* prepareToEndSession
* prepareToCheckpointSession
¢ prepareToResetSession

Managed object writers should avoid using any of these names for their
methods.

Notice that the following is a perfectly legal scenario: Thread-1 has an active
session and suspends this session using the suspendSession() operation. This
returns a Control object representing the suspended session. It then begins a
new session and invokes a method on some object, passing the original
session Control as an argument. The suspended session is explicitly
propagated, while the currently active session is implicitly propagated.

The session remains active on that thread of execution, independent of the
original thread, until that thread separately ends its involvement in the
session, typically by suspending the session on that thread of execution.

Checkpoint and reset a session context

Before performing this task, make sure you are familiar with:
e [The scape of sessions” on page 287

e [‘Client 11se of the Session Service” an page 290

When appropriate, you can checkpoint your progress in a session. That is, you
can issue the checkpointSession() operation on the session Current. As a
consequence, any session resources registered in the session will be prompted
to checkpoint their state to their corresponding persistent data system. In
effect, any changes that you have made so far to the in-memory state of
business objects you have used will be transformed to their persistent storage
system.

After making some number of changes to the in-memory state of your
business objects, you can reset the session to the last checkpointed state by
invoking the resetSession() operation on the session Current. Consequently,
any session resources registered in the session will be prompted to reset their
state from their corresponding persistent data system. In effect, the persistent
state of your objects will be transformed in to memory.

Chapter 10. Session Service 301



Note that certain operations that you perform on your business objects may
result in implicit checkpointing, that is, forcing in-memory state to be
transformed to persistent storage. Typically, this occurs in push-down
methods, that is, methods that are encoded directly or indirectly to make use
of legacy procedures and require or result in a certain amount of state
transition in the course of those procedures. Thus, if you reset a session, the
in-memory state may or may not revert back to the state you had the last time
you explicitly checkpointed the session.

Note also, that in many cases where you are adapting to legacy procedures,
transitions from memory to persistent storage, or vice-versa, may result in
additional side-effects that may be relevant to your business logic. This
phenomena may require additional adjustments to your business object
implementations to consider the impact of those side-effects fully.

You can checkpoint a session context using the following steps:

1. Access the ISessions::Current object as described previously. You may also
use an ISessions::Current object obtained from a previous operation.

2. Invoke the checkpointSession() operation on the ISessions::Current object.

Here is an example:

CORBA::0bject_var object;

ISessions::Current_var ISessions::Current;

// Get the current for this thread of execution

// from the ORB and narrow to the session current.

object = CBSeriesGlobal::orb()->resolve_initial_references(
"ISessions::Current");

ISessions::Current = ISessions::Current:: narrow(current);

// Checkpoint the session context.

ISessions::Current->checkpointSession();

Full example of checkpointing and resetting a session

Checkpointing and resetting a session are simply a matter of issuing the
checkpoint or reset methods as follows:

try {
ISessions::Current->checkpointSession();

}

catch (ISessions::IncompleteProcess) {
// Something failed to checkpoint. Identify the resource that
// failed. Try opening a new session,

// driving the set of changes to that resource again, and attempt to
// checkpoint the session again.

}

catch (ISessions::SubThreadPending) {

302 WebSphere: Advanced Programming Guide



// Something in the work that was done must have spawned an

// asynchronous thread which is operating within the session and

// has not completed yet. Wait some more time to give the thread a
// chance to complete, and try to end the session again. This can be
// retried some number of times (although look out for the session
// timeout tripping). Eventually, if the thread never ends, you will
// have to force the session to reset.

}s
Registering sessionable resources

Normally, the Component Broker run time automatically registers relevant
session resources in a session. However, any application can introduce and
register their own session resources with the Session Service. A distinction is
made between a SessionableObject and a session Resource. While these
typically represent essentially the same entity, the interfaces are separated to
help distinguish between publishing a desire to be used within a session, and
actually registering as a session resource. If a resource wants to publish a
desire to be used within a session, the SessionableObject only advertises that a
session context should be created and flowed on any method request invoked
on the object. The object itself may or may not be capable of responding to
session-related events, but rather may depend on other objects that do. If a
resource wants to actually register as a session resource, the session Resource
is capable of responding to session-related events. The same object may
inherit both interfaces, fulfilling both roles. Or the interfaces could be
inherited separately by two different objects, usually two closely collaborating
objects.

A SessionableObject should register its Resource with the session Coordinator
as soon as it realizes that it has been invoked in a new session. Typically this
is done by performing a test at the beginning of each method on the
SessionableObject. If the request is issued within a session context, and the
session is new to the SessionableObject (one that it has never recognized
before), then it should register its corresponding Resource object with the
session Coordinator.

A SessionableObject can determine whether it is being invoked within a
session by invoking getSessionControl on an ISessions::Current. If the request
raises the NoSession exception, then the request was not invoked in a session.
Otherwise, the request should return a ISessions::Control. The sessionable
object can then determine whether the session is the same as one they have
seen before by getting the session Coordinator (by invoking the
get_coordinator on the session Control), and then invoking isSameSession on
the Coordinator.

Chapter 10. Session Service 303



The isSameSession() operation takes a Coordinator as an argument. The
sessionable object should retain a reference to all of the Coordinators for each
of the unique sessions it is currently participating in. Note that the same
sessionable object could be invoked by multiple clients each under their own
session context. Thus, the sessionable object can repeat the isSameSession
request, passing in each of the Coordinators of the sessions it is participating
in. If the session (Coordinator) is not the same as any it already knows of,
then the session is new to it. The sessionable object should then register its
Resource object and then add the Coordinator to its list of sessions in which it
is participating. Later, when the session completes, issuing the endResource()
operation on the Resource, the sessionable object (through a private
collaboration with its Resource) should remove the Coordinator representing
that terminated session from its list.

Before performing this task, make sure you are familiar with:

’ ”

o I'Client use of the Session Service” on page 200

° s 1

You can register a Resource object for the session using the following steps:

1. Access the ISessions::Current object as described previously. You may also
use an ISessions::Current object obtained from a previous operation.

2. Obtain the ISessions::Control object which represents the session context
using getSessionControl on the ISessions::Current object. If this operation
throws the NoSession exception, then there is no session context with
which to register the Resource object.

3. Obtain the ISessions::Coordinator object that represents the session context,
using getSessionCoordinator on the ISessions::Control object.

4. Determine whether the Resource has already been registered with this
session context, using isSameSession on the ISessions::Coordinator. If the
Resource has already been registered, then there is no need to do so now.

5. Obtain a reference to the Resource object to be registered. This can be done
by either creating a new instance, or by reusing an existing Resource.

6. Decide on the priority value for the registration.

7. Invoke the registerResource() operation on the ISessions::Coordinator
object, passing the Resource object and priority value.

Here is an example:

CORBA::0bject_var object;
ISessions::Current_var ISessions::Current;
ISessions::Control_var sessionControl;
ISessions::Coordinator_var sessionCoordinator;
ISessions::Resource_var myResource;

int myPriority;

304 WebSphere: Advanced Programming Guide



// Get the current for this thread of execution

// from the ORB and narrow to the session current.

object = CBSeriesGlobal::orb()->resolve_initial_references(
"ISessions::Current");

ISessions::Current = ISessions::Current::_ (current);

// Obtain the session Control object.

// This will throw NoSession if there is no current session context.

try {

sessionControl = ISessions::Current->getSessionControl();

catch (ISessions::NoSession) {

//skip over the remaining code

// Obtain the session Coordinator object.

sessionCoordinator = sessionControl->getSessionCoordinator();

// Determine whether already registered.

// This will involve using ISessions::Coordinator::isSameSession.

// Register the Resource
sessionCoordinator->registerResource(myResource,myPriority);

Collaborating on session outcome using multiple concurrent threads

Before performing this task, make sure you are familiar with:

7 : ”

e [‘Client 1ise of the Session Service” an page 290

In some cases, particularly in window-based client programes, it is necessary to
manipulate resources (business objects) from multiple threads, all within the
same session context. The Session Service makes it relatively easy to do this.
As described in [Explicit and implicit propagation of session context the same
session context can be propagated between threads by passing the session
Control representing the session context between threads, and then resuming
it on the subordinate thread using the resumeSession request on an
ISessions::Current.

At least one thread must issue an endSession request to establish the outcome
of the session. All of the other threads can simply issue an endSession request
or a suspendSession request on a Current to end their involvement in the
session. The session will not actually terminate until the last thread has issued
either an endSession or a suspendSession request. If more than one thread
issues the endSession request, the final outcome of the session is determined
by the total consensus of all of the threads issuing the endSession request. For
the session to be checkpointed, all of the threads must request to end with
EndModeCheckpoint. If any thread requests to end with EndModeReset or
EndModeResetForce, the session will be reset.

Chapter 10. Session Service 305



Note that collaboration of this sort can only be performed amongst threads in
the process of the top-level coordinator.

306 WebSphere: Advanced Programming Guide



Chapter 11. Query Service for AIX and Windows NT

The Query Service enables you to query for a set of objects that satisfy a set of
conditions that you specify. Performing a query using the Query Service is
conceptually very similar to performing query on a relational database. It
differs in that the Query Service query is performed on a collection of objects
rather than a collection of records, and the predicate is formed on the set of
attributes and method return values for the object rather than on columns in
the tables.

You will often find that you are dealing with very large collections in your
business application. The collections that you deal with may have hundreds of
thousands, millions, or even billions of object instances. Iterating through the
entire collection of objects, looking for the one or few that you want to work
with, can be enormously expensive, in terms of system resources. You can use
the Query Service to preselect the set of objects that you want to work with.
The Query Service will produce a subset of the original collection that satisfies
the conditions that you set. If you only want to work with insurance policies
that have coverage of more than a million dollars, you can form a query to
return only those Policy objects that satisfy that condition, and then iterate on
just those few.

The Query Service introduces a new query language: object-oriented SQL
(O0OSQL). OOSQL is an extension to the SQL language with additional
constructs for operating on objects instead of tuples. OOSQL is described in
detail in the Component Broker reference section.

Queries are actually performed by a query evaluator. The query evaluator
understands the OOSQL grammar and how to apply it to collections of objects
to form the requested result. In some cases, the query evaluator is able to
push queries all the way down into the underlying datastore for a collection
of objects. In this case, the query can be performed in the datastore and can
yield significant performance improvements.

Certain kinds of collections, termed queryable collections, are able to support
query operations directly. The collection, in turn, will locate an appropriate
query evaluator and use that to form the results that it hands back to you.

Depending on the needs of your application, queries have two different kinds
of results. One result type is a collection of objects of a single type. For
instance, if you are performing a query on a collection of Policy objects, then
you probably want a result set of Policy objects. Alternately you can project in

© Copyright IBM Corp. 1997, 1999 307



the query statement attributes of the object or expressions involving object
attributes and this is returned in the form of a collection of data array records.

The Query Service locates collections referenced in the FROM clause of any
query statement by looking up the referenced collection name in the system
name space. Alternately the caller can specify a list of Name/Value pairs on
the query method that define the collection in the FROM clause.

Object-Oriented Structured Query Language

The language for the Component Broker Query Service is object-oriented
Structured Query Language (OOSQL). OOSQL is a Query Service over objects
where the syntax of the query is expressed in standard or extended forms of
the Structured Query Language (SQL).

Differences between OOSQL and SQL

This section contains a brief review of SQL showing how OOSQL differs from
SQL. For more information on SQL see the SQL Reference Manual and
Application Programming Guide in the DB2 product information.

SQL is a Structured Query Language designed for use with relational
databases. Use the following employee and department tables, you can
perform queries to find specific data.

Table 13. Employee

empid name deptno
12 "Dave’ 42

14 "Andrew’ 42

16 "Liz’ 44

18 "Amy’ 44

20 "Don’ 44
Table 14. Department

deptno name mgrid
42 ‘Sales’ 16

44 "Dev’ 20

You can find all employees in department 42:
select empid,name from employee where deptno=42

You can find all employees whose manager has the ID of 16. This query,
however, requires a join of both tables.

308 WebSphere: Advanced Programming Guide



select e.empid, e.name from employee e, dept d
where d.deptno=e.deptno and d.mgrid=16

You can find all employees that are not managers:

select empid, name from employee where empid not in
(select mgrid from dept)

You can find the number of employees in each department:
select deptno, count(x) from employee group by deptno

OOSQL is an extension of SQL. Instead of tables used in SQL, data takes the
form of collections of objects with attributes and methods.

empHome is a home collection of employee objects with the interface:

interface employee({
attribute readonly long empid;
attribute string name;
attribute dept deptPtr;
}

deptHome is a home collection of dept objects with the interface:

interface dept {
attribute readonly Tong deptno;
attribute string name;
attribute employee mgr;
IManagedCollection::IIterator emps();

}

Unfortunately IDL does not tell you what kind of objects the method emps()
returns. Assume that these are employee objects.

OOSQL queries equivalent to the previous queries would be:

select e.empid,e.name from empHome e where
e.deptPtr->deptno=42;

This query returns the values of empid and name for employee objects in
department 42. It is called a data array query.

Some important points to remember:
¢ OOSQL queries always end with a semicolon.

* The FROM clause names the collection. (Later you will see how to query an
unnamed collection.) The name of the collection is the name that the home
uses in the DCE namespace. Be aware that home collections have two
names, a home name and a factory finder name. The FROM clause always
uses the home name, never the factory finder name.

Chapter 11. Query Service for AIX and Windows NT 309



* The (->), or (..) is a dereference operator in OOSQL. These operators
function in a similar manner as the right arrow (->) operator in C++. The
dereference operator can be used with data types that are object references.
A path expression must always begin with a correlation identifier (the letter
“e” in the previous example).

If you want to return object references instead of attribute values the query
would be:

select e.0ID from empHome e where e.deptPtr->deptno=42;

This is called a reference query. A reference query is a special case of a data
array query where there is only one element in the SELECT clause and that
element is an object reference.

A correlation name followed by a period and the keyword OID returns
pointers to objects in the collection associated with the correlation name. If the
correlation name is not one of the members in the collection associated with
the correlation name, the correlation name and has the same semantics as
correlation name preceeded by the keyword REF. However only the right
arrow (->) is used to traverse through OID. This feature was introduced to
preserve compatibility with SQL in which column names can be unqualified.
For example, to select pointers to employee objects with the name of "Bob’
from the empHome collection:

select e.0ID from empHome e where name='Bob';

If the collection empHome has no member attribute “e”, then the previous
query is the same as the following query:

select e from empHome e where name='Bob';

You can return attribute values and object references:
select e.empid, e.name, e.0ID from empHome e
where e.deptPtr->deptno=42;

This is considered another type of data array query.

To find all the dept objects where the deptno is between 10 and 100 the query
would be:

select x.0ID from deptHome x where x.deptno between 10 and 100;
The query to find all non-manager employee objects would be:
select e.0ID from empHome e where e.empid not in

(select d.mgr->empid from deptHome d );

A count of employees in each department would be performed as follows:

310 WebSphere: Advanced Programming Guide



select e.deptPtr->deptno, count(*) from empHome e
group by e.deptPtr->deptno;

You can perform string searches using the SQL LIKE operator:

select e.0ID from empHome e where e.name like 'Bob%';

“%” is the wild card character in SQL. SQL strings are delimited by single
quotes where strings in C++ are delimited by double quotes.

Note: String searches are case sensitive in SQL.

If the dept interface also includes methods, I can also include methods in my
queries.

interface dept {

attribute readonly Tong deptno;
attribute string name;

attribute employee mgr;

double compute_overtime();

Tong compute_vacation(in Tong year);

Find all dept objects where the overtime is greater than 10 hours:

select d.0ID from deptHome d where d.compute_overtime() > 10;

Find the deptno, name and vacation days of dept objects where vacation in
1996 was less than 50 days.

select d.deptno, d.dname, d.compute_vacation(1996)
from deptHome d where d.compute vacation(1996) < 50;

The key points of OOSQL queries is that they:

Methods

Are similar to SQL queries.
Use collection names in the FROM clause (SQL queries use table names).

Can return object references as well as attribute values (SQL queries can
only return column values ).

Have a dereference operator (->), or (..) that can be used to follow object
references.
Can do joins, subselects, ordering and summarize data just like SQL.

Can use object attributes and methods in the select and where clause. Only
methods that return a value and have either no parameters or only input
parameters can be use in a query statement.

OOSQL supports invocation of CORBA IDL methods in queries. (Methods are
also referred to as member functions.) In an OOSQL query, a method name is
followed by the method arguments within parentheses. For example,

Chapter 11. Query Service for ATIX and Windows NT ~ 311



m(a,,a,,...a) is a method with name m and arguments a,,a,,...a,,. Following the
C++ convention, methods with no arguments are followed by empty
parentheses: m().

Component Broker implements a dynamic run-time environment for method
selection and invocation.

If a method argument is a null value, then the value returned by the method
is also null.

Methods must be defined as having zero arguments or input only arguments
and must not be defined with a return type of void.

The implementation of methods appearing in queries has limitations. Method
arguments in OOSQL statements are checked for type correctness. Where
possible, when method execution results in exceptions, a method failure
message is generated and the query is terminated. In some cases, a
programming error in a user’s method might cause the query engine to halt
loop or terminate abnormally.

The following table presents the conversion that is performed when an
argument of a given type is passed to a method that is defined with a
parameter of the same or different type.

The table shows for example, if you have the IDL interface

myInterface {
attribute short si;
attribute string s2;
Tong methoda(in Tong input);
1

the query statement
select e.methoda(e.sl) from myHome e;

is valid and the Query Service will convert s1 from short to long when calling
the method. However the query statement

select e.methoda(e.s2) from myHome e;

is not valid because the string type attribute s2 cannot be passed to methoda.

argument type/ pointer short long float double string wstring
parameter type
pointer NC E E E E E
short E NC C C C E E
long E Cc* NC C C E

312  WebSphere: Advanced Programming Guide



argument type/ pointer short long float double string wstring
parameter type
float E Cc* Cc* NC C E E
double E C c - NC E E
string E E E E E NC C
wstring E E NC

C*

NC

Conversion. The argument type is converted to the parameter type.
Conversion with the possibility of an overflow, or an underflow due to a type conversion.

Error. The argument type used in a method in a query is not applicable to the parameter type
of the method.

No Conversion. The argument type and the parameter type are the same.

Inheritance

OOSQL supports interface inheritance as in the following example. Suppose
the manager interface inherits from employee.
interface manager : employee {
attribute dept manages_deptPtr;
attribute long executivelevel;

}

A query statement over manager can select inherited attributes just like
noninherited attributes. (No special syntax is required.)

select m.no, m.name, m.executivelLevel from managerHome m;

Navigation

A navigation is specified by path expressions. Path expressions allow traversal
through references, embedded structures, and collections to reach embedded
members. The (->), or (..) operator is used to express traversal through
embedded members. Path expressions can appear anywhere a member can. A
path expression is q.m1..m2..mn where q is a correlation name defined for
collection C, and m1 is a member of the element type of C, and m2 is a
member of the type of m1 and so on. A member of mi can be a member or a
method. A path expression evaluates to the value of the leaf of the expression.

Through embedded structures

Embedded structures members can be defined in terms of structures.
Navigation allows traversing into the embedded members of structure

Chapter 11. Query Service for AIX and Windows NT ~ 313



definitions. Use two periods (..) as an operator only for traversal through
embedded structures. The right arrow (->) operator CANNOT be used with
structures.

Example:

struct addressStruct {
string street;
string city;
string state;
string country;
string zip;

}

interface employee {
attribute long empid;
attribute addressStruct address;

}

You can write the query statement

select e.address, e.empid, e.address..city from empHome e
where e.address..zip='95120"' order by e.address..city;

returns the address struct, employee ID and city for employees in postal code
95120 sorted by city.

Through references

Reference members can also participate in navigational expressions. A
reference that has a zero value is treated as a null reference. Only references to
objects, can be traversed (that is, appear as other than leaf nodes in path
expressions). Uninitialized or invalid references can cause OOSQL to
terminate abnormally if these are part of a path expression that is traversed.
The operator (->), or (..) is used for traversal through reference types.
However, only the right arrow (->) is used to traverse through OID.

Through collections

Multi-valued relationship members can be used as collections in a FROM
clause as in the query

select d.0ID from deptHome d , (d.emps) e where e.empid > 1000 ;

This query joins each department object in the department Home collection
with its related set of employee objects. The semantics for join are used to
compute the final result set. For each employee whose empid > 1000 a
reference to the department object is returned. If a department has a set of
employees with empid equal to (20, 1001, 1009, 1020) then the OID for that
department would be returned three times. If a department has no employees,
then the OID for that department would not be returned.

314  WebSphere: Advanced Programming Guide



Multi-valued members can also be used in predicates as in the query
select d.0ID from deptHome d where d.emps .. empid > 1000 ;

This query has the same meaning as the query above. The path expression
d.emps .. empid

is converted into an equivalent join query.

Navigation through multi-valued relationship members creates implicit
correlation names over each embedded collection in the path expression.

You must use two periods (..) as an operator when navigating through
multi-valued members. The right arrow (->) operator cannot be applied to a
multi-valued member.

Multi-valued members can also be used as a short hand notation for a
sub-select expression as in the query

select d.0ID from deptHome d where exists d.emps ;

The following query has the same meaning as the previous query:
select d.0ID from deptHome d where exists (select 1 from (d.emps) e) ;

Both queries return references to department object where there is one or
more employees in the department.

The next query illustrates using a quantified predicate with a path
expressions. Remember that quantified predicates take as an argument a set of
values.

select d.0ID from deptHome d where 2000 < some d.emps..empid ;

This query is equivalent to

select d.0ID from deptHome d where 2000 < some (
select e.empid from (d.emps) e) ;

Note the difference here from the earlier examples. The earlier examples
implicitly converted the path expression into a join query. In this example, the
path expression when used with a quantified predicate converts the path
expression into a sub-select. A join query will exclude departments with zero
employees and an department with more than one employee may appear in
the result multiple times. Sub-select queries used with quantified predicates
have different semantics.

The previous query returns references to department objects where some of
the employees in the department have an empid > 2000. If the department has

Chapter 11. Query Service for ATIX and Windows NT ~ 315



zero employees, it will not appear in the final result. A department will
appear at most once in the final result even if there are multiple employees
with empid > 2000.

Next let’s look at path expressions used with aggregation functions. The
following query is the sum of salaries for each department.
select d.deptno, sum(d.emps..salary)

from deptHome d
group by d.deptno ;

It is equivalent to:

select d.deptno, sum(e.salary)
from deptHome d , (d.emps) e
group by d.deptno ;

A department with zero employees will not appear in the result set.

The following query does a count of employees in each department. A
department with no employees will not appear in the result.
select d.deptno, count(d.emps..id)

from deptHome d
group by d.deptno;

An equivalent query is:

select d.deptno, count(x)
from deptHome d, (d.emps) e
group by d.deptno ;

The following query does not count the number of employees in each
department, but rather counts the number of sets of employees in each
department. Emps represents the collection of employees in each department
and there is exactly one such collection for each department.

select d.deptno, count(d.emps) from deptHome d group by d.deptno;

Multi-valued path expressions can also be used in the SELECT clause as in
the query

select d.emps .. empid , d.emps .. name
from deptHome d where d.deptno = 1 ;

The following query is an equivalent query that uses a join.

select e.empid, e.name from deptHome d, (d.emps) e
where d.deptno =1 ;

This returns a data array consisting of the empid and name values for

employees in department 1. If there are no employees in department 1, the
result of the query is empty because of the inner join operation.

316  WebSphere: Advanced Programming Guide



In the following query, the emps is defined in the IDL schema as an Ilterator,
and will return a result set that consists of Ilterators. If a department has
multiple employees, there will only be one Ilterator in the result for each
department. If a department has no employees, then there will still be an
[Iterator in the result but the Ilterator will return an empty set.

select d.emps from deptHome d where d.deptno in (1, 2) ;

Using a multi-valued relationship in a SELECT clause has the semantics of
outer join. However applying the dereference operator of two periods (..) to
the relationship changes the semantics to an inner join.

One final explanation about path expressions when you use a path expression
to navigate between objects in different application servers. Path expressions
can only be used when the related collections exist in the same server. Using a
path expression to navigate between objects that reside in different servers
will result in an exception.

Query optimizations

In general, the semantics of any query requires that the Query Service invoke
the methods or attributes specified in the query expression, perform any
mathematical operations on the resulting values as specified in the query
expression, and determine whether the final result satisfies the specified
predicate for each object in the collection. Due to the inherent encapsulation
semantics of object-oriented programming, this requires that the Query Service
activate each object instance in the collection and perform the evaluation one
object at a time.

However, if the collection(s) you are querying is collected by a home, and that
home is configured to store the state of its objects in a relational database then
the Query Service can optimize its search. The query evaluator is smart
enough to detect that the collection(s) it is operating on may be adapted to a
relational data store. When this is the case, and when there is a
straightforward mapping between the attributes specified in the query, and
the underlying columns of the tuple in which the managed objects collected
by the home are stored, then the query evaluator will transform the OOSQL
expression into a standard SQL expression and “push down” the query to
examine the underlying datastore. The Query Service supports “push down”
for DB2 and Oracle data stores.

Even if only part of the OOSQL expression can be mapped in this way, the
resulting push down will often yield an intermediate result set that is a
fraction of the original collection size. Thus, the remaining query can iterate
over the intermediate subset and significantly reduce the overhead that would
be incurred if the evaluation had to iterate over every object in the collection.

Chapter 11. Query Service for AIX and Windows NT =~ 317



If the collection being queried is collected by a home that is configured to
store object state data in a procedural system such as CICS or IMS using the
Component Broker Procedural Adapter a mapping between the object
attributes and procedures may be created. If such a mapping exists then the
query evaluator will transform the OOSQL expression into a series of
procedural calls on the backend store. For example, if a CICS transaction T1
that given a partial employee name, will return a list of employees with that
name, the OOSQL query

select e.0ID from empHome e where e.name like 'Smith%';

will result in calling T1. The data returned by T1 will used to build a series of
employee objects that will returned by the query operation.

Query push down on PAA backed home collections can also be partial. Given
the OOSQL query

select e.0ID from empHome where e.name Tike 'Smith%' and e.salary > 25000;

transaction T1 will be called to first build a intermediate result which will
then be further refined to return only those objects where salary > 25000.

For more information about configuring query and PAA backed home
collection, see the “Flow diagram” section in the WebSphere Application Server
Enterprise Edition Component Broker CICS and IMS Application Adaptor Quick
Beginnings.

DBMS pushdown rules

The query pushdown determines what parts of the OOSQL query are passed
down to the underlying relational database management systems (DBMS)
where the data resides. The parts of the OOSQL query that are not pushed
down are evaluated in the memory. This section lists which of the OOSQL
query constructs are pushed down and which are not for the DB2/390, DB2
Universal Database (UDB) and Oracle database management systems.

Simple expressions: All DBMS types: The expressions containing numeric,
date, time, and timestamp functions, arithmetic operators and comparison
operators appearing in predicates are pushed down to the DBMS. Comparison
operators among {<,s, >, 2} are not pushed down for string or Wstring types.

Joins: All DBMS types: Multiple tables from the same database can be
pushed down in a single query if the table are related by an equi-join
predicate.

Aggregates, group by clause, having clause: DB2/390,Universal Database

(UDB): Aggregates, group by and having can be pushed down provided that
all other clauses in the query can be pushed down.

318 WebSphere: Advanced Programming Guide



Oracle: Aggregates, group by and having can be pushed down provided that
all other clauses in the query can be pushed down and that only columns
appear in the projection list.

Distinct: All DBMS types: Pushdown is disabled.
Order by: All DBMS types: Pushdown is disabled.
Union: All DBMS types: Pushdown is disabled.

Subqueries: All DBMS types: If the tables participating in a subquery are
from the same database as the tables participating in the outer query and the
body of the subquery can be pushed down, the following rules apply: Exists
(existential) subqueries are pushed down. Subqueries that are basic predicates,
and ANY (existential) and ALL (universal) subqueries are pushed down if the
comparison operator is in the set {=, #} or if the comparison operator is
among {<, =, >, 2} and the operands of the operator are numeric, date, time,
timestamp (arguments of type string or Wstring disable pushdown).

Projection (query without aggregates, group by and having): All DBMS
types: Projection clauses in subqueries can be pushed down. The projection
clause of the outer query is computed in the memory.

Projection (query with aggregates, group by and having): DB2/390.UBD:
The projection list can be pushed down (see the following aggregate function
list for details on when pushdown occurs).

Oracle: Pushdown is disabled if anything other than columns appear in the
projection list.

Scalar functions:
char

Universal Database (UDB):
The CHAR function can be pushed down for arguments of
type string, short, long, decimal, date, time, timestamp.
Pushdown is not applied for arguments of type 4 byte float,
double, duration due to formatting differences.

DB2/390:
Same as Universal Database (UDB) except that string
arguments cannot be pushed down.

Oracle:
The CHAR function is pushed down using the Oracle to_char
function for arguments of type short, long, and decimal. Note
that these numeric types map to the Oracle number type with
a certain precision and scale.

Chapter 11. Query Service for AIX and Windows NT ~ 319



320

integer

Universal Database (UDB):
The INTEGER function can be pushed down for string and
numeric arguments.

DB2/390:
Same as Universal Database (UDB) except that varchar
arguments cannot be pushed down.

Oracle:
Pushdown disabled.

digits, float, decimal, year, month, day, hour, minute, second, date, time,
timestamp, microsecond

DB2/390, Universal Database (UDB):
Pushdown enabled.

Oracle:
Pushdown disabled.

smallint, double

Universal Database (UDB):
Pushdown enabled.

DB2/390, Oracle:
Pushdown disabled.
Aggregate functions:
count, sum, avg

DB2/390, Universal Database (UDB):
Pushdown enabled.

Oracle:
Pushdown is enabled if aggregates are not in the projection
list (e.g., in a having clause or in a subquery).

min, max
All DBMS types:
Pushdown is enabled for numeric, date, time, timestamp
arguments, and disabled for string or Wstring arguments.
Miscellaneous rules:

Methods in queries

All DBMS types:
Query terms that are methods are not pushed down.

Queries with reference collections

WebSphere: Advanced Programming Guide



All DBMS types:
Query terms that are reference collection attributes are not
pushed down.

Queries with in-memory object building

All DBMS types:
Query terms that are reference collection attributes are not
pushed down.

Path expressions over home collections

All DBMS types:
Path expression over home collections can be pushed down as
join expressions.

PAA pushdown rules

The query pushdown for PAA determines what parts of the OOSQL query are
passed down to the underlying PAA where the data resides. The parts of the
OOSQL query that are not pushed down are evaluated in the memory. The
candidate operations for pushdown depend on the underlying PAA
application. This sections lists which of the OOSQL query predicates can be
pushed down.

Simple numeric expressions
The simple numeric expressions of the form attribute
comparison-operator numeric-constant where the comparison-operator
can be one of the operators =, >, <, 2, =.

Simple string expressions
The simple numeric expressions of the form attribute
comparison-operator string-constant where the comparison-operator can
be one of the operators =, LIKE.

All the other OOSQL query constructs are not pushed down.
The cast operator

The cast operator sets the type of a member or method in the body of a query.
Thus casting provides type information to OOSQL when it is not available
from the schema.

The keywords CAST and AS is used to specify the casting. The characters (%
and %) can also be used by following the member to be altered and
specifying the type name between (% and %).

Casting is a fragile operation, since casting a member to the wrong type may
result in producing incorrect answer to the query or can cause OOSQL to fail.
See Query over reference collectiond for an example of casting.

Chapter 11. Query Service for AIX and Windows NT 321



Query over reference collections

The syntax of a query over a reference collection is the same as query over a
home collection.

There is one important difference when querying an object whose IDL
definition contains an IReferenceCollection or Ilterator type as an attribute or
return type of a method. The IDL definition does not indicate what kind of
object the ReferenceCollection or Iterator references. The Query Service must
know this information in order to process the query and so it necessary to
indicate this information using a cast function in the query statement itself.

For example, using the dept interface from the previous section, the query
over a home collection to find all departments that contain an employee
whose name starts with "D’ would be:

select d from deptHome d where d.emps..name 1ike 'D%';

To do this same query over a reference collection (whose name is deptRC) of
department objects would be:

select d from deptRC d where CAST(d.emps AS set (
ref (employee)))..name Tike 'D%';

The previous query is the same as the following:

select d from deptRC d where d.emps(
%Collection<::employee*>%)..name like 'D%';

The notation CAST(d.emps AS set (ref(employee))) is the OOSQL cast that
specifies the object type of emps.

The following queries that count the number of employees in each
department are the same.

select CAST(e.deptPtr AS ref(deptClass))->deptno,count(*) from
empHome e group by CAST(e.deptPtr AS ref(deptClass))->deptno;

select e.deptPtr(%deptClass%)->deptno,count(*) from empHome e
group by e.deptPtr(%deptClass%)->deptno;

The internal processing for a query over a reference collection is different
from a home collection. A query over a reference collection is processed by
iterating over the reference collection and activating each object (if it is not
already activated) and evaluating the query.

When creating the reference collection, make sure you use the
createCollectionFor() method and pass in the string equal to the IR name of
the objects the collection will contain. For example:

createCollectionFor("IDL:policy:1.0");

322  WebSphere: Advanced Programming Guide



You can find out what this IR name is by loading the IR and then doing an
irdump with a parameter of your interface name.

If you do not use the createCollectionFor() then you must supply the interface
name in the query statement FROM clause as in the example:

select r.0ID from MyReferenceCollection.acct r where r.Name ='Bob';

In this example acct is the interface name of the objects in the collection.

Data type mapping between DB2 and CORBA

Many of the DB2 data types have obvious counterparts in CORBA such as
DB2 integer mapping to CORBA::long and DB2 char(n) and varchar mapping
to CORBA::string.

Be aware that char(n) and varchar will map to null terminated strings in
CORBA. Binary string data can be handled by using either VARCHAR FOR
BIT DATA or CHAR FOR BIT DATA in the table definition mapped to
ByteString data type in IDL.

There are four data types in DB2 that do not have obvious counterparts in
CORBA. They are DB2 Date, Time, Timestamp and Decimal. Date, Time and
Timestamp should be mapping to CORBA::String. There are helper classes
(ICBCDate, ICBCTime and ICBCTimestamp) provided in Component Broker if
you need to do date and time manipulations of these strings. Decimal can be
mapped to CORBA::double or CORBA::String. Use string when you need
exact precision. Double byte strings can be stored using GRAPHIC or
VARGRAPHIC data type in the table definition and Wstring in the IDL.

Query evaluators

A query evaluator is the engine behind the Query Service. The query
evaluator parses the query expression you supply, locates the inferred
collections, and evaluates the collections for the set of objects that satisfy the
query predicate. The query evaluator supports the QueryEvaluator interface
as defined in the standard CORBA services Query Service specification.

The evaluate() operation, as specified by OMG in the
CosQuery::QueryEvaluator interface returns an any. CORBA leaves it to query
implementers to specify the structure of this any for the various types of
results that can be produced from a query. Depending on the conditions you
specify in the query expression you could potentially need to get back either
an iterator (a collection of objects whose type matches the objects in the
collection you are evaluating), or a data array. However, the Component
Broker implementation of the CosQuery::QueryEvaluator::evaluate() operation

Chapter 11. Query Service for AIX and Windows NT =~ 323



returns only an IManagedCollections::Iterator. You need to test the results
returned to ensure they match your expectations.

Component Broker has extended the CosQuery::QueryEvaluator interface to
introduce variations of the evaluate() method that return more specific result
set types. If you want to be more specific about the type of result set you get,
you can use the evaluate_to_iterator() operation which passes back an
IManagedCollections::Iterator, or you can use the evaluate_to_data_array()
operation which passes back an IExtendedQuery::DataArraylterator.

In general, a query evaluator could support any number of query languages.
You would be expected to specify the language that you intend to use, and
accept that the query evaluator you choose may or may not be implemented
to support that language. The Component Broker query evaluator only
supports one language--object-oriented Structured Query Language (OOSQL).
OOSQL is a rich language, following in the tradition of SQL, with extensions
that are specific to object-oriented programming.

As a programming convenience queriable collections (namely, home
collections, view collections and reference collections) support operations
evaluate(), extendedEvaluate() and extendedEvaluateToDataArray().
ExtendedEvaluate and extendedEvaluateToDataArray are similar to
evaluate_to_iterator() and evaluate_to_data_array() operations on the query
evaluator object. Evaluate is a simplified form of evaluate_to_iterator. By
using these methods, you do not have to locate the default query evaluator
object for a server.

Default query evaluator

Component Broker automatically creates an instance of a query evaluator in
every Component Broker server, and binds this in the system name space at
the following location:

/host/resources/servers/<server-name>/query-evaluators/default

Plug your server name in for <server-name>. If your program is executing on
a server, you can get the name of your local server from the
CBSeriesGlobal::serverName static member function. This member function
can only be invoked within a server process. In a client process, you must
know the name of the server containing the query evaluator you want to use.

Obtain a query evaluator

The following procedure demonstrates how to obtain the default query
evaluator from the system name space for a well-known server. This
procedure can only be completed if you know the name of the server on
which the query evaluator exists. The query evaluator you obtain should be
on the same server as the collections that you will be querying.

324  WebSphere: Advanced Programming Guide



1. Determine which server you want to use.

You need to know the name of the server that contains the query
evaluator that you want to use. This could be the server on which you're
already executing, or it could be a remote server. In the former case, you
can simply get the local server name from the CBSeriesGlobal::serverName
static member function.

2. Resolve the default query evaluator from the system name space.

Use the Naming Service operations to resolve the default query evaluator
in the named server from the system name space.

The following example obtains the default query evaluator from the local
server. This example can only be used in a server process—for instance, in a
business object implementation.

// Declare an intermediate object ref, intermediate naming contexts
// and the targeted query evaluator

CORBA::0bject_var intermediateObject;

IExtendedNaming: :NamingContext var serversNC;

IExtendedNaming: :NamingContext_var localServerNC;
IExtendedQuery::QueryEvaluator_var defaultQE;

// Resolve to the server's naming context in the Host name space

serversNC = CBSeriesGlobal::nameService()->resolve with_string(
"/host/resources/servers");

// Resolve to the Tlocal server

TocalServerNC = serversNC->resolve_with_string(
CBSeriesGlobal::serverName());

// Resolve and narrow to the default query evaluator
intermediateObject = TocalServerNC->resolve with_string(

"query-evaluators/default");
defaultQE = IExtendedQuery::QueryEvaluator:: narrow(intermediateObject);

Topology of query evaluators and collections

The FROM clause of the query statement contains the name of one or more
collections. The Query Service operates only on collections that have been
named in the system name space or named in a parameter list which is a list
of Name/Value pairs supplied on the query method.

The query evaluator looks up the collection specified in the FROM clause in
the parameter list. If the name is not found in the parameter list (or there is
no parameter list), and the name is a fully-qualified name, the query evaluator
will use the Naming Service to find the collection. (The name is considered

Chapter 11. Query Service for ATIX and Windows NT 325



fully-qualified if it contains one or more forward slash “/” characters.) When
the name is not a fully-qualified name, the query evaluator will search the
Naming Service namespace for the collection in the following locations in the
order:
/host/resources/servers/<localservername>/collections
/host/resources/collections

/workgroup/resources/collections
cell/resources/collections

If the collection name cannot be located a query exception is raised.
Collections names are not necessarily unique across the namespace. For
example it is possible for /host/resources/collections/test and
/workgroup/resources/collections/test to both exist but refer to different
collections. The query

select t.0ID from test t;

will use the collection /host/resources/collections/test because that name
will be found first in the search.

Homes are normally automatically bound in the collection’s name context in
the server on which the home exists as well as the host workgroup and cell
contexts for the server when the home is created. You can specify whether a
home is to be bound, and its collection name in the Application DDL for that
home using Object Builder. If you create Views and Reference Collections, it is
up to you to bind that collection in the system name space.

As previously mentioned, you can supply the collection in the parameter list,
provided you give it the same name in the parameter list as you specified in
the FROM clause in the query statement, as shown in the following example:

Parameter List

Query Statement

“myCollection”,

myCollection

“select p from myCollection p where p.number >

IManagedCollections::IReferenceCollection_var 10”7

Form a query

This procedure demonstrates how you can form a query on a collection.

1. Locate either the collection or the query evaluator object. Queryable
collections contain three operations which can be used to submit a query:
evaluate(), extendedEvaluate() and extendedEvaluateToDataArray(). If
using the query evaluator object the operations are called
evaluate_to_iterator() and evaluate_to_data_array(). You can query a home
by narrowing to its IManaged AdvancedClient::IQueryablelterableHome
interface.

326  WebSphere: Advanced Programming Guide




2. Determine the type of result you want to receive. The evaluate,
extendedEvaluate and evaluate_to_iterator() operations returns an iterator
over a collection of object references. The extendedEvaluateToDataArray
and evaluate_to_data_array() operations returns an iterator over a
collection of data array rows.

3. Decide if you want any initial values back from the iterator. All evaluate
methods that you may use will return an iterator: either an iterator over a
reference collection, or an iterator over a collection of data array rows.
Normally you will iterate over these collections either one or several
elements at a time. You have the opportunity at the time you initiate the
query to ask that an initial set of elements be returned in a sequence
outside of the iterator. This is a convenience mechanism that is equivalent
to invoking the query, getting back the iterator, and requesting the first n
elements in a separate request. The evaluate() operation does not support
the mechanism to request an initial set of elements.

4. Issue the query request with the query statement, any accompanying
parameter list, and an indication of how many initial elements to return
from the resulting iterator.

The operations evaluate(), extendedEvaluate() and
extendedEvaluateToDataArray() have been implemented to locate their
server’s query evaluator object and delegate the query request.

If you use the evaluate() operation, note that the input parameter contains
only the predicate part of the query statement. The collection will form its
own SELECT and FROM clause and append the predicate that you supply.
The query statement will be in the form select x.0ID from thisCollection x
where and append the predicate you supply. The corrleation ID will be the
character “x”. The collection will create a parameter list that defines
thisCollection as pointing to itself. For example, if you issue the operation

evaluate(" name='ToTo' ");

The equivalent query will be
select x.0ID from thisCollection x where name='ToTo';

When you use the extendedEvaluate() or extendedEvaluateToDataArray/()
methods on a queriable collection, the extendedEvaluate methods will always
add the name thisCollection to any name/value parameter list supplied on the
method call. If there is no parameter list supplied on the call, then the
extendedEvaluate() operation will create one. The value associated with the
name thisCollection is a pointer to the collection itself.

This means that the query
select e.0ID from thisCollection e where e.name='John' ;

Chapter 11. Query Service for AIX and Windows NT =~ 327



if used with the extendedEvaluate() method on the empHome collection,
would be equivalent to

select e.0ID from empHome e where e.name='John' ;

Using the keyword thisCollection is better for the following reasons: it can
improve performance because referring to a collection by using a parameter
list instead of by home name saves a call to the Naming Service to locate the
home collection and it makes writing the application easier because the
programmer may not know the actual home name for a collection.

Queries that result in an object collection

When you specify your query expression, you indicate in the SELECT clause
the type of the results you expect to get back. The result can be an object type
as defined by a managed object in IDL, or some combination of one or more
data types.

select e.0ID from empHome e;

In the preceding statement, the result is the type of object that is collected by
the empHome collection, presumably Employee. This example returns a
collection of objects. This has the benefit of allowing you to perform other
operations supported by Employee objects on any of the objects returned from
these queries. You can direct the query evaluator to return a collection of
objects (literally, an iterator to a collection of objects) using the evaluate(),
extendedEvalaute() or evaluate_to_iterator() operations.

The extendedEvaluate() operation returns an IManagedCollections::Ilterator
object, and a sequence of zero or more initial entries from the iterator. The
ITterator is an object that represents a collection of references to objects, and
can return one or more object references, that is, entries in the reference
collection. If you use the next() operation on the Ilterator, it will return the
next object reference in the collection. If you use the nextS() operation, you
can specify how many entries you want returned, and these will be returned
as a sequence of references. You can request the extendedEvaluate() operation
to return an initial set of entries from the Ilterator. This is equivalent to
returning the iterator, and then requesting nextS to get that same initial set.

Queries that result in a data array
There are times when you want a query to result in an array of data values
instead of a set of objects that would normally encapsulate that data. This

could be the case, for example, when you want to present the resulting data
in a scrolling list on the end user interface.

The following statement returns an array of data values:
select empid, name from empHome e where e.deptPtr->deptno=11;

328  WebSphere: Advanced Programming Guide



In the preceding example, the returned array of data values contains the
employee number (empid) and the name for each employee contained in the
empHome collection that is assigned to department 11. To return a data array
you must use the extendedEvaluateToDataArray() or the
evaluate_to_data_array() operation.

You can also use the data array operation to return object references or a
combination of object references and data values as in the query

select e.0ID, empid, name from empHome e where e.deptPtr->deptno=11;

The data array operation returns DataArraylterator object, and a sequence of
zero or more initial entries from the iterator. The DataArraylterator is an
object that represents the data array collection and can return one or more
data array rows, that is, entries in the data array collection. If you use the
next() operation on the DataArraylterator, it returns the next DataArray row
(a sequence of any types) in the collection. If you use the nextS() operation,
you can specify how many entries you want returned, and these are returned
as a sequence of N rows.

Using the data array operation, you can request that it return an initial set of
entries from the DataArrayllterator. This is equivalent to returning the iterator,
and then requesting nextS to get that same initial set.

Queries over unnamed collections

To run a query over a collection that is not registered with the Naming
Service, use a parameter list.

Parameter Lists
A Name/Value pair list that consists of strings and references to
collection objects (homes, views or reference collection). In the from
clause of the query you use the name from the Name/Value pair, and
on the evaluate call, you pass the Name/Value pair list.

Coding an extendedEvaluate() method call

For simple queries you can use the evaluate() method on collections. However

if you want to accomplish the following:

* joins,

* projections with multiple elements or with elements other than object
references,

* complex queries with aggregation and ordering

then you need to use the extendedEvaluate() or
extendedEvaluateToDataArray() methods. The extended forms of evaluate also
allow to you return an initial set of result elements which can help
performance of your application.

Chapter 11. Query Service for AIX and Windows NT 329



Alternatively you can also obtain a reference to the query evaluator system
object and invoke evaluate_to_iterator() or evaluate_to_data_array() methods.

Next let’s look at what a data array is and how to use it in a program.

Data arrays

A data array is a CORBA Sequence of CORBA::Any data types. Each Any
contains a typecode and either a primitive value, a pointer to a CORBA struct
or a reference to a CORBA Object.

The following query contains three elements in the data array. The first
element is empid and is type long. The second element is name and is type
string, and the last element is an object reference to an employee object.

select e.empid, e.name, e.0ID from empHome e;

Sometimes the data type of the attribute returned in the data array is different
from the data type defined in the IDL definition of the interface.

Table 15. Comparisons between CORBA attribute data types and data types returned

CORBA Attribute Datatype in IDL

Datatype Returned in Data Array

long (signed or unsigned)

long

short (signed or unsigned)

short or long

double

double

string

string

object reference

object reference

float float or double
octet long

enum long

boolean short

char string of length 1

IManagedCollections::Iterator

IManagedCollections::IIterator

Remember that nonprimitive attributes of types CANNOT be used in query

statements.

¢ Union

* Sequence (except for sequence of octet)

* Array
* Any

A DataArrayList is used to return the initial set of result elements and also to
return multiple elements on the nextS() or nextN() method of a data array

330 WebSphere: Advanced Programming Guide




iterator. A DataArrayList is a sequence of DataArrays. You may think of it as a
two-dimensional array of CORBA::Any data types.

DataArrays and SQL NULL values

How are SQL NULL values handled in a CORBA programming environment
where the programming language primitive types do not support the concept
of a NULL value?

In the case of an object reference query, query is returning references to
objects and it is up the object to decide how to handle null values. If your
application calls the name() method on the employee object, and the value is
of name is NULL in the database, the name() method can either return an
empty string or throw an exception. The point is that what name() does is
determined by the object implementation. In the case of a data array query
returning a primitive value type, if the value is NULL in the database, then
the typecode of the Any in the DataArray will be set to tk_null.

Arguments of extendedEvaluate methods

The input parameters to the extendedEvaluate operations are:

1. The query statement itself as a string. Remember that the syntax for
OOSQL requires the query statement to terminate in a semicolon character.

2. The parameter list consisting of Name/Value pairs for collections. In C++
the parameter list is optional. In Java you must pass at least a zero length
parameter list.

3. The third parameter is a placeholder for future use.
4. The fourth parameter is an unsigned long which is the number of initial
result elements to return.

Suppose that the result collection has 20 elements and the evaluate() method
requested 10 elements. The first 10 elements would be returned from the
evaluate call and the remaining 10 would be retrieved using the iterator. If the
evaluate() method requests 30 for the initial result, since the result set only
has 20 elements, the 20 elements would be returned in the evaluate() method
call. An iterator would still be returned but that iterator would be positioned
at the end of the result set.

The output parameters are:
1. The initial set of result elements.

2. An iterator to the remaining elements.

The exact types of the output parameters differ between extendedEvaluate()
and extendedEvaluateToDataArray(). The example below shows the details.

Chapter 11. Query Service for AIX and Windows NT ~ 331



DataArray iterator

The DataArraylterator interface has operations which can be used to
determine the number of columns in the data array in addition to the type,
attribute name and class name for each column. These methods names are

unsigned long get_number_of_fields()

string get _field_name(in unsigned long position)
CORBA::TCKind get _field_type(in unsigned long position)

string get _field_class_name(in unsigned long position)

A performance tip

Do not forget to make use of the nextS() interface on the iterator to retrieve
the multiple elements in one call. By using a blocking factor you can reduce
the number of trips across the network and significantly improve your
application’s performance.

Handling exceptions

The query evaluator methods can throw three different exceptions when
things go wrong. The exception types are IExQueryInvalid,
IExQueryProcessingError, IExQueryTypelnvalid. All of these types contain an
error number (errorNo) and message text (why). The substitution tokens that
went into making up the message text are also available in the argList
attribute.

Additional details on the cause of the error are found in the activity log of the
application server.

C++ example

Following is a complete example of a C++ client program. If you are coding a
method in that is part of C++ BusinessObject implementation , you can use a
similar coding technique.

The program has five parts.
* Initialization

* Perform the query

* Process the query result
* Catch exceptions

* Cleanup

Initialization consists of getting a reference to the collection and starting a
transaction. The query result has two parts, processing the initial set of result

332  WebSphere: Advanced Programming Guide



elements returned from the evaluate() method, and processing the remainder
of the result set from the iterator object.

Cleanup is very important to insure you do not have memory leaks on the
server or the client. The remove() operation must be called for interators,
member lists must be deleted and other object references must be correctly
released.

// include the proper header files in your C++ application
//

#include <IManagedAdvancedClient.hh>

#include <CBSeriesGlobal.hh>

#include <IExtendedLifeCycle.hh>

#include <CosTransactions.hh>

#include <IExtendedQuery.hh>

#include <IQuerylLocalObjectImpl.hh>

#include <IQueryManagedClient.hh>

#include "empdep.hh" // this is for your application
main() {
CORBA::0Object var obj;
CosTransactions::Current_ptr currentTransaction;
ICollectionsBase::IIterator_var iter;
ICollectionsBase: :MemberList* memberList=NULL;
IManagedClient::IManageable_var tup;

// step 2. initialization and get a factory finder

/1

try {

CBSeriesGlobal::Initialize(); // only needed for a client application
obj = CBSeriesGlobal::nameService() ->

resolve_with_string(
"/host/resources/factory-finders/host-scope-widened");
IExtendedLifeCycle::FactoryFinder_var myFinder =
IExtendedLifeCycle::FactoryFinder:: narrow(obj);

// find the employee home

//

obj = myFinder->find_factory from_string("employee.object interface");

IManagedAdvancedClient::IQueryableIterableHome_var empHome =
IManagedAdvancedClient::IQueryablelterableHome:: narrow(obj);

// begin a transaction

//

obj =
CBSeriesGlobal::orb()->resolve_initial_references("TransactionCurrent");
currentTransaction = CosTransactions::Current:: narrow(obj);
currentTransaction->set_timeout( 50 );

Chapter 11. Query Service for AIX and Windows NT =~ 333



334

currentTransaction->begin();

// step 3. invoke extendedEvaluate method within a transaction context

//

iter = empHome->extendedEvaluate(
"select e.0ID from thisCollection e where e.deptno>20 ;",

NULL, // parameter list not used
NULL, // reserved
5, // return first 5 elements
memberList); // sequence containing first 5 elements

// step 4. process result elements in member list
//

for (int i=0; ilength(); i++) {

tup=(*memberList) [i];

employee_var emp=employee:: narrrow(tup);

// . . process object

cout << "employee object with id=" << emp->id() << endl;

}

delete memberlList;

// step 5. process remaining elements from iterator

//

while( (tup=iter->next()) != NULL )
{
employee _var emp =employee:: narrow(tup);
// . . process employee object
cout << "employee object with id=" << emp->id() << endl;

}

// step 6. catch and process any exceptions
//

1
catch (IExtendedQuery::IExQueryInvalid &ex)

{

cout << "query error number=" << ex.errorNo << endl
<< "query error message=" << ex.why << endl;

catch (IExtendedQuery::IExQueryProcessingError &ex)

{

cout << "query error number=" << ex.errorNo << end]
<< "query error message=" << ex.why << endl;

catch (IExtendedQuery::IExQueryTypelnvalid &ex)
{

cout << "query error number=" << ex.errorNo << end]
<< "query error message=" << ex.why << endl;

catch(...) { }
// cleanup iterator

/1

if (iter != NULL) iter->remove();

WebSphere: Advanced Programming Guide



currentTransaction->commit(1);

return 0;

}

As an alternative to the previous code, instead of using the name
“thisCollection” in the previous query, we will create and use a parameter list
that refers to the employee home collection as “emp”.

#include <IManagedAdvancedClient.hh>
#include <CBSeriesGlobal.hh>
#include <IExtendedLifeCycle.hh>
#include <CosTransactions.hh>
#include <IExtendedQuery.hh>
#include <IQuerylLocalObjectImpl.hh>
#include <IQueryManagedClient.hh>

#include "empdep.hh" // this is for your application
main() {
CORBA::0Object_var obj;
CosTransactions::Current_ptr currentTransaction;
ICollectionsBase::IIterator_var iter;
ICollectionsBase: :MemberList* memberList=NULL;
IManagedClient::IManageable_var tup;

// create a parameter list builder helper object
//
CosQuery::ParameterList * plList;
IExtendedQuery::ParameterListBuilder * pb ;

// step 2. initialization and get a factory finder

/1

try {

CBSeriesGlobal::Initialize(); // only needed for a client application
obj = CBSeriesGlobal::nameService() ->

resolve_with_string(
"/host/resources/factory-finders/host-scope-widened");
IExtendedLifeCycle::FactoryFinder_var myFinder =
IExtendedLifeCycle::FactoryFinder:: narrow(obj);

// find the employee home
//
obj = myFinder->find_factory from_string("employee.object interface");
IManagedAdvancedClient::IQueryablelterableHome_var empHome =
IManagedAdvancedClient::IQueryableIterableHome:: narrow(obj);

// begin a transaction

//

Chapter 11. Query Service for ATIX and Windows NT 335



obj =

CBSeriesGlobal::orb()->resolve_initial references("TransactionCurrent");
currentTransaction = CosTransactions::Current:: narrow(obj);
currentTransaction->set timeout( 50 );

currentTransaction->begin();

// step 3. invoke extendedEvaluate method using a parameter Tist

// to pass reference to collection.

/1

pb = IQuerylLocalObjectImpl::ParameterListBuilder:: create();

pb->add_object parm("emp", empHome);

pList=pb->get_parm_list();

iter = empHome->extendedEvaluate(

"select e.0ID from emp e where e.deptno>20;",
*plList,
NULL,
0:
memberList);

delete pb;
delete pList;

// step 4. process remaining elements from iterator

//

while( (tup=iter->next()) != NULL )
{
employee _var emp =employee:: narrow(tup);
// . . process employee object
cout << "employee object with id=" << emp->id() << endl;

}

// step 5. catch and process any exceptions
//

1
catch (IExtendedQuery::IExQueryInvalid &ex)

cout << "query error number=" << ex.errorNo << endl
<< "query error message=" << ex.why << endl;

catch (IExtendedQuery::IExQueryProcessingError &ex)

{

cout << "query error number=" << ex.errorNo << end]
<< "query error message=" << ex.why << endl;

catch (IExtendedQuery::IExQueryTypelnvalid &ex)
{

cout << "query error number=" << ex.errorNo << end]
<< "query error message=" << ex.why << endl;
}
catch(...) { }
// cleanup iterator

/!

if (iter != NULL) iter->remove();

336 WebSphere: Advanced Programming Guide



currentTransaction->commit(1);

return 0;

}

The above examples showed how to execute an object reference query. That is
a query whose SELECT clause had only one element that was a object
reference.

Now let’s look at an example of a data array query. A data array query can
have multiple elements in the SELECT clause and the elements can be
primitive data types, structs, iterators or object references.

The iterator and initial list of result elements are a different type for a Data
Array query than for a object reference query. In this example we use daiter
and daMemberList.

CORBA::0bject_var obj;
IQueryManagedClient::DataArrayIterator var daiter;
ICoTlectionsBase::DataArraylList * daMemberList;

obj = empHome->extendedEvaluateToDataArray(
"select e.empid, e.name, e.0ID from thisCollection e "
"where e.deptno>20";,

NULL, // parameter list
NULL, // reserved
5, // return first 5 elements
daMemberlList); // sequence containing first 5 elements

daiter= IQueryManagedClient::DataArrayIlterator:: narrow(obj);

The daMemberList consists of a sequence of DataArrays. Since a DataArray is
a sequence of CORBA::Any, the memberList is really a two dimensional array
of CORBA::Any. Each row in the array consists of (empid, name, employee
object reference). To get the values of the ith elements from the memberList
you would code the following:
long empid;
CORBA::string name_temp;
CORBA::string_var name;

IManagedClient::IManageable ptr mo_temp;
employee_var emp;

// for each element in the memberList perform the following

for (int i=0; i< daMemberList->length(); i++) {
if((*daMemberList) [1][0] >>= empid){} else empid=0;
if((*daMemberList) [1][1] >>= name_temp) name=name_temp; else name="";
if((*daMemberList)[1][2] >>= mo_temp)
emp=employee:: narrow(mo_temp);
else emp =0;
!

Chapter 11. Query Service for AIX and Windows NT =~ 337



If the extract operator fails, it does not throw an exception but returns FALSE
and does not change the value of the operand. It is always good practice to
test the return code from the extract and take appropriate action. The previous
code assigns zero or an zero length string if the extract fails. One reason the
extract would fail is if the database table contains SQL NULL values. OOSQL
will return a SQL NULL value as an CORBA::Any with a typecode of tk_null.

A couple of important points about memory management in C++. For proper
memory management when extracting strings, you should not extract into a
_var variables because the extract operator will make a copy of the string but
will not free any previous string value contained by the _var. So the previous
code does an extract into a char * variable type, and then assigns the string
value to a string _var variable.

When extracting an object reference from the member list, remember that the
extract operator does not increment the reference count. So either extract into
a _ptr variable or increment the reference count yourself.

Here is a complete example using the data array interface.

#include <IManagedAdvancedClient.hh>
#include <CBSeriesGlobal.hh>
#include <IExtendedLifeCycle.hh>
#include <CosTransactions.hh>
#include <IExtendedQuery.hh>
#include <IQueryLocalObjectImpl.hh>
#include <IQueryManagedClient.hh>

#include "empdep.hh" // this is for your application

main() {
CORBA: :0Object_var obj;
CosTransactions::Current_ptr currentTransaction;
IQueryManagedClient::DataArraylterator_var daiter;
ICoTlectionsBase::DataArraylList * daMemberList;
IExtendedQuery: :DataArray =* tup;

// step 2. initialization and get a factory finder

//

try {

CBSeriesGlobal::Initialize(); // only needed for a client application
obj = CBSeriesGlobal::nameService() ->

resolve_with_string("/host/resources/factory-finders/host-scope-widened");

IExtendedLifeCycle::FactoryFinder_var myFinder =
IExtendedLifeCycle::FactoryFinder:: narrow(obj);

// find the employee home

//

338 WebSphere: Advanced Programming Guide



obj = myFinder->find_factory from string("employee.object interface");
IManagedAdvancedClient::IQueryablelIterableHome var empHome =
IManagedAdvancedClient::IQueryablelIterableHome:: narrow(obj);

// begin a transaction

//

obj =
CBSeriesGlobal::orb()->resolve_initial_references("TransactionCurrent");
currentTransaction = CosTransactions::Current:: narrow(obj);
currentTransaction->set_timeout( 50 );

currentTransaction->begin();

// step 3. invoke extendedEvaluateToDataArray method
//

obj = empHome->extendedEvaluateToDataArray(
"select e.empid, e.name, e.0ID from thisCollection e "
"where e.deptno>20 ;",

NULL, // parameter Tist
NULL, // reserved
5, // return first 5 elements
daMemberList); // sequence containing first 5 elements

daiter= IQueryManagedClient::DataArraylterator:: narrow(obj);

// step 4. process result elements in member list
//
for (int i=0; i< daMemberList->length(); i++) {

long empid;
CORBA::String name_temp;
CORBA::String_var name;
IManagedClient::IManageable_ptr mo_temp;
employee_var emp;

if ((xdaMemberList)[1][0] >>= empid){} else empid=0;
if ((*daMemberList)[i][1] >>= name_temp) name=name_temp;
else name="";
if ((*daMemberList)[i][2] >>= mo_temp)
emp=employee::_narrow(mo_temp);
else emp =0;

// . . process object

cout << "ID=" << empid << " Name=" << name << endl;
1

delete daMemberList;

// step 5. process remaining elements from iterator

/1

while ( daiter->next(tup)) {
long empid;
CORBA::String name_temp;
CORBA::String_var name;
IManagedClient::IManageable_ptr mo_temp;
employee_var emp;

if ((*tup)[0]>>= empid) {} else empid=0 ;

Chapter 11. Query Service for AIX and Windows NT

339



if ((*tup)[1]>>= name_temp) name=name_temp; else name="";
if ((*tup)[2]>>= mo_temp) emp=employee:: narrow(mo_temp); else
emp=03;
delete tup;
// . . process employee object
cout << "employee object with id=" << emp->id() << endl;

}

// step 6. catch and process any exceptions

//

catch (IExtendedQuery::IExQueryInvalid &ex)
{

cout << "query error number=" << ex.errorNo << endl
<< "query error message=" << ex.why << endl;

catch (IExtendedQuery::IExQueryProcessingError &ex)

{

cout << "query error number=" << ex.errorNo << endl
<< "query error message=" << ex.why << endl;

catch (IExtendedQuery::IExQueryTypelnvalid &ex)
{

cout << "query error number=" << ex.errorNo << endl
<< "query error message=" << ex.why << endl;

catch(...) {}

// cleanup iterator
/1

if (daiter != NULL) daiter->remove();
currentTransaction->commit(1);

return 0;

}
Using the query evaluator object directly

You can also write a program that uses the query evaluator directly. You must
first use the Naming Service to get a reference to a query evaluator object.
Each server has one instance of the query evaluator. Your application must
either know or have a way of finding out the name of the server. For details,
see [ ”

The query evaluator methods take an additional parameter of language type.
In Component Broker the only language supported is OOSQL so the language
type is ignored.

340 WebSphere: Advanced Programming Guide



For correct memory management, be aware that the memberList and the
iterator are defined as output parameters and you should not use _var
variables for output parameters. Therefore memberList and iterator are
declared as _ptr types.

Here is a program that uses the query evaluator object

#include
#include
#include

<IManagedAdvancedClient.hh>
<CBSeriesGlobal.hh>
<IExtendedLifeCycle.hh>

#include <CosTransactions.hh>
#include <IExtendedQuery.hh>
#include <IQueryManagedClient.hh>
#include <IQueryLocalObjectImpl.hh>
#include "Policy.hh"

main () {

CORBA::Object var obj;

CosTransactions::Current_ptr currentTransaction;

// step 2 start a transaction and get the query evaluator object

try {

CBSeriesGlobal::Initialize();

obj =

CBSeriesGlobal::orb()->resolve_initial_references(

"CurrentTransaction" );

currentTransaction = CosTransactions::Current:: narrow( obj );
obj = CBSeriesGlobal::nameService() ->resolve with_string(

"host/resources/servers/MyServer/query-evaluators/default");

IExtendedQuery::QueryEvaluator_var ge =
IExtendedQuery: :QueryEvaluator:: narrow(obj);

currentTransaction->set_timeout( 40 );
IColTectionsBase::IIterator_ptr queryIt temp;
IColTectionsBase::IIterator_var querylt;
IExtendedQuery: :MemberList* ml;

currentTransaction->begin();

// issue the query

ge->evaluate_to_iterator(

select e from policyDefaultTransDB2Home e "
where e.amount > 0; ",

0, // query language. Only 00SQL is supported.
0, // no parameter Tist used in this example

0, // not used

0, // no initial Tist requested in this example
ml,

queryIt temp);

queryIt=querylt_temp;

Chapter 11. Query Service for AIX and Windows NT

341



// iterator over the result

IManagedClient::IManageable_var tup;
while( (tup=queryIt->next()) != NULL )
{

Policy var p =Policy:: narrow(tup);

cout << "Policy no= " << p->policyNo() << " amount " <<
p->amount() &< " premium " << p->premium()<< endl;

}

// normal cleanup
querylt->remove();

IExtendedQuery::DataArraylList * daml_temp;
IExtendedQuery::DataArraylterator * dait_temp;
IExtendedQuery::DataArrayIterator_var dait;
IExtendedQuery: :DataArray * datup;

ge->evaluate to data_array(
"select p.policyNo, p.premium, p.amount, p "
" from policyHome p where p.policyNo in (10,11,12); "

0, // query language

0, // no parameter 1ist used in this example
0, // not used

0, // initial list of 3 elements

daml_temp,

dait_temp);
dait=dait_temp;

while ( dait->next(datup)) {
Tong policyNo;
double amount, premium;

if (((*datup)[0]) >>= policyNo) {} else policyNo=0 ;
if (((*datup)[1]) >>= premium) {} else premium=0;
if (((*datup)[2]) >>= amount) {} else amount=0;
delete datup;

// . . process policy

IQueryManagedClient::DataArraylterator_var it =
IQueryManagedClient::DataArraylterator:: narrow(dait);
it->remove();

}

// exception processing
catch (IExtendedQuery::IExQueryInvalid &ex)
{

cout << "query error number=" << ex.errorNo << endl
<< "query error message=" << ex.why << endl;

catch (IExtendedQuery::IExQueryProcessingError &ex)

{

342  WebSphere: Advanced Programming Guide



cout << "query error number=" << ex.errorNo << endl
<< "query error message=" << ex.why << endl;

}
catch (IExtendedQuery::IExQueryTypelnvalid &ex)
{
cout << "query error number=" << ex.errorNo << endl
<< "query error message=" << ex.why << endl;
}

catch (...) { cout << "Unknown exception occurred" << endl; }

currentTransaction->commit(1);
return 0;

}
Java client and Java BO example

Here is the same program but coded in Java in the form of a client application
program. If you were coding a Java BO, you would following the same
coding technique. Memory management is a lot easier in Java but remember
you still have to code a remove on the query iterator.

import java.net.=;

import java.io.FileInputStream;

import java.io.InputStream;

import org.omg.CORBA.ORB;

import org.omg.CosTransactions.=*;

import com.ibm.IExtendedNaming.*;

import com.ibm.IExtendedLifeCycle.x*;
import com.ibm.IExtendedQuery.*;

import com.ibm.IManagedAdvancedClient.x*;
import com.ibm.CBCUti1.CBSeriesGlobal;

// application classes
import empClass;

import empClassKey;

import empClassCopy;

import empClassHelper;

public class SempdepQueryApp

{
 EEE——
// Instance variables for the test case:
S —
static String host = "";
static String port = "";

org.omg.CORBA.Object obj;
org.omg.CORBA.ORB orb;
org.omg.CORBA.Object orbCurrent;

// Object reference to transaction object
org.omg.CosTransactions.Current currentTransaction = null;

// Object reference to the factory finder object

Chapter 11. Query Service for AIX and Windows NT 343



FactoryFinder factoryFinder = null;

// Object reference to the queryablelterableHome for employee objects
com. ibm.IManagedAdvancedClient.IQueryablelterableHome empQueryableHome =
null;

// Object reference to a employee object
empClass emp = null;

public static void main( String args[])
{

// Process Arguments --------------------
String usage = "Usage: java -noclassgc SempdepQueryApp
<hostname.domain.company.com> <port> \n \t where port is optional
(default: 900)";

switch (args.length) {

case 0:
System.out.printin(usage); System.exit(1); break;
case 1:
host = args[0];
port = "900";
break;
case 2:
host = args[0];
port = args[1];
break;
default:
System.out.printin(usage);
System.exit(1);
1

System.out.printin("Begin empdep extended query apis app11cat1on S

System.out.printIn (" =--mmmmmm e ")s

SempdepQueryApp empdepta = new SempdepQueryApp();

empdepta.start(args);

System.out.printIn("-----=-mmmmmmmmmm e ")

System.out.printin("SUCCESS: empdep extended query apis application
ending ...");

}

void start(String args[])

{
System.out.printin("1) About to call CBSeriesGlobal.Initialize passing
host and port");

344  WebSphere: Advanced Programming Guide



System.out.printin("\t ORBInitialHost = " + host);
System.out.printIn("\t ORBInitialPort = " + port);

testmain7();
testmain8();
testmain9();

} // End of start();

// testmain7 -- example of extendedEvaluate

void testmain7()
{
CBSeriesGlobal.Initialize(host, port);
orb = CBSeriesGlobal.orb();
try
{
orbCurrent = orb.resolve_initial_references("CurrentTransaction");
1
catch (org.omg.CORBA.ORBPackage.InvalidName e)
{
System.out.printIn("The name passed in the argument is invalid.
Exception was: " + e + "\n");

obj =
CBSeriesGlobal.nameService().resolve_with_string
("/host/resources/factory-finders/host-scope-widened");
factoryFinder = FactoryFinderHelper.narrow(obj);
1
catch (Exception e)
{
System.out.printin("testmain7>ERROR: resolve_to_factory_ finder()
failed, Exception: " + e);
System.exit(1);

obj = factoryFinder.find_factory from string("empClass.object
interface");
empQueryabTeHome =
com. ibm.IManagedAdvancedClient.IQueryablelterableHomeHelper.narrow(obj);
}
catch (Exception e)
{
System.out.printIn("testmain7>ERROR:
resolve_to_emp_home_via_find_factory() failed, Exception: " + e);

Chapter 11. Query Service for ATIX and Windows NT 345



346

System.exit(1);

}

boolean commit=true;

try

{
currentTransaction =

org.omg.CosTransactions.CurrentHelper.narrow(orbCurrent);

currentTransaction.begin();
com.ibm.ICollectionsBase.IIterator querylt;

com.ibm.ICoTlectionsBase.MemberListHolder aggregate_members =
new com.ibm.ICollectionsBase.MemberListHolder();

org.omg.CosQueryCollection.NVPair[] collection_names=
new org.omg.CosQueryCollection.NVPair[0];
org.omg.CosQueryCollection.NVPair[] params=
new org.omg.CosQueryCollection.NVPair[0];
int how_many=3;

String buff = "select e.0ID from thisCollection e where e.deptno>1;";

queryIlt = empQueryableHome.extendedEvaluate( buff,
collection_names,

params,
how_many,
aggregate_members) ;

int i ;

for (i=0; i < aggregate_members.value.length; i++)

{

emp = empClassHelper.narrow(aggregate_members.value[i]);

System.out.printin(" employee object with id = "
1
com.ibm.IManagedClient.IManageable tup ;
while ( (tup= querylt.next()) !=
(com.ibm.IManagedClient.IManageable)null )
{
emp = empClassHelper.narrow(tup);
System.out.printin(" employee object with id = "
1
queryIt.remove();
currentTransaction.commit(commit);
}
catch (com.ibm.ICollectionsBase.IQueryInvalid e)
{
System.out.printIn("\t testmain7>query error number=
error msg=" + e.why);
}
catch (com.ibm.ICollectionsBase.IQueryProcessingError e)
{
System.out.printIn("\t testmain7>query error number=
error msg=" + e.why);
}
catch (com.ibm.ICollectionsBase.IQueryTypelnvalid e)
{
System.out.printIn("\t testmain7>query error number=
" error msg=" + e.why);
}
catch (Exception e)

{

WebSphere: Advanced Programming Guide

+ emp.no() );

+ emp.no() );

"+ e.errorNo +

" + e.errorNo +

" + e.errorNo +



System.out.printin("testmain7>ERROR: run_query failed, Exception: "

+e);
}

}//end of testmain7
A —
//---- testmain8 example of extendedEvaluate with a parameter list
S —

void testmain8()

{

booTean commit=true;
try
{
currentTransaction.begin();
com.ibm.ICollectionsBase.IIterator querylt ;
com.ibm.ICollectionsBase.MemberListHolder aggregate members =
new com.ibm.ICollectionsBase.MemberListHolder();
org.omg.CosQueryCollection.NVPair[] collection_names=
new org.omg.CosQueryCollection.NVPair[0];
com.ibm.IExtendedQuery.ParameterListBuilder pb =
com.ibm.IQuerylLocalObjectImpl.
ParameterListBuilderHelper. create();

pb.add_object_parm("empClassMOHome", empQueryableHome) ;
org.omg.CosQueryCollection.NVPair[] collection_names =
pb.get_parm_list();
int how_many=3;
String buff =
"select e.0ID from thisCollection e where e.deptno>1;";
querylt = empQueryableHome.extendedEvaluate( buff,
collection_names,
params,
how_many,
aggregate_members) ;

int i = 0;
for (i=0; i < aggregate _members.value.length; i++)
{

emp = empClassHelper.narrow(aggregate_members.value[i]);
System.out.printin(" employee object with id = " + emp.no() );
}
com. ibm.IManagedClient.IManageable tup ;
while ( (tup= queryIt.next()) !=
(com.ibm.IManagedClient.IManageable)null )

emp = empClassHelper.narrow(tup.value);
System.out.printin(" employee object with id = " + emp.no() );
}
querylt.remove();
currentTransaction.commit(commit);
1

catch (com.ibm.ICollectionsBase.IQueryInvalid e)

{

Chapter 11. Query Service for ATIX and Windows NT 347



System.out.printIn("\t testmain8>query error number= " +
e.errorNo + " error msg=" + e.why);
}
catch (com.ibm.ICollectionsBase.IQueryProcessingError e)
{
System.out.printIn("\t testmain8>query error number= " +
e.errorNo + " error msg=" + e.why);
}
catch (com.ibm.ICollectionsBase.IQueryTypelnvalid e)
{
System.out.printin("\t testmain8>query error number=
error msg=" + e.why);
}
catch (Exception e)
{
System.out.printin("testmain8>ERROR: run_query failed, Exception:
+e);
// System.exit(1);
}
} //end of testmain8

+ e.errorNo +

//---- testmain9 example of extendedEvaluateToDataArray

s

void testmain9()
{
boolean commit=true;
try
{
currentTransaction.begin();
org.omg.CORBA.Object obj ;
com.ibm.ICoTlectionsBase.DataArraylListHolder aggregate members =
new com.ibm.ICollectionsBase.DataArrayListHolder();
org.omg.CosQueryCollection.NVPair[] collection _names=
new org.omg.CosQueryCollection.NVPair[0];
org.omg.CosQueryCollection.NVPair[] params=
new org.omg.CosQueryCollection.NVPair[0];
int how_many=3;
String buff =
"select e.no,e.name,e.0ID from thisCollection e where
e.deptno>1;";

obj = empQueryableHome.extendedEvaluateToDataArray( buff,
collection_names,
params,
how_many,
aggregate_members) ;

com.ibm.IQueryManagedClient.DataArraylterator querylt;

querylt =
com.ibm.IQueryManagedClient.DataArraylteratorHelper.narrow(obj);

int i = 0;

long idx;

348 WebSphere: Advanced Programming Guide



String namex;
com.ibm.IManagedClient.IManageableHolder moObjx;
for (i=0; i < aggregate_members.value.length; i++)

{
idx = aggregate_members.value[i][0].extract_Tong();
namex = aggregate members.value[i][1].extract_string();
emp = empClassHelper.extract(aggregate_members.value[i][2]);
System.out.printin(" empid = " + idx + "\n" );
System.out.printIn(" empname = " + namex + "\n" );
System.out.printin(

" employee object with id = " + emp.no() );
1

com.ibm.IExtendedQuery.DataArrayHolder tup =
new com.ibm.IExtendedQuery.DataArrayHolder();
while ( queryIt.next(tup) )

idx = tup.value[0].extract Tong();
namex = tup.value[l].extract_string();
emp = empClassHelper.extract(tup.value[2]);
System.out.printIn(" empid = " + idx + "\n" );
System.out.printin(" empname = " + namex + "\n" );
System.out.printin(" employee object with id = " + emp.no() );
}
querylt.remove();
currentTransaction.commit(commit);
1
catch (com.ibm.ICollectionsBase.IQueryInvalid e)
{
System.out.printIn("\t testmain9>query error number= " +
e.errorNo + " error msg=" + e.why);
1
catch (com.ibm.ICollectionsBase.IQueryProcessingError e)
{
System.out.printIn("\t testmain9>query error number= " +
e.errorNo + " error msg=" + e.why);
1
catch (com.ibm.ICollectionsBase.IQueryTypelnvalid e)
{
System.out.printIn("\t testmain9>query error number= " +
e.errorNo + " error msg=" + e.why);
1
catch (Exception e)
{
System.out.printin(
"testmain9>ERROR: run_query failed, Exception: " + e);

}
}  //end of testmain9

} // class SempdeptApp

Chapter 11. Query Service for AIX and Windows NT 349



Memory management

Running a query builds a result collection in the application server. An
iterator over this result collection is returned to the client. The memory used
by this result collection is released only when the remove() method is run on
the iterator. Remember to run the remove() method on an iterator in both
your mainline and your exception code paths. If you do not do this, your
server will run short of memory after you run many queries.

Usage of Naming Service by query

Collection names appearing in the FROM clause of queries are resolved using
the Naming Service. To save the cost of repeated calls to the Naming Service,
the Query Service internally caches collection names. If the binding of a name
in the Naming Service changes, the change will not be seen by the Query
Service until the Component Broker server is restarted.

A parameter list can be passed as an argument to a query evaluator to be
used in conjunction with a query. When resolving collection names appearing
in the FROM clause of a query, the system first looks in the parameter list
before going to the name space. This can result in a significant performance
optimization and it is most commonly used for collections that are not
identified in the name space. Collection names taken from the parameter list
are considered volatile; in contrast with names taken from the name space
that are considered stable. The system still caches metadata associated with
volatile names, but performs a minimal verification upon the usage of a name
in every query to determine if the collection references objects of the same
type. If so, the metadata is kept in the internal catalog, otherwise, the
metadata is discarded and reacquired. The verification is performed if a name
space collection name appears as a parameter list name in another query.
Similarly, the verification is also performed if a parameter list name appears
as a name space collection name in another query.

Limit on number of query iterators per transaction

The Query Service cannot have more than 64 open SQL cursors per
transaction. SQL cursors are also used by the Cache Service. Therefore you
may be limited to 64 or less active query iterators in a single transactions.

350 WebSphere: Advanced Programming Guide



Limit on query statement size

Query Service uses an internal 8K buffer to parse the query statement as well
as the internally generated query execution plan. If the query statement, the
mapping metadata or the query executive plan cannot be contained in this
buffer then an exception is thrown.

Query Service tips

The following tips will help you in using the Query Service. Some tips cite
specific locations where further information can be found.

DB2 LOBs and DB2 data types are not anpnrhadl

Conditions required for queries You can query Home Collections, Views and
Reference Collections provided you meet the following conditions:

1.

2.

The interface of objects to be stored in collections is defined as
“queryable” in Object Builder.

The managed object should be configured using Object Builder so that the
home name is specified as BOIMRegOfQIHomes.

If the home is a specialized home, then make sure that the BusinessObject
inherits from the interface

IManagedAdvancedServer: :ISpecializedQueryablelIterableHome

and in addition the ManagedObject inherits from the interface

IManagedAdvancedServer::

ISpecializedQueryablelterableHomeManagedObject.
The elements of the Reference Collection are defined as queryable. If the
object interface is not queryable, you can still create Reference Collections
containing these objects but you cannot query the collection.

The Reference Collection should be created with the createCollectionFor()
operation or specify the interface name in the query statement FROM
clause.

Chapter 11. Query Service for AIX and Windows NT ~ 351



DB?2 tables have the capability of using indexes and DB2 has a search engine.
Having DB2 do the search is preferable to doing searches over large reference
collections where there is no indexing capability.

Design your application to make use of home collections. Avoid the use of
query over reference collections when query performance is important.

Deferred updates and query statement processing When there are deferred
updates, the query may not take the deferred updates into account when
processing the query statement. For example:

aM0->name ("NewName") ;

it = aHome->evaluate(" name='NewName');

// the object aMO will likely not be returned in the iterator result set

// because the search "name='NewName'" was performed against

// values in the database.

To make sure that the query search sees the current values, issue a commit() if
possible before doing the query.

aM0->name ("NewName") ;

currentTransaction->commit(1l );

it = aHome->evaluate(" name='NewName'");

// the object aMO will now be returned by the query search.

DB2 LOBs and DB2 data types are not supported. Extended data types such
as DB2 LOBs and user-defined DB2 data types are not supported.

Reset the timeout to be greater than the default or to zero. The default ORB
request timeout value of 180 seconds may be insufficient when executing
queries from a client. Reset the timeout to either a higher value or to zero to
wait indefinitely.

A query over persistent objects must be implemented within the scope of a
transaction. The iterator returned from query must be used to retrieve the
result set before ending the transaction. The iterator becomes invalid at end of
the transaction. Refer to the following example.

currentTransaction->begin();

IManagedIterator_var it = myHome->evaluate (" amount > 10");

currentTransaction->commit();

currentTransaction->begin();

while (aM0= it->next())

{ ... // do something with aM0 }

// unpredictable behavior because you are using

// an iterator outside the transaction scope in which

// it was created.

This may affect the design of ManagedObjects whose methods return query

iterators if the ManagedObject is configured into an atomic container. The
iterator will become invalid because of the implicit commit done by the

352  WebSphere: Advanced Programming Guide



atomic container at request termination. See the “More on Iterators” section in
the WebSphere Application Server Enterprise Edition Component Broker
Programming Guide.

Use parameter lists instead of named collections. The use of parameter lists
to pass object references to collections to query may perform better than
having the Query Service retrieve the reference from the Naming Service. See
’ i ” for an example of

how to use a parameter list.

Support for object relationships is limited to 1 to 1 and 1 to many
relationships. Relationships with outer join are not supported.

Collections must reside in the same server for navigation between
collections A navigation is specified by path expressions. Path expressions
allow traversal. The path expression currently supports navigation between
collections that reside in the same server. However, the collections can be
mapped to different databases.

Use the foreign key pattern in Object Builder for better performance of
object relationships. When defining object relationships and object attributes
that are object references, use the foreign key pattern in Object Builder.
Queries expressions that use the object references can be pushed down to the
datastore resulting in better query performance.
interface person {
attribute read only long id;
attribute string name;

}

interface account {
attribute read only Tong acct_id;
attribute person acct_owner;

}

If acct_owner is stored as a stringified object reference or handle, then the
query

select a from accountHome a where a.acct_owner..name like 'Bob%';

will not be pushed down to the datastore resulting in the more data being
read from the database and the query performed in object space. If
acct_owner is stored as a relational foreign key in the account table then this
query can be pushed down and performed as a relational join between the
account and person tables. Only the qualifying rows will be read by the
Component Broker application server.

Chapter 11. Query Service for AIX and Windows NT 353



354  WebSphere: Advanced Programming Guide



Chapter 12. Query Service for OS/390 and Solaris

P 30 | P SOLARIS | ghz fs(z)lllgv.vsing chapter applies to OS/390 Component Broker and
u ris.

The Query Service enables you to query for a set of objects that satisfy a set of
conditions that you specify. Performing a query using the Query Service is
conceptually very similar to performing query on a relational database. It
differs in that the Query Service query is performed on a collection of objects
rather than a collection of records, and the predicate is formed on the set of
attributes and method return values for the object rather than on columns in
the tables.

You will often find that you are dealing with very large collections in your
business application. The collections that you deal with may have hundreds of
thousands, millions, or even billions of object instances. Iterating through the
entire collection of objects, looking for the one or few that you want to work
with, can be enormously expensive, in terms of system resources. You can use
the Query Service to preselect the set of objects that you want to work with.
The Query Service will produce a subset of the original collection that satisfies
the conditions that you set. If you only want to work with insurance policies
that have coverage of more than a million dollars, you can form a query to
return only those Policy objects that satisfy that condition, and then iterate on
just those few.

The Query Service introduces a new query language: object-oriented SQL
(OOSQL). OOSQL is an extension to the SQL language with additional
constructs for operating on objects instead of tuples. OOSQL is described in
detail in the Component Broker reference section.

Queries are actually performed by a query evaluator. The query evaluator
understands the OOSQL grammar and how to apply it to collections of objects
to form the requested result. In some cases, the query evaluator is able to
push queries all the way down into the underlying datastore for a collection
of objects. In this case, the query can be performed in the datastore and can
yield significant performance improvements.

There are constraints on where a query evaluator resides relative to the
collections that it is evaluating. The query evaluator you use to initiate a
query must reside in the same server as the collections on which the query
will be performed. If your program is running in a client process, or if your
business object is in one server process and you are querying collections that
reside in another server process, you will have to obtain the query evaluator
that resides in that process. To accomplish this you must be able to find the

© Copyright IBM Corp. 1997, 1999 355



name of the server on which those collections reside. This process is described
in Get the Server Name of a Query Evaluator.

Certain kinds of collections, termed queryable collections, are able to support
query operations directly. If you are performing simple queries on only one
collection, you can issue the query request directly on the collection. The
collection, in turn, will locate an appropriate query evaluator and use that to
form the results that it hands back to you.

Depending on the needs of your application, queries have two different kinds
of results. If you perform a query on a single collection, or multiple collections
of the same type of object, then you probably want to return a result set
containing that same type of object. For instance, if you are performing a
query on a collection of Policy objects, then you probably want a result set of
Policy objects.

However, if you are performing a query over multiple collections of different
types, or even if you are performing a query on a single collection but only
want to return a subset of the state produced by those objects, also referred to
as a projection, then you probably want to return an array of data records.

The Query Service locates collections referenced in the FROM clause of any
query statement by looking up the referenced collection name in the system
name space. Thus, collections must be named in the system name space
before they can be used in a query statement.

The data returned is a collection of references to objects of one type. The
objects in the returned collection can be the exact same objects that were
queried in one of the input collections, or a subset of these objects. In this
case, no new schema results when the data is returned. Alternatively, to
support the notions of projection, join, union, and function, the objects in the
returned collection can be of a new dynamic and transient type.

Object-Oriented Structured Query Language

The language for the Component Broker Query Service is object-oriented
Structured Query Language (OOSQL). OOSQL is a Query Service over objects
where the syntax of the query is expressed in standard or extended forms of
the Structured Query Language (SQL). A small number of extensions of the
SQL SELECT syntax are available to exploit the object model. The primary
extension is that of path expression, that generalizes the notion of navigation
through attributes and methods of a Component Broker CORBA Interface in
IDL that are CORBA structures (for example, the struct construct in CORBA
IDL), references to objects or collections of objects. In accordance with the
object model, the database is perceived as a set of collections of objects, and

356  WebSphere: Advanced Programming Guide



relationships are represented by collection and reference attributes of the IDL.
Results are retrieved by specifying a result collection that can be derived from
one or more collections. The result returned is a collection of references to
objects of some type. The objects in the returned collection can be the exact
same objects that were queried in one of the collections, or a subset of these
objects. Alternatively, to support projection, join, union, and function, the
objects in the returned collection can be the instances of a new type.

Differences between OOSQL and SQL

This section contains a brief review of SQL showing how OOSQL differs from
SQL. For more information on SQL see the SQL Reference Manual and
Application Programming Guide in the DB2 product information. To trace and
display information about the SQL queries that are executed as a result of
OOSQL queries from an application server, see the “Trace SQL Queries”
section in the WebSphere Application Server Enterprise Edition Component Broker
System Administration Guide.

SQL is a Structured Query Language designed for use with relational
databases. Use the following employee and department tables, you can
perform queries to find specific data.

Table 16. Employee

empid name deptno
12 "Dave’ 42

14 "Andrew’ 42

16 "Liz’ 44

18 "Amy’ 44

20 "Don’ 44
Table 17. Department

deptno name mgrid
42 "Sales’ 16

44 "Dev’ 20

You can find all employees in department 42:
select empid,name from employee where deptno=42

You can find all employees whose manager has the ID of 16. This query,
however, requires a join of both tables.

select e.empid, e.name from employee e, dept d

where d.deptno=e.deptno and d.mgrid=16

You can find all employees that are not managers:

Chapter 12. Query Service for 0S/390 and Solaris 357



select empid, name from employee where empid not in
(select mgrid from dept)

You can find the number of employees in each department:
select deptno, count(x) from employee group by deptno

OOSQL is an extension of SQL. Instead of tables used in SQL, data takes the
form of collections of objects with attributes and methods.

empHome is a home collection of employee objects with the interface:

interface employee({
attribute readonly Tong empid;
attribute string name;
attribute dept deptPtr;
1

deptHome is a home collection of dept objects with the interface:

interface dept {
attribute readonly long deptno;
attribute string name;
attribute employee mgr;
IManagedCollection::IIterator emps();

}

Unfortunately IDL does not tell you what kind of objects the method emps()
returns. Assume that these are employee objects.

OOSQL queries equivalent to the queries above would be:

select e.empid,e.name from empHome e where
e.deptPtr..deptno=42;

This query returns the values of empid and name for employee objects in
department 42. It is called a data array query.

Some important points to remember:
* OOSQL queries always end with a semicolon.

* The FROM clause names the collection. (Later you will see how to query an
unnamed collection.) The name of the collection is the name that the home
uses in the DCE namespace. Be aware that home collections have two
names, a home name and a factory finder name. The FROM clause always
uses the home name, never the factory finder name.

* Correlation identifiers (the “e” in the query above) are always required in
OOSQL. In SQL correlation ids are not always required.

* The 2 periods (..) is a dereference operator in OOSQL. This is the same idea
as the -> operator in C++. The dereference operator can be used with data
types that are object references.

358  WebSphere: Advanced Programming Guide



If you want to return object references instead of attribute values the query
would be:

select ref e from empHome e where e.deptPtr..deptno=42;
This is called a reference query.

A correlation name preceded by the keyword REF returns pointers to objects
in the collection associated with the correlation name. If the correlation name
is not one of the members in the collection associated with the correlation
name, the REF correlation name has the same semantics as correlation name.
This feature was introduced to preserve compatibility with SQL in which
column names can be unqualified. For example, to select pointers to employee
objects with the name of “Bob” from the empHome collection:

select ref e from empHome e where name='Bob';

If the collection empHome has no member attribute “e”, then the above query
is the same as the following query:

select e from empHome e where name='Bob';

You can return attribute values and object references:

select e.empid, e.name, ref e from empHome e
where e.deptPtr..deptno=42;

This is considered another type of data array query.

To find all the dept objects where the deptno is between 10 and 100 the query
would be:

select ref x from deptHome x where x.deptno between 10 and 100;

The query to find all non-manager employee objects would be:

select ref e from empHome e where e.empid not in
(select d.mgr..empid from deptHome d );

A count of employees in each department would be performed as follows:
select e.deptPtr..deptno, count(*) from empHome e

group by e.deptPtr..deptno;

Another similar query is:
select d.deptno, count(d.emps) from deptHome d;

You can perform string searches using the SQL LIKE operator:
select ref e from empHome e where e.name like 'Bob%';

“%" is the wild card character in SQL. SQL strings are delimited by single
quotes where strings in C++ are delimited by double quotes.

Chapter 12. Query Service for 0S/390 and Solaris 359



Note: String searches are case sensitive in SQL.

If the dept interface also includes methods, I can also include methods in my
queries.
interface dept {
attribute readonly Tong deptno;
attribute string name;
attribute employee mgr;
double compute_overtime();
Tong compute vacation(in Tong year);

Find all dept objects where the overtime is greater than 10 hours:
select ref d from deptHome d where d.compute_overtime() > 10;

Find the deptno, name and vacation days of dept objects where vacation in
1996 was less than 50 days.

select d.deptno, d.dname, d.compute_vacation(1996)
from deptHome d where d.compute vacation(1996) < 50;

The key points of OOSQL queries is that they:
* Are similar to SQL queries.
* Use collection names in the FROM clause (SQL queries use table names).

* Can return object references as well as attribute values (SQL queries can
only return column values ).

* Have a dereference operator (..) that can be used to follow object references.
* Can do joins, subselects, ordering and summarize data just like SQL.

* Can use object attributes and methods in the select and where clause. Only
methods that return a value and have either no parameters or only input
parameters can be use in a query statement.

Methods

OOSQL supports invocation of CORBA IDL methods in queries. (Methods are
also referred to as member functions.) In an OOSQL query, a method name is
followed by the method arguments within parentheses. For example,
m(a,,ay,...a) is a method with name m and arguments a,,a,,...a,,. Following the
C++ convention, methods with no arguments are followed by empty
parentheses: m().

Component Broker implements a dynamic run-time environment for method
selection and invocation.

If a method argument is a null value, then the value returned by the method
is also null. A programming error in the implementation of the method can

cause OOSQL to fail.

360 WebSphere: Advanced Programming Guide



Methods must be defined as having zero arguments or input only arguments
and must not be defined with a return type of void.

The implementation of methods appearing in queries has limitations. Method
arguments in OOSQL statements are checked for type correctness. Where
possible, when method execution results in exceptions, a method failure
message is generated and the query is terminated. In some cases, a
programming error in a user’s method might cause the query engine to halt
(infinite loop in method) or terminate abnormally.

The following table presents the conversion that is performed when an
argument of a given type is passed to a method that is defined with a
parameter of the same or different type.

The table shows for example, if you have the idl interface

myInterface {
attribute short sl;
attribute string s2;
Tong methoda(in Tong input);
}

the query statement
select e.methoda(e.s1) from myHome e;

is valid and the Query Service will convert s1 from short to long when calling
the method. However the query statement

select e.methoda(e.s2) from myHome e;

is not valid because the string type attribute s2 cannot be passed to methoda.

pa::Igr:Z:rtl:eerntt){pe pointer short long | float | double string | vargraphic| other
pointer NC E E E E E E E
short E NC C E E E
long E C* NC C C E E E
float E c* c* NC C E E E
ICBCdecimal E c* c* c* C* E E E
double E c* Cc* Cc* NC E E E
string E E NC C E
vargraphic E E NC E
other E E E E E E

Chapter 12. Query Service for 0S/390 and Solaris 361



argument/ pointer short long | float | double string | vargraphic| other
parameter type
C Conversion. The argument type is converted to the parameter type.
C* Conversion with the possibility of an overflow, an underflow, or a loss of precision due to a

type conversion.

E Error. The argument type used in a method in a query is not applicable to the parameter type
of the method.

NC No Conversion. The argument type and the parameter type are the same.

Note: There is no pass by value capability for method arguments in queries, as indicated by the other
type. Arguments that are of complex type must be passed by pointer to be used in methods in queries.
Character string pointers are considered string types by query, not as pointer types.

Inheritance

OOSQL supports interface inheritance as in the following example. Suppose
the manager interface inherits from employee.
interface manager : employee {
attribute dept manages_deptPtr;
attribute long executivelevel;

}

A query statement over manager can select inherited attributes just like
noninherited attributes. (No special syntax is required.)

select m.no, m.name, m.executivelLevel from managerHome m;

Navigation

A navigation is specified by path expressions. Path expressions allow traversal
through references, embedded structures, and collections to reach embedded
members. The “..” characters are used to express traversal through embedded
members. Path expressions can appear anywhere a member can. A path
expression is g.ml..m2..mn where q is a correlation name defined for
collection C, and m1 is a member of the element type of C, and m2 is a
member of the type of ml and so on. A member of mi can be a member or a

method. A path expression evaluates to the value of the leaf of the expression.

Through embedded structures
Embedded Structures Members can be defined in terms of structures.
Navigation allows traversing into the embedded members of structure

definitions.

Example:

362  WebSphere: Advanced Programming Guide



struct addressStruct {
string street;
string city;
string state;
string country;
string zip;

}

interface employee {
attribute Tong empid;
attribute addressStruct address;

}

You can write the query statement

select e.address, e.empid, e.address..city from empHome e
where e.address..zip='95120"' order by e.address..city;

returns the address struct, employee ID and city for employees in postal code
95120 sorted by city.

Through references

Reference members can also participate in navigational expressions. A
reference that has a zero value is treated as a null reference. Only references to
objects, structures, and collections can be traversed (that is, appear as other
than leaf nodes in path expressions). However, a member of any type can
appear as a leaf node of a path expression. Its interpretation is dependent
upon its type. If a reference member points to a character string, then OOSQL
will dereference the reference to return the character string value. In all other
cases (for example, integer, double precision), OOSQL cannot dereference the
reference to obtain the value and if such a data item appears in a SELECT
statement, the reference to the value is returned. The application can then
dereference the reference to retrieve the value. Uninitialized or invalid
references can cause OOSQL to terminate abnormally if these are part of a
path expression that is traversed.

Through collections

Navigation or traversal through collection members creates implicit correlation
names over each embedded collection in the path expression.

Example: The query selects the numbers and names of employees in
department one. The set of employees in each department is modeled with
the member emps defined as a collection. The traversal through emps given by
d.emps..empid defines an implicit correlation q over d.emps, and the semantics
of empid is q.empid.

select d.emps..empid, d.emps..name from deptHome d where d.deptno=1;

Chapter 12. Query Service for 0S/390 and Solaris 363



Collections

Collections are used in place of tables in the OOSQL SELECT syntax.
Collections are made up of objects of some type. Objects are used in place of
rows and the members of objects are used in place of columns. The term
members is used to mean both attributes and methods of a Component
Broker CORBA interface. There is no inherent order of objects within a
collection. Every object must have one or more members, but the collection
can be empty or the number of objects in the collection can be zero. Some
types of collections include:

queryable collection
A collection that may appear in the FROM clause of the OOSQL
queries. The creation of these collections is system dependent.

result collection
A set of objects that OOSQL selects or generates from one or more
queryable collections.

Query optimizations

In general, the semantics of any query requires that the Query Service invoke
the methods or attributes specified in the query expression, perform any
mathematical operations on the resulting values as specified in the query
expression, and determine whether the final result satisfies the specified
predicate for each object in the collection. Due to the inherent encapsulation
semantics of object-oriented programming, this requires that the Query Service
activate each object instance in the collection and perform the evaluation one
object at a time.

However, if the collection(s) you are querying is collected by a Home, and
that Home is configured to store the state of its objects in a relational
database, specifically DB2, then the Query Service can optimize its search. The
query evaluator is smart enough to detect that the collection(s) it is operating
on may be adapted to a DB2 data store. When this is the case, and when there
is a straightforward mapping between the attributes specified in the query,
and the underlying columns of the tuple in which the managed objects
collected by the Home are stored, then the query evaluator will transform the
OOSQL expression into a standard SQL expression and “push down” the
query to examine the underlying datastore.

Even if only part of the OOSQL expression can be mapped in this way, the
resulting push down will often yield an intermediate result set that is a
fraction of the original collection size. Thus, the remaining query can iterate
over the intermediate subset and significantly reduce the overhead that would
be incurred if the evaluation had to iterate over every object in the collection.

364  WebSphere: Advanced Programming Guide



DBMS pushdown rules

The query pushdown determines what parts of the OOSQL query are passed
down to the underlying relational database management systems (DBMS)
where the data resides. The parts of the OOSQL query that are not pushed
down are evaluated in the memory. This section lists which of the OOSQL
query constructs are pushed down and which are not for the DB2/390, DB2
Universal Database (UDB) and Oracle database management systems.

Simple expressions: All DBMS types: The expressions containing numeric,
date, time, and timestamp functions, arithmetic operators and comparison
operators appearing in predicates are pushed down to the DBMS. Comparison
operators among {<,s, >, z} are not pushed down for varchar and vargraphic

types.

Joins: All DBMS types: Multiple tables from the same database can be
pushed down in a single query if the table are related by an equi-join
predicate.

Aggregates, group by clause, having clause: DB2/390,Universal Database
(UDB): Aggregates, group by and having can be pushed down provided that
all other clauses in the query can be pushed down.

Oracle: Aggregates, group by and having can be pushed down provided that
all other clauses in the query can be pushed down and that only columns
appear in the projection list.

Distinct: All DBMS types: Pushdown is disabled.
Order by: All DBMS types: Pushdown is disabled.
Union: All DBMS types: Pushdown is disabled.

Subqueries: All DBMS types: If the tables participating in a subquery are
from the same database as the tables participating in the outer query and the
body of the subquery can be pushed down, the following rules apply: Exists
(existential) subqueries are pushed down. Subqueries that are basic predicates,
and ANY (existential) and ALL (universal) subqueries are pushed down if the
comparison operator is between {=, #} or if the comparison operator is among
{<, 5, >, 2} and the operands of the operator are numeric, date, time,
timestamp (that is, arguments of type varchar, vargraphic disable pushdown).

Projection (query without aggregates, group by and having): All DBMS

types: Projection clauses in subqueries can be pushed down. The projection
clause of the outer query is computed in the memory.

Chapter 12. Query Service for 0S/390 and Solaris 365



Projection (query with aggregates, group by and having): DB2/390.UBD:
The projection list can be pushed down (see aggregate function list below for
details on when pushdown occurs).

Oracle: Pushdown is disabled if anything other than columns appear in the
projection list.

Scalar functions:
char

Universal Database (UDB):
The CHAR function can be pushed down for arguments of
type varchar, smallint, integer, decimal, date, time, timestamp.
Pushdown is not applied for arguments of type 4 byte float,
double, duration due to formatting differences.

DB2/390:
Same as Universal Database (UDB) except that varchar
arguments cannot be pushed down.

Oracle:
The CHAR function is pushed down using the Oracle to_char
function for arguments of type smallint, integer, and decimal.
Note that these numeric types map to the Oracle number type
with a certain precision and scale.s

integer
Universal Database (UDB):

The INTEGER function can be pushed down for varchar and
numeric arguments.

DB2/390:
Same as Universal Database (UDB) except that varchar
arguments cannot be pushed down.

Oracle:
Pushdown disabled.

digits, float, decimal, year, month, day, hour, minute, second, date, time,
timestamp, microsecond

DB2/390, Universal Database (UDB):
Pushdown enabled.

Oracle:
Pushdown disabled.

smallint, double

Universal Database (UDB):
Pushdown enabled.

366  WebSphere: Advanced Programming Guide



DB2/390, Oracle:
Pushdown disabled.

Aggregate functions:
count, sum, avg

DB2/390, Universal Database (UDB):
Pushdown enabled.

Oracle:
Pushdown is enabled if aggregates are not in the projection
list (e.g., in a having clause or in a subquery).

min, max

All DBMS types:
Pushdown is enabled for numeric, date, time, timestamp
arguments, and disabled for varchar, vargraphic arguments.

Miscellaneous rules:
Methods in queries

All DBMS types:
Query terms that are methods are not pushed down.

Queries with reference collections

All DBMS types:
Query terms that are reference collection attributes are not
pushed down.

Queries with in-memory object building

All DBMS types:
Query terms that are reference collection attributes are not
pushed down.

Path expressions over home collections

All DBMS types:
Path expression over home collections can be pushed down as
join expressions.

The cast operator
The cast operator sets the type of a member or method in the body of a query.
Thus casting provides type information to OOSQL when it is not available

from the schema. However, the casting can be used to override the type
information in the schema.

Chapter 12. Query Service for 0S/390 and Solaris 367



The cast operator follows the member to be altered and specifies the type
name between(% and %).

Casting is a fragile operation, since casting a member to the wrong type may
result in producing incorrect answer to the query or can cause OOSQL to fail.

See Query over reference collectiond for an example of casting.

Query over reference collections

The syntax of a query over a reference collection is the same as query over a
home collection.

There is one important difference when querying an object whose IDL
definition contains an IReferenceCollection or Ilterator type as an attribute or
return type of a method. The IDL definition does not indicate what kind of
object the ReferenceCollection or Iterator references. The Query Service must
know this information in order to process the query and so it necessary to
indicate this information using a cast function in the query statement itself.

For example, using the dept interface from the previous section, the query
over a home collection to find all departments that contain an employee
whose name starts with "D’ would be:

select d from deptHome d where d.emps..name like 'D%';

To do this same query over a reference collection (whose name is deptRC) of
department objects would be:

select d from deptRC d where d.emps(%Collection<::employee*>%)
..name like 'D%';

The notation (%Collection<::interfaceName*>%) is the OOSQL cast function
that specifies the object type of emps.

The internal processing for a query over a reference collection is different
from a home collection. A query over a reference collection is processed by
iterating over the reference collection and activating each object (if it is not
already activated) and evaluating the query.

When creating the reference collection, make sure you use the
createCollectionFor() method and pass in the string equal to the IR name of
the objects the collection will contain. For example:

createCollectionFor("IDL:policy:1.0");

You can find out what this IR name is by loading the IR and then doing an
irdump with a parameter of your interface name.

368  WebSphere: Advanced Programming Guide



If you do not use createCollectionFor(), when you query the reference
collection, the Query Service won’t know what kinds of objects are contained
in the collection and cannot execute the query. An exception is thrown.

DB2 tables have the capability of using indexes and DB2 has a search engine.
Having DB2 do the search is preferable to doing searches over large reference
collections where there is no indexing capability.

Design your application to make use of home collections. Avoid the use of
query over reference collections when query performance is important.

Data type mapping between DB2 and CORBA

Many of the DB2 data types have obvious counterparts in CORBA such as
DB2 integer mapping to CORBA::long and DB2 char(n) and varchar mapping
to CORBA::string.

Be aware that char(n) and varchar will map to null terminated strings in
CORBA. Binary string data can be handled by used either VARCHAR FOR
BIT DATA or CHAR FOR BIT DATA in the table definition mapped to
ByteString datatype in idl.

There are four data types in DB2 that do not have obvious counterparts in
CORBA. They are DB2 Date, Time, Timestamp and Decimal. Date, Time and
Timestamp should be mapping to CORBA::String. There are helper classes
(ICBCDate, ICBCTime and ICBCTimestamp) provided in Component Broker if
you need to do date and time manipulations of these strings. Decimal can be
mapped to CORBA::double or CORBA::String. Use string when you need
exact precision. Double byte strings can be stored using GRAPHIC or
VARGRAPHIC datatype in the table definition and Wstring in the idl.

Query evaluators

A query evaluator is the engine behind the Query Service. The query
evaluator parses the query expression you supply, locates the inferred
collections, and evaluates the collections for the set of objects that satisfy the
query predicate. The query evaluator supports the QueryEvaluator interface
as defined in the standard CORBA services Query Service specification.

The evaluate operation, as specified by OMG in the
CosQuery::QueryEvaluator interface returns an any. CORBA leaves it to query
implementers to specify the structure of this any for the various types of
results that can be produced from a query. Depending on the conditions you
specify in the query expression you could potentially need to get back either
an iterator (a collection of objects whose type matches the objects in the
collection you are evaluating), or a data array. However, the Component

Chapter 12. Query Service for 0S/390 and Solaris 369



Broker implementation of the CosQuery::QueryEvaluator::evaluate() operation
returns only an IManagedCollections::Iterator. You need to test the results
returned to ensure they match your expectations.

Component Broker has extended the CosQuery::QueryEvaluator interface to
introduce variations of the evaluate method that return more specific result set
types. If you want to be more specific about the type of result set you get, you
can use the evaluate_to_iterator() operation which passes back an
IManagedCollections::Iterator, or you can use the evaluate_to_data_array()
operation which passes back an IExtendedQuery::DataArraylterator.

In general, a query evaluator could support any number of query languages.
You would be expected to specify the language that you intend to use, and
accept that the query evaluator you choose may or may not be implemented
to support that language. The Component Broker query evaluator only
supports one language--object-oriented Structured Query Language (OOSQL).
OOSQL is a rich language, following in the tradition of SQL, with extensions
that are specific to object-oriented programming.

Default query evaluator

Component Broker automatically creates an instance of a query evaluator in
every Component Broker server, and binds this in the system name space at
the following location:

/host/resources/servers/<server-name>/query-evaluators/default

Plug your server name in for <server-name>. If your program is executing on
a server, you can get the name of your local server from the
CBSeriesGlobal::serverName static member function. This member function
can only be invoked within a server process. In a client process, you must
know the name of the server containing the query evaluator you want to use.

Obtain a query evaluator

The following procedure demonstrates how to obtain the default query
evaluator from the system name space for a well-known server. This
procedure can only be completed if you know the name of the server on
which the query evaluator exists. The query evaluator you obtain should be
on the same server as the collections that you will be querying.

1. Determine which server you want to use.

You need to know the name of the server that contains the query
evaluator that you want to use. This could be the server on which you're
already executing, or it could be a remote server. In the former case, you
can simply get the local server name from the CBSeriesGlobal::serverName
static member function.

2. Resolve the default query evaluator from the system name space.

370  WebSphere: Advanced Programming Guide



Use the Naming Service operations to resolve the default query evaluator
in the named server from the system name space.

The following example obtains the default query evaluator from the local
server. This example can only be used in a server process—for instance, in a
business object implementation.

// Declare an intermediate object ref, intermediate naming contexts
// and the targeted query evaluator

CORBA::0Object_var intermediateObject;
IExtendedNaming: :NamingContext_var serversNC;
IExtendedNaming: :NamingContext_var localServerNC;
IExtendedQuery::QueryEvaluator_var defaultQE;

// Resolve to the server's naming context in the Host name space

serversNC = CBSeriesGlobal::nameService()->resolve with_string(
"/host/resources/servers");

// Resolve to the local server

TocalServerNC = serversNC->resolve_with_string(
CBSeriesGlobal::serverName());

// Resolve and narrow to the default query evaluator

intermediateObject = localServerNC->resolve_with_string(
"query-evaluators/default");
defaultQE = IExtendedQuery::QueryEvaluator:: narrow(intermediateObject);

Get the server name of a query evaluator

The query evaluator you use to initiate a query must reside in the same server
as the collections on which the query will be performed. If your program is
running in a client process, or if your business object is in one server process
and the query that it wants to perform is on collections that reside in another
server process, then you will have to obtain the query evaluator that resides
in that process. To accomplish this you must be able to find the name of the
server on which those collections reside.

Unfortunately, Component Broker does not provide any automated
mechanisms for determining the name of a remote server. However, there are
a number of techniques you can employ.

First, if the collections you need to query are on the same server as your
business object, then you can get the name of the local server from the
CBSeriesGlobal::serverName static member function. Even if the collections
are not in the same server, it is good to note that the
CBSeriesGlobal::serverName static function will always return the name of its
local server.

Chapter 12. Query Service for 0S/390 and Solaris 371



There are at least five strategies for finding the server name for a query
evaluator. These include:

* Ask the User

* Ask an Administrator

* Know your Collections and you'll know their Server

* Create an Anchor

* Specialize your Collections

You may be able to derive your own approach, perhaps as a variation of one
of these.

Ask the User
In some cases, the query statement will actually be formed by an end
user and provided to you through a user interface. In this case, you
may be able to depend on the user knowing the layout of their
distributed system topology, and can supply the appropriate server
name along with the query statement.

Ask an Administrator
Even if the topology of the system is foreign to your business end
users, the system administrator who configured the system should
know something about where different resources are located. As part
of your application design, you may be able to require that the
administrator identify on which servers specific collections exist, and
to supply that information to your application through a configuration
file. Your application can then read this file during its initial load and
use that during its runtime.

If your application uses a number of different collections, this
configuration file may need to contain a table of collection to server
assignments. By indexing on the collection name, you can look up the
corresponding server and use that to find the appropriate query
evaluator for the collection you are querying.

Know your Collections and you will know their Server
If your application uses a number of different collections, this
configuration file may need to contain a table of collection to server
assignments. By indexing on the collection name, you can look up the
corresponding server and use that to find the appropriate query
evaluator for the collection you are querying.

/host/resources/servers/<server-name>/collections

where <server-name> is the name of the server on which they exist.
Likewise, the corresponding query evaluator that can operate on those
collections is named in,

/host/resources/servers/<server-name>/query-evaluators/default

372 WebSphere: Advanced Programming Guide



If you know the fully-qualified name of your collections, then you can
deduce from their path the server in which they reside. From that,
you can form a path to the corresponding query evaluator.

Note that if the collections reside on a server in a remote host, you
may have to use a fully qualified path to navigate to that host. For
instance,

/.:/hosts/<host-name>/resources/servers/<server-name>/collections

or

/workgroup/hosts/<host-name>/resources/servers/
<server-name>/collections

depending on whether the host is in your local workgroup or
elsewhere in the cell. Notice that in both cases you need to know the
name of the target host.

If you only know the host name or that it is on the local host, you can
do a brute-force search through all of the servers within the

/host/resources/servers

naming context. In the worst case, you can do a brute-force search
through all of the servers in all of the hosts in the

/.:/hosts

naming context.

Create an Anchor
For each of the collections that you want to query, you can introduce
your own Application Object (an anchor) with instructions to the
application assembler to install an instance of each these in the same
server as the collections that you're interested in. These anchor
application objects can have a simple interface supporting a single
operation that returns its own server name. The implementation
simply uses the CBSeriesGlobal::serverName static function to deduce
its own server name and return that from the operation. However,
you would want each anchor to have a distinct primary interface
name, perhaps all derived from the same base interface containing the
single operation.

You could then build or hard code a mapping table that correlates
collections with the primary interface name of the anchor that
corresponds to that collection. Before initiating a query, you can look
up the anchorZs primary interface name corresponding to the
intended collection, and use that with a factory finder to find the

Chapter 12. Query Service for 0S/390 and Solaris 373



Home for the anchor. From the anchor itself, invoke the simple
operation that returns its server name, and then use that to form a
name path to its query evaluator.

A variation of this is to create an individual instance of the same type
of anchor in each relevant server, and as part of the creation process,
bind these by their collection name in a naming context that you
define. You could then look up the anchor by its corresponding
collection name and then use the anchor to return its local server
name as before. In this case, each anchor would not have to have its
own unique primary interface, and you could avoid using the factory
finder for locating it.

Specialize your Collections
Many of the queries you perform will be on queryable Homes. Homes
are collections and normally are automatically bound in the collections
naming context under the server where they belong. However, as
Homes, they're also registered in the factory repository and can be
found using a factory finder.

If you specialize your Home, you can introduce the same method that
we suggested in the “Create an Anchor” strategy that returns its own
local server name. In this way, the Home collection can act as its own
anchor. You can find the Home using a factory finder, get its local
server name, and use that to find a query evaluator that operate on
that Home as a collection.

This strategy probably only works well for Home collections.

Topology of query evaluators and collections

The FROM clause of the query statement contains the name of one or more
collections. The evaluate_to_iterator() and evaluate_to_data_array() operations
operate only on collections that have been named in the system name space
or named in a parameter list. Specifically, collections should be named under
the following location in the Host name tree and server, as specified in
<server-name>, where the collection actually exists:

/home/resources/servers/<server-name>/collections

The query evaluator looks up the collection specified in the FROM clause
either in the parameter list or on the local Host name tree under the query
evaluator’s own server if the collection is not supplied in the parameter list. If
the referenced collection is not supplied in the parameter list or has not been
bound in this naming context, then the query cannot be performed. This has
the following implications:

374  WebSphere: Advanced Programming Guide



* If you do not supply the collection in the parameter list, collections must be
uniquely named in the system name space, specifically within the
collections naming context for any given server.

* Queries can only operate on collections that exist in the same server as the
query evaluator that is operating on them.

Homes are normally automatically bound in the collection’s name context in
the server on which the Home exists when the Home is created. You can
specify whether a Home is to be bound, and its collection name in the
Application DDL for that Home using Object Builder. If you create your own
collections, other than Homes, it is up to you to bind that collection in the
system name space before you can perform any queries on it.

As previously mentioned, you can supply the collection in the parameter list,
provided you give it the same name in the parameter list as you specified in
the FROM clause in the query statement, as shown in the following example:

Parameter List Query Statement

“myCollection”, “select p from myCollection p where
IManagedCollections::IReferenceCollection_var p-number > 10”

myCollection

Form a query

This procedure demonstrates how you can form a query on a collection. This
procedure assumes you already know the name of the server containing the
collection you will query (myServer in this example).

1. Determine the name of the server where your collections exist. You need
to determine the name of the server on which your collections exist. The
query evaluator you use must reside in the same server as the collection(s)
you are querying. If you are using a local collection, then you can get the
local server name using the CBSeriesGlobal::serverName static member
function. Otherwise, get a remote server name as outlined under

”

2. Obtain a corresponding query evaluator. Get the query evaluator that
corresponds to the collections you will be querying. Otherwise, you will
have to form a name path using the server name that you produced in
step 1.

3. Determine the type of result you want to receive. The
evaluate_to_iterator() operation returns an iterator over a collection of
object references. The evaluate_to_data_array() operation returns an
iterator over a collection of data array rows.

4. Decide if you want any initial values back from the iterator. Both
evaluation methods that you may use will return an iterator: either an
iterator over a reference collection, or an iterator over a collection of data

Chapter 12. Query Service for 0S/390 and Solaris 375



array rows. Normally you will iterate over these collections either one or
several elements at a time. You have the opportunity at the time you
initiate the query to ask that an initial set of elements be returned in a
sequence outside of the iterator. This is a convenience mechanism that is
equivalent to invoking the query, getting back the iterator, and requesting
the first n elements in a separate request.

5. Issue the query request. Depending on the decision you made in step 3,
invoke either the evaluate_to_iterator() or evaluate_to_data_array()
operation on the query evaluator. In doing so, pass in the query statement,
any accompanying parameter list, and an indication of how many initial
elements to return from the resulting iterator.

Queries on queryable collections

Certain collections supplied by Component Broker, specifically Homes, can be
queried directly. You can query a Home by narrowing to its

IManaged AdvancedClient::IQueryablelterableHome interface, and invoking
the evaluate method. This method has been implemented to locate an
appropriate query evaluator, and reissue the request on it. If you use this
approach, the queryable collection will form its own SELECT and FROM
clause, and append the predicate that you supply in the query statement
argument of the evaluate method. If you use this approach, the queryable
collection will form its own SELECT and FROM clause in the form SELECT REF
x FROM thisCollection x WHERE and append the predicate that you supply in
the query statement argument of the evaluate method.

Note: The correlation ID will always be the letter x.

Queries that result in an object collection

When you specify your query expression, you indicate in the SELECT clause
the type of the results you expect to get back. The result can be an object type
as defined by a managed object in IDL, or some combination of one or more
data types.

select ref e from empHome e;

In the preceding statement, the result is the type of object that is collected by
the empHome collection, presumably Employee. This example returns a
collection of objects. This has the benefit of allowing you to perform other
operations supported by Employee objects on any of the objects returned from
these queries. You can direct the query evaluator to return a collection of
objects (literally, an iterator to a collection of objects) using the
evaluate_to_iterator() operation.

The evaluate_to_iterator() operation returns an IManagedCollections::IIterator
object, and a sequence of zero or more initial entries from the iterator. The

376  WebSphere: Advanced Programming Guide



ITterator is an object that represents a collection of references to objects, and
can return one or more object references, that is, entries in the reference
collection. If you use the next operation on the Ilterator, it will return the next
object reference in the collection. If you use the nextS operation, you can
specify how many entries you want returned, and these will be returned as a
sequence of references. You can request the evaluate_to_iterator() operation to
return an initial set of entries from the Ilterator. This is equivalent to returning
the iterator, and then requesting nextS to get that same initial set.

Queries that result in a data array

There are times when you want a query to result in an array of data values
instead of a set of objects that would normally encapsulate that data. This
could be the case, for example, when you want to present the resulting data
in a scrolling list on the end user interface.

The following statement returns an array of data values:
select empid, name from empHome e where e.deptPtr..deptno=11;

In the preceding example, the returned array of data values contains the
employee number (empid and the name for each employee contained in the
empHome collection that is assigned to department 11.

In the preceding example, the returned array of data values contains the
employee number (empid) and the name for each employee contained in the
empHome collection that is assigned to department 11. You can direct the
query evaluator to return an array of data values using the
evaluate_to_data_array() operation.

select ref e from empHome e where e.deptPtr..deptno=11;

You can also use this operation with any query statement that would
normally return a collection of objects. In this case a reference to each
resulting object is stored as a data field in the data array. You can then iterate
through the data array, pick up the first field (and presumably the only field
unless your SELECT clause specifies other data fields to return as well) of
each row in the array, and use that as a reference to the object. At that point,
once you narrow to the appropriate interface, you can perform any operation
on the referenced object that it supports.

The evaluate_to_data_array() operation returns an
IExtendedQuery::DataArraylterator object, and a sequence of zero or more
initial entries from the iterator. The DataArraylterator is an object that
represents the data array collection and can return one or more data array
rows, that is, entries in the data array collection. If you use the next_one()
operation on the DataArraylterator, it returns the next DataArray row (a

Chapter 12. Query Service for 0S/390 and Solaris 377



sequence of any types) in the collection. If you use the nextS() operation, you
can specify how many entries you want returned, and these are returned as a
sequence of N rows.

Using the evaluate_to_data array() operation, you can request that it return an
initial set of entries from the DataArrayllterator. This is equivalent to
returning the iterator, and then requesting nextS to get that same initial set.

Queries over unnamed collections

In the queries we have seen so far, the from clause is the name of a collection.
This name must be registered with the Naming Service. A home collection
usually registers itself with the Naming Service with a name such as:

host/resources/servers/MyServer/collections/empHome

Only the string empHome is specified in the query statement. Most home
collections are registered, but they do not have to be. Reference collections or
view collection many times are not registered. To run a query over a collection
that is not registered with the Naming Service, use a parameter list. A
parameter list is a Name/Value pair list that consists of strings and references
to collection objects (homes, views or reference collection). In the from clause
of the query you use the name from the Name/Value pair, and on the
evaluate_to_data_array or evaluate_to_iterator call, you pass the Name/Value
pair list.

An example using the query evaluator interface

This section contains an example that shows:

* Why you would use the query evaluator object.

* How to get an object reference to the query evaluator.

* How to deal with data arrays returned from query evaluator.
* An example using the evaluate_to_iterator method.

* An example using the evaluate_to_data_array method.

The query evaluator is a system object on the application server that is a

direct interface to the Query Service. The details of the query evaluator are

described in IExtendededQuery.idl. ActiveX, Java and C++ clients all have

bindings to the query evaluator. The query evaluator is used when you want

to:

1. Run queries over reference collections (reference collections do not have an
evaluate method).

2. Run complex queries where you want to join several home collections
together.

3. Run a data array query that returns object attribute values. This might be
more efficient than first finding object references and then using the
references to get the values.

378  WebSphere: Advanced Programming Guide



4. Run a data array query that does data summarization.

If RC is a reference collection of employee objects and you want to find
employees with names starting with the letter D:

select ref e from RC e where e.name like 'D%';

You have to use the query evaluator interface because of reason 1 in the
previous list. If you want to find the employees whose name is the same as
any department name:

select ref e from empHome e, deptHome d where e.name = d.name ;
You use the query evaluator because of reason 2 in the previous list.

Find the deptname and object reference of all departments with deptid greater
than 100:

select d.name, d from deptHome d where d.deptno > 100;
You use the query evaluator because of reason 3 in the previous list.

Find the number of departments whose dept number is greater than 100:
select count(*) from deptHome d where d.deptno > 100;

You use a query evaluator because of reason 4 in the previous list.

The query evaluator has these important methods:

evaluate_to_iterator()
This method is similar to evaluate() on the home collection and is
used to return object reference queries such as select ref e from
empHome e;

evaluate_to_data_array()
This interface takes a data array query and the output is an iterator
over a collection of data arrays. A data array is a sequence of
CORBA::Any. Each any contains an attribute value.

The following query contains 3 elements in the data array. The first element is
empid and is of type long second element is name and is type string, and the
last element is an object reference to an employee object.

select e.empid, e.name, ref e from empHome e;

Sometimes the data type of the attribute that comes back in a data array is
different from the data type defined in the idl definition of the interface.

Corba Attribute Datatype in IDL Datatype Returned in Data Array

long (signed or unsigned) long

Chapter 12. Query Service for 0S/390 and Solaris 379



Corba Attribute Datatype in IDL Datatype Returned in Data Array
short (signed or unsigned) short or long

double double

string string

object reference object reference

float float or double

octet long

enum long

boolean short

char string (length 1)

Complex types such as struct, union, sequence, array and CORBA::Any can be
used in query statements.

The query evaluator interface is very powerful but slightly more complex
because you have to know how to deal with the idl SEQUENCE and the
CORBA::Any data types. A data array is a CORBA sequence <any> structure
and a memberList is a sequence of data arrays. You can think of a sequence as
an array of elements.

To find the length of sequence X:
X.length()

To get the third element of X:
x[2]

An Any is a CORBA structure that is a self describing value. The Any stores
both a typecode and a value.

To put something into an Any you use the operator <<=:

CORBA: :Any y;
y <<= "a string value";
y <<= 52;

To get something from an Any you use the >>= operator. The >>= operator
will first do a typecode check to make sure the receiving variable is of the
correct type:
CORBA::string_var s;
if (y >>=5)
cout << "If TRUE, then s contains a copy of
the string value" << endl;

380 WebSphere: Advanced Programming Guide



else
cout << "if FALSE, the extract failed because
the any did not contain a string" << endl;

When dealing with data arrays for the first time, be careful. Do not just
extract from an any and not check the return code. You extract operator might
fail and no exception will be thrown.

Look at the parameters to the method evaluate_to_iterator and
evaluate_to_data_array. The input parameters are:

¢ The query statement itself as a string. Make sure you include the ending
semicolon;

* The second parameter can be coded as NULL. This indicates the query
language, but the default Query Service supports only OOSQL.

* The third parameter is a name/value pair list (see the next topic).
* The fourth parameter is NULL for now. This is reserved for future use.

¢ The fifth parameter is called HOW_MANY. It is the number of result
elements to return in the memberList. This should be a value of zero or a
positive number.

There output parameters are:

* MemberList. The first n result elements are returned as a CORBA sequence.
The value of n is determined by HOW_MANY.

e Iterator. The iterator gives access to the remainder of the result collection.

Suppose that the result collection was 20 elements and HOW_MANY was set
to 10. The first 10 elements would be returned in the memberList, and the
remaining 10 could be retrieved using the iterator. There are two types of
iterators. IMananagedCollection::Ilterator is returned from evaluate_to_iterator.
This is the same iterator interface as used by Reference Collections.
Evaluate_to_data_array returns a data array iterator. Its interface is defined in
IExtendedQuery.idl. It is similar to Ilterator with the major difference is the
Iterator returns managed object references and the Data Array Iterator returns
Data Arrays which are CORBA sequences of values from the query result.

Look at the IDL definition of DataArraylterator. At run time the following
methods can be used to determine the number of columns in the data array in
addition to the type and attribute name for each column:

* get_number_of fields

 get_field_name

 get_field_type

 get_field_class_name

By setting how_many to the expected size of the result set, you can reduce the
number of trips across the orb to fetch the query result collection.

Chapter 12. Query Service for 0S/390 and Solaris 381



Do not forget to make use of the nextS() interface on the iterator to retrieve
the remainder of the result collection in groups of N. By using n=10 and
retrieving 100 objects, you can do it with 10 trips across the ORB instead of
100.

The query evaluator methods can throw 3 different exceptions when things go
wrong. The exception types are IExQueryInvalid, I[ExQueryProcessingError,
IExQueryTypelnvalid. All of these types contain an error number (errorNo),
message text (why) and extended details (argList).

Additional details on the cause of the error are found in the activity log of the
application server. Following is a complete example of using the
evaluate_to_iterator method:

// step 1 have the following include files in your C++ client
// program

#include <IManagedAdvancedClient.hh>

#include <IManagedCollections.hh>

#include <CBSeriesGlobal.hh>

#include <IExtendedLifeCycle.hh>

#include <CosTransactions.hh>

#include <IExtendedQuery.hh>

#include <IQueryManagedClient.hh>

#include <IQueryLocalObjectImpl.hh>

#include "Policy.hh"

CORBA: :Current_ptr orbCurrentPtr;
CosTransactions::Current_ptr currentTransaction;

// step 2 start a transaction and get the query evaluator object
CBSeriesGlobal::Initialize();
orbCurrentPtr = CBSeriesGlobal::orb()->get_current();
currentTransaction =

CosTransactions::Current:: narrow( orbCurrentPtr );

// set transactions time out to 600 seconds.
// Default value of 30 seconds may not be long enough
// when doing some queries.

currentTransaction->set_timeout( 600 );
ICollectionsBase::IIterator_var _querylt;
try {

currentTransaction->begin();

CORBA: :Object_var o = CBSeriesGlobal::nameService() ->
resolve with_string("host/resources/servers/MyServer
/query-evaluators/default");

IExtendedQuery::QueryEvaluator_var _ge =

IExtendedQuery::QueryEvaluator:: narrow(o);

// step 3 issue the query
IExtendedQuery: :MemberList* x;

_qge->evaluate_to_iterator(
"select e from policyDefaultTransDB2Home e

382  WebSphere: Advanced Programming Guide



where e.amount > 0; ",

0,

0,

0,

0, // in this example how _many is set to zero

X, // how_many is zero, x will be an empty sequence
_querylt);

// step 4 iterator over the result

IManagedClient::IManageable_var tup;

while( (_queryIt->nextOne(tup)) != NULL )
{

Policy var p =Policy:: narrow(tup);

cout << "Policy no= " << p->policyNo() << " amount " <<
p->amount() << " premium " << p->premium()<< endl;

}

// step 5 normal cleanup
_querylt->remove();
currentTransaction->commit (0);

}

// step 6 exception processing
catch (IExtendedQuery::IExQueryInvalid &ex)
{
cout << "query error number=" << ex.errorNo << end]
<< "query error message=" << ex.why << endl;
currentTransaction->rollback();
}
catch (IExtendedQuery::IExQueryProcessingError &ex)
{
cout << "query error number=" << ex.errorNo << end]
<< "query error message=" << ex.why << endl;
currentTransaction->rollback();
}
catch (IExtendedQuery::IExQueryTypelnvalid &ex)
{
cout << "query error number=" << ex.errorNo << end]
<< "query error message=" << ex.why << endl;
currentTransaction->rollback();
}
catch (...)
{
if (_queryIt!=0) _queryIt->remove();
currentTransaction->rollback();

}

Following is the same query except using a data array query to retrieve
attributes amount and premium:

// step 1 and 2 same as above
// step 3 becomes
IExtendedQuery::DataArrayList* members;
_qe->evaluate_to data_array(
"select p.policyNo, p.premium, p.amount, p
from policyHome p where p.policyNo in(10,11,12); ",

Chapter 12. Query Service for OS/390 and Solaris

383



NULL,
NULL,
NULL,
3,
members,
_queryDatalt);
long policyNo;
double amount, premium;
if ((*members)[0][0] >>= policyNo) {}
else cout << "error extracting policyNo" << endl;
if ((*members)[0][1] >>= amount) {}
else cout << "error exactlying amount" << endl;
if ((*members)[0][2] >>= premium) {}
else cout << "error extracting premium" << endl;
cout << policyNo << amount << premium << endl;
if ((*members)[1][0] >>= policyNo) {}
else cout << "error extracting policyNo" << endl;
if ((*members)[1][1] >>= amount) {}
else cout << "error exactlying amount" << endl;
if ((*members)[1][2] >>= premium) {}
else cout << "error extracting premium" << endl;
cout << policyNo << amount << premium << endl;
if ((*members)[2][0] >>= policyNo) {}
else cout << "error extracting policyNo" << endl;
if ((*members)[2][1] >>= amount) {}
else cout << "error exactlying amount" << endl;
if ((*members)[2][2] >>= premium) {}
else cout << "error extracting premium" << endl;
cout << policyNo << amount << premium << endl;
IQueryManagedClient::DataArraylIterator var itptr =
IQueryManagedClient::DataArrayIterator:: narrow(_queryDatalt);
itptr->remove();

// exception processing not shown here.

Following is an example of a query using a parameter list:

IExtendedQuery::ParameterList* collection_names;
IExtendedQuery::ParameterListBuilder *pb =
IQuerylLocalObjectImpl::ParameterListBuilder:: create();

// add a name value pair for "RC"
// rcptr is a pointer to the collection.
pb->add_object_parm("RC", rcptr);
collection_names = pb->get_parm_Tist() ;
// the following line of code is needed in release 1.0, it is
// not needed in release 1.1 and above
collection_names->length(1l); // set the length to 1
_qge->evaluate_to_iterator(

"select a from RC a where a.policyNo > 3000 ; ",

0,

*collection_names,

0,

0,

X,

_querylt);

384  WebSphere: Advanced Programming Guide



Java clients and Java BO example

The following example is a program that uses the query evaluator and is
written in Java. The program comments indicate the important points. One
important difference is that C++ allows some of the query evaluator input
parameters to be zero or null but in Java all parameters must have a value.

import java.net.=;
import java.io.FileInputStream;
import java.io.InputStream;

import org.omg.CORBA.ORB;
import com.ibm.IExtendedTransactions.x*;
import com.ibm.IExtendedNaming.*;
import com.ibm.IExtendedLifeCycle.x*;
import com.ibm.IExtendedQuery.*;
import com.ibm.IManagedCollections.*;
import com.ibm.IManagedClient.*;
import com.ibm.CBCUti1.CBSeriesGlobal;
class QuerySample {

public static void main (String args[]) {

org.omg.CORBA.Current orbCurrent;
org.omg.CosTransactions.Current currentTransaction ;
org.omg.CORBA.Object obj;

try {
// initialize using hostname and default port number and
// get currentTransaction

CBSeriesGlobal.Initialize("wisneski.st1.ibm.com","900");
orbCurrent = CBSeriesGlobal.orb().get current(
"CosTransactions::Current");
currentTransaction =
org.omg.CosTransactions.CurrentHelper.narrow(orbCurrent);
// Tocate query evaluator object for server "testsrv"
obj=CBSeriesGlobal.nameService().resolve with string(
"host/resources/servers/testsrv/query-evaluators/default");
com.ibm.IExtendedQuery.QueryEvaluator ge;
ge = com.ibm.IExtendedQuery.QueryEvaluatorHelper.narrow(obj);
// start a transaction scope
currentTransaction.begin();

// allocate parameters for query evaluator call

com.ibm.ICollectionsBase.IlteratorHolder it =
new com.ibm.ICollectionsBase.IIteratorHolder();

com.ibm.IExtendedQuery.MemberListHolder members =
new com.ibm.IExtendedQuery.MemberListHolder();

Chapter 12. Query Service for 0S/390 and Solaris 385



386

org.omg.CORBA.InterfaceDef ql_type=null;
org.omg.CosQueryCollection.NVPair[] collection_names;

// build a parameter list and convert to sequence of Name,Value pairs
com.ibm.IExtendedQuery.ParameterListBuilder pb =
com.ibm.IQueryLocalObjectImpl.ParameterListBuilderHelper. create();
org.omg.CosQueryCollection.NVPair[] params =

new org.omg.CosQueryCollection.NVPair[0];
com.ibm.IManagedClient.IHome aHome = null;

// code goes here to find pointer to a Home Collection object.

pb.add object parm("aHome", aHome);
collection_names = pb.get_parm_Tist();

// invoke the query service returning set of object references
ge.evaluate_to_iterator(
"select x from mcarMOHome x;", // the query statement

ql_type,

collection_names, // parameter list of collection names
params, // empty parameter list

3, // return first 3 results in members
members,

it); // iterator for remainder of result set

com.ibm.IManagedClient.IManageableHolder mo = new
com.ibm.IManagedClient.IManageableHolder();

// retrieve the Tist of managed objects from the members

int n;
int max = members.value.length;
for (n=0; n<max; n++)

{
mo.value = members.value[n];
System.out.printIn(" object reference from sequence " + n );
1
// retrieve the remainder of the query result set
boolean more;
for (more = it.value.nextOne(mo);
more;
more = it.value.nextOne(mo))
{
System.out.printin(" object ref from iterator" + n );
n++;
}
// you must remember to cleanup the query iterator
it.remove();
// invoke query service and return a data array
com.ibm.IExtendedQuery.DataArrayIteratorHolder da_it =
new com.ibm.IExtendedQuery.DataArrayIteratorHolder();

WebSphere: Advanced Programming Guide



com.ibm.IExtendedQuery.DataArrayListHolder da_members =
new com.ibm.IExtendedQuery.DataArrayListHolder();

collection_names = new org.omg.CosQueryCollection.NVPair[0];

ge.evaluate_to_data_array(

"select x.id, x.model from mcarMOHome x ;",

ql_type,

collection_names,

params,

10, // first 10 results returned in da_members
da_members,

da_it); // remainder of results set returned in da_it

// retrieve the 1ist of tuples from the da_members sequence

com.ibm.IExtendedQuery.DataArrayHolder da =
new com.ibm.IExtendedQuery.DataArrayHolder();

// number of columns in the data array

}

int n_elements = da_it.value.get_number_of fields();

{

max = da_members.value.length; // number of rows in

// the da_members array

for (n=0; n<max; n++)

{

// for each row print out the column value

da.value = da_members.value[n];

int i;

for (i=0; i < n_elements; i++)

{

// for each column print out the value of the

// CORBA::Any based on its typecode

// the following code shows how to retrieve values

// from a CORBA::Any variable in Java.

org.omg.CORBA.TCKind tc = da.value[i].type().kind();

if (tc == org.omg.CORBA.TCKind.tk_Tong)
System.out.printin(da.value[i].extract_Tong());

else if (tc == org.omg.CORBA.TCKind.tk_short)
System.out.printin(da.value[i].extract_short());

else if (tc == org.omg.CORBA.TCKind.tk double)
System.out.printin(da.value[i].extract_double());

else if (tc == org.omg.CORBA.TCKind.tk string)
System.out.printin(da.value[i].extract_string());

else if (tc == org.omg.CORBA.TCKind.tk_null)
System.out.printin(" null ");

else if (tc == org.omg.CORBA.TCKind.tk_objref)
System.out.printin(" obj ref returned " );

else

}
}

System.out.printIn(" unknown type returned " );

Chapter 12. Query Service for OS/390 and Solaris

387



// retrieve the Tist of tuples from the iterator

for (more = da_it.value.next_one(da);

more;
more = da_it.value.next_one(da))

{

int 1i;

for (i=0; i < n_elements; i++)
{
// for each column print out the value of the

CORBA: :Any based on its typecode

org.omg.CORBA.TCKind tc = da.value[i].type().kind();

if (tc == org.omg.CORBA.TCKind.tk_Tong)
System.out.printin(da.value[i].extract_long());

else if (tc == org.omg.CORBA.TCKind.tk short)
System.out.printin(da.value[i].extract_short());

else if (tc == org.omg.CORBA.TCKind.tk double)
System.out.printin(da.value[i].extract_double());

else if (tc == org.omg.CORBA.TCKind.tk_string)
System.out.printin(da.value[i].extract_string());

else if (tc == org.omg.CORBA.TCKind.tk_null)
System.out.printIn(" null ");

else if (tc == org.omg.CORBA.TCKind.tk_objref)
System.out.printIn(" obj ref returned " );

else

}
}

// you must remember to clean up the iterator

System.out.printIn(" unknown type returned " );

// first narrow the iterator to a managed client iterator
com.ibm.IQueryManagedClient.DataArrayIterator damc_it ;
damc_it =

com.ibm.IQueryManagedClient.DataArraylIteratorHelper.narrow
(da_it.value);
damc_it.remove();
currentTransaction.commit (true);
}

catch (org.omg.CosTransactions.SubtransactionsUnavailable e)

{
System.out.printin("transcations not available excpetion " + e );
1
catch (Exception e)
{
System.out.printIn(" system exception " + e);
1

}
}

Memory management

When you run a query using the evaluate(), evaluate_to_iterator() or
evaluate_to_data_array() method, query builds a result collection in the

388  WebSphere: Advanced Programming Guide



application server. An iterator over this result collection is returned to the
client. The memory used by this result collection is released only when the
remove() method is run on the iterator. Remember to run the remove()
method on an iterator in both your mainline and your exception code paths. If
you do not do this, your server will run short of memory after you run many
queries.

Usage of Naming Service by query

Collection names appearing in the FROM clause of queries are resolved using
the Naming Service. To save the cost of repeated calls to the Naming Service,
the Query Service internally caches collection names. If the binding of a name
in the Naming Service changes, the change will not be seen by the Query
Service until the Component Broker server is restarted.

A parameter list can be passed as an argument to a query evaluator to be
used in conjunction with a query. When resolving collection names appearing
in the FROM clause of a query, the system first looks in the parameter list
before going to the name space. This can result in a significant performance
optimization and it is most commonly used for collections that are not
identified in the name space. Collection names taken from the parameter list
are considered volatile; in contrast with names taken from the name space
that are considered stable. The system still caches metadata associated with
volatile names, but performs a minimal verification upon the usage of a name
in every query to determine if the collection references objects of the same
type. If so, the metadata is kept in the internal catalog, otherwise, the
metadata is discarded and reacquired. The verification is performed if a name
space collection name appears as a parameter list name in another query.
Similarly, the verification is also performed if a parameter list name appears
as a name space collection name in another query.

Limit on number of query iterators per transaction

The Query Service cannot have more than 64 open SQL cursors per
transaction. SQL cursors are also used by the Cache Service. Therefore you
may be limited to 64 or less active query iterators in a single transactions.

Query Service tips

The following tips will help you in using the Query Service. Some tips cite
specific locations where further information can be found.

Chapter 12. Query Service for 0S/390 and Solaris 389



o A query aver persistent nhjpcfe must be executed within the scape of d

page

Conditions required for queries You can query Home Collections, Views and
Reference Collections provided you meet the following conditions:

1. The interface of objects to be stored in collections is defined as
“queryable” in Object Builder.

2. The home inherits from IBOIMIQueryableHome.
3. For view collections, the underlying home collection is queryable.

4. The elements of the Reference Collection are defined as queryable. If the
object interface is not queryable, you can still create Reference Collections
containing these objects but you cannot query the collection.

5. The Reference Collection should be created with the createCollectionFor()
operation.

If you do not use the createCollectionFor() then you must supply the interface
name in the query statement FROM clause as in the example:

select r from MyReferenceCollection.acct r where r.Name ='Bob';
In this example acct is the interface name of the objects in the collection.

Deferred updates and query statement processing When there are deferred
updates, the query may not take the deferred updates into account when
processing the query statement. For example:

aM0->name ("NewName") ;

it = aHome->evaluate(" name='NewName');

// the object aMO will Tlikely not be returned in the iterator result set

// because the search "name='NewName'" was performed against

// values in the database.

To make sure that the query search sees the current values, issue a commit() if
possible before doing the query.

aM0->name ("NewName") ;

currentTransaction->commit(1l );

it = aHome->evaluate(" name='NewName');
// the object aMO will now be returned by the query search.

390 WebSphere: Advanced Programming Guide



DB2 LOBs and DB2 data types are not supported. Extended data types such
as DB2 LOBs and user-defined DB2 data types are not supported.

Reset the timeout to be greater than the default or to zero. The default ORB
request timeout value of 180 seconds may be insufficient when executing
queries from a client. Reset the timeout to either a higher value or to zero to
wait indefinitely.

A query over persistent objects must be executed within the scope of a
transaction. The iterator returned from query must be used to retrieve the
result set before ending the transaction. The iterator becomes invalid at end of
the transaction. Refer to the following example.

currentTransaction->begin();

IManagedIterator var it = myHome->evaluate (" amount > 10");

currentTransaction->commit();

currentTransaction->begin();

while (aMO= it->next())

{ .. . // do something with aM0O }

// unpredictable behavior because you are using

// an iterator outside the transaction scope in which

// it was created.

This may effect the design ManagedObjects whose methods return query
iterators if the ManagedObject is configured into an atomic container. The
iterator will become invalid because of the implicit commit done by the
atomic container at request termination. See the “More on Iterators” section in
the WebSphere Application Server Enterprise Edition Component Broker
Programming Guide.

Use parameter lists instead of Named collections. The use of parameter lists
to pass object references to collections to query may perform better than

having the Query Service retrieve the reference from the Naming Service. See
’ i i ” for an example

of how to use a parameter list.

Support for object relationships is limited to 1 to 1 and 1 to Many
relationships. Relationships with outer join are not supported.

Use the query evaluator of a Component Broker server to query collections
local to that server. Each Component Broker server has a query evaluator and
only that query evalutor can be used to query collections that are local to the
server. A query evaluator in server A cannot be used to query collections that
reside in server B. Nevertheless, queries can span multiple back end
datastores provided that the Component Broker server has connections to
each datastore. So a single query statement can join collections C1 and C2
provide that C1 and C2 are defined in same server as the query evaluator
even if C1 is mapped to database D1 and C2 is mapped to database D2.

Chapter 12. Query Service for 0S/390 and Solaris 391



Use the foreign key pattern in Object Builder for better performance of
object relationships. Use Object Builder object relationship foreign key
pattern for better performance of object relationships. When defining object
relationships and object attributes that are object references, use the foreign
key pattern in Object Builder. Queries expressions that use the object
references can be pushed down to the datastore resulting in better query
performance.
interface person {
attribute read only Tong id;
attribute string name;

}

interface account {
attribute read only Tong acct_id;
attribute person acct_owner;

}

If acct_owner is stored as a stringified object reference or handle, then the
query

select a from accountHome a where a.acct_owner..name Tike 'Bob%';

will not be pushed down to the datastore resulting in the more data being
read from the database and the query performed in object space. If
acct_owner is stored as a relational foreign key in the account table then this
query can be pushed down and performed as a relational join between the
account and person tables. Only the qualifying rows will be read by the
Component Broker application server.

392  WebSphere: Advanced Programming Guide



Chapter 13. Cache Service

The following chapter is platform-dependent and does NOT apply to OS/390
Component Broker.

The objective of the Cache Service is to provide better performance and
concurrency for applications. The Cache Service does this by following these
heuristics:

* Keeping read-only data (or mostly read-only data) resident in memory. If
data does not change very often it should not be necessary to have to
reread the data from the database on every transaction. The refresh interval
cache option can be used to control how often data is reread from the
database.

* Data whose application must have the most current value must be read
from the database for every transaction and the data must be locked in the
database to guarantee that the data does not change.

* The administrator can control the isolation level of locking used by the
database manager through use of the lock confidence and access cache
options.

* The user can specify whether to defer updates until commit. If a transaction
updates two attributes on an object instance, using deferred updates will
result in only one SQL update. If the updates are done immediately when
the attribute value changes, then two SQL updates will be done. The
advantage of deferring update is reduced SQL calls and better performance.
The advantage of not deferring updates is that the application gets
immediate feedback (with an exception) if the update violates some
database constraint. If you defer updates until commit and a database
constraint is violated, the only feedback that the client application receives
is that the transaction commit failed and the transaction is rolled back. The
client application will have to repeat the entire transaction. Even so, it is
usually recommended to defer updates.

There are four configuration attributes for the Cache Service. Each managed
object type (interface name) can have its own configuration. The attributes are:
* Lock confidence (pessimistic or optimistic)

* Refresh interval (specified in number of seconds to retain data in memory)

* Defer update (yes or no)

* Access (read, write, upgrade; applicable to DB2 only)

© Copyright IBM Corp. 1997, 1999 393



Pessimistic caching holds a lock on the database record and data is read for
every transaction. Optimistic caching does not hold a lock on the database
record after reading the record. When using pessimistic locking, if access is
“read” or “upgrade”, a share lock is maintained on the database record to
prevent concurrent updates. If access is “write”, an exclusive lock is
maintained on the database record to serialize all access. “Access=write” is
useful when reading and updating a sequential counter to serialize concurrent
transactions that attempt to read and the update the counter. “Refresh
interval” does not apply when the pessimistic cache option is used.

If data that is being cached optimistically is updated, there is a possibility that
the record in the database may have been updated by another transaction or
may have been deleted. When optimistically cached data is written back to
the database, a read and compare is done to make sure that the data record
still exists in the database and the data values have not changed. This
prevents any “lost updates” from occurring. Only the attributes that are
actually updated are compared. The read-and-compare operation does not
apply to long varchar columns in a table. When updating a long varchar
column you should also update some other column (such as date of last
update) to guarantee data integrity.

When using optimistic caching, there is potential for a large amount of virtual
memory to be used in caching data. A limit on the size of the cache can be
specified. The cache uses an LRU algorithm to manage the cache to this
specified size. Access does not apply for optmistic caching.

[Lable 18 on page 399 and [ahle 19 on page 393 contain summaries of the valid

cache options. You set these options using the System Manager User Interface.
If no Profile with the name “iDefault” exsists or no profile class exsists for a
particular managed object, then the default profile class consists of the
following:

* Lock confidence: pessimistic
* Defer update: yes
e Access: read

For more information, see WebSphere Application Server Enterprise Edition
Component Broker System Administration Guide.

394  WebSphere: Advanced Programming Guide



Table 18. Optimistic cache options

Defer Updates

Refresh Interval

Access

Comments

yes

=0

not used

Database locks are released after reading the
data. This minimizes database lock resource
usage. Updates are deferred. Because the refresh
interval is zero, data is purged from memory at
the end of the transaction. Every transaction
rereads data from the database so data is
current. This is the recommended option for
long running transactions. It prevents the long
running transactions from causing concurrency
problems at the database server.

yes

>0

not used

Same as above except data stays in memory at
the end of the transaction The refresh interval
specifies how many seconds data stays in
memory until a refresh. This is the
recommended option for read-only data like
TAX tables, ZIP CODE tables and product
descriptions.

no

not used

Similar to above except updates are not deferred.
An SQL update is performed whenever an
attribute changes value. If the transaction needs
immediate feedback on any database integrity
violations, use this option.

no

>0

not used

Similar to above except data stays in memory
and can be reused by other transactions.
Updates are not deferred. The refresh interval
specifies the number of seconds for data to stay
in memory.

Table 19. Pessimistic cache options

Defer Updates | Refresh Access Comments
Interval
yes not used read or Data is locked (share locks) in the database
upgrade during the transaction. Data is purged from cache
at commit. Updates are deferred until commit.
This is the recommended option for data that
changes often or if the application must have
current data. Examples might be inventory
quantities or bank balances.
no not used read or Same as previous except updates are not
upgrade deferred. An SQL update is performed whenever

as object attribute changes value.

Chapter 13. Cache Service 395



Table 19. Pessimistic cache options (continued)

Defer Updates |Refresh Access Comments
Interval
yes not used write Data is locked exclusively in the database during

the transaction. Data is purged from cache at
commit. Updates are deferred until commit. This
is the recommended option for data that must be
serialized for both reading and writing and there
is a high probability of contention among
multiple transactions such as reading and
updating a sequential number generator.

no not used write Same as previous except updates are not
deferred. An SQL update is performed whenever
an object attribute changes value.

For information on how to use Object Builder using the Cache Service, see
WebSphere Application Server Enterprise Edition Component Broker Application
Development Tools Guide.

For information on how to configure the Component Broker application server
to use the Cache Service or how to configure your database to use the Cache
Service see WebSphere Application Server Enterprise Edition Component Broker
System Administration Guide.

Cache Service and DB2 locking considerations

When reading records from a DB2 database, the Cache Service uses CS
database locks when optimistic locking is specified and RS locks for
pessimistic locking.

Cache Service limits

The Cache Service can have a maximum of 64 SQL cursors per transaction.
One cursor is used for each table accessed by the Cache Service and one
cursor is used for each active query iterator. During a transaction, accessing
tables and query iterators whose combined number exceeds 64 will cause an
exception.

396 WebSphere: Advanced Programming Guide



Cache Service and Oracle locking

When reading records from an Oracle database, the Cache Service obtains an
exclusive lock when “lock confidence=pessimistic”. When “lock
confidence=optimistic” no lock is obtained on the data record. For data
retrieved using an OOSQL query, the record in the database is never locked.
The setting of the “access” configuration attribute has no effect on the type of
locking used for an Oracle database.

Chapter 13. Cache Service 397



398  WebSphere: Advanced Programming Guide



Chapter 14. Object Request Broker

The Object Request Broker (ORB) enables objects to transparently make
requests (invoke methods) and receive responses from local or remote objects.
The ORB supports remote method calls for distributed C++ and Java
applications.

The following topics describe the Object Request Broker:

. ” e . . . 7

Remote method invocation

This section includes the following topics:

e — ——

. " _ . . . 77

Conversion of objects to string form

Both proxy objects and pointers to local objects are kinds of “object reference”.
An object reference contains information that is used to identify a target
object. For example, a pointer to a local object contains the physical address of
the object; a proxy object contains information to locate the target server and
the target object within that server.

Sometimes, it is useful to convert object references to a string form (for
example, to save references in a file system or to exchange object references
with other application processes). This technique can be used, for example, to
allow a client process to obtain a proxy to an object residing in a server
process, for one client process to "give” a proxy object to another client
process, or for a server process to record an object reference in a form that is
meaningful beyond the lifetime of the process. Object references to and from
string form are used when object references are passed between clients and
servers using remote method invocations.

The ORB class defines a method for converting object references (both local
object pointers and proxy objects) to an external form. This external form is a
string that can be used by any process to identify the target object. The ORB
class also supports the translation of these strings back into the original local

© Copyright IBM Corp. 1997, 1999 399



objects or equivalent proxies. The ORB methods for converting between object

references and their string representations are specified by the following IDL.:
string object_to_string (in Object obj);

Object string_to_object (in string str);

* When a string refers to a remote object (an object not residing in the same
address space as the calling process), the string_to_object method always
returns a new proxy object for that string. The returned proxy is not the
same as the proxy passed to object_to_string, and repeated invocations of
string_to_object each return different proxy objects. These duplicate proxies
can be destroyed using the CORBA::release function.

* When a string refers to a local object (an object residing in the same address
space as the caller), the string_to_object method returns a pointer to the
local object. This is true even if the string was originally created by another
process calling object_to_string, passing in a proxy to the object. If the local
object to which the string refers no longer exists, and is not a persistent
object that can be reactivated by the instance manager, an exception is
raised.

* When object_to_string is invoked on a local object within a client-only
process (a process that has not called impl_is_ready on the BOA object), the
resulting string has validity only as long as the object exists within that
process, and only within that process.

* When object_to_string is invoked on a local object within a server process
(one that has called impl_is_ready on the BOA object), the resulting string
can be distributed to other processes, which can then call string to_object
with the string to generate a proxy to the original object.

As with other forms of object references, the lifetime of a string reference to
an object in a server depends on the implementation of the server. If the
server’s instance manager supports persistent objects, and the object is
persistent, then the reference is valid even after the server process terminates.
(The next time the reference is used by a client, the location-service daemon
will restart it, and the server can reactivate the referenced object.)

The string form of an object reference (the result of calling object_to_string)
should be considered opaque to application programmers. The only
assumption that can be made about such a string is that it can be passed to
string_to_object to locate the original object.

Two different strings can refer to the same object. Generally, it is not safe for
an application to use the strings as unique object identifiers.

Code-set conversion for remote method invocations

Configuration settings are available that allow applications to request that the
ORB perform code-set conversion for all character and string data transmitted

400 WebSphere: Advanced Programming Guide



over the network in remote method invocations. This applies to method
parameters and return results that have been declared as IDL type char, string,
or constructed types composed of char or string types. The ORB performs
code-set conversion using the XPG4 libraries and locales, which must be
available and properly configured on both communicating systems. The
code-set conversion is performed according to the OMG “IDL Type
Extensions” specification. Because the OMG specification is based on OSF
code set numbers, rather than XPG4 code set names, the configuration settings
to enable code-set conversion must be set using OSF code set numbers, rather
than XPG4 code set names.

The following configuration settings support code-set conversion. These
settings can be updated in the appropriate client or server image using the
systems management tools.

In client and server images:

translation enabled
When set to 1 (or any non-zero, non-NULL value), code-set
conversion is enabled. This setting has no effect unless set to 1 for
both the client and the server. Because the code-set conversion
support requires the client and server to exchange IIOP 1.1 messages,
the server should not be configured to generate IIOP 1.0 messages,
otherwise this setting has no effect. (The default is for servers to
generate IIOP 1.1 messages.) The default for this setting is zero.

use ISO-Latin1
When set to 1 (or any non-zero, non-NULL value), indicates that the
process should transmit all character and string data in the ISO-Latin1
codeset. This setting provides a more limited form of code-set
conversion than the above, and is provided to aid interoperability
with other vendors” ORBs. This setting is meaningful when the above
setting is zero or when communicating with a remote process that
communicates using IIOP 1.0 messages. Both client and server should
use the same setting. The default setting is zero.

native char code set
This setting is the OSF number of the native codeset used by the
process for single-byte char and string data. This setting is optional (if
unset or zero, it is calculated automatically using the XPG4
nl_langinfo() function.) If present, either this setting or the "native
wchar code set” setting must match the process’s actual native code
set, as determined by the XPG4 nl_langinfo() function.

native wchar code set
The OSF number of the native codeset used by the application for
wchar and wstring data. This setting is needed only if both the
application and the ORB support the IDL types wchar and wstring. If

Chapter 14. Object Request Broker 401



present, either this setting or the "native code set” setting must match
the process’s actual native code set, as determined by the XPG4
nl_langinfo() function.

In server images only:

char code sets
These are the codesets that a server can translate to/from its native
code set, for single-byte char and string data, specified as a
space-delimited list of OSF codeset numbers. (The list can be empty.)
This list of code sets gets advertised in the object references that the
server exports; clients then choose either the server’s native code set
or one of the code sets in this list as the transmission code set.

wchar code sets
These are the codesets that a server process can translate to/from its
native code set, for wchar and wstring data, specified as a
space-delimited list of OSF codeset numbers. (The list can be empty.)
This setting is needed only if both the server application and the ORB
support the IDL types wchar and wstring.

When a server is configured to perform code-set conversion, the object
references that it exports contain information about the server’s native code
sets and the additional code sets that the server supports (for both char and
wchar data), based on the configuration settings above. When a client that is
configured to perform code-set conversion invokes a method on such an
object reference, the client selects two “transmission code sets”, the code sets
in which char and wchar character data (in method parameters and return
results) will be transmitted between the client and the server that exported
that object reference. This selection is based on the client’s native code set and
the code set(s) advertised in the object reference. If the client and server are
using the same native code sets, then no conversion is performed. Otherwise,
a transmission code set is selected using the following priorities:

1. The server’s native code set.

2. The client’s native code set (if supported by the server).

3. Some other code set the server supports to which the client can translate.
4. Unicode (UTF-8 for char data, UTF-16 for wchar data).

The client then translates all character data into the transmission code set
before sending it to the server. Messages from the client to the server contain
information about which transmission code sets are being used, so that the
server can translate the incoming character data into the server’s native code
set and translate outgoing character data into the transmission code set. If the
client’s message to the server does not specify that character data has been
converted, then the server does not perform this conversion either. In this

402 WebSphere: Advanced Programming Guide



case, character data is transmitted in ISO-Latinl (if designated by the "use
ISO-Latinl” configuration setting) or is transmitted in the sending process’s
native code set.

To give the application an opportunity to change the native code set (for
instance, using the XPG4 set_locale() interface), initialization of the ORB’s
code-set conversion facility is not performed until the application calls
CORBA::ORB_init(). Hence, an application that requires code-set conversion
must establish its native code set prior to calling CORBA::ORB_init(), and
must call CORBA::ORB_init() prior to making remote method invocations.

If any errors are encountered during code-set conversion, the ORB will throw
a DATA_CONVERSION error. This can occur, for example, if the
configuration settings are incorrect, if an incorrect IIOP 1.1 message is
received from the remote process, or if the conversion is not possible (because
the client and server are using incompatible character sets, or because the
client or server does not have the necessary XPG4 code-set converters
available).

Dynamic invocation interface (DII)

The dynamic invocation interface (DII) allows client applications to
dynamically build and invoke requests on objects, even if the operation to be
invoked is not known at compile time or the client bindings for the operation
have not been compiled and linked into the client application. In addition, the
DII allows a client application to make synchronous, deferred-synchronous, or
oneway invocations. (A deferred-synchronous request is one in which the
sending of the request and the receiving of the response are done separately,
allowing the client application to perform other processing in the interim.)
Multiple deferred-synchronous and oneway requests can be sent
simultaneously, allowing batch processing.

When using DII, exceptions raised by the remote implementation are thrown
to the client and are returned in Environment objects, because the client may
not be prepared to catch user-defined exceptions for dynamic requests. If an
exception has been raised, as indicated by the Environment object associated
with the Request, then the inout/out parameter values and the return values
will not be meaningful, just as with static requests.

Building a DIl request

Before invoking a DII request, the application must first construct a
CORBA::Request object to represent the request. The CORBA::Request object
can be created using the CORBA::Object::_create_request method or the
CORBA::Object::_request method. The application invokes one of these
methods on the proxy object that is the target of the DII request.

Chapter 14. Object Request Broker 403



After constructing a CORBA::Request, the application should call
CORBA::Request::set_return_type to update the CORBA::NamedValue
contained in the Request with the appropriate operation return type.

Using CORBA::Object::_create_request

When using one of the CORBA::Object::_create_request methods, the
application supplies the operation name, as well as the CORBA::NVList
representing the method parameters (previously constructed using
CORBA::ORB::create_list or CORBA::ORB::create_operation_list) and a
CORBA::NamedValue used to contain the return result (previously
constructed using CORBA::ORB::create_named_value).

Using CORBA::Object::_request

When using the CORBA::Object::_request method to construct the Request, the
application supplies only the operation name; the parameters for the request
and the return type must be added afterward using methods on
CORBA::Request. When using this technique, the application is not required
to explicitly construct a CORBA::NVList to represent the operation parameters
or a CORBA::NamedValue to contain the return result.

The CORBA::Object::_create_request method is overloaded to provide two
signatures. The only difference between them is that one allows the
application to supply a CORBA::ContextList object and a
CORBA::ExceptionList object. These objects specify a list of Context strings
that must be sent with the operation, if any, and a list of the user-defined
exceptions that can be thrown by the operation, if any. The application may
want to provide the ContextList and ExceptionList objects to the
CORBA::Object::_create_request method so that the ORB does not need to
perform any potentially expensive interface repository lookups when the
request is later invoked.

Constructing NamedValue objects

CORBA::NamedValue objects are used in NVLists to represent operation
parameters for DII requests. CORBA::NamedValue objects are also used as
placeholders for return results of methods invoked using the DIL

A CORBA::NamedValue has attributes for an optional parameter name, a
CORBA::Any (containing a CORBA:: TypeCode representing the parameter
type and a void* value pointer), and flags to indicate the parameter mode
(CORBA::ARG_IN, CORBA::ARG_INOUT, or CORBA::ARG_OUT). When a
CORBA::NamedValue represents a method return value, the name and flags
are unused.

404 WebSphere: Advanced Programming Guide



The CORBA::Any stored in a CORBA::NamedValue is created automatically
by the CORBA::NamedValue constructor; it can then be manipulated using
the usual CORBA::Any interface.

The CORBA::NamedValue objects contained in a CORBA::NVList are created
and initialized automatically when the CORBA::NVList is created, alleviating
the programmer from the need to explicitly create the CORBA NamedValue
ob]ects to represent the operatlon parameters. See L

- for more information. The CORBA::NamedValue objects
contained in an NVList can be accessed using methods of CORBA::NVList.

Depending on how the application creates the CORBA::Request object for a
DII request (see Building a Request), the application may or may not need to
explicitly create the CORBA::NamedValue object to contain the return result of
the request. If necessary, the application can use the
CORBA::ORB::create_named_value() method to create a new
CORBA::NamedValue. This method creates a NamedValue whose embedded
TypeCode is CORBA::_tc_null; the application must call
CORBA::Request::set_return_type (after creating a Request object to contain
the NamedValue), to initialize the NamedValue for a specific IDL operation.

Constructing NVList objects

A CORBA:NVList object contains an ordered set of CORBA::NamedValue
objects, representing the method parameters to be used for a DII request
invocation. Depending on how the application creates the CORBA::Request
object for a DII request (see I'Building a DIT request” on page 403), the
application may or may not need to explicitly create the CORBA::NVList
object.

CORBA:NVList objects can be created using either the
CORBA::ORB::create_list or the CORBA::ORB::create_operation_list method.
The difference between these two methods is that CORBA::ORB::create_list
creates a generic NVList of a specified length, whose CORBA::NamedValue
elements are uninitialized, whereas CORBA::ORB::create_operation_list creates
an NVList whose CORBA::NamedValue elements are already initialized for a
specific IDL operation (minus the parameter values). The latter approach
requires, however, that the application supply a CORBA::OperationDef object
that it has retrieved from the interface repository.

After creating an NVList using CORBA::ORB::create_operation_list, the
application must initialize the parameter values in the NVList. This can be
done by accessing the appropriate NamedValue in the NVList, accessing the
Any in the NamedValue, then using standard Any operations to insert the
appropriate value. The NamedValue objects in the NVList are ordered
according to the order of parameter declarations in IDL.

Chapter 14. Object Request Broker 405



As an alternative to creating a CORBA:NVList using
CORBA::ORB::create_operation_list, an application can create an empty
(length zero) CORBA::NVList using CORBA::ORB::create_list. The
CORBA:NVList class provides several methods for adding new
CORBA::NamedValue objects to an (initially empty) NVList. These methods
vary in which of the NamedValue’s attributes are initialized (name, value, or
flags) and in whether the NamedValue takes ownership of the memory used
to initialize it.

The CORBA:NVList associated with a DII request can be accessed using the
CORBA::Request::arguments() method. The CORBA:NVList class provides
methods for accessing and deleting a particular CORBA::NamedValue element
given its index in the NVList, and a method for returning the size of the
NVList.

Constructing a DIl request

To invoke a request using the dynamic invocation interface (DII), the client
must explicitly construct a CORBA::Request object to represent the request,
and must initiate the request by invoking a method on the Request object. A
Request object embodies all the information needed to invoke the request,
including the proxy object on which it is to be invoked, the operation name,
the operation parameters, and a place to store the return result. The operation
parameters are represented in the Request by a CORBA::NVList object, that is
an ordered set of CORBA::NamedValue object. Each NamedValue object
represents the name and mode of a parameter, and a CORBA::Any object to
hold its CORBA::TypeCode and value. The return result of the operation is
stored in the Request object using another NamedValue object.

Initiating a DIl request

After a CORBA::Request object is constructed using the

CORBA::Object::_request or CORBA::Object::_create_request method, the

application can issue a DII request in one of the following ways:

* Invoke the request synchronously, using CORBA::Request::invoke().

* Send the request oneway (with no response expected), using
CORBA::Request::send_oneway().

* Send the request, with the response to be requested at a later time, using
CORBA::Request::send_deferred().

* Send the request oneway as part of a batch of requests, using
CORBA::ORB::send_multiple_requests_onewayy().

* Send the request as part of a batch of requests, with the response to be
requested at a later time, using
CORBA::ORB::send_multiple_requests_deferredy().

406 WebSphere: Advanced Programming Guide



When a request is invoked synchronously (using CORBA::Request:invoke),the
results of the invocation are available immediately after calling invoke().
When a request is sent using either CORBA::Request::send_deferred or
CORBA::ORB::send_multiple_requests_deferred, the application must
explicitly call for a response, using CORBA::Request::get_response or
CORBA::ORB:get_next_response. The response to a Request sent using
CORBA::Request::send can be retrieved using either
CORBA::Request::get_response or CORBA::ORB:get_next_response, and
similarly with Requests sent using
CORBA::ORB::send_multiple_requests_deferred. There is no guarantee that
results will be returned in the same order that deferred requests were sent.

If the response is not yet available when the application calls
CORBA::Request::get_response or CORBA::ORB::get_next_response, the
application blocks until the response is available. Applications can avoid
blocking by first calling CORBA::Request::poll_response or
CORBA::ORB::poll_next_response to determine whether the response is
available.

After a response to a DII request is retrieved, the application can access the
inout/out parameter values and the return value, or any exception that was
thrown, by examining the Request object. The inout and out parameter values
can be accessed using the NVList associated with the Request, returned by
CORBA::Request::arguments(). The Any containing the return value can be
accessed using either the CORBA::Request::result() or
CORBA::Request::return_value() methods.

If an exception was thrown by the remote request, it is stored in a
CORBA::Environment object, which can be accessed using the
CORBA::Request::env() method. When using DII, exceptions are not thrown to
the client, but are returned in Environment objects, because the client may not
be prepared to catch user-defined exceptions for dynamic requests. If an
exception was thrown, as indicated by the Environment object associated with
the Request, then the inout/out parameter values and the return values are
not be meaningful.

Sample DIl requests

This sample application uses the DII to invoke a request with the following
IDL signature:
interface testObject
{string testMethod (in Tong input_value, out float out_value);

b
In the following example, the application is written with knowledge of the
name and signature of the method to be invoked using DIL In general,

however, an application might discover the name or signature at run time

Chapter 14. Object Request Broker 407



(using the interface repository or application input), and would create and
examine the TypeCodes used to represent parameter and return types.

try {
// Get the OperationDef that describes testMethod:

CORBA: :0RB_var myorb = CORBA::0RB_init (argc, argv, "DSOM");

CORBA::0bject_var generic_IR =

myorb->resolve_initial_references ("InterfaceRepository");

CORBA: :Repository var my IR = CORBA::Repository:: narrow (generic_IR);

CORBA: :Contained_var generic_opdef = my_IR->Tookup (
"testObject::testMethod");

CORBA: :OperationDef_var my_opdef = CORBA::OperationDef::_narrow(
generic_opdef);

// Create the NVList and NamedValue for the request:

CORBA: :NVList_ptr params = NULL;
myorb->create_operation_list (my_opdef, params);
CORBA: :NamedValue_ptr result = NULL;
myorb->create_named_value (result);

// Create the Request object:

CORBA::0bject_var my_proxy = /* get a proxy somehow */
CORBA: :Request_ptr my_request;
my_proxy-> create_request (
NULL, "testMethod", params, result, my request, 0);
*(my_request->arguments()->item(0)->value()) <<=
(CORBA::Long) 12345;
my_request->set_return_type (CORBA::_ tc_string);

// Invoke the request and get the return value and out parameter value:

my_request->invoke();
CORBA: :Exception_ptr my_exception = my_request->env()->exception();
if (!my_exception) { // no exception occurred
CORBA::String_var return_string;
CORBA::Float out_float;
my_request->return_value() >>= return_string;
*(my_request->arguments()->item(1)->value()) >>= out_float;
// Do something application-specific with return_string and out_float.
}
else { // an exception occurred
// Do something application-specific with my_exception.
// Use my_exception->id() to determine what kind of exception it is.
1
CORBA::release (my request);

}

408 WebSphere: Advanced Programming Guide



catch (CORBA::SystemException) {
// appropriate exception handling

}

The following code example is a variation of the previous one, in which the
Request object is created and initialized differently (using a technique that
does not require the application to access the interface repository), and in
which the DII request is a deferred synchronous request (rather than an
asynchronous request).

try {

// Create the Request object:

CORBA::0bject_var my proxy = /* get a proxy somehow */

CORBA: :Request_ptr my_request = my_proxy-> request ("testMethod");
my_request->add_in_arg() <<= (CORBA::Long) 12345; // sets type and value
CORBA::Float out_float;

my_request->add_out_arg() <<= out_float; // sets type
my_request->set_return_type (CORBA:: tc_string);

my_request->send_deferred();
// ... Do some application-specific processing for a while ....

// Do "my request->poll_response();" to see if the Request is ready,
// to avoid blocking on the next instruction:

my_request->get_response();

// Get the return value and out parameter value:

CORBA: :Exception_ptr my_exception = my_request->env()->exception();

if (!my_exception) { // no exception occurred
CORBA::String_var return_string;
my_request->return_value() >>= return_string;
*(my_request->arguments()->item(1)->value()) >>= out_float;

// Do something application-specific with return_string and out_float.

}

else { // an exception occurred
// Do something application-specific with my_exception.
// Use my exception->id() to determine what kind of exception it is.

}

CORBA: :release (my_request);

}

catch (CORBA::SystemException) {
// appropriate exception handling

Chapter 14. Object Request Broker 409



Dynamic skeleton interface (DSI)

The dynamic skeleton interface (DSI) provides a way for a server application
to service requests on an object implementation for which it does not have
server-side bindings. DSI can be thought of as the server-side equivalent to
DI, although the use of DII on the client side and the use of DSI on the
server side are independent. Just as a server application is unaware whether a
client is using DII or client bindings, a client application is unaware whether a
server is using DSI or server bindings.

To support DSI, a target object must support the
CORBA::BOA::DynamicImplementation interface. The
DynamicImplementation interface provides a single pure-virtual method,
invoke. This method is called by the ORB/BOA to dispatch methods on the
target object without requiring that the server be statically compiled and
linked with the server-side bindings for the object. Implementations derived
from CORBA::BOA::DynamicImplementation must provide an implementation
of the invoke method, as described in “Enabling an Object for DSI
Dispatching”.

The CORBA::BOA::DynamicImplementation::invoke method, implemented by
application objects wishing to support DSI dispatching, takes as input a
CORBA::ServerRequest object. The CORBA::ServerRequest object is similar to
the client-side CORBA::Request object used for DII; it represents a dynamic
request, and has methods for accessing the operation name, the parameters in
the form of an NVList, etc. The CORBA::ServerRequest object is used by an
application’s DynamicImplementation::invoke implementation, to get
information about a request to be dispatched dynamically, and to inform the
ORB/BOA of the results.

* The CORBA::ServerRequest::params method is called by the application to
ask the ORB to store the in/inout parameter values for the request in the
given NVList. (An NVList is passed as an inout parameter to ServerRequest
params; the application is responsible for initializing it with the appropriate
TypeCodes and flags for the request so that the ORB knows how to
demarshal the parameters.)

* The CORBA::ServerRequest::result method is invoked by the application’s
DynamicImplementation::invoke method, to inform the ORB/BOA of the
result of a dynamically invoked request, so that it can marshal the result
and any output values.

* The CORBA::ServerRequest::exception method is invoked by the
application’s DynamicImplementation::invoke method, to inform the ORB
that an exception was thrown by a method that was dynamically invoked,
so that it can marshal the exception.

410 WebSphere: Advanced Programming Guide



Eigure 9 on page 410 shows the flow of control that occurs when a method is
dispatched using DSI. The shaded box shows actions that must be performed
by the application; the unshaded boxes show actions performed by the
ORB/BOA. When a request comes into the server, the BOA locates the target
object and passes the request to the object’s skeleton. When the target object is
a CORBA::BOA::DynamicImplementation, the object’s skeleton is
(automatically) a dynamic skeleton (rather than a static skeleton provided by
server-side bindings). The dynamic skeleton creates a CORBA::ServerRequest
object to represent the request, and calls the invoke method on the target
object, passing the CORBA::ServerRequest.

ORB/BOA
|—> dynamic skeleton

create a ServerRequest

"invoke" the target object, passing ServerRequest

get ServerRequest::op_name
create NVList w/TypeCodes set
call ServerRequest::params to set NVList

set in/in out parameter values in NVList
dispatch request

update NVList with out values
call ServerRequest::result to store result

free data in ServerRequest's NVList and result any

send the response

Figure 9. Dispatching a method using DS/

The target object’s implementation of the invoke method must use the input
CORBA::ServerRequest object to discover the operation name and the
parameter values for the request. After the target object dispatches the
method, it must update the ServerRequest with output and return values. The
ORB/BOA and the dynamic skeleton are responsible for deleting the
CORBA::ServerRequest object and the method parameters and return values,
just as with static calls.

To support DSI, an application object must support the
CORBA::BOA::DynamicImplementation interface. The
DynamicImplementation interface provides a single pure-virtual method,
invoke. This method is called by the ORB/BOA to dispatch methods on the
target object without requiring that the server be statically compiled and

Chapter 14. Object Request Broker 411



linked with the server-side bindings for the object. Implementations derived
from CORBA::BOA::DynamicImplementation must provide an implementation
of the invoke method.

The following actions are typically performed within an application’s
implementation of the CORBA::BOA::DynamicImplementation:: invoke
method. Every method should be supported.

1.

Get the operation name to be dispatched from the input
CORBA::ServerRequest object.

Create an appropriate CORBA:NVList, containing CORBA::TypeCode
objects (but not values) for the signature of the method to be dispatched.

Call the params method of the ServerRequest object, passing in the new
CORBA:NVList. In response, the CORBA::ServerRequest (with the help of
the ORB), fills in the in and inout parameter values in the CORBA::NVList.

Implement the requested operation, using the in and inout parameter
values now found in the CORBA::NVList, catching all exceptions.

If no exception occurred, store the resulting output parameter values in
the same CORBA:NVList.

6.If no exception occurred, and the return type of the dispatched method
is not void, call the result method on the CORBA::ServerRequest object to
store the result.

If an exception was thrown by the dispatched method, call the exception
method on the CORBA::ServerRequest to record the exception.

Return control to the ORB. The ORB/BOA then sends a response to the
waiting client.

412  WebSphere: Advanced Programming Guide



Chapter 15. Non-IBM ORB usage

The IBM Component Broker Java Client comes prepackaged with a Java ORB
developed by IBM. It also includes client-local access to IBM implementations
of security and transactions, plus pre-generated client stub bindings for
naming, lifecycle, events, notification, query, externalization, identity, and
properties. Component Broker also generates Java client stubs that a client can
use to access Component Broker managed objects. All these client stubs work
with the Component Broker Java ORB.

If you have a client environment that does not use Component Broker security
and transactions, and you are willing to use non-IBM emitters to generate the
client stubs for CORBA services (for example, lifecycle and events) and for
Component Broker managed objects, then you can use a non-IBM client ORB
to access Component Broker managed objects. The remaining parts of the
section describe, by way of a simple example, how to do this.

The example

The remaining parts of this section use a concrete example to describe how a
non-IBM client ORB can be used to access a Component Broker managed
object. The example is very simple. It uses the existing Component Broker
Policy sample managed object and its associated PolicyHome. The example
merely uses the PolicyHome to create a new instance of a Policy object and
call a method on the object. The idl for this object can be found in Policy.idl:

#ifndef _Policy_id]
#define _Policy_idl

#include <IManagedClient.id1>
interface Policy : IManagedClient::IManageable
{

attribute float amount;

readonly attribute Tong policyNo;

attribute float premium;

void addBeneficiary( );

void delBeneficiary( );

}s

The idl for the PolicyHome is:
#ifndef _PolicyHome_id1l
#define _PolicyHome_id]

interface Policy;
#include <IManagedClient.idl1>
#include <Policy.idl>

© Copyright IBM Corp. 1997, 1999 413



interface PolicyHome : IManagedClient::IHome
{
Policy create(in float premium,in float amount )
raises (
IManagedClient::IInvalidKey, IManagedClient::IDuplicateKey);
Policy defaultCreate( )
raises (
IManagedClient::IInvalidKey, IManagedClient::IDuplicateKey);
Policy createWithNumber(in Tong policyNo )
raises (
IManagedClient::IInvalidKey, IManagedClient::IDuplicateKey);
Policy findByPolicyNumber(in long policyNo )
raises (
IManagedClient::IInvalidKey, IManagedClient::INoObjectWKey);
1

These idl files describe existing Component Broker managed objects.

The example creates a new Policy Object. The Java source for the example is:
import java.net.URL;

import CosLifeCycle.GenericFactory;

pubTic class PolicyTest

{

public static void main (String[] args)

{

try

{
URL
url = new URL ("http://xxx.xxx.com/bootstrap/NameServer.ior");
Bootstrap

bs = new Bootstrap (url, null);

GenericFactory

gf = bs.factory ("Policy", "object interface");
PolicyHome

ph = PolicyHomeHelper.narrow (gf);

org.omg.CORBA.Object obj = ph.create (

(float)100.00, (float) 10000.00);
Policy p = PolicyHelper.narrow (obj);
System.out.printin ("Policy number = " + p.policyNo ());

catch (Exception e)
e.printStackTrace ();
1

}
}

The Bootstrap object created above is described in Bootstrappind. The
remaining parts of this chapter describe the steps required to get the

414  WebSphere: Advanced Programming Guide



PolicyTest example to talk to the existing Component Broker PolicyHome
managed object to create a new Policy object.

Bootstrapping

IBM Java clients use the methods of CBSeriesGlobal to get attached to the
Component Broker name server. Since CBSeriesGlobal is not available to
non-IBM ORBs we need another way to get hooked into the Component
Broker name server.

We first write and run a Component Broker program to get a reference to the
Component Broker Naming Service, stringify the reference, and write it out to
a file. This file must then be made available to the non-IBM client as a URL.
In the preceding code for the PolicyTest, we assumed the URL is

“http:/ /xxx.xxx.com/bootstrap/NameServer.ior”.

The following Java program illustrates one way to generate the stringified
IOR. It uses the IBM Java ORB’s implementation of resolve_initial references
to get a reference to the Component Broker Naming Service’s root context.
This Java program is compiled in the Component Broker environment, using
the Component Broker Java ORB.

Important: Be very careful about the CLASSPATH. You must be sure that
only the IBM Java ORB classes are in the CLASSPATH when
compiling this class.

import java.applet.Applet;

import java.io.FileWriter;
import java.io.PrintWriter;

import java.util.Properties;
import org.omg.CORBA.ORB;

// WriteRootNCIOR primes the naming service for access from a

// non-Component Broker CORBA client. It does this by getting a reference
// to the root naming context and creating a file containing the Naming
// Context's IOR (NameService.IOR). This file must be placed in a

// well-known location accessible as a URL file, the root WWW directory.
// Note that this program uses IBM's ORB. It uses the CB bootstrap

// mechanism.

// To invoke this program: java WriteRootNCIOR <bootstrapHost>
// Alternately, in a html file:

// <applet>

// Note: This assumes that the bootstrap port is 900.

// This program is an application, but it is also an applet, so
// it COULD be run through a browser.

Chapter 15. Non-IBM ORB usage 415



public class WriteRootNCIOR extends Applet

{
public WriteRootNCIOR ()

{

this.args = null;
1

public WriteRootNCIOR (String[] args)
{

this.args = args;

} // ctor
public void init ()
{
try
{
Properties props = new Properties ();
props.put ("org.omg.CORBA.ORBClass", "com.ibm.CORBA.iiop.0ORB");
props.put ("com.ibm.CORBA.BootstrapPort", "900");
ORB orb = runningAsAnApplet ? ORB.init (
this, props) : ORB.init (args, props);
org.omg.CORBA.Object obj = orb.resolve_initial_references (
"NameService");
java.io.FileQutputStream fw = new java.io.FileOutputStream (
"NameService.ior");
PrintWriter pw = new PrintWriter (fw);
pw.print (orb.object to string (obj));
pw.close ();
catch (Throwable t)
{
System.out.printin (
"WriteRootNCIOR failed to create the file: NameService.ior");
t.printStackTrace ();
1
} /7 init

private String[] args;
private boolean runningAsAnApplet = true;

public static void main (String[] args)
{
WriteRootNCIOR writer = new WriteRootNCIOR (args);
writer.runningAsAnApplet = false;
writer.init ();
1
1

Once the stringified IOR has been written to a file, we need a way in the
non-IBM client to use the IOR to find the Component Broker’s root naming

416 WebSphere: Advanced Programming Guide



context and then find the factory for our Policy Object. The following Java
class illustrates one way to do is. This class is used in m

import
import

import
import

import
import
import

import
import
import
import

// Boo
/] 1t
// res

. See [Thd

for further information.

java.io.DatalnputStream;
java.io.InputStream;

java.net.URL;
org.omg.CORBA.ORB;

CosNaming.NameComponent ;
CosNaming.NamingContext;
CosNaming.NamingContextHelper;

CosLifeCycle.FactoryFinder;
CosLifeCycle.FactoryFinderHelper;
CosLifeCycle.GenericFactory;
CosLifeCycle.GenericFactoryHelper;

tstrap allows a non-CB CORBA Java client to access a CB Server.
assumes a URL containing the IOR for the Root Naming Context
ides in a well known place.

// Make sure this file is compiled with the non-CB .class files

class Bootstrap

public Bootstrap (URL bootstrapURL, String[] orbArgs)

public
{
{
Y/

try
{
// Get ORB
orb = ORB.init (orbArgs, null);

// Get the IOR string for the Root Naming Context

DataInputStream input = new DatalnputStream (
(InputStream)bootstrapURL.getContent ());

byte[] bytes = new byte[1024];

int bytesRead = input.read (bytes);

String stringifiedIOR = new String (bytes, 0, bytesRead);

// Use the Root Naming Context IOR string to instantiate a Root
// Naming Context

org.omg.CORBA.Object obj = orb.string to object (stringifiedIOR);
rootNC = NamingContextHelper.narrow (obj);

1

catch (Exception e)

{
System.out.printin ("Resolving the root naming context FAILED.");
e.printStackTrace ();

1

/ ctor

Chapter 15. Non-IBM ORB usage 417



public NamingContext rootNamingContext ()
{

return rootNC;
} // rootNamingContext

public GenericFactory factory (String id, String kind)

{
try
{
// Resolve to the factory finder
NameComponent[] name = new NameComponent [4];

name[0] = new NameComponent ("host", "");

name[1] = new NameComponent ("resources", "");
name[2] = new NameComponent ("factory-finders", "");
name[3] = new NameComponent ("host-scope", "");

org.omg.CORBA.Object obj = rootNC.resolve (name);
FactoryFinder ff = FactoryFinderHelper.narrow (obj);

// Resolve to the factory

name = new NameComponent [1];

name[0] = new NameComponent (id, kind);
org.omg.CORBA.Object[] objs = ff.find_factories (name);
return GenericFactoryHelper.narrow (objs[0]);

catch (Exception e)

System.out.printin (

"Getting the factory finder for

<" +4id + ", " + kind + "> FAILED.");
e.printStackTrace ();

return null;

} // factoryFinder
private String bootstrapHost;

private ORB orb;
private NamingContext rootNC;

Creating the client bindings

Now we need to create the client side Java stubs for all the CORBA and
Component Broker objects used in the example. BootStrap.java uses the
CosNaming and CosLifeCycle modules, so the first step is to run these
through a non-IBM idl-to-Java compiler. Since we are using these interfaces to
talk to Component Broker implementations, the safest thing to do is to copy
the Component Broker versions of the idl files to the client rather than using
versions of the files that come with the non-IBM ORB.

The non-IBM Java ORB has a command to convert CORBA idl files to Java
java files. Use this command to create java files for the interfaces in the

CosNaming and CosLifeCycle modules.

418 WebSphere: Advanced Programming Guide



Policy.idl uses Component Broker’s IManagable interface in the
IManagedClient module. (See Palicy.idl exampld in [Che exampld).
IManagedClient::IManagable, in turn uses interfaces in CORBA’s CosStream,
CosLifeCycle, CosNaming, and CosObjectldentity modules. In addition,
PolicyTest uses PolicyHome. So we must copy all the idl files for all these
modules to the client and run them through the non-IBM ORB’s IDL-to-Java
compiler.

The example being used in this section is very simple. More complicated
examples may use interfaces with more dependencies. The general procedure
is to copy over from the server the idl files for the interface you are using,
and also copy the idl for all the CORBA and Component Broker interfaces
that are used by your interface, and further up the chain until all the needed
idl is available. Then produce the Java client stubs for these interfaces.

The final step is to compile all client-side .java files. This includes
PolicyTestjava and Bootstrap.java as well as all the java files that are client
stubs for the idl interfaces.

Important: Be very careful with the CLASSPATH. When compiling these files,
be sure that only the non-IBM ORB classes are in the
CLASSPATH.

Running the example

Now we are ready to try it out. First start up the Policy server. See the
WebSphere Application Server Enterprise Edition Component Broker Planning,
Performance and Installation Guide for a description of how to start a server for
the Policy object. Then, at the client, run the following;:

java PolicyTest

Additional tips for non-IBM ORB usage

Specialized homes

PolicyHome is a specialized home, therefore a Component Broker key helper
is not needed. Nonspecialized homes require the use of key helper classes,
and it is cumbersome to make these classes available to a client using an
non-IBM ORB. So it is best to not attempt to use non-IBM ORBs to access
managed objects that do not live in specialized homes.

CORBA IIOP

The Component Broker server ORBs use, by default, IIOP level 1.1. If you find
that the non-IBM ORB that you are using needs to use IIOP level 1.0, you

Chapter 15. Non-IBM ORB usage 419



must tell Component Broker server ORBs to use IIOP 1.0 instead of their
default. If the server processes see the environment settings SOMDGETENV=1
and GENERATE_IIOP10_OBJREFS=1, then they will use IIOP 1.0.

WIN

You can set these values into your user environment before you start
the System Manager User Interface.

AIX

You can export these values from the shell where you start the System
Manager User Interface.

The ORB daemon (somdd), the name server, and the application server must
all be restarted after the environment variables are set.

Trimming client-side dependencies on Component Broker interfaces

The example in this section used the existing Policy sample managed object.
The Policy interface uses the IManagedClient::IManagable interface, and
IManagable, in turn, uses interfaces in other CORBA modules, like CosStream
and CosLifeCycle.

If you have the opportunity to influence how the Component Broker managed
object is designed, you can remove the dependency on Imanagable and thus
not require that client bindings be created for it and its parents. In the Policy
example you could create a Policy interface with no parent. Then make a new
interface, say, ManagedPolicy, that inherits from Policy and Imanagable. The
ManagedPolicy is the Component Broker managed object. You can do the
same for the Policy specialized home. Create a PolicyHome with no parent.
Then create a ManagedPolicyHome that inherits from PolicyHome an IHome.

Now you can create client stub bindings for the Policy and PolicyHome

interfaces, as described above, but you do not have to drag over idl for
IManagedClient and its parents.

420 WebSphere: Advanced Programming Guide



Chapter 16. Interlanguage object model

Interlanguage object model (IOM) is the language interoperability technology
that enables objects written in C++ and objects written in Java to interact
cooperatively within a single process. Although the Object Request Broker
(ORB) is written in C++, you might find, as a developer, that you prefer to
implement some of your distributed objects in other languages such as Java,
Smalltalk, or Object Oriented COBOL. IOM is the component that makes local
interactions between objects written in different languages simple and
efficient.

As a developer, you provide descriptive information about object interfaces to
IOM by using the IDLC Command development tool. See WebSphere
Application Server Enterprise Edition Component Broker Programming Reference for
information about the IDLC command development tool.

IOM and Component Broker

Although the Component Broker Server and the Component Broker ORB are
written entirely in C++, some customers will either need or prefer to
implement some of their distributed objects in other languages, such as Java.
IOM provides language interoperability technology to permit objects written
in C++ and objects written in Java to interact cooperatively within a single
process. The IOM language interoperability technology makes local
interactions between objects written in different languages simple and efficient
enough to be practical.

The most common strategy employed by ORB vendors to support multiple
languages is to offer multiple products — one for each targeted implementation
language. From a vendor perspective this strategy works reasonably well
when the number of target languages is small, but as the number of
languages expands, the effort of maintaining multiple ORB implementations
grows proportionally. From a customer perspective, having server products
segregated by programming language means that if any language integration
issues ever do need to be addressed (whether dealing with legacy products, or
new application prototypes), how to accomplish this is an exercise left to the
customer. Using an ORB purely as a mechanism for crossing language
domains will, in the best case, necessarily result in process switching for each
request and response, a solution that has unattractive performance
characteristics. Component Broker’s IOM technology is designed to avoid
these difficulties and provide a cross-language capability that is both efficient
and conceptually simple.

© Copyright IBM Corp. 1997, 1999 421



The IOM object model provides object interoperability across language
domains. The IOM object model is not a programming system; you cannot use
it to implement an object. In order to implement an object, you must use an
object-oriented programming language. Instead, the IOM object model allows
client programs to use objects by invoking the operations they provide
without knowing the precise details about how (or in what language) an
object has been implemented. With the IOM object model, the form in which a
request to invoke an operation on an object is expressed, depends on the
requesting program’s language (not the language used to implement the
object). This means that both object providers and object users have the
flexibility to work in a language that is most suited to the problem they are
solving.

It is not a coincidence that the object model described here is remarkably
similar to the OMG CORBA model for distributed objects. Knowing the
essential role that the CORBA standard plays in the Component Broker
product, the IOM object model is closely aligned with CORBA.

Not every aspect of a C++ or Java object can be accessed using a mechanism
like the IOM object model. If every feature of every supported object language
were to be accessible to a user, the most natural way to accomplish this would
be to have the client programmer use the same language that the object itself
was written in, but this, of course, is not multi-language programming.
Consequently, not every object in the world can be fully accessed through the
IOM object model. To qualify for full access, objects must be implemented to
exploit the capabilities that the IOM object model supports.

However, the IOM object model is very generic. The utility of the IOM object
model arises from the fact that for many objects, the specific syntax used to
exercise their capabilities is more of an incidental, rather than an essential,
property of the object. The essence of the object tends to be more the
functionality it offers on the data it holds than a particular artifact of its
implementation. As a result nearly all but the most light-weight of objects are
expressible as IOM object model objects.

The IOM object model places its emphasis on those aspects of an object that
must be visible to its users: the interfaces it exports and the operations they
contain. In the IOM object model, the names of the object’s interfaces express
the type of the object, and the operations they contain define its functionality,
or behavior. Types are a way of categorizing the behavior of objects, so that
objects with common capabilities can be processed interchangeably, a
characteristic known as polymorphism. A new type can also be derived from
one or more existing types in the following way:

* Providing a new interface name.

* Defining its specific behavior by introducing operations that express it.

422  WebSphere: Advanced Programming Guide



* Indicating the name of one or more existing interfaces (referred to as
ancestor or parent interfaces) whose operations it also supports.

Although objects usually contain data, granting users direct access to the data
can be problematic. Sometimes the internal consistency of an object can be
compromised, or its locality unnecessarily restricted by giving users direct
access to its data. A more flexible technique is to introduce a specific set of
operations (typically a get operation and sometimes an accompanying set
operation) to access the data. Although there is a small performance penalty
associated with executing an operation to access an object’s data, it also means
that the object’s implementation has the means to oversee the integrity and
consistency of the data, and avoids the unconstrained accesses that would
prohibit distributing the object to some other location. Data items accessed
through methods are called attributes. The IOM object model provides access
to an object’s data only in the form of attributes.

Not only is the data in a IOM object model object accessed indirectly through
it methods, all IOM object model objects are themselves accessed indirectly,
through an object reference. When an operation is invoked on an object, it is
an object reference that designates the target object. Client programs obtain
new object references as results or outputs from operations performed on
object references they already have, or they use a special factory call to obtain
an initial object reference. Object references are “use counted” and the
underlying objects that they refer to remain accessible until their last object
reference is released. IOM object model objects are never allocated or freed;
instead their object references are duplicated whenever a new reference is
needed, and released when a reference is no longer required. When the last
reference is released, the object becomes inaccessible and is presumably
discarded, but what actually happens is not visible to a client programmer.

Operations invoked on IOM object model objects may take a combination of
zero or more input, in/out, or output arguments and may produce a
distinguished value referred to as a result. Both arguments and results are
described with a type system that includes scalars, object references, aggregate
types, and constructed types. Operations that encounter error conditions may
return an out-of-band result referred to as an exception. User-defined
exceptions must be declared as a formal part of an object’s interface and may
contain arbitrary information, limited only by the expressive power of the
type system.

IOM, Component Broker’s interlanguage interoperability technology, provides
an OMG CORBA programming model for brokering object requests within a
process. Component Broker’s language interoperability technology is also
combined with a CORBA ORB to provide the programmer with a consistent
programming model for objects, that allows considerable configuration
flexibility in placing objects in different computing hosts. Additionally,

Chapter 16. Interlanguage object model ~ 423



because the CORBA programming model is largely independent of the
programming language in which it is implemented, Component Broker
provides in-process capabilities for communicating across different
implementation languages.

Defining IOM interfaces and implementations

IOM interfaces are defined by writing IDL; implementations are written
following the guidelines established by the CORBA 2.0 specification.

IOM implementations are either remotable or local only. Remotable
implementations are accessed using interfaces defined using standard CORBA
IDL. They can be accessed from Java or C++ either remotely across the ORB
or locally within a process.

Local only implementations are accessed using interfaces defined using
standard CORBA IDL. They can be accessed from Java or C++ locally within a
process. They are created using a special creation method that is part of the
generated usage bindings for a particular interface that uniquely represents
the implementation (the implementation interface). This interface name is
related to the implementation name by the name mapping rule that interface
x has implementation x_Impl.

Implementation interfaces for local only implementations are identified to the
compiler and emitters by a compilation flag so that streamlined bindings can
be emitted. This flag can be specified in the form of an IDL pragma or a
command line switch. Mixing local only and remotable interfaces within a
single IDL compilation is supported.

Communication between C++ and Java

C++ applications can communicate with Java objects and Java applications can
communicate with C++ objects using Interlanguage Object Model (IOM).
Additionally this Component Broker feature allows the communication
between objects that are not Component Broker business objects. The primary
use of IOM is to support Java business objects.

The following sections provide examples for the supported types of
cross-language interaction.
o [‘Scenario: C++ client of a local Java object” on page 424

e [‘Scenario: Java client of a local C++ nbjprf (NT Onlyv)” on page 430

° . 10° : . 7z

° 7 . ”

424  WebSphere: Advanced Programming Guide



Each example uses the simple “Hello World!” application. The object has a
getMessage() method that returns the “Hello World!” string. The client calls
the getMessage() method of the object and prints the result.

The examples assume:
* These examples reside in the following directory tree:

example
HelloWorld
CppJavalocal
JavaCpplocal
CppJavaRemote
JavaCppRemote

¢ The TOPDIR environment variable is set to point to the example directory.
¢ The Component Broker server is installed.
¢ The Windows NT command shell.

Scenario: C++ client of a local Java object

In this example the user of the object, the client, is written in C++ and the
object itself is written in Java. The name prefix CJL indicates C++ client, Java
implementation, Local (that is, in the same process).

The steps in this example are:

Create an IDL file that describes the interface

Use the idlc command to produce the Java implementation files
Write Java code to implement the getMessage() method
Compile the Java files

Use the idlc command to produce C++ client files

Write the C++ client main program

Compile and link the client

Run the application

ONoORrLNE

Each step is described in greater detail in the following sections.

Create the IDL file

Create the IDL files. From the command line, navigate to the
...\HelloWorld\CppJavalocal directory by entering:

cd %TOPDIR%\HelloWorld\CppJavalocal

Create a file named CJL.idl with the following contents:

module CJL {
interface CJLMessages {
string getMessage();

}s

Chapter 16. Interlanguage object model ~ 425



Run the idlc command

Run the idlc command to create the implementation Java file by entering:

cd %TOPDIR%\HelloWorld\CppJavalocal
idlc -e uj:sj CJL.id1

This creates the directory %TOPDIR%\HelloWorld\CppJavaLocal\CJL and
creates the following files in that directory:

* CJLMessages.java

* CJLMessagesHelper.java

* CJLMessagesHolder.java

* CJLMessagesOperations.java

* _CJLMessagesImplBase.java

* _CJLMessagesStub.java

The idlc command creates the directory that contains these files and gives the
directory the same name as the name of the IDL module that contains the
interface, that is, CJL. This name is also used for the name of the Java package
that contains the Java interface.

CJLMessagesHelperjava provides static methods for managing and
interrogating the CJLMessages type; these methods are not used in this
example and the CJLMessagesHelper class will be ignored.
CJLMessagesHolder.java aids in streaming objects; this file, also, is not used in
this example and will be ignored.

Although the Helper and Holder classes are not used in this example, they
are a required part of the CORBA specified Java/IDL mappings and would be
used in more complicated examples. _CJLMessagesStub.java is used on the
client side and can be ignored for this example.

The three files of interest here are CJLMessages.java,
CJLMessagesOperations.java and _CJLMessagesImplBase.java. The file
CJLMessages.java contains the Java interface definition:

package CJL;

pubTic interface CJLMessages extends CJLMessagesOperations,
org.omg.CORBA.Object, org.omg.CORBA.portable.IDLEntity {

}

The file CJLMessagesOperations.java contains the Java interface definition that
contains the definition of the method getMessage():

package CJL;

public interface CJLMessagesOperations {

String getMessage();
}

426  WebSphere: Advanced Programming Guide



The file _CJLMessagesImplBase.java contains the base class from which the
Java implementation must derive:
public abstract class _CJLMessagesImplBase

extends org.omg.CORBA.portable.ObjectImpl
implements CJL.CJLMessages, org.omg.CORBA.portable.InvokeHandler {

}
Write the Java code to implement getMessage

Now that you have compiled the IDL file and seen the files this produced, the
next step is to write the Java class that implements the CJLMessages interface.

From the command line, navigate to the ...\HelloWorld\CppJavaLocal
directory by entering:
cd %TOPDIR%\HelloWorld\CppJavaLocal\CJL

Create a file named _CJLMessagesImpl.java with the following contents:
package CJL;

public class _CJLMessagesImpl extends _CJLMessagesImplBase {
public String getMessage()
{

String message = "Hello World! (from local Java implementation)";
return message;

}
}

There are a few things to note about the implementation:

* The name of the implementation class must be _CJLMessagesImpl. IOM
assumes that if the IDL interface named CJLMessages has a Java
implementation then the name of the implementation class will be
_CJLMessagesImpl.

* Java expects the name of the file that holds the source code for a class to be
the same as the name of the class, with the extension ;java added. Therefore
the new _CJLMessagesImpl class is in the file named

CJLMessageslmpl.java.

* Java expects the name of the package to match the name of the directory
that holds the file. Thus, in this case the source for the package CJL is in the
directory CJL.

Note: The source for the package includes both the files emitted from the

IDL (as described in 'Run the idlc command” on page 426) as well as

the file created manually by the user as described in this section

(Mirite the Java code to implement getMessags).

Chapter 16. Interlanguage object model ~ 427



Compile the Java file

Now you are ready to use the javac command to compile the java files by
entering:
set CLASSPATH=%TOPDIR%\HelloWorld\CppJavaLocal;%CLASSPATH%

cd %TOPDIR%\HelloWorld\CppJdavalLocal\CJL
javac *.java

This produces several new .class files in the
%TOPDIR%\HelloWorld\CppJavaLocal\CJL directory; one for each of the
previously created .java files. IOM uses the code in these .class files to provide
access to our CJLMessages object from a C++ client.

This completes the steps needed to create the Java implementation.

Produce the C++ client file

Now you can use the idlc command to create the C++ files that the client
program will use to access the Java object. The contents of these files are
called “client-side bindings”, or, sometimes, just “bindings”. Type:

cd %TOPDIR%\HelloWorld\CppJavalocal
idlc -mlocalonly -ehh:uc CJL.idl

The “-m localonly” flag is used because, in this example, you know that the
client and the implementation object are in the same process, or “local” to
each other. The command creates the files CJL.hh and CJL_C.cpp. The file
CJL.hh is the header file that declares the CJLMessages object. It contains
(only the parts of interest to this example are shown, and the contents have
been slightly reformatted):

class CJLMessages : virtual public CORBA::0Object
{
public:

static const char* CJLMessages_CN;
static const char* CJLMessages RID;
CJLMessages () { }
virtual CJLMessages () { }
static CJLMessages_ptr _duplicate(CJLMessages_ptr obj);
static CJLMessages_ptr _narrow (CORBA::Object ptr);
virtual void* _has_ancestor(const char* classname);

#ifdef MSC_VER
void* _ CJL_ CJLMessages_ has__ancestor(const charx classname);
#endif //_MSC_VER
static CJLMessages_ptr _nil ()
{
return (CJLMessages ptr) ((void*)CORBA::Object:: nil());
1
virtual void * SOMThis(const char *& ifname);
static CJLMessages_ptr _weakProxy(CJLMessages_ptr obj);
static CJLMessages_ptr _strongProxy(CJLMessages_ptr obj);

428  WebSphere: Advanced Programming Guide



/* static create method(s)=*/
static CJLMessages ptr _create();
virtual char * getMessage()=0;
}s // end nesting scope for interface class ::CJL::CJLMessages

For this simple example the only methods you use are _create(), to create a
new instance of the object, and getMessage(), to get the “Hello World” string.

Write the C++ client main program

The next step is to create a C++ client application. There are no constraints on
the name of the file that holds the application. This example uses the name
CJLClient.cpp, and you will put it in the $TOPDIR%\HelloWor1d\CppJavaLocal
directory.

From the command line, navigate to the $TOPDIR%\HelloWor1d\CppJavalocal
directory by entering:

cd %TOPDIR%\HelloWorld\CppJavalocal

Create a file named CJLClient.cpp with the following contents:

#include <iostream.h>
#include "CJL.hh"

void main()

CJL::CJLMessages_ptr p = CJL::CJLMessages:: create();
CORBA::String_var message = p->getMessage();
cout << message << endl;

}
Compile and link to the client

The next step is to compile and link the two C++ files, CJLclient.cpp and
CJL_c.cpp. Type:
cd %TOPDIR%\HelloWorld\CppJavalocal
icc /Ti+ /c /Ge+ /DSHASTIFIED CJL C.cpp
icc /Ti+ /c /Ge+ /DSHASTIFIED CJLClient.cpp
i1ink /debug /out:CJLClient.exe CJL_C.obj CJLClient.obj somsh.lib /
somshcpi.lib somorori.lib

Run the application
Now you can run the application by entering:
cd %TOPDIR%\HelloWorld\CppJavalocal
CJLCTient

The Hello World! (from local Java implementation) message is printed to
the console.

Chapter 16. Interlanguage object model ~ 429



Scenario: Java client of a local C++ object (NT Only)

In this example the user of the object, the client, is written in Java and the
object itself written in C++. The name prefix JCL indicates Java client, C++
implementation, Local (that is, in the same process).

The basic procedure for this example is:

Create an IDL file that describes the interface

Use the idlc command to produce implementation C++ files
Write C++ code to implement the getMessage() method
Compile and link the C++ pieces into a DLL

Use the idlc command to produce a Java client Stub
Compile the Java client files

Write the Java client program and compile it

Run the application

ONoOR®WNE

Each step is described in greater detail in the following sections.

Create the IDL file

Create the IDL file. From the command line, navigate to the
...\HelloWorld\JavaCppLocal directory by entering:

cd %TOPDIR%\HelloWorld\JavaCpplocal

Use an editor to create a file named JCL.idl and put into it the following
contents:
module JCL {

interface JCLMessages{
string getMessage();

}s
Produce the implementation-side C++ binding files

Use the idlc command to produce the implementation side C++ binding files
by entering:

cd %TOPDIR%\HelloWorld\JavaCpplocal

idlc -ehh:ih:uc:sc -mlocalonly -md1Tname=JCL JCL.id]

This produces the files JCL.hh, JCL_C.cpp, JCL.ih and JCL_S.cpp In this
example you are building a C++ object implementation. The JCL.hh and
JCL_C.cpp files are client side files; they must be emitted only because some
of the implementation side files include them. JCL_S.cpp contains methods
used internally by IOM to dispatch requests to the implementation object. The
JCL.ih file contains the header for the implementation:

430 WebSphere: Advanced Programming Guide



class JCL_JCLMessages_Impl : public virtual ::JCL::JCLMessages_Skeleton

public: char* getMessage ();

bs

The idlc command parameter “-mdllname=JCL” causes the necessary
import/export statements to be added to declarations and definitions.

Write the C++ code to implement getMessage

You need to provide an implementation of
JCL_JCLMessages_Impl::getMessage(). To do this, run the idlc command to
produce the implementation file by entering:

cd %TOPDIR%\HelloWorld\JavaCppLocal
idlc -eic -mlocalonly -mdl1name=JCL JCL.id]1

This causes the JCL_Lcpp file to be emitted. This file contains:
char* JCL_JCLMessages Impl::getMessage () { }

Use an editor to add the actual implementation to the getMessage() method.
So this section of the JCL_Lcpp file becomes:

char* JCL_JCLMessages_Impl::getMessage ()
{

return CORBA::string_dup("Hello World! (From local C++ implementation)");

}

JCL::JCLMessages_ptr JCL::JCLMessages:: create ()

{
return new JCL_JCLMessages_Impl1();

}

Note: When the idlc command is told to produce an _ILcpp file (that is, when
the “ic” emitter is specified with the -e or -s flag) the idlc command
will attempt to produce a new copy of the file. Because this new file
would wipe out any previous file that might contain manually
introduced implementations, the idlc command will fail if there is a
previously existing _ILcpp file. If a new version of the _ILcpp file is
needed then you should rename the original, re-emit the new, and then
manually re-integrate your implementations.

Compile and link the C++ piece to the DLL

The DLL file name will be JCL.dll. Type:

cd %TOPDIR%\HelloWorld\JavaCpplLocal

icc /Ti+ /Ge- /c /DSOM_DLL_JCL /DSHASTIFIED JCL_S.cpp

icc /Ti+ /Ge- /c /DSOM_DLL JCL /DSHASTIFIED JCL I.cpp

ilib /GENI:JCL.1ib JCL _S.obj JCL I.obj

ilink /DLL /0UT:JCL.d11 JCL_S.obj JCL_I.obj JCL.exp somsh.lib \
somshcpi.lib somorori.lib

Chapter 16. Interlanguage object model ~ 431



Produce the client stub

Use the idlc command to produce a Java client Stub. Build the Java proxy for
the JCLMessages object by entering:

cd %TOPDIR%\HelloWorld\JavaCpplocal
idlc -euj JCL.id]1

This creates the directory %$TOPDIR%\Hel1loWorld\JavaCppLocal\JCL and creates
the following files in that directory:

* JCLMessages.java

* JCLMessagesHelper.java

* JCLMessagesHolder.java

* JCLMessagesOperations.java

* _JCLMessagesStub.java

The idlc command creates the directory that contains these files and gives the
directory the same name as the name of the IDL module that contains the
interface, that is, “JCL”. This name is also used for the name of the Java
package that contains the Java interface.

JCLMessagesHelper.java provides static methods for managing and
interrogating the JCLMessages type; these methods are not used in this
example and the JCLMessagesHelper class will be ignored.
JCLMessagesHolder.java aids in streaming objects; this file, also, is not used in
this example and will be ignored. Although the Helper and Holder classes are
not used in this example, they are a required part of the CORBA specified
Java/IDL mappings and would be used in more complicated examples.

The three files of interest here are JCLMessages.java, JCLMessagesOperations
and _JCLMessagesStub.java. The file JCLMessages.java contains the Java
interface definition:

package JCL;

public interface JCLMessages extends CJLMessagesOperations,
org.omg.CORBA.Object , org.omg.CORBA.portable.IDLEntity {
}

The file JCLMessagesOperations.java contains the Java interface definition that
contains the definition of the method getMessage():
package JCL;

public interface CJLMessagesOperations {
String getMessage();
}

The file _JCLMessagesStub.java contains the class _JCLMessagesStub that
provides an implementation of this interface. The implementation does not,
however, contain the actual code to produce the message string. Instead, it
contains code to connect to the IOM run time. The IOM run time connects to

432  WebSphere: Advanced Programming Guide



the C++ implementation that was created earlier, calls
JCL_JCLMessages_Impl::getMessage(), and returns the result.

Compile the Java files

Now you are ready to use the javac command to compile the java files by
entering:
set CLASSPATH=%TOPDIR%\HelloWorld\JavaCppLocal;%CLASSPATH%

cd %TOPDIR%\HelloWorld\JavaCppLocal\JCL
javac *.java

Write and compile the Java client program

Create a main program, in Java, to create the object and call its getMessage()
method. In the directory $TOPDIR%\HelloWorld\JavaCppLocal, use an editor to
create a file named JCLClientjava and put into it the following contents:
import JCL.x*;
class JCLClient {
public static void main(String args[]) {
System.loadLibrary("JCL");

try

{
JCL.JCLMessages hw = JCL.JCLMessagesHelper. create();
String m = hw.getMessage();
System.out.printin(m);

1

catch ( Exception e)
{
System.out.printin(

"JCL._JCLMessagesStub. create() threw an exception");
System.out.printIn("\t" + e.toString());
Runtime.getRuntime().exit(1);

}
}
1

The line System.loadLibrary(“JCL”); loads the DLL that was built to hold the
C++ inplementation. Notice the _JCLMessageStub’s _create() method is used,
instead of a Java “new” to create the proxy.

Now compile the JCLClient by entering:

cd %TOPDIR%\HelloWorld\JavaCpplLocal
javac *.java

Run the application
Now you can run the application by entering:

cd %TOPDIR%\HelloWorld\JavaCpplLocal
java JCLClient

Chapter 16. Interlanguage object model ~ 433



The Hello World! (From local C++ implementation) message is printed to
the console.

Scenario: C++ client of a remote Java object

In this example the user of the object, the client, is written in C++ and the
object itself, the implementation, is written in Java, and the client and
implementation are in different processes. The Component Broker C++
CORBA Object Request Broker (ORB) is used to provide communication
between the client process and the server process where the implementation
lives.

The client is written in C++ and the ORB is also implemented in C++.
Therefore Interlanguage Object Model (IOM) is not used in the client process.

In the server process there is a Java implementation interacting with a C++
ORB. When the C++ ORB receives a request from a remote client, the ORB
knows how to dispatch the request to a C++ implementation.

Client --> network --> ORB --> C++ Implementation

If, however, the implementation is written in Java, the ORB does not know
how to dispatch across the language boundary. To solve this problem, the idlc
command can be told to emit a C++ “ORB adapter” that appears to the ORB
to be a normal C++ implementation but that knows how to use IOM to
dispatch across the language boundary to the real Java implementation.

Client --> network --> ORB --> ORB Adapter --> IOM -->Java Implementation

There is a limitation in IOM that prevents having a local and a remote
implementation of the same interface. This example will have an abstract
interface, CJRAbstractMessage, and a concrete interface, CJRConcreteMessage,
that derives from CJRAbstract. The implemenation for the example will be of
CJRConcreteMessage. Other uses of the CJRAbstractMessage interface can
derive their own concrete interface and use IOM to implement it.

Portions of the ORB interfaces are IOM-enabled; so that Java implementations
can call their methods, but the BOA interface has not yet been made available
to Java programs. Therefore, even though the example CJRMessages
implementation can be completely written in Java, you must use C++ code to
initailize the ORB, instantiate objects, and export IORs. This code resides in
the CJRServer.cpp.

The basic procedure for this example is:
1. Create the IDL files
2. Run the idlc command to produce the Java implementation bindings
3. Write the Java implementation of the getMessage() method

434  WebSphere: Advanced Programming Guide



Compile the Java pieces

Create the C++ ORB Adapter

Create the Java server code

Compile the server code

Create the client program

Compile and link the client program
Run the application

COXNO G A

1

Each step is described in greater detail in the following sections.

Create the IDL files

Create the IDL files. From the command line, navigate to the
...\HelloWorld\CppJavaRemote directory by entering:

cd %TOPDIR%\HelloWorld\CppJavaRemote

Create the file CJRAbstract.idl and put into it the following contents:

module CJRAbstract {
interface CJRAbstractMessages {
string getMessage();

s

b
Create CJRConcrete.idl and put into it the following contents.

Note: The “orbadapter” pragma informs the idlc command that this is a Java
server side implementation. The emitter emits special C++ bindings
capable of dispatching method invocation through IOM run time to the
Java implementation. Another way to create an ORB adapter is using
the “—m orbadapter” modifier to the idlc command, when emitting
C++ bindings for this IDL file

#include "CJRAbstract.idl"

module CJRConcrete {

interface CJRConcreteMessages : CJRAbstract::CJRAbstractMessages { };
#pragma meta CJRConcreteMessages orbadapter

bs
Produce the Java implementation bindings

Run the idlc command to produce the Java Implementation bindings by
entering.

cd %TOPDIR%\HelloWorld\CppJavaRemote
idlc -euj CJRAbstract.idl

You need only the usage bindings for the abstract interface. Type:
idlc -euj:sj CJRConcrete.idl

Chapter 16. Interlanguage object model ~ 435



436

Write the Java implementation of getMessage()

The next step is to write the Java class that implements the CJLConcrete
interface. Type:
cd %TOPDIR%\HelloWorld\CppJavaRemote\CJRConcrete

Use an editor to create a file named _CJRConcreteMessagesImpljava and put
into it the following contents:
package CJRConcrete;
class _CJRConcreteMessagesImpl extends _CJRConcreteMessagesImplBase {
private final String message = "HelloWorld! (
From remote Java implementation)";
public String getMessage() {
return message;

}
}

Compile the Java pieces

Compile the Java pieces by entering:

set CLASSPATH=%TOPDIR%\HelloWorld\CppJavaRemote;%CLASSPATH%
cd %TOPDIR%\HelloWorld\CppJavaRemote\CJRConcrete

javac *.java

cd %TOPDIR%\HelloWorld\CppJavaRemote\CJRAbstract

javac *.java

Create the C++ ORB adapter

Create two different DLL files: CJRAbstract.dll that contains the client-side
bindings of the abstract interface and CJRConcrete.dll for the concrete
implementation. Type:
cd %TOPDIR%\HelloWorld\CppJavaRemote
idlc -ehh:uc -md1Tname=CJRAbstract CJRAbstract.id]l
idlc -ehh:uc:sc -md11name=CJRConcrete CJRConcrete.id]
icc /Ti+ /c /Ge- /DSOM_DLL_CJRAbstract /DSHASTIFIED CJRAbstract_C.cpp
i1ib /geni:CJRAbstract.1ib CJRAbstract C.obj
ilink /DLL /debug /out:CJRAbstract.d11 CJRAbstract C.obj \
CJRAbstract.exp somshcpi.lib somsh.1ib somorori.ib
icc /Ti+ /c /Ge- /DSOM_DLL_CJRConcrete /DSHASTIFIED CJRConcrete S.cpp
i1ib /geni:CJRConcrete.lib CJRConcrete_S.obj
ilink /DLL /debug /out:CJRConcrete.d11 CJRConcrete S.obj \
CJRConcrete.exp somshcpi.lib somsh.1ib somorori.lib CJRAbstract.lib

Create the Java server code

Now you can create the Java portion of the server process, that is, the Java
code that interacts with the BOA interfaces. Type:

cd %TOPDIR%\HelloWorld\CppJavaRemote

WebSphere: Advanced Programming Guide



Use an editor to create a file named CJRServerjava and put into it the
following contents:

public class CJRServer {
public static void main(String argv[]){
try {
/* Load the appropriate DLLs */
System.loadLibrary("CJRConcrete");
System.loadLibrary("somshcpi");
System.loadLibrary("somshori");

org.omg.CORBA.ImplementationDef imp =
org.omg.CORBA. ImplementationDefHelper. create();
imp.set_protocols("SOMD_TCPIP");
org.omg.CORBA.ORB op;
org.omg.CORBA.BOA bp;
int stat;
java.io.FileOutputStream fout =
new java.io.FileOutputStream("OBJREF.OUT");
op = org.omg.CORBA.ORB.init(argv, null);
System.out.printIn("ORB_init has run");

com.ibm.som.corba.rt.PseudoOrb pso =
com.ibm.som.corba.rt.DelegateImpl.getPseudoOrb();
bp = pso.BOA_init (
new com.ibm.som.corba.rt.PseudoOrbPackage.string_seqHolder(argv),
"DSOM_BOA") ;
System.out.printIn("BOA_init has run");

bp.imp1_is_ready(imp, false);
System.out.printin("impl_is_ready has run");

CJRConcrete.CJRConcreteMessages cobj =
CJRConcrete.CJRConcreteMessagesHelper. create();

/* This is special code for Java server needed to pin a
remotable Java implementation so that it is callable by the
C++ ORB. Use unpinRemotableProxy() below when the instance
is no longer needed.

*/
pso.pinRemotableProxy(cobj);

String asd = op.object_to_string(cobj);
System.out.printIn("Object Reference = ");
System.out.printin(asd);

/* Write asd to file */

int len = asd.length();

byte [] bytes = new byte[len];

for (int i=0; i< Ten; i++)
bytes[i] = (byte)asd.charAt(i);

fout.write(bytes);

fout.close();

System.out.printin("Server Listening ...");
stat = bp.execute_request_Toop(0);

Chapter 16. Interlanguage object model ~ 437



bp.deactivate_imp1(imp);

/* Do not need cobj any more x/
pso.unpinRemotableProxy(cobj);

}

catch(Exception e) {
System.out.printin("caugh exception" + e);
e.printStackTrace();

}

}
1

This example i is similar to the provided example in t‘Scenario: Java client of d

” ; you initialize the ORB, create an instance of
CJRConcreteMessages, write the string version of the IOR to a file, and start
the BOA request loop. However, there are two major differences:

* You need to load the appropriate C++ libraries using System.loadLibrary.
CJRConcrete.dll contains the C++ bindings for the ORB adaptor, while
somshori.dll contains the interlanguage requirements for the C++ run time
needed to communicate with the BOA from Java.

* You need to control the lifetime of the C++ ORB adaptor that corresponds
to the Java implementation. Controlling the lifetime is done by pinning the
C++ ORB adaptor in memory immediately after a remotable object is
created. When we are sure that the object can be removed, you unpin its
C++ ORB adaptor from memory.

The pinning and unpinning are necessary for all remotable Java objects
from Java source code. They are unnecessary if the server is written in C++,
because in C++, only a reference can be held (and therefore the Orb adaptor
exists).

Compile and link the server

Compile and link the server by entering:

cd %TOPDIR%\HelloWorld\CppJavaRemote
javac CJRServer.java

Create the client program

You are now ready to work on the client program. First create the
CJRClient java file by entering;:

cd %TOPDIR%\HelloWorld\CppJavaRemote

Use an editor to create a file named CJRClient.cpp and put into it the
following contents:
#include "CJRAbstract.hh"

#include <fstream.h>
#include <orb.h>

438  WebSphere: Advanced Programming Guide



#include <stdlib.h>
#include <stdio.h>

char * infile = "OBJREF.OUT";
int main(int argc, char * argv[])
{
try {
CORBA: :0RB_ptr op;
op = CORBA::0RB_init(argc, argv, "DSOM");

// read stringified IOR from file
ifstream fin(infile);

char objref[512];

memset (objref, 512, '\0');

fin >> objref;

// Convert the string into a proxy object
CORBA::0bject_var optr = op->string to _object(objref);

// Call method on remote object

CJRAbstract::CJRAbstractMessages_var aobj =
CJRAbstract::CJRAbstractMessages:: narrow(optr);

CORBA::String var message = aobj->getMessage();

cout << message << endl;

return 0;

}

catch (...)

{
cout << "\t an exception was thrown" << endl;
return -1;

}s
}

Compile and link the client program

Compile and link the client by entering:

cd %TOPDIR%\HelloWorld\CppJavaRemote

icc /Ti+ /c /Ge+ /DSHASTIFIED CJRClient.cpp

ilink /debug /out:CJRClient.exe CJRClient.obj CJRAbstract.lib \
somsh.1ib somshcpi.lib somorori.lib

Run the application

Now you can run the application. First start the ORB daemon by entering:

cd %TOPDIR%\HelloWorld\CppJavaRemote
start somorbd

Wait for the daemon window to appear and display a “location server ready”

message. Start the server by entering:
start CJRServer

Chapter 16. Interlanguage object model

439



Wait for the server window to appear and display a “server listening...”
message. Run the application by entering:

java CJRClient

At this point the message HelloWorld! (From remote Java implementation)
displays.

The ORB daemon and the server windows must be manually closed.

Scenario: Java client of a remote C++ object

In this example the user of the object, the client, is written in Java and the
object itself is written in C++. The client and the implementation are in
different processes. The Component Broker C++ CORBA Object Request
Broker (ORB) is used to provide communication between the client and
implementation in the server processes.

The implementation object is written in C++ and the server process’s ORB is
also C++. Therefore IOM’s language interoperatility is not needed in the
server process.

Component Broker includes a client ORB written in Java, and one option
would be to use this Java Client ORB, together with the Java client, in a
homogeneous Java process. This option would not require IOM’s interprocess
technology. This example assumes, however, that the client process contains a
mixture of C++ and Java code and that the Component Broker C++ ORB is
used in the client. The client side of this example explains how to build a Java
client that uses the C++ ORB to communicate with a remote CORBA object.

The basic procedure for this example is:

Create an IDL file that describes the interface

Use the idlc command to produce a set of C++ implementation classes
Write C++ code to implement the getMessage() method

Write C++ code for the main server program

Compile and link the server program that hosts the implementation
Compile and link the DLL that contains the C++ portions of the client
program

Write the Java client program and compile it

8. Run the application

ok wpnE

~

Each step is described in greater detail in the following sections.

440 WebSphere: Advanced Programming Guide



Create the IDL file

Create an IDL file that describes the interface. From the command line,
navigate to the ...\HelToWorld\JavaCppRemote directory by entering:

cd %TOPDIR%\HelloWorld\JavaCppRemote

Use an editor to create a file named JCR.idl and put into it the following
contents:
module JCR {

interface JCRMessages{
string getMessage();

}s
Produce a set of C++ implementation classes

Use the idlc command to produce a set of C++ implementation classes by
entering:

cd %TOPDIR%\HelloWorld\JavaCppRemote
idlc -ehh:ih:uc:sc -md11name=JCR JCR.id1

This produces the files JCR.hh, JCR_C.cpp, JCR.ih and JCR_S.cpp. In this
example you are building a C++ implementation. The JCR.hh and JCR_C.cpp
files are client side files; they must be emitted only because some of the
implementation side files include them. JCR_S.cpp contains methods used
internally by IOM to dispatch requests to the implementation object. The
JCR.h file contains the header for the implementation:

class JCR_JCRMessages_Impl : public virtual ::JCR::JCRMessages_Skeleton {
public:
char* getMessage ();

bs

The idlc command parameter “-mdllname=JCR” causes the necessary
import/export statements to be added to declarations and definitions. If you
were only building the C++ server process and linking it from .obj files, then
this flag would not be necessary in this example. However, the same JCR.hh
files will be used later to implement the Java client, and in this case a DLL,
and the associated import/export statements, will be needed.

Now you need to provide an implementation of
JCR_JCRMessages_Impl::getMessage(). To do this run the idlc command to
produce the implementation file by entering:

cd %TOPDIR%\HelloWorld\JavaCppRemote
idlc -eic JCR.idl

This causes the JCR_IL.cpp file to be emitted. This file contains:
char* JCR_JCRMessages_Impl::getMessage () {}

Chapter 16. Interlanguage object model ~ 441



Write the C++ code to implement getMessage

Write C++ code to implement the getMessage() method. Use an editor to add
the actual implementation to the getMessage() method. This section of the
JCR_Lcpp file then becomes:

char+ JCR_JCRMessages_Impl::getMessage ()

{
return CORBA::string_dup(
"Hello World! (From remote C++ implementation)");
1

Note: When the idlc command is told to produce an _ILcpp file (that is, when
the “ic” emitter is specified with the -e or -s flag) the idlc command
will attempt to produce a new copy of the file. Because this new file
would wipe out any previous file that might contain manually
introduced implementations, the idlc command will fail if there is a
previously existing _ILcpp file. If a new version of the _ILcpp file is
needed then you should rename the original, re-emit the new, and then
manually re-integrate your implementations.

Write the C++ code for the main server program

Write C++ code for the main server program. Now you need a main program
that initializes and connects to the ORB, creates an instance of the
JCRMessages object, and makes a CORBA IOR available to the client. From
the command line, navigate to the ...\HelloWorld\JavaCppRemote directory by
entering:

cd %TOPDIR%\HelloWorld\JavaCppRemote

Create a file named JCRServer.cpp and use an editor to put into it the
following contents:

#include <iostream.h>
#include <fstream.h>
#include <stdlib.h>
#include <corba.h>

#include "JCR.ih"

void main(int argc, char *argv[])
{
static CORBA::0RB_ptr op;
static CORBA::BOA_ptr bp;
CORBA::Status stat;
ofstream fout ("OBJREF.OUT");

// Initialize the ORB

CORBA: :Imp1Def * imp = new CORBA::Imp1Def();
imp->set_protocols("SOMD_TCPIP");

op = CORBA::0RB_init(argc, argv, "DSOM");

442  WebSphere: Advanced Programming Guide



bp = op->BOA_init(argc, argv, "DSOM_BOA");
bp->imp1_is_ready(imp,0);

// Create an Instance of a JCR _JCRMessages_ Impl object
JCR_JCRMessages_Impl msgs_Impl;

// Create a "stringified" IOR

char *asd = op->object_to_string(&msgs_Imp1);
fout << asd;

fout.close();

CORBA::string free(asd);

cout << endl;
cout << "server listening...." << endl;
cout.flush();

// Start the BOA request loop.
stat=bp->execute_request_Toop(CORBA::BOA::SOMD WAIT);

bp->deactivate_imp1(imp);
CORBA: :release(imp);
1

In the real world, objects in the server process might be created by factory
objects and the client might learn the IORs for the factory objects from a name
server. By creating a stringified IOR you avoid implementing factories and
dealing with name servers, but you must have a way for the client to learn
the IOR for the remote object. The simple solution used in this example is for
the server to write the IOR string to a file with the well known name
“objref.out”. You will soon see the client code open this file and read the IOR
string.

Compile and link the C++ pieces to the DLL

Compile and link the server program that hosts the implementation. Now you
have all of the pieces needed to build the server process. It is time to compile
and link by entering.

cd %TOPDIR%\HelloWorld\JavaCppRemote

icc /Ti+ /Ge+ /c JCRServer.cpp

icc /Ti+ /Ge+ /c /DSOM_DLL_JCR /DSHASTIFIED JCR_S.cpp

icc /Ti+ /Ge+ /c /DSOM_DLL_JCR /DSHASTIFIED JCR I.cpp

ilink /DEBUG /OUT:JCRServer.exe JCRServer.obj JCR_S.obj JCR I.obj \

somsh.1ib somshcpi.lib somorori.lib

Compile and link the DLL

Compile and link the DLL that contains the C++ portions of the client
program. Now it is time to build the client.

Working your way back from the implementation toward the client, you see:

Chapter 16. Interlanguage object model ~ 443



* The actual object implementation is in a remote server, and you must deal
with an ORB to talk to the remote server.

* The ORB you are using in this example is written in C++, so you must have
a C++ entity to talk to the ORB.

* The client is written in Java, so you need to use IOM and its run-time
support to allow the Java client to talk with the C++ binding.

* The Java client program deals with a Java stub, that to the client looks like
it provides an implementation of the object.

You can build the C++ binding from the JCR_IL.cpp and JCR_S.cpp files that
were emitted earlier. For use in the client, however, you should compile them
for use in a DLL and then link the DLL. Type:

cd %TOPDIR%\HelloWorld\JavaCppRemote

icc /Ti+ /Ge- /c /DSOM_DLL_JCR /DSHASTIFIED JCR S.cpp

icc /Ti+ /Ge- /c /DSOM_DLL_JCR /DSHASTIFIED JCR_I.cpp

ilib /GENI:JCR.1ib JCR_S.obj JCR_I.obj

ilink /DLL /DEBUG /OUT:JCR.d11 JCR_S.obj JCR_I.obj JCR.exp \

somsh.1ib somshcpi.Tib somorori.lib

In a future step you will load this DLL into the Java client program.

Write and compile the Java client program

Write the Java client program and compile it. You can now prepare the Java
portions of the client program. You can build the Java stub by running the
idlc command to produce the stub files and then compiling these files. Type:

cd %TOPDIR%\HelloWorld\JavaCppRemote

idlc -euj JCR.id1

cd %TOPDIR%\HelloWorld\JavaCppRemote\JCR

Jjavac *.java

Now you can build the Java main program. From the command line, navigate
to the ...\HelloWorld\JavaCppRemote directory by entering:

cd %TOPDIR%\HelloWorld\JavaCppRemote

Use an editor to create a file named JCRClient.java and put into it the
following contents:

import org.omg.CORBA.x*;

import java.io.*;

import JCR.=*;

class JCRClient
{

public static void main (String argv[])
{

try

{

444  WebSphere: Advanced Programming Guide



System.loadLibrary("JCR");

ORB orb = org.omg.CORBA.ORB.init(argv, null);

BufferedReader fin = new BufferedReader(new InputStreamReader
(new FileInputStream("OBJREF.OUT")));

String objref = fin.readLine();

fin.close();

org.omg.CORBA.Object obj = orb.string _to_object(objref);

JCR.JCRMessages msgs= JCR.JCRMessagesHelper.narrow(obj);

System.out.printin(msgs.getMessage());
!

catch(Exception e)

{
System.out.printin(e.toString());

}
}
}

In a previous step the server process wrote out the IOR to a file named
OBJREF.OUT. The following lines read in this IOR and convert it to a usable
object reference:

ORB orb = org.omg.CORBA.ORB.init(argv, null);

BufferedReader fin = new BufferedReader(new InputStreamReader

(new FileInputStream("OBJREF.OUT")));

String objref = fin.readLine();

fin.close();

org.omg.CORBA.Object obj = orb.string _to_object(objref);

You can now compile the Java main program by entering:
cd %TOPDIR%\HelloWorld\JavaCppRemote
javac *.java

Run the application

You have now built the example and are ready to run it. You must first start
the ORB daemon by entering:

cd %TOPDIR%\HelloWorld\JavaCppRemote
start somorbd

”

Wait for the daemon’s window to appear and show a “location service ready
message. Start the server process that hosts the implementation by entering;:

start JCRServer.exe

Wait for the server window to appear and show a “server listening ...”
message. Run the Java client program by entering:

java JCRClient

Chapter 16. Interlanguage object model ~ 445



At this point the message Hello World! (From remote C++ implementation)
displays.

The ORB daemon and the server windows must be manually closed.

446 WebSphere: Advanced Programming Guide



Chapter 17. Workload management

The following chapter is platform-dependent and does NOT apply to OS/390
Component Broker. See OS/390 Component Broker Planning and Installation for
further information on workload management.

Programming model

This section includes the following topics:

Overview

Workload management is the discipline of defining, monitoring and actively
managing work in your distributed network. In a Component Broker context,
“work” is taken to mean the dispatch, routing and receipt of requests between
objects in the distributed network and their eventual execution within a
Component Broker Application Server. As more clients use an application the
amount of ‘'work” increases and the 'load” on the servers increases.

The aspect of WLM which is of most interest to application programmers is
the workload distribution mechanism. This capability allows the Component
Broker run time to dynamically allocate an Application Server to process a
request. Clients normally locate resources at a pre-configured server location,
perhaps a named server or the server running on their local host. Fixing the
relationship between the client and server in this way is a problem for
scaleability in large enterprises. When multiple servers exist which could
potentially service a client’s request, it is not desirable to force the client to go
to one fixed server. The aim of workload distribution is to minimize client
request response times and maximize server throughput by reducing load
imbalance. This can be achieved in part by locating resources at a workgroup
scope and allowing the choice of an appropriate, active server to be
determined by the ORB.

© Copyright IBM Corp. 1997, 1999 447



The key to workload distribution in Component Broker is the use of a server
group to define multiple Application Servers with a common configuration. In
addition the server group must be configured with a Managing Host which
designates one Host to provide management services across the group. This
configuration is known as a controlled server group.

Further information on systems management requirements and
recommendations are in the WebSphere Application Server Enterprise Edition
Component Broker System Administration Guide.

Group identity

In the CORBA programming model an object ‘belongs’ to the server on which
it is created. An object reference uniquely identifies the server (or
“implementation”) and the object instance which will handle requests. A client
obtains the object reference to an object and sends requests to it. In the
Component Broker environment, it will be typical to install an application on
more than one server, that is by using a server group. Each server in the
group can provide the application services required by a client. If the client
needs to access a particular business object, then conceptually, it could be
programmed to locate all the homes in the network which handle that type of
business object. It could then use findByPrimaryKey() to retrieve object
references to each object instance, for example one instance per server in the
group. The client could then choose which of these objects to use to process
any subsequent request to that business object. This approach is impractical
and very intrusive to the client programming model. What is required is a
way to give an object reference a form of “group identity”, so that there is
only one object reference and the object ‘belongs’ to the server group, rather
than one particular server. This concept is known as the Single Object and
Single Server Image property. The ideal is for the client application
programmer to write the client application as if there is always one object
reference and one server, whereas this may not be the reality.

Support for objects with group identity is provided in the standard
Component Broker run time through the management services of controlled
server groups and extensions to the object adaptor and application adaptor
infrastructure on servers which are members of such groups.

448  WebSphere: Advanced Programming Guide



Single object,single server image

Controlled

server group
Client object

reference o[ Object ),
a

application > ™ datastore

Underlying reality

Controlled
Client server group
application
view

Shared
datastore

Figure 10. Single object, single server image

Workload manageable objects

Almost any managed object could be given a “group identity” and be subject
to workload management. However, you do not use all managed objects in an
Application in the same way and there are overheads caused by workload
management which should be avoided if there will be little return from the
investment.

Chapter 17. Workload management 449



The opportunity for workload distribution occurs when requests are sent
remotely across the ORB from a ’client’ to a server; not forgetting that servers
can be clients of other servers. Obvious candidates for workload management
are therefore homes and any managed object which may be called remotely.

In the design and packaging stages you should identify which objects are
workload management candidates, that is, identify workload manageable objects.
If the application is subsequently installed and configured to run on a
controlled server group then these objects will be workload managed (WLM)
objects.

WLM homes

A home is an excellent example of a workload manageable object as it is often
one of the first types of object to be accessed remotely. Many client
applications will locate a home for a required business object, perhaps using a
factory finder, and then use that home to find or create that business object on
the home’s server. It is just as desirable to distribute the work involved in
finding, creating and processing queries for business objects as it is for the
work involved in subsequent operational requests.

WLM persistent objects

When an object instance stores its state persistently in a datastore then that
object instance can exist in any server which supports its run time
requirements and which can access the datastore. All servers which are
members of a controlled server group are required to be equally capable of
supporting their configured applications and all their Hosts are required to
provide logically symmetrical access to the datastores. In this environment a
particular object instance may be activated on any server in the group and,
potentially, may be activated on more than one server at the same time.
Persistent objects are therefore good WLM candidates.

However it may not always be necessary to workload manage object instances
if the home is workload managed. If, for example, an object is located,
updated and released within the scope of a transaction then there is minimal
benefit in configuring the object as workload managed. It is sufficient that the
request to locate the object, which is sent to its home, is subject to workload
distribution to tie the workload generated by the transaction to a single server.
If this chosen server fails then the transaction must be rolled back and the
work restarted as a new transaction. If restarting the work includes refinding
the object then a new server will be chosen by the request to the home and
there is no need to provide workload distribution for the object itself.
Remember that a performance loss is incurred in the client when processing
any request to a WLM object and this must be weighed against the potential
benefits.

450 WebSphere: Advanced Programming Guide



If an object reference is held for a longer period of time then it may be
appropriate to workload manage the object itself. The question to ask is
whether it ever makes sense to switch workload to a different server when
sending a request to that object. When an object is only used within a single
transaction this will rarely be the case.

Although not unique to the topic of workload management, you will also
need to consider the implications of an object instance existing concurrently in
multiple servers. These considerations can influence datastore configuration
including locking levels in DB2 and the selection and configuration of the
application adaptor, for example the choice between using Embedded SQL or
the Cache Service.

WLM transient objects

A transient object is not a natural candidate to be workload managed. The
state of a transient object is maintained only in the memory of its owning
server process; it is not possible to passivate and then reactivate the object on
another server. In most situations, therefore, transient objects will not be
workload managed. Using a WLM home in association with transient objects,
however, can be a very useful design as described in the

bpplication ohjects” on page 454 scenario.

It is recommended that transient objects which hold state should exist only for
a short time. The longer a transient object remains active holding state, the
longer a client is obliged to continue sending work to the same server.
Maximizing the opportunity to switch work between servers should be an
application design goal to allow the maximum benefit to be derived from
future improvements in workload distribution algorithms.

Scenario considerations

WLM objects can be used to good effect to increase the scaleability and the
availability of an application. However it probably will not come as a
complete surprise that there are some restrictions and potential problems in
certain application scenarios.

Affinity management

Workload distribution has the unique potential to cause a single object
reference to be resolved to multiple target instances over the lifetime of a
client proxy. The first time a client sends a request to a WLM object causes a
server to be chosen to be the target of that request subject to configured bind
policy. On the next request we have to decide whether to use the same server

Chapter 17. Workload management 451



or choose a different one. What we need to know is whether there is any
residual affinity between the client and the first chosen server which dictates
that it be reselected.

A good example of affinity is the strong affinity between a client and a server
which is established if the client initiates a session or transaction context
which will scope a series of method requests to the same objects. When a
server is chosen to process the first request in that context it will cause an
instance of that object to be activated on that server and for locks to be held
by that server for that context. Subsequent requests to that object in the same
scope must be dispatched to the same server or else lock conflicts will occur
and the application will deadlock. Once the context is committed, or ends for
some other reason, then the affinity is broken and the option is available to
choose a new server for the next request.

Affinity management is a key technical requirement for workload distribution
which is addressed today by the single, default client bind affinity
configuration. This behavior sets up an affinity between a client process and
the first chosen server which is never broken (unless the server fails or
terminates for some reason). This results in a stronger affinity setting than is
strictly required for transaction or session management because, even if a
context ends and the affinity may be broken, we currently choose to continue
sending requests from that client to the first chosen server.

An affinity also exists if an object instance is left activated in the first chosen
server. Examples here include the use of transient objects or other objects with
an application-managed activation cycle. The client bind affinity configuration
works here too.

Multiple activation

Although we’ve just described transaction and session affinity as a
client-server affinity it is more accurately an object-server affinity. Once an
object instance has been activated within a transaction scope, for example, all
subsequent requests to that object in the same scope must be dispatched to
that same object instance. The client bind affinity configuration just mentioned
ensures that this will be the case for all requests originating from the same
client. In a more complex application deployment it is possible for requests to
originate from multiple clients.

Consider the case where a client X accesses a WLM object C1 in application
Al on server S1, a member of controlled server group G1. Let’s assume that
Cl1 then creates an object P1 in application A2 on server T1. If C1 calls P1,
passing an object reference to itself, and then P1 makes a return call to C1
then a problem can occur. We have a potential object flow like
X->C1[S1]->P1[T1]->C1[S2]. Note that server T1 had no affinity with a server

452  WebSphere: Advanced Programming Guide



in server group G1 and picked server S2 at random, just as X had chosen S1.
The result is lock conflict caused by multiple activation of C1 within the same
scope. The following figure shows this lock conflict.

Table 20. Lock confiict within the same scope

Gl

v

S1

T1

L,
i

S2

The workload distribution mechanism can cause multiple activation in certain
multi-application topologies. It is an application design requirement to avoid
multiple activation in the same scope. This is an application design restriction.

Note that multiple activation can occur in other scenarios not related to
workload distribution, for example, in the use of home/key handles.

References to other objects

There are already good reasons to be careful about how references to other
objects are managed. For example, imagine the case where an insurance agent
uses a client application assigned to server S1 to create a new Policy object P1
and relate it to a new Customer object C1. Let’s assume that P1 stores a
reference to C1 persistently as a stringified object reference. Some time later
another agent may have reason to check this policy and cause an object
Pl-prime to be activated, this time on server S2. If P1-prime now
de-references the stored string form of C1 it will obtain a proxy object which
relates back to the original instance of C1 on server S1. It is not normally
desirable to increase the inter-server dependencies in this way. Alternative
methods of storing object references are provided (that is, home/key handles
and foreign key relationships) which avoid this problem.

In the above example, if we assume that Policy objects are workload managed
but that Customer objects are not, then the advice to avoid stringified object
references should not be ignored. However, it should be noted that references
to workload managed objects will always be de-referenced to a local instance
whenever possible. Thus, in this example, the use of stringified object
references is acceptable if the Customer objects are also workload managed.

Chapter 17. Workload management 453



Local activation

One of the main principles of workload distribution in Component Broker is
that work initiated by a server should always be implemented on that server
whenever possible. So whenever a server imports a WLM object reference it
will always de-reference to a local instance of that object if it exists. This
avoids any network overhead in needlessly sending requests to remote servers
which could have been processed locally.

Automatic rebind

When a client initiates a request to a WLM object, the client-side ORB
function invites the workload distribution mechanism to select a target server
for the request. If the ORB is subsequently unable to dispatch the request to
that server the workload distribution mechanism is informed and has the
opportunity to choose a different server. This will only occur if the request
was not dispatched remotely. If the request was dispatched but a
CORBA::SystemException is generated the exception will still be reported
back to the client application. This includes situations in which the client
request timeout is exceeded and when the server terminates unexpectedly
while processing a request.

Scenario examples

This section aims to describe some of the common application design patterns
and deployment topologies which benefit from the use of WLM.

Transient application objects

One of the simplest WLM scenarios is based on the thin-client application
programming model in which the majority of the business logic is
encapsulated by an application object (AO). The client application creates a
transient application object on a server, sends one or more requests to that
application object, then removes it when it is no longer required. An
application object is expected to be used only by the client which creates it.
The application object interacts with business objects (BOs) in order to process
the client’s request. The application object may either be “stateless” and
process each request independently, or be “stateful” and hold transient state
on behalf of the client application between successive requests. The
application object and the business objects are packaged into a single
application which is configured onto a controlled server group.

The CBToolkit WLM Tutorial Sample is based on this scenario. Use of
transient application objects with a WLM home is fully supported and

454  WebSphere: Advanced Programming Guide



N\
Web CE:;\

7

recommended in applications which follow this pattern. This is illustrated in

Work group

Server host

SGGW
server

SGCP
server

Name
server

Server group’s
managing host

~

Controlled server group

—
Server host

Web Server

Servlet
(Java clients)

Client’s
bootstrap host

Server host

| A0 |[BO2] [BO3]

| A0 | [BO2] [BO3]

Application server
(member of group)

Application server
(member of group)

—¥ Name
server

| A0 | [BO2][BO3]

' A0 | [BO2]|[BO3]

Application server
(member of group)

Application server
(member of group)

Name
server

— -

B Systems |
anager ;

Z0

Figure 11. Basic horizontal topology with WLM application objects

Transient objects are usually not workload manageable because the very fact
that they are transient ties their lifecycle to a single in-memory activation.
This scenario relies only on the application object home being workload
manageable. When the application object is created (for example by the
default createFromPrimaryKeyString() method) the request to the home will
be subject to workload distribution with the effect that one of the servers in
the group will be chosen on which to create the application object. Subsequent
requests to the transient application object will be routed to its owning server.

If the chosen server should become unavailable then this will be reported to
the client application in the normal way. The client application may proceed
by using the home to create another transient application object. The new
application object will be created on one of the other servers in the group
which is still available.

The application object has the responsibility to manage transactions on behalf
of the application. If each request to the application object is a self-contained
piece of work, it may be appropriate to configure the application object to use
a container which uses RDB Transaction Service to provide an atomic (per

Chapter 17. Workload management 455



method) transaction quality of service. In this configuration each request to
the application object runs as a transaction in the server. Alternatively the
application object may use no Object Services and manage transactions itself,
as is the case in the WLM Sample. With this approach it is possible for several
successive calls to the application object to contribute to a single transaction.
Please see “Application objects” in “The managed object framework” chapter
of the WebSphere Application Server Enterprise Edition Component Broker
Programming Guide for more information.

Business objects with DB2 application adaptor persistence

Business objects are almost always persistent objects which must be activated
within some transaction or session context to ensure adequate and correct
behavior when accessed concurrently from multiple clients. In this example
scenario, assume that the client application manages transaction scope and
directly accesses WLM business objects which use the DB2 AA for their
persistence. w illustrates this.

Workgroup

Server host

SGGW SGCP Name
server server server Server group’s
managing host

Controlled server group
—
Web Server Server host Server host

\ Servlet
N (Java clients)
Web Clients \

.¥+ BO2| |BO3 BO2 | |BO3
N o Name [B?] [Bo2] Name
bootstrap host server Application server Application server server
(member of group) (member of group)
~— —
| |
L
CBSystems | | o i
1 [ [ 1
i Manager i i DCE Server i i DB2 Server i

Figure 12. Basic horizontal topology with WLM business objects

The client program locates a business object home in the usual way. A
transaction is then begun and the client finds or creates a new business object.
All WLM objects have WLM homes therefore the find or create request causes
an available server to be chosen at random from the home’s server group.

456  WebSphere: Advanced Programming Guide



Requests are then sent to the business object for processing until the client
requests to commit or, exceptionally, roll back the transaction which it began
earlier.

Although the transaction is initiated in the client, the actual transaction
coordination is performed on a server. By default the first server to be
accessed within the transaction will coordinate the transaction and this will
usually be either the application server chosen by the bind policy or, in the
case of non-WLM enhanced clients, the Gateway server. This relies on the use
of the "deferred begin’ capability in the Transaction Service. Note that in the
current release, client applications which cannot use the transaction “deferred
begin’ capability require a single server to be designated to act as the
transaction coordinator. It is not currently possible to designate a controlled
server group in this role. It is recommended that non-WLM enhanced clients
which fall into this category should be configured to use the Gateway server.
This can be achieved by setting the factoryFinder attribute on the Main tab of
the client style to the absolute name by which the client may resolve the
<servergroup>-Sggw Server-server-scope factory finder.

If the chosen server fails while a request is pending then this will be reported
to the client application in the normal way and any established transaction
context must then be terminated, that is, the client application should roll
back the transaction. Client affinity with the failed server is broken at this
point. The client may then proceed by beginning a new transaction and then
either using the home to find or create the business object again or, if the BO
exists, just continuing to use its object reference. The next request will cause a
new server to be selected and a new client affinity will be established.

If the chosen server fails when no request is pending then the next request
will discover that the chosen server is unavailable and the request will then
be redispatched to a newly chosen server. Client affinity is thus broken and
reassigned without concerning the client application. Depending on the state
of the transaction it may be possible for the workload to switch seamlessly to
the new server if the request that discovers the initial server failure is the very
first flow within a new transaction. If transaction context has already been
established then the new server will attempt to immediately register itself
with the context coordinator. If the failed server was also the transaction
coordinator then this registration will fail and the client request will be
rejected. In other circumstances registration may succeed and requests may
continue to be processed, however the transaction will eventually be rolled
back when the coordinator discovers the server failure at commit time.

Depending on the state of the active context and the resources involved, it

may not always be possible to retry the same business transaction using
another server in the group. It may be necessary for the original server to

Chapter 17. Workload management 457



restart and perform recovery of the aborted transaction before all locks are
released. However, it should be possible to continue to use the application in
the general sense.

Application objects using remote business objects with DB2 application
adaptor persistence

This scenario is a more complex deployment topology for the Transient
Application Object design pattern in which the application is separated into
two separately configurable applications within the same application family.
The first application consists of the application object with its WLM home and
the second application consists of the business objects. If both applications are
configured on the same controlled server group then this topology reduces to
the simpler scenario presented previously. However the business objects may
themselves be configured as workload manageable objects and then the
second application can be configured on a separate controlled server group.
Willustrates this.

Workgroup

Server host
Server host

Server group 1's
managing host
s 4

Server group 2's

e ;nanaglng host

server

SGCP
server

Name

Controlled server

.. Controlled

Web cﬁh&i

Web Server

Servlet
(Java clients)

Nl

Client's
bootstrap host

server group 1

Server host

Server host

Application server
(member of group)

Application server
(member of group)

server group 2

Name
server

Application server
(member of group)

Application server

(member of group)

Name
server

Manager

Figure 13. Complex topology with two controlled server groups

If we restrict this scenario to use only business objects which have DB2
application adaptor persistence then the requests between the client and the
application object home and application object are exactly as described in

458  WebSphere: Advanced Programming Guide




[Transient application ohjects” on page 454. Requests between the application

object and business objects are equivalent to the requests from client to BO

described in the FBusiness objects with DB2 application adaptor persistence’]

scenario.

Other business objects

Use of WLM business objects which do not follow patterns described above,
should be considered as technology still under evaluation. Use in production
applications is not supported.

Application adaptors

Application adaptors add a quality of service to the managed objects. One of
the quality of services is the support of WLM. Supporting WLM causes some
side effects to the programming model. These are described in the “An
Overview of Application Adaptors” topic in the “Assembling and installing
business objects” section of the WebSphere Application Server Enterprise Edition
Component Broker Programming Guide.

BOIM application adaptors

When objects are workload managed, each client has its own copy of an
object. Please refer to the “An Overview of BOIM” topic in the “Assembling
and installing business objects” section of the WebSphere Application Server
Enterprise Edition Component Broker Programming Guide, which discusses the
impact of application adaptors when developing business objects, and the
issues involved with having multiple copies of the same object.

Using Object Builder

The discussions in the previous sections have been intended to provide
information about workload management considerations, specifically
workload distribution, relevant to your application design. This section
provides additional information to help you implement and configure
Component Broker to support your application. There are two steps:

1. Define WLM containers which are configured to contain WLM objects.

2. Designate WLM managed objects as you package them into an
Application.

Adding a container

A container is an application adaptor’s unit of configuration management. For
each unique set of configuration criteria which your application requires you

Chapter 17. Workload management 459



will have to define a separate container. One of these configuration criteria
concerns workload management. When a reference to a managed object is
exported from a Component Broker Application Server, the application
adaptor refers to the object’s container to determine whether the object is a
candidate for workload management. When you define a new container using
Object Builder you designate that the container will contain workload
managed objects using the Workload managing checkbox. The application
adaptor will then know at run time to export additional metadata.

In the Application Family definition which Object Builder creates, each
container which has been configured to contain WLM objects will have an
associated Policy Group object. A Policy Group is a Systems Management
object which feeds configuration information to the workload distribution
mechanism at run time. Because Component Broker currently supports only
one Policy Group configuration there is no provision in Object Builder to
modify the Policy Group settings.

Adding a managed object to an application

One of the final steps in creating an application package with Object Builder
is the packaging of the managed objects and other ancillary files into
applications and client applications within an application family. It is at this
time that you must identify the workload manageable objects in your
application either by configuring them into WLM containers, which will
denote a WLM object with its WLM home, or just configuring them with a
WLM home.

When you select to Add a Managed Object to an application you are presented
with the Configure Managed Object wizard. If you select the Workload
managing checkbox on the container page then only WLM containers, which
also match the other MO characteristics, will be presented for selection. You
should make sure that a suitable WLM container has already been added to
the model or also select the Create a new container for this managed object
checkbox.

On the home page you must select either a default home implementation or a
specialized home implementation. If you have configured the MO with a
WLM container then you must also choose a WLM home. The choice of a
default home will be restricted to the one which is applicable. If you select a
specialized home then the specialized home MO class itself must be a WLM
object. Note that when you add a specialized home MO to an application and
configure it with a WLM container the choice of the correct WLM default
home is made automatically and is not selectable on the home page. It is
always possible to select a WLM home for a MO, even if a MO is not itself
configured with a WLM container. This allows support for workload
distribution in most application designs.

460 WebSphere: Advanced Programming Guide



If an application containing workload manageable objects is subsequently
configured on a controlled server group then the Component Broker run time
will identify WLM MOs and provide object references with a group identity.
Method requests to instances of the MO class will be subject to workload
distribution.

Client programming model

This section includes the following topics:
Exceptions and recoveryl

Using factory finders

The Component Broker client programming model depends to a large extent
on the factory finding capabilities of the LifeCycle Service. Almost all
applications will use a factory finder to locate the homes of their managed
objects. When an application is first loaded by a server, each home has the
opportunity to register with the LifeCycle Service. This registration effectively
records the existence of each home as a resource in the distributed Name
Space in such a way that a factory finder, given a suitable “Location” in
which to look, can search for an object by its specified properties.

The introduction of objects with “group identity” causes some disruption to
the basic LifeCycle registration process. Homes are normally registered as
server and host-scope resources, that is, resources belonging to the server
where they exist and to the host on which that server is configured.
Individual homes can optionally be registered as workgroup or cell resources
and all the homes on a server can also be made visible at the workgroup or
cell scope. The difference with WLM homes is that the home is now a server
group resource, rather than a server resource. The server group is also not
restricted to just one host. WLM homes are therefore resources of the server
group and the common workgroup preferred by all participating hosts. They
may optionally be individually registered at the cell level and the server
group may be made visible at the cell level.

When first learning to use factory finders a commonly cited example is to use
the system-provided host-scope factory finder which can be resolved from the
Name Space with the name /host/resources/factory-finders/host-scope.
This factory finder will only look for the requested home as a resource on the
local host. It will therefore not be able to find any WLM home. As your first
application is unlikely to feature WLM objects, this is probably not a problem.
However it is something you need to take into account as you add WLM
capabilities to an application.

Chapter 17. Workload management 461



Assuming you only have one server group per workgroup configured for a
particular application, then client applications could use the
/workgroup/resources/factory- finders/workgroup-scope factory finder. This
assumes that all the clients will run on, or be bootstrapped by, a host which
prefers the same workgroup as the hosts participating in the server group
configuration. This is a reasonable assumption as it is necessary for
client-initiated workload distribution anyway. Note that this factory finder
will not find non-WLM homes unless they have been configured to be visible
at the workgroup level.

For server-side code which needs to use a factory finder to locate homes
within the same application, use of the default workgroup-scope factory
finder is not recommended. If the application is not installed on a controlled
server group then the homes will not be WLM. If they are made visible at the
workgroup level, a general workgroup-scope search is not guaranteed to find
the instance on the same server. This same problem can arise using host-scope
if more than one server supporting the same application is installed on the
same host. In the workgroup scenario the coincidence of multiple servers is
expected to be much higher.

The recommended approach for server-side code is to use the
system-provided multi-location factory finder bound at
/host/resources/factory-finders/<server name>-server-scope-widened. This
will search for the registered home as a resource of both the local server and,
when the server is a member of a controlled server group, the appropriate
server group.

For more information on use of factory finders refer to Cancepts of factaryl

finders” on page 114,

Exceptions and recovery

In a CORBA environment there are many opportunities for the system to
generate exception conditions which are reported back to the originating
application code. An application must adopt a rigorous programming
discipline to catch, handle, report and recover from these exceptions.

The workload distribution mechanism can often reduce the probability of
exceptions being seen by the client application, because it is able to reroute
requests to an available server and preserve the single server image property.
Where requests are dispatched remotely but subsequently some failure occurs,
the client application will still receive appropriate exceptions.

Note that the CORBA:NO_IMPLEMENT exception is normally generated by

the ORB to signify that the server targeted by a request is not available or is
no longer defined. In a controlled server group environment this exception

462  WebSphere: Advanced Programming Guide



will be generated if the Server Group Control Point is unavailable and
therefore the client cannot determine which servers in the group are available.
It can also be caused by the fact that no servers have registered with the
SGCP (that is, no servers are available) or that an attempt has been made to
contact each available server without success.

Chapter 17. Workload management 463



464  WebSphere: Advanced Programming Guide



Chapter 18. Interface repository

The following chapter is platform-dependent and does NOT apply to OS/390
Component Broker.

This section contains procedures for the interface repository (IR):

Using the configuration tool

It is recommended that ODBC be configured by Component
Broker installation using the configuration tool. The following procedure is
used if the IR database needs to be recreated or reconfigured.

Creating the IR database in DB2

To create the CBSORBIR database, go to an DB2 prompt and type:

Create

database CBSORBIR

connect to CBSORBIR

Create

create
create

Create
create

create
create

create
create
Create

table IRREPDAT (

11D CHAR(32), REPID VARCHAR(2048),
NAME CHAR(254), KIND CHAR(12),STREAM LONG VARCHAR)
index REPINDEX ON IRREPDAT(IID)

table IRREFER (

KEYFIELD CHAR(64), IID CHAR(32),
REFERTOIID CHAR(32))

index REFINDEX ON IRREFER(KEYFIELD)
table IRINHER (

KEYFIELD CHAR(64), IID CHAR(32),
PARENTIID CHAR(32))

index INHINDEX ON IRINHER(KEYFIELD)
table IRBUCKET (

KEYFIELD CHAR(64), BUCKETIID CHAR(32),
11D CHAR(32))

index BKTINDEX ON IRBUCKET(KEYFIELD)
table IRWORK ( IID CHAR(32))

index WINDEX ON IRWORK(IID)

CATALOG SYSTEM ODBC DATA SOURCE CBSORBIR
CONNECT RESET

© Copyright IBM Corp. 1997,

1999

465



Notes about the DB2 commands:
1. Each create table and index must be entered on a single line.

2. Alternatively, these commands can be put in a DB2 script file and invoked
from a DB2 command line environment using the DB2 -f <script_file>.

Configuring ODBC for AIX

It is recommended that ODBC be configured by Component
Broker installation using the configuration tool. However if you move your
ODBC data files or drivers, you can use these instructions to reconfigure.

1. To create the CBSORBIR database, go to an DB2 prompt and type:

create database CBSORBIR
connect to CBSORBIR
create table IRREPDAT (
11D CHAR(32), REPID VARCHAR(2048),
NAME CHAR(254), KIND CHAR(12),STREAM LONG VARCHAR)
create index REPINDEX ON IRREPDAT(IID)
create table IRREFER (
KEYFIELD CHAR(64), IID CHAR(32),
REFERTOIID CHAR(32))
create index REFINDEX ON IRREFER(KEYFIELD)
create table IRINHER (
KEYFIELD CHAR(64), IID CHAR(32),
PARENTIID CHAR(32))
create index INHINDEX ON IRINHER(KEYFIELD)
create table IRBUCKET (
KEYFIELD CHAR(64), BUCKETIID CHAR(32),
11D CHAR(32))
create index BKTINDEX ON IRBUCKET(KEYFIELD)
create table IRWORK ( IID CHAR(32))
create index WINDEX ON IRWORK(IID)

CONNECT RESET

Notes about the DB2 commands:
a. Each create table and index must be entered on a single line.

b. Alternatively, these commands can be put in a DB2 script file and
invoked from a DB2 command line environment using the DB2 -f
<script_file>.

2. Determine if you have an .odbc.ini configuration file that is already
installed on your system.
The ODBC configuration file is located in your $HOME directory. Change
to your $HOME directory and check to see if the .odbc.ini file exists. Type:
Is -a
* If the SHOME/ .odbc.ini file does exist, you will need to add the
contents of the etc/odbc.ini file to the $HOME/.odbc.ini file.

466 WebSphere: Advanced Programming Guide



* If the $SHOME/.odbc.ini file does not exist, copy the odbc.ini file that is
found in the etc directory to the $HOME/.odbc.ini file.
3. Edit the SHOME/ .odbc.ini file.
a. Change the Driver line to be the location of the db2.o share library.
The db2.o file is located in the lib directory on the sqllib image.

b. Change the InstallDir line to be the location of the sqllib/odblib
directory.

The .odbc.ini file looks like this:
.odbc.ini samp]e ===================

[ODBC Data Sources]

CBSORBIR=IBM DB2 ODBC DRIVER

[CBSORBIR]

Driver=/home/inst1/sq11ib/1ib/db2.0 <-Change this Tine
Description=IBM Interface Repository
Instal1Dir=/home/inst1l/sql1ib/odbclib  <-Change this line

Note: Where /home/instl is the location the DB2 instance used by
Component Broker.

4. Determine if you have an .odbcinst.ini configuration file that is already
installed on your system.
The ODBC configuration file is located in your $HOME directory. Change
to your $SHOME directory and check to see if the .odbcinst.ini file exists.
Type:
Is -a
* If the $HOME/ .odbcinst.ini file does exist, you will need to add the
contents of the etc/odbcinst.ini file to the $HOME/ .odbcinst.ini file.
* If the $SHOME/ .odbcinst.ini file does not exist, copy the odbcinst.ini file
that is found in the etc directory to the $HOME/.odbcinst.ini file.
5. Edit the $SHOME/ .odbcinst.ini file.
Change the Driver line to be the location of the db2.o share library. The
db2.0 file is located in the lib directory on the sqllib image.
The .odbcinst.ini file looks like this:
.odbcinst.ini samp]e ===================

[1BM DB2 ODBC DRIVER]
Driver=/home/inst1/sql1ib/1ib/db2.0 <-Change this Tine

Note: Where /home/instl is the location the DB2 instance used by
Component Broker.

Chapter 18. Interface repository 467



Building an interface repository database

The idlc IR emitter can be used to create information in the interface
repository database that is representative of an Interface Definition Language
(IDL) file. The information in the interface repository database can be accessed
at run time by an application using the interface repository framework API.
Typical use of the interface repository in a run time environment includes
retrieving interface related information for use with the dynamic invocation
interface (DII) or with workload management.

The idlc IR emitter will emit code which, when compiled and linked, can be
run to populate the interface repository.

The following steps show how to use the idlc IR emitter to create information
in the IR database:

1. Run the idlc IR emitter to generate the source code to create objects in the
interface repository database:

idlc -eir test.idl

This creates a source file named test_IR.cpp that contains logic that creates
the appropriate objects in the interface repository database.

2. After compiling and linking the generated source code, run the resulting
application with the following command:

test_IR

Populating the IR with Component Broker’s definitions

Populate the IR with Component Broker’s definitions. If the IR database has
been recreated without using the configuration tool, you should populate it
using this procedure.

From a command prompt, type:

irpopl
irpop2

These two programs will populate the IR with Component Broker’s IDL
definitions.

Displaying the contents

The irdump provides a means to access the contents of the IR from a
command line program. The IRBrowser provides a rich user interface, but
cannot be run from a script or command line in an automated fashion.

468 WebSphere: Advanced Programming Guide



The irdump tool is invoked using by typing irdump > irdump.out from a

command prompt.

This section contains:

A simple IDL file called Test.idl

The makefile used to create the executable

The command to run the makefile

The command to run the executable

The command to invoke irdump with its output

The Test.idl file

The example that follows shows a simple IDL file Test.idl.

module sample_module {
interface sample_interface

{

}; /* end module */

The makefile

The following is a simple makefile that generates source code to create objects
in the IR and compile the source.

B e e e
The targets we need to build
o e
SRC_FILES =\

test_IR.cpp
IR_OBJ_FILES =\

test_IR.obj
EXE_FILES =\

test_IR.exe

MAP_FILES = $(EXE_FILES:.exe=.map)

IR_EXE_LIBS = \
somorori.lib

# After setting our variables but before defining our recipes
# we include "obd11.mk" which contains variables and recipes
# common to makefiles generated by the CBToolkit Object Builder

Chapter 18. Interface repository

469



!include $(IVB DRIVER PATH) \bin\obd11.mk

test_IR.cpp: test.idl
$(_IDL_) $(IDL_IR FLAGS) test.id

test_IR.obj: test_IR.cpp

test_IR.exe: test_IR.obj
$(_LDEXE_) $(LD_EXE_FLAGS) /0UT:$@ /MAP:$x.map test_IR.obj
$(IR_EXE_LIBS)

clean_test:
$(_REMOVE_) test_IR.exe
$(CREMOVE_) test_IR.obj
$(_REMOVE_) test IR.cpp

Running the makefile

To run the makefile, type:
c:\irtest->make -f test.mak

Running the executable

To run the executable you just built, type:
c:\irtest->test_IR.exe

Running irdump

Run irdump to show the IR contents, type:
c:\irtest->irdump

The following code is the output from the irdump command.

RepositoryID: IDL:Object:1.0
Defined in: The Repository
Version: 1.0

Interface is empty!

RepositoryID: IDL:sample module/sample_interface

470  WebSphere: Advanced Programming Guide



Defined in: sample_module
Version: 1.0

Interface is empty!

Chapter 18. Interface repository 471



472  WebSphere: Advanced Programming Guide



Notices

This information was developed for products and services offered in the
U.S.A. IBM may not offer the products, services, or features discussed in this
document in other countries. Consult your local IBM representative for
information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or
imply that only that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe
any IBM intellectual property right may be used instead. However, it is the
user’s responsibility to evaluate and verify the operation of any non-IBM
product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give
you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation

North Castle Drive
Armonk, NY 10504-1785
US.A.

For license inquiries regarding double-byte (DBCS) information, contact the
IBM Intellectual Property Department in your country or send inquiries, in
writing, to:

IBM World Trade Asia Corporation Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any
other country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
DOCUMENT “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OR CONDITIONS OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some
states do not allow disclaimer of express or implied warranties in certain
transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will
be incorporated in new editions of the document. IBM may make

© Copyright IBM Corp. 1997, 1999 473



improvements and/or changes in the product(s) and/or the program(s)
described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for
this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact:

For Component Broker:
IBM Corporation
Department LZKS
11400 Burnet Road
Austin, TX 78758

US.A.

For TXSeries:

IBM Corporation

ATTN: Software Licensing
11 Stanwix Street
Pittsburgh, PA 15222
US.A.

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM International
Program License Agreement or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments
may vary significantly. Some measurements may have been made on
development-level systems and there is no guarantee that these measurements
will be the same on generally available systems. Furthermore, some
measurements may have been estimated through extrapolation. Actual results
may vary. Users of this document should verify the applicable data for their
specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available

474  WebSphere: Advanced Programming Guide



sources. IBM has not tested those products and cannot confirm the accuracy
of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be
addressed to the suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change
or withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples may
include the names of individuals, companies, brands, and products. All of
these names are fictitious and any similarity to the names and addresses used
by an actual business enterprise is entirely coincidental.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Trademarks and service marks

The following terms are trademarks or registered trademarks of the IBM
Corporation in the United States, other countries, or both:

AFS IMS

AIX MQSeries
AS/400 MVS/ESA
CICS 0Ss/2

CICS 0OS/2 0S/390
CICS/400 0S/400
CICS/6000 PowerPC
CICS/ESA RISC System/6000
CICS/MVS RS/6000
CICS/VSE S/390
CICSPlex Transarc
DB2 TXSeries
DCE Encina Lightweight Client VSE/ESA
DFS VTAM
Encina VisualAge
IBM WebSphere

Microsoft, Windows, Windows NT, and the Windows 95 logo are trademarks
of Microsoft Corporation in the United States and/or other countries.

Oracle and Oracle8 are registered trademarks of the Oracle Corporation in the
United States and/or other countries.

Notices 475



UNIX is a registered trademark of The Open Group in the United States
and/or other countries licensed exclusively through X/Open Company
Limited.

OSF and Open Software Foundation are registered trademarks of the Open
Software Foundation, Inc.

* HP-UX is a Hewlett-Packard branded product. HP, Hewlett-Packard, and
HP-UX are registered trademarks of Hewlett-Packard Company.

Orbix is a registered trademark and OrbixWeb is a trademark of IONA
Technologies Ltd.

Sun, SunLink, Solaris, SunOS, Java, all Java-based trademarks and logos, NFS,
and Sun Microsystems are trademarks or registered trademarks of Sun
Microsystems, Inc. in the United States and/or other countries.

Some of this documentation is based on material from Object Management
Group bearing the following copyright notices:

Copyright 1995, 1996 AT&T/NCR

Copyright 1995, 1996 BNR Europe Ltd.

Copyright 1991, 1992, 1995, 1996 by Digital Equipment Corporation
Copyright 1996 Gradient Technologies, Inc.

Copyright 1995, 1996 Groupe Bull

Copyright 1995, 1996 Expersoft Corporation

Copyright 1996 FUJITSU LIMITED

Copyright 1996 Genesis Development Corporation

Copyright 1989, 1990, 1991, 1992, 1995, 1996 by Hewlett-Packard Company
Copyright 1991, 1992, 1995, 1996 by HyperDesk Corporation
Copyright 1995, 1996 IBM Corporation

Copyright 1995, 1996 ICL, plc

Copyright 1995, 1996 Ing. C. Olivetti &C.Sp

Copyright 1997 International Computers Limited

Copyright 1995, 1996 IONA Technologies, Ltd.

Copyright 1995, 1996 Itasca Systems, Inc.

Copyright 1991, 1992, 1995, 1996 by NCR Corporation
Copyright 1997 Netscape Communications Corporation
Copyright 1997 Northern Telecom Limited

Copyright 1995, 1996 Novell USG

Copyright 1995, 1996 02 Technolgies

Copyright 1991, 1992, 1995, 1996 by Object Design, Inc.
Copyright 1991, 1992, 1995, 1996 Object Management Group, Inc.
Copyright 1995, 1996 Objectivity, Inc.

Copyright 1995, 1996 Oracle Corporation

Copyright 1995, 1996 Persistence Software

476  WebSphere: Advanced Programming Guide



Copyright 1995, 1996 Servio, Corp.

Copyright 1996 Siemens Nixdorf Informationssysteme AG
Copyright 1991, 1992, 1995, 1996 by Sun Microsystems, Inc.
Copyright 1995, 1996 SunSoft, Inc.

Copyright 1996 Sybase, Inc.

Copyright 1996 Taligent, Inc.

Copyright 1995, 1996 Tandem Computers, Inc.

Copyright 1995, 1996 Teknekron Software Systems, Inc.
Copyright 1995, 1996 Tivoli Systems, Inc.

Copyright 1995, 1996 Transarc Corporation

Copyright 1995, 1996 Versant Object Technology Corporation
Copyright 1997 Visigenic Software, Inc.

Copyright 1996 Visual Edge Software, Ltd.

Each of the copyright holders listed above has agreed that no person shall be
deemed to have infringed the copyright in the included material of any such
copyright holder by reason of having used the specification set forth herein or
having conformed any computer software to the specification.

WHILE THE INFORMATION IN THIS PUBLICATION IS BELIEVED TO BE
ACCURATE, THE OBJECT MANAGEMENT GROUP, AND THE
COMPANIES LISTED ABOVE MAKE NO WARRANTY OF ANY KIND WITH
REGARDS TO THIS MATERIAL INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. The Object Management Group and the companies
listed above shall not be liable for errors contained herein or for incidental or
consequential damages in connection with the furnishing, performance, or use
of this material.

_RSA
w.::‘ This software contains RSA encryption code.
Soun

Other company, product, and service names may be trademarks or service
marks of others.

Notices 477



478  WebSphere: Advanced Programming Guide



Index

Special Characters
*any 128

_create 163

*ignore 129

*local 129

*localname 129
*servergroupname 128
*servername 128

A

absolute and relative names 208
access control 229
access the TransactionCurrent
object 270
access to CICS applications 294
access to IMS applications 293
acquiring a credential on a
thread 227
activation, local 454
activation, multiple 452
affinity management 451
aNewNamingContext
(variable) 202
ao (application object) 454
application, design a Transaction
Service 266
application, manage transactions in
your
access the TransactionCurrent
object 270
set a time limit for all new
transactions 271
start a transaction using the
TransactionCurrent
interface 272
suspend a transaction from the
current thread 273
application naming context 123
application objects 454
architecture and design
Transaction Service
application, 262
non-recoverable client 263
recoverable server 265
transactional server 265
array, queries that result in a
data 328, 377

© Copyright IBM Corp. 1997, 1999

associations, principals, credentials,
and secure
principal 222
asynchronous events,
communicating
events
channels 24, 52
consumers 24, 52
structured 52
suppliers 24, 52
topics 24, 52
filters 52
attributes, standard syntax
model 214
attributes of a credential, acquiring
the security 224
authentication and end-users 231
authenticity, using environment
variables to establish 236
automatic rebind 454

B

beneficiary object 113
bind_new_context() 201
bind_new_context_
with_string() 201
binding an object with a name
bind() 196
bind_with_string() 196
CosNaming::AlreadyBound
exception 196
Naming Service 197
ORB::
resolve_initial_references 197
resolve() 197
target naming context
(variable) 196
resolve() 196
BOIM application adaptors 459
bootstrap host 207
bootstrap host, local root naming
context and
bootstrap host 207
client machines 188
resolve_initial_references() 207
Builder, using Object
adding a container 459
managed object, adding a 460
business objects 459

C

C++ and Java, communication
between 424
C++ client of a local Java object
compile and link to client 429
compile Java file 428
create IDL file 425
implement getMessage 427
produce C++ client file 428
run application 429
run idlc command 426
write C++ client main
program 429
C++ client of a remote Java
object 434
C++ ORB adapter 436
compile and link client
program 439
compile and link the server 438
compile Java pieces 436
create client program 438
create IDL files 435
implementation of
getMessage() 436
Java implementation
bindings 435
Java server code 436
run application 439
C++ object, local (nt only)
Java client 430
C++ object (remote), Java client of
C++ implementation classes 441
compile and link DLL 443
create IDL file 441
implement getMessage 442
Java client program 444
link the C++ pieces to DLL 443
main server program 442
run application 445
Cache Service
configuration attributes 393
DB2 limits 396
Oracle locking 397
Cache Service and DB2 limits 396
cell name tree 187, 190
changePrice() 46
channels, event
configuring 41, 73
connecting 42, 74

479



channels, event (continued)
creating 39, 71
disconnecting 76
event channel samples
changePrice() 46
constructor 47
disconnect
_push_consumer() 49
disconnect_push_supplier() 46
ec 47
echome 47
FilterFactory and filters 77
locating 38, 70
schemas
multiple 29, 60
single 29, 59
checkpoint and reset session context
example of checkpointing and
resetting 302
CICS applications, access to 294
client, non-recoverable 263
client machines 188, 207
client programming model
exceptions and recovery 462
factory finders, using 461
client programming
model,common 294
client use of the Session Service 290
clients and Java BO example,
Java 385
code-set conversion for
remote method invocations 400
collection, queries that result in an
object 328, 376
collections
queryable collection 364
result collection 364
collections, optimizations for
object 106
collections, queries on queryable
query over reference
collections 322, 368
collections, queries over unnamed
example using the query
evaluator interface, an 378
collections, query over reference
createCollectionFor() 322, 368
DB2 search engine 352, 369
collections, topology of query
evaluators and
evaluate_to_data_array() 325,
374
evaluate_to_iterator() 325, 374
commit process, the one-phase 258

commit process, the two-phase
heuristic damage 258
heuristic mixed outcome 258
common client programming
model 294
communication between C++ and
Java 424
communication models 25, 54
Component Broker, IOM and 421
concepts of factories
application factory 114
beneficiary object 113
managed object factories 113
Policy object 113
PolicyHolder object 113
Concurrency Service, purpose of a
resource access
lock mode 3
read lock 3
write lock 3
simultaneous updates (table) 2
Concurrency Service in a
transactional environment 4
Concurrency Service tasks
change mode of lock 17
complete top level
transactions 14
configure run-time support 21
CosNaming::AlreadyBound 196
creating a lock set 10
define a lock set 10
handle exceptions 20
managing objects 20
non-transactional locks, use 15
obtain and release locks from a
lock set 12
preventing deadlocks 18
related lock sets 4
relating lock sets 11
release locks in a transactional
framework 13
troubleshooting 21
concurrency supports locking 3
conditions required for queries 351,
390
configuring a server to use the
Transaction Service 285
conflict resolution 1
conflicting locks in a lock set 6
considerations, programming
granularity 8
manage objects 8
resources, shared 8

480 WebSphere: Advanced Programming Guide

considerations for the server, other
security
AIX default locations 230
WIN default locations 230
constant_random_id attribute 106
consumers 23
consumers, event 33
container, adding 459
contents of a naming context, listing
the
CosNaming::NamingContext::
list() 203
list_with_string() 204
network latency 203
next_n() 204
next_one() 204
contents of the IR, displaying 468
context, transaction scope and
explicit propagation 254
implicit propagation 254
scope 254
transaction context 253
context and bootstrap host, local root
naming
bootstrap host 207
client machines 188
resolve_initial_references() 207
context to another thread, pass a
transaction 275
control, access 229
conversion of objects to string
form 399
converting between name-string and
name-structure
aNameString (variable) 218
CORBA standard exceptions
CORBA:INITIALIZE 273
CORBA:INVALID_
TRANSACTION 273
CORBA::PERSIST_STORE 273
CosConcurrency::LockCoordinator
drop_locks() 4, 11
CosNaming::AlreadyBound
exception 196, 203
CosNaming NamingContext 195,
209
creating a new naming context
aNewNamingContext
(variable) 202
bind_new_context() 201
bind_new_context_
with_string() 201
CosNaming::AlreadyBound
exception 203



creating a new naming context
(continued)
ORB::
resolve_initial_references
target naming context 201
credential, acquiring the security
attributes of a 224
credential on a thread, acquiring
a 227
credentials, and secure associations,
principals,
principal 222
credentials, manipulating
acquiring a credential on a thread
invocation-credential 227
own-credential 227
received-credential 227
getting a current object 224
security attributes of a
credential 224
credentials object 240
current object 240
current object, getting a 224
current thread, resume a transaction
on the 274
current thread, suspend a transaction
from the 273

D

data array, queries that result in
a 328,377

data array query 310, 358, 378

database, building an interface
repository 468

database management systems
(DBMS) 318, 365

DB2 limits, Cache Service and 396

DB2 LOBs and DB2 data types 352,
391

DB2 locking, Cache Service and 396

DBMS (database management
systems) 318, 365

200

DBMS pushdown rules 318, 365
deadlocks
prevent 18

timeout value 18
decisions, heuristic 258
design a Transaction Service
application 266
determination, problem 285
differences between OOSQL and
SQL
correlation ids 358
dereference operator 310, 358
FROM clause 309, 358
home collections 309, 358

dii, (dynamic invocation
interface) 410
disconnect_push_supplier() 46
distributed object system, naming
objects in the 181
distributed object system, security in
the 221
dynamic invocation interface
(DII) 410

E

end-users, authentication and 231
environment variables, logging in
with
SCSCELLNAME (variable) 236
SCSPASSWORD (variable) 236
SCSPRINCIPAL (variable) 236
environment variables to establish
authenticity, using 236
establish authenticity, using
environment variables to 236
evaluate_to_data_array() 377, 379
evaluator, get the server name of a
query 371
client vs. server process 371
strategies for finding server name
ask an administrator 372
ask the user 372
create an anchor 373
know collections to know
server 372
specialize your
collections 374
evaluator interface, an example
using the query
data array query 378
evaluate_to_iterator() 379
evaluators and collections, topology
of query
evaluate_to_data_array() 325,
374
evaluate_to_iterator() 325, 374
event channels
configuring 41, 73
connecting 42, 74
creating 39, 71
disconnecting 76
event channel samples
changePrice() 46
constructor 47
disconnect
_push_consumer() 49
disconnect_push_supplier() 46
ec 47
echome 47
FilterFactory and filters 77

event channels (continued)
locating 38, 70
schemas
multiple 29, 60
single 29, 59
events
consumers 33, 64
consuming 34, 65
suppliers 30, 60
supplying 31, 62

topics
multiple event channel
schemas 29, 60
single event channel
schemas 29, 59
events, communicating
asynchronous
events
channels 24, 52
consumers 24, 52
structured 52
suppliers 24, 52
topics 24, 52
filters 52

events, structured 56
example, Java clients and Java
BO 385
example of a transaction, an 251
example using the query evaluator
interface, an
data array query 378
evaluate_to_iterator() 379
exceptions
and recovery 462
NoFactory 161
exceptions, handle 20, 280
invalid transaction 281
transaction required 281
transaction rolledback 281
explicit propagation 254
explicit session propagation 300

F

factories, concepts of
application factory 114
beneficiary object 113
managed object factories
Policy object 113
PolicyHolder object

factory interface 157

factory keys
CosLifeCycle:Key 157
id 157
IExtendedLifeCycle::

FactoryKeyString 157

kind 157

113

113

481

Index



factory keys (continued)
object interface 161
federated name tree 193
file, server key-tab
key-tab file 233
protecting the key-tab file 233
in AIX 235
in NT file system 235
rgy-edit 233
flat transactions, top-level and
nested transaction 253
subtransaction 253
force a transaction to rollback 277
foreign key pattern 353, 392
form a query 326, 375

G

get the server name of a query
evaluator 371
client vs. server process 371
strategies for finding server name
ask an administrator 372
ask the user 372
create an anchor 373
know collections to know
server 372
specialize your
collections 374
getting a current object 224
granularity
intention read mode 9
intention write mode 9
group identity 448

H

handle exceptions 280
invalid transaction 281
transaction required 281
transaction rolledback 281
heuristic damage 258
heuristic decisions 258
heuristic hazard 255
heuristic mixed outcome 258
home collections 321, 367
homes, WLM 450
host, local root naming context and
bootstrap
bootstrap host 207
client machines 188
resolve_initial_references() 207
host name tree 187, 189
host name tree, local and
locations to bind resources 189
ORB::
resolve_initial_references 189

host name tree, local and (continued)
organization rules for
resources 188

|
id 157
identity, group 448
ids and passwords, user 232
IExtendedNaming
NamingContext 198, 209
implementations, IOM interfaces
and 424
implementing the Naming Service
NamingStringSyntax
StandardSyntaxModel 212
NamingStringSyntax
StringName 212
string syntax object, the 211
XEN (X/Open Federated
Naming) specification
standard 212
implicit propagation 254
implicit session context
propagation 300
implicitly propagate transaction
context
to a remote object 277
IMS applications, access to 293
infrastructure scope boundaries 128
inheritance 313, 362
instance variables
price (variable) 46
pxyPushC (variable) 46
integration of system name spaces
host tree, bind 192
remote name context
binding 192
specifying hosts 193
intention read lock 6
interface, factory 157
interface, summary of the naming
context
CosNaming NamingContext
introduces operations 209
IExtendedNaming
NamingContext introduces
operations 209
interface repository
database, building an 468
displaying the contents
executable, running the 470
irdump, running 470
makefile 469
makefile, running the 470
test.IDL file 469

482  WebSphere: Advanced Programming Guide

interface repository (continied)
ODBC for AIX, configuring 466
ODBC for NT, configuring 465
interfaces, Transaction Service objects
and 267
invocation, remote method 399
invocation interface (DII),
dynamic 410
IOM and Component Broker 421
IOM interfaces and
implementations 424
IR (interface repository)
database, building an 468
displaying the contents
executable, running the 470
irdump, running 470
makefile 469
makefile, running the 470
test.IDL file 469
ODBC for AIX, configuring 466
ODBC for NT, configuring 465
is_identical() 103, 104

J

Java, communication between C++
and 424
Java BO example, Java clients
and 385
Java client
local C++ object (nt only),
compile and link to DLL 431
compile the Java files 433
create IDL file 430
implement getMessage 431
implementation-side C++
binding files 430
produce the client stub 432
run application 433
write and compile Java client
program 433
Java client of a remote C++ object
C++ implementation classes 441
compile and link DLL 443
create IDL file 441
implement getMessage 442
Java client program 444
link the C++ pieces to DLL 443
main server program 442
run application 445
Java clients and Java BO
example 385
Java object, C++ client of a local
compile and link to client 429
compile Java file 428
create IDL file 425
implement getMessage 427



Java object, C++ client of a local
(continued)

produce C++ client file 428

run application 429

run idlc command 426

write C++ client main
program 429

Java object, C++ client of a
remote 434

C++ ORB adapter 436

compile and link client
program 439

compile and link the server 438

compile Java pieces 436

create client program 438

create IDL files 435

implementation of
getMessage() 436

Java implementation
bindings 435

Java server code 436

run application 439

K
key-tab file 233
key-tab file, server
key-tab file 233
protecting the key-tab file 233
in AIX 235
in NT file system 235
rgy-edit 233
keys, factory
CosLifeCycle:Key 157
id 157
IExtendedLifeCycle::
FactoryKeyString 157
kind 157
object interface 161
kind field 155, 157

L

Language, object-oriented Structured
Query
result collection 308, 356
returned collection 308, 356
structured query language
(SQL) 308, 356
leaks in the Transaction Service,
prevent memory 282
LifeCycle Service
distributed system 111
factory-finders 112
location object 112
lifetime of a transaction 253
limit for all new transactions, set a
time 271

limits, Cache Service and DB2 396
limits (timeouts), transaction time
timed out 261
limits, transaction retry 261
listing the contents of a naming
context
CosNaming::NamingContext::
list() 203
list_with_string() 204
network latency 203
next_n() 204
next_one() 204
local activation 454
local and host name tree
locations to bind resources 189
ORB::
resolve_initial_references 189
organization rules for
resources 188
local C++ object (nt only)
Java client 430
local only, object 124
local root naming context and
bootstrap host
bootstrap host 207
client machines 188
resolve_initial_references() 207
location based factory finding
infrastructure scope boundaries
values/scopes (table) 128
topology scope boundaries
cell 128
host 128
values/scopes (table) 129
workgroup 128
location object implementations and
proximity
compound-conditional location

object 121
political proximity 120
locations

proximity scopes 116
compound 116
compound-conditional 116
compound-temporal-
conditional 116
geographical 116
infrastructural 116
physical 116
political 116
proximal 116
temporal 116
topological 116

lock(), (blocking) 12

lock requests in a lock set,
servicing 7
lock sets
conflicting locks ina 6
creating 10
defining 10
locks and 5
obtain and release locks from
a 12
related 4
servicing lock requests ina 7
locking, Cache Service and DB2 396
locking, Cache Service and
Oracle 397
locks
change mode of lock 17
exclusive 5
in a lock set, conflicting 6
intention 5
lock sets and 5
modes 5
non-transactional, use
get_resource() 16
obtain and release from a lock
set 12
possession, multiple 7
read and write 5
release in a transactional
framework 13
requests in a lock set,
servicing 7
shared 3
thread-based 3
log, the Transaction Service 282
logging in with environment
variables
SCSCELLNAME (variable) 236
SCSPASSWORD (variable) 236
SCSPRINCIPAL (variable) 236
loginhelper object 241

M

manage transactions in your
application
access the TransactionCurrent
object 270
set a time limit for all new
transactions 271
start a transaction using the
TransactionCurrent
interface 272
suspend a transaction from the
current thread 273
manageable objects, workload 449
managed object 124
managed object..., adding a 460

483

Index



managed object developer use of the
Session Service 292
managed objects and local only
objects
application factory 124
management, affinity 451
management, memory 350, 388
managing updates to resources
server processors 4
manipulating credentials
acquiring a credential on a thread
invocation-credential 227
own-credential 227
received-credential 227
getting a current object 224
security attributes of a
credential 224
memory leaks in the Transaction
Service, prevent 282
memory management
message protection
confidentiality and integrity
protection 238
confidentiality protection 238
data encryption service
(des) 238
integrity protection 238
none 238
method invocation, remote 399
methods 311, 360
model, client programming
exceptions and recovery 462
factory finders, using 461
model, programming
group identity 448
references to other objects 453
WLM homes 450
workload manageable
objects 449
model grammar, standard syntax
attributes, standard syntax
model 214
standard model rules for parsing
string names 213
models, communication 25, 54
modes, lock
intention read lock 6
intention write lock IW) 6
lock mode capability (table) 6
read lock mode (R) 6
upgrade lock mode (U) 6
write lock mode (W) 6
mounted 187, 207
multiple activation 452

350, 388

multiple concurrent threads
collaborate on session outcome
amongst 305
multiple lock possession
unlock requests, number 7

N

name, binding an object with a
bind() 196
bind_with_string() 196
CosNaming::AlreadyBound
exception 196
Naming Service 197
ORB::
resolve_initial_references 197
resolve() 197
target naming context
(variable) 196
resolve() 196
name (variable) 199, 204
name binding 181
name component 194
name of a query evaluator, get the
server 371
client vs. server process 371
strategies for finding server name
ask an administrator 372
ask the user 372
create an anchor 373
know collections to know
server 372
specialize your
collections 374
name space, navigation in the
system
cell and .: 191
workgroup 191
name spaces, integration of system
host tree, bind 192
remote name context
binding 192
specifying hosts 193
name-string and name-structure,
converting between
aNameString (variable) 218
name strings 195
name-structure, converting between
name-string and
aNameString (variable) 218
name tree, local and host
locations to bind resources 189
ORB::
resolve_initial_references 189
organization rules for
resources 188

484  WebSphere: Advanced Programming Guide

name trees 183
named object, resolving a 198
names, absolute and relative 208
names, object
compound name 194
CosNaming::NamingContext 195
name component 194
name strings 195
simple name 194
NameStringSyntax
StandardSyntaxModel 210
naming context, creating a new
aNewNamingContext
(variable) 202
bind_new_context() 201
bind_new_context_
with_string() 201
CosNaming::AlreadyBound
exception 203
ORB::
resolve_initial_references 200
target naming context 201
naming context and bootstrap host,
local root
bootstrap host 207
client machines 188
resolve_initial_references() 207
naming context interface, summary
CosNaming NamingContext
introduces operations 209
IExtendedNaming
NamingContext introduces
operations 209
naming objects in the distributed
object system 181
Naming Service, implementing the
NamingStringSyntax
StandardSyntaxModel 212
NamingStringSyntax
StringName 212
string syntax object, the 211
XEN (X/Open Federated
Naming) specification
standard 212
NamingStringSyntax
StringName 212
navigation in the system name space
cell and .: 191
workgroup 191
nested transaction 253
non-managed single-location scope,
creating a
cell name tree 187
mounted 187



non-managed single-location scope,
creating a (continued)
scope-structure, using
_create(scope) 163
static functions for creating 163
_create 163
workgroup name tree 187
non-recoverable client 263
non-transactional locking,
transactional and 3
NTES (NT file system) 235

O

object, access the
TransactionCurrent 270
object, resolving a named 198
Object Builder, using
adding a container 459
managed object, adding a 460
object collection, queries that result
inan 328, 376
object developer use of the Session
Service, managed 292
object from a naming context,
unbinding an 205
object implementations and
proximity, location
compound-conditional location
object 121
political proximity 120
object interface 157, 161
object names
compound name 194

CosNaming::NamingContext 195

name component 194
name strings 195
simple name 194
object-oriented Structured Query
Language
result collection 308, 356
returned collection 308, 356
structured query language
(SQL) 308, 356
object relationship support 353, 391
object system, naming objects in the
distributed 181
object system, security in the
distributed 221
object with a name, binding an
bind() 196
bind_with_string() 196
CosNaming::AlreadyBound
exception 196
Naming Service 197
ORB::
resolve_initial_references 197

object with a name, binding an
(continued)
resolve() 197
target naming context
(variable) 196
resolve() 196
objects
collections, optimizations
for 106
comparing 103
constant_random_id() 104
is_identical() 104
multiple 104
two 104
visibility of named 187
objects, application 454
objects, business 459
objects, managing 20
objects, Security Service
credentials object 240
current object 240
loginhelper object 241
principal object 240
objects, transient 456
objects and interfaces, Transaction
Service 267
objects to string form, conversion
of 399
one-phase commit process 258
OOSQL (object-oriented Structured
Query Language) 308, 356
OOSQL and SQL, differences
between
correlation ids 358
dereference operator 310, 358
FROM clause 309, 358
home collections 309, 358
optimistic cache options (table) 395
optimizations, query 317, 364
optimizations for object
collections 106
Oracle locking, Cache Service
and 397
ORB::resolve_initial_references 200
outcomes, transaction
commit 255
heuristic hazard 255
heuristic mixed 255
rolled back 255

over unnamed collections, queries

example using the query
evaluator interface, an 378

P

parameter lists not named
collections 353, 391
parsing string names, standard
model rules for 213
passwords, user ids and 232
Policy object 113
PolicyHolder object 113
possession, multiple lock
unlock requests, number 7
prevent memory leaks in the
Transaction Service 282
principal object 240
principals, credentials, and secure
associations
principal 222
priorities, resource 290
problem determination 285
programming considerations
granularity 8
manage objects 8
resources, shared 8
programming model
group identity 448
references to other objects 453
WLM homes 450
workload manageable
objects 449
programming model, client
exceptions and recovery 462
factory finders, using 461
programming model, common
client 294
protecting the key-tab file 233
protection, message
confidentiality and integrity
protection 238
confidentiality protection 238
data encryption service
(des) 238
integrity protection 238
none 238
proximity, location object
implementations and
compound-conditional location
object 121
political proximity 120
pseudo-host name tree 190
purpose of a Concurrency Service
resource access
lock mode 3
read lock 3
write lock 3
simultaneous updates (table) 2
push down 317, 364

485

Index



pushdown rules, DBMS 318, 365

Q

queries on queryable collections
query over reference
collections 322, 368
queries over unnamed collections
example using the query
evaluator interface, an 378
queries that result in a data
array 328, 377
queries that result in an object
collection 328, 376
query, form a 326, 375

query evaluator, get the server name

ofa 371
client vs. server process 371

strategies for finding server name

ask an administrator 372
ask the user 372
create an anchor 373
know collections to know
server 372
specialize your
collections 374
query evaluator interface, an
example using the
data array query 378
evaluate_to_iterator() 379
query evaluator usage 391
query evaluators and collections,
topology of
evaluate_to_data_array() 325,
374
evaluate_to_iterator() 325, 374
query optimizations 317, 364
query over persistent objects 352,
391
query over reference collections
createCollectionFor() 322, 368
DB2 search engine 352, 369
Query Service tips
conditions required for
queries 351, 390
DB2 LOBs and DB2 data
types 352, 391
deferred updates 352, 390
foreign key pattern 353, 392

object relationship support 353,

391
parameter lists not named
collections 353, 391
query evaluator usage 391
query over persistent
objects 352, 391
timeout settings 352, 391

query statement processing 352,
390
queryable collections, queries on
query over reference
collections 322, 368

R

R (read lock mode) 6

rebind, automatic 454

recoverability 254

recoverable server 265

recovery and exceptions 462

reference collections, query over
createCollectionFor() 322, 368
DB?2 search engine 352, 369

register sessionable resources 303

related lock sets 4

relationship between transactions

and sessions 289
relative names, absolute and 208
remote C++ object, Java client of a

C++ implementation classes 441

compile and link DLL 443
create IDL file 441
implement getMessage 442
Java client program 444
link the C++ pieces to DLL 443
main server program 442
run application 445
remote Java object, C++ client of
a 434
C++ ORB adapter 436
compile and link client
program 439

compile and link the server 438

compile Java pieces 436
create client program 438
create IDL files 435
implementation of
getMessage() 436
Java implementation
bindings 435
Java server code 436
run application 439
remote method invocation 399
remote method invocations
code-set conversion for
char code sets 402
native char code set 401
native wchar code set 401
translation enabled 401
use ISO-Latinl 401
wchar code sets 402
remote name context binding 192

486 WebSphere: Advanced Programming Guide

remote object, implicitly propagate
transaction context to a 277
replicated data store 194
repository, interface
database, building an 468
displaying the contents
executable, running the 470
irdump, running 470
makefile 469
makefile, running the 470
testIDL file 469
ODBC for AIX, configuring 466
ODBC for NT, configuring 465
requests in a lock set, servicing
lock 7
reset session context, checkpoint and
example of checkpointing and
resetting 302
resolve() 196
resolve_initial_references() 207
resolving a named object 198
resource priorities 290
resources, managing updates to
server processors 4
resources, register sessionable 303
result collection 364, 381
result in an object collection, queries
that 328, 376
resume a session, suspend and 299
resume a transaction on the current
thread 274
retry limits, transaction 261
rollback, force a transaction to 277
rules, DBMS pushdown 318, 365
rules, visibility
CICS applications, access to 294
common client programming
model 294
IMS applications, access to 293
run-time support, configure 21
running system, Transaction Service
ina
configuring a server, Transaction
Service 285
problem determination 285
server start-up, types of 284
Transaction Service log 282
.csh 283
ctl 283
nnn - 283
somtrnnn (variable) 283

S

scope 254



scope, creating a non-managed
single-location
cell name tree 187
mounted 187
scope-structure, using
_create(scope) 163
static functions for creating 163
_create 163
workgroup name tree 187
scope and context, transaction
explicit propagation 254
implicit propagation 254
scope 254
transaction context 253
scope of location, defining
container 128
home 128
server 128
scope of sessions, the 287
scope structures and strings
boundry value 155
kind value 155
scope boundary 155
scopes, Component Broker location
infrastructure scope boundaries
values/scopes (table) 128
topology scope boundaries
cell 128
host 128
values/scopes (table) 129
workgroup 128
secure associations, principals,
credentials, and
principal 222
security attributes of a credential,
acquiring the 224
security considerations for the
server, other
AIX default locations 230
WIN default locations 230
security in the distributed object
system 221
Security Service objects
credentials object 240
current object 240
loginhelper object 241
principal object 240
server, other security considerations
for the
AIX default locations 230
WIN default locations 230
server, recoverable 265
server, transactional 265
server key-tab file
key-tab file 233

server key-tab file (continued)
protecting the key-tab file 233
in AIX 235
in NT file system 235
rgy-edit 233
server name of a query evaluator,
get the 371
client vs. server process 371
strategies for finding server name
ask an administrator 372
ask the user 372
create an anchor 373
know collections to know
server 372
specialize your
collections 374
server processors 4
server start-up 284
server to use the Transaction Service,
configuring a 285
Service, implementing the Naming
NamingStringSyntax
StandardSyntaxModel 212
NamingStringSyntax
StringName 212
string syntax object, the 211
XEN (X/Open Federated
Naming) specification
standard 212
Service, LifeCycle
distributed system 111
factory-finders 112
location object 112
Service application, design a
Transaction 266
Service log, the Transaction 282
Service objects and interfaces,
Transaction 267
session, suspend and resume a 299
session, the timeout value associated
with a 289
session context, checkpoint and reset
example of checkpointing and
resetting 302
session outcome, collaborate on
amongst multiple concurrent
threads 305
Session Service, client use of
the 290
Session Service, managed object
developer use of the 292
Session Service, using the
client use of the Session
Service 290

Session Service, using the (continued)
managed object developer use of
the Session Service 292
Session Service tasks
begin a session 295
end a session 297
set a time limit 295
sessionable resources, register 303
sessions, relationship between
transactions and 289
sessions, the scope of 287
set a time limit for all new
transactions 271
single-location scope, creating a
non-managed
cell name tree 187
mounted 187
scope-structure, using
_create(scope) 163
static functions for creating 163
_create 163
workgroup name tree 187
SQL, differences between OOSQL
and
correlation ids 358
dereference operator 310, 358
FROM clause 309, 358
home collections 309, 358
SQL (structured query
language) 308, 356
standard exceptions, CORBA
CORBA:INITIALIZE 273
CORBA:INVALID_
TRANSACTION 273
CORBA::PERSIST_STORE 273
standard model rules for parsing
string names 213
standard syntax model
attributes 214
standard syntax model grammar
attributes, standard syntax
model 214
standard model rules for parsing
string names 213
StandardSyntaxModel
StringName 210
start a transaction using the
TransactionCurrent interface
CORBA:INITIALIZE 273
CORBA:INVALID_
TRANSACTION 273
CORBA::PERSIST_STORE 273
start-up, server 284
string form, conversion of objects
to 399

487

Index



string syntax object, the 211
structured events 56
structured query language,
object-oriented
result collection 308, 356
returned collection 308, 356
structured query language
(SQL) 308, 356
subtransaction 253
summary of the naming context
interface
CosNaming NamingContext
introduces operations 209
IExtendedNaming
NamingContext introduces
operations 209
summary of the Transaction
Service 286
suppliers 23
suppliers, event 30
suspend a transaction from the
current thread 273
suspend and resume a session 299
syntax model grammar, standard
attributes, standard syntax
model 214
standard model rules for parsing
string names 213
syntax object, the string 211
system name space 123
system name space, navigation in
the
celland .: 191
workgroup 191
system name spaces, integration of
host tree, bind 192
remote name context
binding 192
specifying hosts 193

T

target naming context
(variable) 196, 198
tasks, Concurrency Service
change mode of lock 17
complete top level
transactions 14
configure run-time support 21
CosNaming::AlreadyBound 196
creating a lock set 10
define a lock set 10
handle exceptions 20
managing objects 20
non-transactional locks, use 15

tasks, Concurrency Service

(continued)
obtain and release locks from a
lock set 12

preventing deadlocks 18
related lock sets 4
relating lock sets 11
release locks in a transactional
framework 13
troubleshooting 21
tasks, Session Service
begin a session 295
end a session 297
set a time limit 295
thread, acquiring a credential on
a 227
thread, pass a transaction context to
another 275
thread, resume a transaction on the
current 274
thread, suspend a transaction from
the current 273
time limit for all new transactions,
seta 271
time limits (timeouts), transaction
timed out 261
timed out 261
timeout settings 352, 391
timeout value associated with a
session, the 289
timeouts, transaction time limits
timed out 261
tips, Query Service
conditions required for
queries 351, 390
DB2 LOBs and DB2 data
types 352, 391
deferred updates 352, 390
foreign key pattern 353, 392
object relationship support 353,
391
parameter lists not named
collections 353, 391
query evaluator usage 391
query over persistent
objects 352, 391
timeout settings 352, 391
top-level and flat transactions
nested transaction 253
subtransaction 253
topology of query evaluators and
collections
evaluate_to_data_array() 325,
374
evaluate_to_iterator() 325, 374

488  WebSphere: Advanced Programming Guide

topology scope boundaries 128
transaction, an example of a 251
transaction, lifetime of a 253
transaction context 253
transaction context to another
thread, passa 275
transaction context to remote object
implicitly propagate a 277
transaction from the current thread,
suspend a 273
transaction on the current thread,
resume a 274
transaction outcomes
commit 255
heuristic hazard 255
heuristic mixed 255
rolled back 255
transaction retry limits 261
transaction scope and context
explicit propagation 254
implicit propagation 254
scope 254
transaction context 253
Transaction Service, configuring a
server to use the 285
Transaction Service, prevent memory
leaks in the 282
Transaction Service, summary of
the 286
Transaction Service application,
architecture and design
non-recoverable client 263
recoverable server 265
transactional server 265
Transaction Service application,
design a 266
Transaction Service in a running
system
configuring a server, Transaction
Service 285
problem determination 285
server start-up, types of 284
Transaction Service log 282
.csh 283
.ctl 283
.nnn 283
somtrnnn (variable) 283
Transaction Service log, the 282
Transaction Service objects and
interfaces 267
transaction time limits (timeouts)
timed out 261
transaction to rollback, force a 277



transaction using the
TransactionCurrent interface, start
a
CORBA:INITIALIZE 273
CORBA:INVALID_
TRANSACTION 273
CORBA::PERSIST_STORE 273
transactional and non-transactional
locking 3
transactional environment,
Concurrency Service 4
transactional framework, release
locksina 13
transactional server 265
TransactionCurrent interface
start a transaction using the 272
TransactionCurrent interface, start a
transaction using the
CORBA:INITIALIZE 273
CORBA:INVALID_
TRANSACTION 273
CORBA::PERSIST_STORE 273
TransactionCurrent object, access
the 270
transactions, complete top level
get_coordinator() 15
uninvolve_in_transaction() 15
transactions, set a time limit for all
new 271
transactions, top-level and flat
nested transaction 253
subtransaction 253
transactions and sessions,
relationship between 289
transactions in your application,
manage

access the TransactionCurrent
object 270

set a time limit for all new
transactions 271

start a transaction using the
TransactionCurrent
interface 272

suspend a transaction from the
current thread 273

transient objects 456
troubleshoot 21

try_lock(), (non-blocking) 12
two-phase commit process

heuristic damage 258
heuristic mixed outcome 258

U

U (upgrade lock mode) 6
unbinding an object from a naming
context 205
unnamed collections, queries over
example using the query
evaluator interface, an 378
updates to resources, managing
server processors 4
user ids and passwords 232
using environment variables to
establish authenticity 236
using factory finders 461
using Object Builder
adding a container 459
managed object, adding a 460
using the Session Service
client use of the Session
Service 290
managed object developer use of
the Session Service 292

Vv

variables, logging in with
environment
SCSCELLNAME (variable) 236
SCSPASSWORD (variable) 236
SCSPRINCIPAL (variable) 236
variables to establish authenticity,
using environment 236
visibility of named objects 187
visibility rules
CICS applications, access to 294
common client programming
model 294
IMS applications, access to 293

wW

W (write lock mode) 6

WLM (workload manageable)
objects 449

WLM homes 450

workgroup name tree 187, 189

workgroups 190

workload manageable objects 449

X

X/Open Federated Naming (XFN)
specification standard 212

XFN(X/Open Federated Naming)
specification standard 212

Index

489



490 WebSphere: Advanced Programming Guide






on recycled paper containing 10%

@ Printed in the United States of America
recovered post-consumer fiber.

SC09-4443-00



Spine information:

WebSphere Advanced Programming Guide Version 3.0 $C09-4443-00



